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Global patterns of nitrate isotope composition
in rivers and adjacent aquifers reveal reactive
nitrogen cascading
Ioannis Matiatos 1✉, Leonard I. Wassenaar1, Lucilena R. Monteiro 1, Jason J. Venkiteswaran 2,

Daren C. Gooddy 3, Pascal Boeckx 4, Elisa Sacchi 5, Fu‐Jun Yue6, Greg Michalski7,

Carlos Alonso-Hernández8, Christina Biasi 9, Lhoussaine Bouchaou10,11, Nandana V. Edirisinghe12,

Widad Fadhullah13, Joseph R. Fianko14, Alejandro García-Moya8, Nerantzis Kazakis15, Si-Liang Li6,

Minh T. N. Luu16, Sakhila Priyadarshanee12, Viviana Re 5,24, Diego S. Rivera 17, Asunción Romanelli18,

Prasanta Sanyal19, Fredrick Tamooh20, Duc A. Trinh21, Wendell Walters22 & Nina Welti23

Remediation of nitrate pollution of Earth’s rivers and aquifers is hampered by cumulative

biogeochemical processes and nitrogen sources. Isotopes (δ15N, δ18O) help unravel spatio-

temporal nitrogen(N)-cycling of aquatic nitrate (NO3
−). We synthesized nitrate isotope data

(n= ~5200) for global rivers and shallow aquifers for common patterns and processes. Rivers

had lower median NO3
− (0.3 ± 0.2 mg L−1, n= 2902) compared to aquifers (5.5 ± 5.1 mg L−1,

n= 2291) and slightly lower δ15N values (+7.1 ± 3.8‰, n= 2902 vs +7.7 ± 4.5‰, n= 2291),

but were indistinguishable in δ18O (+2.3 ± 6.2‰, n= 2790 vs +2.3 ± 5.4‰, n= 2235). The

isotope composition of NO3
− was correlated with water temperature revealing enhanced N-

cascading in warmer climates. Seasonal analyses revealed higher δ15N and δ18O values in

wintertime, suggesting waste-related N-source signals are better preserved in the cold

seasons. Isotopic assays of nitrate biogeochemical transformations are key to understanding

nitrate pollution and to inform beneficial agricultural and land management strategies.
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The exponential growth of the human population con-
comitant with intensive development of fertilized agri-
cultural and industrial activity since the 1950s caused sharp

increases in nitrogen loadings to rivers and surficial aquifers
worldwide1,2. Dissolved reactive nitrogenous species (e.g., NO3

−,
NH4

+) are prevailing pollutants in many rivers and aquifers,
stemming primarily from agricultural activities, municipal waste
sources, and combustion derived nitrogen (N) deposition3. The
impact of reactive nitrogenous species on water and ecosystems
(e.g., eutrophication, hypertrophication) and human health (e.g.,
methemoglobinemia, cancer, thyroid disease)4–6 occurs in series,
known as N-cascading1, and is of existential concern.

The global nitrogen cycle is a subject of considerable debate
and concern that anthropogenic loadings are driving it beyond
Earth’s natural resilience boundaries7. Reactive nitrogen cascades
through aquatic ecosystems differentially1, since some systems
accumulate N, whereas others transform it through diverse bio-
geochemical N-cycling processes like nitrification, denitrification,
N2-fixation, dissimilatory nitrate reduction (DNRA), ammonifi-
cation, and biological assimilation at rates dependent on the
environmental conditions. These complexities make it difficult to
unravel what point-based NO3

− concentrations in rivers or their
connected aquifers embody at any point in time, apart from
regulatory pollutant exceedances, and quantitative knowledge of
the roles of N-cycling processes in the terrestrial aquatic envir-
onments remains deficient.

Stable isotopes of NO3
− (δ15N, δ18O) are used, particularly in

the last decades, to help identify the sources of high N-pollution
in aquatic systems8–12. Contemporary preparative and isotope
techniques enable fast low-cost isotopic analysis of 15N/14N and
18O/16O ratios to ppb concentrations to incorporate comparative
isotopic information from pristine aquatic environments[13, and
references therein]. Distinctive δ15N and δ18O biplot clusters
were initially proposed to “assign” organic and inorganic NO3

−

origins3,14,15, however, NO3
− sources rarely exhibit unique

combinations of nitrogen (N) and oxygen (O) isotopic values as
shown by ambiguous or widely overlapping clusters (e.g., soil,
manure/sewage, NH4

+ fertilizer), which make straightforward
assignments problematic. Accordingly, others16–18 recommend
including additional isotopes (e.g., δ11B), other chemicals (e.g.,
pharmaceuticals, food additives), and/or biological markers (e.g.,
chlorophyll-a, fecal coliforms) to better differentiate sources of
nitrogen pollution in freshwaters, particularly as related to
municipal sewage, animal waste, industrial and atmospheric
sources.

