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This study presented a deep learning based markerless motion capture workflow and 
evaluated performance against marker-based motion capture during overground running. 
Multi-view high speed (200 Hz) image data were collected concurrently with marker-based 
motion capture (ground-truth data) permitting a direct comparison between methods. Lower 
limb kinematic data for six participants demonstrated high levels of agreement for lower 
limb joint angles with average RMSE ranging between 2.5° - 4.4° for hip sagittal and frontal 
plane motion, and 4.2° - 5.2° for knee and ankle motion. These differences generally fall 
within the known uncertainties of marker-based motion capture, suggesting that our 
markerless approach could be used for appropriate biomechanics applications. While there 
is a need for high quality open-access datasets to further facilitate performance 
improvements, markerless motion capture technology continues to improve; presenting 
exciting opportunities for biomechanics researchers and practitioners to capture large 
amounts of high quality, ecologically valid data both in and out of the laboratory setting.  
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INTRODUCTION: Recent developments in computer vision and deep learning research have 
accelerated the potential for highly accurate and robust markerless motion capture 
technologies in biomechanics applications. Most notably, pose estimation using deep 
convolutional neural networks, which estimate a set of sparse key points in 2D images, 
represent an exciting emerging technology with the potential to compliment and even replace 
current motion capture technologies (Kanko, Laende, Selbie, & Deluzio, 2021). However, the 
naive application of pose estimation methods may provide at best, planar estimates of joint 
centres and vector-based angles which are known to be error prone (Needham, Evans, 
Cosker, Wade, et al., 2021). To this end, we present an end-to-end automated workflow for 
computing full body 6 degrees of freedom (6DoF) kinematics from calibrated multi-camera high 
speed image data. The aim of this study was to present and evaluate the performance of our 
markerless motion capture system against marker-based motion capture during running 
activities.  
 
METHODS:  
System Development 
Camera System - Our system utilises nine TTL-pulse synchronised machine vision cameras 
(JAI sp5000c, JAI ltd, Denmark) capable of capturing full HD images at 200 Hz. This provides 
the flexibility to create large capture volumes (~10 x 10 x 3 m) with multiple views providing 
robustness against occlusions. Camera calibration was achieved using a binary circle pattern 
calibration board to initialise each camera’s intrinsic parameters before moving the board 
through the volume ensuring multiple shared observations. Sparse Bundle Adjustment was 
used to achieve a globally optimised calibration.  
2D Pose Estimation - 2D pose estimation of sparse points in each camera view is achieved 
using an implementation of OpenPose (Cao, Simon, Wei, Sheikh, & Ieee, 2017) as we have 
shown that this method generalises well to biomechanics image data (Needham, Evans, 
Cosker, Wade, et al., 2021). However, the modular nature of our workflow means that most 
pose estimation methods could be utilised at this stage, facilitating new state of the art network 
architectures or networks specialised to a specific task. 
3D Fusion - OpenPose is used to provide keypoint coordinates on the 2D image plane 
independently for each view at each time instance. To associate detections across views and 



track through time, we use our previously developed approach based on occupancy maps 
which can efficiently associate multi-person detections between viewpoints and time instances 
(Needham, Evans, Cosker, & Colyer, 2021). Once detections are associated between camera 
views, a 3D Euclidean space reconstruction of each person’s keypoints can be generated. 2D 
keypoints are back-projected using the appropriate camera calibration resulting in a set of rays 
(lines in space originating at camera centres) where the 3D point closest to the n ≥ 2 rays 
intersect is optimised using linear least squares. To handle common failures of the OpenPose 
detector such as misplaced limbs or contra-lateral label swaps, a robust RANSAC like 
approach is used to identify inliers and outliers for each keypoint, with the final reconstruction 
coming from only the inlier set. 
Kalman Smoothing – 3D reconstructed joint centre trajectories are filtered using optimal state 
estimation in the presence of additive Gaussian noise. Specifically, a bi-directional Kalman 
filter which considered both previous and future states of the trajectory was used to provide a 
smooth output that is robust to outliers that have bypassed the person association and 
RANSAC processing stages. Previously, we have demonstrated this approach to be more 
effective for markerless pose estimation data than traditional low-pass filtering (Needham, 
Evans, Cosker, & Colyer, 2021).  
Inverse Kinematics – 3D reconstructed keypoints are used to drive the motion of a constrained 
rigid-body kinematic model which can describe the position and orientation of each segment 
as a set of generalised coordinates. The model is scaled to a static calibration trial and the 
pose globally optimised in each frame using OpenSim’s (Delp et al., 2007) Inverse Kinematics 
(IK) tools accessed via the C++ API. Again, due to the modular nature of our workflow, other 
IK solvers could be implemented here. 
System Evaluation 
Six participants (3 males, 3 females [1.70 ± 0.10 m, 71.8 ± 12.8 kg]) provided written informed 
consent. Each participant performed five running trials at a self-selected speed. Motion data 
were captured concurrently using our experimental system and a criterion marker-based 
motion capture system. 
Criterion data were captured using a 15-camera marker-based motion capture system (Oqus, 
Qualisys AB, Gothenburg, Sweden). Motion capture systems were time-synchronised by 
means of a periodic TTL-pulse generated by the custom system’s master frame grabber to 
achieve a sampling frequency of 200 Hz in both systems. This ensured that frames were 
captured by all cameras in unison without drift. A right-handed coordinate system was defined 
for both systems by placing a Qualisys L-Frame in the centre of the capture volume. In order 
to refine the alignment of each system’s Euclidean space, a single marker was moved 
randomly through the capture volume and tracked by both systems. These marker data 
provided points with which the spatial alignment could be optimised in a least-squares sense. 
To capture criterion data, a full body marker set comprising of 44 individual markers and four 
clusters were attached to each participant to create a full body six degrees of freedom (6DoF) 
model (bilateral feet, shanks and thighs, pelvis and thorax, upper and lower arms, and hands). 
Following labelling and gap filling of trajectories (Qualisys Track Manager v2019.3, Qualisys, 
Gothenburg, Sweden) marker-based data were filtered (Butterworth low-pass, cut-off 12 Hz) 
and used to scale and drive the motion of the same kinematic model that was used for 
markerless data. To evaluate system performance, the hip (flex/ext, ad/abduction, int/external 
rotation), knee (flex/ext), and ankle (plantar/dorsiflex, ad/abduction) Euler angles from both 
systems were compared using root mean squared errors (RMSE).  
 
