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Figure 1: We present an interactive framework for synthesizing 3D scenes by iteratively inferring objects and their trans-
formations based on cursor movements and clicks. Given a cursor movement at any moment, our framework automatically
selects, translates and rotates an object plausibly into the scene. Mouse click would end an iteration and refresh priors, which
introduces more potential objects and constraints. While the cursor moves, we achieve real-time arrangement of objects with
proper transformations.

ABSTRACT
While recent researches on computational 3D scene synthesis

have achieved impressive results, automatically synthesized scenes
do not guarantee satisfaction of end users. On the other hand, man-
ual scene modelling can always ensure high quality, but requires a
cumbersome trial-and-error process. In this paper, we bridge the
above gap by presenting a data-driven 3D scene synthesis frame-
work that can intelligently infer objects to the scene by incorporat-
ing and simulating user preferences with minimum input. While
∗Corresponding Author, with Tsinghua University and Beijing National Research
Center for Information Science and Technology (BNRist).

the cursor is moved and clicked in the scene, our framework au-
tomatically selects and transforms suitable objects into scenes in
real time. This is based on priors learnt from the dataset for placing
different types of objects, and updated according to the current
scene context. Through extensive experiments we demonstrate that
our framework outperforms the state-of-the-art on result aesthetics,
and enables effective and efficient user interactions.1
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1 INTRODUCTION
3D scene synthesis is an active area for both academia and in-

dustry, and benefits various important applications. First, virtual
indoor scene generation is an essential topic for environment de-
sign [1, 5, 13, 23]. Video games also have increasing demands for
indoor scenes to enhance user experiences [6]. Well-configured vir-
tual scenes can be used to generate synthetic datasets for computer
vision applications [12]. Virtual reality applications also require
realistic scenes as virtual training examples [15].

Synthesizing plausible 3D indoor scenes has been investigated in
the last years with various input, techniques, and applications [37].
A general workflow adopted by most literature is selecting a set
of appropriate objects and placing them plausibly in a given room
[11, 16], whereas few works focus on the arrangement of objects
by assuming a selection of objects are given [29, 34]. With the
development of recent works, results with better plausibility and
aesthetics are achieved for automatic scene generations [27, 39].

Despite the progress on computational 3D scene synthesis, fully
automatic results are not guaranteed for user satisfaction. End users
still have their own preferences to select and arrange indoor objects.
In practice, interior designers still need to prepare several designs
for end users to select from and to propose further adjustments2.
Consequently, it makes more sense to incorporate user preferences
into scene synthesis. However, we can not expect novice users to
manually select and arrange objects for the whole process, which is
costly even for professionals. Thus how to effectively and efficiently
suggest and transform objects while minimizing the efforts of user
interaction is the key problem to solve. As such, our aim is to
achieve real-time interactions where object selections and arrange-
ments [37] are incorporated with minimum user inputs of mouse
movements. In other words, when the cursor moves, objects should
be well selected and placed along the way. This allows the user to
easily explore the scene arrangements with potential objects, such
that the result can meet the user expectation as much as possible.

In this paper, we present an interaction-based framework for
iteratively synthesizing 3D scenes as shown in Figure 1. Given an
empty room or a room with some existing objects, the minimum
user input is to just move the cursor in the scene. While moving
the cursor, our framework automatically selects and places suitable
object into the scene based on the current scene context and the
scene arrangement priors learnt from a 3D scene dataset. More
specifically, the prior that best matches the current cursor location
in the scene is used to add object to the scene. The position, ori-
entation, and size of the object are also optimized to adapt to the
current scene context. The user has extra freedom to swap objects
guided by other strong priors. After the user confirms a suggested
object, the priors will be updated immediately according to the
new scene context. The above interaction iteratively performs until
satisfactory result is achieved. Note that when arranging objects in
the scene, we classify objects as dominant objects (e.g., wardrobe,
bed, dinning table), subordinate objects (e.g., dinner chair, night-
stand), and wall objects/decorations (e.g., painting, wall lamp). Each

2https://planner5d.com/

class has a specific way of learning priors and inferring objects.
The intuition is that humans placing objects follows an order of
importance [22, 26, 40], i.e., organizational flows in interior design
[22]. For example, in a master bedroom, a double bed is placed first
and the accompanied nightstand(s) are placed subsequently. Some
objects such as cabinets are also assembled at the early stage of the
interior design to lay out room space [18, 26].

To evaluate our work, we first test the ease of interactions by con-
ducting a user study. It shows that our work significantly reduces
the interaction time compared with the existing solutions. Second,
we perform both qualitative and quantitative comparisons between
our work and the existing baselines on automatically generated
scenes, demonstrating higher plausibility and aesthetics. Finally,
we exhibit the efficiency of our framework through tests on various
devices with different hardware configurations.

