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Darcy-Bénard-Bingham Convection
D. A. S. Rees

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

(Dated: 17 June 2020)

The present paper is the first to consider Darcy-Bénard-Bingham convection. A Bingham fluid saturates a horizon-

tal porous layer which is subjected to heating from below. It is shown that this simple extension to the classical

Darcy-Bénard problem is linearly stable to small-amplitude disturbances but nevertheless admits strongly nonlinear

convection. The Pascal model for a Bingham fluid occupying a porous medium is adopted, and this law is regularized

in a frame-invariant manner to yield a set of two-dimensional governing equations which are then solved numerically

using finite difference approximations. A weakly nonlinear theory of the regularized Pascal model is used to show that

the onset of convection is via a fold bifurcation. Some parametric studies are performed to show that this nonlinear

onset of convection arises at increasing values of the Darcy-Rayleigh number as the Rees-Bingham number increases,

and that for a fixed Rees-Bingham number the wavenumber at which the rate of heat transfer is maximised increases

with the Darcy-Rayleigh number.

Keywords: Porous media, Bingham fluid, convection, stagnation, nonlinear onset, fold bifurcation.

I. INTRODUCTION

Free convective motions which are induced by heating a

uniform horiontal layer of fluid from below is known as

Rayleigh-Bénard convection and it is one of the most widely-

studied fluid mechanical problem which involves instability.

Applications of convecting systems of this type, which show

a close relationship with the Rayleigh-Bénard problem, may

be found in nature; these include the modelling of the outer

core of the earth, the presence of granulation on the surface of

the sun, the study of CO2 sequestration and the instability of

evolving dense boundary layers, the modelling of instabilities

in solar ponds, and the description of the mechanisms behind

patterned ground formation. The present paper is concerned

with how the well-known stability properties of the Rayleigh-

Bénard problem are modified when a Bingham fluid saturates

a porous medium.

When the porous matrix is absent, and if the layer of fluid

is uniform in every respect, then the basic state which per-

sists consists of a linear drop in temperature between the up-

per and lower surfaces together with a motionless fluid. Given

that a Bingham fluid requires a finite body force of some kind

(e.g. pressure gradient, buoyancy forces) this means that any

small-amplitude perturbation, such as a local temperature dis-

turbance, will diffuse and decay. Therefore the layer is lin-

early stable. However, it remains possible for large-amplitude

convection to arise and to persist. There are now many authors

who have considered these matters. Because of the absence of

a linear stability theory, the great majority of these authors

have resorted to computational analysis.

In a remarkable pioneering paper Zhang et al.1 performed

energy stability analyses and nonlinear computations in or-

der to provide a comprehensive analysis of what might be

called the Rayleigh-Bénard-Bingham problem. They also de-

rived estimates for the decay rates of disturbances and found

that there is a sudden transition to the zero-flow state as the

Rayleigh number is reduced, which is consistent with the lack

of a linear stability threshold. Later, experimental works were

undertaken by Darbouli et al.2 and Kebiche et al.3 using Car-

bopol solutions to mimic a Bingham fluid. Despite careful ex-

perimental procedures it is clear from these works that certain

important aspects of the theoretical problem are not realised in

the experiments; these include the appearance of an imperfect

bifurcation rather than a fold bifurcation to the strongly con-

vecting regime. In addition, the presence of surface slip due to

having surfaces of different roughnesses may explain quanti-

tative differences between these two experimental works. We

also mention the more recent work by Metivier et al.4. Fur-

ther numerical works by Turan et al.5–7 and Yigit et al.8–10 are

devoted much more to the devising of analytical correlations

for the Nusselt number, and to a presentation of the evolution

of unyielded regions within the cavities.

In the present paper we are concerned with the porous

medium analogue of the Rayleigh-Bénard-Bingham prob-

lem which we shall call the Darcy-Bénard-Bingham problem.

There are very few works which are devoted to the convec-

tive motion of Bingham fluids when they saturate a porous

medium. Most of these are boundary layer flows; see Rees11

for a discussion of these works. A series of four papers by

Rees and Bassom12–15 is devoted to different aspects of one-

dimensional flows and it covers similar ground to works by

Yang and Yeh16, Kleppe and Marner17, Patel and Ingham18,

Bayazitoglu et al.19 and Barletta and Magyari20. Rees21 has

also presented nonlinear computations for convection in a

sidewall-heated cavity and found that the presence of a Bing-

ham fluid means that there is a critical value of the Darcy-

Rayleigh number above which convection arises. The numer-

ical evidence presented there suggests that that critical value

is precisely the product of a suitable-defined porous Bingham

number and the length of the perimeter of the cavity. Here,

we shall find, perhaps not surprisingly in view of the above

brief discussion of the Rayleigh-Bénard-Bingham problem,

that convection needs to be initiated by disturbances with large

amplitude and that the motionless basic state is linearly stable.

To this end we will describe in some detail the numer-

ical scheme which we have adopted. Beginning with the

piecewise-linear model of Pascal22 which shows a thresh-

old pressure gradient, a regularization is introduced in order

to be able to apply standard methods of numerical solution.

