

Citation for published version:
Mazumder, P, Singh, P & Namboodiri, VP 2020, 'GIFSL - grafting based improved few-shot learning', Image and
Vision Computing, vol. 104, 104006. https://doi.org/10.1016/j.imavis.2020.104006

DOI:
10.1016/j.imavis.2020.104006

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Sep. 2021

https://doi.org/10.1016/j.imavis.2020.104006
https://doi.org/10.1016/j.imavis.2020.104006
https://researchportal.bath.ac.uk/en/publications/gifsl--grafting-based-improved-fewshot-learning(dc1feaf8-8988-4814-8894-572631470951).html

GIFSL - Grafting based Improved Few-Shot Learning

Pratik Mazumder1∗, Pravendra Singh1 , Vinay P. Namboodiri1,2

1Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
2University of Bath, United Kingdom

Abstract

A few-shot learning model generally consists of a feature extraction network and a

classification module. In this paper, we propose an approach to improve few-shot im-

age classification performance by increasing the representational capacity of the feature

extraction network and improving the quality of the features extracted by it. The ability

of the feature extraction network to extract highly discriminative features from images

is essential to few-shot learning. Such features are generally class agnostic and contain

information about the general content of the image. Our approach improves the training

of the feature extraction network in order to enable them to produce such features. We

train the network using filter-grafting along with an auxiliary self-supervision task and

a knowledge distillation procedure. Particularly, filter-grafting rejuvenates unimpor-

tant (invalid) filters in the feature extraction network to make them useful and thereby,

increases the number of important filters that can be further improved by using self-

supervision and knowledge distillation techniques. This combined approach helps in

significantly improving the few-shot learning performance of the model. We perform

experiments on several few-shot learning benchmark datasets such as mini-ImageNet,

tiered-ImageNet, CIFAR-FS, and FC100 using our approach. We also present vari-

ous ablation studies to validate the proposed approach. We empirically show that our

approach performs better than other state-of-the-art few-shot learning methods.

Keywords: Few-Shot Learning, Grafting, Self-Supervision, Distillation, Deep

∗Corresponding author.
Email addresses: pratikm@iitk.ac.in (Pratik Mazumder1), psingh@iitk.ac.in

(Pravendra Singh1), vinaypn@iitk.ac.in (Vinay P. Namboodiri1,2)

Preprint submitted to Image and Vision Computing December 7, 2020

Learning, Object Recognition

1. Introduction

Deep learning techniques are now used to tackle several types of problems. They

have become very popular because they achieve high performances for various tasks.

They have even surpassed human performance in many scenarios. However, current

deep learning techniques are still not human-like. Deep learning methods generally5

require training a neural network using a large amount of labeled data. In the presence

of limited labeled data, they generally do not perform well. This hunger for training

data is not a trivial problem since data, specially labeled data, is not always available

and is usually very costly to obtain. It may also be the case that even if sufficient data is

available for a few categories, some categories of data may have extremely few samples10

available for training. Humans, on the other hand, can learn a new category from very

few examples. We can learn what a cat looks like from a few pictures and then identify

them in the wild with very high accuracy. It has been the goal of researchers to enable

deep learning networks to achieve this capability. Few-shot learning is an approach in

this direction.15

Few-shot learning methods [1, 2, 3] employ special training techniques for deep

networks that enable them to perform relatively well even for categories that have very

few training samples. Generally, these methods aim to transfer the knowledge gained

by training the network on the classes with many training samples to help classify

classes with very few training samples. They also aim to make the networks generic20

enough such that they can even extract good features from images belonging to cate-

gories that they were not trained on.

Few-shot learning techniques generally consider an episodic framework for the

few-shot learning problem, i.e., the networks operate on a small episode at a time (Fig.

1). An episode can be thought of as a mini-dataset with a small set of classes. Each25

class has a few labeled examples that are known as support examples. Most few-shot

methods train and test on episodes [1, 4]. However, some methods can be modified to

only carry out the testing using episodes while the network can be trained on the full

2

train set [2].

Prototypical network [2] finds a prototype embedding for each class in the episode30

and uses the nearest neighbor classification technique to determine the nearest class

prototype for each query example. MAML [4] trains the few-shot classifier in such a

way that it can adapt within a few iterations to a new task or set of classes. TADAM [5]

learns an embedding that best represents the current episode and uses it as an attention

to produce better features for the examples in the episode. MetaOptNet [6] focuses on35

learning features that are more compatible with linear classifiers.

Most few-shot learning methods use a feature extraction network that extracts use-

ful features from the images and a classification module that performs the few-shot

classification. For the classification module to be successful, the feature extraction net-

work should produce good features/representation for the input image. Our proposed40

method improves the training process of the feature extraction module to enable it to

extract better and more discriminative features from images.

In the feature extraction network, not all filters contribute substantially to the out-

put representation produced by it. Filters that do not significantly affect the output

representation can be thought of as unimportant/invalid filters [7]. Therefore, the rep-45

resentational capacity of the network is determined by the quantity of important/valid

filters. Some methods discard the invalid filters [8, 9], but this will not improve the

representational capacity of the network. [10] proposes a filter-grafting technique that

converts invalid filters into valid ones by grafting valid filters weights on to these invalid

filters. This process will increase the number of valid filters in the feature extraction50

network and hence improve its representational capacity.

The strength of a feature extraction network lies in the quality of intermediate rep-

resentation extracted by its filters. Therefore, improving the quality of representa-

tion produced by the network will improve the performance of the network on few-

shot learning. This improvement can be achieved by using techniques such as self-55

supervision and knowledge distillation. Self-supervised learning [11, 12, 13, 14, 15]

involves training the network on labels that are generated from the training data itself.

Self-supervision methods are used to improve the discriminative powers of networks

by training them on artificial tasks that force the network to learn more about the struc-

3

Figure 1: Episodic setup for few-shot learning. Figure depicts a 5-way 5-shot episode. Each episode consists

of 5 classes with 5 support examples each and multiple query examples that belong to one of these 5 classes.

ture of the input data. In [16], the authors use self-supervision as an auxiliary loss to60

improve few-shot classification. Knowledge distillation [17] is a popular method for

transfer learning. It can also be used to train a student network with the same architec-

ture as the teacher, and this helps the student network learn some more general features

that help improve its performance.

The important filters will mainly contribute to the quality of the representation pro-65

duced by the feature extraction network. Since filter-grafting increases the proportion

of important filters in the network, it will help boost the effectiveness of applying self-

supervision and knowledge distillation to the feature extraction module. This process

will significantly improve the performance of the feature extraction module.

Our proposed approach combines the techniques of filter-grafting, self-supervision,70

and knowledge distillation to improve the training of the feature extraction model. We

use the filter-grafting setting that grafts filter from another network [10]. For this set-

ting, we train two models with the same architecture while performing grafting of im-

portant parameters/filters weights into unimportant ones from one network to the other.

This increases the proportion of important/useful parameters in both the networks. We75

also use self-supervision through rotation [16] as an auxiliary task in parallel to the

classification training, in order to improve the networks’ discriminative power. Finally,

we choose one of these networks to perform distillation to another network with the

same architecture in order to obtain a network with better discriminative powers. The

trained feature extraction network is used to extract features for the support examples80

for a class. The extracted features of the support examples are used to learn a linear

classification model, which is then used to classify the query examples. Through our

ablation experiments, we show that each component of our method helps in improving

the network performance. Our method is described in detail in Sec. 3.

4

We perform experiments on several few-shot learning benchmark datasets and com-85

pare our method to existing methods for few-shot classification. We empirically show

that our method performs better than existing methods on few-shot learning.