One common misperception in the interpretation of NO3
−

isotopes in aquatic systems is that its isotopic composition is a
conservative tracer of N source(s), despite isotope fractiona-
tions during numerous biogeochemical transformations that
significantly alter the δ15N and δ18O values of nitrate19. Instead,
the δ15N and δ18O of NO3

− in aquatic systems are more fre-
quently a mixture of time and seasonally dependent N-source
(s) and cumulative isotopic fractionations that occur during
transport and biogeochemical transformation of dissolved N-
species20–22. It is well-known that biological nitrate uptake
(assimilation) and denitrification processes preferentially pro-
cess the light isotopes, resulting in heavy isotope enrichment of
residual nitrate14. Despite uncertainties in the assessment of
sources of nitrate pollution using δ15N and δ18O, these stable
isotopes retain fundamental source and process information to
help decipher the complexity of N-biogeochemistry in aquatic
environments21,23,24.

Common patterns of N-cycling processes using global spatial
data sets of NO3

− and its stable isotopes are established for soils
and plant matter25–28, but larger-scale spatiotemporal studies of
nitrate in rivers and adjacent aquifers are lacking20,29–31. Here we

synthesized global river and adjacent shallow aquifer nitrate
isotope (15N and 18O of NO3

−) data sets from the scientific lit-
erature as well as new data (n= ~5200) to (a) provide a first-
order global assessment of spatiotemporal patterns of NO3

− and
its isotopes in rivers and aquifers and (b) evaluate whether NO3

−

transformations are impacted by key environmental factors, such
as temperature, climate, and seasonality. The investigation of the
origin of nitrate pollution in rivers and groundwater at the local
scale usually requires a deeper consideration of additional
information such as N flux information from homogenized land-
use types32; however, the detailed local evaluation was beyond the
scope of this work. This synthesis provides a global foundational
perspective to evaluate the potential and limitations of nitrate
stable isotopes to track nitrogen pollution sources in aquatic
systems, especially rivers, and to promote a data-based framework
for further improving our understanding of the transformation
mechanisms of nitrogen for sustainable management and reme-
diation of N-contaminated waters.

Results
Overall assessment of global river and groundwater nitrate
data sets. Concentrations of nitrate in rivers and adjacent aquifers
deviated from normal distributions and were highly skewed
(skewness index > 2), hence median values were retained33. Of all
samples, rivers had substantively lower median NO3

− con-
centrations (0.3 ± 0.2 mg L−1, n= 2902) compared to ground-
water (5.5 ± 5.1 mg L−1, n= 2291) (Supplementary Table 1).
Around 2% of river water samples exceeded the WHO (World
Health Organization) threshold of 50 mg L−1 (as NO3

−), whereas
in groundwater the exceedance was far higher (~34%). The
Kruskal–Wallis test indicated that nitrate concentration differ-
ences between rivers and groundwater subsets were significant
(p-value < 0.05) (Supplementary Table 2).

The distribution patterns for δ15N and δ18O of NO3
− in rivers

and groundwater deviated from normal distributions (Supplemen-
tary Fig. 1). The isotope data were not as skewed as NO3

−

concentrations (skewness index < 2 for the number of records
>30033), hence average values were retained to compare these
isotope variables among them. Outliers were mostly extreme values
falling within the upper and lower tails of the distributions of the
Quantile–Quantile (Q–Q) plots (Supplementary Fig. 1). The δ15N
values of nitrate in rivers were slightly lower (+7.1 ± 3.8‰, n=
2902) than aquifers (+7.7 ± 4.5‰, n= 2291, p-value < 0.05).
Kendall14 presented an early compilation of nitrate isotope data
in aquatic systems and reported groundwater nitrate has
considerably higher δ15N values than rivers, however, others found
more positive δ15N nitrate values in surface waters than nearby
groundwater15. Other case studies affirmed higher mean δ15N
values for NO3

− in shallow groundwater compared to local rivers
in urban waters (Manila, Bangkok, and Jakarta)34 or under
different land-use-based catchments12. Overall, the δ18O values of
nitrate in rivers and groundwaters worldwide were indistinguish-
able from each other (+2.3 ± 6.2‰, n= 2790, vs+2.3 ± 5.4‰, n=
2235, p-value > 0.05, respectively) (Supplementary Tables 1 and 2).

Isotope variation with latitude. The global data set included river
and groundwater samples spanning from 67o N to 38o S LAT and
from 145o E to 123o W LON (Fig. 1). There were more samples
between 30° N to 60° N than other latitudinal ranges, reflecting the
preponderance of data from North America, Europe, and East
Asia. However, Central Asia, Central, and South America, Ocea-
nia, and Africa are poorly represented for nitrate isotope data sets
due to a lack of water N pollution studies in those areas. The δ15N
and δ18O of nitrate were negatively correlated with latitude
for rivers (δ15N-NO3

−=−0.07 ± 0.01 × Latitude + 10.14 ± 0.46,
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p-value < 0.05, n= 521, R2= 0.07; δ18O-NO3
−=−0.12 ± 0.02 ×

Latitude + 9.47 ± 0.79, p-value < 0.05, n= 506, R2= 0.06) and
groundwater (δ15N-NO3

−=−0.15 ± 0.03 × Latitude + 14.59 ±
1.16, p-value < 0.05, n= 301, R2= 0.08; δ18O-NO3

−=−0.30 ±
0.03 × Latitude + 16.05 ± 1.43, p-value < 0.05, n= 299, R2= 0.18)
(Supplementary Fig. 2 and Supplementary Table 3). When data
from the Northern Hemisphere were considered separately, the
correlation between δ15N and δ18O of NO3

− and latitude yielded a
similar regression slope and intercept.

