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Abstract 

Density functional theory (DFT) calculations demonstrate that the previously reported reaction of 

[(BDI)Mgn-Bu] (BDI = HC{(Me)CN-Dipp}2; Dipp – 2,6-di-iso-propylphenyl) with the silaborane, 

Me2PhSi-Bpin, provides the magnesium silanide derivative, [(BDI)MgSiMe2Ph], through the 

intermediacy of a short lived silyl-pinacolato-organoborate species. The nucleophilic character of the 

resultant silanide anion is assayed through a series of reactions with RN=C=NR (R = i-Pr, Cy, t-Bu) 

and p-tolN=C=Np-tol. When performed in a strict 1:1 stoichiometry, all four reactions result in silyl 

addition to the carbodiimide carbon center and formation of the corresponding -diketiminato 

magnesium sila-amidinate complexes. Although performance of the reaction of [(BDI)MgSiMe2Ph] 

with two equivalents of p-tolylcarbodiimide also results in the formation of a sila-amidinate anion, the 

second equivalent is observed to engage with the nucleophilic -methine carbon of the BDI ligand to 

provide a tripodal di-imino-iminoamidate ligand. This behaviour is judged to be a consequence of the 

enhanced electrophilicity of the N-aryl substituted carbodiimide reagent, a viewpoint supported by a 

further reaction with the N-isopropyl sila-amidinate complex, [(BDI)Mg(i-PrN)2CSiMe2Ph]. This latter 

reaction not only provides an identical di-imino-iminoamidate ligand but also results in twofold 

insertion of p-tolN=C=Np-tol into a Mg-N bond between the magnesium center and the sila-amidinate 

anion. 

 

Introduction 

Di- and mono-organomagnesium compounds, R2Mg and RMgX, provide some of the commonest and 

most longstanding sources of organic nucleophiles.1 While much of this chemistry has historically 

focused on their use as stoichiometric reagents, more recent research has also begun to delineate a 

broadly-based catalytic reactivity.2-28 In contrast, the chemistry of magnesium silanide reagents has 

received comparatively limited interest despite the clear utility of such species as sources of 

triorganosilyl anions.29-31 While Oestreich and co-workers have recently demonstrated that 

triorganosilylmagnesium halides are accessible by in situ oxidation of magnesium metal to MgBr2 and 

lithium silanide transmetallation,32, 33 true silicon-centered Grignard analogues,34 that are prepared from 
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elemental magnesium and a triorganosilyl halide, are limited to Ritter’s synthesis of Me3SiMgBrL and 

Me3SiMgIL (L = tetramethylethylenediamine or pentamethyldiethylenetriamine).35 More commonly, 

the synthesis of silylmagnesium compounds has been achieved either by redox transmetallation of 

(R3Si)2Hg and magnesium,36-38 or by salt metathesis between a sterically encumbered silylpotassium 

reagent and a magnesium halide.39-46 As part of a broader exploration of magnesium compounds in 

which the alkaline earth is directly bonded to an element of group 13 or 14,47-54 we have previously 

reported that reaction of the -diketiminato organomagnesium, [(BDI)MgBu] (1; BDI = HC{(Me)CN-

Dipp}2 where Dipp = 2,6-di-iso-propylphenyl), with the silaborane, Me2PhSi-Bpin, provides facile 

access to the heteroleptic magnesium silanide, [(BDI)MgSiMe2Ph] (2, Scheme 1).55  

 

 

Scheme 1: Synthesis of compound 2. 

 

Although we also exploited this reactivity for the catalytic ‘disilacoupling’ of amines and boranes,55 

and Crimmin and co-workers have very recently reported that compound 2 and several related 

iminoanilido- or guanidinato-magnesium silyls behave as potent reagents for the defluorosilylation of 

industrially relevant fluoroolefins,56 no further assay of the reactivity of compound 2 has yet been 

performed. In this contribution, we present a theoretical consideration of the mechanism of formation 

of compound 2 and report its reactivity with a range of representative carbodiimides. 

 

Experimental Section 

General Experimental Procedures 

All reactions of air- and moisture-sensitive compounds were carried out using standard Schlenk line 

and glovebox techniques under an inert atmosphere of argon. NMR experiments involving air-sensitive 

compounds were conducted in J. Young tap NMR tubes made up and sealed in a glovebox under argon. 

NMR spectra were recorded on a Bruker AV300 Ultrashield instrument for 1H (300.2 MHz), a Bruker 

400 Ultrashield instrument for 29Si (79.5 MHz) or an Agilent ProPulse instrument for 1H (500 MHz), 

13C (126 MHz) and 29Si (99 MHz) spectra at room temperature. The 1H/13C NMR spectra were 

referenced relative to residual solvent resonances, while 29Si NMR spectra were referenced to an 

external standard (Me4Si). Solvents (toluene, pentane and hexane) were dried using an MBraun solvent 

purification system and stored over 4 Å molecular sieves under argon. THF for use in air- and moisture-

sensitive reactions was dried over sodium or potassium/benzophenone and distilled before use. C6D6 

was purchased from Sigma-Aldrich and dried over a potassium mirror, vacuum transferred into a sealed 

ampoule and stored in a glovebox under argon. Di-n-butylmagnesium (Mgn-Bu2 1.0 M solution in n-
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heptane) and carbodiimides were purchased from Sigma-Aldrich and used without further purification. 

The β-diketiminato magnesium alkyl complex, [(BDI)MgnBu] (BDI = CH{C(Me)NDipp}2, Dipp = 

2,6-i-Pr2C6H3) (1), and di-methylphenylsilyl boronic acid pinacol ester (pinBSiMe2Ph, pin = pinacolato) 

were synthesized by literature procedures.57, 58 Yields are non-optimized and refer to isolated crystalline 

material. Elemental analysis was performed by Elemental Microanalysis, Okehampton, UK or by Mr 

Stephen Boyer of London Metropolitan Enterprises. For details of the X-ray studies, computational 

analyses and coordinates of calculated species see the Supporting Information.  