Our contributions are as follows:

• We propose a novel approach to few-shot learning that uses filter-grafting to im-

prove the representational capacity of the feature extraction network, which is90

then exploited by using a self-supervision auxiliary task and knowledge distilla-

tion to improve the discriminative power of the network.

• We empirically show that our network performs better than existing methods on

several few-shot learning benchmark datasets.

2. Background95

2.1. Few-shot Learning

Deep learning generally requires a large amount of labeled data for training net-

works. However, there are many real-life scenarios where labeled data is very scant.

Few-shot learning is used to train networks that perform well under such circumstances.

Many approaches to this problem have been explored by researchers [2, 18, 19, 20, 21,100

22, 23, 24].

The work in [25] trains a siamese network to find an embedding space where similar

images are closer to each compared to dissimilar images. Prototypical networks [2] is

a very popular few-shot learning method. It first computes the class representatives or

“prototypes” by averaging the extracted features of the support examples of each class.105

Then, for each query image feature/embedding, the nearest class prototype is predicted

to be the output class. In [26], the authors modify the prototypical network to work

in a semi-supervised setup where it makes use of labeled and unlabeled examples in

each episode. MAML [4] trains the network to adapt to a new episode within a few

training iterations quickly. In [27], the authors propose to achieve rapid generalization110

by shifting inductive biases via fast parameterization. The method proposed in [28]

applies a graph neural network architecture to the few-shot learning problem.

5

RelationNet [29] learns to predict and use relation scores between query images

and support images of the classes. TADAM computes a task-based embedding that

represents the current task/episode. This embedding is used as an attention to the con-115

volutional layers of the feature extraction network to modify the image embeddings in

such a way that best suits the classification process in that episode.

Learning without forgetting [30] learns a weight generator for the few-shot clas-

sifier. The weight generator uses classifier weights of the base classes and support

examples of the novel classes to generate weights for the classifier. R2D2 [3] proposes120

to use fast convergent methods like ridge regression as the main adaptation mechanism

for few-shot learning. LEO [31] learns an embedding of model parameters, and in this

parameter space, it performs optimization-based meta-learning. SNAIL [32] proposes

a simple meta-learner architecture that combines temporal convolutions and soft atten-

tion. The method proposed in [33] predicts parameters from activations in order to125

adapt a pre-trained network to new classes.

MetaOptNet [6] proposes to use linear predictors to learn better representations

for few-shot learning. In [16], the authors use a self-supervision task as an auxiliary

task while training the network for few-shot learning. This helps the feature extraction

network in learning better representations, leading to improved performance. TPN [34]130

proposes a transductive inference setting where the entire test set is classified at once,

and a graph-based module is employed to utilize the structure of the test data.

The method proposed in [35] uses conditional Wasserstein Generative Adversarial

Networks (cWGAN) to hallucinate discriminative features. In [36], the authors propose

to extract latent information from the base classes and combine them with features135

support examples to generate a diverse set of features for the novel classes. The work

in [37] develops a variational metric scaling framework for learning a metric scaling

parameter, which boosts the performance of metric-based meta-learning algorithms.

2.2. Grafting

Deep neural networks contain unimportant filters that do not contribute signifi-140

cantly to the network output, as evident in [8, 9]. In order to make maximum use of

all the filters available in the network, we can use filter-grafting that has been proposed

6

in [10]. Filter-grafting changes the filter weights of the unimportant/invalid filters dur-

ing training, in order to re-initialize them and eventually make them valid. This will

increase the representational capacity of the network.145

In order to find the invalid/unimportant filters, an entropy-based selection criterion

has been proposed in [10], which considers filters having weights with low entropy

as unimportant. Other methods can also be used to find unimportant filters such as

l1−norm used in [7, 38], which considers filters having weights with a low l1−norm

as unimportant filters.150

Since filter-grafting involves re-initializing the weights of the invalid filter during

training, a simple method would be to use a Gaussian noise to modify it. However, this

may make the network harder to converge. Another option is to use valid filters from

the same network as a source to graft into invalid filters. However, [10] shows that this

does not introduce new information to the network and might not end up being very155

useful.

Another technique is to graft valid filters from another network into the invalid fil-

ters in the current network. This process will not suffer from poor convergence like

the noise-based model and will also bring in new information as compared to the same

network filter-based model. This, however, needs the two models to be trained in par-160

allel. This method is proposed in [10], and it performs grafting layer-wise to maintain

layer-wise consistency, i.e., all filters of a layer in a network are grafted on to the same

layer in the other network.

However, if the filter is entirely replaced, then some base information may also

be lost. Therefore, [10] proposes to perform a weighted addition of the filter weights165

from the two networks. The weights are determined by the information content of the

filter/layer. The higher the information content of the filter/layer of the network, the

more weight is given to it, in order to preserve the information of the network.

2.3. Self-Supervised Learning

Self-supervised learning involves training networks in the absence of labeled data.170

Instead of real labels, such methods use synthesized labels. These labels are generated

using basic knowledge about the data that is readily available. The aim of such training

7

is that in the process of learning from such labels, the network should learn about the

structure and basic content of the data. Self-supervision helps the network to learn

good features and also perform well on downstream tasks. The term self-supervision is175

used since the supervising signal, i.e., the synthesized label, has been generated from

the same set of data.

There have been many works related to self-supervised learning. Image in-painting/

completion was proposed in [11], wherein the network learns to predict missing patches

inside images. The methods in [12, 13] focus on using image colorization as a self-180

supervision signal. The work in [14] proposes a method in which a network is given

as input two patches of the same image, and the network has to learn to predict the

relative position of one patch with respect to the other. In [15], the authors propose to

train a network to rearrange and solve a jigsaw puzzle.

The method proposed in [39] uses rotation angle prediction as a self-supervision185

task. Images are rotated by a fixed set of angles, and the network has to be trained

to predict the angle of rotation of the rotated images. Surrogate classes are created in

[40] by modifying images using different transformations, and the network is trained

to predict the class of the network. The method proposed in [41] forces the network

to learn additional discriminative features in addition to predicting the rotation angle.190

It achieves this by training the network to additionally bring different versions of the

same image, that differ in their rotation angle, closer in the feature space. The authors

claim that this helps the network to produce features that are better at instance-level

discrimination.

The method proposed in [42] uses self-supervised learning to train generative ad-195

versarial networks. Besides images, self-supervision is also being used to train deep

neural networks for videos. Some techniques that are used for this include using self-

motion of moving objects in videos [43, 44], temporal coherence [45, 46], and even

ambient sounds [47].

2.4. Distillation200

Knowledge distillation involves training a student network in such a way that the

probability distribution of the soft labels produced by it matches that of the teacher

8

network. Knowledge distillation has been used extensively in transfer learning and has

also provided improvements in this area. The authors in [17], show that by distilling

knowledge from an ensemble model into a single model, the performance of the smaller205

single model can be improved significantly.

The Jacobian matrices of the teacher and student network are matched in [48]. The

method proposed in [49] minimizes the Maximum Mean Discrepancy (MMD) between

the distributions of neuron selectivity patterns of the teacher and student networks.

Similarly, [50] uses gram matrix for this purpose. In [51], the authors analyze how210

self-distillation, i.e., knowledge distillation between two networks having the same

architecture, results in improved performance of the network.

