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Abstract 

Interleaving a laminated composite with thermoplastic particles is known as an effective method 

to improve the interlaminar fracture toughness. In this work, to provide useful insight into what 

particle characteristics are the most critical to the toughening effect, the interlaminar fracture 

behaviours of carbon fibre/epoxy composites interleaved with different types of nylon 6 and 12 

particles were investigated in the same range of particle areal weights.   

The results showed the particle size affects the toughness only when the particle-matrix 

interfacial bonding is well established, which is related to the curing temperature relative to the 

melting temperature of the particle. High interfacial bonding strength allowed the particles to be 

plastically deformed while bridging the crack, and smaller particles were more effective due to 

the increased density of particle bridging. It was also found that both the particle size and shape 

affect thickening of the interlayer, which can cause a knockdown of in-plane laminate properties 

due to the reduced fibre volume fraction.  

Keywords: A. Laminates; B. Fracture toughness; Delamination; D. Mechanical testing  
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1. Introduction 

Despite the many advantages of using high performance fibre reinforced composites for weight 

critical parts, one of the main concerns is their poor damage tolerance, which can cause large 

area delamination resulting in a catastrophic failure.  

The interlaminar toughness of laminated composites can be improved in many ways. The early 

studies mainly focused on resin modification; this usually involves incorporation of ductile 

materials such as elastomers [1,2] or thermoplastics [3-5] with thermoset resin at a molecular 

level, which provides significant improvement of the fracture toughness of the matrix. However, 

an effective toughener for bulk resin does not always offer a similar improvement when used 

within composite laminates, as the interlaminar resin layer thickness is usually too small to fully 

develop plastic deformation at the crack tip [6]. This localised plastic deformation is an 

important energy absorption mechanism preventing crack propagation in a bulk polymer. Sela et 

al. [7] reported that a thicker resin layer can be beneficial to the interlaminar fracture toughness. 

They also addressed that the ‘selective toughening’ is useful to reduce stress concentration near 

the structurally discontinuous locations such as joints in various of composite applications [8].  

However, even with any of the aforementioned toughening methods, thermoset matrix based 

composites generally have a considerably low interlaminar fracture toughness compared to 

thermoplastic matrix based ones [9], due to the inherent brittleness of the thermosets. Tahir [10] 

found that carbon fibre/PA12 composite laminates made from commingled yarns exhibited a 

Mode-I fracture toughness, GIC, of about 3 kJ/m2, which is about 5-10 times higher than that of 

typical carbon/epoxy laminates [9]. 

In order to take the advantage of the ductility of the thermoplastics, methods of interleaving a 

thermoset based composite laminate with thermoplastic micro-particles began to be used and is 

known as an effective interlaminar toughening method [5], which not only creates a thicker 
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resin layer but also includes a ductile secondary material allowing for crack deflection [11]. The 

inclusion of such particles in a bulk epoxy could cause crack bridging [12] promoting the 

fracture energy absorption during crack propagation. Such a toughening technique has been 

patented [13,14] and special prepreg resin systems taking advantage of such a mechanism are 

commercially available; for example, Hexcel M21 prepreg resin includes polyamide particles 

(PA6/PA12) as tougheners as well as polyether sulfone (PES) [15]. 

For bulk polymers, particle bridging is known to be observed when ductile materials are used as 

particle tougheners. This mechanism allows for stable crack propagation and reduces stress 

concentration at the crack tip [6,12]. Particle bridging effect requires a good particle-matrix 

bonding [16]. This adhesion can be achieved by promoting chemical bonding or creating 

molecular entanglements between the two materials. Nichols et al. [17] stressed that the 

development of the interphase between poly-butylene-terephthalate (PBT) and epoxy molecules 

is more important than the dispersion of PBT in the epoxy. This molecular entanglement is also 

referred to as a semi-interpenetrating network (semi-IPN), which can significantly affect the 

fracture toughness of a modified epoxy resin system [18]. 