 

Synthesis of [(BDI)Mg{(iPrN)2C(SiMe2Ph)}] (3)  

A solution of 1 (50 mg, 0.10 mmol) and pinBSiMe2Ph (26 mg, 0.10 mmol) in C6D6 (0.5 mL) was added 

via pipette to a J. Young NMR tube. Complete conversion to compound 2 was obtained after 

approximately 12 hours at room temperature. N,N′-di-iso-propylcarbodiimide (13.96 µL, 0.10 mmol) 

was added to the reaction mixture and complete conversion to compound 3 was obtained after 15 

minutes at room temperature. The solvent was removed and crystals suitable for single crystal X-ray 

diffraction analysis were obtained by cooling a hexane/toluene solution to –30 oC (20 mg, 29%). 

Elemental analysis (%). Calculated for C44H66MgN4Si: C, 75.13; H, 9.46; N, 7.96. Found: C, 75.19; H, 

9.42; N, 7.67. 1H NMR (500 MHz, C6D6, 298 K) δ 7.39 – 7.34 (m, 2H, o-(C6H5)Si), 7.20 – 7.13 (6H, 

Dipp-Ar), 7.10 (m, 3H, m, p-(C6H5)Si), 4.85 (s, 1H, CH{C(CH3)NDipp}2), 3.52 (m, 3JH,H = 5.9 Hz, 2H, 

NCH), 3.47 (m, 3JH,H = 6.8 Hz, 4H, Dipp-CH(CH3)2), 1.68 (s, 6H, CH{C(CH3)NDipp}2), 1.33 (d, 3JH,H 

= 6.8 Hz, 12H, Dipp-CH(CH3)2), 1.25 (d, 3JH,H = 6.8 Hz, 12H, Dipp-CH(CH3)2), 0.76 (d, 3JH,H = 5.9 Hz, 

12H, NC(H)(CH3)2), 0.45 (s, 6H, Si(CH3)2Ph) ppm. 13C{1H} NMR (126 MHz, C6D6, 298 K) δ 181.9 

(SiCN), 169.4 (CH{C(CH3)NDipp}2), 145.8 (i-Dipp-Ar), 142.7 (o-Dipp-Ar), 139.0 (i-(C6H5)Si),  134.0 

(o-(C6H5)Si), 129.2 (m-(C6H5)Si), 128.4 (p-(C6H5)Si), 125.2 (p-Dipp-Ar), 123.9 (m-Dipp-Ar), 94.6 

(CH{C(CH3)NDipp}2), 46.3 ((Si(CH3)2Ph)C(NC(H)(CH3)2)2), 28.3 (Dipp-CH(CH3)2), 27.6 

(NC(H)(CH3)2), 25.5 (Dipp-CH(CH3)2), 24.6 (Dipp-CH(CH3)2), 24.4 (CH{C(CH3)NDipp}2), 1.9 

(Si(CH3)2Ph) ppm. 29Si{1H} NMR (99 MHz, C6D6, 298 K) δ –16.8 ppm.  

 

Synthesis of [(BDI)Mg{(C6H11N)2C)N)2C(SiMe2Ph)}] (4) 

A solution of 1 (50 mg, 0.10 mmol) and pinBSiMe2Ph (26 mg, 0.10mmol) in C6D6 (0.5 mL) was added 

via pipette to a J. Young NMR tube. Complete conversion to compound 2 was obtained after 

approximately 12 hours at room temperature. N,N′-di-cyclohexylcarbodiimide (21 mg, 0.1 mmol) was 

added to the reaction mixture and complete conversion to compound 4 was obtained after 15 minutes 

at room temperature. After removal of volatiles, crystals suitable for single crystal X-ray diffraction 

analysis were obtained by cooling a pentane solution to –30 oC (0.03 g, 39%). Elemental analysis, 

calculated for C50H74MgN4Si: C, 76.64; H, 9.52; N, 7.15%. Found: C, 76.62; H, 9.50; N, 6.98%. 1H 

NMR (500 MHz, C6D6, 298 K) δ 7.44 (m, 2H, o-(C6H5)Si), 7.23 – 7.14 (6H, Dipp-Ar), 7.14 – 7.10 (3H, 

m,p-(C6H5)Si), 4.88 (s, 1H, CH{C(CH3)NDipp}2), 3.52 (m, 3JH,H = 6.8 Hz, 4H, Dipp-CH(CH3)2), 3.16 
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– 3.08 (m, 2H, NCH), 1.70 (s, 6H, CH{C(CH3)NDipp}2), 1.55 – 1.48 (8H, CH2), 1.40 (d, 3JH,H = 6.8 

Hz, 12H, Dipp-CH(CH3)2), 1.30 (d, 3JH,H = 6.8 Hz, 12H, Dipp-CH(CH3)2), 1.03 – 0.83 (12H, CH2), 0.50 

(s, 6H, Si(CH3)2Ph) ppm. 13C{1H} NMR (126 MHz, C6D6, 298 K) δ 181.8 (SiCNCH), 169.4 

(CH{C(CH3)NDipp}2), 145.9 (i-Dipp-Ar), 142.7 (o-Dipp-Ar), 134.0 (i-(C6H5)Si), 129.1 (o-(C6H5)Si), 

125.2 (m-(C6H5)Si), 123.9 (p-Dipp-Ar), 94.6 (CH{C(CH3)NDipp}2), 54.8 (NCH), 38.5 (CH2), 28.4 (s, 

CH(CH3)3), 26.3, 25.9 (CH2), 25.5 (Dipp-CH(CH3)2), 24.6 (Dipp-CH(CH3)2), 24.4 

(CH{C(CH3)NDipp}2), 1.4 (Si(CH3)2Ph) ppm. 29Si{1H} NMR (99 MHz, C6D6, 298 K) δ –18.0 ppm.  