3. Method

3.1. Problem Setting

In the few-shot learning setting, the train and test splits of the dataset have a dis-215

joint set of classes. The train classes are referred to as base classes, and the test

classes are referred to as novel classes. In this setting, networks operate on data in

the form of episodes. An episode can be thought of as a mini-dataset, and it con-

sists of a mini-train set and a mini-test set. Each episode can have data points from

a fixed small set of N classes (N-way), and each class can have only K labeled ex-220

amples (K-shot). Therefore, each episode is referred to as an N-way K-shot episode

(Fig. 1). The K labeled examples for each class are known as support examples

i.e. S = {(x1, y1), (x2, y2), (x3, y3)...(xK×N , yK×N)} where xi refer to images and

yi ∈ {1..N} refer to labels. The mini-test set consists of query/test examples that also

belong to one of the N classes i.e. Q = {(xt1, yt1), (xt2, y
t
2), (xt3, y

t
3)...(xtq, y

t
q)}, where225

t denotes test examples. In this setting, the objective of any method is to classify the

query data points in the episode, using the few support examples per class present in

the episode.

3.2. Training setup

The few-shot model that is to be trained is divided into the feature extraction net-230

work E and the few-shot classification module Cfew. During training, we do not use

9

Figure 2: Mutual Filter-Grafting between two feature extraction networks E1 and E2 with the same archi-

tecture. Li represents the ith layer in each network and i ∈ [1,M]. M is the total number of layers in E1

and E2. A weighted addition of the filter weights of layer i in E1 and the filter weights of the same layer in

E2 is carried out using the contribution weight αE1
i , to give the grafted weight of layer i in E1. The same

process is repeated for E2 using layer specific αE2
i . After grafting, proportion of valid filters get increased

in both networks.

Cfew and instead use a fully-supervised classification module C. We also use a rota-

tion classification module R.

3.3. Filter Grafting

Filter grafting rejuvenates invalid filters in deep neural networks. For performing

filter-grafting, we train two networks simultaneously for classification on the full train

dataset. We graft all the filters in a layer of the network so that layer-wise consistency is

maintained as proposed in [10]. Let E1 and E2 be the two feature extraction networks.

Let WE1
i and WE2

i be the weights of the ith layer of E1 and E2 respectively. Let

WE1∗
i and WE2∗

i denote the weights of the ith layer in E1 and E2 after grafting. The

grafting process can be represented as follows:

WE1∗
i = αE1

i WE1
i + (1− αE1

i)WE2
i (1)

10

Figure 3: Self-supervised auxiliary classification task. Input image xi is rotated through a angle ri. The

feature extraction network E produces feature zi from xi which is used in parallel by the fully-supervised

classification network C and the auxiliary self-supervised rotation prediction network R.

WE2∗
i = αE2

i WE2
i + (1− αE2

i)WE1
i (2)

where, αE1
i is an adaptive coefficient for the ith layer of E1 that should be greater235

than 0.5 if WE1
i is more informative than WE2

i [10] and similarly, αE2
i is an adaptive

coefficient for the ith layer of E2.

Therefore, we perform a weighted addition of the filter-weights of the correspond-

ing layers in the two networks. The αE1
i adaptive coefficient, determines the contribu-

tion of the ith layer of E1 and E2 towards calculating the new weights of the ith layer240

of E1. In order to calculate αE1
i the entropy of the ith layer of E1 and E2 are used.

If the entropy of the ith layer of E1 is more than that of the ith layer of E2 then the

contribution of the ith layer of E1 should be more. Therefore, αE1
i should be more

than 0.5. Similarly, the αE2
i adaptive coefficient, determines the contribution of the ith

layer of E2 and E1 towards calculating the new weights of the ith layer of E2. The245

detailed description of these adaptive coefficients is provided in [10].

3.4. Self-Supervised Auxiliary Task

We use the rotation based self-supervision [39] as an auxiliary task in our method.

The input image is rotated through 0o, 90o, 180o, 270o degree, and the objective for

the network is to predict the angle of rotation of the given image. We add a network

R for rotation angle prediction. For any given input image, we take the output of

the feature extraction network E and feed it to R to predict the rotation angle. This

11

training is carried out in parallel to the full classification training. The self-supervision

(SS) auxiliary task loss can be defined as

LSS = ΣiFCE(r∗i , ri) (3)

where i refers to the ith data point in the mini-batch, FCE refers to the cross-entropy

loss function, r∗i refers to the predicted rotation angle, and ri refers to the actual rotation

angle.250

3.5. Knowledge Distillation

We perform Knowledge Distillation (KD) [17] from a teacher network to a student

network, both of which have the same architecture. This is done so that in the process

of transferring knowledge to the student network, the student network also learns more

generic features than the teacher, which only serves as a guiding signal. The knowledge

distillation loss LKD calculates Kullback-Liebler (KL) divergence between the soft

predictions of the teacher and the student networks and can be defined as follows:

LKD = ΣiKL(Fsoftmax(CS(ES(xi))/κ), Fsoftmax(CS(ET (xi))/κ)) (4)

where, Fsoftmax refers to the softmax function, κ is the temperature hyper-parameter

that is used to dampen the logits in order to avoid peaky output probability distribution,

KL refers to the KL-Divergence function. ES , ET refer to the feature extraction net-

works of the student and the teacher respectively. CS , CT refer to the fully-supervised255

classification networks of the student and the teacher respectively.

3.6. Method Overview

Our proposed Grafting based Improved Few-Shot Learning (GIFSL) method uses

filter-grafting to increase the representational capacity of the feature extraction network

of a few-shot model, which can then be exploited by a self-supervised auxiliary task260

and a knowledge distillation procedure to improve the performance of the few-shot

model further.

Our training consists of 2 stages. In the first stage, we train two networks on a

full classification task and an auxiliary self-supervised classification task and perform

12

Figure 4: Stage 1 Training. Feature extraction networks (E1 and E2) having the same architecture produce

features zE1
i and zE2

i from the input image xi respectively. zE1
i and zE2

i are fed to the corresponding

classification networks C1 and C2 in order to perform training for fully supervised classification using

cross-entropy loss. zE1
i and zE2

i are also fed to the corresponding rotation prediction networks R1 and R2

in order to perform training for self-supervised auxiliary classification. Filter-grafting is carried out fromE1

and E2 and vice-versa after each training epoch.

filter-grafting between the two networks after each epoch. In the second stage, we265

randomly choose one of the networks from the first stage as a teacher. We again train

two student networks using a full classification task and an auxiliary self-supervised

classification task. We perform a knowledge distillation procedure from the teacher

network to the two student networks and also perform filter-grafting between the two

student networks.270

3.6.1. First Stage Training

For the first stage of training (Fig. 4), we take two feature extraction networks E1

andE2 with the same architecture. We train them along with their corresponding fully-

supervised classification modules, C1 and C2 respectively, for classification on the

entire training dataset using cross-entropy loss. The total fully-supervised classification

loss Ltot
S is given as follows:

Ltot
S (E1, C1, E2, C2) = Σi(FCE(yC1∗

i , yi) + FCE(yC2∗
i , yi)) (5)

13

where, yi is the real label for the ith data point, yC1∗
i and yC2∗

i refer to the label pre-

dicted by C1 and C2 respectively.

We also train E1 and E2 on the rotation based self-supervision auxiliary tasks. We

use rotation prediction networks R1 and R2 for E1 and E2, respectively. The total

self-supervision auxiliary loss Ltot
SS can be derived from Eq. 3 and is as follows:

Ltot
SS(E1, R1, E2, R2) = Σi(FCE(rR1∗

i , ri) + FCE(rR2∗
i , ri)) (6)

where, ri is the real rotation label for the ith data point, yR1∗
i and yR2∗

i refer to the

label predicted by R1 and R2 respectively.275

Therefore, the combined loss of stage 1 can be given as

Lstage1 = Ltot
S (E1, C1, E2, C2) + λLtot

SS(E1, R1, E2, R2) (7)

where, λ is a hyper-parameter which controls the contribution of the auxiliary self-

supervision loss.

