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Abstract 

Chronic wounds are a global health problem, affecting approximately 1 – 2% of the general 

population in developed countries. Chronic wounds are also an economic burden, with the 

NHS in the UK spending approximately £4.5 – 5.1 billion per annum, after adjusting for co-

morbidities. Chronic wounds also have a negative effect on the patient’s quality of life and 

can lead to a range of psychological consequences such as depression, anxiety and 

embarrassment, all of which can lead to social isolation, further perpetuating psychological 

illness. 

Current methods to detect wound infection are lacking. Sampling techniques are often 

imprecise and cause pain to the patient. Additionally, standard microbiological techniques 

are time consuming, have to be performed by a trained specialist, and are often only able to 

identify bacteria that can be routinely grown in a laboratory. 

Owing to these aforementioned issues, there is a growing need to create novel ‘smart’ 

systems that can detect or treat pathogenic bacteria accurately and rapidly, without the need 

of invasive, painful sampling techniques, and time consuming microbiological analysis. 

This thesis outlines the development of a novel theranostic wound dressing capable of 

detecting and treating S. aureus infections. Bacteriophage K and ciprofloxacin were 

encapsulated within a pH-responsive polymer matrix, and upon a rise in pH were released 

from the system to treat the S. aureus infection. Concurrently, a novel colorimetric and 

fluorescent probe was designed to detect S. aureus, to notify the patient or health care 

practitioner to the presence of an infection. Both components of this theranostic system 

were tested against S. aureus species using a variety of microbiological techniques, 

including suspension assays, biofilm models, and ex vivo porcine skin assays.  
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Chapter 1: Introduction 

1.1. Clinical Problem 

Chronic wounds are a global health problem, often affecting patients older than 60 years of 

age.1 In developed countries, chronic wounds are prevalent in 1 – 2% of the general 

population,2 and the NHS spends approximately £4.5 – 5.1 billion per annum on wound 

care, after adjusting for co-morbidities.3 In addition to physical consequences, chronic 

wounds have a negative effect on the patient’s quality of life and can lead to a range of 

psychological issues such as depression, anxiety and embarrassment, all of which can lead 

to social isolation, further perpetuating psychological illness. Renner et al reported that at 

least 30% of patients with chronic wounds have symptoms of depression and anxiety;4 

therefore, it is imperative that new management techniques are implemented to help 

diagnose, manage, and treat chronic wounds to improve patient’s lives and reduce the 

economic burden placed on healthcare settings.  

For successful management of chronic wounds, it is important to detect the presence of any 

bacterial pathogens within the wound that may be impeding healing. Methods to obtain 

bacteriological samples include swabbing, needle aspiration, and wound biopsy; the most 

common technique is wound swabbing, although this may not result in an  accurate 

depiction of the bacterial topology within the wound environment as it mainly detects 

surface colonising bacteria.5 Additionally, these techniques are often invasive and painful; 

hence, most clinicians often rely on other clinical indications (e.g., pain, erythema, and 

oedema) to diagnose wound infections before resorting to microbiological assessment.6,7  

Regardless of the sampling technique used, clinical assessment of infection is performed via 

standardised microbiological tests that have inherent limitations including the time-

consuming protocols and the need for trained specialists. Additionally, it has been stated 

that traditional culturing methodology only identifies 1% of the bacteria within chronic 

wounds,8–10 resulting in the patient receiving inaccurate antibiotic therapy, perpetuating 

antibiotic resistance and ensuing the non-healing nature of the wound.   

Owing to the issues in wound sampling and the need for rapid determination of the 

causative pathogenic bacteria, there is a growing need to create novel ‘smart’ systems that 

can accurately and rapidly detect or treat pathogenic bacteria within wounds, without the 

need of invasive, painful sampling techniques and time consuming microbiological analysis.  
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1.2. Wounds and Wound Healing 

The skin is the largest organ in the body, acting as a first line of defence against pathogenic 

microbial infections.11,12 Skin is composed of two layers, the epidermis and dermis. The 

epidermis is avascular and is composed of  keratinized, stratified squamous epithelium; 

while the dermis is composed of two layers of connective tissue containing blood and lymph 

vessels, nerves, hair follicles and sweat glands. The skin is connected to the underlying 

fibrous tissue of the bones and muscles via the hypodermis (Figure 1.1).  

 

Figure 1.1: Skin anatomy viewed in a cross-section. Reprinted from Grice et al with permission. Copyright © 

2011, Nature Publishing Group 

1.2.1. Types of Wound 

According to the Wound Healing Society, a wound is the “disruption of normal anatomic 

structure and function”.13 Wounds can be classified as either acute or chronic depending on 

the nature of the repair process.14 Acute wounds are typically caused by cuts or surgical 

incisions that complete the wound healing process in a timely and expected manner and 

result in sustained restoration of anatomic and functional integrity.13 Conversely, chronic 

wounds are wounds that fail to heal within the expected time frame due to repeated damage 

to the tissue or underlying co-morbidities that interfere with the wound healing process.15,16 

Chronic wounds are also defined as wounds that have proceeded through the healing 

process without sustained anatomical and functional integrity.13 Examples include venous 

ulcers, diabetic foot ulcers, and pressure ulcers.17  
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1.2.2. Wound Healing and the Wound Healing Cascade 

Wound healing starts immediately after injury and involves the removal of damaged tissue 

and restoration of the skin integrity.18 Healing is defined by the Wound Healing Society as 

a “complex and dynamic process that results in the restoration of anatomic continuity and 

function”.13 

The different types of wound healing (primary, secondary, or tertiary intention) are 

categorised based on the anticipated nature of the repair process.14 Wound healing by 

primary intention involves the approximation of wound edges by sutures, clips, or skin 

adhesion. Primary intention is often seen for injuries where minimal epithelialization and 

new tissue are needed to repair the skin defect, resulting in slight scarring.19,20 

Secondary intention occurs when the wound edges cannot be approximated, and as such, 

the wound is left open to heal via the production of connective tissue, following the steps of 

the wound healing cascade. Secondary intention is often witnessed for patients with 

underlying co-morbidities, or in patients with post-surgical wound dehiscence. Secondary 

intention wounds are often slow to heal and prone to complications (e.g., infections), further 

delaying the wound healing process.18 Additionally, this intention can be associated with 

substantial scarring.19,21 

 Finally, wound healing via tertiary intention is where the wound is left open until any 

contaminants, non-viable tissue, or infection is removed; after this, the wound edges are 

approximated, and healing continues via primary intention.18 This intention is also known 

as “delayed primary intention” in literature.14  

The physiologic process of wound healing is complex, consisting of a cascade of sequential 

yet overlapping physiological processes.14  For the purposes of this chapter, the general 

stages of wound healing described by Schultz are used (haemostasis, inflammation, 

proliferation, and remodelling; Figure 1.2).16 Haemostasis occurs immediately after injury 

and is usually compete within hours, inflammation begins shortly after haemostasis and 

lasts for up to 72 h after injury12 – although wounds can remain in this phase for several 

days after injury. Proliferation generally occurs 1 – 3 weeks after injury, and remodelling 

occurs 3 weeks after injury, but could take up to one year to be completed.15,20 
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Figure 1.2: Overview of the distinct, but overlapping, phases of wound healing. 

1.2.2.1. Haemostasis 

Immediately after injury, vasoconstriction occurs to prevent further blood loss. This arises 

when clotting factors are released by the injured skin cells, activating the clotting 

cascade.22,23 Additionally, platelets adhere to the wall of the injured blood vessels and to the 

exposed collagen within the extracellular matrix, triggering the release of cytokines 

(signalling molecules that are secreted by certain cells of the immune system that mediate 

and regulate immunity, inflammation, and haematopoiesis), growth factors, and pro-

inflammatory mediators. This, in turn, results in platelet aggregation, activating the 

intrinsic and extrinsic coagulation pathways that lead to fibrin clot formation, which seals 

the exposed blood vessels, preventing further blood loss24 and creates a temporary seal over 

the wound to prevent microbial infection.14 Additionally, the fibrin clot acts as a scaffold, 

supporting the influx of fibroblasts and keratinocytes into the wound bed.25  

Platelet activation results in the release of potent cytokines that initiate the wound healing 

cascade. The specific mechanisms mediated by these cytokines include the activation of the 

inflammatory response and proliferation of new cells (epithelialization) and blood vessels 

(angiogenesis) at the injury site.14  For example, platelet-derived growth factor (PDGF) 

initiates the chemotaxis of neutrophils, macrophages, smooth muscle cells, and fibroblasts. 

Furthermore, transforming growth factor-beta (TGF-β) attracts macrophages to the wound 

area and stimulates them to produce additional cytokines, such as fibroblast growth factor 

(FGF), PDGF, tumour necrosis alpha (TNFα) and interleukin-1 (IL-1).18  
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1.2.2.2. Inflammation 

The inflammatory response is triggered by tissue injury and the activation of the coagulation 

cascade, increasing the local vasodilation and capillary permeability, which subsequently 

allows for the migration of monocytes into the wound bed.18  

Within minutes, neutrophils accumulate within the wound bed to remove any 

microorganisms present via phagocytosis.12,14,15 Neutrophils also contribute to wound 

healing by activating local fibroblasts and epithelial cells.26 After 2 – 3 days, neutrophils 

leave the wound bed via apoptosis, unless the wound becomes infected; in which case, 

neutrophil infiltration continues until the infection is controlled.15,23   

In the absence of infection, monocytes differentiate into macrophages, which are arguably 

the most important cell within the wound healing process as any inhibition of macrophage 

function results in a delay in wound healing.18,27 Macrophages remove non-viable cells, 

bacteria-filled neutrophils, damaged extracellular matrix, debris, and any bacteria from the 

wound site; they also release PDGF and TGF-β to further attract fibroblasts and smooth 

muscle cells into the wound site.18  

The responsibility of the inflammatory phase is to control the bleeding and removal of any 

contaminants. If the wound is following the normal wound healing process, this phase 

should take approximately three days to complete; however, if the wound bed is 

contaminated, or becomes infected, then the inflammation phase will be prolonged.18  

1.2.2.3. Proliferation 

Generally, there is an overlap between the inflammation phase and the proliferation 

phase,18 with the latter focusing on re-epithelization, restoration of the  vascular integrity to 

the region, and repair of the structural integrity of the tissue defect by creating new 

connective tissue (granulation).27,28 

During the proliferative phase, the wound is hypoxic, and the partial pressure of oxygen 

decreases to about 10 mm Hg.14 This hypoxic environment induces the release of hypoxia-

inducible factor (HIF), which regulates the expression of vascular endothelial growth factor 

(VEGF). VEGF, in combination with basic fibroblast factor (bFF), and TGF-β activate 

neovascularization or angiogenesis along the wound edges.12,18 Simultaneously, the 

endothelial cells produce enzymes that breakdown the adjacent extracellular matrix to 

create tissue defects, which allow the capillary vessels to infiltrate the tissue to form a 

network to restore vascularity. As a consequence, this process of angiogenesis is 
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interdependent on the production of new extracellular matrix, which acts as a scaffold to 

support the newly formed blood vessels.18  

Re-epithelization of a wound occurs when stimulated keratinocytes proliferate and migrate 

across the wound bed,19 prior to upward migration and differentiation, which occurs until 

the epidermis regains its normal thickness and stratification.18 Keratinocytes can only 

migrate over a moist, vascular wound surface,29 if the wound surface is not moist, 

keratinocytes secrete proteolytic enzymes that enable it to burrow into the wound bed to 

find the necessary moisture for migration.15,30 When the skin is completely covered with 

epidermal cells, the wound is considered closed; it has been shown that the chance of 

developing hypertrophic scar tissue is greatly reduced by early wound closure.19 

The final mechanism of the proliferation phase is the formation of granulation tissue.14 The 

fibrin clot created in the haemostasis phase is replaced by fibronectin, hyaluronic acid, and 

other extracellular matrix components, which promote cell migration and proliferation. 

Fibroblasts are the main cell responsible for the formation of granulation tissue as they 

attach to the provisional fibrin matrix and begin collagen production. These fibroblasts 

responsible for the granulation tissue have been activated into wound fibroblasts that have 

decreased proliferative activity and increased collagen production behaviour. Initially, the 

type of collagen is ‘type 3’, with limited tensile strength. Over time, collagen matures to ‘type 

1 collagen’ that is normally found in dermal tissue.18  

It is important to mention that contraction can occur in open wounds, which is beneficial to 

the wound healing process as the less granulation tissue required, the quicker the healing 

time.31 While it is currently unknown how contraction works, three theories have been 

proposed: modified fibroblasts are responsible for generating contractile forces that pull the 

wound edges together,32 wound fibroblasts act collectively to contract the connective tissue 

matrix,33 and newly formed collagen fibres produce a pulling force on the surrounding 

tissues.34 

1.2.2.4. Remodelling 

The final stage of wound healing is remodelling, where the granulation tissue matures into 

connective and scar tissue.14 The remodelling phase can last for up to one year, during which 

fibroblasts regulate the process of wound matrix breakdown by metalloproteinases 

(MMPs). This process slowly increases the strength of the wound; however, scar tissue is 

only 80% as strong as unwounded tissue. Occasionally, an imbalance in matrix degradation 

and synthesis are disrupted, resulting in abnormal scar formation (e.g. keloid or 

hypertrophic scarring).18  
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1.2.3. Delayed Wound Healing 

There are several factors that may impede wound healing;35 they are briefly outlined in 

Table 1.1. In terms of microbial infections, the prolonged time spent within the 

inflammation phase leads to continued regulation of inflammatory cytokines, which in turn 

result in the increased production of proteases, reactive oxygen species, and MMPs that 

degrade collagen, leading to delayed wound healing.36  

Table 1.1: Local and systemic factors that may impede wound healing. Adapted from Grey et al35  

Local factors Systemic factors 

Inadequate blood supply Age and immobility  

Increased skin tension Obesity 

Poor surgical apposition Smoking 

Wound dehiscence Malnutrition 

Poor venous drainage Illness 

Infection Immunosuppressant drugs, corticosteroids, 

anticoagulants 

 

1.3. Wound Infection 

Upon a breach of the epidermal layer, the subcutaneous tissue is exposed, resulting in  a 

moist and warm environment containing devitalised tissue that is favourable for microbial 

colonisation and proliferation. Typical signs of infection include heat, pain, oedema, 

erythema, purulence, and loss of function within the wound area. Indications for chronic 

wounds also include friable granulation tissue, wound breakdown, pain, and odour.11,37  

All wounds are colonised with bacteria from either endogenous or exogenous sources,37,38  

and the development of an infection follows the “wound infection continuum” (Figure 1.3). 

This continuum consists of five stages of wound infection, ranging from contamination 

through to a systemic infection.7 However, there is no consensus as to when the wound 

shifts from colonised to infected – a phenomenon previously called “critical colonisation”7,17  

Cutting et al suggested that the critical colonisation of bacteria is where the wound has 

become compromised by bacteria, resulting in delayed wound healing without any clinical 

symptoms associated with infection.39  
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Figure 1.3: Wound infection continuum. Reproduced from Wounds International with permission.40 

Copyright © 2016, Wounds International 

 

Clinically, the definition of a wound infection, or a strong propensity to develop an infection, 

occurs when concentration of cultivable bacteria from a tissue biopsy or a swab exceeds 105 

colony forming units per gram (CFU/g).5,41 At this concentration, the host’s immune system 

is no longer able to control the proliferation of the bacterial species,42,43 resulting in a local 

infection, delayed wound healing, and the need for clinical intervention (e.g., antimicrobial 

treatment, debridement).38 This has been shown in literature, where wounds with >106 

CFU/g tissue, between 105 – 106 CFU/g tissue, and no microbial bioburden, healed at a rate 

of 0.05 cm, 0.15 cm, and 0.2 cm per week, respectively.44  

However, this guideline fails to consider the polymicrobial nature of the wound and the 

potential for synergistic interactions between microbes, which could result in clinically 

infected wounds at lower bacterial concentrations.5 Therefore, a system such as the “critical 

infection threshold” may be more apt as it encompasses multiple markers of infection that 

cannot be explained by the bacterial concentration alone.   

1.3.1.Microbiology of Chronic Wounds 

Traditional culturing methods to detect pathogenic bacteria in chronic wounds only identify 

approximately 1% of the pathogens present at the wound site,8 due to the bacteria within 

the wound existing as a viable, but nonculturable (VBNC) state, often in response to 

environmental triggers such as antimicrobial exposure, low pH and nutrient availability, 

and hypoxia.45,46 The VBNC state is challenging as it may lead to an underestimate of the 
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bacterial bioburden within the wound, owing to the VBNC bacteria being unable to be 

cultured on conventional agar plates.47  

The bacterial species present within chronic wounds changes over time; however, 

Staphylococcus aureus and coagulase-negative staphylococci are among the most 

frequently isolated bacterial species within chronic wounds.7 Hannson et al showed that 

S. aureus was present in 88% of venous leg ulcers that had no clinical signs of infection, 

closely followed by Enterococcus faecalis (74%), Enterobacter cloacae (29%), and 

Peptococcus magnus (29%).48 This observation was further supported by Gjødsbøl et al who 

found that S. aureus was the most frequently identified bacteria within chronic venous leg 

ulcers49 and by Frank et al, who found that 25% of chronic wounds were isolated with 

Staphylococcus spp.50  

Anaerobic bacteria are often overlooked in conventional microbiological assessments of 

chronic wounds; however, chronic wounds have a statistically higher proportion of 

anaerobes compared to acute wounds (2.0 species vs 1.1 species, respectively; p=0.05). 

Common anaerobes within chronic wounds include Prevotella spp., Peptostreptococcus 

spp., and Porphyromonas.51,52  

1.3.2. Biofilm Formation 

Bacteria can exist in a planktonic state or as sessile cells within a bacterial community, called 

a biofilm. Biofilms are defined as a complex three-dimensional community of 

microorganisms surrounded by an extracellular polymeric substance (EPS). The EPS 

consists of polysaccharides, proteins, glycoproteins, lipids, metal ions, and extracellular 

DNA (eDNA);38,53,54 the composition of the EPS determines the biofilm architecture.38  

Biofilms are reported in approximately 60 – 80% of chronic wounds55–57 and are thought to 

cause the wounds to remain in the inflammatory phase of wound healing – resulting in the 

non-healing nature that is characteristic of these types of wounds. Conversely, biofilms are 

associated with only 6% of acute wounds.55  

The development of a biofilm occurs through five discrete, well-regulated processes (Figure 

1.4); however, the exact mechanisms of biofilm formation can differ between bacterial 

species. Generally speaking, the formation of a biofilm starts with microbial attachment to 

an abiotic or biotic surface, leading to the cell proliferation and the formation of 

microcolonies within the EPS and finally towards maturation and dissemination of the 

microbial cells.38  
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Figure 1.4: Formation of a biofilm. Reproduced from Wounds International with permission.40 Copyright © 

2016, Wounds International 

Attachment of microbial cells onto a surface, or to each other at a surface interface (i.e., air-

water), is facilitated through weak interactions between the surface and attachment 

appendages on the microbial cell surface and adhesion molecules.38,58,59   

After attachment, the biofilm grows via the proliferation of cells or recruitment of new cells 

to the biofilm. Upon development of the biofilm, the EPS is produced to provide structure 

and integrity to the biofilm.60  

The development of a biofilm is structurally and metabolically heterogenous and is 

constantly changing.38 Upon increasing bacterial concentration, bacteria produce quorum 

sensing molecules that accumulate in the environment that aid in microbial communication 

to help co-ordinate the development of the biofilm through processes such as enzyme 

production, toxin production, and managing microbial growth rates.5,38 A developing 

biofilm is composed of approximately 10 – 20%  bacterial cells and 80 – 90% EPS.54 If the 

biofilm is polymicrobial in nature, the individual microbial species can share defence 

advantages, such as molecules that aid in antimicrobial resistance or protection from 

phagocytosis.61–63 

The three-dimensional structure develops as the biofilm becomes more complex; the 

structure is dependent on the bacteria present, but is often depicted as that of a mushroom 

(Stage 4, Figure 1.4).64–66 Water channels are formed to delivery nutrients and remove waste 

to adjourning microcolonies.38  
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To colonise new surfaces, microbial cells are removed from the biofilm via shedding, 

detachment or shearing. These released cells retain the characteristics of the parent biofilm 

before reforming on a new surface.38   

A mature biofilm can develop resistance to the host’s immune cells (e.g., neutrophils and 

macrophages) and conventional antimicrobials, making the infection harder to treat and 

further delaying the wound healing process.38 The increased resistance is due to a multitude 

of factors, including the limited diffusion of the antimicrobials through the dense and 

negatively charged EPS, induced expression of efflux pumps, and secretion of molecules and 

enzymes that bind or inactivate antimicrobial agents. Additionally, some bacteria  within a 

biofilm are metabolically inactive, further preventing the effectiveness of 

antimicrobials.62,67–73  

1.4. Staphylococcus aureus 

S. aureus is a gram-positive bacterium, whose name derives from its tendency to grow in 

grape-like clusters of golden colonies (Figure 1.5).74,75 Unlike other Staphylococci spp. (e.g., 

Staphylococcus epidermidis), S. aureus  is able to produce the pigment, carotenoid, and the 

enzyme, coagulase.74 The presence of the latter has been used extensively in microbiological 

assays to distinguish S. aureus from other Staphylococci spp. (who are frequently referred 

to as coagulase negative Staphylococci).76 While the growth of S. aureus is optimum in 

aerobic conditions at incubation temperatures between 35 – 40 °C,75 S. aureus is a 

facultative anaerobe; therefore, it is capable of growing  in anaerobic conditions.74  

 

 

Figure 1.5: Scanning Electron Microscopy (SEM) image of planktonic S. aureus MRSA252 

 



12 
 

S. aureus is an opportunistic pathogen, first identified in purulent fluid from a leg abscess 

by Ogston in the 1880s.77 S. aureus primarily colonises the upper respiratory tract, such as  

the throat and the anterior nares, but it has also been shown to be present on the scalp and 

hands.75  It has been reported that up to 30% of individuals have anterior nares colonised 

with S. aureus,74,77,78 although some reports have stated that it could be as high as 50%, as 

the frequency of asymptomatic carriage varies from one study to another. Researchers have 

noted two distinct patterns of colonisation: intermittent and persistent S. aureus carriage.75  

1.4.1. Virulence Factors and Regulators 

Upon breach of the skin barrier, S. aureus has the capability to produce a wide range of 

diseases, such as skin and soft tissue infection, toxic shock syndrome, necrotizing 

pneumonia, bacteraemia, and endocarditis74,77,79 The capability of S. aureus to cause such a 

myriad of disease is associated with the ability of S. aureus to produce numerous virulence 

factors that aid in invasion and dissemination of the pathogen (Section 1.4.2).74,76  

1.4.1.1. Regulators 

The genes that encode and regulate the virulence factors of S. aureus are highly regulated 

and integrate host and environmental-derived cues in a co-ordinated manner, occurring in 

tandem with bacterial growth and controlled by a quorum sensing mechanism.80,81 Two-

component systems (TCSs) detect the environmental changes via an external signal that 

activates the histidine kinase, leading to its autophosphorylation and subsequent 

phosphorylation of the response regulator. Upon phosphorylation, the response regulator 

binds to a specific DNA sequence, resulting in the alteration of the target gene expression.81 

Major virulence regulatory systems of S. aureus are shown in Table 1.2.  

Table 1.2: Major virulence regulatory systems of S. aureus. Adopted from Jenul et al.81 

Receptor System Role 

agr Cell-to-cell communication (quorum sensing) with AIP as a signal; leads to 

expression of exotoxins and enzymes 

SaeRS Induces exoprotein production 

SrrAB Repression of agr and TSST-1 

ArlRS Expression and repression of agr and autolysis 

SarA Cytoplasmic regulator of toxins and extracellular proteases 

Rot Cytoplasmic regulator of toxins and extracellular proteases 

MgrA Cytoplasmic regulator; induction of efflux pumps and capsule expression; 

repression of surface proteins 

SigB Stationary phase sigma factor, inhibits agr activity  
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The regulation of these virulence factors are largely controlled by the accessory gene regular 

(agr),76 first described in 1986 as a regulator of haemolysins, toxic shock syndrome toxin-1 

(TSST-1), staphylokinase, and protein A.82 agr is a quorum-sensing two-component system 

that senses a signal (an autoinducing peptide [AIP]), which accumulates in the extracellular 

environment with increasing bacterial concentration. Upon reaching a critical density of 

bacteria, the agr system is activated to adapt to the changing conditions and regulates 

virulence.82–84  

The agr system consists of two transcription units RNAII and RNAIII, driven by the 

promotors P2 and P3, respectively.85,86 RNAII contains four cistrons agrA, agrB, agrC, and 

agrD, that encode the AgrBCDA structural proteins. Together the AgrB and AgrD constitute 

the quorum-sensing system; AIP is encoded by agrD, which subsequently gets modified and 

secreted by AgrB, to drive the transcription of both P2 and P3 promoters.87 AgrC, acts as a 

histidine kinase and the AgrA acts as response regulator in a two-component system that 

senses the AIP present in the environment.80,85 

RNAIII is the effector module of the agr system, which upon the post-exponential growth 

phase of S. aureus activates the transcription of exoproteins, while repressing the 

expression of surface-associated virulence factors.80,88 This pattern of gene expression, 

where surface proteins involved in adhesion and defence against the host’s immune system 

(e.g., protein A, coagulase, fibronectin) are synthesised prior to the production of secreted 

proteins (e.g., haemolysins, cytotoxins, proteases, etc.) portray a strategy whereby S. aureus 

first establishes itself on the host before subsequent attack.80 

S. aureus virulence factors can also be regulated by the staphylococcal accessory regulator 

(SarA), which was shown to be necessary for transcription of agr RNAII and RNAIII.89 

However, SarA can act in an agr-independent manner, down regulating several proteases, 

and activating α-haemolysin, TSST-1, and staphylococcal enterotoxin B expression.90  

1.4.1.2. Virulence Factors 

S. aureus expresses an abundance of virulence factors including surface proteins, toxins, 

superantigens and enzymes (Figure 1.6).77  
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Figure 1.6: Selected Staphylococcus aureus virulence factors. Reproduced from Daum et al with 

permission.91 Copyright © 2011, Oxford University Press 

1.4.1.2.1. Toxins 

Enterotoxins are typically secreted superantigens, which trigger T cell activation and 

proliferation without the need for antigen processing by allowing non-specific interaction 

of the class II major histocompatibility complex MHC II with T cell receptors. S. aureus has 

been shown to produce approximately 20 different enterotoxin and enterotoxin-like toxins. 

One example is TSST-1, which causes TSS by stimulating the release of interleukins (IL-1 

and IL-2), TNF-α, and other cytokines.92  

Cytotoxic toxins cause pore formation in the membrane, leading to the efflux of vital 

molecules and metabolites; most lyse red (haemolysin) and/or while (leukotoxin) blood 

cells.92 Alpha-toxin is probably the best known toxin of S. aureus;93 it is lytic to red blood 

cells and a series of leukocytes, but not neutrophils.94 Alpha-toxin also causes apoptosis in 

human monocytes, T and B cells.95 Alpha-toxin is the model β-barrel pore-forming 

membrane-damaging cytotoxin, it creates a pore within the membrane, resulting in leakage 

of cellular contents and ultimately cell lysis.76 It is essential for infections that disrupt 

epithelial barriers such as pneumonia,96 keratoconjunctivitis and infections of the skin.76  

S. aureus also produces a number of bi-component toxins that are structurally similar to 

alpha-toxin: Panton-Valentine Leukocidin (PVL), leukocidins, and gamma-toxin.92 PVL  

has been shown to aid in S. aureus pathogenicity by lysing polymorphonuclear leukocytes, 

ultimately destroying lung tissue, prolonging the infection, and helping with the 

dissemination of the infection to adjacent tissues.97 
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Delta-toxin is a member of the secreted phenol-soluble modulins (PSMs) that are produced 

by most S. aureus strains.98,99 PSMs have multiple functions in Staphylococcal 

pathogenesis, including biofilm formation (Section 1.4.3). 99 

Exfoliating toxins A and B (ETA and ETB) are commonly associated with skin damage.100 

Approximately, 5% of S. aureus strains produce exfoliative toxins,101 which cleave the 

desmosomal cadherins of the superficial skin layers, leading to staphylococcal scalded skin 

syndrome (SSSS). 92,102 

1.4.1.2.2. Enzymes 

Most of the enzymes secreted by S. aureus degrade host molecules or interfere with the 

host’s metabolic or signalling cascades. Enzymes include: non-specific proteases, aureolysin 

and endopeptidases, staphopain A and B, and collagenase. S. aureus also produce lipases, 

nucleases and phosphatases, although their function in pathogenesis is poorly 

understood.92 

Staphylokinase  degrades the fibrin clots by activating plasminogen to plasmin, diminishing 

the ability of the fibrin clot to keep the infection localised helping to facilitate greater 

bacterial penetration through the skin.103  

S. aureus is able to produce two coagulases, staphylocoagulase and von Willebrand factor 

(vWF), which convert fibrinogen to fibrin, resulting in fibrin clots on the surface of S. aureus 

cells inhibiting phagocytosis.92,104 Additionally, the production of coagulases have been 

associated with enterotoxin production.97  

1.4.2. Biofilms 

S. aureus is frequently associated with infections of indwelling medical devices such as 

central venous catheters and prosthetic joints because of its ability to form biofilms.105,106 

S. aureus biofilms are mediated by the agr system, as this system regulates the production 

of proteases and PSMs, which are the main contributors of biofilm maturation and 

assembly.107–109 

S. aureus initially attaches to biotic or abiotic surfaces using surface adhesions,110,111 wall 

teichoic acids,112,113  cell-wall anchored (CWA) proteins, eDNA production,114 and changes in 

cell surface hydrophobicity (Figure 1.7).115 The best characterised system is the microbial 

surface components recognising adhesive matrix molecules (MSCRAMMs), which are 

CWA-proteins that promote biofilm formation by facilitating the initial attachment to the 

host matrix components.116  
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The attached bacteria then proliferate. During this stage, S. aureus starts to produce EPS, 

and dependent in the EPS composition, polysaccharide-dependent biofilms, or biofilms 

consisting of proteinaceous matrix are formed;117,118 the latter is usually found for MRSA 

isolates. Independent of EPS composition, S. aureus cells are held together within the EPS 

matrix by adhesive factors to build microcolonies, which develop into an established 

biofilm. Concurrently, biofilm development can be mediated by the polysaccharide 

intracellular adhesin (PAI) molecule – a matrix of poly-N-acetylglucosamine that surrounds 

and connects bacteria within the biofilm.116 

Staphylococcal biofilms do not grow uniformly; remodelling of the biofilm occurs via 

nucleases and phenol soluble modulins (PSMs), which help to create a mature biofilm with 

its distinctive three-dimensional tower-like structures interspaced with water channels.116 

 

Figure 1.7: Staphylococcal biofilm cycle. Adapted from Schicher with permission.116 Copyright © 2020, 

American Society for Microbiology 

1.4.3. Methicillin-resistant Staphylococcus aureus 

Methicillin-resistant Staphylococcus aureus (MRSA) was observed within one year of the 

first clinical use of methicillin; however, genomic analysis suggests that the resistance to 

methicillin predates the first clinical use of β-lactams.77   

Methicillin resistance is mediated by the mecA gene, which is acquired via horizonal gene 

transfer (HGT) of a mobile genetic element called the Staphylococcal cassette chromosome 

mec (SCCmec).119 mecA encodes for an alternative penicillin-binding protein 2a (PBP2a) 
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that is responsible for crosslinking peptidoglycan within the bacterial cell wall. PBP2a has 

a low affinity towards β-lactams, subsequently resulting in resistance to this class of 

antibiotics.80,120 

Since the 1990s, MRSA has spread rapidly within the hospital environment and the 

community, often occurring in waves, with the serial emergence of predominant strains.77 

Recent examples of emergent MRSA strains include the healthcare-associated MRSA (HA-

MRSA) clonal complex 30 (CC30) isolated in North America and Europe, community-

associated MRSA (CA-MRSA) USA300 in North America, and MRSA ST93 isolated in 

Australia.121–124  It has been estimated that MRSA is responsible for 171 200 healthcare-

related infections in Europe annually, corresponding to an extra 5400 deaths; the 30-day 

mortality of MRSA is double that observed when compared to its methicillin-sensitive 

counterparts.97 

1.5. Bacteriophage 

Bacteriophages (phages) are viruses that infect and kill bacteria. Phage have been isolated 

in a variety of different environments; one such environment is  Norwegian fjord water,125 

where it was discovered that the concentration of phage was approximately 107 Plaque 

Forming Units per millilitre (PFU/mL), with roughly 5 – 10 phage per bacterium. On the 

basis of this study, it was assumed that phage are the most ubiquitous organisms on earth. 

Today, it is thought that there are approximately 1030-31 phage present in the world126–128 

capable of infecting more than 140 different bacterial genera;129,130 however, the true 

number of phage is probably higher, with the only factor limiting their incidence is the 

presence of microbial hosts.126 

1.5.1. Discovery and Historical Use 

While Abedon et al identified at least 30 actual or presumptive “bacteriophage” references, 

some of which date back to 1895,131 the beginning of bacteriophage research is generally 

thought to have originated from the paper written by Frederick W Twort in 1915.132 Twort 

was growing viruses and found that they formed zones of clearance upon incubation with 

micrococcus bacteria. He concluded that the viruses must be multiplying while 

simultaneously killing the bacteria. Independently, Felix d’Hérelle observed this 

phenomenon in 1917 when investigating severe haemorrhagic dysentery among French 

troops stationed in Maisons-Laffite.133 d’Hérelle described a microbe that was antagonistic 

to bacteria, but needed living cells to replicate, suggesting that cell lysis was involved in the 
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multiplication process. He termed this microbe ‘bacteriophage’ – implying to “eat” or 

“devour” bacteria.125,134 

As such, both scientists are credited with the discovery of bacteriophage. However, d’Hérelle 

conducted further research, discovering that phage had steps of infection that included 

multiplication, release, and reinfection steps.125 d’Hérelle primarily focused on the 

therapeutic use of bacteriophage, isolating phage from stool samples of patients suffering 

from diarrhoea to successfully treat bacterial dysentery.133  

While the idea of phage therapy seemed promising, little was known about phage 

themselves, so unsurprisingly phage therapy led to variable success. This, in combination 

with poor documentation of the studies, resulted in controversy surrounding phage 

therapy.135 The advent of conventional antibiotics in the 1950’s further diminished phage 

research, with the West favouring conventional antibiotics for the treatment of bacterial 

infections due to a greater understanding of their mechanism of action and more 

reproducible studies.  However, phage therapy continued in the East, with the Eliava 

Institute in Tbilisi, George considered to be the pioneer in phage therapy, where research 

continues to this day.136  

1.5.2. Bacteriophage Taxonomy  

Currently, bacteriophage classification is the responsibility of the Bacterial and Archaeal 

Viruses subcommittee (BAVS) within the International Committee on the Taxonomy of 

Viruses (ICTV). The ICTV published their first report in 1971, where classification was based 

on numerous bacteriophage properties, including: genetic information (single stranded 

(ss)/double stranded (ds) DNA/RNA), sequence similarity, morphology, and host 

range.134,137 Since then, the number of bacteriophages discovered, and successfully 

sequenced, has dramatically increased, owing to the improvement of nucleotide sequencing 

techniques. Currently, there are over 400 phage genome sequences deposited into the 

GenBank database.138  

There is a remarkable diversity in phage, for instance over 500 different phage have been 

identified for a single bacterial species Mycobacterium smegmatis.139 Owing to the varying 

morphologies and size of phage, there are issues in classification. In 2015 it was suggested 

that there were 14 subfamilies, 204 genera and 873 species. However, this is constantly 

being updated as new bacteriophage are being sequenced; in 2017 two new families, eight 

sub-families, 34 genera and 91 species were proposed. The most recent literature from 

BAVS have proposed the creation of a new order (Tublavirales), 10 families, 22 sub-

families, 424 new genera and 964 new species.140 An overview of the families regarding 
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bacteriophage classification are outlined in Table 1.3. However, it is important to note that 

this list is not exhaustive, with re-classification/creation of new orders and families 

constantly ongoing due to the increasing amount of sequenced phage present in the 

literature. 

Table 1.3: Classification of phage families (non-exhaustive list). L = linear, C = circular, NC = nucleocapsid, 

and S = supercoiled 
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While the classification system is complex, almost all (96%) of the currently classified 

bacteriophage belong to the Caudovirals and Tublavirales orders.140,141 That is, they are 

tailed and predominately contain dsDNA encapsulated in a icosahedral protein shell, known 

as a capsid.125,134,137 The size of these phage can vary, but are often between 24 – 200 nm,142 

with T4 phages being one of the largest (approx. 200 nm in length and 80-100 nm in 

width).134  

1.5.3. Bacteriophage Life Cycle 

Bacteriophage have four characterised life cycles: lytic, lysogenic, pseudo-lysogenic, and 

chronic infection, with the former two being the most prevalent (Figure 1.8). Virulent phage 

exclusively follow the lytic cycle, while temperate phage follow the lysogenic cycle until a 

stressor event occurs, causing the prophage to become induced and switch to the lytic life 

cycle of growth.143 Both virulent and temperate bacteriophage can undergo the pseudo-

lysogeny life cycle, and although the current cause of this life cycle is unknown, it is thought 

the be related to starvation stress of the bacterial host. While in the bacterial cell, the genetic 

material remains inactive in the form of a circular episome, and the development cycle is 

halted until environmental conditions improve.126 Chronic infection occurs predominately 

with filamentous phage, where they continuously release their progeny from bacteria 

without lysing the bacterial cell or causing bacterial cell death.125,144 

 

Figure 1.8: A) Structure of a typical tailed bacteriophage, and B) the steps during the bacteriophage lytic and 

lysogenic life cycles. Reproduced from Garcia et al with permission.145 Copyright Elsevier® 2010. 
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1.5.3.1. Adsorption 

Regardless of the life cycle, phage infection begins when the virion attaches to its host cell, 

in a process known as adsorption.146 For adsorption to occur, the phage must first recognise 

receptors on the target’s bacterial cell wall. For gram-negative bacteria, the receptors can be 

the transmembrane proteins, porins, selective transport proteins (e.g. LamB for phage λ), 

proteases and lipopolysaccharides (LPS). Gram-positive bacteria tend to have teichoic 

acids, lipoteichoic acids and the polysaccharide cell wall for their receptors for phage 

adsorption.143  

Bacteriophage adsorption is initiated by random collisions between phage and their 

bacterial host, usually governed by diffusion, dispersion, or Brownian motion.147 Phage 

reversibly bind to the bacterium upon contact until successful recognition of the receptor, 

leading to irreversible phage adhesion.126 This step triggers conformational rearrangements 

within the phage that allow for the insertion of genetic material into the host, and/or the  

release enzymes to help with the penetration of the bacterial cell envelope depending on the 

type of bacteriophage.126,134,148  

The aftermath of the infection depends on the host and the circumstances of infection: 

either the phage survive and undergoes it respective lifestyle, the phage dies and/or doesn’t 

produce progeny (often due to resistance mechanisms), or both the phage and bacterium 

die due to abortive infection systems. 146   

1.5.3.2. Lytic Lifecycle 

Bacteriophage that undergo the lytic lifecycle are termed lytic or virulent phage; these phage 

produce daughter progeny at the expense of the bacterial host.146 After adsorption, phage 

DNA is translocated into the bacterial cytoplasm and the host metabolism is re-directed to 

the development of viral progeny, owing to the expression of phage-encoded genes.134,149 

Newly transcribed proteins are assembled to form viral particles.146 The formation of these 

phage particles will differ depending on the phage/host; however, the viral particles are 

essentially composed of nucleic acids and a protein capsid.  

Upon a threshold number of virion particles, specific lysis proteins are released to help the 

phage particles lyse the bacterial cell. These include: holins (form pores within the plasma 

membrane), endolysins (cell wall peptidoglycan hydrolases), and spanins (destabilisation 

of the gram-negative bacterial outer membrane).150,151 These lysis proteins are responsible 

for the destruction of the bacterial host wall, and subsequent release of the phage progeny 

to the extracellular matrix, allowing for re-infection.146,152 



22 
 

1.5.3.3. Lysogenic Lifecycle  

Phage which undergo the lysogenic lifecycle are termed temperate phage. They have a stable 

relationship with their host, remaining as a prophage (where the genetic material of the 

phage is integrated within the host’s chromosome); this is termed lysogenic state,126 where 

the infections are not productive (i.e. no structural virions are produced) but rather replicate 

vertically in tandem with host replication. Therefore, daughter cells of the host inherit at 

least one copy of phage DNA.  Prophages can also exist extra-chromosomally as a stable low 

copy plasmid, e.g. Phage P1.125,146  

In the lysogenic state, the expression of lytic genes is inhibited by repressors. However, 

external factors can trigger the bacterial hosts’ SOS regulatory circuit.125 This can result in 

the temperature phage becoming ‘induced’, leading to a conversion of temperate phage to 

the lytic life cycle.126  

One potential issue with temperate phage is that they can affect the pathogenicity of the 

host bacterium. Lysogenic phage can carry non-essential genes that are not required for the 

lytic or lysogenic lifecycle, but upon incorporation of the prophage can  lead to a change in 

phenotype of the infected bacterium in a process termed ‘lysogenic conversion’.125,153,154 

Lysogenic conversion is present in many bacterial species, and the “extra” genes are likely 

maintained as they allow for a selective advantage to the host or to the phage, contributing 

to improved bacterial fitness.125,155 Lysogenic conversion has been shown to help spread 

virulence factors such as adhesions, toxins, enzymes and other proteins required for 

successful bacterial infection. Temperate phages have also been shown to influence biofilm 

development and dispersal.156 Additionally, active lysogeny can also occur where the phage 

genome affects bacterial toxin production via expression regulation, rather than expression 

of virulence factors.157 Interestingly, lysogenic conversion can still occur if the prophage 

becomes non-viable. Some examples where virulence factors have been induced by 

prophages are shown in Table 1.4   

Table 1.4: Virulence factors encoded by genes acquired via prophage integration. Adapted from Olszak et 

al.126    

Gene Name Phage Encoded Feature Host 

stx 933, H19B Shiga toxin E. coli O157:H7 

ctxAB CTXɸ Cholera toxin Vibrio cholerae 

entA, sak ɸ13 Enterotoxin A, Staphylokinase Staphylococcus aureus 
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1.5.4. Transduction 

Transduction is the process where foreign DNA is introduced into a bacterial cell by phage 

or a viral vector; often, this contributes to the pathogenicity of the bacterial host.125 

Transduction can be further split into specialised and general transduction. Specialised 

transduction is typical of temperate phage and arises when the prophage is incorrectly 

excised with an adjacent part of the host genome.126 Owing to this, specialised transduction 

involves the transfer of bacterial genes that would not normally be associated with the phage 

genome.125 After infection of a new host cell, site-specific recombination or homologous 

recombination results in the integration of the packaged DNA into the host genome.158  

General transduction was first identified by Zinder and Lederberg in 1952 for Salmonella 

phage P22. It is the accidental packaging of random bacterial DNA fragments into the virion 

particles. While the resultant virion can still adsorb to bacterial cells and is able to transfer 

the packaged bacterial DNA to a subsequent bacterium, it can no longer produce phage 

progeny. Therefore, generalised transduction does not result in serial DNA transfer. 

However, it can transfer large amounts of DNA, and both lytic and lysogenic phage are 

capable of generalised transduction.125,159  

1.5.5. Bacterial Resistance to Bacteriophage 

While the reported frequency of resistance in vivo is low,160,161 bacteria can develop 

resistance to bacteriophage through multiple mechanisms of resistance.162,163 These 

mechanisms, and how phage can overcome them, are listed below: 

• Adsorption blocking. Perhaps the main method of resistance is the ability of 

bacteria to prevent phage adsorption through modification, masking, or removal of 

receptors.126,164,165 Synthesis of exopolysaccharide (EPS) or masking proteins (e.g. 

protein A of S. aureus) are other strategies bacteria employ to prevent phage 

adsorption. However, phage have adapted to recognise these modified receptors and 

have been shown to produce polysaccharide lyase or polysaccharide hydrolase 

enzymes that degrade the EPS.134 

• DNA injection blocking. Temperate and lytic phage can prevent further infection 

by other phage (termed superinfection) through the expression of superinfection 

exclusion (SIE) proteins. SIE proteins are anchored to the cell wall or associated 

with other membrane components, and act by preventing DNA from reacting the 

cytoplasm of the host.166,167  
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• Restriction modification (R/M) of foreign DNA. Most bacteria possess R/M 

systems which utilise restriction endonucleases to digest foreign DNA that is not 

methylated at the appropriate sites.126 Phage can inactivate R/M systems by 

methylation of phage DNA (e.g. phage T4, which contain hydroxymethylcytosine 

instead of cytosine, is protected from R/M sytems) or by reducting the frequency of 

restriction sites by mutation.149  

• Clustered regulatory interspaced short palindromic repeats (CRISPR)-

Cas systems. CRISPR-Cas systems often work in tandem with R/M systems and 

allow bacteria to recognise and degrade foreign DNA entering the cell.168 CRISPR-

Cas systems have been detected in approximately 40% of bacteria. Phage can 

overcome CRISPR-Cas systems by promoting mutations in the protospacer-

adjacent motifs or preventing the formation of CRISPR-Cas sytems.126,169 

• Abortive infections. An abortive infection is an ‘altruistic’ cell death system 

activated by phage infection, whereby the bacterial cell dies to prevent phage 

multiplication. This programmed cell death of a low number of bacterial cells 

enables the larger population to survive.126,170 Currently, there are over 20 abortive 

infection systems known, including toxin-antitoxin systems, which control bacterial 

cell death via protein-protein, protein-RNA or RNA-RNA interactions. Phage can 

overcome abortive infection through the production of bacterial-like antitoxins.126  

1.5.6. Bacteriophage Therapy  

Bacteriophage therapy is facing a revival due to the development of antibiotic resistance and 

the dwindling production of novel antibiotics from pharmaceutical industries. Typically, 

phage therapy involves the use of lytic phage as they result in bacterial cell death and do not 

possess the disadvantages associated with temperate phage.137 

Prior to use, phage (as a monotherapy or in a phage mixture, known as a phage cocktail) 

must undergo strict testing to deem its suitability for phage therapy. This includes fully 

characterising the phage by determining its structure, host-range, receptor on the bacterial 

cell, stability, etc. Moreover, genetic sequencing should be undertaken to ensure the phage 

is lytic and does not possess toxic/resistant genes, Additionally, the phage suspension 

should be adequately purified to remove any harmful endotoxins, meet regulatory 

guidelines, and should have undergone several in vitro and in vivo efficacy studies.137,171  

 



25 
 

1.5.6.1. Advantages 

There are several advantages to bacteriophage therapy. Firstly, bacteriophage have a limited 

host range, acting as a narrow spectrum antibiotic, which reduces the chances of developing 

dysbacteriosis (an imbalance in gut microflora) and secondary infections. Conversely, 

conventional antibiotics can act on the hosts’ normal microflora, potentially leading to 

secondary infections.143 Phage are able to infect both gram-positive and negative bacteria, 

as well as remaining effective against multi-drug resistant (MDR) bacteria due to their 

different mechanism of action (MOA) compared to conventional antibiotics.172 Additionally, 

some phage have been shown to be effective in eliminating bacterial biofilms,173 and because 

of the wide distribution of phages upon systemic administration, phage are able to pass the 

blood-brain barrier and target central nervous system infections.174–176 Owing to their self-

replicating nature, phage may require less frequent administration, and to the best of the 

authors knowledge, phage been shown to be safe for human use.143,177 Bruttin and Brussow 

showed that no adverse effects were identified from participants who received an oral 

suspension of T4 phage.178 Other studies have reported minor side effects, primarily due to 

the release of endotoxins upon the lysis of the bacteria; however, this is a common 

phenomenon witnessed with conventional bactericidal antibiotics.143  

Phage are ubiquitous and easy to isolate, providing an easier route to antibiotic therapy   

than the synthesis of novel conventional antibiotics. Additionally, if bacteria become 

resistant to the therapeutic phage, there are a plethora of phage that could be used 

instead.143  

1.5.6.2. Disadvantages 

However, phage therapy is not without its disadvantages. Technical hurdles include the 

inherent specificity of the phage, resulting in the need to identify the precise etiological 

microorganism causing the infection before bacteriophage can be used successfully.  While 

this can be overcome by the use of phage cocktails to expand the host range of the phage to 

target multiple strains of a bacterial species, there are no clear standardised methods, or 

official guidelines on the preparation of phage cocktails.179,180  

One disadvantage of bacteriophage therapy has been mentioned earlier – bacteriophage 

resistance. However, this disadvantage of phage-resistant bacteria can be overcome by 

using other, susceptible phage that have a similar host range, again showing the promise of 

phage cocktails, or modified bacteriophage, as a therapy. Additionally, there may be a 

fitness cost associated with the development of phage resistance which could make the 

bacterium susceptible to conventional antibiotics.143  
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Phage need to undergo genetic sequencing before being accepted as a viable therapy; 

however, there are many genes whose function is currently unknown.181 While phages are 

easy to isolate, purification is a convoluted process. If the phage lysate is not sufficiently 

pure, the endotoxins could lead to a potentially life-threatening inflammatory cascade 

resulting in multiple organ failure.182 However, Merabishivii et al created a phage stock of 

clinical trial grade purity through the use of a commercially available endotoxin removal 

kit.179 Additionally, the majority of lysate used in research are small in volume, hence there 

may be additional issues in the scale-up of phage preparations and the long-term stability 

of such suspensions.143  

Non-technical disadvantages include the regulatory status of phage therapy and the public 

perception of using viruses to treat bacterial infections.143 Phage therapy is not presently 

recognised as a medicinal product, with current European pharmaceutical regulations, 

definitions, and standards not adequately adapted to suit phage therapy; nor is there an 

approval process in place for the multiple phage cocktails needed to combat MDR bacterial 

infections.183 Regulation of phage therapy has largely been avoided due to the unreliable 

and inconsistent results of early phage therapy trials. While today it is accepted that this 

was due to poor understanding of the phage biology, further reproducible clinical trials need 

to be conducted before regulatory approval can be granted. Furthermore, phages are 

antigenic, eliciting a response from the immune system. Some studies have suggested that 

serum antibodies have inactivated several different phages,171,184 and others have reported 

that the phage are rapidly cleared by the immune system.177,184  

1.6. Wound Dressings 

Wound dressings date back to 2500 – 1600 BC, where linen strips soaked in oil or grease 

covered in plasters were used to seal wounds.185 Previously, it was believed that wounds 

healed more quickly if kept dry and uncovered. However, there was a  shift in wound 

dressing design in the mid-20th century towards occlusive dressings, designed to protect 

and provide a moist environment to the wound. These new dressings resulted in in faster 

re-epithelialisation, collagen synthesis, angiogenesis promotion and a reduction in wound 

bed pH, leading to a decrease in wound infection.186 Following this, further dressings were 

designed that provided moisture and absorbed fluids (e.g., polyurethane foams and 

hydrocolloids) and by the mid 1990’s, synthetic polymers had been employed to further 

develop and improve wound dressings (e.g., hydrogels, hydrocolloids, and silver/collagen 

containing dressings).185  
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1.6.1. Characteristics of an Ideal Wound Dressing 

Usually, a dressing is selected based on the type, depth, and location of the wound.185,187 

While this list is not exhaustive, a successful dressing must be able to:185 

• Provide or maintain a moist wound environment 

• Promote epidermal migration, angiogenesis and connective tissue synthesis 

• Allow gas exchange between the wound and the environment 

• Maintain appropriate temperature and humidity to the wound to improve blood 

flow 

• Provide protection against pathogenic microbials 

• Be non-adherent and easy to remove with limited pain to the patient  

• Be sterile, non-toxic, and non-allergic.  

While there are currently over 3000 types of wound dressings available for all aspects of 

wound care, there is not one product that is superior for the treatment of chronic wounds. 

1.6.2. Traditional Wound Dressings 

Traditional wound dressings include gauze, lint, plasters, bandages, and cotton wool; they 

are used as primary or secondary wound dressings to protect the wound from microbial 

contaminants.188 These dressings are not very cost-effective as they require frequent 

changing to protect from maceration of healthy tissues.185 Additionally, once these dressings 

become moist due to wound drainage, they tend to become adherent to the wound bed, 

causing pain to the patient on removal. Traditional dressings were used for clean and dry 

wounds with mild exudate levels, or used as secondary dressings, but nowadays they are 

being replaced with modern dressings that promote faster wound healing.188 

1.6.3. Modern Wound Dressings 

Modern wound dressings are often based on synthetic polymers and can be classified as 

passive (non-occlusive), interactive (semi-occlusive/occlusive), or medicated (releasing a 

drug from the wound dressing to promote wound healing).185  
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1.6.3.1. Semi-permeable Dressings 

Semi-permeable film dressings are generally composed of poly(urethane) which permits the 

transmission of water vapour, oxygen, and carbon dioxide from the wound, while providing 

autolytic debridement of eschar.189 These dressings are recommended for re-epithelializing 

wounds that superficial with low exudate; common examples include OpositeTM and 

BiooclusiveTM.190 

Semi-permeable foam dressings are also available and are typically used for lower leg ulcers 

and wounds with moderate-to-high exudate.191 Typical examples include LyofoamTM and 

AlleyynTM.185 

1.6.3.2. Hydrogels 

Hydrogels are hydrophilic polymer networks with a high water content, often created using 

polymers such as poly(vinyl alcohol), poly(methacrylate), and poly(vinyl 

pyrrolidine).185,192,193 The high water content promotes granulation and facilitates autolytic 

debridement of necrotic tissue within the wound bed. Hydrogels are often used for burns, 

surgical wounds, and pressure ulcers.187 Typical examples include Nu-gelTM and 

AquaformTM.185 A more detailed review of hydrogels can be found in Chapter 7.  

1.6.3.3. Hydrocolloids 

Hydrocolloid dressings are one of the most frequently used wound dressings, composed of 

a mixture of colloidal materials (carboxymethycellulose, gelatin, and pectin)194 and  

elastomers and alginates187 within  two layers – an inner colloidal layer and an outer, water-

impermeable layer. Hydrocolloids are used on light-to-moderate exudating wounds, such 

as pressure sores and minor burn wounds, as they are permeable to water vapour, aid in 

debridement, absorb wound exudate, and protect against microbial contamination.195,196 

Hydrocolloid dressings are also recommended for paediatric patients as they do not cause 

pain on removal.196 However, they are not appropriate for deeper wounds, or wounds that 

are heavily contaminated.197 Examples include GranuflexTM, TegasorbTM, and DuoDerm®.185 

1.6.4. Medicated dressings 

Medicated dressings are wound dressings that contain a drug which aids in the wound 

healing process (e.g., antimicrobials, growth factors, and enzymes), often used to overcome 

issues associated with topical agents.194  
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Antimicrobial-loaded wound dressings have been reported for use in the treatment of 

diabetic foot ulcers and surgical and accidental wounds.188,198 The most reported medicated 

dressings are those that incorporate silver, with silver-loaded dressings available as 

hydrocolloids, silicone gels, and poly(urethane) foam films.185,194 Antiseptics, such as 

povidone-iodine have also been used in the development of medicated wound dressings,199 

although prolonged use of iodine has been known to result in staining and skin irritation.185 

Recently, dialkylcarbamoyl chloride coated dressings have been used to combat wound 

infections by irreversibly binding to bacteria at the wound surface via hydrophobic 

interactions, removing the bacteria from the wound site upon dressing change.200 

Antibiotic-loaded wound dressings have also been investigated, with gentamicin, 

norfloxacin, and minocycline loaded chitosan films currently under investigation.188  

1.7. Overall Aims and Objectives 

The overall aim of this research was to develop novel systems that could detect and 

subsequently  treat  S. aureus infections, which could be ultimately combined to create a 

theranostic device.  