The development of semi-IPN structure requires both material phases in a gel state, which is 

temperature dependent. Kim et al. [18], who studied nylon 6 particles blended in an epoxy at 

different temperatures, found the morphology of fractured particles changed depending on the 

mixing temperature. The GIC was improved when the mixing temperature was close to the 

melting point of nylon 6, but the modulus and yield strength remained unaffected. They also 

reported the chemical reaction between an amine cured epoxy and nylon 6 particles contributed 

to the interfacial bonding strength. In contrast, Park et al. [19] interleaved a 120°C amine cured 

carbon/epoxy prepreg laminate with 20 μm nylon 6 particles, and found the GIC was not affected 

by varying the particle amount. Pairs [15] reported the GIC of M21/T700 composite was nearly 

doubled by implementing a higher curing temperature than the recommended curing 
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temperature. Fusion between particles and resin interface was observed, which resulted in a 

crack shifted from the interlaminar region to the fibre layer [20]. 

The fabrication of commercial particle toughened prepreg systems involves pre-mixing particles 

with the liquid resin, followed by a single or double pass impregnation method to create a 

particle rich surface on the prepreg [21]. In this process, the employed particle amount is 

inevitably limited due to the increased resin viscosity. Although an interlaminar toughening 

methods by directly coating the prepreg surface with particles have been reported [19,22,23], 

their studies on the effect of the particle characteristics on the mechanical performance was 

rather limited. 

This work particularly focuses on the nylon particles as interlaminar toughener, investigating 

the effect of the particle characteristics of five different types of nylon particles on the 

interlaminar fracture toughness of carbon/epoxy laminated composites. These particles were 

made of two types of nylons with different sizes, shapes and surface morphology. The particles 

were directly deposited on the surface of the prepregs with different areal weights. Their effect 

on the Mode-I interlaminar fracture toughness and the failure behaviour was experimentally 

studied. The thickening of the interlaminar resin layer and its potential impact on the fibre 

volume fraction and the in-plane mechanical property of the toughened laminate were also 

discussed. 

2. Experimental 

2.1 Materials 

The prepreg material used in this work was HexPly® IM7/8552 (Hexcel, US), which is made of 

a Poly-ethersulfone (PES) toughened [24] 180°C amine-cured epoxy resin system and 

intermediate modulus carbon fibres, IM7 (Tohotanex, JP). The 0° and 90° tensile moduli are 

164 GPa and 12 GPa [25], respectively.  
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Five types of nylon particles with different sizes and shapes were used in this work, as listed in 

Table 1. The material ID was given based on the material type, particle diameter, shape and 

surface morphology. The number next to the letter ‘d’ indicates the average particle diameter. 

The last letter indicates the particle shape and morphology; The PA12-d5s and PA12-d10s have 

smooth particle surfaces, the PA6-d13r has a higher surface area due to its rough surface, and 

the PA6-d16a and PA12-d30a have irregular shapes. Nylon 12 has a melting point similar to the 

recommended curing temperature of the 8552 resin, while the nylon 6’s is higher. 

2.2 Sample preparation 

Nylon particles were dehydrated in a dehumidifier chamber at 80°C for 24 hours before use. 

Double cantilever beam (DCB) samples, as shown in Figure 1, were made from 30 layers of 

unidirectional prepregs with dimensions of 340 mm × 120 mm. The nylon particles were 

uniformly distributed only on the middle interlayer of the laminate (the 15th and 16th plies) by 

directly spreading the particles on the prepreg surface using a spraying or scraping method. The 

areal weight was calculated by measuring the weight of the ply before and after the particle 

deposition. A 12 μm thick PTFE film was inserted between the two layers to create a 50 mm 

long initial crack. 

The curing cycle used in this work was a cycle recommended by the material suppliers; 1 hour 

dwell at 110°C and 2 hours curing at 180°C. After curing, the panels were cut into coupons with 

dimensions of approximately 160 mm × 20 mm × 3.7 mm, and hinges were bonded on both 

sides where the PTFE film was inserted, at the position as required by ASTM D5528 [26]. The 

side edges of the test coupon were coated with white paint, and grid lines were marked for crack 

propagation length measurement. 

2.3 Measurement of the interlayer thickness 

The particle tougheners included in the interlayers resulted in thicker interlayer [27,28]. In order 

to investigate such thickening effect of different particles, the edges of the double cantilever 
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beam (DCB) samples were polished and observed using an optical microscopy, as shown in 

Figure 2. The interlayer thickness was measured using image processing software. Due to the 

variation of the thickness, the values were averaged from 12 measurements in three photos 

taken from different locations along the specimen length. 