 

Synthesis of [(BDI)Mg{(t-BuN)2C(SiMe2Ph)}] (5)   

A solution of 1 (50 mg, 0.10 mmol) and pinBSiMe2Ph (26 mg, 0.10 mmol) in C6D6 (0.5 mL) was added 

via pipette to a J. Young NMR tube. Complete conversion to compound 2 was obtained after 

approximately 12 hours at room temperature. N,N′-di-tert-butylcarbodiimide (19.32 µL, 0.10 mmol) 

was added to the reaction mixture and complete conversion to compound 5 was obtained after 15 

minutes at room temperature. After removal of volatiles, crystals suitable for single crystal X-ray 

diffraction analysis were obtained by cooling a hexane/toluene solution to –30 oC (0.06 g, 82%). 

Elemental analysis (%). Calculated for C46H70MgN4Si: C, 75.53; H, 9.65; N, 7.66. Found: C, 75.50; H, 

9.87; N, 7.66. 1H NMR (500 MHz, C6D6, 298 K) δ 7.58 (m, 3JH,H = 7.9, 1.4 Hz, 2H, o-(C6H5)Si), 7.28 – 

7.06 (6H, Dipp-Ar), 7.01 (3H, m, p-(C6H5)Si), 4.90 (s, 1H, CH{C(CH3)NDipp}2), 3.59 – 3.44 (m br, 

4H, Dipp-CH(CH3)2), 1.65 (s, 6H, CH{C(CH3)NDipp}2), 1.38 (d, 3JH,H = 6.8 Hz, 12H, Dipp-CH(CH3)2), 

1.29 (d, 3JH,H = 6.8 Hz, 12H, Dipp-CH(CH3)2), 1.19 – 0.99 (m, 18H, C(CH3)3), 0.67 (s, 6H, Si(CH3)2Ph) 

ppm. 13C{1H} NMR (126 MHz, C6D6, 298 K) δ 180.5 (Si(CH3)2Ph)C(NC(H)(CH3)2)2), 169.6 

(CH{C(CH3)NDipp}2), 146.0 (i-Dipp-Ar), 142.9 (o-Dipp-Ar), 141.7 (i-(C6H5)Si), 135.1 (o-(C6H5)Si), 

129.0 (m-(C6H5)Si), 128.4 (p-(C6H5)Si), 95.6 (CH{C(CH3)NDipp}2), 51.1 (C(CH3)3)), 34.6 (Dipp-

CH(CH3)2), 28.2 (Dipp-CH(CH3)2), 26.0 (Dipp-CH(CH3)2), 24.9 (C(CH3)3)), 6.5 (s, Si(CH3)2Ph) ppm. 

29Si{H} NMR (99 MHz, C6D6, 298 K) δ – 20.1 ppm.  

 

Synthesis of [(BDI)Mg{( p-CH3C6H4N)2C(SiMe2Ph)}] (6) 

A solution of 1 (50 mg, 0.10 mmol) and pinBSiMe2Ph (26 mg, 0.10mmol) in C6D6 (0.5 mL) was added 

via pipette to a J. Young NMR tube. Complete conversion to compound 2 was obtained after 

approximately 12 hours at room temperature. N,N′-di-p-tolylcarbodiimide (22 mg, 0.10 mmol) was 

added to the reaction mixture and complete conversion to compound 6 was obtained after 15 minutes 

at room temperature. After removal of volatiles, crystals suitable for single crystal X-ray diffraction 

analysis were obtained by cooling a pentane solution to –30 oC (0.02 g, 25%). Elemental analysis (%). 

Calculated for C52H66MgN4Si: C, 78.12; H, 8.32; N, 7.01. Found: C, 77.93; H, 8.10; N, 6.94. 1H NMR 

(500 MHz, C6D6, 298 K) δ 7.18 – 7.16 (6H, Dipp-Ar), 7.11 – 7.08 (2H, o- (C6H5)Si), 7.07 – 7.02 (1H, 

(p-C6H5)Si), 7.00 – 6.95 (2H, (m-C6H5)Si), 6.69 (d, 3JH,H = 8.1 Hz, 4H, N(C6H4(CH3))), 6.38 (d, 3JH,H = 

7.8 Hz, 4H, N(C6H4(CH3))), 4.95 (s, 1H, CH{C(CH3)NDipp}2), 3.36 (m, 3JH,H = 6.8 Hz, 4H, Dipp-
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CH(CH3)2), 2.08 (s, 6H, N(C6H4(CH3))), 1.73 (s, 6H, CH{C(CH3)NDipp}2), 1.20 (d, 3JH,H = 7.1 Hz, 

12H, Dipp-CH(CH3)2), 1.10 (d, 3JH,H = 6.8 Hz, 12H Dipp-CH(CH3)2), –0.06 (s, 6H, Si(CH3)2Ph) ppm. 

13C{1H} NMR (126 MHz, C6D6, 298 K) δ 185.4 (SiCN), 169.8 (CH{C(CH3)NDipp}2), 147.1 (SiCN), 

145.6 (CH{C(CH3)NDipp}2), 142.7 (i-Dipp-Ar), 133.9 ((C6H5)Si), 128.0 (p-(C6H5)Si), 125.0 (p-

(C6H5)CH3), 124.0 (Dipp-Ar), 95.6 (CH{C(CH3)NDipp}2), 28.8 (Dipp-CH(CH3)2), 24.6 (Dipp-

CH(CH3)2), 24.4 (Dipp-CH(CH3)2), 24.3 (CH{C(CH3)NDipp}2), 23.8 (Dipp-CH(CH3)2), 23.2 

(CH{C(CH3)NDipp}2), 20.9 (N(C6H4(CH3))), 1.3 (Si(CH3)2Ph) ppm. 29Si{1H} NMR (99 MHz, C6D6, 

298 K) δ –11.3 ppm.  

 

Synthesis of [(CH{C(Me)NDipp}2(p-CH3C6H4N)2C)Mg{(p-CH3C6H4N)2C(SiMe2Ph)}] (7).  