Overall our work makes the following major contributions:

• Wepresent a framework for synthesizing user-satisfied scenes
by incorporating user preferences through convenient cursor
movements.

• We simplifies traditional user interactions of selecting and
arranging objects into suggesting objects based on cursor
movements through a data-driven approach.

• We learn specific priors for different objects, enabling both
real-time and plausible inferences.

2 RELATEDWORKS
The most common input for 3D indoor scene synthesis is an

initial 3D scene with boundaries, e.g., grounds and walls [16, 21,
24, 27, 33, 34, 38, 39]. Xu et al. [31] generate 3D scenes guided by
hand-drawn sketches. Human languages are also decoded as graphs
for scene generations [2, 20]. RGB-D scans are also used for the
physical guidance of scene synthesis [3, 4, 8]. Luo et al. [19] even
generate scenes with RGB images. Several works synthesize scenes
based on other reference scenes [7, 30]. Our method is initialized
directly with an empty scene or optionally a scene with several
existing objects.

In terms of concrete technologies, stochastic optimization strate-
gies such as Markov Chain Monte Carlo (MCMC) is often adopted if
learnt priors are non-differentiable expressions [16, 24, 33]. In con-
trast, gradient descent is used if priors are differentiable [7, 21, 31].
Graph techniques are also frequently used to construct intuitive
relations between objects [2, 14, 24], where scenes are generated
according to a constructed graph with scene attributes stored on
graph vertices and edges. Recently, the plausibility is even improved
by leveraging the development of neural networks [27, 28, 41, 42],
or adopting the concept of computational geometry [39]. Although
several existing works do incorporate human activities when syn-
thesizing scenes [8, 11], the “agent behavior” needs to be further
considered. Yet, researches have not tried synthesizing 3D scenes
by simulating end user interactions, where an end user typically
manipulates a given scene by selecting preferable objects and plac-
ing them properly into the scene. We show that better plausibility
can be achieved by simulating user interactivity for scene synthesis.

Synthesizing scenes by incorporating user interactions is much
less explored. [25] selects objects given mouse clicks, while we
infer both object selections and transformations during mouse
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Figure 2: The general workflow of a single movement. After obtaining a movement of the cursor, we first compute intersected
positions based on ray casting from the perspective camera to directions of the cursor. If the intersection falls on walls and
matches one or more wall-priors, a wall instance is selected and transformed based on the best matched prior. Otherwise, it
proceeds to the next iteration with regard to a new movement. If the intersection does not fall on walls, it first tries matching
sub-priors. If matched, a subordinate object is inserted similarly based on priors. If no sub-prior is matched and the intersection
is on the ground, we finally try inserting dominant objects.

movement. [35, 36] pop up detailed and small objects to enrich
existing scenes, while our method can generate scenes with objects
at different levels from scratch. [32] optimizes scenes based on
example scenes using MCMC under user-specified constraints, thus
is hard to achieve the real-time performance.

3 OVERVIEW
Our framework iteratively inserts objects into the given scene.

Each iteration corresponds to a single movement of the cursor.
While the cursor moves, a suggested object may emerge in the
current scene according to the unprojected direction indicated by
the cursor. This direction is computed by a ray casted from the
camera center (eye point) to the cursor (image point), suppose
the cursor moves along a rendered image plane lying between the
camera center and the scene. We always take the first intersection
point between the ray and the 3D scene, which is denoted as Λ =

(𝑥Λ, 𝑦Λ, 𝑧Λ) for object insertion.
Figure 2 shows the process of a single iteration. Given an inter-

section point Λ, our framework first checks whether Λ is casted on
a wall or not. If so, it attempts to suggest wall objects based on wall
priors (Section 6). Otherwise, it proceeds to suggest subordinate
objects based on sub-priors (Section 5). If no sub-prior is applicable
to Λ and Λ is on the ground, it seeks dominant objects based on
dom-priors (Section 4). If none of the above priors is feasible for Λ,
the next iteration is required with a new Λ by moving the cursor.
In contrast, if several priors are matched, we select the best one
among all priors in a prior base, where the object selection and
transformation are determined w.r.t. Λ.

The prior base contains a set of priors related to potential objects
that can be inserted to the current scene. Each prior has an index to
a specific object. It also contains an object-scene context and how
to arrange the object in the context. For example, given a dinning
table in a room, if Λ is adjacent to it, Λ would possibly match a prior
indexing to dinning chairs. The ways to learn and utilize priors
for object insertion are distinct for dominant objects, subordinate
objects, and wall objects, which will be presented respectively in
the following three sections. Unlike fitting models and re-sampling

them, we directly take samples as priors, where samples are ex-
tracted and processed directly from the dataset. An observation
is that we can not hypothesize the learnt models (e.g., Gaussian
mixed model, neural networks) , while data samples sufficiently
present prior knowledge of scene arrangement (see Section 7).