2.4 Measurement of the Mode-I interlaminar fracture toughness 

Mode-I fracture toughnesses were measured following ASTM D5528. A universal material 

testing machine (Shimadzu, JP) with a 1 kN load cell was used at a cross-head speed of 1 

mm/min. Each test included two steps; a 3-5 mm long sharp crack tip was formed first by 

opening the precrack and the specimen was unloaded, and then in the second step, the specimen 

was reloaded until the crack growth reached about 30 mm from the initial crack tip created in 

the first step. Crack propagation during test was captured by a video camera (iMETRUM, UK) 

at a sampling rate of one frame per second. The crack length was manually measured using 

image analysis software. 

The GIC value was calculated using the modified beam theory (MBT) [26], which is described 

as; 

 !!" = #$%
&'()*|,|) Equation 1 

where P, δ, b, a and Δ are the peak load, cross-head displacement at the peak load, specimen 

width, crack length and correction factor for the DCB arm, respectively. 

2.5 Fractography analysis 

To observe the fractured surface and the crack propagation path, the tested DCB samples were 

cut into a few pieces, as showed in Figure 3. After the longitudinal cut, the cut surface was 

polished to reveal the side of the crack tip. A scanning electron microscope (TM3030Plus, 

Hitachi) was used for this observation. 

3. Experimental results 
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3.1 Toughened layer thickness 

The cross-sectional SEM image showed that in the range of particle areal weight applied to the 

laminates in this work, the particles were well impregnated with the epoxy resin after curing in 

the interlayer (Figure 4a). As shown in Figure 4b, the interlayer thickness increased 

proportionally to the amount of particle at low areal weights (< 20 g/m2) in general. It was found 

that the interlayer thickness increase was differently influenced by the average particle size, 

which can be seen from PA12-d5s, PA12-d10s and PA12-d30a toughened samples in the range 

of low areal weights (< 20 g/m2). However, further increase of the particle amount resulted in 

slightly different trends of thickness change for different particles. The most significant 

thickening effect was observed when a high areal weight (> 20 g/m2) of PA6-d13r was applied. 

Although its particle size was not the greatest among the particles, the interlayer thickness was 

greater than that of the sample interleaved with PA12-d10s particles with a slightly smaller 

diameter. This might be resulted from the difference in the particle surface morphology 

affecting the particle packing behaviour, which is further discussed in Section 4. 

3.2 Mode-I DCB test 

Most of the nylon 6 and nylon 12 particle-toughened samples exhibited stable crack propagation 

during the DCB test, as shown in Figure 5. As shown in Figure 5a, the nylon 12 particles were 

much more effective in toughening than the nylon 6 particles in general. The increase of particle 

loading contributed to increasing the crack opening load (Figure 5b), while the same trend was 

not observed in the nylon 6 particle-toughened samples (Figure 5c). 

Another difference found from the load-displacement curves was that the nylon 12 particle 

toughened samples exhibited more ductile response; a rather ‘blunt’ load peak was observed 

when the crack propagation was initiated (Figure 5a). This became more outstanding as the 

amount of the particles increased over a certain level. For example, the transition from 

‘sharp‘ to ‘blunt’ peak was clear in PA12-d10s, when the particle areal weight increased from 
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6.25 g/m2 to 9.66 g/m2 (Figure 5b). However, this response was not seen in the samples 

toughened with nylon 6 particles (Figure 5c) where the load drop was rather linear right after 

reaching the peak load, resulting in no difference from the non-toughened specimens. The 

different trend of the load-displacement curves between nylon 6 and nylon 12 particles is 

described in Figure 5d. The particle bridging effect will be further discussed in Section 4.3.  

Figure 6a shows the crack growth resistance curve (R-curve) for different toughening particles 

and all the GIC initiation (GIC_init) values of the tested samples. The increased particle amount 

resulted in GIC improvement in all the nylon 12 particle-toughened samples, while the small 

particles (PA12-d5s and PA12-d10s) were more effective than the large particle (PA12-d30a). 