This thesis will focus on the relationship between phage and antibacterials, investigating 

the role of phage-antibiotic synergy and the efficacy of such combinations against clinically 

relevant S. aureus isolates. From here, phage K, ciprofloxacin, or a combination of both, 

would be encapsulated within a poly(lactic acid)-poly(ethylene glycol) polymer blend and 

assessed for release kinetics and microbiological efficacy. Attention will then turn to the 

development of a pH responsive system via use of a pH-responsive polymer coating.   

Concurrently, the design and synthesis of a novel fluorescent probe for the detection of S. 

aureus will be employed. Upon created of the probe, focus will turn to the optimisation of 

the probe to detect S. aureus in planktonic, biofilm, and ex vivo models.  
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Chapter 2: General Materials and Methods 

2.1. Materials 

Table 2.1: List of reagents and materials 

Material Supplier 

Acetone Sigma-Aldrich 

Acid phosphatase Sigma-Aldrich 

Alkaline phosphatase Sigma-Aldrich 

Amikacin hydrate Sigma-Aldrich 

Amoxicillin Sigma-Aldrich 

Bacteriological agar Sigma-Aldrich 

Bovine Serum albumin Sigma-Aldrich 

Brain Heart Infusion agar Sigma-Aldrich 

Chloroform Sigma-Aldrich 

Ciprofloxacin hydrochloride hydrate Fischer Scientific 

Crystal violet Sigma-Aldrich 

D-(+)-glucose Sigma-Aldrich 

Dichloromethane Sigma-Aldrich 

Ethanol Sigma-Aldrich 

Eudragit® FS 30 D Evonik Industries 

Fetal bovine serum Sigma-Aldrich 

Glycerol Sigma-Aldrich 

Luria Broth Base (Miller’s LB Broth Base) Fischer Scientific 

Mannitol salt agar Sigma-Aldrich 

Mueller Hinton agar Sigma-Aldrich 

Mueller Hinton broth Sigma-Aldrich 

pH probe large surface flat tip, HDPE junction 662-

1769 
VWR International 

Phosphate buffered saline Sigma-Aldrich 

Poly(ethylene glycol) 400 Sigma-Aldrich 

Poly(vinyl alcohol) MW 146000 – 186000, 99+% 

hydrolysed 
Sigma-Aldrich 

Polylactic acid Mw ~60 000 Sigma-Aldrich 

Polystyrene tissue culture microplates (12-well) Sigma-Aldrich 

Polystyrene tissue culture microplates (96-well) Sigma-Aldrich 

Porcine liver esterase Sigma-Aldrich 

Protease from Streptomyces griseus Sigma-Aldrich 

Proteinase K Sigma-Aldrich 

Sodium chloride, BioXtra ≥99.5 (AT) Sigma-Aldrich 

Sodium hydroxide, BioXtra ≥98 (acidmetric) Sigma-Aldrich 

Spin-X® UF Concentrator Corning® Sigma-Aldrich 



48 
 

Tris-HCl Fischer Scientific 

Trypsin Sigma-Aldrich 

Tryptic Soy agar Sigma-Aldrich 

Tryptic Soy broth Sigma-Aldrich 

Vancomycin hydrate from Streptomyces orientalis Sigma-Aldrich 

Whatman® NucleoporeTM Track-Etched 

Membranes (diameter 25 mm, pore size 0.2 µm, 

polycarbonate) 

Sigma-Aldrich 

 

2.2. Methods 

2.2.1. Bacteria 

2.2.1.1. Bacterial Strains 

All bacterial strains used in this thesis were obtained from Professor Toby Jenkins, 

University of Bath, UK or Professor Jean-Yves Maillard, Cardiff University, UK. Bacterial 

cultures were stored at –80 °C in phosphate buffer solution (PBS) containing 20 % (v/v) 

glycerol. Working stocks were cultured from frozen by streaking onto a TSA plate and 

incubating at 37 °C for 24 h. Plates were subsequently stored at 4 °C for up to a month for 

further use. 

2.2.1.2. Principles of Bacterial Growth 

Bacteria proliferate through an asexual process called binary fission, and their growth curve 

is depicted in Figure 2.1. 

 

Figure 2.1: Typical growth curve of a closed-system bacterial culture. A) Lag phase, B) Logarithmic phase, 

C) Stationary phase, D) Death phase and E) Long-term stationary phase 
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The first stage of bacterial growth is the lag phase, where the bacteria are maturing and 

synthesising RNA, enzymes, and other molecules. Although bacterial cells are not yet able 

to divide, they are not dormant. The length of this period is dependent on the bacterial 

species and the length of time the cells have undergone starved conditions before entering 

this stage. Next, is the logarithmic (or exponential) phase, characterised by the exponential 

growth of bacteria. The slope of this line is dependent upon both the organism and the 

growth conditions.  However, as the medium becomes depleted, bacterial cells enter the 

stationary phase of growth. This arises when the rate of growth is equal to the rate of death, 

resulting in a plateau with no net increase in cell density. Upon the depletion of all nutrients 

and/or the formation of inhibitory waste products, the bacteria enter the death phase. This 

is where the number of viable bacterial cells decrease exponentially until about 90-99% of 

the population die.  

2.2.1.3. Bacterial Culture Conditions 

Bacterial overnights were routinely prepared using colonies obtained from the respective 

bacterial strain’s tryptic soy agar (TSA) plate. Colonies was grown in tryptic soy broth (TSB) 

and incubated at 37 °C with 150 rpm shaking for 18 h. After incubation, cultures were 

centrifuged at 4000 g for 10 min and re-suspended in PBS. Cultures were standardised to 

an optical density (OD) at 600 nm of 0.2 (c. 107 CFU/mL) before use, unless otherwise 

stated.  

2.2.1.4. Bacterial Enumeration 

Estimation of the total viable count of bacterial cultures were calculated using the drop 

count method, as outlined by Miles and Misra.1 The initial bacterial suspension underwent 

a series of 10-fold dilutions in PBS, and subsequently three 10 µL spots of each dilution were 

pipetted onto the surface of a TSA plate. The spots were allowed to dry for 20 min at room 

temperature before incubation at 37 °C for 18 h. The number of Colony Forming Units per 

mL (CFU/mL) was calculated as follows: 

CFU mL⁄ =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝑑 ∙ 𝑉
 (1) 

Where d = dilution factor and V = volume of inoculum. 

2.2.1.5. Minimum Inhibitory Concentration 

The Minimum Inhibitory Concentration (MIC) of an antimicrobial was conducted 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.2 Briefly, 
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stock solutions of antimicrobials were prepared at twice the starting concentration in sterile 

deionised water (dH2O). Then, 100 µL of the chosen antimicrobial was added to a 96 well 

plate and serially diluted two-fold in TSB (unless otherwise stated). An overnight culture of 

bacteria, previously adjusted to an OD600 of 0.2 underwent a 10-fold dilution in fresh TSB 

to attain a concentration of 106 CFU/mL, before 100 µL of the suspension was added to all 

relevant wells in the 96 well plate. A negative (bacteria only) and positive (broth only) 

control was carried out in tandem. The plate was incubated for 18 h at 37 °C and the MIC 

was determined as the concentration of antibiotic that resulted in no detectable bacterial 

growth, assessed by measuring the OD600
 using a SPECTROstar®  Omega microplate reader 

(BMG LabTech, UK). Three independent biological replicates per biological species were 

performed.  

2.2.2. In vitro Biofilm Models 

2.2.2.1. 96-Microtiter Biofilm Models 

2.2.2.1.1. Minimum Biofilm Inhibitory Concentration  

Biofilm formation was conducted in a 96-well polystyrene microtiter plate. First, the chosen 

antimicrobial was prepared at twice the starting concentration in TSB containing 1% (w/v) 

D-(+)-glucose (TSBg). Then, 100 µL of the chosen antimicrobial was added to the 96 well 

plate and serially diluted two-fold in 1% TSBg (unless otherwise stated). Next, overnight 

cultures of bacteria were sub-cultured into fresh 1% TSBg to attain a concentration of 106 

CFU/mL, before 100 µL was added into relevant wells in the plate and statically incubated 

at 37 °C for 18 h. Following incubation, plates were washed three times with sterile dH2O to 

remove planktonic bacteria and evaluated for biofilm formation via Crystal Violet (CV) 

assay (Section 2.2.2.1.3). The Minimum Biofilm Inhibitory Concentration (MBIC) was the 

concentration that resulted in no detectable biofilm growth compared to the control. 

Negative and positive controls were carried out in tandem, and three independent biological 

replicates per biological species were performed. 

2.2.2.1.2. Minimum Biofilm Eradication Concentration  

Overnight cultures of bacteria were sub-cultured into fresh 1% TSBg to attain a 

concentration of 106 CFU/mL. Next, 200 µL of the adjusted bacterial suspension was added 

into the relevant wells within the 96-well microtiter plate, and statically incubated at 37 °C 

for 24 h. Following incubation, plates were washed three times with sterile dH2O and left to 

air dry for 5 min. Concurrently, stock solutions of antimicrobials were prepared at twice the 

starting concentration in 1% TSBg (unless otherwise stated), and 100 µL was serially diluted 
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in equal volume of 1% TSBg across the microtiter plate. Finally, 100 µL of 1% TSBg was 

added to relevant wells to achieve a final volume of 200 µL per well. The plate was further 

incubated at 37 °C for 18 h, before being washed three times with sterile dH2O to remove 

planktonic bacteria and evaluated for biofilm formation by the CV assay (Section 2.2.2.1.3). 

The Minimum Biofilm Eradication Concentration (MBEC) was the concentration that 

resulted in no detectable biofilm growth, compared to the control after incubation with the 

antimicrobials. Negative and positive controls were carried out in tandem, and three 

independent biological replicates per biological species were performed. 

2.2.2.1.3. Crystal Violet Assay 

Biofilms of the bacterial isolates were prepared as outlined in Section 2.2.2.1.1 and 2.2.2.1.2. 

After washing three times in sterile dH2O, the microtiter plate was left to dry for 20 min at 

room temperature. Next, 220 µL of 0.1% CV was added to all relevant wells, and the 

microtiter plate was incubated at room temperature for 30 min. After incubation, the stain 

was removed, and the plate was washed three times with sterile dH2O before being left to 

dry for at least 3 h at room temperature. To quantify the biofilm biomass, 220 µL of 33 % 

acetic acid was added to the CV-stained biofilms for 15 min at room temperature, after 

which 100 µL was transferred to a new microtiter plate and the optical density at 590 nm 

(OD590) was measured using a SPECTROstar® Omega microplate reader (BMG LabTech, 

UK).  

2.2.2.2. Colony Biofilm Model 

The colony biofilm model was prepared as outlined in Thet et al  with some modifications 

(Figure 2.2.).3 Polycarbonate membranes (19 mm) were UV sterilised for 10 min on Brain 

Heart Infusion (BHI) agar before addition of 30 µL of Artificial Wound Fluid (AWF; 50% 

fetal bovine serum in 50% peptone water [0.9% sodium chloride in 0.1% peptone]). The 

AWF was left to dry at room temperature. After, 50 µL of a sub-cultured bacterial isolate 

(106 CFU/mL) was placed onto the membrane and left to dry at room temperature. 

Inoculated plates were then incubated for 24 h at 32 °C or 37 °C depending on experimental 

procedure. After incubation, the membranes were placed into 10 mL of PBS and the biofilms 

were stripped by sonication (44 KHz) for 15 min twice, with a 60 s interval of vortexing 

between sonication cycles. Viable cells were quantified as outlined in Section 2.2.1.4  
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Figure 2.2: Schematic of the Colony Biofilm Model. AWF = Artificial Wound Fluid. 

 

2.2.3. Bacteriophage 

Bacteriophage K used in this project was provided by American Type Culture Collection 

(ATCC; Manassas, Virginia, United States).  

2.2.3.1. Principles of Bacteriophage Growth  

Immediately following phage incubation with bacteria, phage enter the latent period, 

whereby there is no release of virions. After the latent period, the host cells are rapidly lysed, 

releasing the phage into the extracellular environment. This is known as the rise period, and 

the term “burst size” is used in relation to the number of phage released from a single 

infected bacterium.4  

2.2.3.2. Bacteriophage Propagation 

2.2.3.2.1. Soft Overlay Method  

Propagation of bacteriophage using the soft agar overlay method used molten top agar (65% 

strength TSA) stored at 60 °C until required. Briefly, 100 µL of phage lysate and 100 µL of 

an overnight culture of host S. aureus H560 (c. 109 CFU/mL) were added to 5 mL of cooling 

molten agar and vortexed. The mixture was then poured onto TSA plates and spread to 

ensure uniform coverage. After overnight incubation at 37 °C, 5 mL of PBS was added to 

plates that displayed confluent lysis and left for 20 min. Using a sterile L-shaped spreader, 

the solution and top agar were collected from the plate and centrifuged at 4000 g for 15 min 

to remove agar and cell debris. The supernatant was subsequently filter-sterilised using 

0.22 µM filters (Millipore, Cork, Ireland), enumerated, and stored at 4 °C until further use.  
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2.2.3.2.2. Liquid Lysate 

Briefly, 1 mL of standardised S. aureus H560 suspension (c.106 CFU/mL) was added to 

19 mL of TSB and incubated at 37 °C with 150 rpm shaking for 3 h to achieve early-

exponential phase bacteria. After this, 100 µL of phage lysate was added at a multiplicity of 

infection (MOI) of approximately 0.1 (c. 106 PFU/mL), and the suspension was incubated 

for a further 18 h at 37 °C. Following incubation, the suspension was centrifuged (4000 g, 

15 min) to remove cell debris, filter sterilised (0.22 µM filter), enumerated, and stored at 4 

°C until further use.  

2.2.3.3. Bacteriophage Enumeration 

Total viable count for bacteriophage suspensions were performed using an adapted drop 

counting method (Figure 2.3). For this, 100 µL of an overnight culture of host strain 

S. aureus H560 (c. 109 CFU/mL) was added to 5 mL of TSA molten top agar, vortexed, 

poured onto TSA plates and left to air dry at room temperature for 15 min. Meanwhile, the 

initial bacteriophage suspension underwent a series of 10-fold dilutions in PBS buffer, 

before three 10 µL of selected dilutions were pipetted onto the surface of the agar plates and 

allowed to dry for 15 min at room temperature. The plates were subsequently incubated at 

37 °C for 18 h. Following incubation, plaques (clearings in the bacterial lawn) were counted 

and the plaque forming units per millilitre (PFU/mL) was calculated as follows: 

PFU 𝑚𝐿⁄ =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑞𝑢𝑒𝑠

𝑑 ∙ 𝑉
 (2) 

Where d = dilution factor, and V = volume of inoculum.  

 

 

Figure 2.3: Schematic of plaque counting (PFU/mL) for bacteriophage enumeration.  
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2.2.3.4. Increasing Bacteriophage Titre 

In instances where a high bacteriophage titre was needed, bacteriophage lysate solutions 

were concentrated using Spin-X® UF Concentrator Corning® centrifuge tubes (Sigma- 

Aldrich, Poole, UK) Briefly, 20 mL of phage lysate were added into the Spin-X® UF 

Concentrator Corning® centrifuge tubes and centrifuged until concentrated to a volume of 

1 mL. Once concentrated, the lysate was filter sterilised (0.22 µm filter) and enumerated as 

outlined in Section 2.2.3.3   

2.2.4. Data Analysis and Statistics 

All data analysis and statistical modelling was performed using GraphPad Prism, version 

7.0. All experiments undertaken in this thesis were carried out in triplicate using three 

biological replicates and displayed as the mean ± standard deviation (SD), unless otherwise 

stated.  
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Chapter 3: Evaluation of Phage-Antibiotic 

Synergy 

3.1. Overview of Chapter 

The research presented in this chapter investigated the antibiotic efficacy of phage K and 

antibiotics against isolates of S. aureus, both individually and as a combination therapy. 

Herein, this chapter aims to discover whether interactions between phage and  antibiotics 

were synergistic , and if so, why this was occurring.  

3.2. Introduction 

3.2.1. Phage-Antibiotic Synergy  

One potential treatment strategy in clinical environments is to combine phage with  

antibiotics.1 It is thought that the efficacy of specific phage and antibiotic combinations may 

be better than that of the individual therapies at targeting and eliminating pathogenic 

bacteria at an infection site.  As such, there has been an increasing interest in phage-

antibiotic combinations, with current research looking promising.2–4 

The positive interaction between phage and antibiotics was first reported by Comeau et al 

in 2007, who termed this interaction “phage-antibiotic synergy” (PAS).4 PAS was originally 

used to describe the phenomenon where sub-lethal concentrations of antibiotics increase 

the host bacterium’s production of virulent phage.4–6 Nowadays, it is frequently used to 

describe interactions between phage and antibiotics that result in a  significant decrease in 

bacterial concentration.5,7 However, the term “synergy” is not well defined in the literature 

regarding PAS; hence, often encompasses “true synergy”, where the outcome of the 

combined treatment is greater than both of the monotherapies acting independently, and 

“facilitation/additive,” where the combined treatment is better than the best monotherapy, 

but is no better than both the monotherapies acting independently.7 

One of the main advantages of phage-antibiotic combinations is that they could increase the 

therapeutic efficacy of antibiotics in vivo; therefore, antibiotics that have lost all clinical 

utility could potentially be used in phage-antibiotic combinations, resulting in improved 

patient outcomes.  
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3.2.2. Phage-Antibiotic Synergy Studies 

Previous studies have investigated the role of PAS in several phage-antibiotic combinations 

(See below). Currently, several phage-antibiotic combinations have been shown to be 

effective in targeting bacterial species including: P. aeruginosa (P. aeruginosa),7–10 

S. aureus,11,12 Escherichia coli (E. coli),4,5 Burkholderia cepacia (B. cepacia),13 

Pseudomonas fluorescens (P. fluorescens),14 Klebsiella pneumoniae (K. pneumoniae),2 and 

Acinetobacter baumannii (A. baumannii).15 Research into PAS has utilised planktonic 

bacterial suspensions, biofilm models, and in vivo testing to determine the clinical utility of 

phage-antibiotic combinations. However, there is no consensus as to what experimental 

procedure must be performed to confirm synergy between therapies, and as such many 

studies cannot be compared. This introduction will briefly highlight a selection of studies 

within in this field, outlining the many ways in which PAS has been defined.  

3.2.2.1. Planktonic Studies 

Originally, PAS was identified by increasing plaque size and phage concentration, assayed 

by incubating phage on soft-agar impregnated with varying concentrations of antibiotics. 

The phenomenon of PAS was thought to be attributed to antibiotics increasing the burst 

size or reducing the latent period of the phage lifecycle.5 Ryan et al found that increasing 

sub-lethal concentrations of cefotaxime led to increased T4 plaque sizes and concurrent 

increase in phage concentration.5 This finding was confirmed by Jansen et al, who observed 

an increase in A. baumannii phage burst sizes upon combination with meropenem; 

hypothesising that the increased phage propagation was due to a cellular stress response.15 

Alternatively, in a study conducted by Knezevic and co-workers, they termed “synergy” as 

phage-antibiotic concentrations that decreased bacterial concentration (CFU/mL) by >2 

log, compared to the most potent single therapy.16 A summary of studies using planktonic 

bacterial suspensions is shown in Table 3.1. 

Table 3.1: Examples of PAS in planktonic bacteria. Adapted from Malik et al17 and  Morrisette et al.18 

Bacteria Phage + Antibiotic Outcome Reference 

Plaque assays  

E. coli 
Phage ΦMFP + aztreonam, 

cefixime, cefotaxime, 
ceftazidime, ceftriaxone 

Increase in plaque size and < 7-fold 
increase in phage population 

Comeau 
20074 

E. coli 
Phage RB32, RB33, T3, T4, T7 

+ cefotaxime 
Increase in plaque size 

Comeau 
20074 

E. coli Phage T4 + cefotaxime 
Approx. 9.6 fold increase in plaque 

size 
Ryan 20125 
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Table 3.1 (cont).: Examples of PAS in planktonic bacteria. Adapted from Malik et al17 and  Morrisette et al.18 

Bacteria Phage + Antibiotic Outcome Reference 

Bacterial cell viability  

P. aeruginosa  Phage LUZ7 + streptomycin 
Up to a 6 log decrease in bacterial 

viability after 24 h 

Torres-

Barcelo 

201419 

B. cepacia 

Phage KS12 and KS14 + 

ciprofloxacin, levofloxacin, 

ceftazidime, tetracycline, 

minocycline, and meropenem 

Decrease in bacterial cell density 

Kamal and 

Dennis 

201513 

P. aeruginosa 

Phage Pf3 and Pf1 + 

Carbenicillin, gentamicin, 

tetracycline, chloramphenicol 

Decline in bacterial viability after 60 

min, with a 3 log reduction after 6 h 

Hagens 

200620 

P. aeruginosa Phage Sigma-1 + ceftriaxone 
 2.56 log reduction in bacterial 

count 

Knezevic 

201316 

P. aeruginosa 
Phage KP22 + ceftazidime and 

piperacillin 
Decrease in bacterial turbidity  

Uchiyama 

201821 

E. coli Phage ECA2 + ciprofloxacin 
4 log reduction compared to the 

best monotherapy  

Valério 

201722 

S. aureus Phage SA5 + gentamicin 
Lower cell densities compared to 

individual monotherapies 
Kirby 201211 

A. baumannii 

Phage vB_AbaM-KARL-1 + 

ciprofloxacin, colistin, 

meropenem. 

Decrease in bacterial turbidity  
Jansen 

201815 

3.2.2.2. Biofilm Models 

PAS has been shown to be effective in killing bacterial biofilms5 including, S. aureus23 and 

P. aeruginosa24 due to the phage and antibiotic working synergistically to modify the 

biofilm structure, increasing susceptibility.25,26 Ryan et al  found that there was a marked 

decrease in antibiotic MBEC upon on the addition of T4 phage, which was enhanced with 

higher phage concentrations,5 and Chan et al found that phage-resistant P. aeruginosa 

biofilms were more susceptible to the antibiotics tested compared with non-resistant 

strains.9 

The presence of PAS in biofilms has also been attributed to phage-antibiotic combinations 

reducing the frequency of plasmid-borne resistance by targeting the plasmid-bearing cells.27 

Experiments conducted by Verma et al, found that there was a  statistically significant 

decrease in the resistant variant population (p<0.0001) in K. pneumoniae biofilms treated 

with a phage-antibiotic (ciprofloxacin) combination compared to either antibiotic or phage 

treatment alone.28 PAS is thought to help eradicate bacterial biofilms as phage produce 
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enzymes that breakdown the EPS, leading to better penetration of  antibiotics into the 

bacterial biofilm. Additionally, if phage eliminate the bacteria at the exterior of the biofilm, 

the interior bacterial cells have increased metabolic activity due to the increased 

oxygenation and nutrient exposure, and therefore become  more susceptible to both phage 

and antibiotics.7,29,30 A summary of studies using biofilm models is shown in Table 3.2.  

3.2.2.3. In vivo Models 

Recently, several studies have used animal models to investigate PAS in vivo (Table 3.3).  

Kamal et al found that some antibiotics induce increased phage production of several Bcc 

phage in Galleria mellonella larvae.13 Owing to this, there was increased survival of Galleria 

mellonella larvae 48 h post-infection when treated with the phage-antibiotic combination 

(88% survival) compared to phage K12 (33% survival) or meropenem (20% survival) 

alone.13 Additionally, Blasco et al showed that infected Galleria mellonella were more likely 

to survive when treated with a combination of a phage and antibiotic, compared to 

treatment with the individual components.31  

Murine models have also been used to investigate PAS; local administration of phage MR-

10, combined with the oral administration of the antibiotic linezolid was used to treat acute 

hindpaw MRSA infections in 48 diabetic mice.12 Additionally, Oechslin et al explored the 

efficacy of an anti-Pseudomonas phage cocktail (PP1131; 12 phage) in combination with 

ciprofloxacin for the treatment of P. aeruginosa endocarditis in a rat model.3 The results 

showed enhanced killing with the combination therapy  (residual bacterial titre of <2  log 

CFU/g), compared to the monotherapy groups (residual bacterial titres of >6 log CFU/g; 

p<0.0001). Interestingly, no phage-resistant bacterial isolates were isolated after 24 h 

incubation with the combination therapy.3  Another study investigated phage-antibiotic 

combinations for the treatment of implant-related biofilm MRSA and P. aeruginosa 

osteomyelitis in rat models.32 Antibiotics were administered intraperitoneally once daily for 

14 days, while phage were administered directly into the medullary canal once daily for 3 

days. Combination therapy was more effective than individual phage and antibiotics, 

resulting in a 6.2- and 3.4- fold lower bacterial cell count, respectively.32  

Research has shifted to focus on the efficacy of phage-antibiotic concentrations in treating  

complex multi-drug resistant (MDR) bacterial infections in humans,33–35 with Chan et al 

showing the utility of PAS in treating a patient with a P. aeruginosa infected wound 

(phage OMKO1 and ceftazidime).8  
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Table 3.2: Examples of PAS in bacterial biofilms. Adapted from Malik et al17 and  Morrisette et al.18 

Bacteria Phage + Antibiotic Outcome Results 

K. pneumoniae  Phage + amoxicillin 
Statistically significant (p < 0.01) 

reduction in bacterial count 
Bedi 20092 

E. coli  T4 + cefotaxime Significant reduction in bacterial count Ryan 20125 

E. coli  T4 + tobramycin 

99% and 39% reduction in antibiotic 

and phage-resistant bacterial cell count, 

respectively. 

Coulter 

201436 

P. aeruginosa  PB-1 phage + tobramycin 

2 log reduction and 60% reduction in 

antibiotic and phage-resistant bacterial 

cell count, respectively. 

Coulter  

201436 

P. aeruginosa  

Phage NP1 and NP3 + 

ceftazidime, ciprofloxacin,  

tobramycin 

Greater than 2 log reduction observed 

when antibiotics were combined with 

both phages compared to the best 

monotherapy 

Chaudhry 

20177 

P. aeruginosa 
Phage KP22 + ceftazidime, 

piperacillin 

Synergistic effects observed when 

106 and 104 PFU/mL of phage KP22 was 

incubated with 10 nm/mL of 

piperacillin and 5 ng/mL ceftazidime 

Uchiyama 

201821 

K. pneumoniae 
Phage KPO1K2 + 

ciprofloxacin 

No statistical difference between 

biofilm log reduction between the 

combination treatment and phage-

treated biofilms; however, statistically 

significant reduction in resistant 

variant population 

Verma 

200928 

K. pneumoniae 

“B5055-specific 

bacteriophages” + 

amoxicillin 

Using 8-day old biofilms, a significant 

reduction in bacterial biofilm biomass 

was observed after incubation with the 

combination therapy (p<0.01 versus 

control) 

Bedi 20092 

Klebsiella 

pneumoniae 

Phage KPO1K2 + 

ciprofloxacin 

Phage-antibiotic combinations resulted 

in slightly increased biofilm eradication 

compared to phage-only in mature 

biofilms 

Verma 

201025 

S. aureus 

Phage SAP-26 + 

azithromycin, rifampicin, 

vancomycin 

Approximately 5 log reduction of 24 h 

biofilms of S. aureus when treated with 

combination compared to the control 

Rahman 

201126 

S. aureus 
Phage PYO + ciprofloxacin, 

tetracycline 

The addition of phage to low 

concentrations of antibiotics (2xMIC) 

lead to improved efficacy 

Dickey 

201937 
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Table 3.3 Examples of PAS in in vivo assays. Adapted from Morrisette et al.18 

Bacteria Phage + Antibiotic Outcome Results 

Animal models 

P. aeruginosa Phage Pf1 + gentamicin 

Greatest survival when treated with 

1010 PFU/mL phage and 0.8 mg/kg 

body weight gentamicin 

Hagens 

200620 

P. aeruginosa 
vB_PasP pAT14 + 

imipenem/cilastatin, amikacin 

Reduced bacterial density when 

phage-antibiotic combination used 

compared to the control 

Yilmaz 

201332 

P. aeruginosa PP131 cocktail + ciprofloxacin 

Phage-antibiotic combination highly 

synergistic, successfully treating 

64% of rats 

Oechslin 

20173 

S. aureus Phage MR-10 + linezolid 

The combination therapy was more 

successful in arresting the entire 

infection process (bacterial load, 

lesion score, histopathological 

analysis etc.) 

Chhibber 

201312 

S. aureus Phage Sb-1 + teicoplanin 

Reduced bacterial density and lack 

of biofilm observed when phage-

antibiotic combination used 

compared to the control 

Yilmaz 

201332 

Enterococcus 

faecalis 

Phages EFDG1 and EFLK1 + 

ampicillin 

Combined bacteriophage-antibiotic 

therapy leads to the most significant 

decrease in bacterial titre 

Gelman 

201838 

Clinical experience 

P. aeruginosa 
Phage OMKO1 + ceftazidime, 

ciprofloxacin 

Following a single application of the 

combination therapy, the infection 

resolved with no signs of recurrence 

Chan 20188 

A. baumannii  dIV cocktail + minocycline 
Patient demonstrated continued 

clinical improvement 

Schooley 

201733 

 

3.2.3. Mechanism of Action 

The mechanism behind PAS is somewhat disputed; it has been suggested that PAS is a result 

of sub-lethal antibiotic concentrations altering the morphology and biosynthetic capacity of 

bacterial cells, which in turn can lead to increased phage propagation.  Comeau et al 

suggested that this change in bacterial morphology can enhance phage infection, increasing 

the rate of phage maturation and cell lysis. Sub-lethal concentrations of β-lactam and 

fluoroquinolone antibiotics can induce morphological changes to bacterial cell walls, as they 

inhibit cell wall synthesis and cell division, ultimately resulting in bacterial cell 
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filamentation.4 Other studies have suggested that this phenomenon could  increase phage 

production as they have increased accessibility to the receptors,13 increased precursors 

available for phage propagation,4,18 and easier cell lysis, potentially contributing to 

increased burst sizes.39  

Furthermore, Kim et al suggested that sub-inhibitory concentrations of antibiotics act as a 

“stress-inducer”, resulting in a delay in bacterial lysis, leading to increased phage 

production.39 They also identified synergistic interactions between phage and other SOS-

response inducing compounds (e.g., hydrogen peroxide [H2O2]) and suggested that PAS is 

dependent on either bacterial filamentation and/or SOS response; both do not need to be 

present for PAS to occur.39  

Other researchers have suggested that PAS is beneficial from a genetic perspective, as it was 

thought that targeting bacteria with two different antibiotic agents, with different 

mechanisms of actions, may suppress the emergence of phage and/or antibiotic resistance 

during treatment.6,28 Allen et al found that there was minimal cross-resistance between 

phage and antibiotics compared to two different types of antibiotics, or two different types 

of phage.40 Further studies have confirmed that there is little cross-resistance between 

phage and antibiotics, as simultaneous multiple mutations are required for bacterial 

resistance.14 This was termed “evolutionary synergy” by Chan and co-workers,9 with studies 

suggesting that resistant mutants arising from the combined therapy are less virulent than 

those resistant to either the phage or antibiotic.14,28 

Owing to their different mechanisms of action, phage-antibiotic combinations can be used 

to target MDR bacterial pathogens, as they can still be killed by phage.13,28 Alternatively, 

phage-resistant bacterial isolates remain susceptible to antibiotics.28 From an evolutionary 

point of view, this has been called the “see-saw effect”18 – where phage impose a selection 

pressure on the bacteria, resulting in the emergence of phage-resistant isolates; this 

ultimately leads to the bacteria re-gaining their sensitivity to antibiotics, to lower the fitness 

cost for the bacteria.9  

While there doesn’t seem to be a specific type of phage or class of antibiotic that universally 

results in PAS,17,18 it seems that it is dependent on the combination of phage, antibiotic, and 

bacterial strain under investigation.13 Multiple studies have found that synergy was both 

strain-dependent and dependent on the specific antibiotic used,39,41 with Kamal et al 

showing that there was a change in efficacy when different phage were used in combination 

with the same antibiotic against the same B. cepacia strain.13  



63 
 

An important thing to note is that not all phage-antibiotic combinations result in positive 

interactions. In fact, there have been several studies that have shown no interaction, or 

antagonism, between the phage and antibiotics;4,18,42,43 one study showed that the 

combination of phage and antibiotics resulted in an increase in antibiotic resistance within 

P. fluorescens.43 Therefore, there is a need for further study into PAS to understand the 

mechanism behind phage-antibiotic interactions, and how they can be applied in a clinical 

setting.  

3.2.4. Objectives 

• To determine if the combination of sub-inhibitory phage K and antibiotic 

concentrations (ciprofloxacin, vancomycin, amikacin, and amoxicillin) result in 

positive PAS interactions against three S. aureus strains.  

• To determine the efficacy of several planktonic-based bacterial assays in detecting 

PAS, and therefore if the assays can be compared to one another.  

• To determine if phage-antibiotic combinations can be used to prevent and eliminate 

biofilm formation of three S. aureus species.  

• To investigate the mechanism behind PAS by evaluating the morphology of bacterial 

cells after sub-inhibitory concentrations of antibiotics and the role of the antibiotics 

on the phage’s lifecycle.  
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3.3. Methods 

3.3.1. Bacterial and Bacteriophage Methods 

All methods relating to growth conditions of S. aureus isolates and propagation of phage K 

were outlined in Chapter 2, Section 2.2.1.3 and Section 2.2.3.2, unless otherwise stated. 

Enumeration of bacterial and phage cell density were performed as outlined in Chapter 2, 

Section 2.2.1.4 and Section 2.2.3.3.  

3.3.2. Bacteriophage Efficacy 

3.3.2.1. Spot Tests 

This protocol was adapted from Merabishvili et al,44 whereby 10 µL of a standardised 

S. aureus suspension (approx. 107 CFU/mL) was streaked over the surface of a 100 

x100 mm TSA plate previously divided into 5 x 5 grid and air-dried at room temperature 

(~25 °C) for 20 min. Subsequently, 10 µL of a phage suspension adjusted to a MOI of 0.1 in 

PBS was spotted onto each intersection and left to air-dry at room temperature for 1 h. PBS 

buffer was used as a negative control. Inoculated plates were incubated at 37 ºC for 24 h, 

after which phage activity was assessed visually (Figure 3.1). Spots at the intersections were 

given a score based on plaque formation ranging from ‘0’ (no plaques) to ‘+5’ (confluent 

lysis) as described in Table 3.4, resulting in a score out of 25. This was repeated for four 

biological replicates to give a final score out of 100.  

A) B) 

 
 

 

Figure 3.1: A) Schematic of plate showing plaque scores ranging from ‘+1’ to ‘+5’. B) An example of a plate 

after 24 h incubation at 37 °C. The top row shows the positive control (host strain S. aureus H560 and phage 

K), while the second row is the negative control (S. aureus H560 and PBS).  
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Table 3.4: Scoring system for assessment of bacteriophage activity.44  

Observation Score 

Confluent lysis – bacterial streak completely broken; no bacterial colonies present at spotted 

intersection 
+5 

Overgrowth – bacterial streak completely broken, presence of singular bacterial colonies on spot +4 

Semi-confluent lysis – bacterial streak incompletely broken. +3 

Multiple small phage plaques +2 

Bacterial streak just affected i.e. little observable disruption to bacterial growth +1 

Negative result – no lysis present 0 

3.3.2.2. Detecting Temperate (Lysogenic) Phage 

S. aureus strains used in this Chapter were assessed for the presence of temperate phage 

using previously published procedures.45 Briefly, 100 µL of a bacterial culture (Chapter 2, 

Section 2.2.1.3) was mixed with 5 mL of molten top agar (65% strength TSA) and poured 

onto TSA plates. Once the top agar solidified, 10 µL of bacterial strains under investigation 

were spotted onto the plate and allowed to dry for 10 min at room temperature. The effect 

of antibiotics on the induction of temperate phage was also investigated. S. aureus strains 

were pre-incubated with ½ MIC concentrations of antibiotics for 24 h before being added 

to 5 mL molten top agar and poured onto TSA plates. The plates were then incubated 

overnight at 37 °C and subsequently analysed for the presence of lysis zones.  

3.3.2.3. Multiplicity of Infection  

Standardised isolates of S. aureus H560, MRSA252, and MSSA101 (Chapter 2, Section 

2.2.1.3) were diluted 10-fold in fresh TSB to attain bacterial concentrations of approximately 

106
 CFU/mL, and 180 µL of each isolate was added to the relevant wells of a 96-well plate. 

Concurrently, a dilution series of phage K was performed to achieve concentrations of 109-

101 PFU/mL, with 20 µL of each concentration added to selected wells (to achieve MOIs of 

0.00001 – 100). Negative and positive controls were carried out in tandem. The turbidity of 

the suspensions was monitored using a SPECTROstar® Omega UV-Vis spectrometer (BMG 

LabTech, UK) at an OD of 600 nm (OD600) for 17 h at 37 °C. Readings were taken every 4 

min after a 2 s linear shake cycle.  
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3.3.3. Minimum Inhibitory Concentration 

The MIC of antibiotics against S. aureus H560, MRSA252, and MSSA101 were determined 

using methodology outlined in Chapter 2, Section 2.2.1.5. The antibiotics used in this study 

were ciprofloxacin-HCl, vancomycin, amoxicillin, and amikacin. All stocks were prepared 

in sterile deionised water (dH2O).  

3.3.4. Evaluating Phage-Antibiotic Synergy in Planktonic 

Suspensions 

3.3.4.1. Phage-Antibiotic Synergy Assay 

Stock solutions of antimicrobials were prepared at two times the MIC concentration, with 

100 µL of each antibiotic serially diluted in the wells of a 96 microtiter plate to attain 

antibiotic concentrations of MIC, ½ MIC, and ¼ MIC. Following this, phage K solutions 

were prepared in TSB (105 – 102 PFU/mL) and 20 µL added to all relevant wells. Finally, 

80 µL of sub-cultured S. aureus isolates (Chapter 2, Section 2.2.1.3) were added to the wells 

and the plate was incubated at 37 °C for 18 h. After incubation, the OD600 of each 

condition was measured and normalised against the blank control. For 

statistical analysis, each combination therapy was compared to the best-acting 

single therapeutic agent. 

3.3.4.2. Bacterial Cell Count Assay  

Bacterial isolates were grown and standardised as outlined in Chapter 2, Section 2.2.1.3, 

and subsequently diluted 10-fold in TSB to attain a bacterial concentration of 106 CFU/mL. 

Next, antibiotics and phage K were added to the bacterial suspension to achieve a final 

concentration of ½ MIC and 103 PFU/mL, respectively. The isolates were subsequently 

incubated at 37 °C for 18 h. ½ MIC antibiotic and 103 PFU/mL phage-only controls, broth 

and bacteria-only controls were carried out in tandem. After incubation, isolates were 

enumerated for bacterial and phage concentration (Chapter 2, Section 2.2.1.4 and 2.2.3.3, 

respectively), and compared to that of the bacteria-only control. For statistical analysis, 

each combination therapy was compared to the best-acting single therapeutic 

agent. 

3.3.4.3. One Step Growth Curve 

Bacterial cultures (Chapter 2, Section 2.2.1.3) were re-suspended in 10 mL TSB to attain 

concentrations of 106 CFU/mL, before subsequent addition of ½ MIC of the chosen 

antimicrobials. The cultures were incubated at 37 °C until mid-exponential growth (OD ~2), 
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at which time they were harvested by centrifugation (4 000 g, 10 min, 4 °C) and re-

suspended in 5 mL TSB. To this, 5 µL of phage K was added to obtain a MOI of 0.001 and 

allowed to adsorb for 5 min at room temperature. Subsequently, the solutions were 

centrifuged (4 000 g, 10 min, 4 °C), and re-suspended in 10 mL TSB. A sample was taken 

every 5 min for 1 h at 37 °C under constant shaking (150 rpm), and enumerated as outlined 

previously (Chapter 2, Section 2.2.3.3).  

3.3.4.4. Scanning Electron Microscopy  

Bacterial cultures with and without the presence of ½ MIC antibiotics were grown on 

Melinex® films in 2 mL TSB for 18 h at 37°C with minimal (70 rpm) agitation. After 

incubation, samples were fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, 

post-fixed in aqueous 1% osmium tetroxide, dehydrated in an increasing acetone series (50 

– 100%), and chemically dried in hexamethyldisilazane (HMDS). Samples were stored 

under vacuum overnight to ensure complete dehydration, and subsequently sputter-coated 

with 20 nm of chromium (Edwards S150B, 60 s) to reduce charging effects and thermal 

damage. Images were obtained using a Field Emission Scanning Electron Microscope 

(FESEM) (JEOL JSM6301F) operating at 5 kV.  

3.3.5. Phage-Antibiotic Synergy Activity in Biofilms 

3.3.5.1. Minimum Biofilm Inhibition Concentration 

The MBIC of antibiotics against S. aureus H560, MRSA252, and MSSA101 was determined 

using the methodology outlined in Chapter 2, Section 2.2.2.1.1. The antibiotics used in this 

study were ciprofloxacin-HCl, vancomycin, amoxicillin, and amikacin. All stocks were 

prepared in sterile dH2O.  

To determine the MBIC for phage K, 180 µL of the sub-cultured bacterial suspension in 1% 

TSBg (c. 106 CFU/mL) was added to the wells of a 96 well plate. This was followed by 20 µL 

of different concentrations of phage K (109 PFU/mL – 101 PFU/mL), before the plate was 

incubated statically at 37 °C for 24 h. The plates were then assessed for biofilm formation 

as outlined in Chapter 2, Section 2.2.1.3. A bacteria and broth only control was carried 

out in tandem; experiments were performed in triplicate with three separate bacterial and 

phage suspensions. 

3.3.5.2. Biofilm Inhibition Phage-Antibiotic Synergy Assay 

The assay was conducted as outlined in Chapter 3, Section 3.3.4.1 with some modifications. 

In brief, stock solutions of antimicrobials were prepared at twice the MBIC in 1% TSBg, and 
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further serially diluted using 1% TSBg in the wells of a 96 microtiter plate to attain MBIC, 

½ MBIC, and ¼ MBIC antibiotic concentrations. Concurrently, phage K concentrations 

were prepared in 1% TSB (105 – 101 PFU/mL), with 20 uL of each concentration added to all 

relevant wells. Finally, 80 µL of a sub-cultured S. aureus isolate (Chapter 2, Section 

2.2.1.3) was added to the wells, and the plate was incubated at 37 °C for 18 h. After 

incubation, the biofilm inhibition was assessed via CV as outlined in Chapter 2, Section 

2.2.2.1.3. 

3.3.5.3. Minimum Biofilm Eradication Concentration  

The MBEC of antibiotics against S. aureus H560, MRSA252, and MSSA101 was determined 

using methodology outlined in Chapter 2, Section 2.2.2.1.2. The antibiotics used in this 

study were ciprofloxacin-HCl, vancomycin, amoxicillin, and amikacin. All stocks were 

prepared in sterile dH2O.  

For phage K MBEC determination, the procedure was modified. Once the plates were 

washed three times to remove planktonic bacteria, 180 µL 1% TSBg was added to the wells, 

followed by 20 µL of different dilutions of phage K (1011 PFU/mL – 105 PFU/mL). The plate 

was then statically incubated at 37 °C for a further 18 h. After incubation, the plates were 

washed three times with sterile dH2O and assessed for biofilm formation as outlined in 

Chapter 2, Section 2.2.2.1.3. A bacteria and broth only control was carried out in tandem; 

experiments were performed in triplicate with three separate bacterial and phage 

suspensions. 

3.3.5.4. Biofilm Eradiation Phage-Antibiotic Synergy Assay 

Overnight cultures of bacteria were sub-cultured into fresh 1% TSBg to attain a 

concentration of 106 CFU/mL. Next, 200 µL of the adjusted bacterial suspension was added 

into the relevant wells within the 96-well microtiter plate, and statically incubated at 37 °C 

for 24 h. After incubation the biofilms were washed three times with sterile dH2O to remove 

planktonic bacteria. Concurrently, stock solutions of antimicrobials were in 1% TSBg 

(concentration dependent on the assay) and 100 µL of each antibiotic was added to the 

relevant wells in the microtiter plate.  Subsequently, 20 µL of phage K (concentration 

dependent on the assay) and 80 µL of 1% TSBg were added to obtain a final volume of 

200 µL. The microtiter plate was incubated at 37 °C for 24 h. Antibiotic and phage-only 

controls were carried out in tandem to broth and bacteria only controls. After incubation, 

biofilm eradication was assessed via CV (Chapter 2, Section 2.2.2.1.3.) 
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3.4. Results and Discussion  

3.4.1. Single-Therapy Efficacy 

3.4.1.1. Bacterial Sensitivity to Bacteriophage K 

Lytic phage that display broad-spectrum activity against a range of clinically relevant 

bacterial species are the most likely phage to be successful as a mass-market therapeutic. In 

this instance, phage K was used as it has previously had its genome sequenced,46,47 was 

reported to have a broad host range,48–50 and had little effect on the expression of numerous 

cytokines (IL-6, IL-8, and RANTES) and surface markers.50 

Phage K is thought to have been isolated over 90 years ago;51,52 it is also identical to phage 

Au2 isolated by Burnet and Lush,53 and the polyvalent phage 812.54   Phage K has recently 

been designated to the genus of Kayvirus, of subfamily Twortvirinae in the Herelleviridae 

family. Members of the Herelleviridae family possess a head-tail morphology with 

contractile tails and icosahedral heads; their genomes are linear dsDNA of 125 – 170 

kilobases (kb) with long terminal repeats of various lengths.55 The subfamily Twortvirinae 

generally infect Staphylococcus and Lactobacillus strains,56 with the genus Kayvirus 

specifically infecting Staphylococcus spp., mainly S. aureus.57 Phage K is the type species in 

this genus.57 It has a regular icosahedral head, approximately 66 – 77 nm in diameter, with 

a contractile tail approximately 225 – 191 nm in length (non-contracted) and 14 – 16 nm 

width, dependent on the staining technique used.58 

Phage K is a lytic,47 polyvalent phage that utilises N-acetylglucosamine in the cell wall 

teichoic acid for phage adsorption.59 As such, it possesses a broad host range,47 inhibiting 

S. aureus and coagulase-negative Staphylococci. 51,60 Literature states that phage K is active 

against 47 – 84% of S. aureus strains48–50 and can be modified to expand its host range after 

serial passage through phage-resistant cultures.60 Therefore, phage K (106  PFU/mL) was 

tested for its efficacy against 30 S. aureus strains standardised to a known concentration 

(107 CFU/mL) and given an overall score out of 100. Bacterial strains with a score between 

0-20 displayed little to no phage susceptibility (termed “resistant”), between 21 – 60 

displayed moderate susceptibility to phage (termed “intermediate”), and scores between 61 

– 100 showed good susceptibility to phage K (termed “susceptible”).  

From the results shown in Table 3.5, 46.7% of strains were susceptible, 20.0% were 

intermediate, and 33.3% were resistant to phage K activity. These results confirmed the 

broad-spectrum nature of phage K previously reported.48–50 However, there were more 
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“resistant” strains compared to literature; this result could be due to numerous factors, one 

of which could be the relatively small (n = 30) sample size, which could be improved upon 

by increasing the number of S. aureus isolates tested.  

Additionally, this study used a MOI of 0.1 (10 bacterial cells to one phage cell), while other 

reports used higher MOIs. The lower MOI was used to reduce the presence of “lysis-from-

without”, which occurs when high-multiplicity virion adsorption results in lysis without 

viral production; hence, higher MOIs could overestimate phage infectivity. 

Table 3.5: Efficacy of phage K against S. aureus isolates at a Multiplicity of Infection (MOI) of 0.1. Plates 

were incubated at 37 °C for 18 h prior to being assessed visually (n = 4). Bacterial strains with a score between 

0-20 displayed little to no bacteriophage susceptibility (termed “resistant”), between 21 – 60 displayed 

moderate susceptibility to phage (termed “intermediate”), and scores between 61 – 100 showed good 

susceptibility to phage K (termed “susceptible”). 

S. aureus strain Score / 100 S. aureus strain Score / 100 

6125 84 NCTC 10788 50 

6009 83 6138 48 

6022 80 MSSA101 41 

6124 80 MRSA252 39 

6019 79 6027 29 

6097 79 6020 8 

6007 78 6107 5 

6132 75 6133 5 

99518 73 6004 3 

6114 69 MRSA17 1 

6001 65 6021 0 

H560 65 6032 0 

6129 63 6115 0 

6135 61 6128 0 

6008 50 USA300 0 

3.4.1.2. Detection of Temperate Bacteriophage 

S. aureus H560, MRSA252, and MSSA101 were chosen for all future experiments. S. 

aureus H560 was selected as it was used to propagate phage K, and S. aureus MRSA252 

and MSSA101 were selected as they had similar susceptibility to phage K. While it is unclear 

if S. aureus H560 and MSSA101 have any prophage within their genome, S. aureus 

MRSA252 has two known prophages, ΦSa2 and ΦSa3.61,62 

Due to this, mixed host overlays (Section 3.3.2.2) were employed to ensure that any 

temperate phage present within the S. aureus isolates' genome would not affect the 

outcome of the experiments. No lysis areas were observed for any of the S. aureus strains 
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used, suggesting that without any external influence on the bacterial cells, temperate phage 

cannot be detected using the assay (Figure 3.2).  

However, prophages can be  induced by environmental stressors, such as mitomycin C and  

antibiotics.63,64  Therefore, it was important to ensure that the antibiotics used in this study 

did not induce temperate phage. All antibiotics tested (ciprofloxacin, vancomycin, 

amikacin, and amoxicillin) failed to induce temperate phage, with no visible plaques present 

on their corresponding bacterial lawns. Therefore, it can be concluded that any plaques 

formed in future studies would be due to the presence of phage K only. 

 

Figure 3.2: An example of a soft-overlay plate showing no visible lysis of S. aureus H560, MRSA252 and 

MSSA101 (top to bottom respectively) on an overlay of S. aureus MSSA101. 

3.4.1.3. Multiplicity of Infection   

The MOI is a ratio of the number of viruses to the number of host cells. As phage adsorption 

is a chance event, the MOI is displayed as an average, encompassing cases where multiple 

phage adsorb onto a single host cell, and instances where host cells remain uninfected.65 

Importantly, the calculated MOI may not correlate to MOIactual due to anti-phage 

mechanisms outlined in Chapter 1. However, MOIactual is difficult to determine 

experimentally, therefore, all MOI values quoted in this study are representative of initial 

MOI concentrations.  

Figure 3.3 shows a reduction in OD for all three bacterial strains tested upon incubation 

with increasing phage concentrations (0 – 107 PFU/mL) after 18 h incubation at 

37 °C. Bacterial growth was completely inhibited with 104 PFU/mL phage K for all bacterial 

strains, corresponding to a MOI of 0.01. This was not surprising as all three strains 

displayed similar activity in the spot test (Table 3.5). Additionally, there was no evidence of 

bacterial re-growth, indicating that there was no development of phage-resistant strains 

during this experiment.  
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Interestingly, there was no difference in trend observed when the samples were 

continuously agitated at 150 rpm, compared to when they were statically incubated. While 

there are increased OD600 values observed for shaking incubation compared to static, OD600 

isn’t linear to cell concentrations at high absorbance values – hence it is possible to assume 

similar growth was observed for both conditions. 
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Figure 3.3: OD600 measurements for A) S. aureus H560, B) S. aureus MRSA252 and C) S. aureus MSSA101 

upon incubation with varying phage K concentration (101 – 107 PFU/mL). Measurements taken after 18 h 

incubation at 37 °C, error bars indicate standard deviation (n = 3).  

3.4.1.4. Antibiotic Susceptibility 

The antibiotics used in this study were ciprofloxacin-HCl, vancomycin, amikacin, and 

amoxicillin. Ciprofloxacin is a fluoroquinolone, therefore works by inhibiting DNA 

topoisomerase and DNA gyrase, preventing DNA replication.66 While predominately used 

for gram-negative bacterial species (e.g., E. coli,66 Salmonella spp.,66 and P. aeruginosa67), 

it has also shown efficacy against some gram-positive bacteria.67 Vancomycin is a tricyclic 

glycopeptide antibiotic originally produced by Streptococcus orientalis.68,69 It works by 

binding to the C-terminal D-alanyl-D-alanine moieties of the N-acetylmuramic acid 
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(NAM)/N-acetylglycosamine (NAG) peptides, which in turn inhibits glucosyltransferase, 

preventing the synthesis and polymerisation of NAM and NAG within the peptidoglycan 

layer of the cell wall. Owing to this, the cell wall becomes weakened and ultimately results 

in the leakage of intracellular components and subsequent bacterial cell death.68 Amikacin 

is an aminoglycoside and therefore works by binding to the A-site on the 16S ribosomal RNA 

of the 30S ribosome;70 this in turn inhibits protein synthesis by causing premature protein 

termination and incorporation of incorrect amino acids, causing bacterial cell death.71 

Amikacin is potent towards both gram-positive and gram-negative bacteria,71 typically 

displaying bactericidal efficacy and prolonged post-antibiotic effect.72  Finally, the β-lactam 

amoxicillin targets and kills bacteria by binding, and subsequently inhibiting, penicillin 

binding proteins (PBPs); thus, preventing the crosslinking of peptidoglycan and ultimately 

leading to cell death.73,74  

To undertake PAS assays, the antibiotic concentration needs to be sub-inhibitory, therefore 

it is important to first establish the antibiotic’s respective MIC. The MIC is the lowest 

concentration of antibiotic that inhibits the visible growth of a bacterial culture after 18 h 

incubation at 37 °C. The MIC values in this study were determined using the broth micro-

dilution method as outlined in the European Committee on Antimicrobial Susceptibility 

Testing (EUCAST) guidelines.75  

A phenomenon called the inoculum effect can cause an 8-fold increase in MIC owing to 

higher-than-recommended bacterial concentrations and is commonly seen for β-lactam 

antibiotics.76 To prevent this phenomenon from occurring, the assay used approximately 

5 x 105 CFU/mL of each bacterial strain. 

The MIC concentrations for the antibiotics are shown in Table 3.6. According to the 

EUCAST breakpoints, S. aureus H560 and MSSA 101 were susceptible to amikacin, had 

intermediate susceptibility towards ciprofloxacin, and were resistant to vancomycin. S. 

aureus MRSA252 was resistant to all antibiotics tested. Amoxicillin breakpoints are not 

outlined by EUCAST, who instead recommend testing the bacterial species against 

benzylpenicillin and cefoxitin. S. aureus that are susceptible to both antibiotics can be said 

to be susceptible to all penicillins, whereas the strains that are only susceptible to cefoxitin 

are susceptible only to β-lactam/β-lactamase inhibitor combinations. However, as S. aureus 

MRSA252 has such a high MIC against amoxicillin (500 µg/mL), one can assume that the 

bacterial strain would be resistant to amoxicillin.  
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Table 3.6: Minimum Inhibitory Concentrations of the antibiotics used in this study 

 

Minimum Inhibitory Concentration (µg/mL) 

S. aureus  

H560 

S. aureus 

MRSA252 

S. aureus 

MSSA101 

Ciprofloxacin 0.50 62.50 0.50 

Vancomycin 4.00 4.00 4.00 

Amoxicillin 8.00 500 4.00 

Amikacin 4.00 32.0 2.00 

 

3.4.2. Determination of Phage-Antibiotic Synergy 

3.4.2.1. Bacteriophage K Survival in the Presence of Antibiotics 

One, perhaps obvious, but overlooked, parameter in determining PAS is the survival of 

phage in the presence of antibiotics. It is often assumed that phage will remain stable when 

in solution with other antimicrobials – however, this is not always the case. For instance, 

replication of T4-like phage could be suppressed in the presence of fluoroquinolones due to 

the T4-like phage encoding for DNA topoisomerases.15 This antagonistic nature can also be 

found when certain phage are combined with protein and DNA synthesis inhibitors.77  

Suspensions of phage K were incubated with 1 mg/mL of ciprofloxacin, vancomycin, 

amikacin, or amoxicillin for up to 24 h at 37 °C prior to enumeration. Phage viability 

remained stable when incubated with amoxicillin and vancomycin (Figure 3.4). While the 

reduction in phage viability after 24 h incubation with vancomycin was statistically 

significant, it only corresponded to a 0.2 log reduction that could be explained by other 

factors such as pipetting error. 