During this stage, after each epoch we perform filter-grafting using Eqs. 1,2 on

both E1 and E2 i.e. we graft filter weights from E1 to E2 and vice versa.

3.6.2. Second Stage Training280

For the second stage of training (Fig. 5), we use one of the two extraction units (ran-

domly) from the first stage as the teacher network ET along with its fully-supervised

classification module CT . We take two student feature extraction networks ES
1 and

ES
2 with the same architecture. We train them on the fully-supervised classification

loss Eq. 5, on the auxiliary self-supervision loss Eq. 6. We also train them on the

Knowledge Distillation (KD) loss using the teacher network. Using Eq. 4, the total

knowledge distillation loss Ltot
KD can be given as

Ltot
KD(ES

1 , C
S
1 , E

S
2 , C

S
2 , E

T , CT) =

Σi(KL(Fsoftmax(CS
1 (ES

1 (xi))/κ), Fsoftmax(CT (ET (xi))/κ))

+KL(Fsoftmax(CS
2 (ES

2 (xi))/κ), Fsoftmax(CT (ET (xi))/κ))) (8)

where, CS
1 , C

S
2 are the fully-supervised classification modules attached to ES

1 , E
S
2 re-

spectively. CT is the fully-supervised classification module attached to ET .

14

Figure 5: Stage 2 Training. One of the trained extraction units from stage 1 is randomly chosen as teacher

ET , along with its corresponding classification network CT . Two student feature extraction networks (ES
1

and ES
2) having the same architecture are taken along with the corresponding classification networks (CS

1

and CS
2) and rotation prediction networks (RS

1 and RS
2). The student networks are trained on the fully su-

pervised classification loss and auxiliary self-supervision loss as in the stage 1 training along with knowledge

distillation loss from the teacher network. Filter-grafting is carried out between the student networks after

each training epoch.

Therefore, the combined loss of stage 2 can be given as

Lstage2 = β(Ltot
S (ES

1 , C
S
1 , E

S
2 , C

S
2) + λLtot

SS(ES
1 , R

S
1 , E

S
2 , R

S
2))

+ γLtot
KD(ES

1 , C
S
1 , E

S
2 , C

S
2 , E

T , CT) (9)

where,RS
1 , R

S
2 are the rotation classification networks attached toES

1 , E
S
2 respectively.

λ is a hyper-parameter which controls the contribution of the auxiliary self-supervision

loss. β, γ are hyper-parameters that control the contribution of the classification losses285

(supervised and self-supervised) and the knowledge distillation loss, respectively.

Even during this stage, after each epoch we perform filter-grafting using Eqs. 1,2

15

Figure 6: Testing. During testing, each N-way K-shot episode contains K support images for each of the N

classes in the episode. One of the student networks from stage 2 is randomly chosen as the final extraction

network EF . EF extracts features from the support images. These features are used to train a linear model

Cfew using logistic regression. EF extracts feature z∗ from the query image, which is used by Cfew to

predict the class (out of the N classes in the episode) that the query image belongs to.

on both ES
1 and ES

2 i.e. we graft filter weights from ES
1 to ES

2 and vice versa.

3.6.3. Testing Stage

After the completion of stage 2 training, we randomly choose one of the student290

extraction networks as our final extraction network EF . We use EF to perform few-

shot testing.

We perform few-shot testing in the episodic setting, just like other few-shot meth-

ods. For each episode, we first extract the features for the support examples for each

class, using EF .

zi = EF (xi) (10)

where, xi refers to a support image and zi refers to the feature extracted by EF from

that image.

Now, using the extracted features of the support images, we learn a linear classifi-

cation model Cfew using logistic regression. Next, we extract features for the query

16

examples using EF ,

z∗i = EF (x∗i) (11)

where, x∗i refers to a query image and z∗i refers to the feature extracted by EF from295

that image.

Using Cfew, we predict the class for the query images (Fig. 6). We validate the

different components of our network using ablation experiments.

4. Experiments

4.1. Datasets300

We report the results for few-shot classification experiments on 4 benchmark datasets:

mini-ImageNet [1], tiered-ImageNet [26], CIFAR-FS [3] and FC100 [5].

mini-ImageNet [1] is one of the most popular few-shot learning dataset and is de-

rived from the ImageNet [52] dataset. It consists of 100 classes, each of which has

around 600 images of size 84 × 84 pixels. There are 64 train classes, 16 validation305

classes, and 20 test classes.

tiered-ImageNet [26] is also subset of ImageNet with 351 train, 97 validation, and

60 test classes. It is structured in such a way that the training classes differ significantly

from the testing classes as compared to mini-ImageNet.

CIFAR-FS is derived from CIFAR-100 [53] classes and consists of 64 train, 16310

validation, and 20 test classes with images of size 32 × 32 pixels. CIFAR-FS allows

faster processing than mini-ImageNet while presenting a hard task due to its smaller

size. Few-shot-CIFAR100 (FC100) is also derived from CIFAR-100. FC100 is split in

such a way that there is a minimum overlap of similar classes across the splits, making

it more difficult to perform few-shot classification. The 100 classes of CIFAR-100 are315

grouped into 20 superclasses. The dataset is then split using superclasses to ensure

minimum overlap of similar classes across splits. The 60 train classes belong to 12

superclasses, and the 20 classes of validation and test splits belong to 5 superclasses

each. Each image is of size 32× 32 pixels.

17

4.2. Implementation Details320

We use the ResNet-12 architecture [54] for the feature extraction network for all

the experiments. The fully-supervised classifier module C is a fully connected network

with 1 layer having an input of size 640 and output of size 64 for mini-ImageNet and

CIFAR-FS, 60 for FC100, 351 for tiered-ImageNet. The rotation classification network

R is a convolutional neural network with 4 convolutional blocks of kernel size 3 × 3,325

padding 1, and stride 1. Each convolutional block is followed by a batch normalization

module and a ReLU activation function. Each convolutional block has 640 output

filters. An adaptive average pooling block is added after the last convolutional block,

and it is followed by a fully-connected layer with input size 640 and output size 4.

We use λ = 1, β = 0.5, γ = 1 and κ = 4 as the hyper-parameters. We report the330

average accuracy of 1000 test episodes with 95% confidence intervals. We perform

experiments for 5-way 1-shot and 5-shot episodes. The experiments have all been

performed in PyTorch [55].

An important point to note is that apart from grafting, self-supervision, and knowl-

edge distillation, GIFSL also performs full training of the network on the entire train set335

and testing using logistic regression on the extracted features. Both these components

have been used separately in different works e.g., [56, 57] make use of pre-training

the network on the entire train set and [6, 58] make use of linear classifiers such as

SVM and logistic regression. The authors in [56] show how training on the entire

train set alone can outperform many recent few-shot learning methods. Therefore, we340

have included these two techniques in our approach too. We show in Sec. 5.2 that our

proposed approach (with grafting, self-supervision, and knowledge distillation) can

achieve around 3.81% (1-shot) and 3.06% (5-shot) absolute increase over our method

that uses only training on the entire train+val set and logistic regression (LR).

4.3. mini-ImageNet results345

Table 1 reports the experimental results for few-shot classification on mini-ImageNet

dataset for 5-way 1-shot and 5-shot results. The results indicate that our method GIFSL

performs significantly better than the other methods in the 1-shot setting as well as in

18

Table 1: Average 1/5-shot 5-way few-shot classification accuracy over test images from the novel classes of

mini-ImageNet. ∗ indicate methods that train on a union of train and validation (train+val) set. Bold values

indicate the best results obtained by our method in the comparison.