These matters are covered in Section 2. In Section 3 we
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present some sample solutions, a detailed weakly nonlinear

analysis of the regularised Pascal model, and numerically-

sourced information about (i) how the presence of the yield

threshold alters the strength of convection, (ii) the value of

the Darcy-Rayleigh number at which convection first appears,

(iii) the range of wavnumbers for which convection exists and

(iv) the wavenumber which maximises the mean Nusselt num-

ber. Some further discussion and conclusions follow in Sec-

tion 4.

II. GOVERNING EQUATIONS

A. Pascal’s law.

The mean speed at which a Bingham fluid moves through

a porous medium depends quite strongly on the microstruc-

ture of the medium. For example, if the porous medium is

composed of parallel tubes or channels, then the well-known

Buckingham-Reiner law (Buckingham23, Reiner24) may be

used to provide one version of what might be termed a Darcy-

Bingham law. There will exist a threshold pressure gradient

above which the fluid flows. Once that threshold is exceeded,

then the dependence of the flow rate on the excess pressure

gradient is quadratic at first, but asymptotes to a linear depen-

dence at larger pressure gradients. Such a dependence was de-

scribed by Bingham25, although he attributed the curved part

of the velocity dependence to leakage in the experiments. The

presence of a distribution of channels softens further the ini-

tial flow rate dependence on the excess pressure gradient; see

Nash and Rees26. Thus it is inferred that there is no definitive

Darcy-Bingham law, but a detailed analysis or set of exper-

iments is required to find the appropriate one for each mi-

crostructure.

However, experimental work by Pascal22, who considered

the unidirectional flow of an isothermal fluid, showed that

Darcy’s law may be modified into a piecewise-linear depen-

dence of the velocity on the applied pressure gradient:

u =



































K

µ

(

−
d p

dx
−G

)

−
d p

dx
> G,

0 otherwise

K

µ

(

−
d p
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+G

)

−
d p

dx
<−G.

(1)

This is shown as the dashed line in figure 1, while the familiar

Darcy’s law for a Newtonian fluid is the continuous line. This

expression is sometimes known as Pascal’s law and the value,

G, is the threshold pressure gradient.

Equation (1) may be seen to serve as a good approximation

to the actual flow/pressure-gradient relationship for a general

porous microstructure except for close to the threshold itself

(Nash and Rees26). Bingham’s original experimental work

(Bingham25) mimics well the Buckingham-Reiner law, where

the discontinuity in slope at the threshold gradient is replaced

by a smooth transition. For reference, we mention that the

• •••• •

Rb

−Rb
•
•◦

•
•◦

−
∂ p

∂x

u

FIG. 1. The dependence of the induced velocity on the applied pres-

sure gradient for Darcy’s law (continuous), the Pascal22 threshold

model (dashed), and our regularized form of the threshold model

(dotted) when c = 5. The black disks represent the range of val-

ues of the pressure gradient for which the medium is stagnant. The

orange disks indicate the corresponding range of velocities for which

the medium is deemed to be stagnant.

threshold gradient may be found easily to be given by

G =
2τ0

h
(2)

when the porous medium consists of identical unidirectional

channels of of width, h (Nash and Rees26), where τ0 is the

yield stress of the fluid, and only quantitative changes are

found when considering uniform pipes with different cross-

sectional profiles.

We shall now assume that it is possible to extend Pascal’s

model to an isotropic two-dimensional form. Presently un-

published work by the present author shows that there is an

anisotropic response of the fluid to changes in the orienta-

tion of an applied pressure gradient for square, triangular and

hexagonal networks of identical channels. All three of these

configurations are isotropic when the fluid is Newtonian, and

therefore our present assumption is that a suitably random net-

work of channels will be required to give an isotropic momen-

tum equation for a Bingham fluid. We shall therefore extend

Eq. (1) to the following two-dimensional form:

(

u

w

)

=























−
K

µ

[

1−
G

(p2
x + p2

z )
1/2

]

(

px

pz

)

if p2
x + p2

z > G2,

(

0

0

)

otherwise,

(3)

which may be seen to be frame-invariant. Given that the

present paper is concerned with the onset of convection, it

is necessary to include buoyancy as another body-force term.
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Subject to the Boussinesq approximation Eq. (3) becomes,

(

u

w

)

=























−
K

µ

[

1−
G

B

]

(

px

pz−ρgβ (T −Tc)

)

if B > G,

(

0

0

)

otherwise,

(4)

where B =
√

p2
x +(pz−ρgβ (T −Tc))2, and where z is the

vertical coordinate. This extension of Eq. (3) to the form

given in Eq. (4) is based on the observation that px and pz

represent the body forces acting in the x and z-directions, re-

spectively, in Eq. (3), while those roles are played by px and

pz −ρgβ (T −Tc), respectively, in Eq. (4). The full set of gov-

erning equations is completed by the equation of continuity,

ux +wz = 0, (5)

and the heat transport equation,

σTt + uTx +wTz = α(Txx +Tzz), (6)

where σ is the heat capacity ratio and α is the thermal dif-

fusivity of the porous medium. The boundary conditions are

that,

w = 0, T = Th on z = 0 and w = 0, T = Tc on z = d,
(7)

and that

u = 0, θx = 0 on both x = 0 and x = Ad, (8)

where A is the aspect ratio of the cavity.