Conversely, when phage K was incubated with amikacin there was a slight decrease in phage 

concentration after 1 h (t-test, p<0.05; 0.27 log reduction), and a further decrease after 24 h 

incubation (t-test, p<0.001; 1.88 log reduction). With ciprofloxacin, there was a significant 

decrease in phage concentration after 1 h (t-test, p<0.05; 0.49 log reduction), and a further 

substantial decrease after 24 h incubation (t-test, p<0.001; 4 log reduction). Both of these 

antibiotics target bacterial functions involved in cell transcription and translation, which 

can also be present in the phage genome.78 Due to this, phage viability may be reduced in 

the presence of these antibiotics (in these experiments, this phenomenon was observed 

during incubation with bacteria  where phage needed to successfully replicate to produce 

plaques).  



75 
 

L
o

g
 P

F
U

/m
L

P
h

a
g

e
 

O
n

ly

C
ip

ro
f l

o
x
a
c
in

V
a
n

c
o

m
y
c
in

A
m

ik
a
c
in

A
m

o
x
c
il
l i
n

4

6

8

1 0

2 4  h

1  h

****

*

***

# #

 

Figure 3.4: Log PFU/mL of phage K in the presence of 1 mg/mL of ciprofloxacin, vancomycin, amikacin and 

amoxicillin. Phage counts were taken after 1 h or 24 h incubation at 37 °C. Error bars indicate standard deviation 

(n = 3). Statistical analysis was conducted using a Student’s t-test, with each variable compared to their 

respective ‘Phage only’ control. # p < 0.05 compared to phage only control at 1 h, * p < 0.05, *** p < 0.001, **** 

p < 0.0001 compared to phage only control at 24 h. 

3.4.2.2. Phage-Antibiotic Synergy Assay 

Antibiotic concentrations at ½ and ¼ their MIC were combined with varying 

concentrations of phage K (101 - 104 PFU/mL) to evaluate their ability to reduce the OD of 

S. aureus isolates. Statistical analysis was conducted by comparing the OD600 of the 

combination therapy against the individual treatment that had the lowest OD600 value, i.e., 

the more potent component of the combination. 

For S. aureus H560, ciprofloxacin, amikacin, and amoxicillin all showed positive (i.e., 

synergistic or additive) interactions with phage K (Figure 3.5). A significant reduction in 

OD600 was found when ½ MIC ciprofloxacin was combined with sub-inhibitory 

concentrations of phage K (t-test, p< 0.01) and when ¼ MIC ciprofloxacin was combined 

with 103 PFU/mL (t-test, p<0.0001). When phage K was combined with amikacin, a 

significant reduction in OD600 was seen for the ½ MIC amikacin and 103 PFU/mL phage K 

(t-test, p<0.001) and 102 PFU/mL phage K (t-test, p<0.05) combinations. A significant 

decrease in OD600 was also witnessed when ¼ MIC amikacin was combined with 

103 PFU/mL phage K (t-test, p<0.0001). These positive interactions were somewhat 

surprising, considering that phage K viability is diminished in the presence of these 

antibiotics. However, the concentration of antibiotic used for the viability assay was much 

higher, hence any inhibitory effects may be negligible at these lower concentrations. 
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When ½ MIC of amoxicillin was combined with phage K, a significant reduction in OD600 

was observed for phage K concentrations of 103 PFU/mL (t-test, p<0.0001) and 102 and 101 

PFU/mL (t-test, p<0.01). A statistical decrease in OD600 was also witnessed when ¼ MIC 

amoxicillin was combined with 103 PFU/mL phage K (t-test, p<0.0001). Conversely, no 

significant reduction in OD600 was found for all phage and vancomycin combinations tested. 

In fact, the presence of ¼ MIC vancomycin with  101 and 102 PFU/mL phage K  increased 

the optical density of the isolates – although this does not mean that the combination 

increased bacterial cell concentration, as bacterial concentration is not linearly correlated 

to OD at these high OD values.  
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Figure 3.5: OD600 measurements for S. aureus H560 upon the addition of differing concentrations of phage 

and/or antibiotic as a single therapy or in combination. OD600 measured after 18 h incubation at 37 °C. n = 3 

and error bars indicate standard deviation. Statistical analysis was conducted using a Student’s t-test, with each 

variable compared to the control which displayed the lowest OD600 value. * p < 0.05, *** p < 0.001, **** p < 

0.0001 
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For S. aureus MRSA252, favourable interactions were observed when ½ MIC ciprofloxacin 

was combined with 103 or 102 PFU/mL phage K (t-test, p<0.0001) (Figure 3.6). However, 

the use of ¼ MIC ciprofloxacin with 101 and 102 PFU/mL phage K statistically increased the 

OD600 of S. aureus MRSA252. When ½ MIC amikacin or amoxicillin were combined with 

103 phage K, there was a significant reduction in OD600 (t-test, p< 0.01 and p< 0.001 for 

amikacin and amoxicillin, respectively). When ¼ MIC amikacin or ¼ MIC amoxicillin were 

combined with 103 PFU/mL of phage K, a significant reduction in OD600 was observed (t-

test, p<0.01 and p<0.001 for amikacin and amoxicillin, respectively). Additionally, the 

combinations of ¼ MIC amoxicillin or amikacin and 102 PFU/mL phage K resulted in a 

favourable interactions (t-test, p<0.05 and p<0.01, respectively).  
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Figure 3.6: OD600 measurements for S. aureus MRSA252 upon the addition of differing concentrations of 

phage and/or antibiotic as a single therapy or in combination. OD600 measured after 18 h incubation at 37 °C. n 

= 3 and error bars indicate standard deviation. Statistical analysis was conducted using a Student’s t-test, with 

each variable compared to the control which displayed the lowest OD600 value. * p < 0.05, *** p < 0.001, **** 

p < 0.0001 
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S. aureus MRSA252 was the only strain tested where ½ and ¼ MIC of vancomycin 

displayed a positive interaction with 103 PFU/mL phage K (t-test p<0.001 and p<0.01, 

respectively). Although the reason for this is, as yet, unclear, it demonstrates the strain-

specific nature of PAS interactions.  

Next, the efficacy of the combinations were tested against S. aureus MSSA101 (Figure 3.7). 

When ½ or ¼ MIC of ciprofloxacin was combined with phage K (103 – 101 PFU/mL), all 

combinations reduced the OD600 of S. aureus MSSA101 suspensions in a statistically 

significant manner in comparison to the corresponding controls. When ½ MIC of amikacin 

or amoxicillin were combined with 103 PFU/mL of phage K, a significant reduction in OD600  

of S. aureus MSSA101 was observed (t-test, p<0.01). This result was also observed when 

103 PFU/mL of phage K was combined with ¼ MIC amikacin (t-test, p<0.05) and 

amoxicillin (t-test, p<0.01). Finally, when phage K and vancomycin were used in 

combination, there was no significant reduction in OD600 for all combinations tested. In fact, 

the presence of 103 and 102 PFU/mL phage K with ½ MIC vancomycin increased the optical 

density of the isolates, showing a similar trend to that of S. aureus H560.   

Overall, the most effective combinations for the treatment of all three S. aureus species 

were ½ MIC antibiotic and 103 PFU/mL of phage K. This observation implies that the 

concentrations of antibiotic/phage need to be close to their MIC values, and that lower 

concentrations would not provide a therapeutic benefit. Furthermore, ciprofloxacin in 

combination with phage K seemed to consistently provide the best results across all three 

S. aureus strains tested. However, as ciprofloxacin seemed to have an inhibitory effect 

towards phage K in the absence of bacteria, further experiments are needed to examine this 

phenomenon.  

Other literature sources have used similar OD assays to determine PAS.79,80 Jansen et al, 

used end-OD measurements to show that there was significant inhibition of A. baumannii 

upon incubating with phage KARL-1 and meropenem. However, this PAS phenomenon was 

not observed for all combinations tested, with minimal increases in efficacy witnessed when 

KARL-1 was incubated with ciprofloxacin or colistin.15 These studies further corroborate the 

results found in this study, suggesting that PAS is not only dependent on the phage and 

antibiotic concentrations used, but also the specific bacterial isolate under investigation.  
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Figure 3.7 OD600 measurements for S. aureus MSSA101 upon the addition of differing concentrations of phage 

and/or antibiotic as a single therapy or in combination. OD600 measured after 18 h incubation at 37 °C. n = 3 

and error bars indicate standard deviation. Statistical analysis was conducted using a Student’s t-test, with each 

variable compared to the control which displayed the lowest OD600 value. * p < 0.05, *** p < 0.001, **** p < 

0.0001 

3.4.2.3. Bacterial Cell Counts  

One disadvantage with the PAS assay is that OD600 values are not proportional to bacterial 

cell concentrations at high OD values, with linearity usually seen for a limited CFU/mL 

range (approx. 106 – 108 CFU/mL). Therefore, results that show significant reductions in 

OD600 values might not correspond to significant decreases in bacterial concentration. 

Owing to this, other assays have been developed that determine PAS by calculating the 

concentration of bacterial isolates after incubation with phage-antibiotic combinations, or 

the individual monotherapies.28,31,79 Consequently,  106 CFU/mL of S. aureus H560, 

MRSA252, and MSSA101 were incubated with ½ MIC antibiotic, 103 PFU/mL phage K, or 

a combination of both. After 18 h incubation at 37 °C, the bacterial suspensions were 
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collected and enumerated. Statistical significance was determined by comparing the dual 

therapy to the most potent monotherapy. 

For S. aureus H560, all combination therapies produced statistically significant reductions 

in Log CFU/mL when compared to their most potent monotherapy counterparts (Figure 

3.8A). When combined with 103 PFU/mL of phage K, ½ MIC ciprofloxacin, amoxicillin, and 

amikacin resulted in average log reductions of 5.14, 2.17, and 1.65, respectively. While the 

combination of ½ MIC vancomycin and 103 phage K resulted in a statistically significant 

reduction, it only corresponded to a 0.25 log reduction, which is not clinically significant. 

For the treatment of S. aureus MRSA252, ½ MIC amikacin was the most effective antibiotic 

in combination with 103 PFU/mL phage K (log reduction of 3.95; Figure 3.8B).  The 

combination utilising ½ MIC ciprofloxacin also resulted in a statistically significant log 

reduction of 2.62. Conversely, amoxicillin failed to produce a statistically significant 

reduction in bacterial concentration when combined with 103 PFU/mL phage K.  

Perhaps the most interesting observation is that the combination of ½ MIC vancomycin 

and 103 PFU/mL phage K failed to reduce S. aureus MRSA252 concentration. This 

discrepancy between this assay and the PAS OD600 assay  could be due to a variety of 

reasons. Firstly, it could be due to the inherent variation between bacterial isolates. 

Secondly, it could be due to the disparity between methodologies, with differences in 

working volumes, and extra dilution steps required in bacterial enumeration. However, 

further work would be needed to understand this discrepancy.   

All antibiotics, except vancomycin, significantly reduced S. aureus MSSA101 bacterial 

concentration in the presence of 103
 PFU/mL phage K, compared to their respective control 

(Figure 3.8C). The most effective combination was ½ MIC amoxicillin and 103 phage K (log 

reduction of 3.00). Similar efficacies were observed when ½ MIC ciprofloxacin or amikacin 

was combined with 103 PFU/mL phage K (log reductions of 2.17 and 2.15, respectively). ½ 

MIC vancomycin and 103 PFU/mL phage K was not effective in reducing S. aureus MSSA101 

cell count (log reduction of 0.12).  

Overall, the best PAS combination in reducing bacterial cell concentration across all three 

bacterial species tested was ½ MIC ciprofloxacin and 103 PFU/mL of phage K, with an 

average log reduction of 3.31 across all three strains tested.  The second-best combination 

was phage K and amikacin, with an average log reduction of 2.29. The bacterial cell counts 

further supported the results found in the OD assay (Figures 3.5 – 3.7), the differences in 

therapeutic efficacy of the same combinations against different S. aureus strains shows that 
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PAS combinations are inherently strain-specific, and not a ‘one-combination-suits-all’ 

therapy.  
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Figure 3.8: Log CFU/mL of A) S. aureus H560, B) S. aureus MRSA252 and C) S. aureus MSSA101 in the 

presence of ½ MIC antibiotics and 103 PFU/mL of phage K. Cultures were incubated statically for 18 h at 37 °C. 

n = 3 and error bars indicate standard deviation. Statistical analysis was conducted using a Student’s t-test, with 

each variable compared to the control which displayed the lowest OD600 value.  * p < 0.05, *** p < 0.001, **** p 

< 0.0001 

3.4.2.3.1. Mixed-Model Analysis 

Mixed-model analysis can be performed on the Log CFU/mL bacterial counts to determine 

the nature of the interaction between the antibiotic and phage when used in combination. 

These interactions can be defined as synergistic, additive, or antagonistic, as described 

by Kumaran et al.23 The equation used to determine this interaction is shown below 

(Equation 1): 
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𝐶𝑂𝐸𝐹𝑖𝑛𝑡 = log10(𝐴𝐵𝑅) − (log10(𝐴𝑅) + log10(𝐵𝑅)) (1) 

COEFint is the coefficient of the interaction, ABR is the reduction in bacterial counts followed 

by the combined treatment (AB), AR is the reduction on bacterial counts due to treatment A 

and BR is the reduction in bacterial counts due to treatment B.   

If the coefficient value is > 0, the interaction was synergistic - where the combination of 

therapies led to a greater reduction in bacterial cell concentration than the sum of the 

individual therapies. An interaction was additive if the value = 0, signifying that the 

therapeutic benefit of the combination therapy was equal to the sum of the individual 

counterparts. Finally, if the value was < 0, the interaction was termed antagonistic - where 

the bacterial cell reduction was lower than the sum of the individual therapies. The 

calculated coefficients for this assay are shown in Table 3.7.  

When ½ MIC ciprofloxacin or amikacin was combined with 103 PFU/mL phage K, a 

synergistic interaction was observed for all bacterial species tested. ½ MIC amoxicillin 

provided synergistic interactions with 103 PFU/mL phage K when tested against S. aureus 

H560 and S. aureus MSSA101, and an additive interaction when tested against S. aureus 

MRSA252. Finally, ½ MIC vancomycin provided an additive interaction with phage K for 

all three bacterial species tested. These results further highlight the differences in the 

efficacy of the antibiotic and phage combinations when tested against different S. 

aureus isolates. Therefore, detailed microbiological analysis will be needed before PAS 

combinations can be used as a therapeutic technique for the treatment of bacterial 

infections. 

Table 3.7: Calculated co-efficients of interaction for S. aureus H650, MRSA252 and MSSA101 for the 

combined use of selected antimicrobials (1/2 MIC) and phage K (103 PFU/mL). Values > 0 are considered 

synergistic, = 0 are additive/no interaction and < 0 are antagonistic interactions.  

 
S. aureus                           

H560 

S. aureus 

MRSA252 

S. aureus 

MSSA101 

Ciprofloxacin 4.88 2.84 2.12 

Vancomycin 0.12 0.05 -0.11 

Amikacin 1.63 3.95 3.19 

Amoxicillin 2.60 0.90 3.69 

3.4.2.4. Bacteriophage Cell Counts  

Reports in literature have suggested that the presence of sub-lethal doses of antibiotics 

increases the phage concentration;13 therefore the number of plaques formed in the 

presence of ½ MIC of antibiotics were also investigated.  
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When 103 PFU/mL phage K was combined with ½ MIC ciprofloxacin, amikacin, or 

amoxicillin, a significant increase in phage K concentration was observed for all bacterial 

strains tested compared to the control (phage only; Figure 3.9). What is most surprising is 

that the PAS combination with ½ MIC amoxicillin displayed the greatest increase in phage 

K production, but not the largest decrease in bacterial concentration. Therefore, increased 

phage K production may not translate to improved therapeutic efficacy of the PAS 

combinations. 
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Figure 3.9: Log PFU/mL of A) S. aureus H560, B) S. aureus MRSA252 and C) S. aureus MSSA101 in the 

presence of ½ MIC antibiotics and 103 PFU/mL of phage K. Log PFU/mL was calculated after 18 h static 

incubation at 37 °C. n = 3 and error bars indicate standard deviation. Statistical analysis was conducted using a 

Student’s t-test, with each variable compared to the phage-only control. * p < 0.05, *** p < 0.001, **** p < 0.0001 

½ MIC vancomycin did not result in any statistical difference in the production of phage K 

when incubated with S. aureus H560 and MRSA252. For S. aureus H560, this result is not 

surprising, as this PAS combination failed to display enhanced therapeutic efficacy 

compared to its monotherapy counterparts. For S. aureus MRSA252, this result reflects the 

results observed for the bacterial cell counts (Figure 3.8) but is contradictory towards the 

OD600-based assay (Figure 3.6). As previously mentioned, further work would be needed to 
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examine this phenomenon. While ½ MIC vancomycin resulted in a statistically significant 

increase in the phage K concentration with S. aureus MSSA101, it only represented an 

increase of 0.27 Log PFU/mL, which could be due to experimental inaccuracies such as 

pipetting error.  

It has been suggested that an increase in phage production is due to the filamentation of 

bacterial cells,4,81 with several studies highlighting the increase of phage concentration in 

the presence of sub-inhibitory antibiotic concentrations.4,13,81 Interestingly, this study found 

that the antibiotic which resulted in the most phage K production (amoxicillin) was not the 

most effective antibiotic in combination with phage K in reducing bacterial cell counts 

(Figure 3.8). Therefore, an increase in phage K production might not translate to increased 

efficacy in reducing bacterial cell density and as such, studies that only focus on phage 

concentration may not give a true indication of that combinations’ clinical efficacy.  

3.4.2.5. One Step Growth Curves 

One-step growth curves were performed to determine the effect of sub-inhibitory 

concentrations of antibiotics on the life cycle of phage K. It has been hypothesised that sub-

inhibitory concentrations of antibiotics result in a change in latent periods of the phage 

growth cycle and a larger burst size of phage K. Therefore, this phenomenon should result 

in the increased efficacy of phage K, and thus the therapeutic benefit of the combination 

therapy.82  

In the system established, the latent period and burst size of phage K in S. aureus H560 

without any co-incubation with antibiotics were 30 min and 39.70 ± 3.17 PFU, respectively 

(Table 3.8). When co-incubated with ½ MIC ciprofloxacin, the latent period and burst size 

were 25 min and 44.05 ± 7.53 PFU. When phage K was co-incubated with ½ MIC 

vancomycin, the latent period and burst size were fairly consistent with results obtained 

with the phage K only control, displaying a latent period of 30 min and a burst size of 43.26 

± 14.61 PFU. Interestingly, upon incubation with ½ MIC amikacin, the latent period 

reduced in time to 25 min, but an increase in burst size was also witnessed (52.62 ± 8.08 

PFU).  

Table 3.8: Latent period (min) and burst size (PFU) of phage K in S. aureus H560. n = 3 ± standard deviation 

 Latent period / min Burst size / PFU 

Phage K 30 39.70 ± 3.17 

½ MIC ciprofloxacin 25 44.05 ± 7.53 

½ MIC vancomycin 30 43.26 ± 14.61 

½ MIC amikacin 25 52.62 ± 8.08 
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For S. aureus MRSA252, the latent period and burst size of phage K without co-incubation 

with antibiotics was 35 min and 45.61 ± 11.77 PFU, respectively (Table 3.9); similar results 

were observed when phage K was incubated with ½ MIC amikacin. When phage K was 

incubated with ½ MIC ciprofloxacin, the latent period was reduced to 30 min, and an 

increase in burst size was witnessed (62.05 ± 0.82 PFU). While there was no reduction in 

latent period, when phage K was incubated with ½ MIC vancomycin, a large increase in the 

burst size was observed.  

Table 3.9: Latent period (min) and burst size (PFU) of phage K in S. aureus MRSA252. n = 3 ±  standard 

deviation 

 Latent period / min Burst size / PFU 

Phage K 35 45.61 ± 11.77 

½ MIC ciprofloxacin 30 62.05 ± 0.82 

½ MIC vancomycin 35 75.64 ± 5.46 

½ MIC amikacin 35 34.25 ± 8.36 

 

For S. aureus MSSA101, the latent period and burst size of phage K without co-incubation 

with antibiotics was 25 min and 74.72 ± 5.87 PFU, respectively (Table 3.10). When phage K 

was incubated with ½ MIC ciprofloxacin, the latent period increased to 40 min, and a 

decrease in burst size was witnessed (62.05 ± 0.82 PFU). For both ½ MIC amikacin and 

amoxicillin, the latent period increased (40 and 30 min, respectively), correlating to burst 

sizes of 57.92 ± 21.63 PFU and 30.87± 29.36 PFU, respectively. Interestingly, vancomycin 

resulted in a reduced latent period (25 min) and increased burst size (100.95 ± 22.67 PFU) 

Table 3.10: Latent period (min) and burst size (PFU) of phage K in S. aureus MSSA101. n = 3 ± standard 

deviation 

 Latent period / min Burst size / PFU 

Phage K 25 74.72 ± 5.87 

½ MIC ciprofloxacin 40 62.05 ± 0.82 

½ MIC vancomycin 25 100.95 ± 22.67 

½ MIC amikacin 40 57.92 ± 21.63 

½ MIC amoxicillin 30 30.87 ± 29.36 

 

Our results implied that that there is no consensus between phage lifecycle and the efficacy 

of the antibiotic combinations in reducing bacterial cell density. This finding is also 

observed in literature, where Kamal et al found that the addition of cefotaxime increased 

the burst size of T4 phage and reduced the latent period from 24 minutes to 18 minutes, 

ultimately reducing the time to lysis.13 The authors correlated this to bacterial cell 

filamentation13 and thus will be examined in Section 3.4.2.6. However, other authors have 

noted that the latent period of T4 phage increased by 5 minutes in combination with 
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cefotaxime, which they then attributed to the increased burst size (by 2.5-fold).39 Therefore, 

further investigations need to be undertaken to determine the relationship between phage 

lifecycle and the efficacy of phage-antibiotic combinations.  

3.4.2.6. Scanning Electron Microscopy (SEM) Images 

To further understand the phenomenon of PAS, SEM images were obtained of S. aureus 

H560, MRSA252 and MSSA101 after 18 h incubation at 37 °C with ½ MIC antibiotic on 

Melinex® films in 2 mL TSB.  

As shown in Figure 3.10, S. aureus H560, MRSA252, and MSSA101 are uniform cocci, 

approximately 2 µm in diameter. On exposure to ½ MIC ciprofloxacin, S. aureus H560 and 

MSSA101 were visibly stressed, with the bacterial cells much larger in diameter than that of 

the controls (7.4 µm and 9.6 µm for S. aureus H560 and MSSA101, respectively), and had 

very uneven cell walls. This was also observed in S. aureus MRSA252, which displayed 

‘bloated’ cells approximately 9.2 µm in diameter, as well as long filamentous cells 18.8 µm 

in diameter. 

Upon incubation with ½ MIC vancomycin, both S. aureus H560 and MSSA101 bacterial 

cells were similar in size and morphology to that of the controls. This is not surprising as 

vancomycin failed to elicit an effective therapeutic response when combined with phage K. 

Conversely, S. aureus MRSA252 cells were larger and uneven in appearance compared to 

the controls (9.3 µm versus 2.4 µm, respectively), suggesting an alteration to the cell 

structure of the bacterial isolate, which may explain why there was a “synergistic” activity 

witnessed in the OD600 assay.  

½ MIC amikacin had a marked increase in cell size for S. aureus H560 (12.6 µm), and a 

modest increase in cell diameter for S. aureus MRSA252 and MSSA101 (5.0 µm and 4.4 µm, 

respectively). All cell-wall morphologies looked deformed on inspection.  

Finally, ½ MIC amoxicillin also increased the cell size of S. aureus H560, MRSA252, and 

MSSAA101 to 13.5 µm, 16.4 µm, and 7.0 µm, respectively. Once again, the bacterial cells 

looked distressed with uneven cell shape and pitted cell walls. This was found in literature, 

where subinhibitory concentrations of penicillin inhibited lysis of the bacterial cell wall 

without inhibiting cell division; this resulted in clusters of staphylococci unable to separate, 

therefore presented as an abnormally large cell.83 
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Figure 3.10: SEM images of untreated S. aureus H560, MRSA252 and MSSA101 compared with their 

counterparts incubated for 18 h with ½ MIC of ciprofloxacin, vancomycin, amikacin and amoxicillin.   

All bacterial cells that elicited a positive “synergistic response” when treated with ½ MIC 

and phage K combinations were distressed in appearance and meaningfully larger. In 

literature, the increase in phage production with sub-lethal concentrations of antibiotics is 

attributed to the change in bacterial cell morphology;4,39,81 this has been observed when sub-

inhibitory concentrations of antibiotics such as β-lactams,83 fluoroquinolones,84 and 

aminoglycosides79 have been used. Cell filamentation is thought to help with phage 

production as it escalates the production of essential precursors for phage and helps ease 

the cell for lysis.4 However, like all other PAS-related assays, PAS has been observed without 

any changes to phage morphology. Kamal et al found that when sub-inhibitory 

concentrations of tetracycline were used in combination with phage KARL-1 against 

B. cepacia, no filamentation was observed although the combination exhibited PAS. 
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Therefore, while changes in cell morphology may help facilitate PAS, it is not a 

requirement.13  

3.4.3. The Efficacy of PAS Within Bacterial Biofilms 

Much of the early work on the PAS phenomenon has focused on planktonic bacteria, with 

only a recent shift towards investigating PAS in bacterial biofilms. As biofilms are 

commonly found within chronic wounds,85,86 it is imperative to determine whether PAS 

combinations would be successful in these conditions.  

3.4.3.1. Minimum Biofilm Inhibitory Concentrations  

The first PAS test to be conducted was to examine the efficacy of the sub-inhibitory 

concentration of antibiotic and phage K to prevent biofilm formation. To find the correct 

PAS concentration for each of the components, preliminary experiments were conducted to 

determine the MBIC, which was the concentration of the agent that resulted in no biofilm 

growth, as determined by the CV assay.  

The MBIC concentrations for phage K are shown in Figure 3.11. A phage K concentration of 

104 PFU/mL was needed to prevent biofilm formation for S. aureus H560, MRSA252, and 

MSSA101. This concentration was equivalent to a MOI of 0.01, which was the same 

concentration required for the complete inhibition of the bacteria’s planktonic 

counterparts.  

The MBIC concentrations for the antibiotics are shown in Table 3.11. For S. aureus H560, 

the MBICs of ciprofloxacin and amoxicillin were identical to their MIC counterparts (0.5 

and 8.0 µg/mL, respectively). Conversely, the MBICs of vancomycin and amikacin doubled 

to 8.0 µg/mL. For S. aureus MRSA252, MBICs were identical to the MICs for all antibiotics 

tested. Finally, for S. aureus MSSA101, the MBICs of ciprofloxacin and vancomycin 

remained the same as their MIC values (0.5 and 4.0 µg/mL, respectively). However, MBICs 

of amoxicillin and amikacin increased to 8.0 and 4.0 µg/mL, respectively.  
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Figure 3.11: Determination of the ability of phage K to disrupt biofilm formation of A) S. aureus MRSA252, 

B) S. aureus H560 and C) S. aureus MSSA101. Reduction in biofilm biomass was quantified using crystal violet 

biofilm staining by measuring the absorbance at 590 nm. Bacteria were treated with differing concentrations of 

phage K over 18 h at 37 °C. Error bars show standard deviation (n = 3).  

 

 

Table 3.11: Minimum Biofilm Inhibitory Concentration (MBIC) of the antibiotics used in this assay 

 

Minimum Biofilm Inhibitory Concentration (µg/mL) 

S. aureus 

H560 

S. aureus  

MRSA252 

S. aureus  

MSSA101 

Ciprofloxacin 0.50 62.50 0.50 

Vancomycin 8.00 4.00 4.00 

Amoxicillin 8.00 500.00 8.00 

Amikacin 8.00 32.00 4.00 
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3.4.3.2. Biofilm Prevention 

Similar to the planktonic assays, antibiotic concentrations at ½ and ¼ MIC were used in 

combination with varying concentrations of phage K (101 – 103 PFU/mL) and added to 

suspensions of S. aureus (106 CFU/mL) before subsequent incubation at 37 °C for 18 h. The 

ability of the combinations in preventing biofilm formation was assessed using CV. 

Statistical analysis was conducted by comparing the combination in question to the control 

that had the lowest OD590 value. 1 x MIC concentrations of antibiotics and 104 PFU/mL 

phage K were used as controls to ensure correct PAS concentrations were being used. 

For S. aureus H560, all antibiotics showed a positive interaction with phage K, resulting in 

statistically significant decreases in OD590 compared to the appropriate control (Figure 

3.12). When ½ MIC ciprofloxacin was used in combination with phage K (103 and 102 

PFU/mL), it resulted in a significant reduction in OD590, corresponding to a decrease in 

biofilm biomass (t-test, p<0.01 and p<0.0001, respectively). A statistically significant 

decrease in biofilm biomass was also observed when all phage concentrations were 

combined with ¼ MIC ciprofloxacin. 

Surprisingly, when ½ MIC vancomycin was investigated, it produced a statistically 

significant reduction in OD590 (t-test, p<0.01) with all phage K concentrations. This result 

implies that while phage K and ½ MIC vancomycin combinations might not be able to kill 

S. aureus H560, they are capable of preventing the cells from forming a biofilm. However, 

this effect is concentration-dependent, as no increase in efficacy was observed when ¼ MIC 

vancomycin was used in the combination.  

A significant reduction in bacterial biomass was observed when ½ MIC amikacin was 

combined with 102 PFU/mL (t-test, p<0.001) and 101 PFU/mL (t-test, p<0.01) phage K, and 

when ¼ MIC amikacin was combined with 101 PFU/mL phage K (t-test, p<0.01). These 

results were similar to that observed with the planktonic PAS assay.  

The combinations of phage K and amoxicillin were the least effective. A significant 

reduction was only observed when ½ MIC amoxicillin was combined with 102 PFU/mL 

phage K (t-test, p<0.05). These results suggest that phage K-amoxicillin combinations are 

less effective when treating biofilms.  
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Figure 3.12: Determination of the ability of phage K and/or antibiotics to inhibit biofilm formation of S. aureus 

H560 as a single therapy or in combination. Reduction in biofilm biomass was quantified using crystal violet by 

measuring the absorbance at 590 nm. Bacteria were incubated for 18 h at 37 °C prior to staining. Error bars 

show standard deviation (n = 3). Statistical analysis was conducted using a Student’s t-test, with each variable 

compared to the control which displayed the lowest OD590 value. * p < 0.05, *** p < 0.001, **** p < 0.0001 

 

The same phage-antibiotic combinations were tested on S. aureus MRSA252 (Figure 3.13). 

Favourable interactions were observed when ½ MIC ciprofloxacin was combined with 103 

and 102 PFU/mL of phage K (t-test, p<0.05 and p<0.001, respectively). Statistically 

significant decreases in bacterial biomass were also observed when ¼ MIC ciprofloxacin 

was combined with 103 and 102 PFU/mL of phage K (t-test, p<0.05 for both). For 

vancomycin, the only combination that resulted in a significant reduction in biofilm 

biomass was ½ MIC vancomycin and 103 PFU/mL of phage K (t-test, p<0.05).  

Amikacin was successful in decreasing bacterial biomass when combined with varying 

concentrations of phage K. Statistically relevant combinations included:  ½ MIC amikacin 

with 103 and 102 PFU/mL of phage K (p<0.05 for both), and ¼ MIC amikacin with 103 and 

102 PFU/mL of phage K (p<0.0001 and p<0.01, respectively). A significant reduction in 
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bacterial biomass was also observed when ½ MIC amoxicillin was combined with 102 

PFU/mL phage K (t-test, p<0.05), and when ¼ MIC amoxicillin was combined with 103 

PFU/mL phage K (t-test, p<0.0001).  
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Figure 3.13: Determination of the ability of phage K and/or antibiotics to inhibit biofilm formation of S. aureus 

MRSA252 as a single therapy or in combination. Reduction in biofilm biomass was quantified using crystal violet 

by measuring the absorbance at 590 nm. Bacteria were incubated for 18 h at 37 °C prior to staining. Error bars 

show standard deviation (n = 3). Statistical analysis was conducted using a Student’s t-test, with each variable 

compared to the control which displayed the lowest OD590 value. * p < 0.05, *** p < 0.001, **** p < 0.0001 

Finally, the efficacy of the phage-antibiotic combinations were tested against S. 

aureus MSSA101 (Figure 3.14). All combinations tested were effective when combined with 

½ MIC or ¼ MIC ciprofloxacin, consistent with results obtained in the planktonic assay. 

When ½ MIC vancomycin was in combination with 102 PFU/mL phage K, it resulted in a 

statistically significant reduction in OD590 (t-test, p<0.01), implying that while this 

combination was not able to kill planktonic S. aureus MSSA101, it was capable of preventing 

biofilm formation. For the majority of phage K-amikacin concentrations tested, a significant 

reduction in bacterial biomass was observed; these results were better than those obtained 

for the planktonic assay. When 103 PFU/mL phage K was combined with ½ or ¼ MIC 
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amoxicillin, it resulted in statistically significant reductions in biofilm biomass (t-test, 

p<0.001 for both), with efficacy similar to that observed when using planktonic S. 

aureus MSSA101. 
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Figure 3.14: Determination of the ability of phage K and/or antibiotics to inhibit biofilm formation of S. aureus 

MSSA101 as a single therapy or in combination. Reduction in biofilm biomass was quantified using crystal violet 

by measuring the absorbance at 590 nm. Bacteria were incubated for 18 h at 37 °C prior to staining. Error bars 

show standard deviation (n = 3). Statistical analysis was conducted using a Student’s t-test, with each variable 

compared to the control which displayed the lowest OD590 value. * p < 0.05, *** p < 0.001, **** p < 0.0001 

Overall, there is evidence to suggest that phage K-antibiotic combinations are capable of 

preventing S. aureus biofilms. Similar to the planktonic assays, variations in efficacy were 

observed between S. aureus isolates. Interestingly, the combination of phage K (103 or 

102 PFU/mL) and ½ MIC vancomycin was able to prevent biofilm formation of all S. aureus 

isolates tested – even though it was unable to reduce bacterial cell density of S. aureus H560 

and MSSA101 in planktonic assays. These results suggest that instances of PAS using 

planktonic bacteria may not be representative of the effects witnessed in biofilm models; 

therefore, for conclusive PAS determination both planktonic and biofilm assays should be 

carried out.  
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3.4.3.3. Biofilm Eradication 

Some phage are capable of targeting bacteria within a biofilm.87–91 Biofilm eradication is 

inherently harder to treat via phage therapy as the presence of the EPS shields the phage 

binding sites on the bacterial cell wall. Additionally, biofilms have a heterogeneous 

microenvironment of bacterial populations, some of which exhibit reduced metabolic 

activity or dormancy, preventing phage multiplication.89  

To the best of the authors knowledge, phage K does not possess depolymerases to help with 

biofilm eradication; however, the function of many phage genes are unknown.46,47 As such, 

phage K has been exploited in the treatment of several S. aureus and S. epidermidis 

biofilms.92–94 Owing to this, the MBEC of phage K was evaluated for all three S. 

aureus strains. However, the highest concentration of phage K (109 PFU/mL) was only 

capable of eradicating biofilms of S. aureus MRSA252 (Figure 3.15) and did not affect S. 

aureus H560 or MSSA101 (not shown); this was thought to be due to the fact that S. aureus 

MRSA252 displayed the weakest biofilm of the three isolates (as it had the lowest bacterial 

biomass measured by CV).  
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Figure 3.15: Determination of the ability of phage K to eradicate S. aureus MRSA252 biofilms. Reduction in 

biofilm biomass was quantified using crystal violet biofilm staining by measuring the absorbance at 590 nm. 

Bacteria were treated with differing concentrations of phage K over 18 h at 37 °C. Error bars show standard 

deviation (n = 3).  

As MBEC concentrations of phage K were only obtained for S. aureus MRSA252, this 

bacterial strain was used to find the MBEC concentrations of the antibiotics used in this 

assay (Figure 3.16). Amoxicillin was not used as the MBEC was above the solubility of the 

drug. All MBEC values obtained were much higher than their MIC/MBIC counterparts, with 

both ciprofloxacin and vancomycin showing an 8- and 7.75-fold increase in concentration, 

respectively. S. aureus MRSA252 biofilms had the greatest tolerance to amikacin, with a 78-

fold increase in antibiotic concentration needed to eradicate the biofilm; this result is not 

surprising as it is well known that biofilm formation confers increased resistance to 
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antibiotics. For example, it is known that ciprofloxacin has limited activity against biofilms 

as it is only effective in areas adjacent to the air-biofilm interface and not the interior of the 

biofilm. This is thought to be due to the interior of the biofilm having bacterial cells with 

reduced metabolic activity, most likely due to lack of oxygen.95  

A) B) 

[C ip r o f lo x a c in ]  /  m g m L
- 1

O
D

5
9

0

1
.2

5
0

0
.6

2
5

0
.5

0
0

0
.3

1
3

0
.1

5
6

0
.1

2
5

0
.0

7
8

0
.0

3
9

0
.0

3
1

0
.0

1
6

0
.0

0
8

0
.0

0
4

0
.0

0
0

T
S

B

0

2

4

6

8

1 0

 [V a n c o m y c in ]  /  m g m L
- 1

O
D

5
9

0

0
.2

5
0

0
.1

2
5

0
.0

6
3

0
.0

3
1

0
.0

1
6

0
.0

0
8

0
.0

0
4

0
.0

0
0

T
S

B

0

2

4

6

 

C) D) 

[A m ik a c in ]  /  m g m L
- 1

O
D

5
9

0

5
.0

0
0

2
.5

0
0

1
.2

5
0

0
.6

2
5

0
.3

1
3

0
.1

5
6

0
.0

7
8

0
.0

3
9

0
.0

0
0

T
S

B

0

2

4

6

8

1 0

 

[A m o x ic il l in ]  /  m g m L
- 1

O
D

5
9

0

1
.2

5

0
.6

3

0
.3

1

0
.1

6

0
.0

8

0
.0

4

0
.0

2

0
.0

1 0

T
S

B

0

2

4

6

 

Figure 3.16: Determination of the ability of phage K to eradicate S. aureus MRSA252 biofilms. Reduction in 

biofilm biomass was quantified using crystal violet biofilm staining by measuring the absorbance at 590 nm. 

Bacteria were treated with differing concentrations of phage K over 18 h at 37 °C. Error bars show standard 

deviation (n = 3).  

To determine if phage K-antibiotic combinations could eliminate established biofilms, 

S. aureus MRSA252 biofilms were grown in 96-well microtiter plates for 24 h, before 

subsequent incubation for an additional 24 h with combinations of 108 PFU/mL phage K 

and antibiotics at their ½ MBEC concentrations (Figure 3.17).  
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The results show that there was a decrease in biofilm biomass when phage K and ½ MBEC 

ciprofloxacin or phage K and ½ MBEC vancomycin were used in combination, compared to 

the antibiotics only (Figure 3.17).  

These results suggest that phage K can be used in combination with ciprofloxacin or 

vancomycin to help eliminate S. aureus MRSA252 biofilms. While other authors have 

reported PAS when  using phage-antibiotic combinations to treat both early and established 

biofilms,7,28,77,79 the mechanism has not been elucidated, and as such further experiments 

would need to be undertaken to explain this phenomenon. 
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Figure 3.17: Determination of the ability of ½ MBEC antibiotics and 108 PFU/mL phage K as monotherapies 

and in combination to eradicate S. aureus MRSA252 biofilms. Reduction in biofilm biomass was quantified 

using crystal violet biofilm staining by measuring the absorbance at 590 nm. Bacteria were treated with differing 

concentrations of phage K over 18 h at 37 °C. Error bars show standard deviation (n = 3). Statistical analysis was 

conducted using a Student’s t-test, with each variable compared to the control which displayed the lowest OD590 

value. *, p<0.05. 
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3.5. Conclusion and Future Work 

Overall, this study shows that sub-inhibitory concentrations of phage K and antibiotics can 

act in a synergistic manner to eliminate both planktonic and biofilm S. aureus isolates. 

However, the efficacy of phage-antibiotic combinations depends on the phage, antibiotic 

and bacterial strain under investigation, with not all combinations displaying a similar 

effect across all three S. aureus isolates used in this assay. Additionally, these results found 

that planktonic bacterial cell reduction (both OD and CFU/mL measurements) could be due 

to the distressed morphology of the bacterial cells in the presence of antibiotics, although 

the mechanisms behind this are not yet fully elucidated. The presence of antibiotics did alter 

phage K’s life cycle, and result in increased burst sizes; however, increased burst sizes, and 

by extension increased phage concentration, did not necessarily result in the best phage-

antibiotic combinations to reduce bacterial cell density, and therefore these assays should 

be used in tandem with bacterial cell reduction assays (e.g. OD measurements or time-kill 

assays).  

The results presented in this chapter show that sub-inhibitory concentrations of phage K 

and antibiotics can be used in combination to prevent biofilm formation of S. aureus H560, 

MRSA252, and MSSA101. Unfortunately, to examine the ability of phage-antibiotic 

concentrations in eradicating biofilms, only S. aureus MRSA252 could be used owing to the 

phage titre not being high enough for complete biofilm eradication of S. aureus H560 and 

MSSA101. While the results looked promising, with reductions in biofilm biomass observed, 

further experiments will need to be conducted to determine whether this positive 

interaction is found for other S. aureus isolates. 

Further work must be undertaken to establish the mechanism of action of PAS. This could 

be achieved by repeating this study with different phage and/or different antibiotics and 

testing them against a library of S. aureus isolates. Additionally, further experiments should 

be undertaken to establish the bacteria’s fitness upon exposure to phage-antibiotic 

combinations to determine if “evolutionary synergy” is witnessed, whereby bacterial strains 

become more susceptible to antibiotics as they develop resistance to phage, and vice versa.  

Additionally, research has shown that sequential administration of phage and antibiotics 

promoted an enhanced PAS efficacy,18 therefore future experiments should be undertaken 

with  phage K and antibiotic combinations used in this study to see if it increases the efficacy 

of combinations such as phage K and ½ MIC vancomycin, which were previously 

facilitative/agnostic.   
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Chapter 4: Antimicrobial-loaded Poly(lactic 

acid)-poly(ethylene glycol) Films for the 

Treatment of S. aureus Infections 

4.1. Overview of Chapter 

This proof-of-concept study aimed to demonstrate the utility of antimicrobial-loaded 

poly(lactic acid)-polyethylene glycol (PLA-PEG; PPEG) films as antimicrobial wound 

dressings for the treatment of S. aureus infections.  

Herein, this chapter will discuss the physical properties of the PPEG films and the effect this 

has on the release of phage K and ciprofloxacin from these films.  Additionally, this chapter 

investigated the efficacy of the antimicrobial-loaded PPEG films against three strains of 

S. aureus using a variety of microbiological assays (suspension assays, colony biofilm 

models, and ex vivo models). Finally, experiments were conducted to determine if the 

phage-antibiotic synergy between phage K and ciprofloxacin observed in Chapter 3 could 

be observed when the antimicrobials were combined into the PPEG film.  

 

4.2. Introduction 

4.2.1. Polymers 

The name ‘polymer’ is derived from two terms, ‘poly’ meaning many, and ‘mer’ meaning 

unit,1 as polymers are macromolecules formed via the chemical bonding of repeating units 

of smaller molecules (termed monomers).2 Polymers are used in numerous industries; 

however, this chapter is going to focus on the use of polymers for biomedical applications. 

Table 4.1 highlights some common examples of synthetic polymers used in the biomedical 

field.1  
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Table 4.1: Commonly used synthetic polymers and their applications. Adapted from Hill et al.1  

Polymer Application 

Poly(methylmethacrylate) 
Hard contact lenses, interocular lenses, bone 

cements, denture base 

UHMWPE (ultra-high molecular weight polyethylene Bearing surfaces in artificial joints 

Polyethylene terephthalate Artificial arteries 

Polyurethanes Catheters 

Polyhydroxyethylmethacrylate 
Soft contact lenses, wound dressings, drug release, 

matrices 

Polypropylene Sutures, heart valves, finger joints 

Silicones Breast implants, facial modifications 

Poly(glycolide) Biodegradable sutures 

 

4.2.1.1. Polymer Weight 

With the exception of biological polymers, whose molecular weight (MW) is strongly 

controlled, polymerisation results in a distribution of chain lengths, and consequently, a 

distribution of molar mass.1 Polymer MW can be calculated by either the number average 

molecular weight (Mn), or the weight average molecular weight (Mw). 

Mn counts as the total number of molecules in a unit mass of polymer, irrespective of shape 

or size; it can be determined by techniques that count molecules via the following equation:1 

𝑀𝑛 =
Σ𝑁𝑖𝑀𝑖

Σ𝑁𝑖
 (1) 

Where Mi is the molecular weight of a chain, Ni is the number of chains of that molecular 

weight, and i is the number of polymer molecules.3 Mn is used for the determination of 

boiling point elevation, freezing point depression, vapour pressure depression, and osmotic 

pressure changes.4 

The weight average molar mass is the mass of the individual chains that contribute to the 

overall molecular weight of the polymer; it is calculated using the following equation: 

𝑀𝑤 =
Σ𝑖𝑁𝑖𝑀𝑖

2

Σ𝑖𝑁𝑖𝑀𝑖
 (2) 

Where Mi is the molecular weight of a chain, Ni is the number of chains of that molecular 

weight, and i is the number of polymer molecules. Mw is typically measured by light 

scattering experiments.5    

The number of monomers within the polymer can vary greatly; however, the average 

number of monomers per polymer chain can be determined by calculating the degree of 
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polymerisation.2 The degree of polymerisation can be defined in terms of either number 

average or weight average: 

𝑁 =
𝑀𝑤

𝑀𝑚𝑒𝑟
𝑜𝑟 =

𝑀𝑛

𝑀𝑚𝑒𝑟
 (3) 

Where Mmer is the molecular weight of the monomer unit.  

Additionally, the ratio of Mw/Mn can be used to calculate the polydispersity index (PDI; 

Equation 3). PDI is used as a measure of broadness of molecular weight distribution, the 

smaller the PDI the narrower the molecular weight.4  

𝑃𝐷 =
𝑀𝑤

𝑀𝑛
 (4) 

For monodisperse polymers, where all chains are the same length, the PDI is 1; biological 

examples of this include DNA and enzyme structure. Additionally, some synthetic polymers 

(such as polystyrene used for the calibration curve) have a PDI of 1.02 – 1.10.4  

4.2.1.2. Linear, Branched, and Crosslinked Polymers 

In linear polymers, the repeating units are joined together in a chain-like arrangement and 

are often more rigid compared to branched and cross-linked polymers. Typically, they arise 

when the monomer contains a single end group; some examples include, polyethylene, 

polystyrene, and polyamides.4 

Branched polymers have side chains, which often are composed of the same monomer 

within the main polymer chain. Side chains typically arise from side reactions during 

polymerisation, and monomers with two or more end groups are more likely to support this 

branching. Often, branched polymers have a lower density due to the reduced packing 

efficiency. One of the most common examples of a branched polymer is the low-density 

poly(ethylene), often used for plastic bags, containers, and textiles, etc.4  

Finally, crosslinked polymers arise when polymer chains covalently bond to one another to 

form a  large three-dimensional network; this often changes the properties of the polymer.2 

Chemical crosslinks are generally permanent and once they arise, the polymer becomes 

thermoset in nature4 Crosslinked polymers are usually characterised by their degree of 

crosslink6 and common examples include epoxies, rubber, and various adhesives.4  
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4.2.1.3. Copolymer Arrangements 

The simplest polymer is a homopolymer, which consists of repeating units of only one 

monomer. Copolymers are composed using monomers that differ from one another and can 

exist various sequences:1,2,4 

• Random – this is where the two monomers (A and B) do not follow any specific order 

e.g., ABABBABAAABABA. 

• Alternating – occurs when the two monomers (A and B) are arranged in an 

alternating fashion, e.g., ABABABABABABAB. 

• Block – in a block copolymer, each monomer (A or B) is grouped together and can 

be thought of as two homopolymers joined together, e.g., AAAAAAABBBBBBB. 

Copolymers are often used as adhesives, surfactants, membranes, foams, and 

cosmetics.  

4.2.1.4. Polymer Classification 

There are numerous ways in which polymers are classified – but generally speaking, they 

are usually classified according to their structure. Firstly, they are differentiated between 

inorganic and organic, dependent on if the polymer backbone contains carbon atoms. Then, 

the polymers are further classified according to the specific identity or order of the atoms 

within the polymer backbone, as well as their occurrence.2  

Inorganic polymers have a polymer backbone that contains atoms other than carbon; these 

include poly(siloxanes), poly(silazanes), poly(sulphides), etc. Conversely, organic polymers 

are more common and are generally divided into either natural or synthetic. Natural 

polymers include starch, cellulose, and glycogen, while synthetic polymers include 

poly(styrene), poly(propylene), poly(glycolic acid), and poly(lactic acid). Semi-synthetic 

polymers have also been synthesised, which are generally functionalised natural polymers, 

e.g., methylcellulose and cellulose acetate.2  

Additionally, crosslinked polymers can form a three dimensional hydrophilic network that 

swells in the presence of water, termed a hydrogel. They can exist as homopolymers or 

copolymers and are generally biocompatible due to their large water content. Hydrogels can 

be tailored to produce a wide range of swelling characteristics, dependent on the 

application, as the swelling ratio alters the properties of the polymer (diffusion rates, surface 

properties, refractive indexes, mechanical characteristics, etc).2  
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4.2.1.5. Configuration and Conformation 

The configuration of a polymer is determined by its chemical structure, while the 

conformation of a polymer relates to its three dimensional structure. Many polymers are 

composed of monomers that contain chiral centres, which is where a carbon atom has four 

different groups attached to them. Owing to this, the monomer can exist in two optical 

isomers, left handed (L) and right handed (D).1  

A polymer containing monomers with chiral centres can have different conformations upon 

polymerisation. Tacticity refers to the ordering of the polymer, describing the 

stereochemistry of the pendant groups on the polymer backbone. If the chiral centres are 

linked randomly, the polymer is termed atactic; if the chiral centres are linked with the 

substituents in an alternating fashion, the polymer is termed syndiotactic; and if the chiral 

centres are linked together with the substituents in the same relative positions, the polymer 

is termed isotactic. Generally, polymers are atactic; however, steric constraints of the 

monomers and/or specialised reaction conditions can result in isotactic and syndiotactic 

polymers1,7  

Tacticity influences the thermal and mechanical properties of the polymer, including the 

glass transition temperature (Tg), melting temperature, and solubility.1 Atactic polymers are 

generally amorphous, resulting in polymers which are less brittle than their crystalline 

counterparts, exhibiting glass-like properties below their Tg and elastomeric properties 

above the Tg. 1,7 

Crystallinity is favoured by ordered/stereoregular chains; however, no polymer is 100% 

crystalline, often containing both amorphous and crystalline regions. The degree of 

crystallinity influences the mechanical properties (e.g. Young’s modulus, toughness, and 

strength) in addition to gas permeability and water uptake of the polymer. The crystallinity 

of a homopolymer can be reduced via copolymerisation with a small amount of a second 

monomer, while conversely, crystallinity can be increased by holding a polymer above its 

Tg, but below its Tm to provide more time for crystallisation to occur.1  

Tg is calculated for amorphous, or amorphous sections of a polymer and describes the 

temperature at which there is a characteristic change in the physical properties of a polymer. 

At temperatures below the Tg, the physical property of the polymer changes to that of a 

‘glassy’ or brittle and crystalline state; however, above the Tg, the polymer exists in its 

‘rubbery’ state, with soft and flexible physical characteristics owing to the long-range 

sequential motion of the polymer chains.8,9  
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4.2.1.6. Polymer Synthesis 

Polymerisation is a process where the monomer subunits are covalently bonded together to 

produce the macromolecular polymers.7 Typically, polymer synthesis can be divided into 

addition, condensation, and ring-opening polymerisation, although other types exist (e.g., 

chain transfer and plasma polymerisation).4  

Addition polymerisation is where the polymer grows exclusively by reactions between the 

monomer(s) and the reactive site(s) on the polymer chain; monomers are added once at a 

time via a chain reaction. Polymers created using addition polymerisation are generally 

produced using unsaturated monomers containing C-C double bonds and all the monomers 

are consumed without the formation of biproducts. Common examples of polymers 

synthesised through addition polymerisation include poly(ethylene), poly(vinyl chloride), 

and poly(styrene).1,4  

In addition polymerisation, the reaction occurs via three distinct steps: chain initiation, 

chain propagation, and chain termination.5 Chain initiation occurs via the use of an initiator 

to a reactive site. This could be a radical (free radical polymerisation), cation (cationic 

polymerisation), anion (anionic polymerisation), and organometallic complexes 

(coordination polymerisation). Next, in chain propagation, the monomers attach to the 

molecular chain, propagating the chain length. Finally, the chain growth is terminated 

through the neutralisation of the reactive centre.4  

Condensation polymerisation, or step-growth polymerisation, is where two monomers are 

reacted together, and molecule is eliminated – often water. The reaction progresses in a 

step-wise manner and monomers, dimers, trimers, oligomers, etc., are able to be utilised to 

create a larger molecule.6 Often, condensation polymerisation combines two different 

components, with at least two reactive sites, in an alternating fashion. Examples include 

polyamides and polyesters, proteins, and polysaccharides.1,4  

Ring-opening polymerisation (ROP) is used in industry as it yields higher molecular weight 

polymers in a relatively short space of time. ROP utilises cyclic monomers and a 

catalyst/initiator to expedite the ring-opening process. The polymers produced by ROP are 

often linear, with a narrow molecular weight range, which is typically hard to achieve via 

condensation polymerisation. An example of a polymer produced via ROP is poly(lactic 

acid).4  
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4.2.2. Poly(lactic acid) 

Poly(lactic acid) (PLA) is a hydrophobic polyester, first discovered in the 1700’s by 

Scheele.10,11 PLA is composed of monomers of lactic acid, produced via fermentation of 

starch from plants (e.g. corn, sugarcane, potatoes, and beets)12 and can be synthesised by 

direct polycondensation of lactic acid, or ring-opening polymerisation of the lactide dimer 

using a suitable catalyst (Figure 4.1).13  

 

 

Figure 4.1: Structures of lactic acid, lactide and poly(lactic acid) 

 

Lactic acid is a hydroxyl acid that exists as two optical isomers (L and D) due to the presence 

of a chiral carbon.13 Therefore, PLA can exist in three optical forms: PLDA, PLLA, and 

PDLLA;14 for biological applications, the L isomer is preferred as the D isomer can  be 

harmful to human metabolism and can result in decalcification and acidosis.13  

The properties of PLA, such as the rate of degradation, are dependent on the optical form 

of the monomer and the resultant polymer’s crystallinity.15 Polymerisation using the optical 

isomers of lactide (L or D) result in a polymer chain that is approximately 40% crystalline, 

whereas polymerisation using a racemic mixture (DL) of lactic acid results in an amorphous 

polymer with low mechanical strength. As the polymer tends from crystalline to amorphous, 

the melting and glass transition temperatures decrease, resulting in an alteration of physical 

characteristics such as density, heat capacity, and rheological properties.15,16 

Drug delivery systems often use PLA  due to its biodegradability, biocompatibility, low levels 

of immunogenicity and toxicity, ease of modification (either by copolymerisation or 

functionalisation),17,18 and thermal processability10,15,19  

PLA was originally used for the repair of mandibular fractures in dogs.20 Since then, PLA 

has been used in a variety of applications in orthopaedics,21,22 cardiac 

surgery,23,24dentistry,25,26 plastic surgery,27,28 and oncology.29,30 For a more comprehensive 

review, please see Tyler et al.10  PLA has also been used for wound dressings and will be 

discussed in Section 4.2.2.1.  
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PLA is often used in combination with poly(ethylene glycol) (PEG) to increase the 

hydrophilicity, toughness, and flexibility of the PLA polymer.10,12 Additionally, the 

incorporation of PEG in PLA-PEG blends enhance the degradation rate and drug release of 

the resultant films.31 PEG is derived from the polymerisation of ethylene glycol (Figure 4.2), 

and dependent on the molecular mass of the polymer, can have a linear or branched 

structure. As PEG is hydrophilic, every PEG unit is tightly associated with two or three water 

molecules, preventing any incorporated drugs from enzymatic degradation, rapid renal 

clearance, and interactions with cell surface proteins.32,33  

 

Figure 4.2: Structure of poly(ethylene glycol) 

4.2.2.1.  Poly(lactic acid) Drug Delivery Systems 

Drug delivery systems have been used in recent years to combat issues associated with 

traditional pharmaceuticals (poor solubility, non-specific targeting, high dosage, etc.) by 

protecting the drug from the physiological environment, increasing the bioavailability or 

solubility of the drug, or controlling the release of a drug from a suitable matrix.13,19 This 

section will focus on the use of PLA or delivery systems utilising conventional antibiotics 

and/or phage therapy, with a particular focus on wound dressings.  