The content and structure of the prior base are fixed unless new
object is inserted to the scene. For example, inserting a double
bed in a room subsequently triggers the addition of new priors of
nightstands to the prior base. The construction of the prior base is
according to the current objects in the scene. With the help of the
prior base, our framework automatically suggests different objects
according to different intersection point Λ while the cursor moves.

Note that additional features are incorporated to enable person-
alization (see Section C of the supplementary), but our main aim is
to give the user easy control of the scene synthesis process in real
time, where the key challenge is how to organize different types of
objects according to room type, size, object/wall location, etc. This
motivates us to learn adaptive priors which can efficiently guide
the synthesis process. Based on the automatic and real-time results
(either final or intermediate), the user can also swap/filter object.

4 DOMINANT OBJECTS
Following interior guidelines [18, 22, 26, 40], we introduce the

“Room Depth Model” (RDM) for selecting and transforming a dom-
inant object from 𝑅 candidates {𝑜𝑟 |𝑟 ∈ [1, 𝑅]}, if Λ matches no
wall prior or subordinate prior. Under the assumption of RDM, a
room with 𝑛 sides is abstracted as an 𝑛-gon composed by a set of
(clockwise) edge vectors {v𝑖 |𝑖 = 1, 2, ..., 𝑛} as shown in Figure 3a.

Firstly, for each mouse movement iteration, we find the nearest
wall 𝑣 (1) and the second nearest wall 𝑣 (2) of Λ and the respective
distances 𝑑 (1) and 𝑑 (2) of Λ to the two walls (see Section B of the
supplementary document for details). Secondly, with 𝑑 (1) and 𝑑 (2) ,
we compare 𝑑 (1) with priors extracted from the dataset. Thus, we
next introduce our way to extract priors for RDM. For the 𝑟 -th
dominant object of its 𝑗-th occurrence in a room, we record its ID
(name) 𝑝𝑟, 𝑗

𝑖𝑑
, its nearest-wall distance 𝑝

𝑟, 𝑗

𝑑𝑖𝑠
, the difference of the

orientation of the object and the nearest wall 𝑝𝑟,𝑗
𝑜𝑟𝑖

, its scale 𝑝𝑟, 𝑗
𝑠𝑐𝑎𝑙𝑒

,



(a) Representing shapes of rooms. (b) The “𝑝𝑙𝑒𝑛” of three objects.

Figure 3: Illustration of the RDM. 3a: the shape of each room
is abstracted as a polygon with n sides, where edges are vec-
torized and connected clock-wisely. 3b: half the length of
objects against nearest walls.

and half the length 𝑝
𝑟,𝑗

𝑙𝑒𝑛
of it against its nearest wall as shown in

Figure 3b. The orientation of a wall is represented by the orientation
of its inward normal. Therefore, for each candidate dominant object,
we can generate one prior P𝑟,𝑗 = {𝑝𝑟,𝑗

𝑖𝑑
, 𝑝

𝑟,𝑗

𝑑𝑖𝑠
, 𝑝

𝑟,𝑗
𝑜𝑟𝑖

, 𝑝
𝑟, 𝑗

𝑠𝑐𝑎𝑙𝑒
, 𝑝

𝑟,𝑗

𝑙𝑒𝑛
} per

occurrence and each dominant object eventually has a prior set of
RDM, that is D𝑟 = {P𝑟,1,P𝑟,2, . . . ,P𝑟,𝜖 (𝑟 ) }. Note that one object
may occur twice or more in a single room and 𝜖 (·) denotes the
number of total occurrences.

With a room and a set of 𝑅 candidate dominant objects, {𝑜𝑟 |𝑟 ∈
[1, 𝑅]}, {D1,D2 . . . ,D𝑅} is pre-computed and loaded, so we can
always find a P𝑟, 𝑗 satisfying the following equation,

(𝑟, 𝑗) = argmin
𝑟 ∈[1,𝑅 ], 𝑗 ∈[1,𝜖 (𝑟 ) ]

𝜑 (𝑝𝑟,𝑗
𝑑𝑖𝑠

, 𝑝
𝑟,𝑗

𝑙𝑒𝑛
, 𝑑 (1) , 𝑑 (2) ), (1)

𝜑 (𝑝𝑑𝑖𝑠 , 𝑝𝑙𝑒𝑛, 𝑑 (1) , 𝑑 (2) ) =
{
|𝑝𝑑𝑖𝑠 − 𝑑 (1) |, if 𝑑 (2) ≥ 𝑝𝑙𝑒𝑛

+∞, otherwise
. (2)