A solution of 1 (50 mg, 0.10 mmol) and pinBSiMe2Ph (26 mg, 0.10mmol) in C6D6 (0.5 mL) was added 

via pipette to a J. Young NMR tube. Complete conversion to compound 2 was obtained after 

approximately 12 hours at room temperature. N,N′-di-p-tolylcarbodiimide (44 mg, 0.20 mmol) was 

added to the reaction mixture and complete conversion to compound 7 was obtained after 15 minutes 

at room temperature. After removal of volatiles, crystals suitable for single crystal X-ray diffraction 

analysis were obtained by cooling a pentane solution to –30 oC (0.03 g, 29%). Despite multiple attempts 

a microanalysis could not be obtained for this compound. 1H NMR (500 MHz, C6D6, 298 K) δ 8.07 (d, 

J = 9.9 Hz, 2H o-N(C6H4(CH3))CH), 7.28 (d, J = 8.0 Hz, 2H m-N(C6H4(CH3)) CH), 7.01 (m, 11H, CH, 

Ar, Ph, Dipp), 6.92 (d, J = 8.5 Hz, 2H  o-N(C6H4(CH3))CH), 6.87 (d, J = 8.1 Hz, 2H  m-

N(C6H4(CH3))CH), 6.47 (d, J = 7.9 Hz, 4H o,m N(C6H4(CH3))CH), 5.87 (d, J = 8.1 Hz, 4H o,m- 

N(C6H4(CH3))CH), 5.39 (s, 1H, CH{C(CH3)NDipp}2), 3.18 – 3.07 (m, 2H Dipp-CH(CH3)2), 2.88 – 

2.78 (m, 2H, Dipp-CH(CH3)2), 2.34 (s, 3H, N(C6H4(CH3))), 2.24 (s, 3H, N(C6H4(CH3))), 2.11 (s, 6H, 

N(C6H4(CH3))), 1.58 (s, 6H, CH{C(CH3)NDipp}2), 1.32 (d, J = 6.8 Hz, 6H, Dipp-CH(CH3)), 1.12 (d, J 

= 6.7 Hz, 6H, Dipp-CH(CH3)), 0.91 (d, J = 6.8 Hz, 6H, Dipp-CH(CH3)), 0.80 (d, J = 6.7 Hz, 6H , Dipp-

CH(CH3), 0.01 (s, 6H, Si(CH3)2Ph) ppm. 13C{1H} NMR (126 MHz, C6D6, 298 K) δ 144.3 (SiCN), 

140.4 (CH{C(CH3)NDipp}2), 139.9 (CH{C(CH3)NDipp}2), 138.9 (CH{C(CH3)NDipp}2),  130.4 

(Dipp-Ar), 128.2 (s, p-(C6H5)CH), 127.8 (p-(C6H5)CH), 127.0  ((C6H5)Si), 126.7 (p-(C6H5)Si), 125.6 

(p-(C6H5)CH), 123.4 (Dipp-Ar), 122.9 (p-(C6H5)CH), 29.3 (Dipp-CH(CH3)2), 28.1 (Dipp-CH(CH3)2), 

25.6 (Dipp-CH(CH3)2), 24.7 (CH{C(CH3)NDipp}2), 24.6 (CH{C(CH3)NDipp}2), 24.1 

(CH{C(CH3)NDipp 2), 23.6 (CH{C(CH3)NDipp}2),  21.1 (N(C6H4(CH3)), 20.9 (N(C6H4(CH3)), 1.5 

(Si(CH3)2Ph) ppm. 29Si{1H} NMR (99 MHz, C6D6, 298K) δ –12.4 ppm. 

 

Synthesis of [(CH{C(Me)NDipp}2(p-CH3C6H4N)2C)Mg{(p-CH3C6H4N)2C)3{(iPrN)2C 

(SiMe2Ph)}] (8)  

A solution of 1 (50 mg, 0.10 mmol) and pinBSiMe2Ph (26 mg, 0.10 mmol) in C6D6 (0.5 mL) was added 

via pipette to a J. Young NMR tube. Complete conversion to compound 2 was obtained after 

approximately 12 hours at room temperature. N,N′-di-iso-propylcarbodiimide (13.96 µL, 0.10 mmol) 
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was added to the reaction mixture and complete conversion to compound 3 was obtained after 15 

minutes at room temperature. N,N′-di-p-tolylcarbodiimide (22 mg, 0.10 mmol) was subsequently added 

to the reaction mixture. After removal of volatiles, crystals suitable for single crystal X-ray diffraction 

analysis were obtained by cooling a pentane/hexane solution to –30 oC. This compound could not be 

obtained as a bulk sample in sufficient quantity to enable microanalysis or analysis by 13C or 29Si NMR 

spectroscopy. 1H NMR (500 MHz, C6D6, 298 K) δ 8.06 (s, 2H, o-N(C6H4(CH3))), 7.37 (d, 3JH,H  = 7.8 

Hz, 2H, m-N(C6H4(CH3))), 7.28 – 6.72 (16H, CH, Ar, Ph, Dipp, o-N(C6H4(CH3))), 6.93 (d, 3J H,H = 2.9 

Hz, 2H, m-N(C6H4(CH3))), 6.82 (d, 3J H,H = 5.4 Hz, 2H, m-N(C6H4(CH3))), 6.63 (d, 3J H,H= 6.9 Hz, 2H, 

m-N(C6H4(CH3))), 6.50 (d, 3J HH= 7.5 Hz, 2H, m-N(C6H4(CH3))), 5.37 (s, 1H, CH{C(CH3)NDipp}2), 

3.60 – 3.52 (m, 3JH,H = 13.9 Hz, 1H, , Dipp-CH(CH3)2), 3.47 – 3.39 (m, 3JH,H = 5.4 Hz, 2H, N-ipr-

CH(CH3)2), 3.01 – 2.95 (m, 1H, NDipp-CH(CH3)2), 2.93 – 2.88 (m, 1H, Dipp-CH(CH3)2), 2.69 – 2.62 

(m, 1H, Dipp-CH(CH3)2), 2.36 (s, 3H, N(C6H4(CH3))), 2.30 (s, 3H, N(C6H4(CH3))), 2.23 (s, 3H, 

N(C6H4(CH3))), 2.14 (s, 3H, N(C6H4(CH3))), 2.08 (s, 3H, N(C6H4(CH3))), 2.00 (s, 3H, N(C6H4(CH3))) 