There have been several reports of PLA-based drug delivery systems as potential candidates 

for wound dressings.19,34 Toncheva et al  created PLA and PLA-PEG membranes containing 

a variety of antimicrobials, both as single and monotherapies. When PLA films containing 

diclofenac sodium and benzalkonium chloride were incubated with S. aureus, there were 

clear zones of lysis of 33.0 ± 13.0 mm and 27.0 ± 13.0 mm, respectively.35 Additionally, PLA 

membranes containing a combination of diclofenac sodium and lidocaine hydrochloride or 

diclofenac sodium, lidocaine hydrochloride and benzalkonium chloride resulted in zones of 

inhibition of 30.0 ± 1.1 mm and 19.0 ± 1.1 mm, respectively, when treated with S. aureus.36 

Furthermore, Han et al created electrospun PLA nanofibers containing nanoparticles 

composed of tetracycline hydrochloride blended with Fe3O4-COOH. This system displayed 

antimicrobial activity against S. aureus and E. coli, with zones of inhibitions of 25.8 ± 

1.4 mm and 23.6 ± 1.6 mm, respectively.37 While Nazari et al showed that electrospun PLA-

PEG nanofibers containing cefixime had a good release profile in the presence of graphene 

oxide, further studies must be undertaken to determine the antimicrobial efficacy of the 

film.38  
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PLA films have also been used to release anti-oxidant molecules to aid in wound healing.39,40 

For example, Perumal et al created electrospun nanofibers using a blend of PLA and 

hyperbranched polyglycerol for the release of curcumin for wound healing applications. 

Their results found that the nanofibers had high hydrophilicity, swelling and drug uptake, 

which in turn led to better cell viability, adhesion, and proliferation.41  

There is currently limited literature on phage encapsulation within PLA films. Jamaledin et 

al described the synthesis of microparticles of poly(lactic-co-glycolic acid) to encapsulate 

phage, whereby the phage could be used as an antigen delivery system. Their preliminary 

results suggested that phage was stable within the microspheres and retained its 

immunogenic properties.42  Additionally, Radford et al developed two phage based xanthan 

coatings on PLA films that significantly inhibited Salmonella typhimurium and Listeria 

monocytogenes growth.43 While the latter study was investigating the use of phage-based 

systems for prolonging the life of food, there is no reason to suggest that this film could not 

be utilised in a clinical setting.  

4.2.3. Aims of Study 

This study aimed to create a proof-of-concept wound dressing demonstrating the utility of 

a PLA-PEG film containing antimicrobials as an antimicrobial wound dressing capable of 

eliminating S. aureus infections. Experiments included: 

• Optimisation of the weight ratio of PEG:PLA. Following on from this, in vitro release 

kinetics and stability of the films containing phage K/ciprofloxacin, or a 

combination of the two, will be determined.  

• Microbiological analysis of PPEG films containing phage K, ciprofloxacin, or a 

combination of the two, against three clinically relevant S. aureus species (S. aureus 

H560, MRSA252, and MSSA101). Microbiological assays included: 

o Planktonic suspension assays 

o Colony biofilm wound models  

o Ex vivo porcine skin models 
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4.3. Methods 

4.3.1. Bacterial and Bacteriophage Methods 

All methods relating to growth conditions of S. aureus isolates and propagation of phage K 

were followed as outlined in Chapter 2, Section 2.2.1.3 and 2.2.3.2, unless otherwise stated. 

Enumeration of bacterial and phage cell density were performed as outlined in Chapter 2, 

Section 2.2.1.4 and 2.2.3.3. 

4.3.2. Development of the PLA-PEG System 

4.3.2.1. Creating the Polymer Blend 

Antibiotic-loaded porous films (a-PPEG) were prepared by the solvent casting method.19 

Twenty microliters of ciprofloxacin (30 mg/mL), phage K (c. 1 x 1011 PFU/mL) or a 

combination of both, were dispersed into 88.8 µL of PEG 400 and mixed into 10% w/w PLA 

in dichloromethane (DCM) homogeneously at room temperature. The weight ratio of 

PEG:PLA was 2:1. The mixtures were then poured into 10 mm diameter scintillation vials 

for casting, before being placed at -20 °C for 24 h and dried at room temperature for 4 h. 

Antibiotic-free porous films (PPEG) were also prepared as controls.   

4.3.2.1.1. Encapsulation Efficacy 

a-PPEG films were placed in 2 mL PBS (pH 7.4) and incubated for 24 h at room 

temperature. After incubation, the concentration of antimicrobial released from a-PPEG 

was calculated. For phage K, this was undertaken by determining the PFU/mL and for 

ciprofloxacin this was measured using UV-Vis, with the concentration of ciprofloxacin 

determined by use of a calibration curve. Encapsulation efficacy was calculated as follows: 

𝐸𝐸 (%) = (
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛𝑡𝑖𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛𝑡𝑖𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙
) × 100 (5) 

4.3.2.2. Swelling and Weight Loss 

A known weight (W0) of the porous matrix was subjected to degradation measurements in 

phosphate buffer solution (PBS, pH 7.4). The measurements were undertaken at room 

temperature for 24 h, 48 h, 1, 2 and 3 weeks. At each time point, the film was collected and 

blotted with filter paper to remove excess surface water and weighted (W1), allowed to dry 

to a constant weight at 60 °C and re-weighed (W2). Water sorption (%WS) and weight loss 
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(%WL) were calculated using the following equations. The measurements were performed 

in triplicate using three separate films. 

𝑊𝑆 (%) = (
(𝑊1 − 𝑊2)

𝑊2
⁄ ) × 100 (6) 

𝑊𝐿 (%) = (
(𝑊0 − 𝑊2)

𝑊0
⁄ ) × 100 (7) 

  

4.3.3. Bacteriophage Survival 

4.3.3.1.  pH 

To determine if pH had an effect on phage titre, TSB was adjusted with 1 M NaOH/HCl to 

achieve a pH range between 2 – 10 and filter sterilised with a 0.22 µM filter before use. Stock 

phage lysates (109 PFU/mL) were diluted 10-fold into the pH-adjusted TSB and incubated 

for 1 h at room temperature. After incubation, viable phage concentration at each pH was 

determined as outlined in Chapter 2, Section 2.2.3.3.  

4.3.3.2. Dichloromethane and PEG 400 

In brief, differing concentrations of dichloromethane and PEG 400 (0 – 90% v/v) in PBS 

were prepared. Subsequently phage lysate was added to achieve a final phage concentration 

of 108 PFU/mL and incubated for 1 h at room temperature. After incubation, viable phage 

concentration was determined as outlined in Chapter 2, Section 2.2.3.3. 

4.3.3.3. Temperature 

Known concentrations of phage K in PBS (108 PFU/mL) were incubated at various 

temperatures (-20, 4, 25, 32, 37, 60 °C) for 1 h. After incubation, viable phage concentration 

was determined as outlined in Chapter 2, Section 2.2.3.3. 

4.3.4. Scanning Electron Microscopy 

The porous structure of the PPEG films were assessed by SEM. Films were stored under 

vacuum overnight to ensure complete dehydration before sputter-coating with chromium 

(Edwards S150B, 60 s) to reduce charging effects and thermal damage, prior to images being 

obtained using a scanning electron microscope (JEOL SEM6480LV) operated at 10 kV.  

4.3.5. In vitro Release Studies 

In vitro phage release studies were performed at room temperature, where phage loaded-

PPEG films were placed into 2 mL buffer (PBS; pH 7.4). At pre-determined time intervals, 
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the buffer was withdrawn and replaced with equal volume of fresh solution. The removed 

buffer was assessed for phage concentration by enumeration (Chapter 2, Section 2.2.3.3) 

and the % cumulative release of phage was calculated and plotted against time. 

In vitro ciprofloxacin release studies were carried out as outlined above, with slight 

modifications. To assess ciprofloxacin concentration at each time point, the absorbance of 

the removed buffer was monitored using a UV-Vis spectrophotometer (Shimadzu UV-1800) 

and transformed into ciprofloxacin concentration by use of a calibration curve. The 

cumulative release of ciprofloxacin from films was calculated and plotted as a function of 

time.  

All in vitro release studies were carried out using three independent films and 100% 

cumulative release referred to the amount of therapeutic released from the uncoated PPEG 

after 24 h in the buffer solution (PBS, pH 7.4).  

4.3.6. Stability 

The stability of the films at 25 °C was also investigated. Briefly, a-PPEG films were created 

and placed in a 12-well microtiter plate for up to five days. At pre-determined time intervals, 

the a-PPEG films were submerged in 2 mL of PBS (pH 7.4.) for 24 h prior to phage 

enumeration and/or determination of ciprofloxacin concentration using methods outlined 

in Section 4.3.5. 

4.3.7. Microbiological Testing 

4.3.7.1. Suspension Assays 

Overnight cultures of three Staphylococcus spp., S. aureus H560, S. aureus MRSA252 and 

S. aureus MSSA101 were prepared as outlined in Chapter 2, Section 2.2.1.3. After dilution 

to an optical density of 0.2 (c. 108 CFU/mL) in PBS, the cultures were further diluted 10-fold 

into fresh TSB medium. After inoculation, antimicrobial free and antimicrobial loaded 

PPEG films, along with the relevant controls (phage K, ciprofloxacin, or a combination of 

both) were added to the relevant cultures. The bacteria were allowed to grow at 32 °C with 

150 rpm shaking for 24 h. After incubation, the bacterial and phage (if required) 

concentrations were determined as outlined in Chapter 2, Section 2.2.1.4 and Section 

2.2.3.3.   
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4.3.7.2. Colony Biofilm Wound Model 

The colony biofilms were prepared as outlined in Chapter 2, Section 2.2.2.2. After 

inoculation of the polycarbonate membrane with AWF and bacterial culture (c 106 

CFU/mL), the membrane was left to dry at room temperature for approximately 15 minutes. 

Once dry, a-PPEG films were placed on top of the inoculated membranes and incubated at 

32 °C for 24  h. After incubation, the biofilms were stripped and enumerated as outlined in 

Chapter 2, Section 2.2.1.4  

4.3.7.3. Ex vivo Porcine Skin Models 

4.3.7.3.1. Sterilisation 

Porcine skin was washed to remove dirt and contamination and shaved to remove hair. 

After, the skin was cut into 2 x 2 cm squares and stored at -20 °C. When needed, skin was 

thawed overnight at 4 °C, before sonication for 15 min (44 KHz) in sterile dH2O; this was 

repeated three times. After, the skin was soaked for 15 min in 70% ethanol (EtOH) and 

underwent a further two rounds of 15 min sonication (44 KHz) in sterile dH2O. Finally, the 

skin was UV-sterilised for 10 min prior to use.  

4.3.7.3.2. Optimisation 

Sterilised porcine skin was placed into 10 mL PBS and sonicated for 15 min (44 KHz). Next, 

100 µL was spread onto TSA plates in duplicate, and subsequently incubated for 24 h at 

32 °C. Porcine skin was considered sufficiently free of bacteria if < 20 colonies were present. 

To assess for bacterial recovery, sterilised skin was placed onto bacteriological agar and 

10 µL of optically-adjusted S. aureus (c. 108 CFU/mL; Chapter 2, Section 2.2.1.3) was 

spotted onto the skin and left to dry at room temperature for 20 min. Once dry, the skin was 

removed from the agar, and placed into 10 mL of PBS. Then, the skin underwent a 15 min 

cycle of sonication (44 KHz), before being enumerated (Chapter 2, Section 2.2.1.4) and 

compared to the CFU/mL of the stock bacterial suspension. To circumvent any microbial 

contamination, mannitol salt agar was used in tandem with TSA for enumeration of S. 

aureus colonies.   

4.3.7.3.3. Microbiological Assay 

Sterilised skin was placed onto bacteriological agar and 10 µL of optically-adjusted S. aureus 

(c. 108 CFU/mL; Chapter 2, Section 2.2.1.3) was spotted onto the skin and left to dry at room 

temperature for 20 min. Once dry, 10 µL of the antimicrobial (phage K and/or ciprofloxacin) 

was spotted onto the skin and left to dry for a further 20 min at room temperature. The skin 
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was then placed into a sterile container and incubated at 32 °C for 24 h. After incubation, 

the skin was removed from the agar, placed into 10 mL of PBS, and sonicated (44 KHz) for 

15 minutes prior to enumeration (Chapter 2, Section 2.2.1.4). A sterilisation control (porcine 

skin without the addition of S. aureus) and a bacteria-only control (S. aureus and PBS) were 

carried out in tandem. In cases where phage were used, PFU/mL was also determined as 

outlined in (Chapter 2, Section 2.2.3.3). The assay was repeated in triplicate, and to 

circumvent any microbial contamination, mannitol salt agar was used in tandem with TSA 

for enumeration of S. aureus colonies.   
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4.4. Results and Discussion 

4.4.1. PLA-PEG (PPEG) Films 

The PPEG film was created via polymer blending of PLA and PEG. Polymer blending can be 

used to overcome the inherent disadvantages of PLA (poor toughness, low degradation rate, 

high hydrophobicity)44–46 by blending it with another polymer (such as PEG) to create a 

system with a more favourable morphology and physical characteristics.12,15  

Polymer blends can 47be prepared by either solvent blending or melt blending. Solvent 

blending is where the polymers are dissolved in a co-solvent and processed to form the end 

material before evaporation of the solvent; this method is useful for polymer films and 

porous materials.12,48 Melt blending is achieved through the use of a melt extruder and the 

melt-blended polymers can be cast into films via compression.12  

Polymer blends is dictated by the Gibbs-free energy equation (Equation 8): 

𝑑𝐺𝑀 =  𝑑𝐻𝑀 − 𝑇𝑑𝑆𝑀 
(8) 

 

Where dGM, dHM, and dSM are energy, enthalpy, and entropy of mixing, respectively. dG 

must be < 0 for two or more polymers to be miscible.  

Upon removal of either temperature or solvent during blend formation, phase separation 

occurs,49 and the extent of this separation dictates the morphology of the resulting blend. 

Work conducted by Phaechamud et al investigated the formation of the PLA-PEG polymer 

blends and found that PLA-PEG in DCM changed from solution into a porous film via a two-

step process (liquid-liquid phase separations and solidification). Liquid-liquid phase 

separation was thought to occur due to the increase in Gibbs free energy of the system  upon 

addition of a non-solvent (PEG 400), causing some solvent evaporation and the formation 

of a polymer concentration gradient. The liquid-liquid phase separation led to an 

interpenetrating network structure of polymer-rich and polymer-poor phases and 

continued until the two phases were combined in a stable condition with the lowest free 

energy prior to solidification; the porous structure of the PLA matric was created once the 

solvent evaporated and the polymer blend was dry.50  
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4.4.1.1. Pore Size 

Porosity is advantageous for wound dressings as it can help to reduce the wound contact 

area, avoiding adherence when the wound is dried. Generally, the smaller the pore size and 

porosity, the less painful the dressing change is. However, the optimum pore size and 

porosity depends on the wound type and application of the dressing as it affect other 

properties of the dressing, including the water vapour transmission rate, oxygen 

transmission rate, and drug release (if loaded with an antimicrobial).19,51  

The formation of the  PLA-PEG (PPEG) films created in this study was based on previous 

work conducted by Chitrattha et al.19 The initial weight ratio of PEG:PLA used was 1.5:1; 

however, this led to minimal release of phage from the polymer (data not shown). This was 

attributed to the lack of flexibility within the polymer; hence, the weight ratio of PEG:PLA 

was increased to 2:1.19  

The PPEG film was highly porous in nature, similar to other reports in literature (Figure 

4.3).19 Nevertheless, the pore size observed in this study was heterogenous in nature, 

primarily due to rate of DCM evaporation from the films. The porosity of the film could be 

altered using different temperatures/humidities during the solvent evaporation stage. 

However, as phage were successfully released from this film (further details below) it was 

deemed sufficient for this proof-of-concept design. Future experiments could be conducted 

to further improve this dressing for optimal porosity leading to maximum phage release.  

 

 

 

 

 

 

 

 

 

Figure 4.3: SEM of the top layer of the PPEG film 
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4.4.1.2. Weight Loss and Water Sorption 

The % weight loss (%WL) and % water sorption (%WS) of the PPEG films are shown in 

Figure 4.4. After 24 h, the weight loss of the polymer was ~58% and a corresponding water 

sorption of ~240% was observed. After this time, the %WL and %WS remained relatively 

stable, with values of ~60% and ~250%, respectively. Once again, these results are similar 

to those observed in literature, and substantially higher than PLA only.19 These results 

indicate the importance of PEG within this PPEG blend, increasing the hydrophilic nature 

of the film, while promoting degradation, and therefore release of any encapsulated 

materials.  
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Figure 4.4: In vitro degradation profiles of A) %WL and B) %WS of the PPEG film. n = 3, error bars indicate 

standard deviation 

4.4.2. Bacteriophage-loaded Films 

4.4.2.1. Bacteriophage Survival 

As phage are proteinaceous, they are susceptible to degradation by stimuli such as organic 

solvents and extreme temperatures. As the creation of the PPEG films required the use of 

DCM, PEG 400, and temperatures ranging from -20 and 60 °C, it was imperative to 

determine phage viability under these conditions (Figure 4.5).  

Upon incubation with varying concentrations of DCM (% v/v) in PBS, the phage K 

concentration remained comparable to the control (phage K in PBS). This agrees with other 

literature sources, who have shown that phage remain viable upon incubation with high 

concentrations of organic solvent such as DCM and chloroform (CHCl3).52 Although, this 

depends on the type of phage used, as there have been instances where phage have degraded 

in the presence of organic solvents. For example, Jurczak-Kurek et al. found that the their 

isolated phage degraded upon exposure to acetone and 50% (v/v) DMSO, while they were 

resistant to degradation from chloroform.53  
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Next, the viability of phage K was investigated in the presence of PEG 400. As PEG 8000 is 

commonly used for phage precipitation to achieve higher titres, and there have been 

examples where PEG has been used as a delivery material of phage, it was assumed that 

there would be minimal effect on phage K viability.54 Surprisingly, Figure 4.5 shows a 

significant decrease in phage titre upon PEG 400 concentrations of 80% v/v (t-test, p<0.05) 

and 90% v/v (t-test, p<0.01), compared to the control. However, this decrease in phage 

concentration was not clinically significant, as it only corresponded to a log reduction of 

0.49 and 0.73, respectively. Therefore, the decrease in concentration would not drastically 

impact the viability of phage K within the PPEG film, hence, was used in this proof-of-

concept study.  
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Figure 4.5:  Phage K survival in the presence of increasing concentrations of A) DCM, and B) PEG 400. n = 3, 

error bars indicate standard deviation. Statistical analysis conducted using a One-way ANOVA. * p<0.05, 

**p<0.01 

The original methodology stated that the films had to be stored at -20 °C for 24 h prior to 

drying at 60 °C for a further 24 h.19 Phage viability is strongly dependent on temperature, 

with many studies showing decreased phage viability at higher temperatures.  

To assess this, phage K was incubated in PBS at varying temperatures between -20 °C to 

60 °C for 1 h before enumeration to determine phage survival. As shown in Figure 4.6, 

incubation at 60 °C for 1 h significantly reduced phage concentration by 5.5 log compared 

to the control (incubation at 4 °C). As this is a large reduction in phage K viability, the 

methodology was changed so that the phage K-loaded PPEG films were dried at room 

temperature for 4 h prior to use. Additionally, these results showed that phage K has good 

survival at clinically significant temperatures. For example, phage K concentration 

remained stable when incubated at 32 °C, which is the temperature of healthy skin. This is 

a promising result as it indicates that phage K would be a viable topical antimicrobial 

capable of eliminating S. aureus at the wound bed.   
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Figure 4.6:  Phage K survival after 1 h incubation in PBS at varying temperatures. n = 3, error bars indicate 

standard deviation. Statistical analysis conducted using a One-way ANOVA. **** p<0.0001 

4.4.2.2. Encapsulation Efficacy and In vitro Release 

Phage K was successfully encapsulated within the PPEG film, so the next step was to 

quantify the encapsulation efficacy and in vitro release of phage K from this film. The 

encapsulation efficacy was determined using Equation 5 and found to be 1.71 ± 1.08% 

(assuming 100% of phage K is released after 24 h). While this value initially seems 

disappointing, it corresponds to a 2-log reduction in viable phage K after incorporation into 

the PPEG film. Using the results shown above, it is possible to assume that 1-log reduction 

arose due to external environmental impacts on the phage survival, predominately 

incubation with PEG 400. The other 1-log reduction could be attributed to the formation of 

the film at -20 °C; the semi-crystalline nature of the PPEG film could affect the protein 

structure of phage K, ultimately reducing viability as its structure is intrinsically linked to 

its survival. Additionally, error could be due to the methodology used to determine 

encapsulation efficacy. The method used in this study assumes that all viable phage would 

be released from the PPEG film after 24 h incubation, when in fact, there could be viable 

phage still trapped within the film unable to diffuse out. Therefore, the ‘true’ encapsulation 

efficacy could be higher than what was obtained experimentally in this study; however, 

these phage would have minimal clinical effect as they would not be able to target the 

pathogenic bacteria. The encapsulation efficacy could be improved by introducing sugars 

into the preparation, e.g., maltose and sucrose to prevent phage denaturation upon 

formation of the film as they ‘coat’ the phage to protect their protein structure.  

Next, the in vitro release of phage K was determined, with 100% incubation defined as the 

phage concentration after 24 h incubation in PBS (pH 7.4; Figure 4.7). There was a rapid 

release of phage K from the PPEG polymer, with almost a 4 log PFU/mL release of phage K 

into the PBS upon contact with the buffer. After 2 h incubation with PBS, approximately 
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80% of phage K were released (3.86 x 107 CFU/mL), rising to 90% release after 6 h 

incubation with PBS (4.20 x 107 CFU/mL).  
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Figure 4.7: A) Log PFU/mL and B) % Cumulative release in vitro release profiles of phage K from PPEG films 

in PBS (pH 7.4, 25 °C). n = 3, error bars indicate standard deviation 

 

Next, mathematical models were used to evaluate the release kinetics of the PPEG system 

for phage K release. According to Table 4.2, the release profile observed in Figure 4.7 most 

closely resembled that of the Higuchi model of drug release. Higuchi developed this method 

based on the release of a drug from a thin ointment film (planar systems), therefore there 

are several assumptions including:55 

• The matrix contains an initial drug concentration much higher that the solubility of 

the drug 

• The diffusion is unidirectional 

• The thickness of the matrix is much larger than the size of the drug molecules 

• The swelling or dissociation of the matrix is negligible 

• The diffusivity of the drug is constant 

• The perfect sink conditions are attained in the release environment.  

As the initial rate of reaction happened relatively quickly, with the majority of phage 

released after 2 h, it was hypothesised that the swelling of the PPEG film at this time point 

would be negligible. However, further experiments would have to be conducted to confirm 

this hypothesis. 
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Higuchi’s model for drug release can be described using the following equation: 

𝑓1 = 𝑄 = √
𝐷𝜀

𝜏
(2𝐶 −  𝜀𝐶𝑠)𝐶𝑠𝑡 

(9) 

Where Q is the amount of drug release on time t by area unit, ε is the porosity of matrix, τ 

is the capillary tortuosity factor, C is the initial amount of drug contained in the dosage form, 

Cs is the solubility of the active agent in the matrix medium, and D is the diffusion coefficient 

in the matrix medium.  

Hence, the amount of drug released is proportional to the square root of time: 

𝑓1 = 𝑄 = 𝐾𝐻√𝑡 (10) 

 

Where KH is the release constant of Higuchi 

This result was consistent with previous reports in literature and suggests that the release 

of phage K was governed by simple diffusion upon penetration of the solvent into the 

polymer matrix.19,50,56  

Table 4.2: Kinetic model and corresponding R2 value for the release of phage K from the PPEG system (PBS, 

pH 7.4). 

Kinetic Model R2 value 

Zero order 0.8692 

First order 0.8971 

Higuchi 0.9184 

Korsmeyer-Peppas 0.8850 

Hixson-Crowell 0.9052 

 

4.4.2.3. Stability 

The stability of the phage K-loaded film at 25 °C was measured over 5 days in PBS (pH 7.4); 

room temperature was chosen for consistency. The results of this stability assay found that 

there was no significant decrease in phage K concentration at day 5 compared to day 0; 

therefore, phage K were stable within the PPEG polymer matrix (Figure 4.8). In fact, there 

was a statistically significant increase in phage K concentration (t-test, p<0.05), but this 

only corresponded to a 0.50 log increase in PFU/mL count, which could be attributed to 

discrepancies in loading concentration, as well as human error within the assay. This result 

was promising, as it suggests that phage K-PPEG films remain stable for long periods of 

time, making it a suitable candidate for a wound dressing as it could be created en masse.  
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However, further experiments would need to be undertaken over a longer time period to 

confirm the long-term stability of phage K within the PPEG matrix. Additionally, future 

experiments could investigate the effect of storing the PPEG-loaded films at different 

storage temperatures to see if this has a positive/negative effect on the viability of phage K.  
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Figure 4.8:  Phage K survival after 5 days incubation at room temperature within the PPEG film. n = 3, error 

bars indicate standard deviation. Statistical analysis conducted using a t-test. * p<0.05 

4.4.2.4. Suspension Assays 

With these promising results in hand, attention shifted towards testing the antimicrobial 

efficacy of phage K-PPEG films against planktonic suspensions of S. aureus H560, 

MRSA252, and MSSA101 (initial starting concentration of 106 CFU/mL; MOI of 0.1). The 

results displayed in Figure 4.9, show that for S. aureus H560, MRSA252, and MSSA101 

there was a >6-log reduction in viable count when the bacterial suspensions were incubated 

with phage K-PPEG films compared to the control, often reaching the limit of detection of 

the assay. These results were comparable to when phage K was used in a suspension as the 

control, indicating that there is no loss in efficacy of the phage K entrapped within the PPEG 

film when targeting planktonic bacteria. The PPEG film without any phage K did not result 

in any statistical reduction in bacterial density for S. aureus MRSA252 and MSSA101. For 

S. aureus H560, there was a statistically significant decrease in bacterial concentration 

(One-way ANOVA, p<0.01). However, this corresponded to a 0.14 log reduction in bacterial 

count, which was not clinically relevant.  

When assessing the log reductions in Figure 4.9, it is possible to conclude that the system 

behaves as an antimicrobial as the log reduction is ≥3, meeting the requirement set out by 

the European standard prEN 16756 for antimicrobial testing of wound dressings.57  
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Figure 4.9: Log CFU/mL counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus MSSA101 

upon incubation with PPEG films, phage K-PPEG films, and suspensions of phage K (c. 107 CFU/mL) for 24 h 

at 32°C. n = 3, error bars indicate standard deviation. Statistical analysis conducted using a One-way ANOVA  

 

Phage K were successfully released from the PPEG film and able to infect and multiply 

(Figure 4.10).  
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Figure 4.10: Log PFU/mL of phage K released from the pH-responsive films and the phage K control after 

incubation with S. aureus H560, MRSA252, and MSSA101 for 24 h at 32°C. n = 3, error bars indicate standard 

deviation. Statistical analysis conducted using multiple t-tests. *p<0.05 
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The concentration of phage K was similar to that observed for the control, with the exception 

of when the phage K-PPEG film was incubated with S. aureus MRSA252, as the phage K 

concentration was greater than the control (t-test, p<0.05), most likely due to the variation 

in loading and environmental variation within the assay.  

4.4.2.5. Colony Biofilm Wound Model 

As the majority of bacteria within wounds exist within biofilms,58–60 it was important to 

determine if the phage K-PPEG film was capable of preventing biofilm formation through 

the use of a modified colony biofilm model. This model is a static system where colonies are 

grown over agar; it mimics biofilm development at the air-sold interface, with nutrient 

enrichment occurring from below and gaseous exchange occurring at the top of biofilm – as 

observed in wounds. Additionally, this model maintains the basic biofilm characteristics 

such as a structured environment and chemical gradients. This model is advantageous as is 

reproducible and amenable to high-throughput screening.61  

In this study, the colony biofilm model involved adding AWF onto 19 mm polycarbonate 

membranes, before subsequent inoculation with 50 µL of bacterial suspension. Once dry, 

the films were then placed on top of the membranes and incubated at 32 °C for 24 h; the 

incubation temperature of 32 °C was used to mimic healthy skin surface temperature.  

The results displayed in Figure 4.11 show that for S. aureus H560 there was a statistically 

significant decrease in biofilm concentration after incubation with phage K-PPEG films 

compared to the biofilm-only control (3.44 log reduction; One-way ANOVA, p<0.0001). 

This was a remarkable result as this log reduction is greater than the recommended >3 log 

reduction in the prEN 16756 standard, demonstrating the clinical utility of the phage K-

PPEG films. Additionally, there was no significant decrease in bacterial viability when S. 

aureus H560 was treated with the un-loaded PPEG films, indicating that any therapeutic 

benefit of these films was a result of the encapsulated phage K, and not the polymer itself.  

A similar effect was observed, albeit to a lesser extent, when S. aureus MRSA252 was 

incubated with phage K-PPEG films, exhibiting a 3.13 log reduction in cell density (One-

way ANOVA, p<0.001). While this effect was slightly lower than what was observed from 

the phage K control, it was still greater than the 3 log reduction recommended in prEN 

16756 standard. Once again, there was no statistically significant decrease in bacterial 

concentration when S. aureus MRSA252 was incubated with the PPEG control; therefore, 

the therapeutic efficacy of the phage K-PPEG film was solely due to the encapsulated phage 

K.  
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For S. aureus MSSA101, there was a 2.79 log reduction of bacterial viability upon incubation 

with phage K-PPEG films. Unlike the previous bacterial strains, this did not meet the 

threshold of the 3-log reduction recommended by the prEN 16756 standard. However, the 

reduction in bacterial cell density was still significant when compared to the biofilm-only 

control (One-way ANOVA, p<0.001). Like the previous bacterial strains tested, the log 

reduction of S. aureus MSSA101 was lower compared to the phage K-only control and the 

PPEG film without phage K encapsulation did not statistically significantly reduce the 

biofilm density of S. aureus MSSA101; therefore, the therapeutic activity was due to the 

encapsulated phage K.  
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Figure 4.11: Log CFU/membrane counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms upon incubation with PPEG films, phage K-PPEG films, and suspensions of phage K (c. 107 

CFU/mL) for 24 h at 32°C. n = 3, error bars indicate standard deviation. Statistical analysis conducted using a 

One-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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4.4.2.6. Ex vivo Porcine Skin Models 

Ex vivo studies are advantageous over in vitro assays as the latter cannot always be 

correlated with results obtained in real-life situations.62,63 Ex vivo studies refer to 

experiments using tissues and performed under conditions mimicking real-world 

environments, overcoming some of the limitations associated with in vitro testing, while 

allowing for controlled experiments to be undertaken in an ethically responsible way.63,64 

Porcine skin has been used as a model for human skin,65 especially in the fields of wound 

healing66,67 and burns.66 Several studies have assessed the capability of porcine skin as an 

ex vivo model.66 Porcine skin is histologically similar to that of human skin,68 with the 

stratum corneum (SC) thickness (20 – 26 μm) and complete epidermis (30 – 140 μm) 

comparable to that of humans.66 Additionally, the average hair-follicle density in porcine 

ear skin is 20/cm2 compared to 14 – 32/cm2 in human forehead skin,68 and  the blood supply 

in the dermis of pigs is similar to that of humans.66 Porcine skin has been shown to produce 

reproducible results in a large number of studies. Other similarities are highlighted in Table 

4.3.  

Table 4.3: Comparison of human and porcine skin, adapted from Summerfield et al66 

 Human Pig 

Skin attachment Firmly attached Firmly attached 

Hair coat Sparse Sparse 

Epidermis Thick Thick 

Dermis Thick Thick 

Panniculus carnosus Absent Absent 

Healing mechanism Re-epithelization Re-epithelization 

 

Using the skin as a substrate for bacterial proliferation would produce a biofilm that more 

closely resembles that of a biofilm found within wounds. Yang et al outlined that bacterial 

biofilms should remain on the “wound bed” and not penetrate through to the bottom of the 

explants.67  

The ex vivo porcine skin experiments conducted in this study utilised bacteriological agar 

to provide moisture to the porcine skin, preventing the skin from drying out. Bacteriological 

agar was used over the traditional Franz cell experiments due to the quantity of samples 

that required assessment and the limited amount of Franz cells in the laboratory. In this 

model we placed the 2 x 2 cm sterilised porcine skin onto bacteriological agar before 

inoculation with S. aureus bacterial strains. Once dry, the films were placed on top of the 

porcine skin and incubated at 32 °C for 24 h. After incubation, these samples were placed 

into 5 mL of PBS and sonicated before enumeration.  
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To determine the effect of the recovery of S. aureus bacterial density, optimisation 

experiments were performed. Porcine skin inoculated with S. aureus H560 was 

immediately vortexed and enumerated, and subsequently compared to the bacterial 

concentration of the initial S. aureus suspension (Figure 4.12).  

There was no statistical difference in bacterial concentration of the recovered S. aureus 

H560 suspension compared to the initial S. aureus H560 suspension. This result highlights 

that the recovery method used in this ex vivo testing has negligible influence on bacterial 

cell density; therefore, any reduction in concentration witnessed in the subsequent 

experiments would be due to the films themselves, and not the methodology.  
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Figure 4.12: Log CFU/mL counts of the initial S. aureus H560 suspension, and the S. aureus H560 suspension 

after recovery from porcine skin. n = 3, error bars indicate standard deviation. Statistical analysis conducted 

using a t-test, no significance found 

 

When S. aureus H560 inoculated on porcine skin was incubated with PPEG, there was a 

slight reduction in bacterial density (0.83 log reduction, Figure 4.13). This decrease in 

bacterial viability could be due to reduced oxygen transmission through the film required 

for optimal S. aureus survival as they are aerobic; however, further experiments must be 

conducted before any hypothesis can be made. When S. aureus H560 was incubated with 

phage K-PPEG there was no significant reduction in bacterial density compared to 

incubation with PPEG only; therefore, any reduction in bacterial concentration was due to 

the film and phage K had no extra therapeutic benefit.  

 

.  
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Figure 4.13: Log CFU/mL counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus MSSA101 

on porcine skin incubated with PPEG films and phage K-PPEG films for 24 h at 32°C. n = 3, error bars indicate 

standard deviation. Statistical analysis conducted using a One-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 

A similar observation was witnessed for S. aureus MRSA252, with no significant reduction 

in bacterial cell density witnessed when S. aureus MRSA252 was incubated with PPEG and 

phage K-PPEG (log reductions of 0.04 and 0.34, respectively, compared to the bacteria-only 

control). This experiment highlights how important it is to conduct ex vivo experiments, as 

phage K-PPEG films demonstrated good activity against planktonic and biofilm models of 

S. aureus MRSA252. However, based on these ex vivo results, the ability of phage K-PPEG 

films to eliminate S. aureus MRSA252 infections real-world setting might be low, reducing 

its clinical utility. 

Interestingly, phage K-PPEG films were able to statistically significantly reduce the bacterial 

concentration of S. aureus MSSA101 on porcine skin (1.08 log reduction vs bacteria-only 

control). This was due to the phage K, as the PPEG film did not statistically significantly 

reduce the bacterial concentration (0.22 log reduction vs bacteria-only control). This result 

was surprising, as previously, phage K-PPEG films were less effective in treating S. aureus 
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MSSA101 biofilms compared to the other two S. aureus strains under investigation. Again, 

this further supports the need for ex vivo testing, as results obtained in vitro may not 

correlate to real-life efficacy. 

Another interesting result witnessed was that of the phage K titres after S. aureus incubation 

with phage K-PPEG films (Figure 4.14). While phage K-PPEG films did not reduce S. aureus 

H560 and MRSA252 bacterial concentrations, phage K were successfully released and able 

to replicate to achieve concentrations of 7.63 and 9.00 Log PFU/mL, respectively. 

Conversely, phage K-PPEG films were capable of reducing S. aureus MSSA101 cell density; 

however, there was a lower phage K concentration observed of 6.57 Log PFU/mL. Further 

experiments will need to be undertaken to determine why this effect was observed.  
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Figure 4.14: Log PFU/mL counts of phage K after 24 h incubation of phage K-PPEG films on S. aureus H560, 

MRSA252, and MSSA101 at 32°C. n = 3, error bars indicate standard deviation. Statistical analysis conducted 

using a One-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

 

4.4.3. Ciprofloxacin-loaded Films 

While the results of the phage K-PPEG films were promising, their utility in clinical 

environments was questionable due to poor ex vivo results. In order to improve the efficacy 

of the films, our attention turned to incorporating conventional antimicrobials into the film, 

in the hope of creating a system that utilises the phage-antibiotic synergy witnessed in the 

previous chapter (Chapter 3). Owing to this, ciprofloxacin was chosen as it displayed the 

best PAS across all three S. aureus isolates tested. However, before combining the 

antimicrobials in the PPEG film, experiments were conducted to determine the efficacy of 

ciprofloxacin-loaded PPEG films in inhibiting the growth of the S. aureus strains studied, 

which will be discussed further in this section.  
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4.4.3.1. Encapsulation and in vitro Release 

It is possible to determine the concentration of ciprofloxacin using a UV-Vis 

spectrophotometer, due to its absorbance characteristic peak at ~270 nm. Owing to this a 

calibration curve was created using varying concentrations of ciprofloxacin (0 – 40 µg/mL; 

Figure 4.15).  
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Figure 4.15: A) UV-Vis spectra and B) corresponding calibration curve of increasing concentrations of 

ciprofloxacin-HCl (0 – 40 µg/mL) in PBS (pH 7.4) at 25 °C. n = 3, error bars indicate standard deviation. Y  = 

0.08947x + 0.06151, R2 0.9986 

 

In vitro release kinetics was determined for ciprofloxacin release from PPEG films at 25 °C. 

As shown in Figure 4.16, there was a rapid release of ciprofloxacin from the PPEG films, 

with over 80% of ciprofloxacin released after 1 h, rising to 98% released after 6 h incubation 

in PBS (pH 7.4).  

After 24 h incubation in PBS, ciprofloxacin-PPEG films released 411.67 ± 21.62 µg/mL of 

ciprofloxacin. As the loading concentration was 824.18 µg/mL, this corresponded to an 

encapsulation efficacy of 49.95 ± 2.62% (assuming 100% of ciprofloxacin is released after 

24 h). Again, while this encapsulation efficacy is quite low, it is still above the MIC for all 

three bacterial isolates tested (Chapter 3). Therefore, this encapsulation efficacy was 

deemed sufficient for this proof-of-concept study.  
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Figure 4.16: % Cumulative release in vitro release profile of ciprofloxacin from PPEG films in PBS (pH 7.4, 25 

°C). n = 3, error bars indicate standard deviation 

Mathematical models were used to evaluate the release kinetics of ciprofloxacin release 

from the PPEG system. According to Table 4.3, the release profile observed in Figure 4.16 

most closely resembled that of the Higuchi model of drug release, as seen for the phage K 

release in Figure 4.7. This was in agreement with results observed in literature, with 

Chitrattha et al for metronidazole and gentamicin release from PPEG films.19 However, this 

system does not fit all of Higuchi’s assumptions, as the ciprofloxacin concentration loaded 

into the film was not higher than the solubility of the drug; it was in fact, the maximum 

soluble concentration (30 µg/mL). Owing to this, it might not be possible to use this release 

model for this system, and therefore, the drug release may be modelled using zero-order 

kinetics.  

The zero order model outlines the process of constant drug release from a drug delivery 

system and can be modelled using the following equation: 

𝐶0 − 𝐶𝑡 = 𝐾0𝑡 (11) 

 

Where Ct is the amount of drug released at time t, C0 is the initial concentration of the drug 

t=0, K0 is the zero-order rate constant. 

Both the Higuchi and zero order methods are diffusion controlled; hence, it can be 

suggested that the release of ciprofloxacin was governed by simple diffusion upon 

penetration of the solvent into the polymer matrix.19 To further confirm the release profile, 

this experiment should be repeated, with focus placed on the early time points, perhaps 

measuring every 30 seconds for the first 10 minutes to get a more accurate insight into the 

rapid release of ciprofloxacin from this matrix.  
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Table 4.3 Kinetic model and corresponding R2 value for the release of ciprofloxacin from PPEG system (PBS 

pH 7.4) 

Kinetic Model R2 value 

Zero order 0.8975 

First order 0.8543 

Higuchi 0.9170 

Korsmeyer-Peppas 0.8307 

Hixson-Crowell 0.8466 

 

4.4.3.2. Stability  

The stability of the ciprofloxacin-loaded film at 25 °C was measured over 5 days in PBS (pH 

7.4). The results of this stability assay found that there was a significant decrease in 

ciprofloxacin concentration at day 5 compared to day 0 (t-test, p<0.0001); Figure 4.17). This 

result was surprising as phage K had previously shown to be stable and ciprofloxacin in 

combination with phage K was stable of the course of 5 days (Chapter 4, Section 4.4.2.3). 

While the reduction in ciprofloxacin concentration was significant, the concentration was 

higher than the MIC for all bacterial isolates under investigation, so, in theory, should still 

display antibacterial activity towards the bacterial isolates. However, this experiment 

should be repeated as it doesn’t follow the trend observed for the other two systems 

discussed in this chapter and could have been a result of loading-error upon fabrication of 

the ciprofloxacin-loaded films.  
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Figure 4.17:  Concentration of ciprofloxacin after 5 days incubation at room temperature within the PPEG film. 

n = 3, error bars indicate standard deviation. Statistical analysis conducted using a t-test. **** p<0.05 
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4.4.3.3. Suspension Assays 

Firstly, planktonic suspensions of S. aureus isolates were treated with ciprofloxacin-loaded 

PPEG films and the results obtained compared to the bacteria-only and ciprofloxacin-only 

controls. As 10 mL of S. aureus suspensions were used, it is important to note that 

ciprofloxacin concentration was diluted 10-fold in broth, hence the final concentration of 

ciprofloxacin released from the PPEG films was 41.17µg/mL; the concentration of 

ciprofloxacin in the control was 30 µg/mL (Figure 4.18). 
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Figure 4.18: Log CFU/mL counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus MSSA101 

upon incubation with PPEG films, ciprofloxacin-PPEG films, and ciprofloxacin control for 24 h at 32°C. n = 3, 

error bars indicate standard deviation. Statistical analysis conducted using a One-way ANOVA, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 

 

The ciprofloxacin-PPEG films were successful in treating S. aureus H560 (7.62 log 

reduction compared to bacteria-only control; One-way ANOVA, p<0.0001; Figure 4.18A), 

resulting in a greater log reduction compared to the ciprofloxacin-only control (5.88 log 

reduction compared to the bacteria-only control; One-way ANOVA, p<0.0001) due to the 

higher amount of ciprofloxacin released from the PPEG films. There was no statistically 
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significant decrease in bacterial concentration with the un-loaded PPEG films; hence, the 

reduction in cell density was solely due to the release of ciprofloxacin from the films. This 

phenomenon was also observed for S. aureus MSSA101, with log reductions of  0.05, 6.92 

(One-way ANOVA, p<0.0001), and 4.90 (One-way ANOVA, p<0.0001) compared to the 

bacteria control for PPEG, ciprofloxacin-PPEG, and ciprofloxacin, respectively (Figure 

4.18C). 

For S. aureus MRSA252 there was minimal reduction of bacterial cell density when S. 

aureus MRSA252 was incubated with ciprofloxacin-PPEG (0.91 log reduction compared to 

bacteria-only control; One-way ANOVA, p<0.001; Figure 4.18B ). This was due to the 

ciprofloxacin concentration released being lower than the MIC value for S. aureus 

MRSA252 (62.50 µg/mL; Chapter 3).  

4.4.3.4. Colony Biofilm Wound Model 

Next, the efficacy of ciprofloxacin-PPEG films was investigated using in vitro wound biofilm 

models (Figure 4.19). The ciprofloxacin-PPEG films resulted in a 3.82 log reduction 

compared to the biofilm control (One-way ANOVA, p<0.0001), higher than the 3-log 

reduction recommended by the prEN 16756 standard. As before, there was minimal 

reduction in biofilm density for the PPEG film compared to the biofilm, suggesting that any 

reduction in cell density was due to the therapeutic and not the film itself.  

Like the suspension assays, there was minimal reduction in S. aureus MRSA252 biofilms 

upon incubation with ciprofloxacin-loaded PPEG films (0.84 log reduction compared to the 

biofilm control; One-way ANOVA, p<0.01). While this result is surprising, as the MBIC 

determined in Chapter 3 was 62.50 µg/mL, and the concentration of ciprofloxacin in the 

PPEG film and the control was 411.67 µg/mL and 400 µg/mL, respectively, it could be due 

to using the colony biofilm model, rather than the 96-well plates that were used to 

determine the MBIC values. As the biofilm under investigation within this study is based on 

the colony biofilm model, the biofilm produced could be more robust, and hence more 

tolerant, to antimicrobials compared to biofilms produced in a 96-well plate. However, 

further experiments should be performed to support this.  

For S. aureus MSSA101, there was a 3.49 log reduction compared to the biofilm control 

(One-way ANOVA, p<0.0001), which was higher than the 3-log reduction recommended by 

the prEN 16756 standard. Like S. aureus H560 and MRSA252, there was minimal reduction 

in bacterial cell density when S. aureus MSSA101 was incubated with the PPEG film, 

indicating that any reduction in cell count was due to the ciprofloxacin released from the 

film.  
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Figure 4.19: Log CFU/membrane counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms upon incubation with PPEG films, and ciprofloxacin-PPEG films for 24 h at 32°C. n = 3, error 

bars indicate standard deviation. Statistical analysis conducted using a One-way ANOVA. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 

4.4.3.5. Ex vivo Porcine Skin Models 

Finally, ex vivo porcine skin studies were conducted (Figure 4.20). For S. aureus H560, 

there was a slight decrease in bacterial cell concentration observed when S. aureus H560 

was incubated with PPEG films (0.83 log reduction compared to biofilm control), further 

increasing to 3.77 log reduction compared to the biofilm control when incubated with 

ciprofloxacin-PPEG films (One-way ANOVA, p<0.01). This was exciting, as it showed 

clinical significance in a real-world setting as outlined by the prEN 16756 standard.` 

For S. aureus MRSA252, there was minimal change in bacterial cell density when S. aureus 

MRSA252 was incubated with PPEG and ciprofloxacin-PPEG films compared to the 

bacteria-only control (0.04 and 0.05 log reduction, respectively). This result is not 

surprising, as all previous experiments using ciprofloxacin-loaded films for the treatment 
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of S. aureus MRSA252 planktonic and biofilm bacteria did not display any meaningful 

reduction in bacterial cell count. 

Finally, for S. aureus MSSA101, there was a minimal reduction in bacterial cell density upon 

incubation with the PPEG film (0.22 log reduction compared to the bacteria-only control) 

and a 1.4 log reduction compared to the bacteria-only control when incubated with 

ciprofloxacin-PPEG films (One-way ANOVA, p<0.001). While these results do not reach the 

3 log reduction ‘gold standard’ as outlined in the prEN 16756 standard, it is still a promising 

result as it shows the clinical utility of this PPEG film in the treatment of S. aureus 

infections.  
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Figure 4.20: Log CFU/mL counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus MSSA101 

on porcine skin incubated with PPEG films and ciprofloxacin-PPEG films for 24 h at 32°C. n = 3, error bars 

indicate standard deviation. Statistical analysis conducted using a One-way ANOVA. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 
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4.4.4. Combination-loaded Films 

4.4.4.1. Stability 

Phage K was stable in the PPEG film containing a combination of ciprofloxacin and phage 

K for up to 5 days, with no statistically significant decrease in phage K concentration 

observed compared to day 0 (Figure 4.21). However, there was a statistically significant 

reduction in ciprofloxacin concentration after 5 days incubation at 25 °C compared to the 

day 0 control (t-test, p<0.05), but this only responded to a loss of 8.23 µg/mL, which was 

not deemed clinically significant.  

Overall, this result shows that phage K was stable in the presence of ciprofloxacin, which 

was an effect that was not observed in Chapter 3. Therefore, it can be suggested that the 

PPEG film offers some protection of the phage from the inhibitory effects of ciprofloxacin, 

increasing its long-term viability.  
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Figure 4.21:  Concentration of A) phage K (displayed as Log PFU/mL) and B) ciprofloxacin after 5 days 

incubation at room temperature within the PPEG film. n = 3, error bars indicate standard deviation. Statistical 

analysis conducted using a t-test. **** p<0.05 

4.4.4.2. Suspension Assay 

The combination of ciprofloxacin and phage K within PPEG films was evaluated (Figure 

4.22). For these experiments, the maximum concentration of phage K and ciprofloxacin 

were used (109 PFU/mL and 824.18 µg/mL, respectively), rather than PAS combinations 

used in Chapter 3, so the results could be compared with the monotherapy results obtained 

in the earlier sections.  

For all bacterial strains tested, there was minimal reduction in bacterial density when the 

bacterial isolates were incubated with the PPEG films compared to the bacterial control (log 

reductions of 0.14, 0.09, and 0.05 for S. aureus H560, MRSA252, and MSSA101, 
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respectively). Therefore, any reduction in bacterial concentration was due to the 

combination therapy of phage K and ciprofloxacin.  

For S. aureus H560, there was a statistically significant decrease in bacterial concentration 

when incubated with PPEG films loaded with phage K and ciprofloxacin (5.88 log reduction 

compared to bacteria-only control; One-way ANOVA, p<0.0001), which was comparable to 

the combination therapy control (5.29 log reduction compared to bacteria control; One-way 

ANOVA, p<0.0001).  

For S. aureus MRSA252, there was a statistically significant decrease in bacterial 

concentration when incubated with PPEG films loaded with phage K and ciprofloxacin (3.41 

log reduction compared to the bacterial control; One-way ANOVA, p<0.0001). However, 

this was less effective than using the combination of phage K and ciprofloxacin in a 

suspension, as the control resulted in a 5.26 log reduction compared to the bacteria-only 

control (One-way ANOVA, p<0.0001).  

Finally, for S. aureus MSSA101, there was a statistically significant decrease in bacterial 

concentration when incubated with PPEG films loaded with phage K and ciprofloxacin (5.05 

log reduction compared to bacteria-only control; One-way ANOVA, p<0.0001), which was 

1-log lower than the combination therapy control (6.66 log reduction compared to bacteria 

control; One-way ANOVA, p<0.0001).  

These results were interesting, as the monotherapies (bar ciprofloxacin for S. aureus 

MRSA252) achieved log reductions of ~7 compared to the control, which was far higher 

than what was observed when phage K and ciprofloxacin were used in combination. One 

reason for this antagonistic interaction could be due to the higher concentrations of phage 

and ciprofloxacin used. PAS has been shown to be more effective when applied sequentially 

(e.g. phage first then the antimicrobial) as this gives the phage time to adsorb and replicate 

within the host bacterium. However, if high concentrations of antimicrobials are used in 

tandem, and have a quicker mechanism of action compared to phage, then they can 

eliminate the bacteria before the phage have chance to infect them, resulting in a non-

productive phage infection. However, it is worth noting that the combination met the 

threshold of the 3-log reduction recommended by the prEN 16756 standard for all bacterial 

isolates tested. 
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Figure 4.22: Log CFU/mL counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus MSSA101 

upon incubation with PPEG films, phage K and ciprofloxacin-PPEG films, and suspensions of phage K and 

ciprofloxacin (107 CFU/mL and 30 µg/mL, respectively) for 24 h at 32°C. n = 3, error bars indicate standard 

deviation. Statistical analysis conducted using a One-way ANOVA.  

The corresponding phage concentrations are shown in Figure 4.23. Overall, for S. aureus 

H560 and MSSA101, the phage K concentrations were lower than what was observed for the 

monotherapy phage K-PPEG films. This could be due to ciprofloxacin being released faster 

than phage K, leading to a non-productive phage infection. For both these bacterial species, 

the phage K concentrations were similar to the control. While the concentration of phage K 

was statistically significantly higher in the combination-PPEG group compared to the 

control (t-test, p<0.05) for S. aureus H560, this was most likely due to the variation in 

loading and environmental variation within the assay and the release kinetics from the 

system.  

For S. aureus MRSA252, the phage K concentrations were similar to that observed for the 

monotherapy PPEGs. This was probably due to ciprofloxacin being less effective towards 

this bacterial strain, resulting in more time for phage K to launch a successful infection of 

S. aureus MRSA252 cells. Similarly to S. aureus H560, the concentration of phage K was 
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statistically significantly higher in the combination control group compared to the 

combination-PPEG film (t-test, p<0.05); this was most likely due to the variation in the 

methodology of this assay.  
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Figure 4.23: Log PFU/mL of phage K released from the pH-responsive films and the phage K control after 

incubation with S. aureus H560, MRSA252, and MSSA101 for 24 h at 32°C. n = 3, error bars indicate standard 

deviation. Statistical analysis conducted using multiple t-tests. *p<0.05 

4.4.4.3. Colony Biofilm Wound Model 

Next, the efficacy of phage K and ciprofloxacin-loaded films was assessed using a colony 

biofilm model of S. aureus isolates (Figure 4.24).  

PPEG films loaded with phage K and ciprofloxacin were most effective against S. aureus 

H560, achieving a log reduction of 5.95 compared to the biofilm control (One-way ANOVA, 

p<0.0001). However, it is important to note that in this experiment, the PPEG film resulted 

in a 1.19 log reduction compared to the biofilm control (One-way ANOVA, p<0.05), hence 

had slightly inhibitory effects towards S. aureus H560.  