Seeking 𝑟 and 𝑗 is equivalent to seeking a P𝑟,𝑗 among the RDM
prior sets of the 𝑅 objects, where 𝑗 is less than the prior set size
𝜖 (𝑟 ) of object 𝑜𝑟 . P should indeed have the lowest value of 𝜑 (·),
which takes four values: 𝑝𝑑𝑖𝑠 , 𝑝𝑙𝑒𝑛 , 𝑑 (1) and 𝑑 (2) . The former two
are nearest distance and against-wall length from datasets. The
latter two are calculated using Λ for each iteration. 𝜑 (·) returns
differences of 𝑝𝑑𝑖𝑠 and 𝑑 (1) , which are respectively nearest-wall
distances from datasets and intersections in real-time, if 𝑑 (2) is not
less than 𝑝𝑙𝑒𝑛 . Otherwise, it simply returns a “+∞”. In other words,
we would try computing and searching a P𝑟, 𝑗 with the closest
nearest-wall distance 𝑝𝑟, 𝑗

𝑑𝑖𝑠
to the real-time nearest-wall distance

𝑑 (1) . However, if its second nearest-wall distance 𝑑 (2) exceeds 𝑝
𝑟,𝑗

𝑙𝑒𝑛
,

which means the remaining extent is insufficient to accommodate
an object with against-wall length 2 × 𝑝

𝑟,𝑗

𝑙𝑒𝑛
.

Subsequently, back to an intersection Λ of an iteration, if the best
matched 𝜑 (𝑝𝑟, 𝑗

𝑑𝑖𝑠
, 𝑝

𝑟,𝑗

𝑙𝑒𝑛
, 𝑑 (1) , 𝑑 (2) ) is greater than a threshold 𝜂𝑑𝑜𝑚

(see Section C in the supplementary document for discussions of
interactive thresholds), (𝑟, 𝑗) is considered being too far away from
the priors and no dom-object is suggested. Otherwise, the selected
instance from the recommended 𝑅 objects is indexed by 𝑝𝑟, 𝑗

𝑖𝑑
. The

translation of the object is set as Λ. The orientation of the object
is set as 𝜃 (1) + 𝑝

𝑟,𝑗
𝑜𝑟𝑖

, where 𝜃 (1) follows the inward normal of 𝑣 (1) .

The scale of the object follows 𝑝𝑟, 𝑗
𝑠𝑐𝑎𝑙𝑒

.

Figure 4: A scenario for illustrating Eqn. 1 and 2. With the
intersection moving from right to left, the available second
nearest-wall distance decrease. It first tries other less plau-
sible instances with suitable sizes. As the distance even de-
creased, no instance fits the tiny area next to the corner.

Figure 4 shows a scenario of real-time calculations of (𝑟, 𝑗). Our
framework first suggests a wardrobe. When the intersection ap-
proaches the left, 𝑑 (2) decreases and our framework resorts to
another instance which is a corner/side table with suitable sizes. Fi-
nally, if the intersection is extremely close to the corner, no instance
is acceptable any more. RDM is also robust to various room shapes.
More qualitative results are shown in Figure 7 in the experiments.

In practice, it turns to be more efficient to select 𝑅 candidate
objects {𝑜𝑟 |𝑟 ∈ [1, 𝑅]} in advance, based on the current scene
contexts with previously selected objects. Although our framework
is capable of recommending a set of candidate objects for each
iteration, we still need an initial selection of objects for an empty
room, which refers to the “cold booting” and is based on the And-
Or Graph adapted by [24]. This “cold booting” is performed only
once at the beginning, then we maintain a candidate object set by
either adding or deleting object(s), depending on the process of
the following iterations. For example, inserting a dom-object in a
room results in deleting it from the candidate object set and adding
related subordinate objects into the set. The initial room type is
either given by the user or randomly selected by our framework.
End users can also optionally specify dominant objects they prefer.

5 SUBORDINATE OBJECTS
Prior to inferring dominant objects, our framework tries match-

ing subordinate priors first, where Λ may either be on the ground or
elsewhere on the existing objects. Arranging sub-objects depends
on the transient transformations of their dom-objects and the corre-
sponding sub-prior sets, since different pairs of objects have distinct
layout strategies as shown in Figure 5. Thus, similar to RDM, a set
of subordinate priors S𝑑,𝑠 = {Q𝑑,𝑠,1,Q𝑑,𝑠,2, ...,Q𝑑,𝑠,𝜀 (𝑑,𝑠) } exist if