1.91 (d, J = 6.9 Hz, 3H, NCH(CH3)2), 1.65 (s, 3H, CH{C(CH3)NDipp}2), 1.53 (s, 3H, 

CH{C(CH3)NDipp}2), 1.38 (d, J = 6.5 Hz, 3H, NCH(CH3)2), 1.17 (d, J = 6.6 Hz, 3H, NDipp-CH(CH3)), 

1.12 (d, J = 6.7 Hz, 3H, NCH(CH3)2), 1.06 (d, J = 15.4, 6.0 Hz, 3H, Dipp-CH(CH3)}2)), 0.98 (d, J = 6.7 

Hz, 3H, NCH(CH3)2), 0.94 (s, 3H, Si(CH3)2Ph), 0.86 – 0.82 (m, 6H, Dipp-CH(CH3)}2), 0.75 (d, J = 6.7 

Hz, 3H, CH{C(CH3)NDipp}2), 0.52 – 0.45 (m, 9H, CH{C(CH3)NDipp}2), 0.13 (s, 3H, Si(CH3)2Ph) 

ppm.  

 

Results and discussion 

Computational study of the formation of compound 2. Our initial report of the synthesis of 

compound 2 envisaged the reaction shown in Scheme 1 to occur as a -bond metathesis involving 

synchronous Si-B/Mg-C cleavage and Mg-Si/B-C bond formation. Although this provisional model 

was devised by analogy with our earlier observations of a variety of alkaline earth-mediated catalyses, 

it contradicts a significant volume of reports for reactions in which an Mg-C or Mg-N bonded compound 

is reacted with a borane, diborane or silane reagent.6, 7, 9, 12, 13, 22, 47, 59 In many such cases, B-X bond 

activation has been deduced to proceed through the initial assembly of an isolable or short-lived borate 

or silicate intermediate formed by the nucleophilic attack of the magnesium-bound nucleophile at the 

electrophilic p-block element center. It was, thus, considered probable that the synthesis of compound 

2 proceeds in a similar stepwise manner. This revised viewpoint is now borne out by density functional 

theory (DFT, Figure 1(a)) calculations, which were performed on the complete system and with energies 

corrected for the toluene solvent and dispersion effects, and to include a larger basis set description. 

(see Supplementary Information for full details of computational methodology). The overall formation 

of compound 2 is mildly exergonic (Gf = 15.3 kcal mol1) and takes place through the intermediacy 

of a short lived silyl-pinacolato-organoborate species, I(1-2). Consistent with the mild experimental 



-7- 

 

conditions, the facile reaction is initiated by nucleophilic attack at the three-coordinate boron center of 

the silaborane reagent by the n-butyl nucleophile via transition state TS(1-2)1 (ΔG‡ = 7.9 kcal mol-1). 

The previously trigonal boron center is perturbed towards a distorted tetrahedral geometry during the 

assembly of this transition state, a process which is facilitated by the close interaction of one of the 

pinacolate oxygen atoms with magnesium (Mg-O, 2.34 Å). Complete transfer of the n-butyl group from 

magnesium to boron provides the intermediate, I(1-2), that may be considered as an ion pair in which 

contact between the magnesium center and the resultant borate anion is maintained by a further 

augmented Mg-Opin interaction (1.99 Å). The validity of this latter metric may be assessed by 

comparison with analogous distances observed in several crystallographically-characterized 

pinacolatoborate derivatives of the {(BDI)Mg} unit. Most pertinently, a Mg-Opin distance of 1.9461(8) 

Å was observed for the isolable diboranate species, [(BDI)Mg{pinB-Bpin(Bu)}], which was 

synthesized by a similar reaction of B2pin2 and compound 1.45 Although, B-B heterolysis and formation 

of magnesium boryl species required the addition of an exogenous base,47, 49, 52, 53 the transformation of 

I(1-2) to compound 2 is facile. Traversal of I(TS1-2)2 (ΔG‡ = 7.3 kcal mol1) occurs with the 

maintenance of the aforementioned Mg-Opin interaction (1.98 Å) and the transfer of the {PhMe2Si} unit 

from boron to magnesium is foreshadowed by a pronounced elongation of the Si-B bond from 2.14 Å 

in I(1-2) to 2.36 Å at the transition state. I(TS1-2)2 is further characterized by the development of the 

Mg-Si interaction (3.92 Å), which initiates the group transfer step and which may be rationalized as an 

effective -silicon elimination of pinB-n-Bu to yield compound 2.  

 Inspection of the Natural Bond Orbitals (NBO) for compound 2 emphasizes the polarization 

intrinsic to the Mg-Si -bond (Figure 1(b)). The contribution to the primary NBO associated with Mg-

Si bonding is dominated by the silicon center (77% on Si and 23% on Mg), an observation underscored 

by the calculated NBO charges (Mg +1.27; Si +0.81). Albeit the local environment of each of the p-

block centers is rather different, the differential between these latter values may be compared to the 

relevant NBO charges calculated for the terminally-bonded group 13 species, [(BDI)Mg-Bpin(DMAP)] 

(Mg, +1.28; B +0.32: DMAP = 4-dimethylaminopyridine) and [(BDI)Mg-Al{N(Dipp)Si(Me)2CH2}2] 

(Mg, +1.45; Al +0.83),47, 54 both of which comprise the identical {(BDI)Mg} unit as 2 and demonstrate 

unambiguous nucleophilic character at the p-block element center. 
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Figure 1: (a) DFT calculated free energy profile (BP86-D3(BJ)-toluene/BS2//BP86/BS1, in kcal mol‒

1) for the reaction of 1 with PhMe2Si-Bpin; (b) Calculated Natural Bond Orbital (NBO) surface of the 

Mg-Si bonding orbital of compound 2 (NBO charges shown in parenthesis).  