For S. aureus MRSA252, there was a slight reduction in biofilm count upon incubation with 

the PPEG film (0.91 log reduction compared to biofilm control; One-way ANOVA, p<0.05). 

This was further increased when the PPEG film contained the combination of phage K and 

ciprofloxacin, with the log reduction rising to 2.22 compared to the biofilm control (One-

way ANOVA, p<0.001).  

For S. aureus MSSA101, there was negligible difference in bacterial concentration upon 

incubation with the PPEG films (0.37 log reduction compared to the biofilm control). 

However, upon S. aureus MSSA101 incubation with the combination of phage K and 

ciprofloxacin, a log reduction of 3.23 was observed compared to the biofilm control (One-

way ANOVA, p<0.001).  



147 
 

A) B) 

L
o

g
 C

F
U

/m
e

m
b

r
a

n
e

B io f ilm P P EG C o m b in a t io n -

P P EG

0

4

8

1 2

*

****

 

L
o

g
 C

F
U

/m
e

m
b

r
a

n
e

B io f ilm P P EG C o m b in a t io n -

P P EG

0

4

8

1 2

***

*

 

                                                     C) 

L
o

g
 C

F
U

/m
e

m
b

r
a

n
e

B io f ilm P P EG C o m b in a t io n -

P P EG

0

4

8

1 2 ***

 

Figure 4.24: Log CFU/membrane counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms upon incubation with PPEG films, phage K and ciprofloxacin-PPEG films for 24 h at 32°C. n 

= 3, error bars indicate standard deviation. Statistical analysis conducted using a One-way ANOVA. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 

The combination therapy released from the PPEG film led to a greater than 3 log reduction 

in bacterial density for S. aureus H560 and MSSA101, therefore met the threshold 

recommended by the prEN 16756 standard.  

4.4.4.4. Ex vivo Porcine Skin Model  

Finally, the PPEG films containing phage K and ciprofloxacin were tested against S. aureus 

isolates inoculated on porcine skin (Figure 4.25). For S. aureus H560, there was a 0.83 and 

4.44 (One-way ANOVA, p<0.001) log reduction in bacterial concentration compared to the 

bacterial control for the PPEG and combination-PPEG films, respectively. For S. aureus 

MRSA252, there was a 0.04 and 1.91 (One-way ANOVA, p<0.001) log reduction in bacterial 

concentration compared to the bacterial control for the PPEG and combination-PPEG films, 

respectively. For S. aureus MSSA101, there was a 0.22 and 3.98 (One-way ANOVA, 

p<0.001) log reduction in bacterial concentration compared to the bacterial control for the 
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PPEG and combination-PPEG films, respectively.  It is worth noting, that for S. aureus 

H560 and MSSA101, the combination therapy released from the PPEG film led to a greater 

than 3 log reduction in bacterial density; therefore met the threshold recommended by the 

prEN 16756 standard.  
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Figure 4.25: Log CFU/mL counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus MSSA101 

on porcine skin incubated with PPEG films and phage K and ciprofloxacin-PPEG films for 24 h at 32°C. n = 3, 

error bars indicate standard deviation. Statistical analysis conducted using a One-way ANOVA. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 
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4.5. Conclusions and Future Work  

This proof-of-concept study demonstrated the utility of PLA-PEG (PPEG) films as 

antimicrobial wound dressings for the treatment of S. aureus infections.  

Experiments showed that both phage K and ciprofloxacin were released from the PPEG 

matrix in a diffusion based manner, owing to the fast rate of release and/or the large pore 

size of the film in comparison to the size of the antimicrobials. Phage K was shown to be 

stable within the film for over 5 days at room temperature, demonstrating its utility as a 

wound dressing as it could have a long shelf-life. Additionally, phage K viability remained 

when incubated with ciprofloxacin, which was not observed when the two antibiotics were 

incubated together in solution in Chapter 3, suggesting that the PPEG film offers phage K 

some protection against the inhibitory effects of ciprofloxacin. Conversely, reductions in 

ciprofloxacin concentration were observed, and owing to this, further experiments would 

need to be investigated to determine if this was due to antimicrobial loading within this 

study, or due to passive diffusion of the ciprofloxacin out of the PPEG matrix.  

PPEG films containing phage K or ciprofloxacin demonstrated good efficacy in planktonic 

and biofilm suspensions, often meeting the ‘gold standard’ of a 3-log reduction compared 

to their corresponding bacterial control. However, their clinical utility was questionable, 

with poor results obtained using the ex vivo porcine skin model. To overcome this, PPEG 

films were made which combined phage K and ciprofloxacin in the hope of increasing the 

efficacy of the antimicrobial film. While the PPEG films containing phage K and 

ciprofloxacin displayed statistically significant reductions in bacterial density of S. aureus 

H560, MRSA252 and MSSA101 in planktonic and biofilm assays, they were lower than what 

was observed for the monotherapies. This agonistic effect was attributed to the 

concentrations of ciprofloxacin and phage K used and their conflicting mechanism of 

actions. However, surprisingly, the combination was more successful in eliminating S. 

aureus infections on porcine skin, demonstrating superior clinical efficacy compared to the 

monotherapies.  

This chapter only described a proof-of-concept system, therefore, there remain many 

experiments that could be conducted to optimise the system. Firstly, experiments could be 

conducted to investigate the role of pore size in release kinetics. Secondly, to improve phage 

K encapsulation, the role of adding in sugars to the phage solution to protect the protein 

structure should be investigated. Experiments should also be conducted to further 

investigate the weight ratio of PEG:PLA, to see if further increasing the PEG component 

results in better release profiles of phage K and ciprofloxacin. Additionally, the 
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concentrations of phage K and ciprofloxacin should be investigated when used in 

combination to see if it is possible to get an additive or synergistic interaction between the 

two antimicrobials.  

Furthermore, there was a clear difference in in vitro and ex vivo results for all 

antimicrobials tested, whether that be enhanced or reduced efficacy in ex vivo testing 

compared to in vitro. Therefore, it is important that further tests are conducted to evaluate 

the clinical utility of the antimicrobial-loaded PPEG films. In addition to those previously 

mentioned this could involve using more robust biofilm models, repeating the current ex 

vivo porcine skin methodology to gain better power for the statistical analysis, or use in vivo 

mouse models, which will also investigate the immune response to this system.  

Overall, these results show that antimicrobials can be incorporated within PLA-PEG films, 

whether that be phage or conventional antibiotics, and are capable of reducing S. aureus 

density. While further work must be carried out to optimise these films, this Chapter has 

demonstrated their utility as an antibiotic wound dressing. Furthermore, this system can be 

optimised to contain different antimicrobials to treat a variety of different microbial 

infections, it is not limited to S. aureus infections or phage K and ciprofloxacin as 

antimicrobials.  
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Chapter 5: Triggered Release of Bacteriophage 

K and Ciprofloxacin from a pH-Responsive 

System 

5.1. Overview of Chapter 

This chapter describes the creation of a novel, pH-responsive wound dressing to treat 

S. aureus infections. The PLA-PEG (PPEG) film created and analysed in Chapter 4 was 

capped with a pH-responsive polymer, EUDRAGIT® FS 30 D – a co-polymer of methyl 

acrylate, methyl methacrylate and methacrylic acid. Upon an increase in pH above pH 7.0, 

the polymer swells, releasing phage K and/or ciprofloxacin that were encapsulated within 

the PPEG reservoir (Figure 5.1).  

This chapter assessed the stability and release profiles of phage K and/or ciprofloxacin upon 

incubation of the pH-responsive system in buffer solutions of pH 6.5 and pH 8.0, 

respectively. Further experiments investigated the relationship between pH and S. aureus 

biofilm formation and evaluated the release of the therapeutic from the pH-responsive 

system upon incubation with developing S. aureus biofilms.  

 

 

Figure 5.1: Schematic of a novel pH-responsive wound dressing for the treatment of chronic wounds. Upon an 

increase in pH above pH 7, the pH-responsive polymer becomes soluble and swells, resulting in the release of 

the therapeutic (phage K and/or ciprofloxacin) to treat S. aureus infections 

 

EUDRAGIT® 

FS 30 D 
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5.2. Introduction 

5.2.1. pH  

pH is an inverse logarithmic measure of the thermodynamic activity of hydrogen ions (a 

[H+]) in solution. For solutions containing a low concentration of H+, the activity of 

hydrogen ions can be correlated to the concentration of hydrogen ions (Equation 1):1 

𝑝𝐻 =  − log10 𝛼{𝐻+} ≈  −log10 [𝐻+] (1) 

   

Typically, the logarithmic pH scale ranges from 0 – 14, although negative pH values have 

been recorded; solutions with a pH <7 are acidic ([H+] > [OH-]), solutions with a pH ~7 are 

neutral ([H+] = [OH-]), and solutions >7 are alkaline ([H+] < [OH-]).1  

5.2.1.1. Acid and Bases 

Acids and bases have free hydrogen and hydroxyl ions, respectively. A Brønsted-Lowry acid 

is defined as a proton donor, while a Brønsted-Lowry base is a proton accepter. In an acid-

base reaction, there is a transfer of a proton amongst the conjugate acid-base pairs.  

The strength of the Brønsted-Lowry acid is dependent on the acid’s ability to donate a 

proton and dissociate into ions (protons [H+] and anions [A-]). A strong acid can fully 

dissociate and donate a proton, whereas a weak acid has a lower tendency to donate a proton 

and is thus only partially ionised in aqueous solution. The strength of the acid in solution 

can be calculated by determining the acid dissociation constant (Ka), which is the 

dissociated reaction of the acid expressed as mol dm-3: 

𝐾𝑎 =
[𝐻+](𝑎𝑞)[𝐴−](𝑎𝑞)

[𝐻𝐴](𝑎𝑞)
 

(2) 

 

The larger the value of Ka, the further the equilibrium lies to the right, the stronger the acid 

as it results in a higher dissociation of the acid. Ka can be expressed in terms of pKa; the 

lower the pKa value, the stronger the acid (Equation 3).  

𝑝𝐾𝑎 =  − log10 𝐾𝑎 (3) 

 

As previously mentioned, a Brønsted-Lowry base is a proton accepter; a strong base is fully 

ionised in aqueous solutions whereas a weak base has a lower tendency to accept a proton 

and is only partially ionised in aqueous solutions. Similarly to Brønsted-Lowry acids, a base 
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dissociation constant (Kb) can be calculated to determine the strength of the base (Equation 

4). The larger the value of Kb, the stronger the base. Kb can also be expressed in terms of 

pKb, with stronger bases having a higher pKb value (Equation 5). However, usually, the 

strength of the base is referred to in terms of the Ka of the conjugate acid.  

𝐾𝑏 =
[𝐵𝐻+](𝑎𝑞)[𝑂𝐻−](𝑎𝑞)

[𝐵](𝑎𝑞)
 

(4) 

 

𝑝𝐾𝑏 =  − log10 𝐾𝑏  (5) 

5.2.1.2. Buffer Solutions 

Buffer solutions are solutions that can resist changes in pH. The Henderson-Hasselbalch 

equation is often used to show that the pH of the buffer solution is dependent on the value 

of Ka and the ratio of the [conjugate base] to [acid]. Generally, the equilibrium established 

in a weak acid is: 

[𝐻𝐴](𝑎𝑞) ⇌  [𝐻+](𝑎𝑞) + [𝐴−](𝑎𝑞) (6) 

 

Making [H+] the subject of the acid dissociation constant (Equation 6) results in: 

[𝐻+] =
𝐾𝑎[𝐻𝐴]

[𝐴−]
 

(7) 

 

Substituting into the equation for pH (Equation 5) gives,  

𝑝𝐻 = − log10 (
𝐾𝑎[𝐻𝐴]

[𝐴−]
) 

(8) 

 

𝑝𝐻 = −  log10 𝐾𝑎 − log10 (
[𝐻𝐴]

[𝐴−]
)  

(9) 

 

Substituting in pKa gives,  

𝑝𝐻 = 𝑝𝐾𝑎 − log10 (
[𝐻𝐴]

[𝐴−]
)  

(10) 

 

Which can be re-written as: 

𝑝𝐻 = 𝑝𝐾𝑎 − log10 (
[𝐴−]

[𝐻𝐴]
)  

(11) 
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5.2.2. Wound pH 

Healthy skin was found to be acidic by E. Heuss in 18922  and was confirmed through further 

studies aided by the invention of the planar glass electrode in 1955.3 It is more appropriate 

to refer to skin pH as ‘apparent skin pH’ as the stratum corneum is not an aqueous solution; 

the hydrogen ions measured when evaluating skin pH are actually released by components 

of the stratum corneum (e.g., lipids and secretions from sebaceous and sweat glands).4,5  

Various values for skin pH have been reported in literature; however, they generally vary 

between pH 4.0 and 6.0.6–8 This discrepancy in pH values can be attributed to the lack of a 

standardised protocol for pH determination, anatomical location of the skin under 

investigation, and even the sex of the patient, with some studies showing that female skin is 

more acidic compared to male skin;9 however, this is  disputed in other studies.10–12 

Interestingly, there seems to be no difference in skin pH observed between different ethnic 

groups,13–15 but apparent skin pH varies with age, with neonates and the elderly often having 

an elevated skin pH.12,16,17 Fluhr et al  categorised skin pH according to anatomical location 

and found that regions with a higher density of sebaceous glands had slightly elevated pH 

values (pH 5.8 – 6.6),17 thought to be due to the high humidity within these areas decreasing 

the production of urocanic acid.10,17  

Increases in skin pH arise due to a variety of reasons; skin disorders such as eczema, atopic 

dermatitis, and irritant contact dermatitis can result in the disruption of the skin barrier 

function, consequently leading to higher pH values compared to healthy skin.17,18 

Additionally, the use of cleansers, detergents and cosmetics can alter the apparent pH of the 

skin, often causing a transient increase in pH.6 

The acidic mantle of the skin is essential in regulating the normal flora of the skin, 

preventing infection by pathogenic bacteria8 through the production of bacteriocins, toxic 

metabolites, depletion of essential nutrients, induction of a low reduction-oxidation 

potential, inhibition of translocation, and induction of the host to enhance antibody and 

cytokine production and stimulation of phagocytosis.19 The commensal flora of the skin are 

able to survive in these acidic conditions, while the growth of pathogenic bacteria is 

restricted. For example, Propionibacterium, a commensal bacterium, grows well between  

pH 6.0 – 6.5; however, pathogenic bacteria such as S. aureus have an optimum pH of 7.5 

and slow proliferation between pH 5.0 – 6.0.20 
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5.2.2.1. Wound Healing and pH 

Any injury to the skin leads to a localised loss of the stratum corneum, bleeding, and 

exposure of internal tissue and interstitial fluid, all of which result in an elevated pH of the 

skin (between pH 7.0 – 8.0). In a non-infected acute wound, as the wound heals the pH 

decreases due to various factors including hypoxia and increased production of lactic acid8 

as the stratum corneum is repaired, restoring the acidic mantle of the skin.7 Conversely, 

non-healing chronic wounds have been shown to be more alkaline compared to acute 

wounds, with pH values between 7.2 – 8.9,21 and even as high as 9.3.22 These wounds do not 

transverse to an acidic pH, with alkalinity observed for a long period of time, often months.22 

Roberts et al found that the mean apparent pH of venous leg ulcers was significantly lower 

in the healing group compared to the non-healing group23 and Leveen et al found that the 

non-healing nature of surface wounds was correlated with alkaline pH.24 

The elevated pH of chronic wounds alters the biochemical reactions and cellular processes 

involved in wound healing,8,25 affecting oxygen release, angiogenesis, protease activity, 

bacterial toxicity, and antimicrobial activity.2122 For a more detailed review, please see 

Wallace et al. 22 

5.2.2.2. Microbial Biofilms and pH 

The elevated pH within chronic wounds creates an optimum environment for colonisation 

by pathogenic bacteria.8,25 It is generally accepted that pathogenic bacteria require a pH of 

>6.0 for successful proliferation, with lower pH values inhibiting the proliferation of such 

bacteria. Additionally, it has been found that the colonisation of pathogenic bacteria can 

cause the wound to become more alkaline in nature, thus perpetuating proliferation.25   

One of the most frequently cited studies involving pH in wound care is that by Tsukada et 

al,26 who found that pressure injuries tend towards an acidic pH as the wound progresses 

towards healing. As such, one of the current theories to combat chronic wound infections is 

to restore the skin to an acidic pH.22,27–29 An interventional clinical study found that 

cleansing with acidic mineral water caused a greater decrease in bacterial load compared to 

cleansing with water with a neutral pH.30 Additionally Strohal et al found that topical 

acidification of chronic wounds led to decreased microbial bioburden and decreased wound 

size; however, they did not use any controls and hence cannot be used to evaluate the 

effectiveness of acidification of chronic wounds.31 Modulation of wound pH from alkaline 

(pH 9.0) to an acidic pH by daily application of 1% acetic acid was investigated by Agrawal 

et al  and resulted in a decrease in pathogenic microorganisms and improved wound healing 

outcomes.32 While these results show that an acidic environment results in greater infection 
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control, increased oxygenation, and reduction of the toxicity of bacterial by-products,22 one 

of the drawbacks of this method is the longevity of the acidic solution. For instance, the 

moist wound dressings that contained 1% acetic acid remained acidic for only one hour, 

after which the pH rises to neutrality or above.24 In a clinical environment, a wound dressing 

can remain in situ on the wound for up to seven days; hence, acidification would need to be 

consistent throughout this time period. Therefore, there is a growing need to develop 

materials that can sense the pH of a wound environment, and release antimicrobials to treat 

the infection only when needed; this prevents the unnecessary use of antimicrobials when 

the wound is healing in a normal fashion (tending to acidic pH) and clinical intervention is 

not needed.  

5.2.2.3. Antimicrobials and pH 

pH has been shown to affect the activity of antiseptics8 and the bactericidal activity of 

antimicrobial agents.33 For example, hypochlorite requires twice as long to kill 

microorganisms at pH 8.0 compared to pH 6.0.34 pH has also been shown to affect the 

antimicrobial activity of silver, with a lower pH resulting in enhanced activity of silver (ionic 

silver) in wound dressings.35,36 Aminoglycoside antibiotics are also affected by pH, with 

gentamicin demonstrating a 90-fold increase in efficacy at pH 7.8 compared to pH 5.5.25 As 

chronic wounds almost certainly contain a biofilm requiring clinical intervention,37–39 the 

effect of pH must be considered when choosing the appropriate antimicrobial therapy.  

5.2.3. Triggered Release Systems 

The ideal antimicrobial wound dressing should release its therapeutic load in response to 

an active infection at a high enough local concentration for a set duration in order to 

eliminate the pathogenic bacteria present at the infection site.40  

To achieve this, many environmentally-responsive polymers (or ‘smart’ polymers) have 

been developed that release their therapeutic payload in response to an external stimulus. 

Often, the stimuli are physical (e.g., temperature, ultrasound, light, magnetic and electrical 

fields) or chemical (e.g., pH, redox potential, ionic strength, and chemical agents) in nature. 

Physical stimuli often induce a response by modulating the energy level of the 

polymer/solvent system, while chemical stimuli act by altering the molecular interactions 

between the polymer and solvent, or between polymer chains.40  
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5.2.3.1. Response Systems Based on Temperature 

The most widely reported trigger is temperature, owing to its applicability in drug delivery 

applications.40–42 One of the most reported thermo-responsive polymers is poly(N-

isopropylacrylamide) (PNIPAM), which undergoes a reversible, entropically driven phase 

transition at a lower critical solution temperature (LCST) of approximately 32 °C that leads 

to the expulsion of water and a change in polymer volume.43 Below the LCST, PNIPAM 

exists as a hydrophilic coil as water molecules are arranged in an ordered state in the local 

environment of the polymer chain.44,45 Above the LCST, there is a change in the 

hydrophilic/hydrophobic balance of the polymer chain and polymer-polymer hydrophobic 

interactions dominate.44,46 Consequently, the polymer chains collapse, and the water 

molecules are expelled from the bulk, resulting in PNIPAM existing as a hydrophobic 

globule.44 

Hathaway et al created a thermo-responsive wound dressing utilising PNIPAM 

copolymerised with allylamine (PNIPAM-co-ALA) for the selective release of phage K. 

PNIPAM was chosen as temperatures above the LCST were associated with a bacterial skin 

infection. The results found that upon incubation at temperatures above the LCST (37 °C), 

phage K-incorporated PNIPAM-co-ALA nanospheres successfully lysed S. aureus ST288, 

while at temperatures below the LCST (25 °C) bacterial growth was unaffected.47 The 

researchers further investigated the release of a combination of a truncated phage 

endolysin, CHAPK, and lysostaphin, from PNIPAM nanoparticles, and found similar results 

to their previous study; above the LCST temperature, bacterial inhibition was observed, 

whereas at temperatures below the LCST, the bacterial growth was unaffected.48  

5.2.3.2. Response Systems Based on Enzymes and Toxins 

Enzyme-responsive drug delivery systems release their therapeutic payload upon enzymatic 

degradation of the ‘smart’ polymer.49,50 Particular focus has been placed on proteases as 

triggers due to their over-expression in infectious diseases and cancer.42 Additionally, 

trypsin and hyaluronidase have been used to selectively deliver anticancer agents inside 

cancer cells.51 Bean et al also utilised hyaluronidase as a trigger to selectively release phage 

K from a dual-layer system by degrading the hyaluronic acid ‘capping’ layer.52 

Thet et al developed biosensors for the detection of S. aureus and P. aeruginosa. Briefly, 

carboxyfluorescein was entrapped within vesicles that degraded in response to 

toxin/enzyme production by the pathogenic bacteria, resulting in a fluorescence “turn-on” 

response. The selectivity of the system was due to the modification of the vesicles; by 

altering the composition of lipids and fatty acids within the membrane, the vesicles were 
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sensitised to either toxin production by S. aureus (delta toxin), enzyme production by P. 

aeruginosa (phospholipase), or both.53 Laabei et al went on to use the S. aureus-targeting 

phospholipid vesicles to develop a new method to determine agr activity,54 while Thet et al, 

went on to further develop the sensor and recently published preliminary results from a 

pilot clinical study. The probe is now named SPaCE in accordance with the sensor being 

able to detect S. aureus, P. aeruginosa, Candida albicans/auris, and Enterococcus faecalis, 

and was found to have a sensitivity of 57% and specificity of 71%. 55 

Enzymes have been used extensively for the selective ‘turn on’ for fluorescent and 

colorimetric probes. For a more detailed review, please see Chapter 7.  

5.2.3.3. Response Systems Based on pH 

pH has been used as a trigger for ‘smart’ drug delivery systems due to the variation of pH 

within the body, for instance, the stomach has a high acidic pH of approximately pH 2.0, 

whereas the small intestine has an alkaline pH of approximately 6.2 – 7.5. Additionally, it 

has been proven that diseased or inflamed tissue have a different pH profile compared to 

normal tissue,56 for example tumours have been reported to produce acidic conditions in 

the extracellular milieu (pH ~ 6.5).57 

Several researchers have created polymers that are responsive towards changes in the pH 

of the extracellular environment.40,58,59 Researchers have created pH-responsive hydrogels 

containing poly(methacrylic acid) grafted with PEG for oral protein delivery; the polymer 

hydrogel was capable of encapsulating, protecting and mediating the release of insulin,60 

calcitonin,61 and interferon beta.62 Additionally, Milo et al has successfully utilised pH to 

treat Proteus mirabilis (P. mirabilis) infections for the treatment of catheter-associated 

urinary tract infections (CAUTIs). P. mirabilis secretes urease, which in turn increases the 

urinary pH, leading to the formation of struvite and apatite crystals that become lodged in 

the biofilm and result in the blockage of urine flow through the catheter.63  The researchers 

developed a dual-layered system where a hydrogel layer containing phage was capped with 

a trigger layer of the pH-responsive poly(methyl methacrylate-co-methacrylic acid) 

(EUDRAGIT® S 100). Upon the increase in pH by P. mirabilis, phage was released from the 

technology and the time to catheter blockage doubled (13 h vs 26 h). Conversely, the 

coatings were stable in the absence of infection and in the presence of urease-negative 

bacteria.63 Milo et al went on to create an infection-detection system using this system, 

swapping out phage for the fluorescent carboxyfluorescein, and showed its effectiveness as 

a coating on the catheter64 and as a lozenge placed within the catheter drainage bag.65  
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Recently, Rasool et al have created chitosan/poly(N-vinyl-2-pyrrolidone)-based, pH-

sensitive hydrogels that exhibited increased swelling with increasing pH, resulting in the 

controlled release of silver sulfadiazine.66 Wallace et al have also developed pH-responsive 

wound dressings utilising EUDRAGIT® FS 30 D for the treatment of P. aeruginosa biofilms 

within chronic wounds. The wound dressing successfully resulted in a statistically 

significant decrease in P. aeruginosa biofilm density after 24 h incubation at  32 °C 

compared to the untreated control [manuscripts under preparation].  

5.2.4. Aims of Study 

This study aimed to create a proof-of-concept wound dressing to demonstrate the utility of 

an antimicrobial-loaded, pH-responsive system for the treatment of S. aureus infections 

within non-healing wounds where clinical intervention is needed. Experiments included: 

• Investigation of the relationship between pH and S. aureus biofilm formation 

• Development of a pH-responsive system, utilising a pH-responsive polymer 

EUDRAGIT® FS 30 D.  

• In vitro release kinetics of phage K or ciprofloxacin from the pH-responsive system 

at pH 8.0 

• Stability of antimicrobial-loaded pH-responsive system at pH 6.5 

• Microbiological analysis of the antimicrobial-loaded pH-responsive system against 

three clinically relevant S. aureus species (S. aureus H560, MRSA252, and 

MSSA101).  
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5.3. Methods 

5.3.1. Bacterial and Bacteriophage Methods 

All methods relating to growth conditions and enumeration of S. aureus isolates and 

propagation of phage K were followed as outlined in Chapter 2,  Section 2.2.1.3 and 2.2.3.1 

unless otherwise stated.  

5.3.2. Evaluation of Biofilm pH 

Biofilms were prepared as outlined in Chapter 2, Section 2.2.2.2. The pH of the developing 

biofilm was measured every 2 h using a flat top surface pH electrode (VWR). After each pH 

measurement, the biofilm was stripped and enumerated as outlined in Chapter 2, Section 

2.2.1.4  

5.3.3. Development of a pH-responsive System 

Antibiotic-loaded PLA-PEG (a-PPEG) films were prepared as outlined in Chapter 4, Section 

4.3.2.1. To create the dip-coat solution, EUDRAGIT® FS 30 D was added to acetone in a 

ratio of 1:5 and stirred until dissolved. For dip-coating, the PPEG polymers were fully 

submerged in the dip-coat solution for approximately 1 s before drying at room temperature 

for 5 min to allow for the evaporation of acetone. This process was repeated up to a 

maximum of 50 times to create the pH-responsive system. After dip-coating, the films were 

allowed to dry for 1 h at room temperature before subsequent use.  

5.3.4. Bacteriophage Survival 

5.3.4.1.  pH 

To determine if pH had an effect on phage titre, TSB was adjusted with 1 M NaOH/HCl to 

achieve a pH range between 2.0 – 10.0 and filter sterilised with a 0.22 µM filter before use. 

Stock phage lysates (109 PFU/mL) were diluted 10-fold into the pH-adjusted TSB and 

incubated for 1 h at room temperature. After incubation, viable phage concentration at each 

pH was determined as outlined in Chapter 2, Section 2.2.3.3.   

5.3.4.2. Organic Solvents  

The organic solvent used in this chapter was acetone ((CH3)2CO), and the protocol was 

followed as in Chapter 4, Section 4.3.3.2.  
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5.3.5. In vitro Release Profiles 

In vitro release studies for phage K and ciprofloxacin were performed as described in 

Chapter 4, Section 4.3.5. The only modification to the assay is the pH of the buffer solution; 

PBS was pH-adjusted to a pH of 8.0 prior to the initiation of this experiment. Additionally, 

the measurements were conducted over 1 h intervals, with the final measurement occurring 

after 24 h incubation at 25 °C. When % cumulative release profiles were created, 100% 

release referred to the amount of therapeutic released from the uncoated PPEG film 

developed in Chapter 4. All in vitro release studies were carried out using three independent 

films. 

5.3.6. Stability of pH-responsive System  

The stability of the films was measured as outlined in Chapter 4, Section 4.3.6, with slight 

modifications; PBS was pH-adjusted to a pH of 6.5 prior to the initiation of this experiment 

and measurements were taken at 24 h intervals over 5 days.  

5.3.7. Colony Biofilm Wound Model  

S. aureus colony biofilms were prepared as outlined in Chapter 2, Section 2.2.2.2. The pH-

responsive films were placed on top of the bacteria prior to incubation at 32 °C for 24 h. 

After incubation, the biofilms were stripped and enumerated as previously outlined 

(Chapter 2, Section 2.2.1.4, and 2.2.3.3).  
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5.4. Results and Discussion 

5.4.1. pH Change in S. aureus Biofilms 

Dr Laura Wallace from the University of Bath, UK, investigated the usefulness of pH as a 

trigger, conducting experiments to determine the pH of developing S. aureus biofilms using 

the modified colony biofilm model (Figure 5.2). It was hypothesised that if the pH rose to 

values above pH 7 before the development of an established biofilm occurred, pH could be 

a suitable trigger for stimuli-responsive wound dressings.  
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Figure 5.2: pH values associated with developing A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms. Results are shown as mean and SD, n = 3 biological replicates 

The pH of S. aureus H560 rose above pH 7.0 after 6.8 h of biofilm development at 32 °C, 

corresponding to a concentration of approximately 2.51 x 104 CFU/membrane (CFU data 

not shown). The pH change occurred before the exponential rise in bacterial concentration, 

with the final biofilm exhibiting a density of approximately 1010 CFU/membrane and a pH 

of 7.66. As the pH rose before a significant increase in bacterial concentration, it can be 

hypothesised that the pH-responsive system could release its payload and target 
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metabolically active S. aureus H560 before the development of an established and mature 

biofilm.  

For S. aureus MRSA252, the rise in pH above pH 7.0 occurred after 9.6 h of biofilm 

development at 32 °C, corresponding to a concentration of approximately 3.16 x 109 

CFU/membrane. Unlike S. aureus H560, this pH change occurred when the bacteria were 

approaching their stationary phase of their lifecycle, with a final bacterial concentration of 

approximately 1010 CFU/membrane observed after 16 h incubation. As this pH change 

occurred later on in the biofilm development, further experiments were conducted to 

establish whether the pH-responsive system reported in this Chapter would be effective in 

targeting S. aureus MRSA252 infections; the efficacy of this system would depend on how 

fast the pH-responsive polymer EUDRAGIT® FS 30 D (Chapter 5, Section 5.4.2), would be 

able to dissolve and how quickly the reservoir PPEG film can release its therapeutic payload 

(see Chapter 4).  

Finally, for S. aureus MSSA101, the pH of the biofilm rose above pH 7.0 after 7.1 h of biofilm 

development at 32 °C, corresponding to a concentration of approximately 1.00 x 106 

CFU/membrane. This increase in pH occurred when the bacteria were in their exponential 

growth phase; therefore, there may be adequate time for the pH-responsive system to 

release its therapeutic load before the development of an established, mature biofilm. 

Although the time in which the pH increased past pH 7.0 varied, all three S. aureus had an 

alkaline biofilm pH after 16 h incubation. Therefore, pH could be used as a viable target for 

stimuli-responsive wound dressings that selectively release their antimicrobial payload in 

response to an active infection.  

5.4.2. EUDRAGIT®-coated Films 

In order to create a pH-responsive system, the PPEG film developed in Chapter 4 was dip-

coated with a pH-responsive polymer. The pH-responsive polymer used in this study was 

EUDRAGIT® FS 30 D, manufactured by Evonik (Darmstadt, Germany); it is an anionic 

copolymer based on methyl acrylate, methyl methacrylate and methacrylic acid (Figure 5.3). 

EUDRAGIT® FS 30 D was chosen due to its dissolution pH value (pH 7.0) owing to the ratio 

of carboxyl to ester groups being 1:10. 

The pH-responsive nature of EUDRAGIT® FS 30 D was due to the polymers pendent 

carboxyl groups. Upon increasing pH, the carboxyl groups are ionised, which results in a 

net overall charge of the molecule, causing the polymer to swell due to electrostatic 

repulsion. The solubility of the polymer further increases as the anionic centre of the 
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polymer is capable of forming dipole-dipole interactions with the water. The dissolution of 

this pH-responsive polymer allows the therapeutic within the PPEG film to be released in 

response to the elevated pH, subsequently eliminating S. aureus at the infection site.   

 

Figure 5.3: Chemical structure of EUDRAGIT® FS 30 D 

 

5.4.3. Bacteriophage-loaded Films 

5.4.3.1. Bacteriophage Survival 

As the antimicrobial-loaded PPEG film created in Chapter 4 was dip-coated in EUDRAGIT® 

FS 30 D and used for pH-sensing applications, it was imperative to determine phage K 

survival in the solvent system (acetone) used to create the pH-responsive polymer, and to 

ensure phage viability remains for pH values between pH 7.00 – 9.00.  

Upon incubation with varying concentrations of acetone (% v/v) for 1 h, phage K 

concentration remained comparable to the control (phage K in PBS) up to acetone 

concentrations of 40%. Past this point, there was a significant decrease in phage viability 

compared to the control, resulting in log reductions of 0.45 (One-way ANOVA, p<0.01), 1.27 

(One-way ANOVA, p<0.0001), and 4.05 (One-way ANOVA, p<0.0001) for acetone 

concentrations of 60, 80 and 90%, respectively (Figure 5.4A).  These results suggest that 

phage K viability might be affected by the dip-coating process; therefore, this may result in 

a reduction in the phage K being successfully released from the film. However, the dip-

coating process only requires minimal contact with acetone, and the solvent is fully 

evaporated before subsequent emersions in the solvent, which could minimise the negative 

effect of acetone on phage K viability. Owing to this, further experiments were conducted to 

evaluate phage K release from the pH-responsive system and the results were compared to 

that observed from the uncoated PPEG films (Chapter 5). 
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In literature, phage have been shown to be tolerant to a wide range of pH values,63,67 so it is 

no surprise that phage K viability was stable in pH-adjusted TSB pH 6.0 – 8.0 (Figure 5.4B). 

While pH 4.0 and pH 10.0 resulted in a significant decrease in phage titre (log reductions of 

0.78 and 0.79, respectively; One-way ANOVA, p<0.001 vs pH 7.0 control) these decreases 

in titre were not clinically significant and could, in part, be due to external factors such as 

human error within the methodology. At extreme pH values there was a clinical and 

significant decrease in phage K titre, with a log reduction of 6.36 observed for both pH 2.0 

and pH 12.0 when compared to the control (pH 7.0). This decrease in phage K titre reached 

the limit of detection of this assay. However, as chronic wounds only rise to pH 8.0 – 9.0, 

phage K was deemed a suitable therapeutic as it was still viable within this pH range. 
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Figure 5.4:  Phage K survival in the presence of A) increasing concentrations of acetone (in PBS), and B) 

increasing pH.of TSB. n = 3, error bars indicate standard deviation. Statistical analysis conducted using a One-

way ANOVA. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

5.4.3.2. In vitro release 

The PPEG system developed in Chapter 4 was subjected to 50 dip-coat layers of 

EUDRAGIT® FS 30 D to successfully entrap both phage K and ciprofloxacin (see Section 

5.4.4). Owing to this, in vitro release studies were carried out over a 24 h period to 

determine the release kinetics of phage K from the pH-responsive polymer in PBS at pH 

8.0. 

The resultant release profiles are shown in Figure 5.5. There was a slow release of phage K 

from the pH-responsive system into the PBS (pH 8.0) over the course of 24 h. After 1 h, 4.0 

log PFU/mL of phage K were released from the system, rising to 5.73 log PFU/mL after 7 h 

incubation in PBS (pH 8.0). After 24 h, 7.62 log PFU/mL of phage K was released, 

corresponding to 91.89% release compared to phage released from the uncoated PPEG film.  
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Figure 5.5: A) Log PFU/mL and B) % Cumulative release in vitro release profiles of phage K from the pH-

responsive films in PBS (pH 7.4, 25 °C). n = 3, error bars indicate standard deviation. 100% cumulative release 

refers to the density of phage K released from the uncoated PPEG film 

Next, mathematical models were used to evaluate the release kinetics of the pH-responsive 

system for phage K release. According to Table 5.1, the release profile with the best fit was 

Korsmeyer-Peppas. However, measurements for the in vitro release kinetics were only 

undertaken for the first 7 hours and as such, the experiment should be repeated to take 

more measurements over a longer time period to obtain a more accurate release profile, as 

the R2 values obtained in Table 5.1 are very low.  

The Korsmeyer-Peppas model is a semi-empirical model that is used to describe drug 

release from polymeric systems and is a useful model for the study of polymeric systems 

where the release mechanism is unknown or when there is more than one type of drug 

release involved. The equation used for the Korsmeyer-Peppas model is as follows: 

log
𝑀(𝑖−𝑙)

𝑀∞
= log 𝐾 + 𝑛 log(𝑡 − 𝑙) 

(12) 

 

Where M∞ is the amount of drug at the equilibrium state, Mi is the amount of drug released 

over time t, K is the release velocity constant, n is the exponent of release in function of time 

t and l is the latency time.  

To accurately determine n, it is recommended to use the portion of release curve until the 

point where Mi/M∞ < 0.60. When n > 1, as it is for this system, it describes the Super Case 

II model of release, whereby during the sorption process there is concurrent breaking of the 

polymer chains (termed solvent crazing). Super Case II transport has been shown for planar 
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structures such as thin films and is observed when the solvent has a high affinity to the 

matrix. As a consequence, there is a rapid penetration of the solvent into the centre of the 

matrix.68  

Table 5.1: Kinetic model and corresponding R2 value for the release of ciprofloxacin from a pH-responsive 

system (PBS, pH 8.0) 

Kinetic Model R2 value 

Zero order 0.4908 

First order 0.4896 

Higuchi 0.3541 

Korsmeyer-Peppas 0.6116 

Hixson-Crowell 0.4911 

5.4.3.3. Stability  

To ensure that the pH-responsive system did not release phage K at pH values <7.0, phage 

K-loaded pH-responsive films were submerged in 2 mL of PBS (pH 6.5) for a maximum of 

5 days at room temperature and assessed for the presence of phage release daily (Figure 

5.6).  
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Figure 5.6: Log PFU/mL of phage K released from the pH-responsive system upon incubation in PBS, pH 6.5 

for up to 5 days at 25 °C. n = 3 and error bars indicate standard deviation. The limit of detection of this assay 

was 2.33 Log PFU/mL 

As shown in Figure 5.6, there was no detectable release of phage K from the polymer system 

over 5 days, with any release of phage K lower than the limit of detection of the assay. This 

result demonstrates the pH-responsiveness of the system, as phage K have been shown to 

be stable in the PPEG system for up to 5 days, with no loss in cell viability (Chapter 4). 

Additionally, this result demonstrates the utility of this system as a wound dressing, as often 
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they are left in situ for 5 – 7 days; hence, if the wound remains uninfected then the wound 

dressing would not release phage K into the surrounding environment.  

5.4.3.4. Colony Biofilm Wound Models 

As the in vitro release results suggested that phage K can be successfully released from the 

pH-responsive system at pH 8.0, the next step was to assess this system in treating 

developing S. aureus infections. Similarly to the biofilms tested in Chapter 4, a modified 

colony biofilm model was used where the film was placed onto developing S. aureus biofilms 

on polycarbonate membranes and incubated at 32 °C for 24 h (Figure 5.7).  

For all three bacterial isolates tested, there was no significant difference in bacterial viability 

when the bacterial isolates were incubated with un-loaded pH-responsive films compared 

to the biofilm only control; therefore, any reduction in bacterial biomass could be attributed 

to the release of phage K from the pH-responsive film.  

When phage K was encapsulated within the pH-responsive film, a significant log reduction 

of 1.96 was observed in S. aureus H560 biofilm density compared to the control (One-way 

ANOVA, p<0.0001).  Likewise, a 1.14 log reduction was observed when the phage K-

encapsulated pH-responsive films were incubated with S. aureus MSSA101 compared to the 

control (One-way ANOVA, p<0.01). However, when S. aureus MRSA252 was incubated 

with phage K-encapsulated pH-responsive films, a log reduction of 0.46 in biofilm density 

was observed compared to the control. While this result was significant (One-way ANOVA, 

p<0.01), the log reduction is not clinically useful as it could be due to external factors such 

as human error within the experimental methodology.  

While the log reductions in bacterial density of S. aureus H560 and S. aureus MSSA101 

corresponded to a 90 – 99% reduction in viable cells, it does not meet the recommended ≥ 

3 log reduction outlined in prEN16756, and therefore this system cannot be considered 

antimicrobial against all three bacterial isolates tested. 

One reason for this decrease in antimicrobial efficacy compared to the uncoated PPEG films 

(Chapter 4) could be due to the difference in the release profile of this pH-responsive 

system. Release of phage K from the pH-responsive system is not as fast compared to the 

PPEG film, consequently, it would take longer for the phage to reach sufficient 

concentrations required to infect and lyse the bacterial cells. This could be the reason why 

the worst results were observed for S. aureus MRSA252, even though this bacterial strain 

was the most susceptible towards the phage loaded-PPEG films evaluated in Chapter 4. By 

the time the pH change had occurred, S. aureus MRSA252 would have been towards the 
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end of its exponential growth, after which there would be a delay in phage K reaching the 

bacteria. As phage are less successful in targeting stationary-phase bacteria, this could 

explain why only a 0.46 log reduction in bacterial density was observed for this pH-

responsive system. Likewise, it could explain why the phage K loaded pH-responsive films 

were more effective towards S. aureus H560, as the pH rise above pH 7.0 occurred earlier 

in the growth cycle, allowing more time for the phage K to be released from the system and 

target metabolically active cells.  
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Figure 5.7: Log CFU/membrane counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms upon incubation with pH-responsive systems (tPPEG) and phage K-loaded pH-responsive 

systems (tPPEG-phage K) 24 h at 32°C. n = 3, error bars indicate standard deviation. Statistical analysis 

conducted using a One-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

 

The corresponding phage counts are outlined in Figure 5.8. The phage K concentration was 

highest when the film was incubated with S. aureus H560, and lowest when incubated with 

S. aureus MRSA252. This is in line with the efficacy witnessed against these bacterial strains 

(Figure 5.7); hence, it could be hypothesised that the phage K-loaded pH-responsive film 

was more effective towards S. aureus H560 as it was able to multiply at the infection site, 

resulting in a reduction in bacterial cell density. However, only three bacterial strains have 

been used in this assay, so to further understand the relationship between pH, biofilm 
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formation, and effective phage release from the system – further repeats of these 

experiments must be undertaken.  
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Figure 5.8: Log PFU/membrane counts of phage K released from the pH-responsive film after incubation with 

S. aureus H560, MRSA252, and MSSA101 biofilms for 24 h at 32°C. n = 3, error bars indicate standard deviation 

 

5.4.4. Ciprofloxacin-loaded Films  

5.4.4.1. Thickness of pH-responsive Layer 

It was important to ensure that the pH-responsive EUDRAGIT® FS 30 D layer was of 

sufficient thickness to prevent any passive diffusion of ciprofloxacin through the system into 

the external environment. Owing to this, ciprofloxacin-loaded PPEG films were dip-coated 

0 – 50 times in EUDRAGIT® FS 30 D before subsequent emersion in 2 mL PBS (pH 6.5) for 

24 h at 25 °C. All ciprofloxacin concentrations were determined using UV-Vis and the 

appropriate calibration curves.  

Upon increasing layers of EUDRAGIT® FS 30 D, there was a decrease in ciprofloxacin 

passively released from the pH-responsive films at pH 6.5, with a 92.43% reduction in 

release compared to the uncoated control for 20 layers, rising to 98.48% with 50 layers 

(Figure 5.9). As 50 layers resulted in a minimal non-specific release of ciprofloxacin, this 

was the thickness chosen for all experiments conducted.  
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Figure 5.9: Concentration of ciprofloxacin released from pH-responsive systems with increasing EUDRAGIT® 

FS 30 D layers, incubated in 2 mL PBS (pH 6.5) for 24 h at 25 °C. n = 3, error bars indicate standard deviation 

5.4.4.2. In vitro Release 

Next, the in vitro release kinetics was determined for ciprofloxacin release from pH-

responsive films in pH (pH 8.0) at 25 °C. As shown in Figure 5.10, there was a gradual 

release of ciprofloxacin from the film, with 6.14% of ciprofloxacin released after 30 minutes, 

rising to 10.94% and 30.62% after 1 and 4 h, respectively. After 19 h, 42.02% of ciprofloxacin 

was released from the film, where 100% was defined as the concentration of ciprofloxacin 

released from the uncoated PPEG film (411.67 ± 21.62 µg/mL; Chapter 4).  
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Figure 5.10: In vitro % cumulative release profile of ciprofloxacin from pH-responsive films in PBS (pH 8.0, 

25 °C). n = 3, error bars indicate standard deviation. 100% cumulative release refers to the concentration of 

ciprofloxacin released from the uncoated PPEG film 

Next, mathematical models were used to evaluate the release kinetics of the pH-responsive 

system for ciprofloxacin release. According to Table 5.2, the release profile with the best fit 
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was first-order kinetics, but it is interesting to note that for Korsmeyer-Peppas, the n value 

obtained was 0.577, which suggests non-fickian diffusion; therefore, there was an element 

of polymer swelling and erosion. 

Table 5.2: Kinetic model and corresponding R2 value for the release of ciprofloxacin from a pH-responsive 

system (PBS, pH 8.0) 

Kinetic Model R2 value 

Zero order 0.9857 

First order 0.9950 

Higuchi 0.9614 

Korsmeyer-Peppas 0.9795 

Hixson-Crowell 0.9857 

 

In first order kinetics, the rate is directly proportional to the concentration of drug, i.e., the 

higher the concentration of drug, the faster the reaction, and can be expressed using the 

following equation:68 

𝐷𝐶

𝑑𝑡
=  𝐾𝑖𝐶 

(13) 

 

Where Ki is the first order rate constant, expressed as time-1.  

The equation can be further derived to:  

log 𝑄1 = log 𝑄0 +
𝐾𝑖𝑡

2.303
 

(14) 

 

Where Q1 is the amount of active agent released on time t,  Q0 is the initial amount of drug 

dissolved, and Ki is the first-order constant.  

Equation 14 corresponds to linear kinetics, and the graph of log (% drug remaining) versus 

time would result in a straight line, with an angular coefficient of Ki/2.303 and a linear 

coefficient equal to log Q0.68  

5.4.4.3. Stability 

Similarly to phage-loaded pH-responsive films, experiments were undertaken to determine 

the stability of the ciprofloxacin-loaded pH-responsive films at pH 6.5. These films were 

submerged in 2 mL of PBS (pH 8.0) for a maximum of 5 days at room temperature and the 

solution was assessed for the presence of ciprofloxacin daily. In this instance, 100% 
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cumulative release was the concentration of ciprofloxacin released from the un-coated 

PPEG film (411.67 ± 21.62 µg/mL; Chapter 4).  
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Figure 5.11: % Cumulative release of ciprofloxacin from the pH-responsive system upon incubation in PBS, 

pH 6.5 for up to 5 days at 25 °C. n = 3 and error bars indicate standard deviation. 100% cumulative release refers 

to the concentration of ciprofloxacin released from the uncoated PPEG film 

The results show that there was minimal passive diffusion of ciprofloxacin at pH 6.50, with 

only 6.89% of ciprofloxacin released after 5 days incubation (corresponding to 16.42 

µg/mL). Therefore, it can be concluded that the pH-responsive film only releases its 

therapeutic load in response to an increase in pH above pH 7.0. Further experiments could 

be conducted in the future to reduce the amount of passive diffusion from the film, but this 

may alter the film and subsequently reduce the efficacy of the film against S. aureus 

biofilms.  

5.4.4.4. Colony Biofilm Wound Models 

The effectiveness of ciprofloxacin-loaded pH-responsive films were investigated against 

developing S. aureus biofilms (Figure 5.12).  

As seen for phage-loaded pH-responsive films, there was no significant difference in 

bacterial viability when the bacterial isolates were incubated with un-loaded pH-responsive 

films compared to the biofilm only control for all bacterial isolates tested; therefore, any 

reduction in bacterial biomass could be attributed to the release of ciprofloxacin from the 

pH-responsive film. For S. aureus H560, there was a statistically significant log reduction 

in bacterial density compared to the biofilm control (log reduction of 3.13; One-way 

ANOVA, p<0.0001). This log reduction was similar to that observed for the uncoated PPEG 
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film (Chapter 4) and met the recommended ≥ 3 log reduction outlined in prEN 16756; 

therefore, this system can be considered antimicrobial against S. aureus H560. 

For S. aureus MRSA252, there was a statistically significant log reduction in bacterial 

density observed upon incubation with the ciprofloxacin-loaded pH-responsive film (log 

reduction of 1.23; One-way ANOVA, p<0.0001). This result was similar to that observed for 

the uncoated PPEG film (Chapter 4). Similarly, there was a significant log reduction in S. 

aureus MSSA101 bacterial density upon incubation with ciprofloxacin-loaded pH-

responsive system (log reduction 2.45; One-way ANOVA, p<0.0001); however this was one 

log lower than what was observed for the uncoated PPEG film (3.49, Chapter 4). These log 

reductions do not meet the criteria outlined in prEN 16756; therefore this system cannot be 

considered antimicrobial against S. aureus MRSA252 and MSSA101. 
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Figure 5.12: Log CFU/membrane counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms upon incubation with pH-responsive systems (tPPEG) and ciprofloxacin-loaded pH-

responsive systems (tPPEG-ciprofloxacin) for  24 h at 32°C. n = 3, error bars indicate standard deviation. 

Statistical analysis conducted using a One-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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5.4.5. Combination-loaded Films  

5.4.5.1. Stability  

To ensure that the pH-responsive system did not release phage K and ciprofloxacin at pH 

values <7.0, the antimicrobial-loaded pH-responsive films were submerged in 2 mL of PBS 

(pH 6.5) for a maximum of 5 days at room temperature and the solution assessed for the 

presence of phage K and ciprofloxacin daily. 

 As shown in Figure 5.13, there was no detectable release of phage K from the polymer 

system over 4 days, with any release of phage K lower than the limit of detection of the assay. 

At day 5, there was an observable increase in phage K concentration within the solution; 

however, it only corresponded to an average increase of 0.3 log PFU/mL. As this release is 

minimal, the film was deemed sufficient for this proof-of-concept, pH-responsive design as 

the polymer became unstable towards the end of its therapeutic lifetime.   

T im e  / d a y s

L
o

g
 P

F
U

/m
L

0 1 2 3 4 5

1 .5

2 .0

2 .5

3 .0

3 .5

 

Figure 5.13: Log PFU/mL of phage K released from the pH-responsive system upon incubation in PBS, pH 6.5 

for up to 5 days at 25 °C. n = 3 and error bars indicate standard deviation. The limit of detection of this assay 

was 2.33 Log PFU/mL 

There was no difference in stability of ciprofloxacin within the pH-responsive systems when 

encapsulated with phage K compared to without (Figure 5.11 vs Figure 5.14). After 5 days 

incubation in PBS (pH 6.5) there was 7.76% release of ciprofloxacin from the system 

(corresponding to a mean ciprofloxacin concentration of 31.93 µg/mL).  
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Figure 5.14: % Cumulative release of ciprofloxacin from the pH-responsive system upon incubation in PBS, 

pH 6.5 for up to 5 days at 25 °C. n = 3 and error bars indicate standard deviation. 100% cumulative release refers 

to the concentration of ciprofloxacin released from the uncoated PPEG film 

5.4.5.2. Colony Biofilm Wound Models 

The efficacy of the phage K and ciprofloxacin-loaded pH-responsive films were evaluated 

against developing S. aureus biofilms (Figure 5.15).  

As mentioned previously, there was no significant difference in bacterial viability when the 

bacterial isolates were incubated with un-loaded pH-responsive films compared to the 

biofilm only control for all bacterial isolates tested; therefore, any reduction in bacterial 

biomass could be attributed to the release of ciprofloxacin or phage from the pH-responsive 

film.  

For S. aureus H560, there was a significant log reduction in bacterial biomass compared to 

the control (log reduction of 1.89; One-way ANOVA, p<0.0001); this was similar to what 

was observed for the uncoated PPEG films (log reduction of 1.19; Chapter 4). There was also 

a significant log reduction in S. aureus MSSA101 biofilm biomass upon incubation with the 

phage K and ciprofloxacin-loaded pH-responsive films (log reduction of 2.04; One-way 

ANOVA, p<0.001); this was less effective than the uncoated PPEG film (log reduction of 

3.23; Chapter 4), probably due to the delay in treatment while waiting for the pH of the 

biofilm to rise to a pH above 7.0.  

Finally, for S. aureus MRSA252 there was a log reduction of 0.89 in bacterial biomass 

compared to the control; however, this reduction was not statistically significant. As the 

uncoated PPEG film containing phage K and ciprofloxacin resulted in a 2.22 log reduction, 

the difference in bacterial density could be attributed to the delay in the release of the 
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therapeutic because of the slow release profile and the late-stage pH increase in S. aureus 

MRSA252 biofilms. 
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Figure 5.15: Log CFU/membrane counts of A) S. aureus H560, B) S. aureus MRSA252, and C) S. aureus 

MSSA101 biofilms upon incubation with pH-responsive systems (tPPEG) and phage K and ciprofloxacin-loaded 

pH-responsive systems (tPPEG-combination) for 24 h at 32°C. n = 3, error bars indicate standard deviation. 

Statistical analysis conducted using a One-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

Furthermore, mixed-model analysis can be performed on the Log CFU/mL counts to 

determine the nature of the interaction between the antibiotic and phage within the 

combination therapy (synergistic, additive, or antagonistic), as described by Kumaran et 

al.69  The equation used to determine this interaction is shown below (Equation 15): 

𝐶𝑂𝐸𝐹𝑖𝑛𝑡 = log10(𝐴𝐵𝑅) − (log10(𝐴𝑅) + log10(𝐵𝑅)) (15) 

 

COEFint is the co-efficient of the interaction, ABR is the reduction in bacterial counts followed 

by the combined treatment (AB), AR is the reduction on bacterial counts due to treatment A 

and BR is the reduction in bacterial counts due to treatment B.   
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An interaction was defined as being synergistic if the value > 0, additive if the value = 0, and 

antagonistic when the value < 0. The calculated co-efficients for this assay are shown in 

Table 5.3.  

The calculated co-efficients highlight the results obtained in Figure 5.15, for all bacterial 

isolates tested the combination of phage K and ciprofloxacin resulted in an antagonistic 

interaction as all co-efficient values are negative. Further optimisation assays, i.e., altering 

the concentrations of phage K and ciprofloxacin could be conducted in the future to 

investigate whether it would be possible to achieve PAS within this pH-responsive system.  