Figure 5: Example layout patterns between dominant objects
and subordinate objects: Double Bed & Rug (Left), Double
Bed & Nightstand (Middle), Dinning Table & Chair (Right).
Colors denote orientations of sub-object following HSV color
space where pure cyan is 0 degree.



a dominant object 𝑜𝑑 is spatially related to a subordinate object 𝑜𝑠 .
𝜀 (𝑑, 𝑠) equals to the number of co-occurrences of 𝑜𝑑 and 𝑜𝑠 in the
prior set. Each Q𝑑,𝑠, 𝑗 includes a plausible transformation 𝑞

𝑑,𝑠,𝑗

𝑇
of

𝑜𝑠 w.r.t. 𝑜𝑑 and the ID (name) 𝑞𝑑,𝑠, 𝑗
𝑖𝑑

of 𝑜𝑠 .

We learn transformations (i.e., 𝑞𝑑,𝑠,𝑗
𝑇

) between dom-objects and
sub-objects by adopting [38], which answers whether two objects
are spatially related and what their layout patterns are as shown
in Figure 5. A learnt transformation of a sub-object according to a
dom-object includes a plausible translation and rotation w.r.t. Y-axis.
Thus, the learnt transformation is assigned to 𝑞𝑑,𝑠,𝑗

𝑇
. An advantage

of [38] is that it directly returns discrete samples as plausible trans-
formations instead of hypothesizing concrete distributions , thus
𝑞
𝑑,𝑠,𝑗

𝑇
is robust to various layout patterns in practice.

When the cursor is associated with a dom-object, all related
subordinate priors are loaded. Each 𝑞𝑑,𝑠, 𝑗

𝑇
is further transformed ac-

cording to the dom-object, e.g., if a double bed is shrunk, sub-priors
of a nightstand should be shrunk as well. Otherwise, an obvious
gap will appear between the bed and the nightstand. Similarly,
sub-objects are positioned and rotated following their dom-objects.

In the current context with 𝑅 existing dom-objects, each dom-
object 𝑜𝑑 may be related to one or more sub-priors, resulting in
S𝑑,1∪S𝑑,2∪...∪S𝑑,𝜏 (𝑑) where 𝜏 (𝑑) denotes the number of potential
sub-objects related to 𝑜𝑑 . Thus, we take the union of sub-priors of
all dom-objects as A. Note that any modification of dom-objects,
such as transformations or deletion, results in adjustments of A.
Thus, we take the translation from 𝑞

𝑑,𝑠,𝑗

𝑇
as 𝑞𝑑,𝑠,𝑗𝑝𝑜𝑠 and find the best

matched prior Q𝑑,𝑠,𝑗 by seeking a 𝑞𝑑,𝑠,𝑗𝑝𝑜𝑠 nearest to Λ as shown in
Eqn. 3:

(𝑑, 𝑠, 𝑗) = argmin
𝑑∈[1,𝐷 ],𝑠∈[1,𝜏 (𝑑) ], 𝑗 ∈[1,𝜀 (𝑑,𝑠) ]

| |𝑞𝑑,𝑠, 𝑗𝑝𝑜𝑠 − Λ| |2 . (3)

If | |𝑞𝑑,𝑠, 𝑗𝑝𝑜𝑠 − Λ| |2 is greater than a threshold 𝜂𝑠𝑢𝑏 , (𝑑, 𝑠, 𝑗) are
considered too far away from A and no sub-object is suggested.
If Λ is on the ground, we subsequently try inferring a dom-object.
Otherwise, if 𝜂𝑠𝑢𝑏 is greater, the selected object are indexed by

𝑞
𝑑,𝑠, 𝑗

𝑖𝑑
. The translation of the object is set as (𝑥Λ, 𝑌 , 𝑧Λ). The rota-

tion of the object is set as 𝑞𝑑,𝑠, 𝑗
𝑜𝑟𝑖

, which is the rotation extracted

from 𝑞
𝑑,𝑠,𝑗

𝑇
. 𝑌 is the translation on the Y-axis of 𝑞𝑑,𝑠, 𝑗𝑝𝑜𝑠 (the Y-axis

is considered as “height” in this paper). For example, a rug is com-
monly placed beneath its dom-objects, e.g., double beds. However,
rugs typically overlap with its dom-objects, and Λ is casted on
dom-objects. Therefore, introducing 𝑌 alleviates the problem that
objects are in different tiers [34].