Relationship between 15N and 18O of NO3
−. Both river and

groundwater nitrate revealed positive correlations between the
δ18O and δ15N values (Fig. 2). The δ18O of NO3

− was weakly but
significantly correlated with δ15N for rivers (δ18O-NO3

−= 0.64
± 0.03 × δ15N-NO3

− − 2.51 ± 0.26, p-value < 0.05, n= 2445,
R2= 0.13) and groundwater (δ18O-NO3

−= 0.43 ± 0.02 × δ15N-
NO3

− − 0.99 ± 0.21, p-value < 0.05, n= 2172, R2= 0.13). How-
ever, river waters had a significantly (p-value < 0.05) higher
regression slope (0.64 ± 0.03) compared to groundwater (0.43 ±
0.02) (Fig. 2).

The influence of 18O in water and molecular O2 on the 18O of
NO3

− produced during nitrification is typically described using a
simple isotope mass balance14:

δ18O-NO�
3 ¼ 2=3 ´ δ18O-H2Oþ 1=3 ´ δ18O-O2 ð1Þ

Eq. (1). Studies investigating nitrification in aquatic systems
found the δ18O of NO3

− does not necessarily conform to this
model, even when the δ18O of O2 is assumed constant or in
equilibrium with air35 (+23.5 − +24.2‰). To reduce the

influence of δ18O from local water contributing to nitrate during
its transformations, we normalized the δ18O-NO3

− to the δ18O-
H2O values from the same water sample wherever possible (i.e.,
“relative to in situ H2O” instead of “relative to SMOW”)31. The
normalization to in situ water 18O resulted in an improved but
weak correlation between δ18O-NO3

−
vs H2O and δ15N-NO3

− for
river waters (δ18O-NO3

−
vs H2O=−0.21 ± 0.02 × δ15N-NO3

−

−0.33 ± 0.19, R2= 0.09, p-value < 0.05, n= 946) and ground-
water (δ18O-NO3

−
vs H2O=−0.10 ± 0.02 × δ15N-NO3

− −1.17 ±
0.06, R2= 0.15, p-value < 0.05, n= 1138). The slopes of the
“normalized” regression became negative and decreased from
~0.6 to ~−0.2 for rivers and from ~0.4 to ~−0.1 for aquifers. The
river water samples from warmer tropical areas (e.g., Kenya,
Ghana, Thailand) drove slopes to more negative δ18O and higher
δ15N values. Results of the least-square linear regression analyses
of the isotopic variables for river water and groundwater subsets
are summarized in Supplementary Table 4.

Variation of nitrate isotopic composition with water tem-
perature. Water temperature (Tw) is often used as a proxy for
potential rates of the microbial activity or primary productivity
and was used to consider its relationship to the isotopic com-
position of NO3

− in rivers and aquifers36,37. In this assessment,
the temperature was the river or groundwater temperature at the
time of sampling without further considering overall climatic or
seasonal aspects. Detailed results of least-square linear regression
analyses of the nitrate isotopic variables for river water and
groundwater are depicted in Supplementary Table 5. The δ15N of
NO3

− in rivers showed a weak but significant positive correlation

Fig. 1 Geographical distribution of δ15N and δ18O data for nitrate in river water and groundwater by number (#) of measurements by 0.1° latitude and
year of sample collection. The size of each circle corresponds to the concentration of NO3-N in mg L−1. The light and dark gray bars indicate the data were
retrieved from literature or the IAEA Coordinated Research Project (CRP), respectively. Most data were from 30° N and 60° N LAT and between 2010
and 2013.
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with Tw (δ15N-NO3
−= 0.12 ± 0.04×Tw+ 6.55 ± 0.82, R2= 0.03,

p-value < 0.05, n= 253), but for groundwater, there was no cor-
relation (δ15N-NO3

−= 0.05 ± 0.05×Tw+ 8.45 ± 1.03, R2= 0.01,
p-value > 0.05, n= 189) (Fig. 3). The δ18O of NO3

− in rivers had
a weak but significant positive correlation with Tw (δ18O-
NO3

−= 0.10 ± 0.04×Tw+ 5.19 ± 0.90, R2= 0.02 p-value < 0.05,
n= 275), whereas in groundwater the correlation was very strong
(δ18O-NO3

−= 0.48 ± 0.04×Tw − 3.79 ± 0.95, R2= 0.41, p-value
<0.05, n= 170). Regressions against Tw using in situ normalized
18O nitrate values were conducted and resulted in less variable
and slightly negative non-zero slopes like Fig. 2.

Seasonal variation of stable isotopes of NO3
−. To investigate the

effect of seasonality on the isotopic composition of nitrate in
rivers and groundwater, we used data from temperate climates
(C), given that seasonality is strong in this climatic zone com-
pared to the others (see “Methods” section, Fig. 4). The mean
δ15N values of nitrate in rivers showed no difference between
spring and fall (+6.9 ± 3.6‰, n= 583 to +6.7 ± 2.6‰, n= 606,
p-value > 0.05), but a ~1‰ increase in δ15N in winter compared
to all other seasons (+7.7 ± 3.8‰, n= 200, p-value < 0.05). The
average δ18O values of nitrate in rivers revealed a ~2‰ decrease
from spring to autumn (from+ 2.2 ± 5.9‰, n= 530 to −0.1 ±
4.5‰, n= 562, p-value < 0.05), and a ~4.5‰ increase from
autumn to winter (from −0.1 ± 4.5‰, n= 562 to +4.4 ± 4.5‰,
n= 149, p-value < 0.05).