Models Backbone 1-shot 5-shot

MAML [4] (ICML’17) Conv-4-64 48.70 ± 1.84% 63.10 ± 0.92%

Prototypical Nets [2] (NIPS’17) Conv-4-64 49.42 ± 0.78% 68.20 ± 0.66%

Warp-MAML [24] (ICLR’20) Conv-4-64 52.30 ± 0.80% 68.4 ± 0.60%

LwoF [30] (CVPR’18) Conv-4-64 56.20 ± 0.86% 72.81 ± 0.62%

RelationNet [29] (CVPR’18) Conv-4-64 50.40 ± 0.80% 65.30 ± 0.70%

GNN [28] (ICLR’18) Conv-4-64 50.30% 66.40%

SNAIL [32] (ICLR’18) ResNet-12 55.71 ± 0.99% 68.88 ± 0.92%

TPN [34] (ICLR’19) Conv-4-64 55.51 ± 0.86% 69.86 ± 0.65%

Qiao et al. [33]∗ (CVPR’18) WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%

TADAM [5] (NIPS’18) ResNet-12 58.50 ± 0.30% 76.70 ± 0.30%

R2-D2 [3] (ICLR’19) Conv-4-64 49.50 ± 0.20% 65.40 ± 0.20%

R2-D2 [3] (ICLR’19) Conv-4-512 51.80 ± 0.20% 68.40 ± 0.20%

Munkhdalai et al. [27] (ICML’17) ResNet-12 57.10 ± 0.70% 70.04 ± 0.63%

STANet [20] (AAAI’19) ResNet-12 58.35 ± 0.57% 71.07 ± 0.39%

IdeMe-Net [21] (CVPR’19) ResNet-18 59.14 ± 0.86 74.63 ±0.74

Shot-Free [22] (ICCV’19) ResNet-12 59.04% 77.64%

SalNet [23] (CVPR’19) ResNet-101 62.22 ± 0.87% 77.95 ± 0.65%

LEO∗ [31] (ICLR’19) WRN-28-10 61.76 ± 0.08% 77.59 ± 0.12%

CC+rot [16] (ICCV’19) WRN-28-10 62.93 ± 0.45% 79.87 ± 0.33%

MetaOptNet [6] (CVPR’19) ResNet-12 62.64 ± 0.61% 78.63 ± 0.46%

MetaOptNet∗ [6] (CVPR’19) ResNet-12 64.09 ± 0.62% 80.00 ± 0.45%

TADAM+D-SVS [37] (AAAI’20) ResNet-12 60.16 ± 0.47% 77.25 ± 0.15%

Deep DTN [36] (AAAI’20) ResNet-12 63.45 ± 0.86% 77.91± 0.62%

AFHN [35] (CVPR’20) ResNet-18 62.38 ± 0.72% 78.16 ± 0.56%

AWGIM [59] (CVPR’20) WRN-28-10 63.12 ± 0.08% 78.40 ± 0.11%

GIFSL (Ours) ResNet-12 65.47 ± 0.63% 82.75 ± 0.42%

GIFSL∗ (Ours) ResNet-12 67.02 ± 0.61% 83.89 ± 0.42%

19

Table 2: Average 1/5-shot 5-way few-shot classification accuracy over test images from the novel classes of

tiered-ImageNet. ∗ indicate methods that train on a union of train and validation (train+val) set. Bold values

indicate the best results obtained by our method in the comparison.

Models Backbone 1-shot 5-shot

MAML [4] (ICML’17) Conv-4-64 51.67 ± 1.81% 70.30 ± 0.08%

Prototypical Nets [2] (NIPS’17) Conv-4-64 53.31 ± 0.89% 72.69 ± 0.74%

RelationNet [29] (CVPR’18) Conv-4-64 54.48 ± 0.93% 71.32 ± 0.78%

TPN [34] (ICLR’19) Conv-4-64 59.91 ± 0.94% 73.30 ± 0.75%

Warp-MAML [24] (ICLR’20) Conv-4-64 57.20 ± 0.90% 74.1 ± 0.70%

LEO∗ [31] (ICLR’19) WRN-28-10 66.33 ± 0.05% 81.44 ± 0.09%

MetaOptNet [6] (CVPR’19) ResNet-12 65.99 ± 0.72% 81.56 ± 0.53%

MetaOptNet∗ [6] (CVPR’19) ResNet-12 65.81 ± 0.74% 81.75 ± 0.53%

Shot-Free [22] (ICCV’19) ResNet-12 66.87% 82.64%

CC+rot [16] (ICCV’19) WRN-28-10 70.53 ± 0.51% 84.98 ± 0.36%

AWGIM [59] (CVPR’20) WRN-28-10 67.69 ± 0.11% 82.82 ± 0.13%

GIFSL (Ours) ResNet-12 72.39 ± 0.66% 86.91 ± 0.44%

GIFSL∗ (Ours) ResNet-12 73.85 ± 0.67% 88.22 ± 0.45%

the 5-shot setting. GIFSL outperforms AFHN [35] significantly, with an absolute in-

crease of 3.09% and 4.59% in the 1-shot and 5-shot settings. GIFSL (train+val) trains350

the network on the entire train and validation set. This model performs even better on

mini-ImageNet for both settings. On removing grafting, self-supervision and knowl-

edge distillation the performance of our method is significantly decreased by absolute

percentages of 3.64% and 3.43% for 1-shot and 5-shot settings when the training is

done on only the train set and by absolute percentages of 3.81% and 3.06% for 1-shot355

and 5-shot settings when the training is done on the train+val set.

4.4. tiered-ImageNet results

Table 2 reports the experimental results for few-shot classification on tiered-ImageNet

dataset for 5-way 1-shot and 5-shot results. The results indicate that our method GIFSL

outperforms other state-of-the-art methods in the 1-shot and 5-shot settings for tiered-360

20

Table 3: Average 1/5-shot 5-way few-shot classification accuracy over test images from the novel classes of

CIFAR-FS. ∗ indicate methods that train on a union of train and validation (train+val) set. †: results from [3].
‡: results from [16]. Bold values indicate the best results obtained by our method in the comparison.

Models Backbone 1-shot 5-shot

PN [2]† (NIPS’17) Conv-4-64 55.50 ± 0.70% 72.00 ± 0.60%

PN [2]† (NIPS’17) Conv-4-512 57.90 ± 0.80% 76.70 ± 0.60%

PN [2]‡ (NIPS’17) Conv-4-64 62.82 ± 0.32% 79.59 ± 0.24%

PN [2]‡ (NIPS’17) Conv-4-512 66.48 ± 0.32% 80.28 ± 0.23%

MAML [4]† (ICML’17) Conv-4-64 58.90 ± 1.90% 71.50 ± 1.00%

MAML [4]† (ICML’17) Conv-4-512 53.80 ± 1.80% 67.60 ± 1.00%

RelationNet [29]† (CVPR’18) Conv-4-64 55.00 ± 1.00% 69.30 ± 0.80%

GNN [28]† (ICLR’18) Conv-4-64 61.90% 75.30%

GNN [28]† (ICLR’18) Conv-4-512 56.00% 72.50%

R2-D2 [3] (ICLR’19) Conv-4-64 62.30 ± 0.20% 77.40 ± 0.20%

R2-D2 [3] (ICLR’19) Conv-4-512 65.40 ± 0.20% 79.40 ± 0.20%

Shot-Free [22] (ICCV’19) ResNet-12 69.15% 84.70%

MetaOptNet [6] (CVPR’19) ResNet-12 72.60 ± 0.70% 84.30 ± 0.50%

MetaOptNet∗ [6] (CVPR’19) ResNet-12 72.80 ± 0.70% 85.00 ± 0.50%

CC+rot [16] (ICCV’19) WRN-28-10 73.62 ± 0.31% 86.05 ± 0.22%

GIFSL (Ours) ResNet-12 74.58 ± 0.38% 87.68 ± 0.23%

GIFSL∗ (Ours) ResNet-12 76.02 ± 0.40% 88.87 ± 0.26%

ImageNet. GIFSL outperforms [16] significantly, with an absolute increase of 1.86%

and 1.93% in the 1-shot and 5-shot settings. GIFSL (train+val) achieves higher perfor-

mance on tiered-ImageNet for both the settings. On removing grafting, self-supervision

and knowledge distillation the performance of our method is significantly decreased by

absolute percentages of 2.94% and 2.79% for 1-shot and 5-shot settings when the train-365

ing is done on only the train set and by absolute percentages of 2.99% and 2.63% for

1-shot and 5-shot settings when the training is done on the train+val set.