Table 5.3: Co-efficient of the interaction between phage K and ciprofloxacin from mixed-model analysis. An 

interaction was defined as being synergistic if the value > 0, additive if the value = 0, and antagonistic when 

the value < 0 

Bacterial strain Co-efficient  

S. aureus H560 -3.20 

S. aureus MRSA252 -0.81 

S. aureus MSSA101 -2.15 

 

The corresponding phage concentrations are shown in Figure 5.16. There is a marked 

decrease in phage concentration compared to the phage K released in the monotherapy pH-

responsive polymer (Figure 5.8), especially for S. aureus MRSA252 and MSSA101, which 

yielded phage concentration below the limit of detection of the assay.  
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Figure 5.16: Log PFU/membrane counts of phage K released from the pH-responsive film after incubation 

with S. aureus H560, MRSA252, and MSSA101 biofilms for 24 h at 32°C. n = 3, error bars indicate standard 

deviation 

This result could be due to the release profiles of phage K and ciprofloxacin being different, 

with ciprofloxacin releasing at a faster rate compared to phage K. As briefly mentioned in 
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Chapter 3 and Chapter 4, phage-antibiotic synergy has been shown to be dependent on the 

release of both antimicrobials, with greater PAS witnessed when phage is released prior to 

the conventional antimicrobial to allow time for effective phage replication. Therefore, the 

antagonistic effect observed in the combination therapy (Figure 5.15) could be due to the 

fact that ciprofloxacin was the first antimicrobial to reach the S. aureus infection, 

eliminating the bacterial cells before phage K has a chance to launch a successful attack. 

Therefore, further work would need to be conducted to investigate the optimal 

concentrations of phage K and ciprofloxacin loaded into the pH-responsive system in order 

for PAS to be witnessed.  
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5.4. Conclusions and Future Work 

This proof-of-concept study demonstrated the utility of pH-responsive wound dressings for 

the treatment of developing S. aureus infections. This chapter found that pH could be used 

as a possible release trigger, as all three S. aureus isolates tested were shown to have an 

increase in pH upon biofilm formation. However, to ensure that it is possible to generalise 

this statement to all S. aureus isolates, further experiments should be conducted to measure 

the pH change in biofilm formation of multiple S. aureus strains.  

The PLA-PEG (PPEG) film encapsulating phage K and/or ciprofloxacin were dip-coated 

with 50 layers of EUDRAGIT® FS 30 D to prevent the non-triggered passive release of the 

therapeutics from the pH-responsive system. This coating prevented the release of phage K, 

and resulted in minimal release of ciprofloxacin, for 5 days at pH 6.5 – a pH lower than the 

dissolution value of EUDRAGIT® FS 30 D.  

When incubated at pH 8.0, the release profiles of phage K and ciprofloxacin were different, 

with phage K exhibiting Korsmeyer-Peppas release, while ciprofloxacin resulted in faster, 

first-order release. While both release models are diffusion-based, the difference in release 

profiles could be due to the relative size of the antimicrobials; phage K is much larger in 

comparison to ciprofloxacin, hence the release from the matrix is dependent on the polymer 

eroding and creating larger pores to allow for phage diffusion into the surrounding 

environment. Conversely, ciprofloxacin is smaller, so the polymer doesn’t need to degrade 

to the same extent to allow for ciprofloxacin to be released from the matrix into the 

surrounding environment. However, the release profile obtained for phage K should be 

repeated to confirm this result, as the R2 values calculated from the mathematical modelling 

were low, lowering the confidence in this result.  

Finally, these pH-responsive polymers were tested against three developing S. aureus 

biofilms. While the efficacy of the monotherapies encapsulated within the pH-responsive 

system were lower than those observed for the non-triggered PPEG system, the films still 

displayed a significant reduction in bacterial biomass.  

In order to try and improve the efficacy of the pH-responsive film, a combination of phage 

K and ciprofloxacin was used at the same loading concentrations as the monotherapies. 

Unfortunately, the combination was not able to increase the efficacy of the system, in fact 

the combination displayed an antagonistic interaction. This was thought to be due, in part, 

to the slower release of phage K from the system compared to the ciprofloxacin, preventing 

the phage from being able to act effectively.  
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Finally, it would be useful to have a system that utilises the phage K – ciprofloxacin PAS 

observed in Chapter 3, to minimise the spread of antibiotic resistance. Owing to this, several 

studies could be conducted to improve the efficacy of the combination. Firstly, 

investigations should be carried out to determine the effect of different loading 

concentrations of ciprofloxacin and phage K. Additionally, it could be possible to create a 

modified wound dressing, whereby the individual therapies are contained within their own 

pH-responsive system, and then combined to create the wound dressing. The advantage of 

this approach is less Eudragit® FS 30 D coating on the phage pH-responsive polymer; as 

phage are larger molecules, a thinner coating would be needed for complete encapsulation. 

Owing to this, the release of phage K from the polymer would be quicker, increasing the 

efficacy of the combination of phage K and ciprofloxacin by potentially producing a 

synergistic effect, resulting in a greater reduction in S. aureus biofilm density.  

Overall, these results show that pH can be used as a trigger for the selective release of 

antimicrobials from a pH-responsive system. Additionally, the antimicrobial-loaded pH-

responsive systems were capable of reducing S. aureus biofilm density, both as a 

monotherapy and as a combination therapy. While further work must be carried out to 

optimise these films, this Chapter has demonstrated their utility as an antimicrobial wound 

dressing. Furthermore, this system can be optimised to contain different antimicrobials to 

treat a variety of different microbial infections, it is not limited to S. aureus infections or 

phage K and ciprofloxacin as antimicrobials.  
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Chapter 6: TCF-based Fluorescent Probe for 

the Detection of Alkaline Phosphatase 

6.1. Overview 

The research presented in this chapter describes the synthesis of the novel fluorescent and 

colorimetric probe, TCF-ALP (Scheme 6.1). Experiments were conducted with TCF-ALP 

to determine its limit of detection, selectivity, and kinetic parameters towards alkaline 

phosphatase (ALP). As TCF-ALP was also found to be active towards acid phosphatase 

(ACP), further experiments were conducted to determine the selectivity of TCF-ALP 

towards both ACP and ALP at each enzyme’s optimal pH (pH 5.0 and pH 9.2, respectively) 

and at neutral pH (pH 7.1).  

The aim of this chapter was to build a foundation of knowledge so TCF-ALP could be 

further exploited for the detection of S. aureus species; discussed in greater detail in 

Chapter 7. 

  

 

 

Scheme 6.1: A TCF-based fluorescent probe (TCF-ALP) for the detection of alkaline and acid phosphatase 
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6.2. Introduction 

6.2.1. Fluorescence 

6.2.1.1. Basics of Fluorescence 

Luminescence is the emission of light from electronically exited states of any substance and 

can be divided into two categories, fluorescence and phosphorescence.1 The process of 

fluorescence and phosphorescence (absorption, excitation and emission) is best illustrated 

with a Jablonski diagram (Figure 6.1).  

 

Figure 6.1: A Jablonski diagram showing S0, S1, and S2 singlet energy levels and the T1 triplet level. Internal 

conversion and intersystem crossing, which lead to fluorescence and phosphorescence, respectively, are 

depicted. Figure reproduced from Gardner et al with permission2  

The singlet ground, first, and second electronic states are depicted by S0, S1, and S2, 

respectively. At each of these energy levels, there are a number of vibrational energy levels, 

denoted by 0, 1, 2, etc. The transitions between states are often shown as vertical lines as 

transitions occur within a time-frame too short for significant displacement of nuclei 

(Franck-Condon principle).1  

For both fluorescence and phosphorescence, the first step is absorption. Absorption of a 

photon occurs when an external light source emits light of a sufficient wavelength, and 

typically occurs in molecules with the lowest vibrational energy. This excites an electron to 

a higher vibrational level of either S1 or S2, before rapid relaxation to the lowest vibrational 

level of S1 in a process called internal conversion (IC).1 This occurs as the electron is an 

unstable configuration and consequently adopts a more semi-stable configuration in a 
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slightly lower energy level via non-radiative processes such as vibrational relaxation or heat 

to the solvent.1  Additionally, IC occurs faster than fluorescence lifetimes, therefore it is 

generally complete prior to emission.1 This excited state is higher in energy than the ground 

state, resulting in a thermodynamic driving force towards the ground state.3  

For fluorescence, the electron of the excited orbital is of the opposite spin to the electron in 

the ground state orbital (paired), therefore, the return to the ground state is spin-allowed 

and occurs rapidly by emission of a photon via fluorescence.1 

On the other hand, phosphorescence occurs when the electron in the S1 state undergoes a 

spin conversion to the excited triplet state T1 in a process called intersystem crossing (ISC). 

This process is spin-forbidden as the electron now has the same spin orientation as the 

electron in the ground state. As a result of this, the rate of emission is slower, and generally 

shifted towards longer wavelengths, compared to fluorescence (10-3 – 100 s-1). Molecules 

containing heavy atoms such as bromine and iodine are frequently phosphorescent.1 

Fluorescence spectral data are generally presented as emission spectra. According to Kashas 

rule, upon excitation of an electron into the higher energy levels, the excess energy is quickly 

dissipated, leaving the fluorophore in the lowest vibrational level of S1. Because of this rapid 

relaxation, emission spectra are usually independent of excitation wavelength. Additionally, 

the symmetric nature of these spectra is a result of the same transitions being involved in 

both absorption and emission and the similarities of the vibrational energy levels of S0 and 

S1. (Figure 6.2)1  

 

Figure 6.2: Diagram depicting the excitation and emission spectra of a fluorescent molecule, and the 

corresponding stokes shift 
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Excitation occurs in a shorter time frame compared with structural relaxation; hence, the 

exited state is initially formed at the optimal structure for the ground state. However, as the 

excited state molecules subsequently undergo structural relaxation,3 emission leads to the 

formation of the ground state that has the optimal structure of the excited state. These 

effects narrow the energetic separation of the ground and excited state, which leads to 

emission at longer wavelengths compared to absorption – termed the stokes shift.3  

6.2.1.2. Design of Fluorescent Probes 

Many substrates, particularly those with delocalised electronic structures, e.g., conjugated 

π systems, exhibit fluorescent properties.3 Owing to this, fluorescence spectroscopy has 

become a useful tool for the detection of certain analytes via the creation of fluorescent 

probes.2  

Fluorescent probes change their fluorescence emission in response to a trigger, such as a 

binding event, chemical reaction, or change in the immediate environment.4 In the 

literature, triggers have included reactive oxygen and nitrogen species, metal ions, and 

enzymes – with both in vitro and in vivo studies performed.5–10 

Fluorescent probes are often used in drug discovery and medical applications as they offer 

high selectivity  and sensitivity,11,12 are easy to use,3 are non-invasive,13 and capable of real-

time monitoring11,12 with minimal disruption to the sample.1,14 Additionally, they are easy to 

synthesise and modify depending on the target or use of the probe.15 

Fluorescent probes are generally comprised of three units, a receptor, linker and a reporter.2 

The receptor unit should be specific towards the target analyte by being designed in such a 

way to minimise off-target reactions and be non-toxic to avoid damage to the biological 

system under investigation. The receptor is connected to a reporter unit via a linker, 

designed to optimally position the two units and modulate solubility2.  The reporter unit of 

the probe is the fluorophore; like the receptor unit, it should be non-toxic to avoid damaging 

the biological system. The choice of fluorophore is important; fluorophores that have 

absorption and emission wavelengths in or near the near-infrared (NIR) region are often 

advantageous as they are more biocompatible, have deeper tissue penetration, and have 

minimal interference from background auto-fluorescence of the sample.16–19  

Several requirements need to be considered when designing fluorescent probes, including 

efficient excitation, limited auto-fluorescence, limited cellular photodamage, a high molar 

extinction coefficient and quantum yield (enabling the use of lower concentrations and 
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therefore reduced toxicity), and the presence of a highly-selective functional group that 

recognises the target.3,20  

6.2.1.3. Fluorescence Mechanisms 

There are four fluorescence mechanism commonly used in the design of fluorescent probes: 

Photoinduced Electron Transfer (PET), Forster Resonance Energy Transfer (FRET), 

Excited State Intramolecular Proton Transfer (ESIPT), and Internal Charge Transfer (ICT). 

6.2.1.3.1. Photoinduced Electron Transfer 

Suppression of photoinduced electron transfer (PET) is one of the most commonly used 

methods for converting a non-fluorescent molecule into a fluorescent molecule.21 PET 

involves excitation of an electron from the highest occupied molecular orbital (HOMO) of a 

fluorophore (acceptor) to its lowest unoccupied molecular orbital (LUMO). In the 

fluorescent probes ‘off’ state, an electron from the HOMO of the receptor (donor) moves to 

fill the HOMO of the fluorophore, resulting in fluorescence quenching and the election in 

the LUMO of the fluorophore returning to the ground state via a non-radiative pathway 

(Figure 6.3).21,22 For this to occur, the HOMO of the receptor must be slightly higher than 

the HOMO of the fluorophore.21,22 This is called a-PET; d-PET can also occur where the 

receptor is excited, however, the same mechanisms happen, and the fluorescence is 

quenched.15,23  Upon binding of the target, the redox potential of the receptor is raised so 

that the relevant HOMO becomes lower in energy compared to the HOMO of the 

fluorophore. Consequently, PET is no longer possible, and fluorescence occurs.3  

 

Figure 6.3: Photoinduced electron transfer (PET) quenching by a donor (D). Adapted from Fu et al with 

permission by The Royal Society of Chemistry©21 
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6.2.1.3.2. Förster Resonance Energy Transfer 

Förster resonance energy transfer (FRET) is a non-radiative energy transfer process that 

does not rely on the classic photon emission/absorption phenomenon.24 Instead, a FRET 

molecule consists of a donor and acceptor fluorophore,3 which transfer their energies via 

long-range dipole-dipole resonance interactions.2,20  

If the FRET acceptor is not close enough to the donor fluorophore when the donor 

fluorophore is exited, the exited electron decays to the ground state via a non-radiative 

pathway.20 However, if the distance between the donor and acceptor fluorophores is 

between 10 – 100 Å,20,21 the energy transfers from the donor to the acceptor fluorophore 

with a lower energy excited state, via a non-radiative dipole-dipole coupling mechanism, 

provided that there is a matching acceptor excited state vibrational level available.3,21,25 After 

excitation, the excited acceptor emits a photon and returns to the ground state (Figure 6.4). 

The efficiency of this energy transfer is inversely proportional to ×106 distance between the 

two FRET units.26–28 

 

 

Figure 6.4: Energy diagram for FRET. The double-headed arrow denotes the energy-matching of the lowest 

energy vibrational state of the donor excited state with a high energy vibrational level of the acceptor excited 

state. Adapted from Fu et al with permission by The Royal Society of Chemistry©21 

To enhance FRET efficiency, there needs to be good overlap between the emission spectra 

of the donor and the absorption spectra of the acceptor, correct orientation of the transition 
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dipoles of the donor and acceptor fluorophore, and the donor fluorophore needs to have a 

high extinction coefficient and a high quantum yield.20,21  

6.2.1.3.3. Excited-state Intramolecular Proton Transfer 

Excited-state intramolecular proton transfer (ESIPT) is a four-level photochemical process 

involving a fluorophore that can tautomerize, often utilising switching between enol and 

keto forms; therefore, it must contain an intramolecular hydrogen bond between a 

hydrogen donor and acceptor (Figure 6.5). The ground state fluorophore typically exists in 

the enol form, but upon excitation, the electron density is redistributed, ensuing the greater 

acidity of the hydrogen bond donor group and basicity of the hydrogen acceptor group. As 

a result, a rapid enol to keto phototautomerization occurs, with the excited enol form (E*) 

converting to the excited keto form (K*), which is stabilised by the intermolecular hydrogen 

bond.29 After radiative decay, a reverse proton transfer takes place to produce the original 

enol form.30 However, exceptions do exist where the fluorescence observed for ESIPT 

molecules is a result of the enol form.31  

 

Figure 6.5: Schematic representation of the ESIPT process. Adapted from Sedgwick et al with permission by 

The Royal Society of Chemistry©30  

6.2.1.3.4. Internal Charge Transfer 

Fluorescent probes utilising internal charge transfer (ICT) have both electron donating and 

electron accepting groups as ICT relies on the intramolecular movement of charge, often 

due to these “push-pull” groups.23 Upon excitation, there is charge transfer from the 

electron donor to the electron acceptor, thereby changing the emission peak of the 

fluorescence spectra (Figure 6.6).31,32 If the target analyte interacts with the electron 
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donating group, there is a blue-shift (increase in energy, decrease in wavelength) in the 

absorption spectrum and concurrent decrease of the extinction coefficient. Conversely, if 

the target analyte interacts with the electron accepting group, there is a red-shift (decrease 

in energy, increase in wavelength) and concurrent increase of the extinction coefficient.15  

 

Figure 6.6: Energy diagram correlating ICT with solvation, in polar solvents. Adapted from Fu et al with 

permission by The Royal Society of Chemistry©21 

6.2.1.3.4.1. TCF-based Fluorescent Probes 

Dicyanomethylene-3-cyano-4, 5, 5-trimethyl-2, 5-dihydrofuran (TCF)-based probes are 

examples utilised in the literature that exploit the ICT mechanism of fluorescence. TCF has 

three conjugated, electron-withdrawing cyano groups,33,34 and its derivative TCF-OH has a 

donor-π-acceptor (D-π-A) structure suitable for ICT.35–37  

TCF has been used to construct colorimetric and long-wavelength probes, resulting in 

reduced  interference from the auto-fluorescence of the samples.17,34,37–39 TCF has also been 

used to develop non-linear optical materials,40,41 and has been used in red fluorophore 

bioimaging42,43  and pH sensing.44 Recently, a variety of TCF-based probes have been used 

for biological imaging.33,34,36,37,45,46  

6.2.2. Enzymes 

Enzyme are proteinaceous biological catalysts (also called biocatalysts), capable of 

accelerating chemical reactions that facilitate many biological processes within living cells 

without being consumed or altered.46 Enzymes are highly specific, both in the reactions they 

catalyse and the substrates that they target.47 As enzymes are proteins, they can lose their 

catalytic activity upon exposure to high temperatures, extreme pH, and denaturing agents.48 

Additionally, some enzymes contain a non-protein component, known as a co-factor. These 

co-factors are typically metals, such as iron, manganese, cobalt, copper or zinc; however, 
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other organic molecules have been known to act as co-factors – in which case, it is called a 

co-enzyme.49 

Enzymes work by lowering the activation energy required to reach the intermediate or 

transition state, therefore more molecules reach this transition state, increasing the rate of 

the reaction (Figure 6.7). Additionally, enzymes achieve this without modifying the net 

energy change or altering the equilibrium position of the reaction, which is 

thermodynamically determined.48,50  

 

Figure 6.7: Energy diagram depicting a catalysed (red) and un-catalysed reaction (blue), with the reaction 

proceeding from left to right. In the presence of an enzyme the activation energy is lowered, resulting in an 

increase in rate 

 

During the course of the reaction, the substrate binds non-covalently to the active site of the 

enzyme to form a transient enzyme-substrate [ES] complex. The substrate bound to the 

enzyme then undergoes structural changes, resulting in the formation of the product and 

the unchanged enzyme (Equation 1):50 

 

 

(1) 

Enzymes are highly specific due to their complex protein structure, with two main binding 

models proposed. The first model is the “lock and key” hypothesis, proposed by Fischer in 

1894 (Figure 6.8A).48 This model presumes that the catalytic site of the enzyme is rigid, and 

the substrate has the correct shape to fit into this site.48 However, this model requires a high 

level of rigidity that is incompatible with current knowledge of enzymes’ molecular 

structures, such as changes to the enzyme structure in the presence of allosteric 

modulators.48,50  
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Another model termed the “induced fit” hypothesis has been proposed by Koshland, which 

is more accepted in the academic community (Figure 6.8B). 50 It hypothesises that the 

enzyme structure is flexible, not rigid. Upon contact with the correct substrate, 

conformational changes within the enzyme occur (i.e., the enzyme adapts its structure to 

the optimal conformation required to form the ES complex).50  

 

Figure 6.8: Schematic of enzyme-substrate binding: A) the lock-and-key model and B) the induced-fit 

model, where substrate binding distorts the conformations of both substrate and enzyme 

6.2.2.1. Enzyme Kinetics 

Enzyme kinetics is the study of various factors that determine the speed of enzyme-

catalysed reactions.49 The activity of an enzyme can be determined experimentally by 

measuring the initial velocity of the conversion of differing concentrations of substrate 

against a fixed concentration of enzyme.49 In steady-state kinetics, this is the phase where 

the rate of formation of intermediates and the rate of decomposition remain the same, thus 

the concentrations of reactive intermediates remains the same.48 During this reaction, 

substrate concentration is greater than enzyme concentration.48 This substrate-activity 

relationship is well known, with Michaelis-Menten first describing this phenomenon. Put 

simply, at high concentrations of substrate, a maximum velocity of reaction is reached (first 

order48); however, upon increasing substrate concentration, a point is reached where all the 

enzymes’ active sites are occupied, thus the enzyme becomes saturated.50 If the substrate 

concentration continues to increase past this point, a steady-state is achieved, and the 

reaction rate does not increase any further – the reaction behaves as zero order.50 Therefore, 

steady-state enzyme kinetics assumes that a catalytic reaction remains constant if the 

reaction is not exposed to continuous change.48  

    

    

  

A) 

B) 
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Michaelis and Menten were the first people to derive simple assumptions about enzymatic 

reactions from first principles.49 The main concept of Michaelis-Menten kinetics is that the 

reaction takes place via the formation of the ES complex, which once formed can create the 

product (k2) or dissociate in the reverse direction without the formation of the product (k-1) 

(Equation 1).  

The Michaelis-Menten derivation requires two important assumptions: firstly, it only 

considers the initial velocity of the reaction, where the product concentration will be 

negligible ([S] > [P]). Therefore, it is possible to ignore the possibility of the product 

reverting back to the substrate. Secondly, it assumes that the concentration of the substrate 

exceeds the concentration of enzyme ([S] > [E]).49 

The derivation begins with an expression of the initial rate for the formation of the product. 

This is based upon the rate constant k2 and the concentration of the ES complex, as 

follows:49 

 

𝜐0 =
𝑑[𝑃]

𝑑𝑡
= 𝑘2[𝐸𝑆] 

(2) 

The concentration of ES is unknown; hence, it needs to be expressed in terms of known 

values. In a steady-state approximation it is possible to assume that [ES] remains constant, 

even though [S] and [P] concentrations can vary.49 The rate of formation of ES and the rate 

of its breakdown must therefore balance, where: 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐸𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =  𝑘1[𝐸][𝑆] (3) 

and  

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐸𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 = (𝑘−1 + 𝑘2)[𝐸𝑆] (4) 

Hence, at steady state: 

𝑘1[𝐸][𝑆] = (𝑘−1 + 𝑘2)[𝐸𝑆] (5) 

Solving for [ES]: 
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[𝐸𝑆] =  
𝑘1[𝐸][𝑆]

𝑘−1 + 𝑘2
 (6) 

 

The Michaelis constant, Km, can be defined as follows: 

𝐾𝑚 =  
𝑘−1 + 𝑘2

𝑘1
 (7) 

Thus, equation (6) can thus be simplified to: 

[𝐸𝑆] =  
[𝐸][𝑆]

𝐾𝑀
 (8) 

Since [S] > [E], the concentration of free substrate [S] is almost equal to the total 

concentration of substrate, and the concentration of uncombined enzyme [E] is equal to the 

total enzyme concentration [E]T minus [ES]. Including these terms into Equation 8 and 

solving for ES gives: 

[𝐸𝑆] =  
[𝐸]𝑇[𝑆]

[𝑆] + 𝐾𝑀
 (9) 

We can then introduce this term into Equation 2 

𝜐0 = 𝑘2[𝐸] 𝑇

[𝑆]

[𝑆] + 𝐾𝑀
 (10) 

The term k2[E]T represents Vmax, the maximal velocity. Thus, the final equation is: 

𝜐0 =
𝑉𝑚𝑎𝑥[𝑆]

[𝑆] + 𝐾𝑀
 (11) 

The Michaelis constant, Km, is used to define the relationship between initial velocity and 

substrate concentration.49 Km corresponds to the substrate concentration at which the 

reaction rate reaches a value equal to half the maximum. The Km value is characteristic for 

each enzyme and each of its substrates when determined under the same experimental 

conditions,50 and is typically in the lower millimolar range.49 The value is inversely related 

to the affinity of the enzyme for its substrate; higher affinity to a substrate is indicated by a 

lower Km value.50  
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To reiterate, Vmax is the point of maximal velocity, where the enzyme is becoming close to 

saturation with the substrate. It is important to note that Vmax is a theoretical limit that 

cannot be achieved experimentally.49  

6.2.2.2. Clinical Diagnostic Applications of Enzymes 

Enzymes can be used for the detection and/or diagnosis of disease.51 Abnormalities in the 

normal physiology within the human body may cause a disruption to the concentration of 

particular enzymes, which can be exploited for disease diagnosis.52 Certain enzymes specific 

to diseased organs can be released into blood circulation; therefore, measuring these 

enzyme activities has been employed to aid clinical diagnosis of disease.51 There are a wide 

range of diseases where enzymes are used as ‘markers’, including cancer, diabetes, 

autoimmune diseases, and liver and heart malfunctions.52 For example, lactose 

dehydrogenase has two different isozymes in heart and skeletal muscle; any increase of this 

enzyme in the blood indicates tissue damage and the presence of the heart isozyme is 

indicative of a heart attack. Additionally, enzymes have been used as markers to determine 

the pathology of disease. For example, creatine kinase has been associated with myocardial 

infarction and muscle diseases, while alanine aminotransferase is known to be a liver-

specific indicator of disease.53 Commonly used enzymes for the diagnosis of various disease 

are outlined in Table 6.1.  

Table 6.1: Enzymes commonly used in the clinical diagnosis of disease. Adapted from Sarup Singh et al51   

Enzyme Disorder/disease Reference 

Acid phosphatase Malaria 54 

Alkaline phosphatase Chronic kidney disease 55 

Amylase Pancreatitis 56 

Aspartate aminotransferase Hepatic diseases 57 

Creatine kinase Myocardial damage 58 

Lactate dehydrogenase Necrosis  59 

Leukocyte esterase Urinary tract infection 60 

Lipase Skin disorders 61 

Lysozyme Rheumatoid arthritis 62 

6.2.2.3. Alkaline Phosphatase 

Alkaline phosphatase (ALP) was the earliest serum enzyme to be recognised to have clinical 

significance; in the 1920s it was discovered in high concentrations for bone and liver 

disease.53 ALP is a ubiquitous enzyme found in the majority of human tissues63 and catalyses 

the dephosphorylation process of various substrates, such as nucleic acids, proteins and 

small molecules.64 It also plays an important role in signal transduction and regulation of 
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intracellular processes (cell growth, apoptosis and signal transduction pathways).65 ALP is 

thus regarded a key biomarker in medical diagnosis.64,66 Abnormal levels of ALP in serum 

are an indicator of several diseases including bone disease,67 liver dysfunction,68 breast and 

prostatic cancer,69,70 and diabetes.71 Therefore, there is an increasing need to develop a novel 

system for the rapid and selective detection of ALP activity for use in clinical diagnosis.   

There have been numerous approaches to determining ALP levels, including 

colorimetric,72,73 chemiluminescence,74 electrochemical,75 surface-enhanced Raman 

spectroscopy76 and fluorescence.77,78 While there have been many fluorophores developed 

for assaying ALP activity (organic dyes,79,80 conjugated polymers,81 inorganic 

semiconductor dots,82 noble metal clusters83), many need high probe concentrations and 

have short wavelength emission, which limit their application in biological systems. Owing 

to this, focus has been placed on developing long wavelength/NIR probes, as they enable 

deeper tissue penetration and have reduced background interference from autofluorescence 

of living cells.84–86  

6.2.3. Aims of Study 

The  aim of this chapter was to design a novel fluorescent and colorimetric probe that could 

be used for the detection of ALP to aid in the diagnosis of clinically-relevant diseases. This 

Chapter aimed to: 

• Synthesise a novel fluorescent and colorimetric probe (termed TCF-ALP) 

• Optimise the conditions of the assay required for efficient ALP detection 

• Determine TCF-ALP sensitivity and selectivity 

• Determine the rate of reaction and kinetic parameters for TCF-ALP (Michaelis-

Menten kinetics) 

• To explore the use of ALP in clinically-relevant cell lines  

Additionally, the aim of this Chapter was  to build a foundation of knowledge so TCF-ALP 

could be further exploited for the detection of S. aureus species; discussed in greater detail 

in Chapter 7.  
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6.3. Methods 

6.3.1. Synthesis of TCF-ALP 

For the corresponding NMR spectra, please see Figures S1 – S9 in the Appendix. Briefly, 

TCF-ALP was synthesised in four steps with an overall yield of 27% (Scheme 6.2).  

 

 

Scheme 6.2: Synthetic route to TCF-ALP 

 

6.3.1.1. 2-(3-Cyano-4,5,5-trimethylfuran-2(5H)-ylidene) 

malononitrile (1)  

NaOEt (0.391 g, 5.75 mmol) was added to a solution of 3-hydroxy-3-methyl-2-butanone 

(4 mL, 38 mmol) and malonitrile (4.9 g, 74 mmol) in EtOH (10 mL) and stirred for 1.5 h. 

The reaction mixture was refluxed for 1 h, then cooled to room temperature and the solid 

precipitate filtered to afford the title compound (1) as a pale grey solid (4.92 g, 24.70 mmol, 

65%); M.p. 204 – 208 oC (decomp).  
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6.3.1.2. (E)-2-(3-Cyano-4-(4-hydroxystyryl)-5,5-dimethylfuran-

2(5H)-ylidene)malononitrile (2) 

Two drops of piperidine were added to a mixture of 4-hydroxybenzaldehyde (0.122 g, 1 

mmol) and TCF (1) (0.228 g, 1.15 mmol) in EtOH (10 mL). The reaction mixture was heated 

in the microwave for 15 min at 100 °C and allowed to cool to room temperature. The solid 

precipitate was filtered off to afford the title compound (2) as a red solid (0.22 g, 0.72 mmol, 

72%)  

6.3.1.3.  (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-

dihydrofuran-3-yl)vinyl)phenyl diethyl phosphate (3)  

Intermediate 2 (0.20 g, 0.66 mmol) was dissolved in a solution containing THF (10 mL) and 

NEt3 (0.3 mL). This was followed by the addition of DMAP (0.050 g). The resulting solution 

was cooled to 0 °C and diethylchlorophosphate (0.14 mL, 1 mmol) was added dropwise over 

the course of 15 min. The reaction mixture was monitored via TLC, and once the starting 

material was consumed (~ 2 hrs), EtOAc (50 mL) and H2O (50 mL) were added to the 

reaction mixture. The organic layer was washed with H2O (2 x 50 mL) and brine (50 mL). It 

was then dried (MgSO4) and concentrated in vacuo to afford the crude material. This crude 

material was purified via column chromatography over silica gel EtOAc:petroleum ether 

(30:70) to afford the title compound (3) as an orange solid (0.22 g, 0.50 mmol, 76%). 

6.3.1.4.  (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-

dihydrofuran-3-yl)vinyl)phenyl phosphate (TCF-ALP) 

A solution of 3 (0.15 g, 0.34 mmol) in DCM (5 mL) was cooled to 0 °C before the dropwise 

addition of TMSI (0.1 mL, 0.68 mmol). The reaction mixture was stirred for 1 h before the 

solvent was removed in vacuo to afford the crude solid, which was purified via trituration 

(diethyl ether) to afford an orange solid (0.10 g, 0.26 mmol, 77 %).  

6.3.2. Mass Spectrometry 

High resolution mass spectrometry (HRMS) results were acquired on an externally 

calibrated Bruker Daltonics micrOTOF time-of-flight mass spectrometer coupled to an 

electrospray source (ESI-TOF). Calibration was achieved using sodium formate solution. 

Samples were introduced either by syringe pump or flow injection using an autosampler in 

an Agilent 1100 LC system. Bruker Daltonics software, DataAnalysis, was used to process 

the data. In this study, HRMS analysis was carried out on TCF-ALP before and after 

addition of ALP.  
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6.3.3. UV-Vis Spectroscopy of TCF-ALP 

UV-Vis measurements were carried out on a SPECTROstar Omega (BMG Labtech). UV-Vis 

spectra of TCF-ALP were obtained before and after the addition of 1 U/mL of ALP. The 

measurements were conducted in triplicate, in 50 mM Tris-HCl (pH 9.2) at 25 °C. 

6.3.4. Fluorescence of TCF-ALP Over Time 

In brief, 180 µL of differing concentrations of ALP (0.0 – 0.8 U/mL) in 50 mM Tris-HCl, pH 

9.2, were added to a black 96-well microtiter plate. The fluorescence intensity of these 

enzyme solutions were measured using a BMG Labtech CLARIOstar with excitation and 

emission wavelengths of 542 nm and 606 nm, respectively. After 3 min, 20 µL of 100 µM 

TCF-ALP in 50 mM Tris-HCl, pH 9.2 was added to the enzyme solutions and the 

fluorescence intensity was measured for 1 h at 1 min intervals at 25 °C. Blank (50 mM Tris-

HCl, pH 9.2) and negative (10 µM TCF-ALP and 50 mM Tris-HCl, pH 9.2) controls were 

conducted in tandem. All measurements were performed in triplicate.  

6.3.5. Limit of Detection (LOD) 

To determine the limit of detection, TCF-ALP (10 µM) was added to various concentrations 

of ALP (0.0 – 0.2 U/mL) in 50 mM Tris-HCl, pH 9.2 and incubated for 15 min at 25 °C. After 

incubation, the solutions were transferred to a black 96-well plate and emission spectra 

were obtained. Blank and negative controls were conducted in tandem. All measurements 

were performed in triplicate. 

After the spectra were obtained, the relative fluorescence intensity (RFI) at 606 nm was 

plotted versus concentration of enzyme, and the limit of detection (LOD) was calculated 

using the following formula (Equation 12): 

𝐿𝑂𝐷 =  3𝜎
𝑠𝑙𝑜𝑝𝑒⁄  (12) 

6.3.6. Inhibition Assay 

A stock solution of 4 mM of sodium orthovanadate (Na2VO3) was prepared in dH2O, and 

the pH adjusted to pH 10 with 1 M NaOH. The resultant yellow solution was then heated 

until the solution turned colourless. After cooling, the pH was checked, and the process 

repeated until the solution remained colourless after pH-adjustment. After, ALP (0.8 U/mL, 

50 mM Tris HCl, pH 9.2) was pre-incubated for 30 minutes with varying inhibitor 
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concentrations (0 – 2000 µM) at room temperature before the addition of TCF-ALP (10 

µM). The solution was incubated for 1 h at room temperature prior to fluorescence analysis 

to determine ALP activity.  

6.3.7. Enzyme Kinetics Assay 

Increasing concentrations of TCF-ALP (0.0– 20.0 µM) were added to 0.2 U/mL ALP in 50 

mM Tris-HCl, pH 9.2 and the subsequent enzymatic reaction was monitored through 

change of fluorescence intensity at 606 nm every 60 s for 30 min. The initial reaction 

velocities were obtained from the resultant kinetic curves and plotted against substrate 

concentration. The kinetic parameters (Km and Vmax) were determined by using nonlinear 

fitting models provided by the software package GraphPad Prism 6.0. The kinetic constants 

were reported as the mean ± standard deviation of triplicate experiments. 

6.3.8. Selectivity of TCF-ALP 

To determine the selectivity of TCF-ALP, 40 µL of 100 µM TCF-ALP was added to 360 µL 

of various biologically relevant enzymes (ALP, acid phosphatase [ACP], protease from 

Streptomyces griseus, porcine liver esterase, proteinase K) and non-specific binding 

proteins (bovine serum albumin and trypsin) at a concentration of 0.4 U/mL or equivalent 

(in 50 mM Tris HCl at pH 9.2, 7.1, or 5.0 dependent on experiment). The resultant solutions 

were incubated for 30 min at 25 ° C. After incubation, the solutions were transferred to a 

black 96-well plate and emission spectra were obtained. Blank and negative controls were 

conducted in tandem; all measurements were performed in triplicate. 

6.3.9. Cell Culture 

HeLa cells (human epithelial adenocarcinoma) were purchased from the Korean Cell Line 

Bank (Seoul, Korea). Cells were cultured in Eagle's Minimum Essential Medium (MEM) 

supplemented with heat-inactivated 10% fetal bovine serum, 100 U/mL penicillin and 

100 U/mL streptomycin. All cells were kept in 5% CO2 at 37 ℃. 

6.3.10. Confocal Microscopy Imaging  

Cells were seeded in  35-mm glass bottomed dishes at a density of 3.0 x 105 cells per dish in 

culture media. After culturing for 24 h, cells were incubated with 10 μM of the probe for 

30 min and washed with DPBS. Fluorescence images were recorded by means of confocal 

laser scanning microscopy (FV1200, Olympus, Japan). To prevent intracellular ALP activity, 

a 30 min pretreatment with 5 mM levamisole or 0.5 mM Na3VO4 (ALP inhibitors) was 
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carried out. To acquire the fluorescence image, cells were excited with a 559 nm laser and a 

575-675 nm emission filter was used.   

6.3.11.   Cytotoxicity Tests 

Cells were seeded in a 96-well plate with culture media. After culturing overnight, cells were 

incubated with various concentrations of sample for 24 h. To identify cell viability, reagents 

were removed and 0.5 mg/mL of MTT (Sigma) was added to the cells, which were then 

incubated for 4 h at 37 ℃ in a CO2 incubator. The formazan produced was dissolved in 

0.1 mL of dimethylsulfoxide (DMSO) and read at OD 650 nm with a Spectramax Microwell 

plate reader. Absorbance was determined and the mean cell viability was calculated as a 

percentage of the mean vehicle control. Results of are the average of 3 independent 

experiments.  
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6.4. Results and Discussion 

As shown in Scheme 6.3, TCF-ALP was based on the conjugation of TCF to an electron-

donating moiety, a phosphorylated phenol. This conjugation afforded an ICT D-π-A system, 

whose fluorescence properties varied dramatically following ALP-mediated phosphate 

group cleavage.  

 

 

Scheme 6.3: A TCF-based fluorescent probe (TCF-ALP) for the detection of alkaline phosphatase and/or 

acid phosphatase 

6.4.1. pH Optima 

Once TCF-ALP was synthesised, optimisation assays were performed to ensure the correct 

conditions were employed for successful colorimetric and fluorescent ALP detection by 

TCF-ALP. As TCF was originally used as a pH sensing fluorescent probe,44 it was not 

unreasonable to assume that pH would have an effect on TCF-based fluorescence; hence, 

the effect of pH on the rate of ALP-mediated hydrolysis of TCF-ALP was evaluated (Figure 

6.9).  

Without ALP, TCF-ALP displayed a negligible increase in fluorescence intensity between 

pH 3.0 – 10.0. However, upon incubation with ALP, a sharp increase in fluorescence 

intensity was observed between pH 6.0 – 10.0, with a maximum intensity observed at pH 

9.2. This was thought to be due to the combination of TCF-OH becoming deprotonated and 

ALP having an optimum pH of ~9.2. Consequently, all further in vitro experiments were 

conducted in 50 mM Tris-HCl buffer at pH 9.2.  
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Figure 6.9: Relative fluorescence intensity of TCF-ALP (10 µM) as determined with and without alkaline 

phosphatase (0.8 U/mL) in 50 mM Tris-HCl buffer at pH 3.0 – 10.0.  Measurements taken 1 h after incubation 

at 25 °C. λex = 542 (bandwidth 15) nm/ λem = 606 nm. Error bars indicate standard deviation (n = 3) 

6.4.2. Confirmation of ALP-mediated Hydrolysis 

Confirmation of the ALP-mediated hydrolysis of TCF-ALP was further confirmed by NMR 

(Figure 6.10). 31P NMR studies found that upon incubation with ALP, there was a decrease 

in TCF-ALP concentration (~2.4 ppm) and an increase in product formation (H3PO4;  ~0.5 

ppm) over 1 h. These results confirm that ALP was able to cleave the phosphorylated phenol; 

hence, the fluorescence of TCF-ALP was due to ALP-mediated hydrolysis forming the 

fluorescent, deprotonated TCF-OH.  

 

Figure 6.10: 31P NMR monitoring of TCF-ALP in the presence of ALP in 50 mM Tris-HCl buffer, pH 9.2. Scans 

were performed at 25 °C every 4 min for 1 h. The spectra show decreasing TCF-ALP concentration (~-2.4 ppm) 

with increasing product formation (H3PO4; ~0.5 ppm) over time 

The ALP-mediated hydrolysis of TCF-ALP was also confirmed via HRMS (Table 6.2). The 

results showed that upon incubation with ALP, the phosphate moiety of the TCF-ALP 
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probe was successfully cleaved, leaving behind the deprotonate, fluorescent TCF-OH 

moiety.  

Table 6.2: HRMS (FTMS-NSI) of TCF-ALP before incubation with ALP (m/z calculated for C18H14N3O5P: 

requires 382.0598 for [M-H]-, found 382.0604), and after 1 h incubation with ALP (m/z calculated for 

C18H13N3O2: requires 302.1081 for [M-H]-, found 302.0941) 

Time 

(min) 

Compound 

Label 

RT 

(min) 

Observed 

mass 

(m/z) 

Neutral 

observed 

mass (Da) 

Theoretical 

mass (Da) 

Mass 

error 

(ppm) 

Isotope 

match 

scope (%) 

0 C18 H14 N3 O5 P 0.80 382.0677 383.0677 383.0671 1.57 99.59 

60 C18 H13 N3 O2 0.79 302.0941 303.1014 303.1008 2.15 99.25 

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae. 

6.4.3. UV-Vis Spectroscopy 

Once it was confirmed that TCF-ALP could be successfully cleaved by ALP, UV-Vis 

titrations were performed. As shown in the UV-Vis spectra (Figure 6.11), TCF-ALP was 

found have an absorption maxima of ~430 nm. Upon incubation with 0.8 U/mL ALP, a 

bathochromic shift in the UV absorption maximum was observed (from 430 to 580 nm), 

which was accompanied by a colour change from yellow to purple.  
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Figure 6.11: UV-Vis spectra of TCF-ALP (10 µM) with (red) and without (black) 0.8 U/ml of ALP in 50 mM 

Tris-HCl buffer pH 9.2 
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6.4.4. Fluorescence Assays 

6.4.4.1. Time Drive 

Next, fluorescence measurements were undertaken to determine the fluorescence response 

of TCF-ALP upon incubation with ALP. In brief, 10 µM of TCF-ALP was incubated with 

varying concentrations (0.0 – 0.8 U/mL) of ALP and the fluorescence intensity measured 

every minute for 1 h (Figure 6.12). There was a concentration-dependent increase in RFI 

with increasing concentrations of ALP. Additionally, the RFI increased with longer 

incubation times, with the higher ALP concentrations (0.4 – 0.8 U/mL) plateauing at ~ 

50000 after ~20, 40, and 60 minutes, respectively.  

 

Figure 6.12: Time drive of TCF-ALP (10 µM) with the addition of ALP (0.0 – 0.8 U/mL) in 50 mM Tris HCl, 

pH 9.2 at 25 °C. λex = 542 (bandwidth 15) nm / λem = 606 (bandwidth 20) nm. 

6.4.4.2. Limit of Detection 

As there was a concentration-dependent increase in RFI upon increasing ALP 

concentration, further studies were undertaken to determine the LOD of TCF-ALP. 

Various concentrations of ALP (0.0 – 0.2 U/mL) were incubated with 10 µM of TCF-ALP 

for 15 minutes at 25 °C before fluorescence spectra were obtained (Figure 6.13). As expected, 

a linear relationship was observed between ALP concentration and RFI (Figure 6.14). 
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Figure 6.13: Fluorescence spectra of TCF-ALP (10 µM) produced via the addition of ALP  (0 – 0.2 U/mL) in 

50 mM Tris-HCl buffer, pH 9.2 at 25 °C. λex = 542 (bandwidth 15) nm. All measurements were made 15 min after 

the addition of ALP 

 

 

Figure 6.14: Relative fluorescence intensity seen for TCF-ALP (10 µM) upon the addition of ALP (0.0 – 

0.2 U/mL) in 50 mM Tris-HCl buffer, pH 9.2 at 25 °C. λex = 542 (bandwidth 15) nm/ λem = 606 nm. Error bars 

indicate the standard deviation (n = 3). The measurements were made 15 min after the addition of ALP 

Using Equation 12, the LOD was calculated to be 0.12 mU/mL. This sensitivity seemed to 

be in accordance with other fluorescent-based methods found in the literature, even 

displaying increased sensitivity in comparison to other fluorescent probes (Table 6.3). As 

the majority of ALP probes in the literature have focused on detecting ALP as a biomarker 

for human disease, it was important to ensure that TCF-ALP could reliably detect ALP in 

serum. It is widely accepted that serum ALP levels in heathy adults lies between 39 – 117 

U/mL;87,88 thus, owing to the LOD of TCF-ALP, it can be suggested that TCF-ALP is 
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capable of detecting clinically relevant levels of ALP, and therefore could be used in clinical 

assays.  

Table 6.3: Fluorescent probes and their corresponding limit of detection 

Fluorescence 

Mechanism 

Emission 

Wavelength (nm) 
LOD (mU/mL) 

Incubation 

time (min) 
Reference 

AIE 495 0.0077 60 89 

Carbon dots ~ 445-465 0.90 15 90 

Carbon dots 500 0.0003 20 91 

ESIPT 400 1.3 40 78 

FRET 494/548/624 0.06 8 92 

FRET/AIE 570 0.2 10 93 

ICP nanoparticles 738 3.00 20 94 

Quenching 402 0.27 10 95 

ICT 738 3.00 20 96 

ICT 700 0.07 30 86 

ICT 550/650 3.8 30 97 

ICT 606 0.12 15 This Work 

 

6.4.5. Inhibition of TCF-ALP 

To further confirm that the hydrolysis of TCF-ALP was due to ALP activity, inhibition 

studies were performed using sodium orthovanadate, Na2VO3, a common  competitive 

inhibitor for ALP.98  Competitive inhibitors work by increasing the value of the Michaelis-

Menten constant without modifying the maximum velocity of the enzyme. Competitive 

inhibitors achieve this through three different mechanisms:50 

• Competitive inhibitors can be structurally similar to the substrate and compete for 

the enzyme’s active site 

• Competitive inhibitors do not possess a similar structure to the substrate; however, 

they still compete for the enzyme’s active site 

• Competitive inhibitor and substrate bind to different sites on the enzyme, but the 

binding of one prevents the binding of the other, likely by inducing protein 

conformational changes 

As Na2VO3 can adopt a stable trigonal bipyramidal structure similar to that of phosphate, it 

inhibits by replacing ALP as a substrate, leading to the formation of unstable analogues of 

the enzyme-substrate complex.99  
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ALP (0.8 U/mL, 50 mM Tris HCl, pH 9.2) was pre-incubated for 30 min with varying 

inhibitor concentrations (0.0 – 2000.0 µM). After pre-incubation, TCF-ALP (10 µM) was 

added and the change in fluorescence was measured over 1 h (Figure 6.15).  

 

Figure 6.15: Fluorescence intensity of  TCF-ALP (10 µM) in the presence of 0.8 U/mL of ALP pre-treated for 

30 minutes with Na3VO4 (0.0 – 2000 µM). Measurements were taken every minute for 1 h at 25 °C in 50 mM 

Tris HCl, pH 9.2. λex = 542 (bandwidth 15) nm/ λem = 606 (bandwidth 20) nm 

As shown in Figure 6.15, there was a decrease in RFI with increasing inhibitor 

concentrations. At the 30 min time point, the RFI was plotted as a function of natural 

logarithm of inhibitor concentration (Figure 6.16) so the half maximal inhibitory 

concentration (IC50) could be determined. The IC50 measures the potency of a substance at 

inhibiting a specific biological or biochemical function. For this system, it was found to be 

6.23 µM (R2 = 0.9932), which was similar to values quoted in the literature.75,86  
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Figure 6.16: Inhibition study with TCF-ALP (10 µM) in the presence of different concentrations of Na3VO4. 

Fluorescence Intensity was recorded after 30 min incubation time with TCF-ALP. All reactions were performed 

with 0.8 U/ml ALP in 50 mM Tris-HCl pH 9.2 at 25 °C. λex = 542 (bandwidth 15) nm/ λem = 606. Error bars 

indicate standard deviation (n = 3) 
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IC50 can be converted to an absolute inhibition constant Ki using the Cheng-Prusoff equation 

for competitive inhibitors. (Equation 13).  

𝐾𝑖 =
𝐼𝐶50

1 +
[𝑆]
𝐾𝑚

 
(13) 

 

Where Ki is the binding affinity of the inhibitor, IC50 is the functional strength of the 

inhibitor, [S] is the fixed substrate concentration and Km is the concentration of substrate at 

which enzyme activity is at half maximal.  

Ki is often used as it is an absolute value, whereas IC50 may vary between experiments 

depending on experimental conditions. Ki values relate to the dissociation of the inhibitor-

bound enzyme complex,100 with smaller values denoting tighter binding affinity of the 

inhibitor. For this study Ki was calculated to be 4.87 µM, which is similar to other values 

reported in the literature.101 

6.4.6. Selectivity of TCF-ALP 

To determine the selectivity of TCF-ALP, it was incubated with ALP and the fluorescence 

intensity compared to TCF-ALP incubated with biologically relevant enzymes and non-

specific binding proteins (at their optimal pH values), after 30 minute incubation at 25 °C. 

As shown in Figure 6.17, TCF-ALP displayed high selectivity towards ALP over other 

common enzymes or non-specific binding proteins (58-fold increase in fluorescence, pH 

9.2). Interestingly, TCF-ALP produced a 20-fold increase in fluorescence intensity when 

treated with ACP at pH of 5.0.  

As ACP displayed activity towards TCF-ALP, further experiments were undertaken to 

determine the selectivity of TCF-ALP at a neutral pH of 7.1. As shown in Figure 6.18, TCF-

ALP proved capable of detecting ACP (25-fold fluorescence enhancement) and ALP (38-

fold enhancement) at a physiological pH of 7.1. These results suggest that TCF-ALP can be 

used to detect both ALP and ACP at physiological pH, with a preference towards ALP. 

Further kinetic determination of this result will be discussed in Section 6.4.7. 
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Figure 6.17: A) Fluorescence spectra and B) selectivity bar chart of TCF-ALP (10 µM) recorded in the 

presence of  1. alkaline phosphatase (50 mM Tris-HCl, pH 9.2), 2. acid phosphatase (50 mM Tris-HCl, pH 5.0), 

3. bovine serum albumin (0.1 mg/mL), 4. protease from Streptomyces griseus, 5. porcine liver esterase, 6. 

proteinase K, 7. trypsin (0.8 BAEE U/mL). 8-10. negative controls at pH 5.0, 7.1 and 9.2, respectively. All 

enzymes were standardised to 0.8 U/mL in Tris-HCl buffer pH 7.1 unless otherwise stated. λex = 542 (bandwidth 

15 nm)/ λem  = 606 nm. The measurements were made 30 min after enzyme addition. Error bars indicate the 

standard deviation (n = 3) 
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Figure 6.18: A) Fluorescence spectra and B) selectivity bar chart of TCF-ALP (10 µM) recorded in the 

presence of  1. alkaline phosphatase, 2. acid phosphatase, and 3. negative control. All enzymes were 

standardised to 0.8 U/mL in Tris-HCl buffer pH 7.1 unless otherwise stated. λex = 542 (bandwidth 15 nm)/ λem  

= 606 nm. The measurements were made 30 min after enzyme addition. Error bars indicate the standard 

deviation (n = 3) 

According to current standards, determination of ALP and ACP is undertaken at the 

phosphatase’s optimum pH. For example, the Centers for Disease Control and Prevention 

(CDC) procedure for ALP determination is carried out in 2-amino-2-methyl-1-propanol 

(AMP) buffer at pH 10.3.102 Likewise, ACP determination is carried out at pH 4.0 – 6.0.103  
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Following these observations, further studies were conducted to determine selectivity at pH 

5.0 and 9.2 (Figures 6.19 – 6.20). Results showed that TCF-ALP acts selectivity towards 

ACP at acidic pH, and ALP at alkaline pH. Therefore, TCF-ALP can be used to selectively 

detect ALP/ACP in clinical assays, or live cell systems (provided the buffer solution is 

optimal for the phosphatase under study).  
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Figure 6.19: A) Fluorescence spectra and B) selectivity bar chart of TCF-ALP (10 µM) recorded in the 

presence of  1. alkaline phosphatase, 2. acid phosphatase, and 3. negative control. All enzymes were 

standardised to 0.8 U/mL in Tris-HCl buffer pH 5.0. λex = 542 (bandwidth 15 nm)/ λem  = 606 nm. The 

measurements were made 30 min after enzyme addition. Error bars indicate the standard deviation (n = 3) 
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Figure 6.20: A) Fluorescence spectra and B) selectivity bar chart of TCF-ALP (10 µM) recorded in the 

presence of  1. alkaline phosphatase, 2. acid phosphatase, and 3. negative control. All enzymes were 

standardised to 0.8 U/mL in Tris-HCl buffer pH 9.2. λex = 542 (bandwidth 15 nm)/ λem  = 606 nm. The 

measurements were made 30 min after enzyme addition. Error bars indicate the standard deviation (n = 3) 
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6.4.7. Enzyme Kinetics 

As TCF-ALP was selective towards ACP and ALP, further studies were needed to determine 

the kinetic parameters of TCF-ALP towards these enzymes. Firstly, kinetic parameters 

were obtained for ALP at pH 9.2, and to confirm TCF-ALP was more selective towards ALP 

versus ACP at neutral pH, kinetic parameters were obtained for both ALP and ACP at pH 

7.1.  

The kinetics of ALP towards TCF-ALP at pH 9.2 were determined via fluorescence 

spectroscopy. Various concentrations of TCF-ALP (0 – 20 µM) were incubated with 0.2 

U/mL of ALP and the RFI was measured for 30 minutes. The initial velocity was calculated 

from the resultant data, and subsequently fitted to the Michaelis-Menten equation 

(Equation 11). 