 

Reactivity of 2 with carbodiimides. Although these results implicate a latent nucleophilic character 

for the triorganosilyl ligand, Crimmin and co-workers’ study of the reactivity of compound 2 with a 

selection of fluoroalkenes was limited by undesirable ligand-based reactivity ascribed to the 

nucleophilic -methine carbon center of the BDI ligand. Reactions of carbodiimide reagents with polar 

-organometallics to provide C-alkylated or C-arylated amidinates are ubiquitous.60-62 Although the 

formation of C-silylated amidinate anions through carbodiimide insertion into the M-Si bond of polar 

silanide derivatives should be similarly facile, the only available precedent is provided by Piers’ report 

of the rare earth silanides, [Et(Me3Si)2SiMI2(THF)3] (M = Y or Gd) with RN=C=NR (R = i-Pr, Cy).63 

The potential for compound 2 as a reagent for the selective formation of Si-C -bonds was, therefore, 

examined through a series of reactions with N,N'-diorganocarbodiimides of varying steric demands and 

electronic character. 

 

Scheme 2: Synthesis of compounds 3 – 6. 
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In each case, compound 2 reacted smoothly at room temperature with either N,N'-di-iso-

propylcarbodiimide, N,N'-di-cyclohexylcarbodiimide or N,N'-di-tert-butylcarbodiimide to provide the 

corresponding N,N'-dialkyl-C-sila-amidinate derivatives, compounds 3 – 5 (Scheme 2). In each case, 

the reactions were characterized in the resultant 1H NMR spectra by the disappearance of the (3H) silyl 

methyl proton resonances of 2 at  0.06 and 0.43 ppm and the emergence of a single (6H) methyl signal 

at  0.45 (3), 0.43 (4) and 0.67 ppm (5). The most diagnostic features of the 13C{1H} NMR spectra were 

downfield signals observed at  181.9 (3), 181.8 (4) and 180.5 (5) ppm, which bear reasonable 

comparison to chemical shifts observed in Piers’ diamagnetic yttrium derivatives ( 188.2 ppm and 

187.3 ppm for the N-R = i-Pr and Cy derivatives, respectively) and are correspondingly assigned as the 

C-Si carbon resonances of the newly formed amidinate anions. The 29Si{1H} NMR spectra of 3 - 5 were 

similarly consistent and comprised single resonances at (29Si) –16.8 (3), –18.0 ppm (4) and –20.1 

ppm (5).  Albeit internally consistent, these frequencies diverge considerably from those assigned to 

the comparable C-Si(SiMe3)2Et environments ((29Si) ca. 54 ppm) in Piers and co-workers’ yttrium 

derivatives. Although these previously reported data were assigned on the basis of an observable 3J(29Si-

89Y) coupling of 5 Hz for the N,N'-dicyclohexyl derivative, it is notable that these spectra also comprised 

a further resonance at ca. 13 ppm, which was attributed to the silylmethyl environment of the C-

Si(SiMe3)2Et unit. Taking account of the closer comparison of these latter signals to the resonant 

frequencies observed for 3 – 5, and the otherwise similar electronic disposition of the sila-amidinate 

anions in all five compounds, it is reasonable to suggest that these earlier data were possibly miss-

assigned and that the observed coupling was reflective of a four-bond rather than a three-bond 

interaction between the silicon and yttrium nuclei.  
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Figure 2: Molecular structures  of (a) compound 3, (b) compound 4, (c) compound 5 and (d) compound 

6. Ellipsoids are depicted at 30% probability. Hydrogen atoms have been removed for clarity. 
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Table 1: Selected bond lengths (Å) and angles () for compounds 3 – 6. 

 3 4 5 6 

Mg1-N1 2.053(2) 2.0370(10) 2.0482(19) 2.048(2) 

Mg1-N2 2.023(2) 2.0516(10) 2.0570(18) 2.027(2) 

Mg1-N3 2.058(2) 2.0422(11) 2.0721(18) 2.086(2) 

Mg1-N4 2.037(2) 2.0655(11) 2.0257(19) 2.055(2) 

C30-N3 1.344(3) 1.3429(16) 1.348(3) 1.346(3) 

C30-N4 1.347(3) 1.3371(16) 1.347(3) 1.343(3) 

C30-Si1 1.932(3) 1.9381(12) 1.968(2) 1.936(2) 

N1-Mg1-N2 93.73(9) 94.54(4) 94.90(7) 93.99(8) 

N3-Mg1-N4 65.91(8) 65.62(4) 64.95(7) 64.91(8) 

Mg1-N3-C30 90.14(14) 91.03(7) 91.74(12) 91.06(13) 

Mg1-N4-C30 90.98(15) 90.19(7) 93.80(12) 92.47(14) 

N3-C30-Si1 127.47(18) 119.36(9) 127.40(15) 123.60(16) 

N4-C30-Si1 120.33(18) 127.88(9) 123.17(15) 124.71(17) 

 

The structures of compounds 3 – 5 were confirmed by single crystal X-ray diffraction analysis (Figures 

2(a) – (c)). Despite the variation in steric demands enforced by the N-alkyl groups of the sila-amidinate 

ligands, the structures show very little variation among the bond lengths and angles associated with the 

binding of the magnesium centers and across the NCN cores of the newly formed anions (Table 1). 

While these latter data are effectively identical to those reported by Piers and co-workers in their study 

of rare earth [Et(Me3Si)2SiC(NR)2]
  (R = i-Pr, Cy) derivatives,63 the most relevant measurements are 

also closely comparable to those of the variety of C-alkylated magnesium amidinates that have been 

described,64-79 These observations suggest that neither the incorporation of the C-silyl function nor 

variation of the N,N’-alkyl substituents induce any significant perturbation to the electronic structure of 

the delocalized amidinate framework. 