21

Table 4: Average 1/5-shot 5-way few-shot classification accuracy over test images from the novel classes of

FC100. ∗ indicate methods that train on a union of train and validation (train+val) set. Bold values indicate

the best results obtained by our method in the comparison.

Models Backbone 1-shot 5-shot

PN [2] (NIPS’17) Conv-4-64 35.30 ± 0.60% 48.60 ± 0.60%

TADAM [5] (NIPS’18) ResNet-12 40.10 ± 0.40% 56.10 ± 0.40%

MetaOptNet [6] (CVPR’19) ResNet-12 41.10 ± 0.60% 55.50 ± 0.60%

MetaOptNet∗ [6] (CVPR’19) ResNet-12 47.20 ± 0.60% 62.50 ± 0.60%

MTL [18] (CVPR’19) ResNet-12 45.1 ± 1.80% 57.60 ± 0.90%

DC [19] (CVPR’19) ResNet-12 42.04 ± 0.17% 57.63 ± 0.23%

GIFSL (Ours) ResNet-12 45.35 ± 0.32% 61.71 ± 0.34%

GIFSL∗ (Ours) ResNet-12 52.25 ± 0.33% 69.25 ± 0.35%

4.5. CIFAR-FS results

Table 3 reports the experimental results for few-shot classification on CIFAR-FS

dataset for 5-way 1-shot and 5-shot results. The results indicate that our method370

GIFSL achieves higher performance than other state-of-the-art methods in the 1-shot

and 5-shot settings for CIFAR-FS. GIFSL (train+val) performs even better for both the

settings. On removing grafting, self-supervision and knowledge distillation the perfor-

mance of our method is significantly decreased by absolute percentages of 3.32% and

1.79% for 1-shot and 5-shot settings when the training is done on only the train set and375

by absolute percentages of 2.97% and 2.31% for 1-shot and 5-shot settings when the

training is done on the train+val set.

4.6. FC100 results

Table 4 reports the experimental results for few-shot classification on FC100 dataset

for 5-way 1-shot and 5-shot settings. The results indicate that our methods GIFSL and380

GIFSL (train+val) perform better than other methods in both the settings for FC100. On

removing grafting, self-supervision and knowledge distillation the performance of our

method is significantly decreased by absolute percentages of 3.12% and 2.76% for 1-

shot and 5-shot settings when the training is done on only the train set and by absolute

22

percentages of 2.62% and 2.98% for 1-shot and 5-shot settings when the training is385

done on the train+val set.

5. Ablation

We perform various ablations such as choice of the classifier for few-shot testing,

contribution of each component of our method and others. We use the ResNet-12

architecture for the feature extraction module for all the experiments in this section.390

5.1. Classifier module

We check which type of linear classifier best suits our method. We experiment

on the mini-ImageNet dataset with four types of classifiers: prototype-based classifier

[2], single-layer neural network (Linear NN), logistic regression (LR), and linear SVM

(LSVM). In the case of the single-layer neural network, for each episode, we train395

the classification module on the extracted features of the support examples for 1000

epochs and then use it to classify the query features. The prototype-based classification

module finds the prototype for each class in the episode by performing an average on

the extracted features of the support examples of each class. The nearest class prototype

to the query feature is predicted to be the output class [2]. The results in Table 5 indicate400

that the logistic regression-based classifier performs the best from among the compared

classifiers.

5.2. Significance of each component

In our proposed method, we make use of filter-grafting, self-supervision, and knowl-

edge distillation. We train the network on the entire train/train+val set and use lo-405

gistic regression for testing. In this section, we perform experiments to validate the

contribution of each component. We also show that combining filter-grafting with

self-supervision and knowledge distillation significantly boosts the network’s perfor-

mance. In our experiments where logistic regression is not used for testing, the nearest

prototype-based testing is used as in [2].410

The results in Table 6 indicate that when the network is trained on the entire

train+val set, it performs significantly better than when the network is trained on episodes

23

Table 5: Experimental results for 1/5-shot 5-way classification on mini-ImageNet using different types of

classifier with training on train+val set.

shot Proto. based Linear NN LR LSVM

1 66.21 ± 0.63% 66.19 ± 0.61% 67.02 ± 0.64% 65.66 ± 0.61%

5 83.45 ± 0.40% 83.21 ± 0.42% 83.89 ± 0.45% 82.51 ± 0.44%

Table 6: Average 1/5-shot 5-way few-shot classification accuracy over test images from the novel classes

of mini-ImageNet for different components of our method with ResNet-12 architecture. The training was

carried out on the train+val set. FT refers to training on the entire train+val set. LR refers to logistic

regression. KD refers to knowledge distillation

.

FT LR Grafting Self-Supervision KD 1-shot 5-shot

7 7 7 7 7 58.12% 75.46%

3 7 7 7 7 62.06% 79.92%

3 3 7 7 7 63.21% 80.83%

3 3 3 7 7 63.85% 81.25%

3 3 7 3 7 63.98% 81.36%

3 3 7 7 3 65.29% 82.54%

3 3 3 3 7 65.35% 82.86%

3 3 7 3 3 65.73% 82.88%

3 3 3 3 3 67.02% 83.89%

with an absolute increase in performance by 3.94% (1-shot) and 4.46% (5-shot). When

logistic regression is used along with training on the entire train+val set, the perfor-

mance of the network improves further. When grafting is used along with these two415

components, there is a slight increase in the performance of the model. This means that

adding grafting does not trivially lead to huge performance gains in few-shot learning.

Self-supervision and knowledge distillation provide some increase in the performance

of the model. However, when we combine them with grafting, a significant increase

in performance is noticed. This means that the increase in representational capacity420

caused by the grafting helps the network to utilize self-supervision and knowledge dis-

24

Table 7: Average 1/5-shot 5-way few-shot classification novel class accuracy for the CIFAR-FS dataset using

GIFSL with different types of auxiliary self-supervised tasks using the ResNet-12 architecture. Please note

that we use grafting and knowledge distillation for all the experiments and only replace the self-supervision

technique. The network is trained on the entire train set.

Auxiliary Self-Supervision Task 1-shot 5-shot

Patch [14] 74.03% 87.12%

SimCLR [60] 74.15% 87.05%

Rotation [39] 74.58% 87.68%

tillation better. Our proposed approach (with grafting, self-supervision, and knowledge

distillation) can achieve around 3.81% (1-shot) and 3.06% (5-shot) absolute increase

over simply using only training on the entire train+val set and logistic regression (LR).

This validates the choice of components for our method.425

5.3. Self-Supervision Techniques

We compare different self-supervision techniques when used as an auxiliary self-

supervision task in GIFSL. We perform experiments with the auxiliary task as rotation

angle prediction [39], relative patch location prediction [14] (Patch) and SimCLR [60].

SimCLR is a recent self-supervision technique that uses contrastive learning. These430

methods were chosen as they can be easily used as an auxiliary task in GIFSL.