As shown in Figure 6.21, fluorescence increased with increasing TCF-ALP concentration 

upon incubation with 0.2 U/mL ALP in 50 mM Tris-HCl, pH 9.2. Once the initial velocities 

were determined and plotted, the Vmax was calculated to be 3029 ± 157.3 RFI/min and the 

Km 35.81 ± 2.63 µM. These results denote a strong binding between the substrate and 

enzyme, as Km values for the majority of enzymes lie between 10-1 and 10-7 M.47  
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Figure 6.21: A) Time-dependent fluorescence intensity seen for increasing concentrations of TCF-ALP (0 – 

20 µM) in the presence of 0.2 U/mL of ALP in 50 mM Tris-HCl buffer, pH 9.2. B) Plot of initial velocity (υ0) 

against TCF-ALP concentration. Measurements taken at 25 °C, λex = 542 (bandwidth 15 nm)/ λem = 606 

(bandwidth 20) nm. Error bars indicate standard deviation (n = 3) 

To confirm TCF-ALP was more selective towards ALP than ACP at neutral pH, kinetic 

experiments were conducted at pH 7.1, and the resultant Km and Vmax were compared 

(Figures 6.22 and 6.23). It was found that ALP has a smaller Km value in comparison to ACP 

(0.38 ± 0.042 µM and 99.22 ± 13.16 µM, respectively) and a lower Vmax (208 ± 3.81 min-1 
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and 1962 ± 223.6 min-1, respectively). Hence, ALP has higher affinity towards TCF-ALP 

compared to ACP, thus is more selective towards ALP at physiological pH. 
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Figure 6.22: A) Time-dependent fluorescence intensity seen for increasing concentrations of TCF-ALP (0 – 

20 µM) in the presence of 0.2 U/mL of ALP in 50 mM Tris-HCl buffer, pH 7.1. B) Plot of initial velocity (υ0) 

against TCF-ALP concentration. Km = 0.38 ± 0.042 µM, Vmax = 208.00 ± 3.81 min-1. R2 = 0.9804. Measurements 

taken at 25 °C, λex = 542 (bandwidth 15 nm)/ λem = 606 (bandwidth 20) nm. Error bars indicate standard 

deviation (n = 3) 
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Figure 6.23: A) Time-dependent fluorescence intensity seen for increasing concentrations of TCF-ALP (0 – 

20 µM) in the presence of 0.2 U/mL of ACP in 50 mM Tris-HCl buffer, pH 7.1. B) Plot of initial velocity (υ0) 

against TCF-ALP concentration. Km = 99.22 ± 13.16 µM, Vmax = 1962 ± 223.6 min-1.R2 =  0.9989. Measurements 

taken at 25 °C, λex = 542 (bandwidth 15 nm)/ λem = 606 (bandwidth 20) nm. Error bars indicate standard 

deviation (n = 3) 
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6.4.8. Cell-based Assays 

While the principle aim of this probe was for it to be used as a diagnostic marker for bacterial 

infections (see Chapter 7), the detection of ALP also has a clinical utility in the diagnosis of 

other diseases. Owing to this, TCF-ALP was sent to Juyoung Yoon at Ewha Womans 

University, Seoul, South Korea to perform cell culture experiments. Firstly, the cytotoxicity 

of TCF-ALP was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) assay (Figure 6.24). The MTT assay measures cellular 

metabolic activity; it is often used to determine the cell viability and proliferation of specific 

cells in response to incubation with a substrate (e.g., fluorescent probe), and therefore can 

be used to determine parameters such as cytotoxicity. The MTT assay is a colorimetric assay 

based on the reduction of a yellow tetrazolium salt to purple formazan crystals by 

metabolically active cells via oxidoreductase enzymes. The more intense the purple colour, 

the greater the number of viable, metabolically active cells.104  

Figure 6.24 shows that negligible cell toxicity was observed for TCF-ALP concentrations 

between 0 – 5 µM, and cell viability was only slightly reduced (cell viability: 91%) when 

incubated with 10 µM TCF-ALP – indicating good biocompatibility.  

 

Figure 6.24: HeLa cells were incubated with increasing concentrations of TCF-ALP for 24 h. After incubation, 

cells were treated with MTT media and cultured for another 4 h. Absorbance of the untreated cells were 

determined as 100 % live. n = 3 ± standard deviation 

 

For cell imaging, 10 µM of TCF-ALP was incubated with HeLa cells as they are known to 

overexpress ALP.  As shown in Figure 6.25, TCF-ALP was cell permeable in HeLa cells, and 

provided a clear ‘turn on’ response. To determine whether this increase in fluorescence was 

due to ALP, cells were pre-treated with varying concentrations of Na3VO4 and a minimal 
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‘turn on’ response was observed when cells were pre-incubated with 0.5 mM of Na3VO4, with 

further reduction in fluorescence intensity observed upon increasing inhibitor 

concentration. The decrease in TCF-ALP activity upon increasing inhibitor concentrations 

supports the hypothesis that any increase in TCF-ALP fluorescence levels seen for HeLa 

cells in the absence of Na3VO4 was due to ALP activity. We thus conclude TCF-ALP is 

capable to selectively detect ALP activity in cellular imaging.  

 

 

Figure 6.25: Images of HeLa cells incubated under the following conditions: (a) No treatment. (b) TCF-ALP 

(10 μM, 30 min). (c) Pre-treated with Na3VO4 (5 mM, 30 min), followed by the addition of TCF-ALP (10 μM, 30 

min). (d) Pretreated with Na3VO4 (0.5 mM, 30 min) and TCF-ALP (10 μM, 30 min). Cells were washed with 

DPBS before their fluorescence images were acquired using a confocal microscope. Top half: fluorescence 

images, bottom half: fluorescence images merged with its corresponding DIC image. Ex. 559 nm/ em. 575-675 

nm. Scale bar : 20 μm. DIC - differential interference contrast 

Next, the focus shifted towards myogenic murine C2C12 cells; they are a subclone from a 

myoblast line established from normal adult C3H mouse leg muscle (Figure 6.26). 

Treatment of C2C12 cells with TCF-ALP resulted in a low fluorescence ‘turn-on’, indicating 

low ALP levels. Upon pre-treatment of C2C12 cells with bone morphogenic protein-2 (BMP-

2) (300 ng/mL, 3 days) resulted in a significant increase in TCF-ALP-derived fluorescence 

intensity, indicative of high ALP levels. BMP-2  is capable of inducing osteoblast 

differentiation in a variety of cell types and regulates the expression of genes activated 

during osteoblast differentiation.17 Additionally, BMP-2 has been shown to increase ALP 

mRNA expression and ALP activity,106,107 which could explain why pre-treatment with BMP-

2 resulted in increased levels of ALP activity and corresponding fluorescence intensity upon 

incubation with TCF-ALP. 

Once again, pre-incubation with an ALP inhibitor (levamisole) led to a limited fluorescence 

response being observed in the cells treated with TCF-ALP (with or without BMP-2), 
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further providing support for the theory that TCF-ALP is capable of imaging endogenous 

ALP activity, including ALP activity induced by BMP-2. 

 

 

Figure 6.26: Images of C2C12 cells incubated under the following conditions: (a) TCF-ALP only (b) levamisole 

+ TCF-ALP, (c) BMP-2 + TCF-ALP (d) BMP-2 + levamisole + TCF-ALP. Top : fluorescence images, bottom: 

merged with DIC image. Ex. 559 nm/ em. 575-675 nm. Scale bar : 20 μm. DIC - differential interference contrast 
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6.5. Conclusions and Future Work 

This chapter describes the novel synthesis of TCF-ALP, a fluorescent and colorimetric 

probe used to detect phosphatase activity. The hydrolysis of TCF-ALP by ALP was 

confirmed via 31P NMR and mass spectrometry.  

 Subsequent experiments found that TCF-ALP was capable of detecting ALP, with a LOD 

of 0.12 mU/mL; a concurrent colorimetric response from yellow to purple was also 

observed. Additionally, inhibition experiments using sodium orthovanadate further 

confirmed the dephosphorylation and subsequent activation of TCF-ALP with ALP, as 

there was a decrease in fluorescence intensity upon increasing inhibitor concentrations, 

with IC50 and Ki values similar to that reported in the literature. 

 TCF-ALP displayed high selectivity towards ALP compared to other biologically relevant 

enzymes and non-specific binding proteins at their optimal pH, with the exception of ACP. 

Owing to the increase in fluorescence intensity when TCF-ALP was incubated with ACP, 

further experiments were conducted to evaluate the selectivity of TCF-ALP towards ALP 

and ACP at pH 9.2, 7.1, and 5.0. It was found that TCF-ALP was more selective towards 

ALP at pH 9.2, while it was more selective towards ACP at pH 5.0. At physiological pH, the 

selectivity assay showed that TCF-ALP was more selective towards ALP vs ACP, and this 

was confirmed by calculating their corresponding Km and Vmax values.  

Finally, TCF-ALP was investigated using human HeLa cells and murine C2C12 cells pre-

treated with BMP-2 to increase ALP activity. The results showed that TCF-ALP was cell 

permeable and capable of detecting ALP activity within the cells at concentrations (10 µM) 

that were non-toxic. These results suggest that TCF-ALP could be used as a tool for 

measuring ALP and ACP activity levels in clinical assays or in live cell systems.  
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6.6. Appendix 

6.6.1. Nuclear Magnetic Resonance (NMR) Spectra 
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Figure S1: 1H NMR of  2-(3-Cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (1) (500 MHz, CDCl3) 
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Figure S2: 13C NMR of  2-(3-Cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (1) (75.5 MHz, CDCl3) 
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Figure S3: 1H NMR of (E)-2-(3-Cyano-4-(4-hydroxystyryl)-5,5-dimethylfuran-2(5H)-ylidene)malononitrile 

(2) (300 MHz, CDCl3) 
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Figure S4: 13C NMR of (E)-2-(3-Cyano-4-(4-hydroxystyryl)-5,5-dimethylfuran-2(5H)-ylidene)malononitrile 

(2) (75.5 MHz, CDCl3) 
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Figure S5: 1H NMR of (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-

yl)vinyl)phenyl diethyl phosphate (3) (500 MHz, CDCl3) 
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Figure S6: 13C NMR of (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-

yl)vinyl)phenyl diethyl phosphate (3) (125.7 MHz, CDCl3) 
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Figure S7: 1H NMR of (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-

yl)vinyl)phenyl phosphate (TCF-ALP) (500 MHz, DMSO-d6) 
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Figure S8: 13C NMR of (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-

yl)vinyl)phenyl phosphate (TCF-ALP) (125.7 MHz, DMSO-d6) 
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Figure S9: 31P NMR of (E)-4-(2-(4-Cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-

yl)vinyl)phenyl phosphate (TCF-ALP) (202.4 MHz, DMSO-d6) 
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Chapter 7: Using TCF-ALP for the Detection of 

Staphylococcus aureus 

7.1. Overview of Chapter 

The research presented in this chapter describes the initial proof-of-concept studies for the 

use of the novel fluorescent probe TCF-ALP in the detection of S. aureus alkaline 

phosphatase (Scheme 7.1). Herein, TCF-ALP underwent extensive microbiological 

examination to determine its ability to detect S. aureus. Experiments included selectivity 

and sensitivity assessments via planktonic suspension assays, biofilm studies, and ex vivo 

testing on porcine skin. Owing to promising results, TCF-ALP was immobilised within a 

poly (vinyl alcohol) (PVA) hydrogel and the resultant material was examined for its 

feasibility as a point-of-care (PoC) diagnostic device. The TCF-ALP hydrogel system 

underwent the aforementioned microbiological tests and was deemed successful if an 

increase in fluorescence intensity, and a corresponding colour change from yellow to purple, 

was witnessed.  

 

 

Scheme 7.1: A TCF-based fluorescent probe (TCF-ALP) for the detection of S. aureus alkaline phosphatase 

7.2. Introduction 

7.2.1. Detecting Pathogenic Bacteria 

Traditionally, the gold-standard method to detect pathogenic bacteria in a clinical setting is 

via the use of culture and counting methods.1 Bacterial isolates are routinely grown on agar 

plates (non-differential, differential, selective, chromogenic, or a combination of all four) 

and incubated at a set temperature and time. If needed, observable colonies are then 
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subjected to further investigation (e.g. microscopy and biochemical tests) to identify the 

pathogenic bacteria present.2 Despite the accuracy of these tests, they are time consuming, 

require highly skilled personnel, and are only applicable to pathogens that can be routinely 

grown in a laboratory environment.1,2 

An improvement over conventional culture-based methods was seen with the introduction 

of molecular diagnostic methods that identify microbial pathogens using genomic makers. 

These methods include: Enzyme-linked Immunosorbent Assays (ELISA), hybridisation-

based detection systems, Polymerase Chain Reaction (PCR) amplification methods, and 

DNA microarrays. While they are rapid and offer high sensitivity and selectivity, there are 

drawbacks, including high cost, complicated methodology, and requiring specialised 

equipment and personnel.3–6  

Consequently, research has shifted towards the development of biosensors and organic-

based fluorescent probes for the detection of pathogenic bacteria. Biosensors are composed 

of a biorecognition unit that recognises the bacterial target (such as a nucleic acid, antibody, 

enzyme, or whole cell) and a transducer that converts the recognition event into a 

measurable readout (e.g., optical, electrochemical, thermal, or mechanical).7  As shown in 

the previous chapter, organic-based fluorescent probes can recognise pathogenic bacteria 

through the detection of compounds such as enzymes, which upon recognition of the target 

molecule result in the formation of a fluorescent compound. Both biosensors and organic-

based fluorescent probes are advantageous as they can confirm the presence of a bacterial 

infection without the need for isolation or pre-incubation, reducing the time of the assay.8–

10 Additionally, they are easy to synthesise, relatively low-cost, have a high degree of 

selectivity and sensitivity, and most importantly, can be used as a point-of-care (PoC) device 

without the need of a specialist user. 8–10 For the purposes of this work, the focus will be on 

the use of fluorescent and colorimetric probes for the detection of pathogenic bacteria.  

7.2.2. Use of Fluorescent and Colorimetric Probes for the 

Detection of Pathogenic Bacteria 

Dyer11 and Bascomb12 were some of the first researchers to develop fluorescent probes for 

the detection of bacterial enzymes. Certain bacteria possess enzymes that are unique to their 

species or overexpress certain enzymes during the course of an infection, and as such can 

be used as a target for bacterial detection.  

The introduction to this chapter will discuss the development of novel colorimetric and 

fluorescent-based probes for the detection of bacterial enzymes. While all probes are 
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predominately used in liquid suspension, some have been utilised for the development of 

chromogenic or fluorescent media, or as PoC devices via the use of paper and/or 

nanoparticles.  

7.2.2.1. Glycosidases 

7.2.2.1.1. β-D-Glucuronidase  

E. coli is an indicator of faecal contamination, and as such there is a pressing need to be able 

to identify it in food and water samples. One method is through the detection of β-D-

Glucuronidase (GUD), a glycosidase that catalyses the hydrolysis of β-D-

glucopyranosiduronic derivatives into their corresponding aglycons and D-glucuronic 

acid.13 While the majority of Enterobacteriaceae do not possess GUD activity (excluding 

Shigella, Salmonella, and Yersinia spp.),13 it is present in 94 – 96% of E. coli strains,14 

making it is an attractive target for fluorescent and colorimetric probes. However, it is 

important to note that some pathogenic E. coli strains such as E. coli O157:H7 do not 

possess GUD activity,15 hence the detection of GUD is often performed in parallel with the 

detection of β-galactosidase (β-gal; Section 7.2.2.1.2.). 

The most commonly used substrate for GUD detection is 4-methylumbelliferyl-β-D-

glucuronide (MUG; Figure 7.1), which upon hydrolysis by GUD yields the quantifiable 4-

methylumbelliferone (4-MU) fluorogenic product.13 The use of MUG for E. coli 

identification is advantageous over conventional culture-based methods as E. coli found in 

natural waters can lose its ability to be cultured, a condition known as viable but non-

culturable (VBNC) bacteria. However, VBNC bacteria can still retain metabolic activity, and 

hence MUG can still be  used to detect GUD16,17 as shown by George et al, who found that 

the presence of low concentrations of VBNC bacteria within freshwater samples resulted in 

a higher enzymatic activity per culturable coliform in contaminated waters.18  Additionally, 

MUG has been utilised in the development of hand-held fluorimeters for the rapid on-site 

identification of E. coli in drinking water.19,20  

However, an inherent disadvantage of 4-MU is its relatively high pKa value of 7.8, which at 

physiological pH (pH 7.4) results in partial dissociation of 4-MU to the highly fluorescent 

anion. To improve upon this, Perry et al synthesised 6-chloro-4-methylumbelliferyl-β-D-

glucuronide (CMUG; Figure 7.1) and investigated its ability to detect GUD-producing E. 

coli.21 Of the 38 E. coli strains investigated, 90% tested positive for GUD after 18 h 

incubation,  and all strains exhibited a higher fluorescence with CMUG compared to MUG, 

owing to its lower pKa value.  
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Figure 7.1: Chemical structure of 4-methylumblliferyl-β-D-glucuronide (MUG) and 6-chloro-4-

methylumbelliferyl-β-D-glucuronide (CMUG) 

 

There are also a variety of colorimetric probes that have been utilised for the detection of E. 

coli. Magro et al developed resorfin-β-D-glucuronide (REG 4; Scheme 7.2), which 

underwent a colour change from orange to deep pink upon hydrolysis by GUD.22 REG 4 

was selective for E. coli, with the negative controls of P. aeruginosa and K. pneumonia not 

displaying a colour change. Like CMUG, the deprotonated form of REG 4 predominates at 

physiological pH, therefore making it a favourable probe over the conventional MUG.  

 

 

Scheme 7.2: Hydrolysis of resorfin-β-glucuronide (REG 4) in the presence of GUD-producing Escherichia 

coli 

 

A PoC paper-based device (µPAD) for the detection of E. coli has also been developed 

utilising 5-bromo-4-choro-β-D-glucuronic acid (X-β-gluc; Figure 7.2).23 When a sample 

contaminated with E. coli was placed on the device, the bacterial cells were lysed, releasing 

the intracellular GUD, which subsequently reacted with X-β-gluc, turning the paper sheet 

blue. Experiments showed that without enrichment of the sample the LOD of this system 

was 107 CFU/mL, but with up to 12 h of enrichment in growth medium, the LOD was 

significantly reduced to 101 CFU/mL.  
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A) B) 

 

 

Figure 7.2: A) Chemical structure of 5-bromo-4-choro-β-D-glucuronic acid (X-β-gluc) and B) Schematic of 

the paper-based device showing the layers of the point-of-care device for the detection of GUD from Escherichia 

coli. Adapted from Kim et al with permission by the Royal Society of Chemistry©23  

7.2.2.1.2. β-D-Galactosidase  

β-D-Galactosidase (β-GAL) catalyses the breakdown of lactose into galactose and glucose 

and is commonly used as a target for detection of the coliform group within 

Enterobacteriaceae.13 Like GUD, β-GAL is predominately used to measure the hygienic 

quality of water and food samples.24  

Fluorescent probes based on 4-MU are predominately used to detect β-GAL (e.g. 4-MU-

GAL). However, Chilvers et al synthesised other coumarin-based fluorescent probes and 

found that they were less inhibitory towards bacteria compared to 4-MU-GAL and 

displayed enhanced fluorescence.25 In particular ethyl-7-hydroxycoumarin-3-carboxylate-

β-D-galactoside (EHC-GAL) showed promising results in the identification of coliform 

bacteria.  

Further fluorescent probes have also been developed such as 2-arylbenzothiazone 

derivatives, which were able to identify coliform bacteria, especially E. coli, Enterobacter 

cloacae, and Serratia marcescens.26 Additionally, novel colorimetric probes have been 

synthesised for the development of chromogenic agar. Alazarin-β-galactopyranoside (Aliz-

gal; Scheme 7.3) can be hydrolysed by β-GAL, releasing alizarin, subsequently complexing 

with various metal ions to form brightly coloured chelates.27 Aliz-gal was able to detect 

100% (n=182) of strains that displayed β-GAL activity, producing localised, bright violet 

colonies when chelated with ferric ammonium.  
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Scheme 7.3: Hydrolysis of Alazarin-β-galactopyranoside (Aliz-gal) and subsequent complexation with iron 

(Fe)27 

Another colorimetric probe that is frequently used to detect β-GAL is chlorophenol red β-

galactopyranoside (CPRG), as it is faster and more sensitive than the colorimetric O-

nitrophenyl-β-galactopyranoside (ONPG) and the fluorescent 4-MU-GAL.28,29 Further 

derivatives of CPRG have been developed, for instance, Sicard et al found that when CPRG 

was hydrolysed by β-gal, the sulphonated pyranine of chlorophenol red (CPR) can interact 

with poly-L-arginine (pR) forming a CPR-pR complex which is strongly fluorescent, 

creating an ‘off-on’ fluorescent probe for the detection of E. coli (Scheme 7.4).30 While the 

complex was inhibitory towards actively growing bacteria (due to cell lysis by 1 wt% pR), it 

could be used for bacteria that had been previously cultured and/or isolated. When E. coli 

was incubated with CPR-pR complex for 30- or 60- min, with and without the addition of 

B-PER (a lysing agent), results showed a ~10-fold increase in fluorescence intensity in 

samples with lysed bacteria, due to the release of intracellular β-GAL. The activity of CPR-

pR was typically 40-fold better than the other dyes used in this experiment (ONPG, 4-MU-

GAL, CPRG) for the detection of E. coli. 

 

Scheme 7.4: Hydrolysis of chlorophenol red β-galactopyranoside (CPRG) and subsequent complexation 

with poly-L-arginine (pR) to form the fluorescent CPR-pR in the presence of β-galactosidase 

POC µPADs have been developed that utilise CPRG for the detection of coliform bacteria.31 

Samples of E. coli were isolated and cultured in enrichment media for 4.5 h before 

subsequent lysing of the cells and placement onto the µPAD. The device was able to detect 
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pure cultures of E. coli, indicated by a colour change from yellow to red, with the overall 

assay time (including enrichment and detection) between 8 – 12 h. This device was 

improved upon by Jahanshahi-Anbuhi et al, who included a layer of paper containing a 

lysing agent (B-PER) in the stacked µPAD.32 This device could detect coliform bacteria, 

detecting E. coli concentrations as low as 105 CFU/mL (with no previous enrichment). Kim 

et al utilised a different colorimetric substrate (5-bromo-6-chloro-3-indoxyl-β-galactose 

(Magenta-β-gal) for their µPAD and found that without enrichment it could detect 107 

CFU/mL of E. coli, lowered to 101 CFU/mL with enrichment – indicated by a colour change 

from colourless to purple.23  

7.2.2.1.3. β-D-Glucosidase  

β-D-glucosidase (β-Glu) is present in numerous bacterial species and has been used in the 

differentiation of Streptococci spp.,33 coagulase-negative Staphylococci (CoNS)34 and the 

differentiation of Salmonella from other Enterobacteria spp.35  

While 4-methylumblliferyl-β-D-glucosidase (MU-GLU) has been used for the 

identification of β-Glu,33 Perry et al synthesised four other coumarin-based fluorescent 

probes (Figure 7.3) and evaluated their ability to detect β-Glu activity in Enterococci spp.21 

A total of 42 Enterococci strains were tested, including Enterococcus faecalis (E. faecalis) 

and Enterococcus faecium (E. faecium). Streptococcus spp. were used as a negative control. 

Results showed that all Enterococci spp. displayed β-Glu activity after 18 h incubation with 

the fluorescent probes, and that probes 2 – 4 displayed, on average, a higher fluorescence 

signal than the conventional MU-GLU.  

 

 

Figure 7.3: Chemical structure of 4-MU and the corresponding coumarin derivates 1-4 

 

In colorimetric assays, p-nitrophenyl-β-glucopyranoside (pNPG) is frequently used for the 

identification of β-GLU bacteria.36 pNPG entrapped within an agarose gel has been utilised 

for the detection of E. faecium,37 whereby upon hydrolysis the liberated p-nitrophenol 

(pNP) becomes trapped within the agarose gel and a colour change from colourless to 

yellow can be observed by the naked eye. An initial inoculum of 1.0 – 1.5 x 104 CFU/mL, and 

an incubation time of approximately 18 h was needed to observe a detectable colour change.  
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7.2.2.1.4. α-Amylase and α-Glucosidase 

α-amylase is frequently utilised in the detection of Bacillus spp. The standard method to 

detect α-amylase is the colorimetric assay using dinitrosalicylic acid (DNS).38,39 However, 

Xia et al developed a fluorescence in situ enzyme-staining approach using a boron 

dipyrromethene (BODIPY) fluorescein-labelled (FL) DQTM starch.40 Upon incubation with 

Bacillus spp., α-amylase hydrolysed the probe and fluorescence was observed. However, 

this assay was only suitable for Bacillus spp. in their vegetative state, as the endospores were 

not fluorescent.  

Assays for α-glucosidase (α-Glu) have been used to differentiate Bacillus anthracis from 

Bacillus mycoides and Bacillus thuringiensis, and 4-methylumbelliferyl-α-D-glucoside 

(MUGlu)41 has been used as a component within a selective and differential media for the 

identification of Enterobacter sakazkii.42  

Giovannini et al described the synthesis of an ‘off – on’ fluorescent-based sensor where 

streptavidin-coated magnetic microparticles were functionalised with a biotinylated 

coumarin-derived probe with glucose as the recognition moiety (Glu-C-MPs; Scheme 

7.5).43 This probe was able to detect α- and β-glucosidase at a concentration of 75 CFU/mL 

for E. coli, K. pneumonia, and P. aeruginosa after 1 h incubation,  whereas 3 h was required 

for the detection of Enterococcus spp. and S. aureus.  

 

 

Scheme 7.5: Streptavidin-coated magnetic microparticles functionalised with coumarin-based glucosidase 

probe 

A PoC µPAD has also been developed for the colorimetric detection of Cronobacter spp. as 

α-Glu activity can distinguish it from other Enterobacteriaceae bacteria.44 Bacterial 

cultures were grown overnight, lysed and placed onto the paper-based device. The released 

α-Glu subsequently hydrolysed 5-bromo-4-chloro-3-indolyl-α-D-glucopyranoside 

(XαGlu), producing a purple colour in the presence of oxygen. For Cronobacter sakazakii, 

the µPAD had a LOD of 106 CFU/cm2, but if combined with an enrichment process it was 

capable of detecting bacterial concentrations as low as 10 CFU/cm2.  
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7.2.2.2. Esterases and Lipases 

Esterases and lipases are found in the majority of bacterial species13 and numerous probes 

have been developed to detect esterase activity including fluorogenic probes based on 

coumarin, fluorescein, rhodamine and resorufin,45 and colorimetric probes based on p-

nitrophenol (pNP).46 These fluorescent molecules are usually masked by acetate esters that 

often suffer from auto-hydrolysis, resulting in high levels of background noise and failure 

to detect low levels of esterase activity.  

The detection of C8 esterase is used in the identification of Salmonella spp.31 Novel 

fluorescent probes based on 2-arylbenzothiazone have been developed to detect C8 esterase 

within Salmonella spp.;26 however, the most widely used fluorescent probe is 4-

methylumbelliferyl caprylate (MUCAP).35 In the presence of a C8 esterase the substrate is 

cleaved, resulting in the formation of the fluorescent 4-MU. This probe had a sensitivity of 

95% and specificity of 91% when tested with 83 Salmonella strains and 349 non-Salmonella 

strains.47 This was further supported by Olsson et al, who tested 750 Salmonella strains and 

130 other Enterobacteriaceae species with MUCAP.48 It was found that 99.7% of 

Salmonella strains tested positive with MUCAP, with one false-positive reported with 

Hafnia alvei, although the signal was weaker compared to the majority of Salmonella 

strains. Pseudomonas spp. and Proteus spp. are normally responsible for false-positive 

results,49 P. aeruginosa and Proteus mirabilis were tested in this study; the former 

displayed a positive result with MUCAP, and the latter a negative result.48  

Other fluorescent probes have been developed for the detection of bacterial esterases. One 

such example is by Tallman et al who developed two fluorescent probes derived from  7-

hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO), termed DDAO-AME 1 

and DDAO-AME 2, for the detection of Mycobacterium tuberculosis (Figure 7.4).45 They 

were tested against lysates from Mycobacterium spp. that were both members and non-

members of the Mycobacterium tuberculosis complex (MTBC). All species tested displayed 

esterase activity by  hydrolysing the acetoxymethyl ether on both probes, resulting in a 

detectable fluorescent signal within 10 min.  

 

Figure 7.4: Chemical structures of 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO)-derived 

probes, DDAO-AME 1 and DDAO-AME 2 
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7.2.2.3. Aminopeptidases 

Aminopeptidases (AP) are enzymes that catalyse the cleavage of amino acid residues at the 

N-terminal position of peptides and proteins. A wide variety of amino acids have been used 

for the detection of different bacterial species50–52 e.g. L-pyrrolidonyl peptidase has been 

used in the identification of Salmonella spp.,53 Enterococci spp., and Group A 

Streptococci;54,55 L-γ-glutamic acid aminopeptidase is used to differentiate Shigella spp.; 

and finally, proline aminopeptidases have been used for the detection of Neisseria 

menigitidis56 and bacterial vaginosis.57 The majority of novel colorimetric and fluorescent 

probes synthesised have been utilised in the development of chromogenic and fluorogenic 

agar to improve current conventional microbiological culturing techniques, some of which 

will be discussed here.  

One key area of interest is the differentiation of gram-positive and gram-negative bacteria, 

and this can be achieved via the detection of L-alanine APs, with only the latter possessing 

L-alanine AP activity. Colorimetric probes58 such as L-alanyl-p-nitroanilde59 have been 

utilised to detect gram-negative bacteria, but other probes based on the chromogenic moiety 

9-(4’-aminophenyl)acridines have also been developed.52 While these probes inhibited 

gram-positive bacteria, it needed to be protonated by acetic acid to produce various shades 

of red-coloured colonies for E. coli, Klebsiella pneumonia, P. aeruginosa, and Burkholderia 

cepacia.  

Fluorescence-based methods have also been employed for the detection of L-alanine AP to 

identify gram-negative bacteria.60 Cellier et al synthesised two substrates based on 2-2(-

hydroxyphenyl)heterocycles (Figure 7.5; 5 and 6), which upon hydrolysis by L-alanine AP 

fluoresce via the ESIPT mechanism.61 The probes were inhibitory towards gram-positive 

bacteria and gave moderately  to strongly blue fluorescent colonies; however, there was 

diffusion into the agar that could make identification of gram-negative bacteria difficult in 

clinical samples.  

 

Figure 7.5: Chemical structures of 2-2(-hydroxyphenyl)heterocycle-derived probes, 5 and 6 

Other fluorescent probes have been developed, with derivatives of 2-arylbenzothiazone 

producing moderately fluorescent colonies of gram-negative bacteria, while being 
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inhibitory towards gram-positive bacteria and certain gram-negative bacteria such as E. coli 

and Salmonella typhimurium.26 Additionally, Cellier et al synthesised L-alanyl derivatives 

of 2-aminoacridone that supported the growth of gram-negative bacteria (although growth 

of E. coli and K. pneumoniae was inhibited) and produced yellow fluorescent colonies, 

without any diffusion through the agar, increasing the clinical utility of this dye as a 

component in fluorogenic agar.60  

Additionally, β-alanine (β-Ala) AP activity has been detected for P. aeruginosa, and has 

been used as a target for colorimetric and fluorescent-based probes.26,52,58,60,62,63 Currently, 

a β-alanyl pentylresorufamine (β-Ala-PRF; Scheme 7.6) colorimetric probe is used 

commercially to detect P. aeruginosa (chromID P. aeruginosa, bioMérieux) that results in 

the formation of red/purple colonies.64,65 When tested, β-Ala-PRF was capable of detecting 

99% of P. aeruginosa strains, but also showed varying activity against Burkholderia spp., 

other Pseudomonas spp., Ralstonia spp., and Moraxella spp.64  

 

Scheme 7.6: β-alanyl pentylresorufamine (β-Ala-PRF) hydrolysis in the presence of β-alanine producing 

bacteria 

One disadvantage of this colorimetric probe was that it diffused into the agar, making the 

identification of P. aeruginosa colonies difficult. Owing to this, the authors developed a 

series of 7-amino-phenozacin-3-one (7) and 8-aminophenoxacin-3-one (8) colorimetric 

probes, which in the presence of β-Ala produced pale red/orange and pink/purple colonies, 

respectively (Figure 7.6).66 All probes were able to detect P. aeruginosa, with 7 and 8 

detecting 100% and 80% of P. aeruginosa strains, respectively (n = 30 strains). Although 8 

was less sensitive, there was a lack of diffusion through the agar, making it a useful substrate 

for chromogenic agar, whereas 7, and β-Ala-PRF could be used in solution-based assays, 

where localisation would not be required.  

 

Figure 7.6: Structures of 7-amino-phenozacin-3-one (7) and 8-aminophenoxacin-3-one (8) 
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The authors followed on this work by producing fluorescent substrates to overcome the 

inherent disadvantages of chromogenic agar (i.e. time taken to produce a visible signal, 

interference from agar colour).67 The fluorescent probes were derived from coumarin 

(Scheme 7.7)  and upon hydrolysis by β-Ala a 1,6-elimiation occurred and fluorescence was 

observed. 9a was able to discriminate between β-Ala producers, with P. aeruginosa giving 

a positive result and S. marcescens giving a negative result. 9b resulted in fluorescence for 

P. aeruginosa, S. marcescens, and B. cepacia.  

 

Scheme 7.7: Coumarin-based fluorescent probes 9a and 9b for the detection of β-alanine 

Pyroglutamyl AP (PYRase) can be used for the differentiation of Enterobacteriaceae,13,68 

and the detection of Enterococci and Streptococcus pyogenes from most other gram-

positive cocci.69,70 4-aminophenol derivatives were synthesised (Scheme 7.8) and added to 

agar along with 1-napthol and NaOH, before subsequent inoculation with 108 bacteria and 

incubation at 37 °C for 24 h.58 Upon incubation with PYRase-producing bacteria, the 

colorimetric probe was hydrolysed, which in turn reacted with 1-naphthol, and following 

oxidation in situ, pink colonies were observed. A positive result was observed for 

Enterococcus faecium, E. faecalis, and Bacillus subtilis. Some Enterobacteriaceae also 

produced pink colonies, including K. pneumoniae and Serratia marcescens.  

 

Scheme 7.8: 4-aminophenol derivatives 7 and 8 under incubation with PYRase-producing bacteria and 1-

naphthol 

 

 

 



261 
 

7.2.2.4. Antibiotic-resistance Enzymes 

One emerging trend is the development of colorimetric and fluorescent probes for the 

detection of antibiotic-resistance enzymes in pathogenic bacteria; the focus has 

predominately been on the detection of β-lactamases.71–76 Shao et al developed three 

fluorogenic probes (termed LRBL 1 – 3) encompassing a fluorophore and quencher 

(Scheme 7.9), which produced FRET-based fluorescence in the presence of β-lactamase 

producing E. coli.76 

 

Scheme 7.9: FRET-based fluorescent probes LRBL 1 – 3 hydrolysis in the presence of β-lactamase bacteria.  

 

Recently, a fluorescent probe was designed to detect AmpC β-lactamase, a β-lactamase that   

primarily hydrolyses the third generation cephalosporins, ampicillin, and cefox.77,78 The 

probe, termed CDC-559 (Figure 7.7), was tested against two sensitive S. aureus strains, 

and two resistant bacterial strains (one S. aureus, one Enterobacter cloacae [E. cloacae]).77 

When CDC-559 was incubated with the susceptible strains, no noticeable change in 

fluorescence was observed. A slight decrease in fluorescence intensity was detected when 

incubated with the resistant S. aureus, although it was not as strong as the rapid decrease 

in fluorescence intensity when incubated with E. cloacae. This was due to their differing 

mechanisms of resistance, with S. aureus expressing PBP2a proteins, whereas Enterobacter 

cloacae produces large amounts of AmpC β-lactamase. 

 

 

Figure 7.7: Chemical structure of CDC-599 
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Carbapenemase-sensitive fluorescent probes have also been synthesised Mao et al who 

developed CB-1 (Figure 7.8) that employed an alkenyl-linked BODIPY dye as the active 

fluorophore.79 CB-1 was tested with a variety of carbapenemase-producing bacteria (CPO), 

and CB-1 was able to distinguish between CPOs and other bacterial strains. Mao et al then 

synthesised a carbapenem-sensitive umbelliferone-based probe (CPC-1; Figure 7.8), which 

showed specificity to metallo-β-lactamases over other serine-β-lactamases.80 CPC-1 

produced fluorescence when incubated with  metallo-β-lactamase producing E. coli and K 

pneumoniae. Recently, Kim and co-workers further developed this work by synthesising a 

probe they termed 1b.81 Probe 1b had excellent selectivity towards CPO compared to non-

CPO, displaying higher sensitivity than CPC-1 (i.e., 97.1% versus 58.3% for the detection of 

carbapenemase-producing Enterobacteriaceae, respectively).   

 

Figure 7.8: Chemical structure of CB-1, CPC-1, and 1b 

β-lactamase detection has also been useful in the identification of Mycobacteria spp.82,83 

Kong and co-workers utilised a reporter-enzyme fluorescence test using a FRET-based, 

near-infrared fluorogenic substrate (CNIR5), which allowed for real-time detection of 

mycobacteria in mice.84 Cheng et al synthesised the fluorescent probe CDG-3,85 which 

became the fluorogenic probe used in the TB REaDTM assay for the detection of 

Mycobacterium tuberculosis; this assay was then used by Nabeta et al who investigated the 

accuracy of  TB REaDTM compared to conventional culture-based methods;86 while Cheng 

et al and Sule et al reported good sensitivity and selectivity of CDG-3,85,87 this study 

reported a lower sensitivity and selectivity of 58.6% and 59.5%, respectively.86  

7.2.3. Alkaline Phosphatase 

While ALP has been used excessively for the detection of conditions such as cancer and 

diabetes, it has been under-explored for the detection of pathogenic bacteria. ALP is present 

in numerous bacterial species to help with the uptake of essential phosphate into the 

bacterial cell and is governed by the phosphate (Pho) regulatory system.  
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7.2.3.1. Pho Regulatory system 

Phosphorous is one of the main elements present in microbial cells; it is important for 

several biological functions including energy metabolism, membrane integrity, regulation 

of protein activity, and maintenance of acid-based homeostasis.88,89 Bacteria have evolved 

mechanisms to acquire and store the orthophosphate anion (PO4
3-), often known as 

inorganic phosphate (Pi),88 through governance by the Pho regulon, first characterised in 

E. coli.90 The Pho system activates enzymes capable of obtaining Pi from organic 

phosphates, Pi-specific transporters (including Pi-specific ATP-binding cassette 

transporter [PstSCAB]),91 and enzymes involved in the storage of the nutrient.  

The Pho regulon is controlled by a two-component regulatory system (TCS) that enables the 

bacteria to adapt to changing environmental phosphate levels.92 This system has a variety 

of names dependent on the bacteria under investigation (PhoRB in E. coli,93 PhoRP in 

Bacillus subtilis,94 and PhoPR in S. aureus),95 but is essentially composed of a histidine 

kinase that receives sensory input and a response regulator protein that controls output. 

Upon Pi limitation, the response regulator is phosphorylated by the sensor kinase and is 

able to activate or repress the transcription of genes.88 Among the Pi scavengers, alkaline 

phosphatases, phospholipases, glycerophosphodiester phosphodiesterases, phytases, and 

5’nucleotides are the most common enzymes induced in response to Pi starvation in 

bacteria.90  

7.2.3.2. Alkaline Phosphatase Expression 

The majority of the knowledge of ALP stems from the study of an ALP obtained from 

E. coli.96  ALPs are metalloenzymes, thought to contain Zn2+ or Mg2+;97 they are usually 

homodimeric, however, monomeric97 and oligomeric98 forms have been described. In 

E. coli, synthesis of ALP is under the control of one structural (phoA) and two regulator 

(phoR and phoX) genes.99,100 Upon Pi-limitation, ALP synthesis is up-regulated through the 

transcription of the phoA gene, which is mediated through the Pho regulon.96  The main 

responsibility of ALP is to breakdown organic phosphate esters to release Pi,89,90 although 

ALP can exhibit transphosphorylase101 and pyrophosphorylase102 activities. 

ALP is present in numerous bacterial species, such as E. coli,96  P. aeruginosa,103 

S. aureus,104 and B. subtilis.105,106 While the majority of ALP enzymes are repressed in the 

presence of Pi,100,104,107 some studies have described the presence of constitutive 

ALP.108,109ALP is located in the periplasmic space between the cell wall and the cell 

membrane in E. coli 110 and generally thought to be located here in other gram-negative 

bacteria.111,112 For gram-positive bacteria, such as S. aureus, ALP is usually associated with 
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the surface of the cell membrane.104,113 Additionally, the expression of ALP has been shown 

to be heterogenous in bacterial biofilms in response to phosphate starvation.114 

7.2.3.2.1. Staphylococcus aureus Alkaline Phosphatase 

S. aureus ALP is located in the cell membrane.115 In phosphate deficient media phoB (ALP) 

and phoP (encoding an ALP synthesis transcriptional regulatory protein) are upregulated. 

Prunty et al showed that the phoB operon is expressed at very low levels in parental S. 

aureus Newman; however, expression is upregulated ~9.16-fold in strain dphoR, indicating 

that the expression is under the positive control of PhoPR. 89 ALP activity was found to 

increase with size of inoculum and time of incubation.116 Additionally, the amount of 

phosphatase produced by S. aureus has been correlated with coagulase production as a 

biochemical index of pathogenicity and implicated as a virulence factor for S. aureus.117,118  

7.2.3.3. Use of Alkaline Phosphatase Reported in the Literature 

One of the main uses of ALP reported in literature is to determine bacterial cell 

permeability.119 As ALP is located in periplasmic space (gram-negative bacteria), or cell-

membrane bound (gram-positive bacteria), there should be minimal ALP activity in the 

extracellular environment of heathy, structurally-intact, bacterial cells. When healthy 

bacteria are incubated with certain antimicrobials, the antimicrobial creates pores, or 

disrupts the structural integrity of the cell wall, resulting in the release of ALP into the 

extracellular environment. Therefore, an increase in extracellular ALP is related to the 

structural integrity of the cell wall of the bacteria under investigation.  

Additionally, ALP has been used as a ‘reporter enzyme’ in immunoassays120 and DNA-based 

probes.121 ALP has also been used in aptamer/DNA based electrochemical studies,122 and 

the phoA gene has been used in general ‘fusion studies’123 and polypeptide124 fusion studies. 

However, there have been limited studies on the detection of ALP for the identification of 

bacteria.125,126 Kang et al were able to synthesise a phosphorylated fluorescent probe (2-

hydroxychalcone [HCAP]) and conjugate it to an adhesive cationic polymer (HCAP-PVP) 

to detect ALP in bacterial species.127 Upon incubation with E. coli and S. aureus, the 

phosphate group was cleaved and the green/yellow emission ratiometrically changed to a 

deep-red emission; this system was able to detect 103 and 105 S. aureus and E. coli, 

respectively. Furthermore, Cellier et al synthesised a phosphatase probe based on 2-

arylbenzothiazone for the detection of Staphylococcus spp., particularly S. aureus. 

However, fluorescence and blue colonies were witnessed for all gram-negative and gram-

positive bacteria tested, suggesting that this assay was not specific for S. aureus detection.26  
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One commercial diagnostic product  that utilises ALP for the detection of S. aureus is 

RapdiDEC® Staph (Biomérieux). The test provides a 2 h presumptive identification of 

S. aureus, S. epidermidis, and Staphylococcus saprophyticus on the basis of fluorogenic 

coagulase, ALP, and galactosidase tests, respectively.128  

7.2.4. Aims and Objectives 

The aim of this study was to further develop knowledge of ALP for the detection of bacteria, 

specifically S. aureus. TCF-ALP was used as it had previously shown to be effective in 

detecting ALP using both enzyme suspensions and cell-based assays (HeLa and C2C12 

cells). The objectives of this chapter are: 

• To optimise TCF-ALP to detect ALP in bacterial cells 

• To determine if TCF-ALP can detect ALP in planktonic, biofilm, and ex vivo porcine 

skin models 

• To evaluate the selectivity of TCF-ALP against a library of clinically-relevant 

bacterial isolates 

• To develop a hydrogel incorporating TCF-ALP for use as a diagnostic wound 

dressing in a clinical environment.  
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7.3. Methods 

7.3.1. Synthesis of TCF-ALP 

TCF-ALP was synthesised as outlined in Chapter 6. Stock solutions of TCF-ALP were 

stored in DMSO at 4 °C until required.  

7.3.2. Preparation of TCF-ALP Based PVA Hydrogels 

A 10% w/v PVA solution was prepared by dissolving PVA in 50 mM Tris HCl (pH 9.2). After 

the resultant solution had cooled to room temperature, aliquots of 1 mL were transferred 

into a 12-well microtiter plate and 38.5 µL of TCF-ALP (2.6 mM in DMSO) was added to 

produce homogenous yellow solutions. These solutions were placed at -80 °C and 

underwent one freeze-thaw cycle to produce mechanically stable hydrogels, which were 

protected from light and stored at 4 °C prior to use.  

7.3.3. Bacterial Growth Conditions 

Bacterial strains were stored at –80 °C in broth containing 15% (v/v) glycerol until required. 

Working stocks of S. aureus and S. epidermidis were prepared by streaking TSA, while P. 

aeruginosa and E. coli were plated onto Luria Bertani (LB) agar before incubation at 37 °C 

for 24 h. Plates were stored at 4 °C for up to a month for further use. Overnight cultures of 

bacterial strains were routinely propagated by transferring a single colony to 5 mL Müeller-

Hinton broth and incubating at 32 °C for 18 h. Cultures were washed via centrifugation 

(4000 g, 10 min) before being re-suspended in 50 mM Tris-HCl (pH 9.2) to an optical 

density at 600 nm of ~ 1 (c. 5.0 x 108 CFU/mL). 

7.3.4. Bacterial Enumeration 

Estimation of the total viable count of bacterial cultures were determined as outlined in 

Chapter 2, Section 2.2.1.4.  

7.3.5. Effect of Broth on Alkaline Phosphatase Production 

Overnight cultures of S. aureus NCTC 10788 were grown in either Tryptic Soy Broth (TSB), 

Luria Bertani (LB) broth, or Mueller Hinton broth at 32 °C for 18 h. After incubation, 

bacterial cells were washed and re-suspended in 50 mM Tris-HCl (pH 9.2) to an optical 

density at 600 nm of ~ 1 (c. 5.0 x 108 CFU/mL). Prior to testing, bacterial cells underwent 
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centrifugation (4000 g, 10 min) and were re-suspended in an equal volume of 10 µM TCF-

ALP in 50 mM Tris-HCl (pH 9.2).  Bacterial cultures were then protected from light and 

incubated at 32 °C for a further 24 h. Analysis of ALP production was performed after 1 and 

24 h incubation with TCF-ALP. A 200 µL aliquot was removed and centrifuged at 10 000 

g for 3 min. The supernatant was subsequently placed into a black 96-well microtiter plate 

and the fluorescence was measured using a CLARIOstar fluorimeter (BMG LabTech, UK),  

λex = 542 nm, λem = 606 nm. 

7.3.6. Detecting Alkaline Phosphatase in Planktonic 

Bacteria 

Optically-adjusted bacterial cultures (Chapter 2, Section 2.2.1.3) underwent centrifugation 

(4000 g, 10 min) and were re-suspended in an equal volume of 10 µM TCF-ALP in 50 mM 

Tris-HCl (pH 9.2). For TCF-ALP hydrogel analysis, 2 mL of the bacterial culture in 50 mM 

Tris HCl (pH 9.2) was transferred to a 12-well microtiter plate containing a 100 µM TCF-

ALP based PVA hydrogel. These suspensions were subsequently protected from light and 

incubated at 32 °C for 24 h, unless stated otherwise. After incubation, 1 mL was removed 

from each suspension and centrifuged at 10 000 g for 3 min. The supernatant was 

subsequently placed into a black or clear 96-well microtiter plate for fluorescence and UV-

Vis analysis, respectively. The fluorescence was measured using CLARIOstar fluorimeter 

(BMG LabTech, UK),  λex = 542 nm, λem = 606 nm, and the UV-Vis by SPECTROstar Omega 

(BMG LabTech, UK). Appropriate controls were carried out in tandem and a minimum of 

three biological replicates per bacterial strain were used. 

7.3.7. Detecting Alkaline Phosphatase in 96-well Plate 

Biofilm Models 

7.3.7.1. Alkaline Phosphatase Activity of Biofilm  

Overnight cultures of S. aureus NCTC 10788 were sub-cultured into fresh Mueller Hinton 

broth to attain a concentration of 106 CFU/mL, before being placed into a 96-well microtiter 

plate and incubated at 32 °C for 18 h. After incubation, planktonic bacteria were discarded, 

and the remaining biofilm was washed three times with sterile dH2O. Plates were left to dry 

at room temperature for 20 min, before subsequent addition of 220µL of 10 µM TCF-ALP 

in 50 mM Tris-HCl (pH 9.2) and further incubation at 32 °C for 24 h. Analysis of ALP 

production was performed as outlined in Section 7.3.6. The experiment was carried using 
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three biological replicates, and the assay performed in duplicate to ensure fluorescence 

readings at both 1 h and 24 h.  

7.3.7.2. Inhibition of Alkaline Phosphatase Activity 

7.3.7.2.1. Preparation of Sodium Orthovanadate 

A 50 mM stock of sodium orthovanadate was prepared in dH2O. Once dissolved, the pH was 

adjusted to 9.2 with 1 M NaOH and the resultant yellow solution (indicative of dimers) was 

boiled until colourless. Upon cooling, the pH was re-measured and adjusted if needed. This 

was repeated until the solution remained colourless.  

7.3.7.2.2. Minimum Inhibitory Concentration 

The Minimum Inhibitory Concentration of sodium orthovanadate was determined as 

outlined in Chapter 2, Section 2.2.1.5, with Mueller Hinton used as the broth.  

7.3.7.2.3. Minimum Biofilm Inhibitory Concentration 

The Minimum Biofilm Inhibitory Concentration of sodium orthovanadate was determined 

as outlined in Chapter 2, Section 2.2.2.1, with Mueller Hinton used as the broth.  

7.3.7.2.4. Inhibition of Alkaline Phosphatase Activity 

Biofilms of S. aureus NCTC 10788 were prepared as outlined in Chapter 2, Section 2.2.2.1. 

After 24 h incubation planktonic bacteria were discarded, and the remaining biofilm was 

washed three times with sterile dH2O and left to dry for 20 min at room temperature. Next, 

wells were pre-treated with various concentrations of sodium orthovanadate (0 – 3.75 mM; 

pH 9.2) for 30 min at room temperature, before addition of 10 µM TCF-ALP in 50 mM 

Tris-HCl (pH 9.2).  Bacterial cultures were then protected from light and incubated at 32 °C 

for a further 24 h. Analysis of ALP production was performed as outlined in Section 7.3.6 

7.3.8. Colony Biofilm Wound Model 

First, 19 mm polycarbonate membranes were UV sterilised for 10 min on Mueller Hinton 

agar, before being inoculated with 30 µL Artificial Wound Fluid (AWF; 50% fetal bovine 

serum in 50% peptone water [0.9% sodium chloride in 0.1% peptone]). Once dry, 50 µL of 

sub-cultured S. aureus NCTC 10788, P. aeruginosa PA01, or E. coli NSM56 (106 CFU/mL 

in 50 mM Tris HCl pH 9.2) was placed on the membrane and allowed to dry at room 

temperature.  The inoculated polycarbonate membranes were then incubated for 24 h at 32 

°C. Next, biofilms were removed from the agar plate, and placed into 2 mL of 10 µM TCF-



269 
 

ALP in 50 mM Tris-HCl (pH 9.2), before being protected from light and incubated at 32 °C 

for 24 h. After, 1 mL of the suspension was removed and centrifuged at 10 000 g for 3 min. 

The supernatant was subsequently placed into a black 96-well microtiter plate for 

fluorescence analysis of ALP production. For TCF-ALP hydrogel analysis, biofilms were 

transferred to a 12-well microtiter plate containing bacteriological agar (to prevent the 

drying out of the biofilm). A 100 µM TCF-ALP based PVA hydrogel was subsequently 

placed on top of the biofilm. After being protected from light and incubated for 24 h at 32 °C, 

the hydrogels were removed from the biofilm and directly measured for fluorescence 

intensity using wavelengths as outlined previously.  

To determine bacterial concentration, 24 h old biofilms were placed into 10 mL of PBS (pH 

7.4) and stripped by sonication (44 KHz) for 15 min twice, with a 60 s interval of vortexing. 

Viable cells were quantified as outlined in Chapter 2, Section 2.2.1.4.  

7.3.9. Ex vivo Porcine Skin Model  

7.3.9.1. Sterilisation 

Porcine skin was washed with H2O before being cut into 2 x 2 cm squares, and subsequently 

underwent three 15-minute vortex cycles of washing in sterile dH2O. After, porcine skin was 

vortexed once for 15 min in 70 % ethanol, before a further two washes with sterile dH2O. 

Finally, the skin was UV-irradiated using a commercial UV source (Hamanatsu, Japan) 

equipped with a 254 nm UV lamp for 10 min before use. 

7.3.9.2.  Alkaline Phosphatase Activity 

A 10 µL aliquot of S. aureus NCTC 10788 (108 CFU/mL in 50 mM Tris HCl pH 9.2) was 

added to the sterilised skin and left to dry for 20 min at room temperature. Next, 1 mL of 10 

µM TCF-ALP in 50 mM Tris-HCl (pH 9.2) was added to the skin via use of a Franz Cell.  

Inoculated porcine skin was then protected from light and incubated at 32 °C for 24 h. After, 

the suspension was removed and centrifuged at 10 000 g for 3 min. The supernatant was 

subsequently placed into a black 96-well microtiter plate for fluorescence analysis of ALP 

production. For TCF-ALP hydrogel analysis, a 100 µM TCF-ALP based PVA hydrogel was 

subsequently placed on the top of the inoculated skin. After being protected from light and 

incubated for 24 h at 32 °C, the hydrogels were removed from the skin and directly 

measured for fluorescence intensity using wavelengths as mentioned previously.  
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7.4. Results and Discussion 

7.4.1. UV-Vis of TCF-ALP  

To determine whether the colorimetric change witnessed in Chapter 6 could be applied to 

whole-cell bacterial sensing, a stationary phase culture of S. aureus NCTC 10788 was 

harvested, washed, and resuspended in 1 mL of 10 µM TCF-ALP in 50 mM Tris-HCl (pH 

9.2). The concentration of TCF-ALP and pH of the buffer remained the same as the 

enzymatic assays undertaken in Chapter 6; however, the incubation time and temperature 

were different for optimal bacterial sensing and will be discussed further in this chapter.  

After 24 h incubation at 32 °C, the bacterial suspensions were centrifuged, and the 

supernatant removed to obtain the UV-Vis spectra of TCF-ALP (Figure 7.9). A clear 

bathochromic shift of UV absorption occurred, which corresponded to a colour change from 

yellow to purple. This result is indicative of ALP production within S. aureus NCTC 10788, 

and further supports literature reports that ALP production is membrane-bound as the cells 

did not need to be lysed to detect ALP activity.115 

 

 

 

Figure 7.9: UV-Vis spectra of TCF-ALP (10 µM) after 24 h incubation at 32 °C with S, aureus NCTC 10788 

(1010 CFU/mL) in 50 mM Tris-HCl buffer pH 9.2 
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7.4.2. Optimisation of Assay 

7.4.2.1. Role of Bacterial Growth Media on Alkaline Phosphatase 

Production 

It is known that the addition of inorganic phosphate into culture media can result in reduced 

ALP activity in bacteria due to the repressive-nature of the enzyme.115 To confirm this 

phenomenon, S. aureus NCTC 10788 was grown in three different broths, with different 

phosphate concentrations: Mueller Hinton, LB, and TSB. After incubation, bacterial cells 

were washed, resuspended in 10 µM TCF-ALP (50 mM Tris-HCl, pH 9.2), and incubated 

for 1 or 24 h at 32 °C. After incubation, ALP activity was determined by measuring 

fluorescence intensity.  

After 1 h incubation with TCF-ALP (Figure 7.10), a statistically significant increase in 

fluorescence intensity was observed for bacterial isolates propagated in Mueller Hinton 

broth compared to LB and TSB (One way ANOVA; p<0.01). After 24 h incubation (Figure 

7.11), bacterial isolates grown in Mueller Hinton had a statistically significant increase in 

fluorescence (One way ANOVA; p<0.0001) compared to TSB, while there was no statistical 

difference between Mueller Hinton and LB.  
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Figure 7.10: Staphylococcus aureus NCTC 10788 (108 CFU/mL) was grown in: Mueller Hinton, LB or TSB 

before being inoculated for 1 h with TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C. A) 

Fluorescence spectra and B) corresponding change in fluorescence (I/I0). λex = 542 (bandwidth 15) nm. λem = 

606 nm. Error bars indicate standard deviation (n = 3). Statistical significance was assessed by performing a 

One-way ANOVA followed by Turkey post-hoc test. p values are indicated **, p<0.01 
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Figure 7.11: Staphylococcus aureus NCTC 10788 (108 CFU/mL) was grown in either Mueller Hinton, LB or 

TSB before being inoculated for 24 h with TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C. A) 

Fluorescence spectra and B) corresponding change in fluorescence (I/I0). λex = 542 (bandwidth 15) nm. λem = 

606 nm. Error bars indicate standard deviation (n = 3). Statistical significance was assessed by performing a 

One-way ANOVA followed by Turkey post-hoc test. p values are indicated ***, p<0.001, ****, p<0.0001 

As TSB contains 2.5 g/L of dipotassium hydrogen phosphate, it was expected that this broth 

would hinder ALP production during S. aureus growth. This correlates with the results 

obtained in Figures 7.10 and 7.11, as fluorescence intensity was significantly lower than the 

other media tested, suggesting lower amounts of ALP were produced.   