 Reaction of compound 2 with N,N'-di-p-tolycarbodiimide also proceeded smoothly to provide 

the analogous N-aryl sila-amidinate derivative, compound 6, which was isolated as colorless crystals 

suitable for X-ray diffraction analysis (Scheme 2). The resultant structure (Figure 2(d)) revealed that 

the introduction of N-aryl substitution of the amidinate ligand induces no noteworthy adjustments to 

either the bonding of the magnesium center or across the amidinate ligand (Table 1). The newly formed 

Si-C bond of 6 was characterized in solution by the observation of signals at  185.4 ppm and  11.3 

ppm in the respective 13C{1H} and 29Si{1H} NMR spectra. While these frequencies are somewhat 

deshielded in comparison to the analogous data arising from compounds 3 – 5, the solution NMR data 
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provided by 6 were again consistent with the maintenance of the solid state structure in solution. The 

silylmethyl protons provided a single upfield resonance ( 0.06 ppm) in the 1H NMR spectrum, while 

the symmetrically chelated disposition of both ligands was clearly apparent from the observation of 

single sets of sharp signals for all the relevant sila-amidinate and BDI proton environments. 

While the -methine signal of the BDI ligand of isolated crystalline samples of 6 provided the 

expected (1H) singlet signal at  4.95 ppm, 1H NMR analysis of the initial in situ-formed solutions 

revealed the formation of small quantities of a second reaction product (7), which was manifested most 

clearly as an apparent BDI -methine resonance at  5.39 ppm. Further investigation revealed this new 

species to be the reaction product of compound 6 with a second equivalent of N,N'-di-p-

tolycarbodiimide. The completely selective synthesis of compound 7 was, thus, most readily achieved 

by performance of the reaction between compound 2 and N,N'-di-p-tolycarbodiimide in the requisite 

1:2 stoichiometry (Scheme 3). Although the solution data indicated that the integrity of the sila-

amidinate ligand observed in compound 6 had been maintained [(29Si) 12.4 ppm], two further singlet 

resonances at  2.34 and 2.24 ppm observed in the 1H NMR spectrum could also be assigned to 

compound 7. Each of these latter signals provided an integration of 3H, relative to a 6H singlet signal 

at  2.11 ppm assigned to the equivalent p-methyl protons of the symmetrically-disposed silamidinate 

anion. The origin of these observations was resolved by a single crystal X-ray diffraction analysis of 7. 

In mitigation of the observation by Crimmin and co-workers that the potential of compound 2 as a 

source of the {PhMe2Si} anion is compromised by the potentially nucleophilic character of the BDI 

anion,56 compound 7 is a further magnesium derivative of the {(PhMe2SiC(p-Me-C6H4N)2}
 anion in 

which a C=N bond of the additional equivalent of carbodiimide has added in a 1,4-fashion across the 

group 2 metal center and the -methine carbon of the BDI ligand (Figure 3(a)). 

 

Scheme 3: Synthesis of compound 7. 

Although similar reactivity of metallated -diketiminate anions toward heteroallenes and related 

multiply-bonded small molecules is by no means unprecedented,80 exemplary behaviour of magnesium 

derivatives is currently limited to the addition of CO2,
59 diphenylketene,81 PhN=C=S82 and the internal 

alkynes, PhCCPh and PhCCMe.83 The five-coordinate magnesium center of compound 7 is, thus, 

ligated by the bidentate sila-amidinate anion and a 3-N,N',N''-bound tripodal anion. While the bond 

lengths and angles about the {SiCN2} core of the sila-amidinate are effectively unchanged in 
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comparison to the analogous measurements observed in 6, an elongation of the Mg-N bonds [Mg1-N5 

2.109(2); Mg1-N6 2.118(2) Å] may be attributed to the increased coordination number of magnesium.  

The C-N bonds comprising the donor nitrogen atoms [C2-N1, 1.288(3); C4-N2 1.288(3), C30-N4 

1.349(3) Å] and the exocyclic C30-N3 imine bond [1.295(3) Å] vary significantly across the newly 

formed tripodal ligand. These data indicate the anion is best described as a localised di-imino-

iminoamidate, the negative charge of which is localized on the p-tolyl-amidate nitrogen; a deduction 

also borne out by consideration of the relevant Mg-N bonds [Mg1-N1, 2.1703(19); Mg1-N2 2.2351(19); 

Mg1-N4 2.0890(18) Å]. 

 

Figure 3: Molecular structures structures of (a) compound 7 and (b) compound 8. Ellipsoids (where 

shown) are depicted at 30% probability.  Hydrogen atoms removed for clarity. Selected bond lengths 

(Å) and angles (): 7: Mg1-N1 2.1703(19), Mg1-N2 2.2351(19), Mg1-N4 2.0870(18), Mg1-N5 

2.109(2), Mg1-N6 2.118(2), N1-C2 1.288(3), N1-C6 1.450(3), N2-C4 1.288(3), N3-C30 1.295(3), N4-

C30 1.349(3), N4-C38 1.411(3), N5-C52 1.325(3), N6-C52 1.345(3), Si1-C52 1.939(2), N1-Mg1-N2 

88.19(7), N4-Mg1-N1 88.12(7), N4-Mg1-N2 85.67(7), N4-Mg1-N5 109.04(8), N4-Mg1-N6 144.76(8), 

N5-Mg1-N1 102.50(8), N5-Mg1-N2 161.85(8), N5-Mg1-N6 63.48(8), N6-Mg1-N1 126.83(8), N6-

Mg1-N2 98.36(8); 8: Mg1-N1 2.1562(13), Mg1-N2 2.2711(12), Mg1-N3 2.0812(13), Mg1-N5 

2.0978(12), Mg1-N6 2.1409(12), N1-C2 1.2858(19), N1-C6 1.4407(18), N2-C4 1.2766(19), N2-C18 

1.4540(18), N3-C30 1.3420(18), N3-C31 1.4209(19), N4-C30 1.284(2), N5-C52 1.3440(17), N6-C52 

1.3084(18), N7-C52 1.4346(17), N7-C67 1.4091(18), N8-C67 1.283(2), N9-C67 1.4015(18), N9-C78 

1.4267(19), N10-C78 1.277(2), Si1-C78 1.9448(16), N1-Mg1-N2 87.34(5), N3-Mg1-N1 87.02(5), N3-

Mg1-N2 85.79(5), N3-Mg1-N5 140.66(5), N3-Mg1-N6 108.59(5), N5-Mg1-N1 131.78(5), N5-Mg1-

N2 100.19(5), N5-Mg1-N6 63.53(5), N6-Mg1-N1 101.24(5), N6-Mg1-N2 163.43(5). 