We perform experiments on the CIFAR-FS dataset using the ResNet-12 architec-

ture. Table 7 shows that GIFSL with rotation prediction performs better than patch lo-

cation prediction and SimCLR. SimCLR is a state-of-the-art self-supervision method,

but it is still unable to outperform rotation prediction when used as an auxiliary task435

for few-shot learning.

5.4. Representational Capacity

We compute the total entropy of all filters in the network with and without our

components. The more the entropy, the more is the representational capacity of the

network, as shown in [10]. We use the ResNet-12 architecture for these experiments440

and train the network on the entire train+val set. In the case of miniImageNet, the total

entropy of GIFSL without grafting, self-supervision, and knowledge distillation is 9.05,

25

Table 8: Average 1/5-shot 5-way few-shot classification accuracy over test images from the novel classes

of CIFAR-FS, FC100 and CUB datasets using a ResNet-12 network trained on mini-ImageNet using our

method with and without grafting (GF), self-supervision (SS) and knowledge distillation (KD).

Method CIFAR-FS FC100 CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

GIFSL w/o GF, SS, KD 58.50% 76.85% 42.01% 58.26% 48.46% 66.44%

GIFSL 62.79% 80.44% 45.18% 61.72% 49.68% 69.23%

while the total entropy of GIFSL with these components is 18.40. Similarly, in the case

of tieredImageNet, the total entropy of GIFSL without grafting, self-supervision, and

knowledge distillation is 6.78, while the total entropy of GIFSL with these components445

is 15.07. Therefore, the model trained with grafting, self-supervision, and knowledge

distillation has more information and better representational capacity.

5.5. Cross-Domain Few-Shot Learning

We also perform cross-domain few-shot learning experiments to validate the ef-

fectiveness of our method. We train the ResNet-12 network on mini-ImageNet and450

perform few-shot testing on the CIFAR-FS [3], FC100 [5] and CUB [61] datasets.

We also experiment without grafting, self-supervision, and knowledge distillation and

compare the results. Table 8 shows that using grafting, self-supervision, and knowledge

distillation improves the network performance significantly for cross-domain few-shot

classification on multiple datasets e.g., in CIFAR-FS using grafting, self-supervision,455

and knowledge distillation achieves absolute performance increases of 4.29% (1-shot)

and 3.59% (5-shot).

6. Conclusion

In this work, we proposed a novel few-shot learning approach called Grafting

based Improved Few Shot Learning (GIFSL). Our method combines filter-grafting with460

self-supervision based auxiliary loss and knowledge distillation. We show how filter-

grafting can improve the representational capacity of the feature extraction network in

26

a few-shot model. We also show that this increased representational capacity can be ex-

ploited by the network to draw more improvements from auxiliary self-supervised loss

and knowledge distillation loss. Through multiple experiments using multiple bench-465

mark datasets, we show that our method performs better than state-of-the-art few-shot

learning methods. We also validated the components of our method using ablation

experiments.

References

[1] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., Matching networks for470

one shot learning, in: Advances in neural information processing systems, 2016,

pp. 3630–3638.

[2] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning, in:

Advances in Neural Information Processing Systems, 2017, pp. 4077–4087.

[3] L. Bertinetto, J. F. Henriques, P. Torr, A. Vedaldi, Meta-learning with differen-475

tiable closed-form solvers, in: International Conference on Learning Representa-

tions, 2019.

URL https://openreview.net/forum?id=HyxnZh0ct7

[4] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of

deep networks, in: Proceedings of the 34th International Conference on Machine480

Learning-Volume 70, JMLR. org, 2017, pp. 1126–1135.

[5] B. Oreshkin, P. R. López, A. Lacoste, Tadam: Task dependent adaptive metric

for improved few-shot learning, in: Advances in Neural Information Processing

Systems, 2018, pp. 721–731.

[6] K. Lee, S. Maji, A. Ravichandran, S. Soatto, Meta-learning with differentiable485

convex optimization, in: Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2019, pp. 10657–10665.

27

https://openreview.net/forum?id=HyxnZh0ct7
https://openreview.net/forum?id=HyxnZh0ct7
https://openreview.net/forum?id=HyxnZh0ct7
https://openreview.net/forum?id=HyxnZh0ct7

[7] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient

convnets, in: International Conference on Learning Representations, 2017.

URL https://openreview.net/forum?id=rJqFGTslg490

[8] H. Zhuo, X. Qian, Y. Fu, H. Yang, X. Xue, Scsp: Spectral clustering filter pruning

with soft self-adaption manners, in: arXiv preprint arXiv:1806.05320, 2018.

[9] X. Suau, L. Zappella, V. Palakkode, N. Apostoloff, Principal filter analysis for

guided network compression, in: arXiv preprint arXiv:1807.10585, Vol. 2, 2018.

[10] F. Meng, H. Cheng, K. Li, Z. Xu, R. Ji, X. Sun, G. Lu, Filter grafting for deep495

neural networks, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2020.

[11] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. A. Efros, Context encoders:

Feature learning by inpainting, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016, pp. 2536–2544.500

[12] G. Larsson, M. Maire, G. Shakhnarovich, Learning representations for automatic

colorization, in: European Conference on Computer Vision, Springer, 2016, pp.

577–593.

[13] R. Zhang, P. Isola, A. A. Efros, Colorful image colorization, in: European Con-

ference on Computer Vision, Springer, 2016, pp. 649–666.505

[14] C. Doersch, A. Gupta, A. A. Efros, Unsupervised visual representation learning

by context prediction, in: Proceedings of the IEEE International Conference on

Computer Vision, 2015, pp. 1422–1430.

[15] M. Noroozi, P. Favaro, Unsupervised learning of visual representations by solving

jigsaw puzzles, in: European Conference on Computer Vision, Springer, 2016,510

pp. 69–84.

[16] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, M. Cord, Boosting few-shot vi-

sual learning with self-supervision, in: Proceedings of the IEEE International

Conference on Computer Vision, 2019, pp. 8059–8068.

28

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg

[17] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, in:515

NIPS Deep Learning and Representation Learning Workshop, 2014.

URL https://fb56552f-a-62cb3a1a-s-sites.googlegroups.

com/site/deeplearningworkshopnips2014/65.pdf

[18] Q. Sun, Y. Liu, T.-S. Chua, B. Schiele, Meta-transfer learning for few-shot learn-

ing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern520

Recognition (CVPR), 2019, pp. 403–412.

[19] Y. Lifchitz, Y. Avrithis, S. Picard, A. Bursuc, Dense classification and implant-

ing for few-shot learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019, pp. 9258–9267.

[20] S. Yan, S. Zhang, X. He, et al., A dual attention network with semantic embed-525

ding for few-shot learning, in: Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 33, 2019, pp. 9079–9086.

[21] Z. Chen, Y. Fu, Y.-X. Wang, L. Ma, W. Liu, M. Hebert, Image deformation meta-

networks for one-shot learning, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2019, pp. 8680–8689.530

[22] A. Ravichandran, R. Bhotika, S. Soatto, Few-shot learning with embedded class

models and shot-free meta training, in: Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2019, pp. 331–339.

[23] H. Zhang, J. Zhang, P. Koniusz, Few-shot learning via saliency-guided halluci-

nation of samples, in: Proceedings of the IEEE Conference on Computer Vision535

and Pattern Recognition (CVPR), 2019, pp. 2770–2779.

[24] S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, R. Hadsell, Meta-

learning with warped gradient descent, in: International Conference on Learning

Representations, 2020.

URL https://openreview.net/forum?id=rkeiQlBFPB540

[25] G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot im-

age recognition, in: ICML Deep Learning Workshop, Vol. 2, 2015.