Although the PA12-d30a particles started being effective when the particle amount was higher 

than 10 g/m2, the PA12-d5s and PA12-d10s particles significantly improve the fracture 

toughness even when it was below 10 g/m2; the GIC was almost twice that of the non-toughened 

specimens at 10 g/m2. This implies that with an areal weight even smaller than 10 g/m2, the 

GIC_init of the IM7/8552 composite laminates could become higher than that of composites made 

with M21 matrix based prepreg (approximately 0.3-0.36 kJ/m2 [15,20]), which is a 

commercially available toughened prepreg product produced by the same supplier. 

In contrast, the samples interleaved with nylon 6 particle layers showed no improvement. 

Although the highest GIC values for PA6-d16a and PA6-d13r were observed when the particle 

areal weight was about 14 g/m2, the values were almost the same as that of the non-toughened 

sample (0.24 kJ/m2). The larger particle (PA6-d16a) seemed to provide a slightly higher GIC 

than the smaller particle (PA6-d13r). However, the particle size did not influence the fracture 

toughness significantly. 

4. Discussions  

4.1 Particle amount vs. interlayer thickness 
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Interleaving particles increase the interlayer thickness. Figure 4 shows that the interlayer 

thickness is related to the particle size to some extent, as discussed in Section 3.1. 

Figure 7a and 7b show the cross-sections of the DCB samples interleaved with PA6-d13r and 

PA12-d10s, respectively. Although the average size of those two particles is similar, the 

packing density of the smooth PA12-d10s particles was higher than the rough PA6-d13r 

particles at the interlaminar region. It was inferred that a greater size variation of the PA12-d10s 

particles (as shown in the SEM image in Table 1) contributed to increasing the particle packing 

density as the smaller particles can fill the gaps between the larger particles [29], which can be 

seen in the Figure 4a and 7b. For the PA6-d13r, particle layer thickness increased linearly with 

the particle areal weight (Figure 4b). This could be attributed to its rough surface and relatively 

uniform size preventing particle-particle movement, which results in a lower packing density 

(Figure 7a). In other words, including rough particles at the interlaminar region might lead to a 

lower bulk factor as the particle layer would become ‘less compactable’. The lower bulk factor 

could be beneficial in such a case where less thickness reduction could minimise ply wrinkling 

when curing thick curved composite parts [30].  

4.2 Particle amount vs. fibre volume fraction 

As shown in Figure 8, the particle tougheners at the interlayers could increase the laminate 

thickness significantly, depending on their areal weight. This can affect the structural 

performance of the laminate. 

By assuming that the nylon particles do not affect the modulus of the interlayer epoxy matrix 

due to its similar modulus and the fibre volume fraction of each fibre layer is constant, the in-

plane tensile modulus of the unidirectional laminate can be easily calculated; the increased 

thickness of the interlayer and the fixed amount of the fibres result in reduction of the overall 

fibre volume fraction. Figure 9 shows the reduced tensile modulus at fibre direction calculated 

using the rule of mixture, for PA12-d10s particle as an example. The interlayer thickness used 
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in this calculation is from the data in Figure 4. The interlaminar fracture toughness is also 

plotted, which is from the data in Figure 6. As shown in Figure 9, although 10 g/m2 of the 

particle areal weight approximately doubled the GIC, the modulus is significantly decreased by 

14.2%.  

4.3 SEM observation 

Laminates interleaved with nylon 6 and nylon 12 particles exhibited completely different 

fractured surface morphology, as shown in Figure 10 and Figure 11. With nylon 12 particles, 

the crack went through the particles causing fracture of the particles, as shown in Figure 10a. 

Due to the yielding, the particles effectively bridged the cracked surface preventing its rapid 

propagation. As shown in Figure 10b, the PA12-d10s particles were plastically deformed 

forming long tails at the centres of the particles before final fracture, which implies that strong 

particle-matrix bonding was formed as the curing temperature was close to or higher than the 

melting temperature of the nylon particles. Similar particle bridging was reported by Cardwell 

et al. [12] where the nylon 12 particles were used to toughen a neat epoxy resin. In their study, 

the curing temperature (120°C) was far below the melting point of particle, but the 16 hours 

long curing enabled the amine group to react with liquid resin before gelation. 