Shallow aquifers showed no δ15N seasonality (p-value >0.05) in
mean NO3

− between spring, summer, autumn, and winter (+7.8
± 4.4‰, +7.7 ± 3.9‰, +8.1 ± 3.8‰, and +8.1 ± 3.5‰, respec-
tively). The average δ18O of NO3

− in groundwater was similar in
summer, autumn, and winter (+0.6 ± 4.8‰, +0.6 ± 4.6‰, and
+0.1 ± 3.3‰, respectively) but was ~2‰ higher in spring (+2.1

± 6.0‰, n= 268, p-value < 0.05) compared to all other seasons.
However, considering that groundwater replenishment usually
takes place in the wet period (October–April) in the northern
hemisphere, we examined the difference in the isotopic values
between the high recharge period and the low recharge period
(May–September). There was no significant difference in δ15N
and δ18O of NO3

− between the two periods, although the δ18O of
NO3

− was slightly lower in the high recharge period (Supple-
mentary Fig. 3). No clear-cut pattern was observed for the
relationship between δ15N and NO3

− in rivers or groundwater by
season to confirm single predominant biogeochemical processes,
including denitrification14 (Supplementary Fig. 4).

Variation of stable isotopes of NO3 with climate. The average
δ15N of nitrate in rivers was significantly higher (~3.0‰) in
tropical (A) (+10.2 ± 5.1‰, n= 137) vs temperate (C) (+7.5 ±
3.7‰, n= 834) or cold (D) (+7.4 ± 4.0‰, n= 252) climates
(Fig. 5). The same pattern was observed for δ18O of NO3

− for
rivers, having ~2–3‰ higher values in tropical (A) (+6.6 ± 5.9‰,
n= 137) vs temperate (C) (+4.4 ± 5.4‰, n= 722) and cold (D)
(+3.8 ± 5.6‰, n= 275) climates. Arid climates (B) showed sig-
nificantly higher δ15N values for nitrate (+8.9 ± 6.0‰, n= 74)
compared to temperate (C) or cold climate (D), but similar δ18O
values for nitrate (+5.5 ± 8.1‰, n= 74) compared to other cli-
mate types. However, the arid climate zone had fewer data
compared to the other climate types due to a limited number of
river water nitrate studies in those climates.

The shallow aquifers had the lowest δ15N values in temperate
(C) (+7.8 ± 4.1‰, n= 986) and arid (B) climates (+7.3 ± 4.1‰,
n= 522) and the highest in tropical/equatorial (A) (+8.9 ± 5.5‰,
n= 44) and cold (D) climates (+9.0 ± 5.2‰, n= 24). However,
these differences were indistinguishable (p-value > 0.05), hence no

Fig. 2 δ18O vs δ15N of NO3
− in rivers and groundwater. Symbol size denotes NO3-N concentration in mg L−1. The δ18O values are relative to SMOW and

normalized to in situ H2O, as described in Venkiteswaran et al.31. The results of the linear regression models of panels a–d are in Supplementary Table 4.
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Fig. 3 Variation of δ18O and δ15N of NO3
− in river waters and groundwater with water temperature (Tw) in °C. The linear regression of δ18O-NO3

− (‰)
vs Tw (°C) was more significant for groundwater (R2= 0.41) than river waters (R2 < 0.02). The results of the linear regression models for panels a–d are in
Supplementary Table 5.

Fig. 4 Variation of δ15N and δ18O of nitrate in rivers and groundwater classified by season. The symbol size expresses the NO3-N in mg L−1. Higher
average δ15N and δ18O values in river water nitrate are found in winter. Error bars show average (gray line), median (light to dark gray division), 1st and 3rd
quartile, and whiskers extend to 1.5 interquartile range.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00121-x ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2021) 2:52 | https://doi.org/10.1038/s43247-021-00121-x | www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


N-isotopic impact solely from climate could be found. Ground-
water nitrate δ18O values exhibited the same pattern as rivers,
with lower δ18O values in cold (D) climates (−0.1 ± 6.4‰, n=
24), that differed significantly from those in tropical (A) (+4.6 ±
6.0‰, n= 44) climates. The average δ18O of NO3

− values in arid
(B) (+3.4 ± 4.0‰, n= 505) and temperate (C) (+2.5 ± 4.9‰,
n= 505) climates were significantly different from the other two
climate types. Cold climates had fewer δ15N and δ18O records for
groundwater compared to the other three climate types, which
could bias this result. Rivers and groundwater showed no clear-
cut relationship between δ15N and NO3

− by climate type
(Supplementary Fig. 5).

