
        

Citation for published version:
Carter, J, Rodriguez Rivadulla, A & Preatoni, E 2021, Support vector machines can classify runner’s ability using
wearable sensor data from a variety of anatomical locations. in ISBS Proceedings Archives: 39th International
Conference on Biomechanics in Sports (2021) Canberra, Australia, Sept 3-7, 2021. 1 edn, vol. 39, 72,
International Society of Biomechanics in Sports (ISBS), International Conference on Biomechanics in Sports,
Canberra, Australia, 3/09/21. <https://commons.nmu.edu/isbs/vol39/iss1/72/>

Publication date:
2021

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Sep. 2021

https://commons.nmu.edu/isbs/vol39/iss1/72/
https://researchportal.bath.ac.uk/en/publications/support-vector-machines-can-classify-runners-ability-using-wearable-sensor-data-from-a-variety-of-anatomical-locations(7cc2ef1c-6eeb-41e9-96ef-2177ad858670).html


SUPPORT VECTOR MACHINES CAN CLASSIFY RUNNER’S ABILITY USING 

WEARABLE SENSOR DATA FROM A VARIETY OF ANATOMICAL LOCATIONS 

 

Josh Carter, Adrian Rivadulla, and Ezio Preatoni 

University of Bath, UK 

We developed and tested an algorithm to automatically classify twenty runners as novice 

or experienced based on their technique. Linear accelerations and angular velocities 

collected from six common wearable sensor locations were used to train support vector 

machine classifiers. The model using input data from all six sensors achieved a 

classification accuracy of 98.5% (10 km/h running). The classification performance of 

models based on single sensor data showed a 56.3-94.5% accuracy range, with sensors 

from the upper body giving the best results. Comparisons of kinematic variables between 

the two populations confirmed significant differences in upper body biomechanics 

throughout the stride, thus showing applied potential when aiming to compare novice 

runner’s technique with movement patterns more akin to those with greater experience. 

 

KEYWORDS: running biomechanics, machine learning, inertial measurement unit, gait 
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INTRODUCTION: For runners, coaches, and running technology manufacturers, there is great 

interest in exploring how running performance can be optimised whilst guaranteeing healthy 

participation. Alongside physiological factors, running technique is known to be determinant of 

running performance and injury risk (Moore, 2016). Running technique is an important focus 

of training, with multiple studies showing how training programmes can be effectively 

implemented to optimise lower body biomechanics (Napier et al., 2015) for better performance 

and lower injury risk (Crowell & Davis, 2011). However, thorough running technique analyses, 

to identify areas for improvement, can be costly and inaccessible to most runners. 

In contrast to lab-based techniques, wearable technologies are more accessible and allow 

uninterrupted gait datasets to be collected in a ‘real world’ environment. However, there is 

reduced control over measurement conditions when using wearables. Machine learning has 

proven an effective technique to analyse these higher noise datasets. (Halilaj, 2018). For 

instance, Clermont et al. (2019) used a Support Vector Machine model (SVM) to identify 

runners as belonging to a ‘competitive’ or ‘recreational’ group, using three dimensional 

accelerations from a single Inertial Measurement Unit (IMU) attached to the sacrum. This study 

reported a maximum classification accuracy of 82.6% and 80.4% for male and female groups 

respectively. Such a classifier could be used to track a runner's technique development over 

time. Whilst commercially available wearables could be placed near the sacrum, this location 

is not popular in the consumer technology market. A network of sensors embedded in the 

devices currently used by runners could be a more accessible solution, offer improved 

biomechanical insights, and provide more information about a runner's technique. 

The purpose of this study was to develop a SVM classification algorithm, which could 

successfully distinguish between experienced and novice runners using wearable sensor data 

to assess their running technique. Multiple sensor locations and combinations were analysed 

with the aim to minimise hardware requirements whilst still achieving high levels of 

classification accuracy. 



METHODS: Twenty healthy males participated in this study and were allocated to the 

experienced (10) or novice (10) runners group, based on their recent 10 km race times and 

training volumes (Table 1). This study was approved by the University Research Ethics 

Committee for Health, and participants signed informed consent prior to data collection. 

Six Delsys Trigno units (Delsys, Massachusetts, USA) were securely attached to the posterior 

right wrist, lateral right upper-arm, posterior T10 of the spine, sacrum, proximal tibial tuberosity, 

and lateral aspect of the right foot using medical adhesive spray and double-sided tape. These 

landmarks were chosen to replicate the location of widespread consumer technology with 

embedded IMUs (e.g. smartphones, smartwatches, shoe sensors) or the most common areas 

where wearable sensors have been used in previous running research. All participants 

completed three running bouts of four minutes (10, 11 and 12 km/h) on a treadmill (Powerjog 

JX200, Ultimate Fitness, Leeds) at a 1% gradient, with one-minute standing rest between each 

bout. Three-dimensional linear accelerations and angular velocities were logged at 370.37 Hz. 

Data processing: Data were low-pass filtered (zero-lag 4th order Butterworth - 20 Hz cut-off, 

Clermont et al., 2019). Filtered accelerations from the foot sensor were used to identify right 

foot-strikes through a validated gait event detection algorithm (Benson et al., 2019) and 

segment continuous raw kinematic data into strides. Each stride was time registered to 300 

data points and every five consecutive strides were averaged to form a single, more consistent, 

waveform (Benson et al., 2018) that was labelled as belonging to an experienced or novice 

runner. 