6 WALL DECORATIONS
There are plenty of objects attached on walls instead of stand-

ing on the ground or other objects. Walls are commonly ignored
in existing works, e.g., [27] trains convolutional neural networks
for scene syntheses based on top-down orthographically rendered
images. However, wall objects such as paintings are either ren-
dered in tiny size or covered by other objects, which largely affects
the quality of the results. However, wall objects are important
components of home decoration. Few existing works do arrange

Figure 6: Finding a guide object. LEFT: Calculating 𝜆 of each
object, given an intersection. A beam is shot from the inter-
section point toward the normal of the wall (a white dotted
line). Thus, 𝜆 equals to the distance from objects to the beam
(blue and red lines), where objects are discarded if their 𝜆 is
too large (red). RIGHT: Selecting the guide object (green).

wall objects, e.g., [39] recognizes wall objects as independent dom-
objects, which makes sense since they are much more flexible to
be placed compared with sub-objects. On the other hand, we argue
that wall objects are often spatially related to dom or sub objects.
For example, it is plausible to see wall lamps hung above night-
stands. As such, in this section we present a method of arranging
wall objects in coordination with objects on the ground. To our best
knowledge, we are the first to specifically consider the layouts of
wall objects.

If Λ is casted on the wall area, we find its nearest wall. Subse-
quently, b = (𝑥b, 0, 𝑧b) is calculated as the inward normal vector
of the casted wall, where its height on the Y-axis equals to 0. Next,
we try finding a guide object among existing dom- and sub-objects.
Given b and Λ, a line𝜓 (𝑡) is formed as shown in Eqn. 4, where we
shoot a “beam” from Λ to the direction of b.

𝜓 (𝑡) = Λ + 𝑡 × b, 𝑡 ∈ (0, +∞) . (4)

For each object 𝑜𝑖 in the room, we take its translation on the XoZ
plane as w = (𝑥𝑖 , 𝑦Λ, 𝑧𝑖 ), and calculate the perpendicular distance
𝜆 from w to𝜓 (𝑡). Figure 6 further illustrates the calculation of 𝜆.
With 𝜆 for all objects, we filter out objects with 𝜆 greater than a
threshold 𝜂𝑤𝑎𝑙𝑙 . They are considered being too far away from the
direction of the pending wall object. Then, among the remaining
objects, we find the guide object with the least Euclidean distance to
Λ as shown in Figure 6. Next, we use the guide object to derive an
appropriate wall object. All dominant and subordinate objects are
capable of deriving wall objects, depending on the learnt And-Or
Graph [24] w.r.t. wall objects in the dataset. The derivation follows
the process illustrated in Figure 6, where Λ is converted to the
original positions of wall objects in the dataset.

7 EXPERIMENTS
7.1 Results and Setup

Several qualitative results generated by our framework are shown
in Figure 7. To fully evaluate the proposed work, we develop a plat-
form with sufficient functionalities compared with similar tools
such as Planner5D3 or Kujiale4, as shown in Figure 8.

3https://planner5d.com/
4https://b.kujiale.com/
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Figure 7: Our results on different room types. More generated scenes are included in the supplementary materials.

(a) Overview. (b) Searching & Inserting.

(c) Manipulating & Roaming. (d) Our Method.

Figure 8: The open-source platform we implement for re-
searches on 3D scenes. More details are included in Section
D of the supplementary document.

Dataset. The dataset we are using is 3D-Front5 [9, 10] with
70000+ rooms (layouts) and 9992 3D models (objects). Since 3D-
Front does not have object categories such as “television”, “laptop”,
“rug”, etc., we further include additional models for a more diverse
dataset in order to fully embody the effectiveness of our work. With
the support of our platform, several end users are invited to create
more layouts for learning subordinate priors, e.g., a double bed with
its surroundings. As object categories do not directly reflect their
usages, we relabelled object categories to suit our needs. An object
is dominant, subordinate, or wall-related according to its category,
e.g., dinning table is dom-object and nightstand is sub-object.

Implementation Details. The front-end rendering is based on
Three.js6, which is a popular rendering engine on top of WebGL.
5https://pages.tmall.com/wow/cab/tianchi/promotion/alibaba-3d-scene-dataset
6https://threejs.org/

The back-end uses Numpy and Shapely for geometry operations
such as room shape processing. We implement our own file systems
for organizing scenes, 3D meshes, and priors. Our framework is
developed on a desktop computer with GTX 2080ti GPU, 32GB
memory, and AMD Ryzen 2700x CPU. The evaluation on com-
putational efficiency is discussed in Section 7.4. Other practical
concerns such as collision avoidance are discussed in Section C of
the supplementary document.

7.2 User Satisfaction and Interaction
To verify how our framework benefits end users, we conducted

a user study to measure the result quality and the system usabil-
ity compared with traditional industrial solutions. We invited 37
participants (composed by office workers, university students, free-
lancers, etc.) to control cursors for scene synthesis. Given an empty
room, participants were asked to generate two satisfied layouts
(traditional approach vs. our approach) as quickly as possible.