Discussion
The lower median NO3

− concentrations in rivers compared to
adjacent shallow aquifers can be explained by the decrease of
agricultural N inputs at the industrialized countries of the
Northern hemisphere due to more severe fertilization regulations,
whereas many aquifers do not yet exhibit decreasing nitrate
contents. This is due to much longer mean residence times for N
in the unsaturated zone and the aquifer38, which is controlled by
several factors such as the thickness and hydro-lithological
characteristics of the unsaturated zone, the spatiotemporal var-
iations in recharge rate, and the diffusive and dispersion processes
through the nitrogen stock in the soil and the unsaturated zones.
The lower median NO3

− concentrations in rivers can also be
explained by a complex combination of riparian and in situ
attenuation and uptake by biological productivity, seasonal dilu-
tion (e.g., runoff, snowmelt), differential baseflow connectivity,
and long-term dispersion processes, which lowers the ambient
NO3

− concentration in rivers. Given that NO3
− sources are

difficult to “fingerprint” using only stable isotopes, we suggest
that the notable differences in NO3

− concentrations between
river waters and adjacent aquifers are attributable to unique
locational differences in in situ N-cycling processes. As microbes
have low biomass in most groundwater systems, NO3

−

attenuation, and cycling is achieved by closed-system nitrification
and denitrification and uncommonly by DNRA or anammox29,39.
Shallow aquifers are the recipients of NO3

− transport from
residual leaching from soils and the unsaturated zone, where
NH4

+ and other nitrogenous compounds are favorably oxidized
but can also be adsorbed or reduced depending on soil retention
capacity40–43. Pronounced denitrification effects have been
reported for some unconfined aquifers30,44,45.

Regression analysis of δ18O vs δ15N for river waters and
groundwater generated slopes suggesting an “apparent” deni-
trification trend (~0.5)3,31. However, denitrification is unlikely to
be the only process for the observed δ18O:δ15N slope, which is
expected to be canonical under closed-system conditions46. The
lack of a clear pattern between the isotopes and NO3

− con-
centration indicates that multiple processes that recycle nitrogen
occur in river water systems. Granger and Wankel19 proposed
that the deviations from the canonical slope of 1 for denitrifica-
tion can be due to concurrent NO3

‐ production catalyzed by
nitrification and/or anammox.

A non-zero normalized slope suggests that H2O was not the
only factor controlling the oxygen isotopic composition of nitrate
(Eq.1). The large decrease in the slopes of the regression after
normalization for in situ water confirmed a strong dependence of
δ18O of NO3

− on the δ18O of water when the NO3
− is formed by

oxidation of nitrite or ammonium42. However, in situ water
normalizations do not consider potential large daily or seasonal
variations in the δ18O of in situ gaseous or dissolved O2

35

involved in the N-cycling processes. Thus, the observed negative
deviations of the slopes from “zero” suggest an influence of δ18O-
O2 on the isotopic composition of nitrate. The latter may be more
profound for rivers than aquifers. Investigations of δ18O-O2 in
productive rivers show a preponderance of lower δ18O values (as
low as +3.4‰), particularly during the growing season due to
photosynthetic processes35,47,48. Tropical rivers typically show
high rates of primary production, all-year-round growth, and less
seasonal variation in solar irradiance than temperate latitudes49.

Fig. 5 Variation of δ15N and δ18O of NO3
− in rivers and groundwater by climate. A: Tropical/Equatorial, B: Arid, C: Temperate, D: Cold. Symbol size

expresses the NO3-N concentration (mg L−1). Tropical climates had the highest δ15N and δ18O values for nitrate in rivers. Error bars show average (gray
line), median (light to dark gray division), 1st and 3rd quartile, and whiskers extend to 1.5 interquartile range.
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On a diel basis, δ18O-O2 is lowest during the day due to the
production of DO by photosynthesis from substrate water,
whereas during the night δ18O-O2 can be higher than the
atmospheric equilibrium value due to preferential consumption
of light O2 by respiring organisms with inward diffusion of iso-
topically heavy O2 from the atmosphere50. Thus, the negative
in situ normalized slopes of the δ18O regression line for rivers
suggest some influence of 18O depleted O2, especially for highly
productive rivers where oxygen supersaturation and 18O2 deple-
tion and nitrification coexist. But even if the δ18O-O2 contribu-
tion was considered as a fixed atmospheric constant, any kinetic
and equilibrium isotope fractionation during oxygen exchange
between H2O and NO2

− before final oxidation to NO3
− may also

result in deviations from a 2:1 mixing ratio line (δ18O-H2O:δ18O-
O2)42. Therefore, the relationship between δ18O-NO3

− and δ18O-
H2O can be used to detect isotope fractionation effects related to
the incorporation of oxygen atoms during ammonia oxidation to
nitrite (NO2

−), which readily exchanges oxygen atoms with
in situ water during the oxidation of the latter to nitrate51.
Conversely, for aquifers the δ18O-O2 values in recharge zone gas
often deviate from the air (+23.5‰), but mostly in a positive
direction up to >+39‰ as soil O2 is consumed by microbial
respiration52,53. The substantial variability in the δ18O of NO3

−

associated with nitrification is also dependent on soil and water
properties and is also a function of residence time54.

The difficulty to elaborate clear relationships between 18O of
H2O, O2, and NO3

− is also due to the temporal variability of the
oxygen variables and underscores the need for further investi-
gations to better understand N-dynamics related to cycling.
Unfortunately, oxygen isotope normalization processes that
consider all potential reactive oxygen pools (e.g., in situ H2

18O
and 18O2) involved in N-cycling processes have not been fully
investigated to our knowledge55. New studies measuring δ18O-
NO3

− and δ18O-H2O and δ18O-O2 in the same water are
therefore required to better explain the patterns and variations of
the oxygen isotope composition of nitrate in rivers and
groundwater.