Data analysis: Experienced and novice runners were randomly paired, to create ten 

approximately equal folds for 10-fold cross-validation. For each cross-validation iteration, data 

in the training set were standardised (z-scores) and Principal Component Analysis was applied 

to reduce the dimensionality of the data from each sensor. The minimum number of principal 

components accounting for 90% variance within all chosen sensors formed the features of the 

training dataset. The validation set was transformed using the standardisation scaling factors 

and projected onto the principal components extracted from the training set. Support vector 

classifier models with a linear kernel were then trained with the standardised principal 

component values to differentiate between experienced and novice runners using multiple 

combinations of sensors. Average accuracy across the ten folds was calculated. Additionally, 

we further investigated the biomechanical differences between the two populations. 

Specifically, data from the individual sensors that provided the best classification accuracies 

were evaluated. 

Statistical Parametric Mapping analysis (SPM) was used to identify at which point within the 

stride there were statistically significant differences between the average novice and 

experienced runner movement patterns. Open-source Python code (Pataky et al., 2016) was 

used to perform a 1-dimensional independent two-tailed t-test between selected acceleration 

or angular velocity waveforms. The input for these analyses were an average waveform for 

each participant running at 10 km/h. Significance between groups was accepted when the 

SPM{t} value exceeded the critical threshold (α = 0.05) at any of the normalised time points 

within the full gait cycle, meaning that identically smooth random 1D data would produce 

clusters of that breadth with a probability of p < 0.05. 

 

RESULTS AND DISCUSSION: On average, novices were 11 years younger (P = 0.007) and 

11.1 kg heavier (P = 0.003) than the experienced runners, but there were no significant 

differences between the two sub-groups height (P = 0.578) (Table 1). 

 



Table 1. Participant characteristics, values reported as mean ± one standard deviation. Criteria 

for group allocation: Experienced – < 40 min in 10 km races; > 25 km/week training distance; 

Novice – no regular running activity. P value reported is the result from an independent t-test (†) 

or Mann-Whitney U test (‡).   

Classification accuracy: Multiple combinations of sensors often achieved classification 

accuracies over 95% (Figure 1), which is in line with and improves that reported in previous 

studies (Clermont et al., 2017; Clermont et al 2019). More specifically, the classifier using data 

from six sensors (10 km/h) could correctly identify running experience with an accuracy of 

98.5%. Removal of the sacrum and tibia data from the models had minimal influence on 

classification accuracy. Combining data only from the T10 and upper-arm sensors resulted in 

the highest accuracy at an individual running speed, achieving 99.1% at 11 km/h. 

As may be expected, several of the single sensor location models achieved lower accuracies 

than those within the combined sensor models. However, using data exclusively from the 

upper-arm still returned classification accuracies (average accuracy of 94.5% across the three 

running speeds) comparable to those reported by the combined sensor models. Classification 

performance was worse when data from lower body sensors were used in isolation (average 

classification accuracies of 60.9% and 56.3% from tibia and foot, respectively). 

Figure 1. Classification accuracy for each sensor combination tested. Sensor combinations 

including the sacrum sensor were not testable at 11 and 12 km/h due to the sensor falling off. 

Biomechanical Differences: Data collected from the lateral aspect of the upper-arm was 

analysed further, as this was the highest performing single-sensor classifier. The experienced 

runners elicited greater levels of linear acceleration along the anteroposterior axis (Figure 2). 

These findings seem to agree with previous research that conclude increased arm swing is an 

influential factor for a more efficient running technique, by maintaining a more constant 

horizontal velocity, and reducing ‘unwanted’ movement of the centre of mass and rotation of 

the upper body (Arellano & Kram, 2014). The experienced runners also elicited greater angular 

velocity around this same axis. In comparison to the novice runners, the experienced runners 

also showed greater inter-population consistency of arm abduction movements during the 

stance phase.  

 

 

Experienced 
(n = 10) 

Novice 
(n = 10) 

P 

Age 35 ± 10 24 ± 4 0.007*‡ 
Mass (kg) 69.2 ± 6.6 80.3 ± 7.6 0.003*† 
Height (m) 1.79 ± 0.07 180.4 ± 6.8 0.578† 

Weekly distance (km) 46 ± 25 na  
10km Time 36:32 ± 2:18 na  



Figure 2. Upper-arm average (± one standard deviation) linear acceleration and angular velocity 

(10 km/h running). The grey bands indicate stride phases in which significant differences were 

found (SPM unpaired t-test) and the correspondent P-values are reported.  

 

CONCLUSION: Linear support vector machine algorithms can successfully identify individuals 

belonging to a novice or experienced runner sub-group by utilising waveform data collected 

from multiple IMU sensor locations. Results suggest that upper body biomechanics can be 

most clearly differentiated between individuals of differing running experience. If the 

methodology presented in this study were to be implemented in commercially available 

wearables, it would have the potential to help novice runners gradually shift their technique 

towards that which is more characteristic of an experienced runner. Equally, it could be used 

to identify technique regression and consistency within experienced runners. This study serves 

as a preliminary methodological investigation that could be developed on in future studies with 

more ecologically valid environments and greater sample sizes. 
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