However, particle bridging was not observed in the specimens toughened with the nylon 6 

particles. As shown in Figure 11a, the crack path followed the particle-matrix interface, and 

crack deflection was the main role of the nylon 6 particles. The PA6-d16a particles were pulled 

out from the resin layer on the fractured surface (Figure 11b), which implies that the particle-

matrix bonding strength was too weak to withstand the crack opening stress, causing no plastic 

deformation in the load-displacement curve (Figure 5d). 

4.4 Toughening mechanism 

The failure mechanism of the nylon 6 particle-toughened samples was similar to the case where 

impenetrable rigid particles are used as tougheners. Nakamura and Yamaguchi [31] investigated 
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the toughening effect of epoxy including silica particles. They concluded that the larger particles 

are more effective to impede crack propagation by diverting the crack tip along a longer path, 

leading to higher energy absorption, which could explain the slightly higher GIC values of the 

samples toughened with PA6-d16a particles compared to those toughened with PA6-d13r 

particles. In contrast, in the nylon 12 particle toughened samples, most of the fracture energy 

was absorbed by the plastic deformation of the particles. Since the toughening effect was mainly 

dependent on the density of the particle bridging on the fractured surface, the smaller particles 

(PA12-d5s and PA12-d10s) resulted in higher GIC values than the larger particles (PA12-d30a) 

at a similar particle areal weight, as shown in Figure 6b.  

 

4.5 Effect of processing conditions 

Although both nylon 6 and nylon 12 have similar chemical and mechanical properties (Table 1), 

their toughening effect was completely different depending on the processing condition. Based 

on the discussion in literature about the semi-IPN [17,18], it was deduced that the superior 

toughening effect of nylon 12 particle was due to its melting point close to the curing 

temperature of the prepreg resin matrix. In order to investigate the effect of the curing 

temperature in relation to the different melting points of the two nylon types, additional DCB 

test samples with different nylon 12 particle areal weights were manufactured using the same 

fabrication method but cured at 140°C for 5 hours, which was long enough to achieve 

approximately 75% of degree of cure [32]. 

In contrast with the load-displacement curve shown in Figure 5b, the test results showed there 

was no obvious ductile behaviour, as shown in the Figure 12a. In Figure 12b, the initiation GIC 

had no relationship with the particle areal weight. As shown in Figure 13, the fractured surfaces 

were completely different between the specimens cured at 180°C (Figure 13a) and 140°C 

(Figure 13b). The sample cured at 140°C has a failure surface similar to the sample toughened 
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with nylon 6 particles, which showed particle-matrix debonding and particle pull-out (Figure 

13b). The load-displacement curve in the DCB test (Figure 12a) also showed a similar response 

(Figure 5c), as no particle bridging occurred during the crack propagation. This result suggests 

that the curing temperature significantly changes the particle-matrix interfacial strength and 

influences the interlaminar toughing mechanism. Although this interfacial strength can be 

promoted with longer processing time at a lower temperature [12], this approach may not be 

cost-efficient in high volume production. Therefore, it is essential to choose a thermoplastic 

particle toughener that has a melting point close to or below the curing temperature of the 

prepreg matrix system. 

5. Conclusion 

In summary, this study focused on the effect of nylon particle characteristics on the interlaminar 

toughening effect. A range of different nylon 6 and 12 particles with different sizes and shapes 

was spread directly onto the surface of unidirectional carbon fibre/epoxy prepregs, and DCB 

specimens were manufactured to measure the interlaminar fracture toughness as well as the 

thickening effect.  

It was found that the particle size and shape as well as the deposition amount affect the 

interlaminar toughness. However, the most important factor was the curing condition such as 

the difference between the curing temperature (180ºC) and the melting point of the particle, 

which determines the particle-matrix bonding strength. Well-established particle-matrix 

bonding in the nylon 12 toughened samples resulted in failure with significant plastic 

deformation of particles (particle bridging), which led to high initiation and propagation GIC. In 

contrast, the failure in the nylon 6 particle-toughened samples occurred at the particle-matrix 

interface. The ductility of the particle and its better mechanical property than the nylon 12 were 

unable to contribute to fracture energy absorption. Consequently, the GIC was very close to that 

of non-toughened samples, and the particles even negatively affected the in-plane mechanical 

property due to the thickening effect. The effect of the particle surface morphology on the 
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interfacial bonding strength was minimal, while it considerably affected the laminate 

thickening. 