The δ15N and δ18O of NO3
− in rivers showed a positive cor-

relation with Tw likely reflecting the influence of higher microbial
activity and productivity with temperature and thus the biogeo-
chemical N processing rates. Higher δ15N values in rivers are
likely driven by enhanced N-cascading. This means that due to
increased temperature, metabolic rates accelerate, which pro-
gressively enriches 15N in NO3

− compared to its source sig-
nature14. Average δ15N values of nitrate >7‰ typically suggest
that nitrogen has undergone multiple recycling after its initial
fixation from N2 (either biological or Haber–Bosch), as these
processes bring reactive N in the plant–soil–water continuum
with a 15N value of ~0‰56. An observed weak positive correla-
tion of δ18O-NO3

− with Tw and a negative correlation with
latitude suggests that ambient δ18O-H2O has some impact on
nitrate isotope values.

The pattern of decreasing δ15N-NO3
− in rivers with latitude

agrees with the N isotopic climatic patterns observed for soil
organic matter (SOM)25. The pattern of higher δ15N-NO3

−

values with the water temperature in rivers is observed from cold
(D) to tropical (A) climates. Amundson et al.25 observed a weakly
positive correlation between soil organic matter (SOM) δ15N and
Mean Annual Temperature (MAT) (slope= 0.13, R2= 0.11, p-
value < 0.1, n= 85) for arid and tropical zones. A decrease in
SOM δ15N with lower MAT was seen at sites between about
10–40 degrees North or South albeit with a smaller data set
(slope=−0.08, R2= 0.09, p-value < 0.04, n= 49)27. Craine
et al.26 observed a positive trend of SOM δ15N with MAT (slope
= 0.18, p-value < 0.001, MAT > 9.8 °C) and a negative correlation

with Mean Annual Precipitation (MAP) at a global scale that was
attributed to soil and organic matter properties26. Martinelli
et al.28 reported higher values for δ15N in N-rich soils and foliage
from tropical forests compared to temperate forests. Brookshire
et al.57 suggests that higher MAT enhances soil N-cycling as seen
by 15N enrichment in soil organic matter and the NO3

− con-
centration of tropical rivers.

The seasonality of δ15N and δ18O of nitrate in temperate rivers
showed a pattern of isotopic enrichment of nitrate in spring and
summer compared to autumn, which could be attributed to
higher biological assimilation in surface water systems in the
warmer seasons58. The δ15N values during winter compared to
other seasons appeared to more closely reflect mixing of multiple
organic-pollutant N-sources (e.g., sewage wastes, urban, and
livestock wastewaters)9,24 as a result of reduced application and
leaching of fertilizers, and restricted microbial and primary pro-
ductivity during the cold season59. Additionally, in the cold
season, the relative fraction of NO3

− denitrified vs assimilated is
higher, since increased N-loadings in winter or early spring
runoff are often associated with high discharge events and
snowmelt57. Elevated δ18O of NO3

− during winter can also be
attributed to δ18O-H2O and δ18O-O2 variation combined with
variable soil/water and land-use properties of the different
catchments. For example, high δ18O values in nitrate can be
attributed to the influence of δ18O-O2 (Eq.1), especially in
respiration-influenced ecosystems48, increased atmospheric
NO3

− deposition (>+30.0‰)14, especially during high discharge
events, or artificial NO3

− fertilizer (>20.0‰)14 mixed with
nitrification-derived NO3

− in soils and infiltrating pore waters,
especially in agricultural areas54. Full equilibration or O-isotope
exchange of NO2

− with H2O before being oxidized to NO3
− in

soils, local respiration, and rapid redox cycling between NO3
−

and NO2
− can also potentially increase δ18O-NO3

− values19,54,60.
Shallow phreatic aquifers showed strongly dampened seasonal

nitrate and isotopic variability compared to river waters. Given
NO3

− concentrations are generally buffered in aquifers over
longer timeframes (e.g., years), the range of δ15N values in
groundwater reflect longer-term climatic and land-use changes or
established processes taking place in the soil and the unsaturated
zone before NO3

− leaches into the groundwater system30,61. The
lack of a clear seasonal variation of δ15N and δ18O of NO3

− in
groundwater is attributed to nitrifying and mixing of nitrate
sources introduced at different points or periods in time due to
variable residence times (from months to years) in the unsatu-
rated zone38,62. There was no significant difference in δ15N and
δ18O of NO3

− between the high and low recharge periods,
although the δ18O of NO3

− was slightly lower in the high
recharge period. This could imply a change in recharge source
water (e.g., snowmelt vs rains) or the 18O of O2, which combined
affect the 18O values of microbially mediated nitrate. Because
groundwater temperatures are usually stable and generally reflect
MATs37 (and in situ δ18OH2O correlates with air temperature), it
was unsurprising to see a correlation of δ18O of NO3

− with Tw.
This suggests we cannot discount the possibility that 18O variance
of groundwater nitrate is controlled by additional processes or
isotope fractionations affecting O2 involved in soil and vadose
zone nitrification53. However, the relationship between δ18O in
nitrate with latitude showed the highest oxygen isotope values
tended to be at the warmer tropical/equatorial climates and can
be attributed to a systematic change in the δ18O of associated
H2O (Eq.1) with decreasing latitude, continentality or altitude63.