Re-examination of the reactions to derive compounds 3 – 5 provided no evidence for similar elaboration 

of the BDI ligand in the presence of an excess of any of the N-alkyl carbodiimides. This observation, 
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and the negligible structural variations observed across the sila-amidinate derivatives 3 – 6, indicate 

that the formation of compound 7 is unlikely to be a consequence of any electronic adjustment to the 

sila-amidinate anion or resultant enhancement of the BDI ligand nucleophilicity. A very recent kinetic 

and computational study of their reactivity with reference nucleophiles has allowed the quantification 

of the relative electrophilic character of a variety of heteroallenes in terms of an electrophilicity 

parameter, E.84 While N,Nˈ-diphenylcarbodiimide (E = –20.14) was found to be a hundred-fold less 

electrophilic than, for example, both carbon disulphide (E = –17.70) and phenyl isothiocyanate (E = –

18.15), the electrophilicity of N,Nˈ-dicyclohexylcarbodiimide  was so low that no suitable reference 

nucleophiles could be identified for the experimental quantification of its reactivity and its approximate 

electrophilicity (E ≈ −30) could only be derived by quantum chemical calculations. Similar deductions 

may be drawn from our own calculations of the frontier orbital energies of the carbodiimide substrates 

employed in the synthesis of compounds 3 – 7 (see Supporting Information) and from which the LUMO 

energy of  N,N'-di-p-tolycarbodiimide was computed to lie ca. 1.5 eV lower than any of the variously 

substituted N-alkylated analogues. In addition, whereas the transformation of compound 6 to compound 

7 was calculated to be significantly exergonic (G = –16.5 kcal mol–1), formation of analogous di-

imino-iminoamidate anions through reactions of compounds 3 – 5 with further equivalents of N,N'-di-

i-propylcarbodiimide (Gf = +12.2 kcal mol–1), N,N'-di-cyclohexylcarbodiimide (Gf = +20.1 kcal mol–

1) and N,N'-di-t-butylcarbodiimide (Gf = +24.5 kcal mol–1), respectively, were found to be 

thermodynamically non-viable (Figure S17). On this basis, therefore, we suggest that the formation of 

7 is a consequence of the enhanced electrophilicity of the central carbodiimide carbon center as a result 

of its more electron-withdrawing N-aryl substitution.  

 As an examination of this hypothesis, we carried a further reaction between equimolar 

quantities of compound 3 and N,N'-di-p-tolycarbodiimide. Although the resultant 1H NMR spectrum 

presented a complex series of aliphatic resonances and evidence for the formation of a predominant 

new compound (8) characterized by a singlet resonance at  5.37 ppm, examination of the BDI -

methine region also indicated incomplete consumption of the N-isopropyl-sila-amidinate (3). While a 

bulk sample could not be obtained, single crystal X-ray diffraction analysis performed after fractional 

crystallization of the reaction products from pentane/hexane solution to –30 oC revealed that 8 was 

again a product of 1,4-addition of the carbodiimide to the ligated BDI ligand (Figure 3(b)). Compound 

8, therefore, contains a tripodal di-imino-iminoamidate anion identical to that observed in 7, but which 

has formed in addition to reaction with a further two molecules of N,N'-di-p-tolycarbodiimide at one of 

the donor nitrogen atoms of the N-isopropyl-sila-amidinate ligand of compound 3 (Scheme 4). This 

latter process provides an unusual di-N,N'-p-tolyl guanidinate anion, which may be considered to result 

from the net oligomerization of three carbodiimide molecules by the magnesium silanide derivative, 2. 

The metric data arising from the di-imino-iminoamidate ligand of 8 are very similar to those observed 

in 7, while examination of the various C-N bonds within the guanidinate ligand indicates that the 
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primary chain of atoms propagating from the non-magnesium-ligated N7 atom is best viewed as a silyl-

terminated sequence of alternating singly bonded nitrogen and carbon centers, with each carbon bearing 

a pendent N-p-tolyl imine function. We have previously observed that similar reactions of group 2 

amidinate complexes with organic isocyanates, isothiocyanates and carbon disulphide enable the 

catalytic construction of imidazolidine and thiazolidine heterocycles.8,85,86 The threefold insertion of 

carbodiimide to provide compound 8 is, however, to the best of our knowledge, unprecedented. 

Although we have not yet examined this chemistry any further, we suggest that the contrasting outcome 

of the reactions to form compounds 7 and 8 is a likely consequence of the enhanced nucleophilic 

character of the N-alkyl sila-amidinate anion of 3 in comparison to that of 6, in conjunction with the 

superior electrophilicity of the N,N'-p-tolyl-substituted carbodiimide.   

 

Scheme 4: Synthesis of compound 8. 

Conclusions 

Computational analysis of the reaction of [(BDI)MgBu] with pinBSiMe2Ph indicates that formation of 

the resultant magnesium silanide occurs in a stepwise fashion. In a similar manner to previously 

reported metathesis reactions of B-X units with organomagnesium reagents, ligand exchange occurs via 

an initially formed silyl-organoborate, albeit conversion of this latter species to the magnesium silanide 

and alkyl borane products is too facile (ΔG‡ = 7.3 kcal mol1) to allow its experimental observation. 

The polar nature of the resultant Mg-Si bond is demonstrated through reactions with a range of organic 

carbodiimides. While reactions with N-alkyl substituted reagents are straightforward and provide the 

corresponding heteroleptic magnesium sila-amidinate compounds, introduction of p-tolylcarbodiimide 

results in more complex behaviour, demonstrating the non-innocence of the -diketiminate spectator 

ligand.      
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Computational analysis of the reaction of [(BDI)MgBu] with pinBSiMe2Ph indicates that formation of 

the resultant magnesium silanide occurs in a stepwise fashion. The polar nature of the resultant Mg-Si 

bond is demonstrated through reactions with a range of organic carbodiimides. 

 

 