The first layout generation follows the traditional object selection
and arrangement process. The participants need to search an object
(e.g., a desk or an office chair to suit the existing desk) and insert
it into the scene, then optionally fine-tune its transformation. To
conduct this experiment, we developed a platform for 3D scene
manipulation as shown in Figure 8. In our platform, participants
can search objects by typing in a search box or directly clicking an
object name in a recommended list as shown in Figure 8b. After
object selection, the object moves following the cursor until object
insertion, which can be cancelled by a right click. We implement
two transformation interfaces similar to Planner5d and Kujiale for
object manipulation as shown in Figure 8c. First, by clicking an
existing object in the scene we allow positioning, lifting, rotating
and re-scaling the object based on the mouse cursor. Second, object
transformation can be explicitly configured using a parameter panel



Table 1: User Satisfaction and Interactive Efficiency.

Measurement Traditional Ours

Interactive Satisfaction 3.51 (1.06) 3.52 (1.09)
Result Satisfaction 3.74 (0.96) 3.75 (0.83)
Time Consumption 835.21 (523.05) 437.6 (301.78)

(top-left). For generating the second layout, the participants were
asked to use the proposed framework, as shown in Figure 8d.

Before the experiment started, a detailed manual was provided
to the participants to tell them how to use the platform. We also
showed them several well-designed scenes from the dataset as a
standard in advance to avoid generating low-quality scenes. The
initial empty rooms were selected with area greater than 25𝑚2 to
enable sufficient space for layout design. One technical staff was
stood by in case of any technical question during the experiment.

Once a participant finished, we asked them to mark their overall
satisfaction with the results. Likert-scale is adopted from 0: totally
inaesthetic and implausible to 5: very aesthetic and plausible. We
also asked them to mark degrees of convenience about the entire
processes of interactions, ranging from 0: the interaction is poor and
inconvenient to 5: the interaction is great and convenient. We also
recorded the time consumed for generating each layout. The results
are summarized in Table 1, where each cell includes an average
value and a standard deviation in a bracket. It can be seen that our
method significantly reduces the time consumption of arranging a
scene while keeping both result quality and system usability.

According to our experiments, our framework alleviates the time
consumption from the following factors: 1) search objects; 2) re-
scale models for better fitness; 3) fail to remember accurate name
of furniture, e.g., ottoman (in other languages); 4) spend time for
transforming objects, e.g., place chairs in plausible positions and
rotate them facing the dinning table.

7.3 Aesthetics and Plausibility
We next measure the aesthetics and plausibility attained by our

framework by comparing with three existing scene synthesis tech-
niques. PlanIT [27] is a state-of-art framework for 3D scene syn-
thesis. 3D-Front [9] presents the dataset used by our work. The
Geometry-Based Approach (GBA) [39] is a recent method for
generating room layouts. For PlanIT, we train it on 3D-Front and
gather their synthesized results. For 3D-Front, we randomly pick
scenes from the dataset. Note that rooms from 3D-Front are mainly
designed by human and partially synthesized, e.g, using [29] to
refine the object arrangements. GBA re-arranges existing scenes
in 3D-Front without object selection. For our framework, we let
computer automatically control the cursor and its movement, and
insert objects accordingly. Consequently, all four methods take the
same input and generate scenes respectively as shown in Figure 9.

Qualitatively, 3D-Front scenes often have leftover space such
as Figure 10a, i.e., a room contains only a few objects but is suitable
to have more objects. PlanIT [27] yields unexpected results between
dom-objects and sub-objects as shown in Figure 10b, where it is also
possible to generate physically implausible scenes. GBA [39] does

(a) 3D-Front [9]. (b) PlanIT [27].

(c) GBA [39]. (d) Ours.

Figure 9: Several results of the three baselines and ours given
the same room shape. More qualitative comparisons can be
found in Section E of the supplementary document.

(a) 3D-Front. (b) PlanIT. (c) GBA.

Figure 10: Several failure cases of the three baselines. 10a:
the room has leftover space. 10b: relative transformations
between the dom-objects and the sub-objects are unexpected.
10c: without considering room capacity, the group of objects
are too big to be placed.

not consider room capacity as shown in Figure 10c, e.g., a group
of objects led by a dom-object may be too large to be put or the
group occupies the entire room. In contrast, on the basis of physical
plausibility, objects are harmoniously arranged among each other
and rooms are compatibly filled according to their capabilities.

Quantitatively, another 50 participants were invited to evaluate
the general aesthetics and plausibility online. We developed a web-
based platform for collecting questionnaires as shown in Figure
11. Participants were asked to answer a series of questions. Each
question contains 4 scenes that were synthesized by the above 4
methods given the same room. Participants were asked to compare
the results and mark them separately from 0 to 5, where 0 denotes

Figure 11: The questionnaire platform for conducting the
user study in Section 7.3. For each question, users respectively
mark the presented scenes (LEFT), whereas they can zoom
in each scene for better perceptions (RIGHT).