In summary, although rivers and shallow aquifers are primary
and often well connected receiving environments for land-based
anthropogenic N-pollution, shallow aquifers have five times
higher median NO3

− concentration than rivers, indicating that
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NO3
− is more persistent in aquifers and has long residence times,

given lower microbial activity and a limited number of possible N-
removal process mechanisms (e.g., denitrification). River waters
and groundwater receive nitrate with δ15N and δ18O values
spanning the expected natural and anthropogenic ranges (from
−10‰ to +26‰ for δ15N and −17‰ to +25‰ for δ18O)3,
indicating a globally consistent suite of N-sources. We identified
some global drivers of the isotopic variability of nitrate in rivers
and groundwater, recognizing that this simplification required
aggregating many possible diverse nitrate sources typically
observed at the catchment or complicated by seasonal variability.
A deeper analysis of latitude and climatic factors is recommended
to better distinguish the role of soil properties, precipitation pat-
terns, land-use, and agricultural practices. The δ18O vs δ15N
relationships observed suggested combinations of multiple bio-
geochemical (e.g., nitrification, anammox) and mixing processes
taking place in rivers and aquifers in different seasons, which are
not easily distinguishable with infrequent or synoptic samplings.
River water nitrate had higher δ15N and δ18O values in winter,
suggesting a change in N-processing due to lowered temperatures
and productivity and perhaps less alteration of the original iso-
topic composition of multiple organic-related N-sources. Across a
wide range of global climate types, river waters and groundwater
showed systematically higher δ15N and δ18O values in the arid and
tropical/ equatorial climates, mirroring an increase in MAT. This
relationship was also seen in the increase in δ15N of nitrate in
rivers and groundwater with decreasing latitude and the positive
correlation between δ15N and δ18O with Tw.

We have provided a first-order attempt to identify global
patterns in the isotopic composition of nitrate related to common
environmental factors, such as climate and season impacting N-
cascade-related processes in rivers and associated shallow
groundwaters. Our findings highlight the importance of water
temperature as a driving force of biogeochemical microbial
activity and productivity in rivers, however, the impact on the
δ15N and δ18O of nitrate differed when examined on a seasonal or
on a climate basis. Our findings suggest that higher frequency or
seasonal sampling of river water systems is of critical importance
to better and more deeply understand annual N-pollution
dynamics, and winter sampling appears to better reflect the N-
isotopic signals of the anthropogenic sources of nitrate. Further
investigations to study N-cycling in river waters at a higher fre-
quency are urgently needed (e.g., seasonal, diel) and systematic
data collections of nitrate, particularly from the southern hemi-
sphere climate types, such as arid and polar, for which data are
limited or absent, are strongly recommended. Recent technolo-
gical advances in isotopic assays of nitrate have vastly reduced the
analytical and cost barriers to conduct high-frequency δ15N and
δ18/17O of nitrate. Other key parameters, such as DO, redox
potential, labile organic material, and solar radiation should also
be systematically measured or considered to help better under-
stand the controlling factors of the N-transformations in river
waters, especially on a seasonal basis. Measuring δ18O of the
water and dissolved oxygen from the same samples as δ18O of
NO3

− will allow a better assessment of N-cycling processes in
rivers and groundwater. Understanding the fate of nitrogen in
aquifers and the connectivity to rivers requires a fuller local
understanding of hydrogeological processes, such as water source,
flow paths, and water residence times (e.g., 3H tracers) that
control nitrogen transit times and contribution to baseflow (e.g.,
retardation of N due to the recycling of N in organic matter and
subsequent mineralization processes). Our synthesis affirms
nitrate isotope techniques are useful to assess the origin of
nitrogen pollution in rivers and groundwater. However, we cau-
tion that interpretations of nitrate isotopes may be complicated
where nitrogen undergoes many biogeochemical transformations,

especially in productive systems, that can mask the original iso-
topic source signal. Examination of N-cascading aspects are cri-
tically important to inform the implementation of beneficial land
and agricultural management strategies aiming at mitigating
increasingly serious nitrogen pollution in Earth’s rivers and
aquifer systems. The clear isotopic linkage of the N-cascading in
rivers to key climate parameters may have implications for future
water quality management under changing climatic conditions.

Methods
Literature data collection. A literature search was conducted using online tools
and bibliographic databases (e.g., Web of Science, Google Scholar, Scopus, etc.) for
papers containing nitrate and isotope data from rivers and adjacent aquifers. We
reported shallow aquifer data because many of the river studies contained data for
adjacent aquifers owing to the possible connectivity of groundwater to riverine
baseflow, although in most papers any connectivity of adjacent aquifers to the
rivers was unconfirmed. Data compilations were restricted to journal articles where
both δ15N and δ18O values of nitrate are available, and samples were then classified
as River or Groundwater. Scientific papers focusing on precipitation, deep aquifers,
soils, tap water, seawater, wastewater effluent, or artificial isotopic tracers were
omitted. The list of cited data used is found in Supplementary References.