RESULTS: 
For hip joint angles, good agreement was observed between both systems, particularly for hip 
flexion/extension (mean RMSE = 2.5°) and hip ad/abduction (mean RMSE = 4.4°) (Figure 1). 
Larger differences were observed during early stance for hip internal/external rotation (mean 
RMSE = 5.6°). The knee joint exhibited good agreement between systems (mean RMSE = 
4.2°) with largest differences observed around touch-down and early stance (Figure 2). Largest 
joint angle differences were observed for ankle dorsi/plantar-flexion (mean RMSE = 4.5°) 



around late-swing and touch-down while lower differences were observed for ankle 
ad/abduction (mean RMSE = 5.2°) (Figure 2). 
   

 
Figure 1. Upper - Hip joint angles (top) for all participant’s running trials, computed from marker-
based (red) and markerless (blue) data. Lower – Mean ± SD differences between both systems. 
Step cycles normalised from toe-off to toe-off. 
 

 
Figure 2. Upper – Knee & ankle joint angles (top) for all participant’s running trials, computed 
from marker-based (red) and markerless (blue) data. Lower – Mean ± SD differences between 
both systems. Step cycles normalised from toe-off to toe-off. 

 
DISCUSSION:  
This study presents a workflow for markerless motion capture and provides a sub-sample of 
our evaluation work, focusing on lower limb joint angles during overground running. Our 
markerless system was able to capture running kinematics with a high level of agreement to 
marker-based motion capture, most notably for hip flexion/extension, hip ad/abduction and for 
knee flexion/extension (mean RMSE 2.5 - 4.4°; Figure 1 & 2). Larger differences observed for 
knee flexion/extension around touch-down and early stance may have been due in part to 
systematic differences in joint centre locations computed at the 2D pose estimation stage 
(Needham, Evans, Cosker, Wade, et al., 2021). However, marker-based kinematic errors due 
to soft tissue artefact (STA) have been documented to be highest during this period (Miranda, 
Rainbow, Crisco, & Fleming, 2013) which may contribute to an unknown proportion of the 
differences here. Differences exhibited for ankle dorsi/plantar flexion angles were likely the 
result of a) sub-optimal pose estimation accuracy and reliability when detecting distal foot 
keypoints in 2D images, b) systematic differences in knee and hip joint centre locations which 
have propagated down the IK chain, and c) errors in marker-based data due to an unknown 
proportion of STA and marker-misplacement. The results presented here are primarily limited 



by the performance of pose estimation methods which were pre-trained on crowd sourced 
datasets (e.g., COCO, MPII etc.). To facilitate improved pose estimation performance for 
biomechanics applications, there is a need for large open-access image datasets which are 
annotated with high anatomical accuracy, reliability and objectivity. By ensuring that each body 
segment of interest is annotated with at least three non-colinear points, methods such as the 
one presented in this study will most likely be able to determine segment poses with greater 
accuracy, robustness, and additional degrees of freedom. Furthermore, such datasets would 
facilitate reduced reliance on global pose optimisation methods (e.g., IK solvers) and allow 
independent segment pose optimisation solutions to be implemented giving users greater 
flexibility.   
The results of this study are highly promising and the differences between systems typically 
fell within the known uncertainties of marker-based motion capture. For example, errors of up 
to ~9° have been reported for marker-based motion capture when compared to biplanar 
videoradiography for knee flexion/extension (Miranda et al., 2013) and ankle joint rotations 
(Kessler et al., 2019). As such our system could be employed for applications where the 
present accuracy meets the required minimum detectable change. Marker-based motion 
capture represents the current de-facto standard in many biomechanics applications and its 
limitations including STA, marker placement reliability, and joint axis crosstalk have been well 
documented (Kessler et al., 2019; Miranda et al., 2013). It is important that the same rigorous 
evaluation processes be applied to markerless motion capture so that researchers and 
practitioners can make informed decisions about their strengths and weaknesses. Ultimately, 
as markerless motion capture technologies continue to develop, we should ask ourselves if 
benchmarking against marker-based technologies remains the best option or whether we 
should seek to establish new ways of acquiring high fidelity ground-truth information that can 
be used to advance measurement technologies and most importantly allow us to answer new 
biomechanics research questions. 
 
CONCLUSION:  
We have presented a novel markerless motion capture workflow that can take calibrated multi-
camera images and produce 6DoF segment data. We evaluated lower limb joint angles during 
overground running against established marker-based techniques and found a high level of 
agreement between systems. Markerless motion capture technologies are maturing at a rapid 
pace and present a promising approach to collect ecologically valid, real world data.  
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