The importance of interfacial bonding strength in toughening was further demonstrated by 

applying a lower curing temperature (140ºC) to the samples toughened with the nylon 12 

particles. The GIC was significantly reduced, and no obvious ductile response was observed in 

the load-displacement curve. SEM images revealed that the dominant failure mechanism was 

particle-matrix debonding and particle pull-out, which was similar to that of the nylon 6 

toughened samples. 

When sufficient interfacial bonding can be achieved, smaller particles were more effective, 

which appeared to be related to the increased density of particle bridging. In the range of 

particle areal weight used in this work (5 - 35g/m2), more nylon 12 particles resulted in higher 

GIC. However, its impact on other mechanical properties such as in-plane mechanical properties 

due to the reduced fibre volume needs to be considered.  

If a commercial prepreg with a particle toughened resin system is used, it is difficult to achieve 

both high in-plane modulus/strength and high interlaminar toughness (or damage tolerance) at 

the same time due to the thickening effect. Direct particle deposition method used in this work 

has a great advantage in that the particle tougheners can be selectively applied only to the areas 

requiring high delamination resistance. Furthermore, the method could be implemented in an 

automated fibre or tape deposition process to produce toughened prepreg tapes on the fly. It 

could also allow for converting a prepreg product with low toughness into a highly toughened 

product in a cost-effective way. 
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Figures 

 

 
Figure 1 Schematic of the manufacturing method for the DCB test samples with a photo of the 
prepreg surface coated with particles (dimensions in mm). 
 

 

 

 

 

 

 

 

Figure 2 Microscopic image of the cross-section of the particle toughened interlayer for 
thickness measurement (PA6-d16a, 27.8 g/m2). 
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Figure 3 Illustration of the observed surfaces (yellow) from the cut sample using SEM. 
 

 

 

 

Figure 4 Interlaminar resin layer including the particle tougheners: (a) SEM image of PA12-
d10s (32 g/m2) toughened interlayer, (b) Interlayer thickness change of the DCB samples 
interleaved with different nylon particles. 
 

Longitudinal cut 

Crack tip 

Fractured surface 

(b) (a) 



 3 

 

Figure 5 Load-displacement curves in the DCB tests of the samples interleaved with: (a) 
different particles with areal weights close to 20 g/m2, (b) PA12-d10s, (c) PA6-d16a, and (d) 
typical load-displacement response between with and without particle bridging. 
 

 

 
 
Figure 6 R-curves and initiation GIC values: (a) The R-curves of the samples interleaved with 
different nylon particles (particle areal weight: approximate 15 g/m2), (b) the initiation GIC of 
the samples interleaved with different areal weight of nylon particles. 
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Figure 7 SEM images of the cross-section of the laminates interleaved with (a) PA6-d13r (16.5 
g/m2) and (b) PA12-d10s (17.6 g/m2) particles. 
 

 

 

 

Figure 8 Cross-section view of a cured IM7/8552 laminate made of 40 plies (left: all interlayers 
interleaved with PA12-d30a particles at 9 g/m2, right: without particles).  
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Figure 9 Effect of the PA12-d10s particle amount on the in-plane tensile modulus, GIC and the 
interlayer thickness of a unidirectional IM7/8552 laminated composite. 
 

 

 

 

 

Figure 10 SEM images of nylon 12 toughened samples: (a) side view of sample toughened with 
PA12-d30a and (b) fractured surface of the sample toughened with PA12-d10s. 
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Figure 11 SEM images of nylon 6 toughened samples: (a) side views of the sample toughened 
with PA6-d13r (top: the crack path after the propagation, bottom: the area near the crack front) 
and (b) fractured surface of the sample toughened with PA6-d16a. 
 

  

Figure 12 DCB test results of the sample interleaved with PA12-d30a cured at 140°C for 5 
hours: (a) load-displacement curve and (b) initiation GIC values for different particle areal 
weights.  
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Figure 13 SEM images of the fractured surfaces of the DCB samples that were toughened with 
PA12-d30a and cured at: (a) 180°C and (b) 140°C.  
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