The chemical compositions of Mueller Hinton and LB are different; hence, it is difficult to 

pinpoint what variable resulted in reduced phosphatase activity in LB compared to Mueller 

Hinton. However, it can be assumed that the differences in ALP production at 1 h is due to 

the differing amounts of trace phosphate levels in the growth medium. Unlike Mueller 

Hinton, LB contains yeast extract to supply vitamins, amino acids and trace elements, 

including phosphate.130 This additional phosphate could have resulted in ALP being 

repressed in the early stages of growth, before being induced once the medium became 

phosphate-deficient.  

Additionally, it has been shown by Sen et al that broth composition can have an effect on 

the morphology of bacterial cells,131 while Ray et al132 and Oogai et al133 have suggested that 

the growth medium used for bacterial propagation has major effects on the expression of 

virulence and regulatory genes. Therefore, further study is needed to fully comprehend the 

relationship between growth media and the expression of ALP in S. aureus. Nevertheless, 

for the duration of this study Muller Hinton was utilised as the growth medium as it 

displayed the highest levels of ALP production.  
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7.4.2.2. Washing Steps 

Next, experiments were undertaken to ensure that residual growth-medium did not affect 

ALP detection, hence washing steps were employed to remove the growth medium and any 

secreted ALP produced by S. aureus. Results show that washing the bacterial pellet had no 

statistical effect on the Log CFU/mL of S. aureus NCTC 10788, nor did it have any statistical 

effect on the fluorescence intensity when incubated with TCF-ALP (Figure 7.12). It was 

therefore concluded that upon harvesting, bacterial pellets would be washed once with 50 

mM Tris HCl buffer (pH 9.2) before undergoing incubation with TCF-ALP to remove 

residual broth from the assay.  
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Figure 7.12: A) Log CFU/mL of Staphylococcus aureus NCTC 10788 after different amounts of wash cycles (0 

– 3) and B) Change in fluorescence (I/I0) of TCF-ALP (10 µM) after 24 h incubation with washed suspensions 

of Staphylococcus aureus NCTC 10788 (108 CFU/mL) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C. λex = 542 

(bandwidth 15) nm. λem = 606 nm. Statistical significance was assessed by performing a One-way ANOVA 

followed by Turkey post-hoc test  

7.4.2.3. Incubation Temperatures 

An investigation was undertaken to assess the role of temperature on ALP production. As 

previously mentioned, S. aureus grows at an optimum temperature of 37 °C, while the 

surface of the skin is cooler – with healthy skin having an average temperature of 32 °C. 

Therefore, to determine if there was any difference in ALP production at these two 

temperatures, S. aureus NCTC 10788 was incubated in Mueller Hinton broth at both 

temperatures prior to ALP determination.  

Once the bacteria were grown, they were re-suspended in 50 mM Tris HCl buffer (pH 9.2) 

containing 10 µM of TCF-ALP. The bacteria and probe were then incubated at the following 
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temperatures: 25 °C, to assess the efficacy of TCF-ALP as a PoC test at the hospital bedside; 

32 °C, to assess efficacy of TCF-ALP at wound-bed temperatures; and 37 °C, to assess the 

efficacy of TCF-ALP at the optimum temperature for S. aureus growth.  

After 1 h incubation with 10 µM TCF-ALP (Figure 7.13A) there was no statistical difference 

between the ALP activity measured for bacteria grown at 32 °C compared to 37 °C for all 

TCF-ALP incubation temperatures measured. Although it seems that TCF-ALP 

incubation at 37 °C provides a faster detection of ALP for bacteria originally grown at 32 °C 

and 37 °C, the difference was not statistically significant. By 24 h (Figure 7.13B) all variables 

tested resulted in similar fluorescence intensities, and hence similar ALP activities. There 

was a statistical difference for bacteria grown at 37 °C and then subsequently incubated with 

TCF-ALP at 25 °C compared to 37 °C; however, the p value was 0.0499. 

Overall, the results show that there is no difference in ALP production for S. aureus NCTC 

10788 when grown at 32 °C compared to 37 °C. Likewise, TCF-ALP incubation 

temperatures did not have a substantial effect on ALP detection. Therefore, for the duration 

of this study, the bacterial cultures were incubated at 32 °C and once grown, incubated at 

32 °C with TCF-ALP to mimic TCF-ALP being used as a wound dressing.  
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Figure 7.13: Change in fluorescence (I/I0) of TCF-ALP (10 µM) after A) 1 h and B) 24 h incubation with 

Staphylococcus aureus NCTC 10788 (108 CFU/mL) in 50 mM Tris-HCl buffer pH 9.2. Bacterial cultures were 

grown at either 32 °C or 37 °C and incubated with TCF-ALP (10 µM) at 25°C, 32 °C or 37 °C. λex = 542 

(bandwidth 15) nm. λem = 606 nm. Statistical significance was assessed by performing a t-test with Welch’s 

correction. p values are indicated *, p<0.05  
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7.4.3. Time-dependant Alkaline Phosphatase Detection  

A known concentration of S. aureus NCTC 10788 (108 CFU/mL) was incubated with 10 µM 

of TCF-ALP (50 mM Tris-HCl, pH 9.2) and the fluorescence intensity measured over the 

course of 24 h (Figure 7.14). There was a noticeable increase in fluorescence intensity after 

1 h incubation, rising linearly until a plateau after approximately 8 h. After this time, the 

fluorescence intensity remained constant for a further 16 h.   

From this data it was concluded that fluorescence measurements using  TCF-ALP were to 

be conducted at 1 h and 24 h. The time point of 1 h was chosen as it was the first time point 

capable of detecting ALP activity at this bacterial concentration and represented a ‘rapid’ 

detection of ALP activity and thus S. aureus NCTC 10788 infection. The longer incubation 

time of 24 h was chosen to allow for TCF-ALP to detect ALP activity in bacterial strains 

that have lower ALP expression, which could be missed at the 1 h timepoint.  
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Figure 7.14:  A) Fluorescence spectra of TCF-ALP (10 µM) recorded over the course of 24 h upon addition of 

Staphylococcus aureus NCTC 10788 (108 CFU/mL) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C. B) Corresponding 

change in fluorescence (I/I0) of TCF-ALP (10 µM) upon addition of Staphylococcus aureus NCTC 10788 (108 

CFU/mL) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C.. λex = 542 (bandwidth 15) nm / λem = 606 nm. Error bars 

indicate standard deviation (n = 3) 

7.4.4. Relationship Between Alkaline Phosphatase 

Production and Bacterial Concentration 

To determine the concentration of S. aureus NCTC 10788 required to elicit a ‘turn on’ 

response of TCF-ALP, S. aureus NCTC 10788 was propagated, washed, and resuspended 

to achieve final bacterial densities of 105 – 1010 CFU/mL in 10 µM of TCF-ALP  (50 mM 
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Tris-HCl buffer, pH 9.2). The fluorescence intensity of each bacterial concentration was 

measured after 1 h and 24 h incubation at 32 °C. After, the intensities were normalised and 

plotted against a Log CFU/mL scale; the linear section of the graph was obtained, and the 

LOD was defined as the x-intercept.  

After 1 h incubation, a linear, concentration-dependent increase in fluorescence intensity 

was seen for bacterial titres greater than 107 CFU/mL (Figure 7.15). Upon performing linear 

regression, it was found that the X-intercept was 7.50 (95 % Confidence Interval (CI) of 7.47 

– 7.53), which corresponded to 3.17 x 107 CFU/mL (95 % CI of 2.95 – 3.40 x 107 CFU/mL).  
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Figure 7.15: A) Fluorescence spectra of TCF-ALP (10 µM) after 1 h incubation with various concentrations of 

Staphylococcus aureus NCTC 10788 (105 – 1010 CFU/mL) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C, and B) 

corresponding selectivity graph at 606 nm. λex = 542 (bandwidth 15) nm. λem = 606 nm. (X-intercept 7.501 = 

3.17 x 107 CFU/mL; Y = 11.52X – 86.38; R2 0.9983) 

 

After 24 h incubation with TCF-ALP, the LOD of S. aureus NCTC 10788 decreased (Figure 

7.16), with the X-intercept becoming 6.57 (95 % CI of 6.32 – 6.76), which corresponded to 

3.70 x 106 CFU/mL (95 % CI of 2.08 – 5.79 x 106 CFU/mL). However, at high bacterial 

concentrations (1010 CFU/mL) the fluorescence intensity decreased. One possible reason for 

this could be due to the assay methodology, whereby the bacterial suspension containing 

TCF-ALP was centrifuged and the supernatant removed for fluorescence measurements. 

Therefore, it is possible that at higher bacterial cell density there was a greater increase in 

uptake of TCF-ALP into the bacterial cells, and thus resulted in a lower fluorescence 

intensity in the supernatant.  
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Figure 7.16: A) Fluorescence spectra of TCF-ALP (10 µM) after 24 h incubation with various concentrations 

of Staphylococcus aureus NCTC 10788 (105 – 1010 CFU/mL) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C, the 

dotted line represents 1010 CFU/mL. B) corresponding selectivity graph at 606 nm. λex = 542 (bandwidth 15) 

nm. λem = 606 nm. (X-intercept 6.568 = 3.70 x 106 CFU/mL; Y = 14.45X – 94.88; R2 0.9759) 

 

The LOD of TCF-ALP was compared to the LOD of other chemiluminescent, colorimetric, 

and fluorescent probes that detected bacteria via enzymes (Table 7.1).  Most of the recent 

publications have focused on the detection of E. coli through the use of several enzymes (β-

galactosidase and β-glucuronidase), and the detection of antibiotic-resistant bacteria 

through the use of β-lactamase and carbapenemase. As shown in Table 7.1, most of the 

fluorescent and colorimetric probes developed have a similar LOD between 105 – 107 

CFU/mL. Some fluorescent probes that could detect concentrations as low as 101 CFU/mL 

were only able to do so after an ‘enrichment’, where the initial bacterial suspension (101 

CFU/mL) was added to broth and allowed to grow for a set period of time. Therefore, the 

concentration after the enrichment process is significantly higher than what is recorded as 

the LOD. This is evident with Kim et al, where without enrichment the LOD was 107 

CFU/mL, and with a 7 h enrichment it was lowered to 101 CFU/mL.23  

Additionally, some of these fluorescent and colorimetric probes detect enzymes that are 

intracellular, such as β-galactosidase and β-glucuronidase. Owing to this, the bacterial cells 

must be lysed prior to testing with the probe, resulting in a complicated system where the 

bacteria must be pre-treated for detection to occur, which can be costly and difficult to 

achieve as a PoC device.  
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Table 7.1: Table outlining Limits of Detection for fluorescent and colorimetric probes for the detection of 

bacterial enzymes 

Bacteria Enzyme 
Detection 

Method 

LOD  

(CFU/mL) 
Time Year Ref. 

Salmonella C8-Esterase 
Chemi-

luminescence 
10 cells 6 h 

2019 

 
134 

Listeria 

monocytes 
PI-PLC 

Chemi-

luminescence 
104 24 h 2019 134 

Pseudomonas 

aeruginosa 
Carbapenemase 

Chemi-

luminescence 
107 20 min 2020 135 

Klebsiella 

pneumonia 
Carbapenemase 

Chemi-

luminescence 
107 20 min 2020 135 

Escherichia 

coli 
β-lactamase 

Chemi-

luminescence 
105 30 min 2020 136 

Escherichia 

coli 
β-lactamase Fluorescence 107 30 min 2020 136 

Escherichia 

coli 
β -galactosidase Colorimetric 

105 with cell 

lysis, 107 

without. 

40 min 2017 32 

Escherichia 

coli 
β -galactosidase 

Colorimetric 

hydrogel 
102 60 min 2010 137 

Escherichia 

coli 
β-glucuronidase Fluorescence* 102 30 min 2010 19 

Escherichia 

coli 
β-glucuronidase Fluorescence 105 - 1999 138 

Escherichia 

coli 
Numerous Colorimetric 

101 with 7 h 

enrichment, 

107 without 

4 h for 

enrichment, 

60 min 

without 

2019 23 

*this work developed a novel hand-held fluorimeter to detect Escherichia coli.  

- unknown 

 

It has long been theorised that the healing of chronic wounds is directly related to the 

number of colonising bacteria – often termed the critical colonisation.139,140 However, there 

remains much debate over this term, as the threshold concentration for the bacterial burden 

to progress from contamination to localised infection is ambiguous. An alternative school 

of thought is that the presence of an infection is dependent on the bacterial species present 

and not the bacterial bioburden within the wound. The most probable rationale is that the 

progression to infection is a result of several factors: what pathogenic bacteria are present 

at the wound site, the pathogen’s ability to cause disease (virulence), the concentration of 

these pathogens, and the host’s ability to mount an immune response.141  
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While there is a debate over the number of bacteria required to result in a localised infection, 

it is generally accepted that it lies between 104 to 106 CFU/mL, depending on the bacterial 

species and the location of the wound.142 Work conducted by Robson et al found that the 

healing of pressure ulcers and surgical site infections could be predicted by quantifying the 

bacteria in biopsied tissue; this formed the basis of the 105 guideline, which is the theory 

that 105 viable bacterial cells per gram of tissue is necessary to cause wound infections.  

Additionally, biofilms are present in approximately 60 to 90% of chronic wounds and 

contribute to the pathogenicity of the invading bacterial species.143–145 Biofilms usually have 

higher bacterial cell density, with results in our laboratory showing bacterial concentrations 

as high as 1011 CFU/membrane – significantly higher than the 105 standard needed to cause 

infection. However, one main issue with chronic wounds is that there is no gold-standard 

tests available to diagnose wound infections.144,146 TCF-ALP could potentially be able to 

diagnose such infections, with a clear “turn-on” response witnessed at concentrations 

higher than 106 CFU/mL after 24 h incubation. As concentrations below this fluorescence 

response are not indicative of a localised infection, TCF-ALP might be able to accurately 

diagnose wounds that are clinically infected, helping health care professionals accurately 

diagnose and treat infected wounds.  

7.4.5. Selectivity of TCF-ALP  

To ensure that TCF-ALP is selective towards S. aureus species, selectivity assays were 

performed using 108 CFU/mL of different bacterial isolates. Initially, six S. aureus, three 

S. epidermidis, three P. aeruginosa, and three E. coli strains were tested using TCF-ALP 

(50 mM Tris-HCl, pH 9.2). After 24 h incubation, all S. aureus and S. epidermidis strains 

were capable of eliciting a fluorescence response, while negligible fluorescence was 

observed for E. coli and P. aeruginosa strains. This negligible fluorescence response was 

not due to a decrease in bacterial concentration, with cell counts showing a minimal 

decrease in bacterial density after 24 h incubation with TCF-ALP (Appendix).  

The results shown in Figure 7.17 were interesting, as all bacterial strains were shown to 

produce ALP;88,104 however, gram-positive bacterial species produced a higher fluorescence 

response compared to gram-negative species. One hypothesis for this variance is that 

Staphylococcal spp. produce more ALP compared to their gram-negative counterparts and 

therefore displays a stronger response to TCF-ALP. Alternatively, the differences in 

fluorescence response could be due to the differences in cell wall structure and location 

of ALP within the bacterial cell. S. aureus and S. epidermidis are both gram-positive 

organisms with a thick peptidoglycan layer; ALP is normally membrane-bound, hence is 
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easily accessible. For  gram-negative bacteria, TCF-ALP would have to pass through the 

outer membrane via passive diffusion or through the use of efflux pumps in order to be de-

phosphorylated by the ALP within the periplasmic space.111 Therefore, it could be possible 

that these transporter proteins are unable to recognise TCF-ALP and consequently 

the fluorescent probe is unable to enter the bacterial cell. However, further work is required 

to determine the reason behind this selectivity.  

 

 

 

Figure 7.17: Selectivity bar chart of TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 after 24 h incubation 

with various bacterial strains (108 CFU/mL) at 32 °C. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars 

indicate standard deviation (n = 3) 

 

To ensure that TCF-ALP was selective to S. aureus, further experiments were conducted 

using a larger library of S. aureus isolates. In total, 42 S. aureus strains were tested, and the 

fluorescence intensity measured after 1 and 24 h incubation with TCF-ALP. For all S. 

aureus strains tested, there was an increase in fluorescence intensity after 1 h incubation 

with TCF-ALP, which further increased after 24 h incubation (Figures 7.18 and 7.19).  
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Figure 7.18: Selectivity bar chart of TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 after 1 h incubation with various bacterial strains (108 

CFU/mL) at 32 °C. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3). 
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Figure 7.19: Selectivity bar chart of TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 after 24 h incubation with various bacterial strains (108 

CFU/mL) at 32 °C. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3). 
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The results above show that TCF-ALP was capable of producing a fluorescence response in 

the presence of all 42 S. aureus strains tested. Interestingly, the majority of S. aureus strains 

were capable of producing at least a 20-fold increase in fluorescence intensity, regardless of 

the phenotype. This suggests that ALP is conserved within S. aureus and therefore could be 

used as a tool for S. aureus detection within an infected wound.  

One interesting observation is the fact that S. aureus Agr- (RN6911) has a decreased 

fluorescence response compared to its counterpart, S. aureus Agr+ (RN6390B). In these 

studies, S. aureus Agr- is a derivative of S. aureus Agr+, where the accessory gene regulator 

(agr) system has been replaced with a tetracycline resistance gene. The agr system controls 

and regulates a variety of S. aureus virulence factors that contribute to S. aureus 

pathogenicity through coordinated expression of specific virulence genes. Often cell surface 

adhesins are synthesised and expressed before the secretion of toxins and enzymes.147 Agr- 

mutants have been isolated in clinical and laboratory settings,148,149 exhibiting increased 

fitness, especially under antibiotic stress,150 which can therefore be linked to higher patient 

mortality.147 While in a chronic infection arg- phenotype strains have increased persistence, 

agr+ phenotype strains seem to be important for bacterial virulence to create an established 

infection.151  

In these studies, S. aureus Agr- and Agr+ both display a fluorescence “turn-on” in response 

upon incubation with TCF-ALP. Therefore, it can be suggested that ALP expression is not 

under the control of agr. However, ALP production could be agr-dependent as the ALP 

activity of S. aureus Agr- was observed to be lower than that of S. aureus Agr+. One 

hypothesis for this observation is that as the agr system is dependent on phosphorylation, 

it needs inorganic phosphate to operate successfully.151 In order to aid this phosphorylation, 

ALP production may need to be increased in S. aureus Agr+, while the same level of ALP is  

not needed for S. aureus Agr- as the agr operon is not present. However, there are other 

mechanisms within S. aureus that rely on phosphorylation of a protein to function; 

therefore, further exploratory analysis is required to investigate the relationship between 

ALP and regulation systems within S. aureus.   

7.4.6. Alkaline Phosphatase Production in Established 

Biofilms 

As previously mentioned, approximately 60% of chronic wounds contain a biofilm. 145,152,153 

To determine the clinical utility of the probe, all work herein utilised 24 h old biofilms to 

investigate the efficacy of TCF-ALP in detecting ALP activity in bacterial biofilms. 
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The role of ALP in S. aureus biofilm formation is currently unknown.154 A variety of factors 

are known to influence biofilm formation, including pH, temperature and nutrient 

availability.155 Interestingly, studies have found that phosphorous concentration is also 

important for successful biofilm formation,156 with Li et al corroborating this theory by 

showing that ALP activity is elevated in S. aureus biofilms compared to their planktonic 

counterparts,157 and Danikowski et al finding that the use of an ALP inhibitor greatly 

disrupted biofilm formation.154 Furthermore, ALP has been shown to possess 

phosphodiesterase activity, which has been linked to hyper-formation of biofilms in 

Serratia marcescens and S. aureus.154,158 Therefore, it can be hypothesised that ALP is 

required for S. aureus biofilm formation. While ALP could become a target for anti-biofilm 

therapeutics, it could also be used to target S. aureus in chronic wounds to help guide 

infection treatment for patients, leading to improved clinical outcomes.  

7.4.6.1. 96-well Microtiter Plate Biofilm Model 

To investigate ALP activity within S. aureus biofilms, a standard static biofilm model was 

used employing a 96-well microtiter plate. Muller Hinton broth was used in line with 

planktonic assays, with the addition of glucose evaluated prior to the start of this assay 

(Appendix). Glucose supplementation was ineffective in enhancing bacterial biofilm 

formation, thus was not used in these experiments. Briefly, 24-h old biofilms were treated 

with TCF-ALP (10 µM, 50 mM Tris-HCl, pH 9.2) for 1 h and 24 h before the solution was 

transferred to a fresh black 96-well microtiter plate and the fluorescence intensity recorded 

(Figures 7.20 and 7.21).  
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Figure 7.20: A) Fluorescence spectra of TCF-ALP (10 µM) after 1 h incubation with a 96-well plate biofilm of 

S. aureus NCTC 10788 in 50 mM Tris-HCl buffer pH 9.2 at 32 °C, and B) corresponding selectivity bar chart. 

λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 
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Figure 7.21: A) Fluorescence spectra of TCF-ALP (10 µM) after 24 h incubation with a 96-well plate biofilm 

of S. aureus NCTC 10788 in 50 mM Tris-HCl buffer pH 9.2 at 32 °C, and B) corresponding selectivity bar chart. 

λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 

 

Figure 7.20 shows an increase in fluorescence intensity of TCF-ALP after 1 h incubation 

with S. aureus NCTC 10788, which increased further after 24 h incubation (Figure 7.21). 

This study proved that ALP is produced within a biofilm, which corresponds with  literature 

reports suggesting that ALP is involved in S. aureus biofilm formation.154  

To ensure that TCF-ALP was activated only in response to ALP, further experiments were 

conducted using a known ALP inhibitor – sodium orthovanadate. Briefly, 24 h biofilms of 

S. aureus NCTC 10788 were grown in 96-well microtiter plates before subsequent 

incubation with various sub-inhibitory concentrations of sodium orthovanadate (Appendix) 

for 30 min. After, TCF-ALP (10 µM) was added (200 µL) and incubated for a further 24 h 

at 32 °C, before the biofilms were assessed for fluorescence activity. 

Figure 7.22 and 7.23 show that upon increasing concentrations of phosphate inhibitor there 

is a corresponding decrease in fluorescence intensity, suggesting that ALP production 

within S. aureus biofilms is reduced in the presence of a phosphatase inhibitor. The effect 

is more pronounced after 24 h incubation with TCF-ALP, although the trend is the same. 

In conclusion, fluorescence response observed in S. aureus biofilms incubated with TCF-

ALP is due to phosphatase expression.  
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Figure 7.22: A) Fluorescence spectra of TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 after 1 h at 32 °C 

incubation with S. aureus NCTC 10788 (108 CFU/mL) pre-incubated for 30 min with  various concentrations of 

sodium orthovanadate (0.00-3.50 mM), and B) corresponding selectivity bar chart. λex = 542 (bandwidth 15) 

nm. λem = 606 nm. Error bars indicate standard deviation (n = 3). 
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Figure 7.23: A) Fluorescence spectra of TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 after 24 h at 

32 °C incubation with S. aureus NCTC 10788 (108 CFU/mL) pre-incubated for 30 minutes with various 

concentrations of sodium orthovanadate (0.00-3.50 mM), and B) corresponding selectivity bar chart. λex = 542 

(bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3). 

7.4.6.2. Colony Biofilm Model 

The colony biofilm model is a static biofilm model was used as it is more indicative of a 

wound environment than traditional static biofilm models using 96-well plates. Sub-

cultured S. aureus NCTC 10788 (c. 106 CFU/mL) was added to 19 mm sterile membranes 
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pre-treated with AWF and incubated at 32 °C for 24 h. After, the membranes were 

transferred to a 12 well microtiter plate containing bacteriological agar to ensure that the 

bacterial biofilm did not dry out throughout the remainder of the experiment, thus 

preventing premature cell death. Next, 1 mL of TCF-ALP (10 µM, 50 mM Tris HCL, pH 9.2) 

was added to the surface of the biofilms and incubated for 1 h or 24 h at 32 °C before 

undergoing fluorescence measurements. It is important to note that incubation with TCF-

ALP did not significantly decrease the viable count of S. aureus NCTC 10788 compared to 

the untreated controls (bacterial biofilms incubated with 50 mM Tris-HCl, pH 9.2; see 

Appendix).  

Upon incubation of S. aureus NCTC 10788 with TCF-ALP, there was a sharp increase in 

fluorescence intensity (Figure 7.24) that remained for the duration of the study (Figure 

7.25). The ratio of the RFI of the sample to the RFI of the negative control (I/I0) the values 

were similar (~30-fold increase), signifying that the probe was saturated with ALP before 

the 1 h measurement, indicating a high level of ALP activity within the biofilm compared to 

its planktonic counterpart.  
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Figure 7.24: A) Fluorescence spectra of TCF-ALP (10 µM) after 1 h incubation with biofilms of S. aureus 

NCTC 10788 (1011 CFU/membrane) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C and B) corresponding selectivity 

bar chart. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 
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Figure 7.25: A) Fluorescence spectra of TCF-ALP (10 µM) after 24 h incubation with biofilms of S. aureus 

NCTC 10788 (1011 CFU/membrane) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C, and B) corresponding selectivity 

bar chart. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 
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Figure 7.26: Images taken of negative controls (Membrane and Artificial Wound Fluid (AWF) only) and 

biofilms of S. aureus NCTC 10788 (1011 CFU/membrane) after 0, 1, and 24 h incubation with 10 µM TCF-ALP 

in 50 mM Tris-HCl buffer pH 9.2 at 32 °C 

 

Figure 7.26 shows the distinct colour change from yellow to purple of TCF-ALP after 1 h 

incubation with S. aureus NCTC 10788, which was maintained for up to 24 h post-

incubation with S. aureus NCTC 10788. 
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Biofilms exhibit an altered phenotype compared to planktonic bacteria,159 thus experiments 

were conducted using biofilms of E. coli NSM59 and P. aeruginosa PAO1 to re-examine the 

selectivity of TCF-ALP (Figures 7.27, 7.28, and 7.29).  

A) B) 

 

 

 

Figure 7.27: A) Fluorescence spectra of TCF-ALP (10 µM) after 1 h incubation with biofilms of E. coli NSM59 

and P. aeruginosa PAO1 (1011 CFU/membrane) in 50 mM Tris-HCl buffer, pH 9.2 at 32 °C and B) corresponding 

selectivity bar chart. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 

 

A) B) 

 

 

 

Figure 7.28: A) Fluorescence spectra of TCF-ALP (10 µM) after 24 h incubation with biofilms of E. coli NSM59 

and P. aeruginosa PAO1 (1011 CFU/membrane) in 50 mM Tris-HCl buffer pH 9.2 at 32 °C and B) corresponding 

selectivity bar chart. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 
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0 h 1 h 24 h 

  

 

 

Figure 7.29: Images taken of negative controls (Membrane and Artificial Wound Fluid (AWF) only) and 

biofilms of E. coli NSM59 (EC) and P. aeruginosa PAO1 (PA) (1011 CFU/membrane) after 0, 1, and 24 h 

incubation with 10 µM TCF-ALP in 50 mM Tris-HCl buffer, pH 9.2 at 32 °C 

 

Figure 7.27 shows that after 1 h incubation with TCF-ALP, there was minimal turn-on 

response for both E. coli NSM59 and P. aeruginosa PAO1, with I/I0 values similar to the 

control. Additionally, there was no visible colour change, with the solutions of TCF-ALP 

remaining yellow (Figure 7.29).  After 24 h (Figure 7.28), a ~10-fold and ~5-fold increase in 

fluorescence intensity was observed for E. coli NSM59 and P. aeruginosa PAO1, 

respectively. However, this was 3-fold lower than what was observed for S. aureus NCTC 

10788 at the 24 h time-point, and it can be speculated that the fluorescence intensity of S. 

aureus NCTC 10788 would be higher if TCF-ALP was not saturated. This is supported by 

Figure 7.29, which shows a faint colour change from yellow to pink/purple for E. coli 

NSM59 and P. aeruginosa PAO1. Therefore, it can be concluded that while TCF-ALP is 

able to detect E. coli NSM59 and P. aeruginosa PAO1 biofilms, the fluorescence response is 

quicker, and more intense, for S. aureus NCTC 10788 – allowing the user to distinguish 

between the gram-positive S. aureus bacteria and the gram-negative bacteria with relative 

ease.  

7.4.7. Ex vivo Porcine Skin Assay 

To test the viability of TCF-ALP in realistic situations, experiments were carried out using 

an ex vivo porcine skin model. A 10 µL suspension of S. aureus NCTC 10788 (108 CFU/mL) 

was inoculated onto porcine skin and allowed to dry at room temperature for 20 min. Next, 

1 mL of 10 µM of TCF-ALP was added to the skin via the use of a Franz cell, and 

subsequently incubated for 24 h at 32 °C.  

-VE EC PA 
-VE EC PA -VE EC PA 
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The results in Figure 7.30 show that after 24 h incubation with TCF-ALP, S. aureus-

inoculated pig skin had a marked increase in fluorescence intensity compared to the 

negative control. This was confirmed by Figure 7.31, where an observable colour change 

from yellow to purple was observed.  

A) B) 
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Figure 7.30: A) Fluorescence spectra of TCF-ALP (10 µM) in 50 mM Tris-HCl buffer pH 9.2 after 24 h 

incubation with S. aureus NCTC 10788 inoculated porcine skin at 32 °C, and B) corresponding selectivity bar 

chart. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3) 
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Figure 7.31: Images of negative control (no bacteria) and S. aureus NCTC 10788 on porcine skin after 24 h 

incubation at 32 °C with 10 µM TCF-ALP in 50 mM Tris-HCl buffer pH 9.2 

This study shows the potential of TCF-ALP as a diagnostic tool for the detection of 

S. aureus in an ex vivo setting. The lower fluorescence intensity observed in this model can 

be attributed to the fact that the concentration of bacteria inoculated onto the porcine skin 
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was lower than the preceding studies; the small inoculum volume (10 µL) of S. aureus NCTC 

10788 used equates to a final concentration of 106 CFU/mL, compared to planktonic assays 

where 108
 CFU/mL was used.  Owing to the bacteria remaining on the porcine skin for the 

duration of the incubation with TCF-ALP, the bacterial isolates grew approximately 1 log 

during this time period, consistent with results obtained during the optimisation of this 

assay. Upon incubation with TCF-ALP, there was a slight reduction in cell count of S. 

aureus NCTC 10788, although this reduction was not statistically significant (t-test, p = 

0.1728), therefore it is possible to assume that TCF-ALP doesn’t inhibit bacterial growth 

on porcine skin (see Appendix).  

7.4.8. TCF-ALP Based Hydrogels 

Hydrogels are three-dimensional macromolecular structures that are produced by chemical 

or physical crosslinking of natural or synthetic hydrophilic polymers. Hydrogels typically 

have a water content between 90 – 95% by mass,160 have a range of physical forms,161 and 

are biocompatible;162 hence, are frequently used in a variety of clinical applications. 

Furthermore, it is possible to use hydrogels to encapsulate drugs for controlled-release 

system that can be controlled via the degree of crosslinking in the gel.161  

Hydrogels have been utilised in wound care as they can protect the wound site from further 

damage and provide a moist environment, thereby preventing scar formation.160,163  They 

are frequently used for the management of pressure ulcers,164 diabetic foot ulcers165 and 

burns.166 Additionally, hydrogels can facilitate autolytic debridement by increasing the 

moisture content of necrotic tissue.167 Hydrogels can also act as soothing and cooling agents 

for cutaneous wounds168,169 and are thought to reduce the inflammatory process.169 Other 

advantages of hydrogels include ease of removal, acceleration of the wound healing process, 

reduction of pain, and ease of development and handling.168 However, hydrogels also have 

drawbacks which include being semi-permeable to gases and water vapour, acting as a poor 

barrier to bacterial infection, and in some instances having poor mechanical stability.168  

Wichterle and Lim were the one of the first researchers to develop hydrogels using 2-

hydroxyethyl methacrylate (HEMA), which has since been used in a variety of biomedical 

applications.170 HEMA was further developed by Winter, who produced the first-generation 

of polymeric dressings.171 Since then, a variety of hydrogels have been created for wound 

care, leading to several commercial hydrogels, including: TachoSil® and Apligraft®.167 

In this study PVA was used to create a hydrogel matrix. PVA is a synthetic-water soluble, 

biocompatible polymer.172 PVA is versatile, hence it has been used extensively in the 
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creation of wound dressings,168 wound management,168 drug delivery systems,173 

biosensors,174 artificial organs,175 and contact lenses.176 PVA can be chemically crosslinked, 

with agents such as maleic acid, formaldehyde or glutaraldehyde,172 or undergo physical 

crosslinking via freeze-thaw cycles. This study used the latter method to create 

biocompatible polymers which can be used in wound care. In the freeze-thawing process ice 

crystals are formed within the hydrogel; these ice crystals result in the polymer chains being 

packed together, forming polymer crystallites where hydrogen bonds are formed between 

the chains. These crystallites act as physical crosslinks, holding the amorphous chains 

together.177  

Hydrogels have been shown to help with the disadvantages associated with colorimetric and 

fluorescent-based probes (i.e., non-specific interactions, auto-fluorescence, and low 

stability in reaction environments), which reduce the sensitivity, and therefore accuracy, of 

the probes.178 Hydrogels also help minimize auto-fluorescence and provide an aqueous 

environment that is biologically-compatible, while preventing non-specific protein 

adsorption.178 Additionally, hydrogels are porous, which allows enzymes and/or bacteria to 

penetrate the hydrogel to react with the probe. Hydrogel-based fluorescent detection 

systems have been shown to enhance sensitivity and reduce detection time.178  

Gunda et al developed a hydrogel system which contained a colorimetric probe, growth 

medium, and a lysing agent to detect E. coli in contaminated water samples.137 The system 

was capable of detecting 400 CFU/mL of E. coli, via a visual colour change, after 1 h. Also, 

Bhattacharya et al, developed a carbon-dot hydrogel hybrid for the detection of bacteria.179 

Secreted bacterial esterases and lipases fluidised the hydrogel, resulting in aggregation and 

fluorescence quenching of the carbon dots; this system was capable of detecting multiple 

bacterial species, including Bacillus cereus, Bacillus subtilis, P. aeruginosa and S. aureus. 

When Bacillus cereus was used as the model system, a LOD of 105 was observed.  

As shown in previous sections of this chapter, TCF-ALP has proven to be capable of 

detecting S. aureus isolates. Therefore, the attention of this study turned towards creating 

a wound dressing capable of detecting S. aureus via the incorporation of TCF-ALP into a 

PVA-based hydrogel. 

Bacterial colonisation is heterogenous within a wound; S. aureus is as an early-coloniser 

predominately located near the surface of the wound, and gram-negative bacteria (e.g., 

P. aeruginosa) are late-stage colonisers, located within the deep regions of the wound.180 

Owing to this, it was hypothesised that a diagnostic wound dressing would be able to 
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preferentially detect S. aureus and other gram-positive bacteria over gram-negative 

pathogenic bacteria present in a wound.  

A diagnostic wound dressing is advantageous over current swab and biopsy methods as the 

current methods are not able to determine the aetiology of the wound infection; they do not 

give a representative indication of the pathogenic bacteria present within a wound owing to 

the small wound surface area sampled.142 The PVA-based TCF-ALP diagnostic wound 

dressing would be in contact with the whole surface of the wound, and therefore would be 

capable of detecting localised S. aureus infection across the wound. 

PVA was dissolved in PBS buffer (pH 7.4), and after incubation with S. aureus NCTC 10788 

there was a colour change from yellow to green due to the protonation of the TCF moiety 

(Figure 7.32). This was a disadvantage as the colour change was less noticeable, and TCF-

ALP in neutral and acidic environments displays reduced fluorescence intensity. Therefore, 

10 % PVA was dissolved in Tris HCl (pH 9.2) keeping the hydrogel environment alkaline in 

nature, allowing for deprotonation of the TCF moiety of the probe. 

Negative Control S. aureus NCTC 10788 

  

 

Figure 7.32: 10% w/v PVA hydrogel loaded with 100 µM of TCF-ALP in PBS, pH = 7.4  after 24 h incubation 

at 32 °C with porcine skin inoculated with and without S. aureus NCTC 10788. 

For this research, 100 µM TCF-ALP was used to ensure probe stability for the duration of 

the freeze-thaw cycle of hydrogel preparation and to provide an enhanced colour change 

from yellow to purple to identify the presence of a S. aureus infection. As this system is 

designed to be an easy PoC test for diagnosing an infection, without the use of specialised 

equipment, it is vital that the colour change of the hydrogel is noticeable to signal to the 

healthcare provider that the wound has an established infection and requires medical 

intervention. In brief, a stock solution of TCF-ALP in DMSO was prepared (2.6 mM), and 

38.5 µL transferred to 1 mL of 10% w/v PVA and mixed to produce a homogenous yellow 

PVA solution. While the hydrogel contained DMSO, it had a minimal effect on bacterial 

viability (see Appendix 7.6.6). 
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7.4.8.1. Detecting Planktonic Staphylococcus aureus 

Planktonic suspension assays were undertaken to assess the viability of the TCF-ALP 

hydrogel as a PoC for wound infections. S. aureus NCTC 10788 was grown in Mueller 

Hinton broth overnight, centrifuged and resuspended in 50 mM Tris HCl (pH 9.2) to attain 

a final concentration of 108 CFU/mL. Thawed TCF-ALP hydrogels were placed in 1 mL 

aliquots of bacterial suspensions before being incubated at 32 °C for 24 h. Figure 7.33 shows 

the colour of the TCF-ALP hydrogels at regular time points during the 24 h incubation with 

S. aureus NCTC 10788. The results show that upon incubation with bacteria, TCF-ALP 

undergoes a colour change from yellow to purple – visible to the naked eye at approximately 

5 – 6 h; after 24 h the colour of the hydrogel is a deep purple.  

It is also worth noting that some leaching of TCF-ALP occurred and was evident by the 

bacterial suspension also turning purple in colour. This could be attributed to only one 

freeze-thaw cycle being performed to crosslink the 10% w/v PVA solution, which would 

result in a more porous hydrogel than if it was subjected to multiple cycles. While 10% w/v 

PVA was chosen as it has previously been shown to have good structural integrity,181 further 

experiments could be undertaken to determine the appropriate number of freeze-thaw 

cycles required to prevent leaching while retaining a high degree of porosity for the bacteria 

to penetrate the hydrogel and cleave the TCF-ALP probe. For the purposes of this proof-

of-concept study, one freeze-thaw cycle was deemed to be sufficient as leeching was minimal 

and TCF-ALP was retained within the hydrogel, allowing visualisation of the colour change 

within the hydrogel.   
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Figure 7.33: Images of 10% w/v PVA hydrogels loaded with 100 µM TCF-ALP in 50 mM Tris-HCl buffer pH 

9.2 at 0 – 8 h and 24 h incubation at 32 °C with S. aureus NCTC 10788 planktonic culture (c. 108 CFU/mL).  

After 24 h incubation, the TCF-ALP hydrogels were removed from the planktonic 

suspension, rinsed with 50 mM Tris HCl (pH 9.2), and assessed for fluorescence intensity. 

As evident in Figure 7.34, upon incubation with S. aureus NCTC 10788, TCF-ALP 

displayed over a 30-fold increase in fluorescence intensity compared to the negative control. 
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This correlates to the colour change observed in Figure 7.33 and results obtained using the 

solution-based TCF-ALP outlined previously.  
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Figure 7.34: A) Fluorescence spectra of TCF-ALP (100 µM) in a 10% w/v PVA hydrogel after 24 h incubation 

at 32 °C with planktonic cultures of S. aureus NCTC 10788, and B) corresponding selectivity bar chart. λex = 

542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3). 

7.4.8.2. Colony Biofilm Wound Model 

Owing to the success of the planktonic suspension assays, next the utility of the TCF-ALP 

hydrogel to detect S. aureus biofilms was assessed. Bacterial biofilms were grown on 19 mm 

polycarbonate membranes supplemented with AWF. After 24 h incubation at 32 °C for 24 h 

the biofilms were transferred from Mueller Hinton agar to bacteriological agar within a 12-

well microtiter plate. Bacteriological agar was used to prevent the bacterial biofilms from 

drying out.  

TCF-ALP hydrogels were placed onto the biofilms and incubated at 32 °C for 24 h. At 

periodic intervals the biofilms were photographed to assess colour change (Figure 7.35). 

Colour change was evident within the hydrogel after 1 h incubation with S. aureus NCTC 

10788 biofilms, probably due to the high cell concentration (1010 CFU/membrane). 

Throughout the incubation period the negative control remained yellow in colour, while the 

TCF-ALP hydrogels incubated with S. aureus NCTC 10788 progressively turned purple, 

originating from the centre of the hydrogel. However, as this experiment was repeated in 

triplicate, while all hydrogels displayed a colour change at 1 h, the colour didn’t always 

originate from the centre of the hydrogel. In fact, it seemed to be the section of the hydrogel 

which was in the closest contact with the bacteria. At 24 h the whole hydrogel was deep 
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purple in colour. Unfortunately, leaching occurred and the bacteriological agar underneath 

the biofilms turned purple in colour.  

 Incubation Time / h 

 0 1 2 3 4 5 6 7 8 24 

-VE 

Ctrl 

 
 

        

TCF-

ALP 

          

Figure 7.35: Images taken of 10% w/v PVA hydrogels loaded with 100 µM TCF-ALP in 50 mM Tris-HCl buffer 

pH 9.2 at 0 – 8 h and 24 h incubation at 32 °C with S. aureus NCTC 10788 biofilms.  

 

After 24 h incubation, hydrogels were removed from the biofilms and rinsed with 50 mM 

Tris HCl (pH 9.2) before being assessed for fluorescence. As expected, there was a noticeable 

increase in fluorescence for the TCF-ALP gels incubated with S. aureus NCTC 10788 

compared to the negative control (Figure 7.36), suggesting that ALP activity within S. 

aureus biofilms could still be measured with TCF-ALP entrapped within a hydrogel matrix. 

This result is promising, as a simple and clear PoC prototype diagnostic hydrogel wound 

dressing was created, which clearly displays S. aureus infection via a visible colour change 

that is easy to detect by either the patient or healthcare provider without any specialised 

equipment. If necessary, the wound dressing could be removed with ease, and with minimal 

discomfort to the patient,168 and fluorescence of the gel measured to semi-quantitatively 

determine the S. aureus bacterial bioburden within an infected wound.  

Concurrently, bacterial biofilms were stripped and the viability of S. aureus NCTC 10788 

was determined by using a standardised enumeration assay. The presence of a 10% w/v PVA 

hydrogel did not affect bacterial viability, nor did a 10% PVA hydrogel containing 100 µM 

TCF-ALP (Appendix). Thus, it is possible to conclude that the TCF-ALP hydrogel would 

not cause bacterial cell death if used as a wound dressing and hence provide a semi-

quantitative determination of bacterial density within the wound. Future studies would 

have to be conducted to test the viability on mammalian cells.  
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Figure 7.36: A) Fluorescence spectra of TCF-ALP (100 µM) in a 10% w/v PVA hydrogel after 24 h incubation 

at 32 °C with S. aureus NCTC 10788 biofilms, and B) corresponding selectivity bar chart. λex = 542 (bandwidth 

15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3). 

7.4.8.3. Ex vivo Porcine Skin Assay 

Finally, the ability of TCF-ALP hydrogels to determine ALP activity of S. aureus NCTC 

10788 on porcine skin was investigated. A 10 µL suspension of S. aureus NCTC 10788 (108 

CFU/mL) was inoculated onto porcine skin and allowed to dry at room temperature for 20 

min. Once dry, TCF-ALP hydrogels were added to the surface of the skin and subsequently 

incubated for 24 h at 32 °C. The bottom half of a Franz cell was used, as it contained 1 mL 

sterile dH2O to provide moisture, preventing the porcine skin from drying out.  

Figure 7.37 shows that upon incubation with S. aureus NCTC 10788 TCF-ALP hydrogels 

underwent a colorimetric change from yellow to purple, indicative of ALP activity on the 

surface of the skin which was not detected on the negative control. Even though a smaller 

initial inoculum was used the colour change was clear, with a distinct deep purple colour 

observed after 24 h incubation. While the hydrogels did not lose their structural integrity, 

they did appear to dehydrate during the course of this experiment due to being exposed to 

the external environment. 
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A) B) 

  

 

Figure 7.37: Images taken of 10% w/v PVA hydrogels loaded with 100 µM TCF-ALP in 50 mM Tris-HCl buffer 

pH 9.2 after 24 h incubation at 32 °C A) without and B) with S. aureus NCTC 10788 incubated on porcine skin.  

After 24 h incubation, as described previously, hydrogels were washed with 50 mM Tris HCl 

(pH 9.2) and the fluorescence measured. As already observed, incubation with S. aureus 

NCTC 10788 resulted in an approximately 7.5-fold increase in fluorescence intensity of 

TCF-ALP compared to the negative control (Figure 7.38). Bacterial concentration on the 

porcine skin was also investigated, and there was no significant difference between the 

control (porcine skin without hydrogel) and porcine skin incubated with 10% w/v PVA with 

and without 100µM TCF-ALP, further demonstrating its utility as a diagnostic wound 

dressing.  
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Figure 7.38: A) Fluorescence spectra of TCF-ALP (100 µM) in a 10% w/v PVA hydrogel after 24 h 

incubation at 32 °C with S. aureus NCTC 10788 inoculated onto porcine skin, and B) corresponding selectivity 

bar chart. λex = 542 (bandwidth 15) nm. λem = 606 nm. Error bars indicate standard deviation (n = 3).  
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7.5. Conclusions and Future Work  

To conclude, this chapter demonstrates that TCF-ALP could be utilised to detect S. aureus 

infections.  This is of great clinical importance as new diagnostic methods are needed for 

the timely detection of infections within wounds. This chapter has shown that TCF-ALP is 

capable of being optimised to detect bacterial pathogens at clinically significant 

temperatures (37 °C for “classic” microbiology, 32 °C for wound infections, and 25 °C for a 

point-of-care device) without the need for extensive preparation.  

Solutions of TCF-ALP were capable of detecting planktonic S. aureus NCTC 10788, with 

an excellent colorimetric and fluorescence response, corresponding to a limit of detection 

of 3.7 x 106 CFU/mL after 24 h incubation. TCF-ALP was selective towards gram-positive 

bacteria, albeit in a limited sample size, compared to gram-negative E. coli and P. 

aeruginosa. TCF-ALP was also capable of rapidly detecting S. aureus NCTC 10788 biofilms 

(both 96-well plate and colony biofilm models), with a clear fluorescence “turn-on 

response” and colour change from yellow to purple within 1 h of incubation time. With these 

promising results in hand, ex vivo models were conducted showing the utility of TCF-ALP 

in detecting S. aureus NCTC 10788 in clinically-significant situations, therefore 

demonstrating the capability of TCF-ALP in diagnosing S. aureus wound infections. 

Expanding on this, TCF-ALP was encapsulated in PVA-based hydrogels as a proof of 

concept for “smart” wound dressing applications. The same experiments mentioned above 

were conducted for TCF-ALP-based hydrogels and similar results were found. TCF-ALP-

based hydrogels were capable of detecting planktonic S. aureus NCTC 10788 after ~4 h and 

colony biofilm models of S. aureus NCTC 10788 after 1 h of incubation. Ex vivo models 

displayed a similar result, with a clear colour change of the hydrogel from yellow to purple 

observed after 24 h.  

Future work would need to be conducted to further examine the selectivity of TCF-ALP, 

with future experiments focusing on different clinically significant bacteria such as Bacillus, 

Klebsiella, and other Enterobacteria spp. Additionally, focus should be shifted to determine 

the genetic mechanism behind ALP-production, and why TCF-ALP was able to detect 

gram-positive bacteria over gram-negative bacteria. Finally, TCF-ALP-based hydrogels 

would need to be optimised further to prevent leaching of TCF-ALP into the extracellular 

environment; studies would also have to be conducted to demonstrate the hydrogel has no 

effect on mammalian cells – as shown with solutions of TCF-ALP shown in the chapter 

prior.  
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7.6. Appendix 

7.6.1. Cell Count for Selectivity Assay  

Cell counts were performed for bacterial strains that were unable to elicit a fluorescence 

response upon incubation with TCF-ALP. Figure S1 shows that the bacterial concentration 

of all E. coli strains (NCTC 10418, NSM59, and DH5α) were unaffected after 24 h incubation 

with TCF-ALP. All P. aeruginosa strains (PAO1, P260, P885) had a statistically significant 

reduction in bacterial concentration; however, this correlated to a 1-log reduction, which 

should have a minimal effect on the efficacy of TCF-ALP. Therefore,  bacterial 

concentration is not the primary explanation for  E. coli and P. aeruginosa failing to produce 

a “turn-on” response of TCF-ALP.  

 

 

Figure S1: Log CFU/mL of P. aeruginosa (PAO1, P260, and P885) and E. coli (NCTC 10418, NSM59, and 

DH5α) before and after 24 h incubation with 10 µM TCF-ALP in 50 mM Tris-HCl, pH 9.2 at 32°C. Error bars 

show standard deviation (n = 3). Statistical significance was assessed by performing a t-test. p values are 

indicated *, p< 0.05. 
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7.6.2. Glucose Supplementation for 96-well Biofilm Models 

G lu c o s e  S u p p le m e n ta t io n  (%  v /v )

O
D

5
9

0

0 1 5 1 0

0

1

2

3

4

5

 

Figure S2: Evaluation of glucose supplementation on the formation of Staphylococcus aureus NCTC 10788 

biofilms. Biofilm biomass was quantified using crystal violet biofilm staining by measuring the absorbance at 

590 nm. Error bars show standard deviation (n = 3). 

7.6.3. Sodium Orthovanadate MIC and MBIC 

 

A) B) 

 

 

 

Figure S3: A) Minimum Inhibitory Concentration (MIC) of sodium orthovanadate for Staphylococcus 

aureus NCTC 10788. MIC was found to be 6.25 - 3.13 mM.  B) Minimum Biofilm Inhibitory Concentration 

(MBIC) of sodium orthovanadate for Staphylococcus aureus NCTC 10788. Biofilm biomass was quantified 

using crystal violet staining by measuring the absorbance at 590 nm MBIC was found to be 3.13 – 1.56 mM.  

Error bars show standard deviation (n = 3). 
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7.6.4. Cell Count for Colony Biofilm Models  

 

 

 

Figure S4: Log CFU/membrane of S. aureus NCTC 10788, E. coli NSM59, and P. aeruginosa PAO1 biofilms 

after 24 h incubation at 32°C with solutions of TCF-ALP (10 µM) in Tris-HCl, pH 9.2. Error bars show 

standard deviation (n = 3). Statistical significance was assessed by performing a t-test. p values are indicated *, 

p< 0.05 

7.6.5. Porcine Skin 

 

 

 

Figure S5: Log CFU/mL of S. aureus NCTC 10788 incubated on porcine skin for 24 h at 32°C with a solution 

of TCF-ALP in 50 mM Tris-HCl, pH 9.2 (10 µM; 1 mL). The negative control was undertaken using a solution 

of 50 mM Tris-HCl, pH 9.2 (1 mL). Error bars show standard deviation (n = 3). 
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7.6.6. Hydrogel Detection 

7.6.6.1. Colony Biofilm Assays 

 

 

Figure S6: Log CFU/membrane of S. aureus NCTC 10788 colony biofilm model biofilms after 24 h 

incubation at 32°C with 10% w/v PVA hydrogels loaded with TCF-ALP (100 µM). Error bars show standard 

deviation (n = 3).  

 

7.6.6.2. Porcine Skin 

 

 

Figure S7: Log CFU/mL of S. aureus NCTC 10788 on porcine skin after 24 h incubation at 32°C with 10% 

w/v PVA hydrogels loaded with TCF-ALP (100 µM). Error bars show standard deviation (n = 3).  
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Chapter 8: Overall Conclusions and Future 

Work 

The overall aim of this thesis was to create and evaluate a novel stimuli responsive system 

that could be used as a “smart” wound dressing for the treatment of S. aureus within chronic 

wounds.  

The first three results chapters of this thesis set out to design a therapeutic system utilising 

the antibacterial properties of bacteriophage. Herein, we found that bacteriophage K was 

able to act in a synergistic manner with four different antibiotics: ciprofloxacin, 

vancomycin, amikacin, and amoxicillin, resulting in increased bacterial cell reductions 

compared to their monotherapy counterparts. This synergistic interaction was also capable 

of preventing S. aureus biofilm formation, and in some cases, reducing the bacterial 

biomass of an established infection. However, these results also highlighted the fact that the 

efficacy of the phage-antibiotic concentrations are dependent upon the strain of the bacteria 

under investigation; hence, there could be issues with this therapy in a clinical setting where 

it is not known what strain of bacteria is causing an infection.  

With those promising results in hand, focus turned to developing a system whereby the 

antimicrobials can be released in a burst-like manner upon recognition of bacterial 

pathogens. The reservoir film used in this study was a blend of PLA and PEG as it was shown 

to have good biocompatibility and excellent drug release properties. Both phage K and 

ciprofloxacin were successfully encapsulated within this film and were shown to be capable 

of reducing bacterial density in planktonic, biofilm, and ex vivo studies.  

To create a stimuli-responsive system, the PLA-PEG film was coated with a pH-responsive 

polymer. Earlier work conducted by Dr Wallace (University of Bath, UK) had suggested that 

pH could be a suitable trigger for drug release as it correlated with the formation of a 

biofilm. The PLA-PEG film was successfully coated with EUDRAGIT® FS 30 D and the 

resultant system was shown to be pH sensitive, within minimal diffusion of the 

antimicrobials from the system and pH values less than 7.0. However, one drawback of this 

film was that it hindered antimicrobial release from the polymer system, resulting in lower 

log reductions of bacterial concentrations. However, with further optimisation assays 

investigating the effect of polymer thickness and antimicrobial concentrations, this system 

has great potential to be used in a clinical setting. 
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Concurrently, work was being undertaken to develop a novel colorimetric and fluorescent 

probe for the detection of S. aureus. Alkaline phosphatase was chosen as it had been 

previously used in literature for the detection of S. aureus species. We were successfully 

able to synthesise a probe, TCF-ALP, that was capable of detecting ALP, and to a lesser 

extent, ACP, which could be easily monitored via the colour change of yellow to purple. 

What is exciting is that we were able to use this probe to selectively detect S. aureus in 

planktonic, biofilm, and ex vivo studies. Further work needs to be undertaken to determine 

the specificity and selectivity of TCF-ALP, but this thesis has demonstrated its capabilities 

as a probe for the diagnosis of wound infections via incorporation into a PVA-based 

hydrogel.  

Moving forward, it is my hope that the two systems could be combined to create a novel 

theranostic dressing. This could potentially be achieved by creating a ‘checkerboard’-type 

wound dressing that is composed of both polymer systems. Therefore, upon S. aureus 

infection, the theranostic system would be able to detect S. aureus by multiple triggers (pH 

and ALP), releasing its therapeutic payload and alerting the patient, or heath care provider, 

to the presence of an infection. I feel that this system has potential in the field of wound 

care, as it can be easily adapted to suit the clinical need.  

 