Data preparation. Established data preparation procedures resulted in a curated
data set suitable for statistical analysis64. Data were extracted from tables and
supplementary materials, maps, and text (Supplementary Fig. 6). If the original
work did not provide location coordinates, approximate latitude and longitude
were obtained using Google Earth (https://www.google.com/earth/). The data
assessment affirmed that NO3

− was the species linked to the reported isotope ratios
(15N/14N and 18O/16O) along with verification of units (as NO3

− or -N) and
concentration (e.g., mg L−1, µmol L−1, μg L−1, etc.). Nitrate concentration data
were converted to a common unit (mg L−1 -N) and sampling date format (e.g.,
2016-03-01) (Supplementary Fig. 7). The 18O/16O of in situ H2O associated with a
nitrate sample, if available, was also included in the data set. The ratios of 15N/14N
and 18O/16O of NO3

− and 18O/16O of H2O were reported in δ notation in units of
per mille (‰), where δ= (Rsample/RAIR or SMOW− 1) and R is the ratio of 15N/14N
or 18O/16O in N2 in atmospheric air (AIR) or Standard Mean Ocean Water
(SMOW), respectively.

Seasons were identified separately for each Hemisphere (N vs S) using the
reported sampling date (month) to ensure consistency. Each sample location was
coded using the Köppen climatic classification65. Due to limited data from high
latitudes, river and groundwater data were classified into four climatic groups; A:
Equatorial/Tropical climate, B: Arid climate, C: Temperate climate, D: Cold
climate. Additional categorical and site information associated with the nitrate and
isotopic data was obtained from the publications and is included in Supplementary
Table 6. Important variables, such as Eh, dissolved O2 (DO), dissolved organic
nitrogen (DON), precipitation per catchment, Total Nitrogen (TN), that might
contribute to a better understanding of the global N isotope variations of nitrate
were either lacking or unavailable. For example, DO values were only available in
7.7% of the river waters data set and thus were excluded from further processing.

Data curation. Excessively high or suspicious values of NO3
− and other N-species

concentrations were verified by a careful review of the original paper. In some
cases, authors were contacted to provide clarification. The δ15N and δ18O values of
nitrate were sorted to avoid duplication from publications reusing the same data
sets26. Almost all groundwater data (~95%) was from adjacent shallow phreatic
aquifers of <20 m depth below ground surface.

Final data set and analytical aspects. The data set comprised 5194 sample points
from 70 papers (~86% of the whole data set, Supplementary References) plus new
isotopic results. There were 2902 nitrate and associated isotope analyses from rivers
and 2291 analyses from nearby shallow groundwater. Most samples were from
between 2002 and 2016; fewer data exist from 1968 to 1990s due to analytical
barriers particularly for δ18O66.

A total of 374 new river water nitrate and isotope samples from 10 countries
were analyzed in the IAEA Isotope Hydrology Laboratory using the Ti(III)
reduction method13 to reduce nitrate to N2O gas in septum vials. The N2O in the
headspace was measured for 15N and 18O using a CF-IRMS (Isoprime-100 Trace
Gas Analyser). The analytical uncertainties were ±0.2‰ and ±0.4‰ for δ15N/δ18O,
respectively. For Quality Control, the water samples, that do not give the expected
N2O yield on the IRMS based on the determined NO3

− concentration, were
repeated until they agree within 95% of the expected target before results are
accepted. Oxygen isotopes (δ18OH2O) of the same water samples were analyzed by
laser spectroscopy at the IAEA using a Los Gatos Research Liquid-Water Isotope
Analyzer (TLWIA-912). The analytical uncertainty was ±0.1 for δ18OH2O.
Chemical analysis of new samples included nitrate following standard discrete
analyser methods67.
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Statistical evaluation. To evaluate the data, graphical plots by sample type (river
or groundwater) were employed along with frequency distribution diagrams
(histogram, Q–Q plot, P–P plot, boxplot) and metrics such as Pearson skewness.
To check for normality, Shapiro–Wilk, and Kolmogorov–Smirnov tests were
applied. The mean and standard deviation (SD) were used to describe the variation
of variables with a skewness index of <2, whereas median and the median absolute
deviation (MAD) were used otherwise33. A single-factor analysis of variance
(ANOVA) and Kruskal–Wallis non-parametric analysis of variance were performed
to determine if differences between the means or the medians of the groups were
significant. A conventional probability value (p-value) of 0.05 was used to indicate
significance for differences between river and groundwater and seasonal subsets68.

A least-square linear regression model of type I was applied to investigate
relationships between δ15N and δ18O of nitrate to other variables. The least-square
linear regression type II was tested by assuming that the two isotopic variables
(δ15N and δ18O in nitrate) were dependent69. However, the difference in the slopes
and intercepts were small in most cases (<10%), which allowed us to use model-I
patterns for nitrate isotopes in both rivers and groundwaters. The results of
regression models of type II are found in Supplementary Methods (Supplementary
Tables 7–8 and Supplementary Figs. 8–15). All linear regression models were
evaluated by examining the goodness of fit and significance of the slopes. All
statistical tests were done using R v.3.3.270.

Data availability
The global data sets available from the publications or generated in this study are
available from https://nucleus.iaea.org/sites/ihn/Pages/GNIR.aspx.
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