29

https://fb56552f-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearningworkshopnips2014/65.pdf
https://fb56552f-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearningworkshopnips2014/65.pdf
https://fb56552f-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearningworkshopnips2014/65.pdf
https://fb56552f-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearningworkshopnips2014/65.pdf
https://openreview.net/forum?id=rkeiQlBFPB
https://openreview.net/forum?id=rkeiQlBFPB
https://openreview.net/forum?id=rkeiQlBFPB
https://openreview.net/forum?id=rkeiQlBFPB

[26] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,

H. Larochelle, R. S. Zemel, Meta-learning for semi-supervised few-shot clas-

sification, in: arXiv preprint arXiv:1803.00676, 2018.545

[27] T. Munkhdalai, H. Yu, Meta networks, in: Proceedings of the 34th International

Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 2554–2563.

[28] V. G. Satorras, J. B. Estrach, Few-shot learning with graph neural networks, in:

International Conference on Learning Representations, 2018.

URL https://openreview.net/forum?id=BJj6qGbRW550

[29] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, T. M. Hospedales, Learn-

ing to compare: Relation network for few-shot learning, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018,

pp. 1199–1208.

[30] S. Gidaris, N. Komodakis, Dynamic few-shot visual learning without forgetting,555

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018, pp. 4367–4375.

[31] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, R. Had-

sell, Meta-learning with latent embedding optimization, in: International Confer-

ence on Learning Representations, 2019.560

URL https://openreview.net/forum?id=BJgklhAcK7

[32] N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel, A simple neural attentive meta-

learner, in: International Conference on Learning Representations, 2018.

URL https://openreview.net/forum?id=B1DmUzWAW

[33] S. Qiao, C. Liu, W. Shen, A. L. Yuille, Few-shot image recognition by predicting565

parameters from activations, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018, pp. 7229–7238.

[34] Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, Y. Yang, LEARNING TO

PROPAGATE LABELS: TRANSDUCTIVE PROPAGATION NETWORK FOR

30

https://openreview.net/forum?id=BJj6qGbRW
https://openreview.net/forum?id=BJj6qGbRW
https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=SyVuRiC5K7

FEW-SHOT LEARNING, in: International Conference on Learning Representa-570

tions, 2019.

URL https://openreview.net/forum?id=SyVuRiC5K7

[35] K. Li, Y. Zhang, K. Li, Y. Fu, Adversarial feature hallucination networks for few-

shot learning, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.575

[36] M. Chen, Y. Fang, X. Wang, H. Luo, Y. Geng, X. Zhang, C. Huang, W. Liu,

B. Wang, Diversity transfer network for few-shot learning, in: Proceedings of the

AAAI Conference on Artificial Intelligence, 2020.

[37] J. Chen, L.-M. Zhan, X.-M. Wu, F. lai Chung, Variational metric scaling for

metric-based meta-learning, in: Proceedings of the AAAI Conference on Arti-580

ficial Intelligence, 2020.

[38] Y. He, G. Kang, X. Dong, Y. Fu, Y. Yang, Soft filter pruning for accelerating deep

convolutional neural networks, in: International Joint Conference on Artificial

Intelligence (IJCAI), 2018, pp. 2234–2240.

[39] S. Gidaris, P. Singh, N. Komodakis, Unsupervised representation learning by pre-585

dicting image rotations, in: International Conference on Learning Representa-

tions, 2018.

URL https://openreview.net/forum?id=S1v4N2l0-

[40] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, T. Brox, Discriminative un-

supervised feature learning with convolutional neural networks, in: Advances in590

neural information processing systems, 2014, pp. 766–774.

[41] Z. Feng, C. Xu, D. Tao, Self-supervised representation learning by rotation fea-

ture decoupling, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019, pp. 10364–10374.

[42] T. Chen, X. Zhai, M. Ritter, M. Lucic, N. Houlsby, Self-supervised generative595

adversarial networks, in: arXiv preprint arXiv:1811.11212, 2018.

31

https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=SyVuRiC5K7
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-

[43] P. Agrawal, J. Carreira, J. Malik, Learning to see by moving, in: Proceedings of

the IEEE International Conference on Computer Vision, 2015, pp. 37–45.

[44] D. Pathak, R. Girshick, P. Dollár, T. Darrell, B. Hariharan, Learning features by

watching objects move, in: Proceedings of the IEEE Conference on Computer600

Vision and Pattern Recognition (CVPR), 2017, pp. 2701–2710.

[45] X. Wang, A. Gupta, Unsupervised learning of visual representations using videos,

in: Proceedings of the IEEE International Conference on Computer Vision, 2015,

pp. 2794–2802.

[46] H.-Y. Lee, J.-B. Huang, M. Singh, M.-H. Yang, Unsupervised representation605

learning by sorting sequences, in: Proceedings of the IEEE International Con-

ference on Computer Vision, 2017, pp. 667–676.

[47] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, A. Torralba, Ambient sound

provides supervision for visual learning, in: European Conference on Computer

Vision, Springer, 2016, pp. 801–816.610

[48] S. Srinivas, F. Fleuret, Knowledge transfer with jacobian matching, in: arXiv

preprint arXiv:1803.00443, 2018.

[49] Z. Huang, N. Wang, Like what you like: Knowledge distill via neuron selectivity

transfer, in: arXiv preprint arXiv:1707.01219, 2017.

[50] J. Yim, D. Joo, J. Bae, J. Kim, A gift from knowledge distillation: Fast opti-615

mization, network minimization and transfer learning, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017,

pp. 4133–4141.

[51] H. Mobahi, M. Farajtabar, P. L. Bartlett, Self-distillation amplifies regularization

in hilbert space, in: arXiv preprint arXiv:2002.05715, 2020.620

[52] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual recog-

nition challenge, in: International journal of computer vision, Vol. 115, Springer,

2015, pp. 211–252.

32

[53] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny625

images.

[54] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2016, pp. 770–778.

[55] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-630

maison, L. Antiga, A. Lerer, Automatic differentiation in pytorch.

[56] Y. Chen, X. Wang, Z. Liu, H. Xu, T. Darrell, A new meta-baseline for few-shot

learning (2020). arXiv:2003.04390.

[57] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, J.-B. Huang, A closer look at

few-shot classification, in: International Conference on Learning Representa-635

tions, 2019.

URL https://openreview.net/forum?id=HkxLXnAcFQ

[58] Y. Wang, C. Xu, C. Liu, L. Zhang, Y. Fu, Instance credibility inference for few-

shot learning (2020). arXiv:2003.11853.

[59] Y. Guo, N.-M. Cheung, Attentive weights generation for few shot learning via in-640

formation maximization, in: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2020, pp. 13499–13508.

[60] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for con-

trastive learning of visual representations, in: International Conference on Ma-

chine Learning (ICML), 2020.645

[61] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The caltech-ucsd birds-

200-2011 dataset.

33

http://arxiv.org/abs/2003.04390
https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ
http://arxiv.org/abs/2003.11853

	Introduction
	Background
	Few-shot Learning
	Grafting
	Self-Supervised Learning
	Distillation

	Method
	Problem Setting
	Training setup
	Filter Grafting
	Self-Supervised Auxiliary Task
	Knowledge Distillation
	Method Overview
	First Stage Training
	Second Stage Training
	Testing Stage

	Experiments
	Datasets
	Implementation Details
	mini-ImageNet results
	tiered-ImageNet results
	CIFAR-FS results
	FC100 results

	Ablation
	Classifier module
	Significance of each component
	Self-Supervision Techniques
	Representational Capacity
	Cross-Domain Few-Shot Learning

	Conclusion