Table 2: Aesthetics and Plausibility.

Methods 3D-Front PlanIT GBA Ours

Master Bedroom 3.327 2.103 2.437 3.443
Second Bedroom 3.577 1.33 2.62 3.28
Kids Room 3.653 1.82 2.373 3.37
Living-Dinning Room 3.163 2.117 2.003 3.603
Living Room 3.46 2.07 2.393 3.623
Dinning Room 3.237 1.85 2.443 3.427
Total 3.403 1.882 2.378 3.458

“very poorly generated” and 5 denotes “perfectly plausible and
aesthetic”. Before they started, they were explained how to use the
questionnaire system, and an electronic guidance was available
during the session. We chose 6 types of rooms as listed in Table 2.
For each room type, 6 rooms were used to show the results. For each
question, an empty room was randomly selected and the results of
the 4 methods were rendered respectively.

The user feedbacks are shown in Table 2 according to room
types. Our work outperforms PlanIT and GBA, and is on par with
3D-Front in terms of aesthetics and plausibility. Compared with
human-guided scenes, our work is competitive for most room types
and achieves slightly higher grades in general.

7.4 Efficiency
To evaluate the efficiency, we run our framework on PCs with

different hardware configurations and inspect the frame rate in the
front-end. A configuration considers GPU, CPU and RAM. Frame
rate is measured in “frames per second” (FPS), including its average,
minimum, and maximum rates.

This experiment is conducted in the most intensive situation
of our framework, i.e., as shown in Figure 2, when a room is with
several dom-objects inserted and fails to match sub-priors, our
framework would then match the remaining priors of dominant
objects, thus execute two workflows with two sets of priors. For
doing so, we create a scene with several existing dom-objects, dom-
priors and sub-priors. The cursor is moving rapidly within the
scene to make the computational power as fully loaded as possible.
The average, minimum, and maximum FPS are then calculated
through the entire process. Table 3 shows the efficiency results.
Column “Frame per Seconds” (FPS) writes averaged FPS achieved
on a particular configuration. The following brackets show the

Table 3: Performances of framework on various devices.

GPU RAM (MHz) Frames per Second

HD Graphics 620 8GB (931.1) 28.78 (22.32 − 37.05)
Quadro FX 5800 32GB (931.1) 55.20 (48.86 − 59.81)
GTX 970 32GB (931.1) 122.10 (109.14 − 133.52)
GTX 1060 32GB (931.1) 143.11 (138.35 − 144.00+)
RTX 2080ti 32GB (931.1) 144.00+

(a) Weird Scale. (b) Orientation. (c) Distortion.

Figure 12: Three representative cases that are abnormal in the
dataset. 12a: an extremely large wardrobe occupies a whole
room. 12b: a dressing table faces in a wrong direction. 12c: a
dressing table is distorted weirdly against the wall.

minimum and maximum respectively. As a result, our framework is
capable of smoothly operating on PCs with relatively more recent
hardware configurations.

8 CONCLUSION AND FUTUREWORK
In this paper, we proposed and verified a framework of synthe-

sizing 3D scenes involving and simulating human interactions. Our
method is flexible in a sense that both automatic generation and
user interaction are allowed. Through the experiments, we show
our method is effective and outperforms the competing methods.
We hope this work could advance future researches relying upon
3D virtual scenes.

Our work still has limitations and leaves room to be improved in
the future. First, the way to interact with 3D scenes is empirically
set according to our own experiments. In practice, not all users are
accustomed to our current interaction setting. For example, one
participant advises us to swap instances using mouse wheel instead
of mouse click. As such, what are the natural user interactions are
to be explored in the future.

As a data-driven approach, our work also suffers from several
weird cases originated from the dataset. First, some objects are
mislabelled in categories. Second, few objects are scaled too much,
such as the wardrobe shown in Figure 12a, which influences the
priors learnt by RDM. Third, few objects are wrongly rotated as
shown in Figure 12b, where a dressing table is facing the wall.
Similarly, the dressing table is highly distorted in Figure 12c. Our
work also assumes that objects are centered at the origin in their
local coordinate system, and are facing the direction of Z axis.

We also consulted several professional interior designers. They
suggested that the existing state-of-the-art and our work still focus
on “soft decorations”, which refers to objects that are easy to move.
In contrast, practical applications do require “hard decorations”, e.g.,
holes onwalls, pipelines, wires, furred ceilings, etc. In addition, “soft
decorations” also favor style compatibility among objects, which
can be achieved by a post-processing step such as [17].
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