B. Scalings

The aim of the paper is to present computations of the effect

of the presence of a yield stress on nonlinear convection in a

porous layer heated from below. The natural lengthscale is

the height of the layer, d. Consequently we may introduce the

following scalings,

(x,z)→ d(x,z), (u,w)→
α

d
(u,w), p →

µα

K
p, (9)

T = Tc +θ (Th −Tc), t →
σα

d2
t. (10)

The governing equations now take the forms,

ux +wz = 0, (11)

(

u

w

)

=











































−
[

1−
Rb

√

p2
x +(pz−Raθ )2

]

(

px

pz−Raθ

)

if
√

p2
x +(pz−Raθ )2 > Rb,

(

0

0

)

otherwise.

(12)

θt + uθx +wθz = θxx +θzz. (13)

The full nondimensional system is seen to be governed by the

Darcy-Rayleigh and the Rees-Bingham numbers, and these

are,

Ra =
ρgβ KH(Th −Tc)

µα
, Rb =

GKH

µα
. (14)

The latter may be described as a porous thermal Bingham

number because of the presence of the yield threshold, G, the

permeability, K and the thermal diffusivity, α , and therefore

it is an appropriate parameter for describing the effects of a

yield threshold on the convective flow of a Bingham fluid in a

porous medium; see Rees11).

C. Regularization.

Equation (12) is not in a form which is suitable for the ap-

plication of standard numerical methods. Indeed, even in the

unidirectional form given in Eq. (1) it cannot be used to simu-

late Bingham fluid flows because the pressure gradient cannot

be regarded as a single-valued function of the induced flow.

Therefore we choose to regularise Eq. (1) (or rather, its nondi-

mensional version) in order to demonstrate the technique, and

then to apply the same idea to the two-dimensional Eq. (12).

After scaling, (1) takes the form,

u =







−
[

1−
Rb

|px|

]

px if |px|> Rb,

0 otherwise,
(15)

and we may introduce the following regularised form,

u+Rb tanh(cu/Rb) =−px, (16)

where c is the regularization constant. Equation (16) clearly

defines the pressure gradient as a single-valued function of

velocity, and therefore it may be used for computation. Al-

though Eqs. (15) and (16) look quite different, a compari-

son of the two is given in figure 1 where c = 5 has been

used. When c takes larger values than this then the curves

match increasingly closely. Equation (16) replaces the pure

Pascal model by a pseudoplastic fluid with an effective vis-

cosity which is (1+ c)µ when the fluid velocities are small,

and a plastic viscosity which is equal to µ at much higher

rates of flow. It is possible to interpret this regularization as a

velocity-dependent viscosity, just as the Papanastasiou27 reg-

ularization is a shear-stress-dependent viscosity. In this spirit

the isotropic regularization of Eq. (12) is

u
[

1+Rb
tanh(cq/Rb)

q

]

=−px, (17)

w
[

1+Rb
tanh(cq/Rb)

q

]

=−pz +Raθ , (18)
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where q2 = u2 +w2. The pressure may now be eliminated

from between Eqs. (17) and (18) by first introducting the

streamfunction, ψ ,

u =−ψz, w = ψx, (19)

which satisfies Eq. (11), and by cross-differentiation:

∇2ψ +
Rb tanh(cq/Rb)

q3

[

ψ2
z ψxx − 2ψxψzψxz +ψ2

x ψzz

]

+
csech2(cq/Rb)

q2

[

ψ2
x ψxx + 2ψxψzψxz +ψ2

z ψzz

]

= Raθx.

(20)

The fluid speed is now given by,

q2 = ψ2
x +ψ2

z . (21)

The heat transport equation, (13), transforms to the familiar

form,

θt +ψxθz −ψzθx = θxx +θzz. (22)

Finally, the upper and lower boundary conditions are that

ψ = 0, θ = 1 on z= 0; ψ = 0, θ = 0 on z= 1,
(23)

while the sidewall conditions are that,

ψ = 0, θx = 0 on x = 0, A. (24)

We note that the boundary conditions at x = 0,A are also those

which correspond to an internal cell boundary, and therefore

these conditions are representative of an infinitely wide cavity,

and the cavity itself may possibly contain one cell or more.

Given that regularization plays such a central role here, it is

important to comment on two recent papers by Kefayati28,29

which consider thermosolutal convection of a Bingham fluid

in a porous cavity. The regularization used in those papers

is the one by Papanastasiou27 which applies for clear fluids

and which is very different from the present one. In these

two papers it has been assumed that the Darcy-Brinkman-

Forchheimer equations, which correspond to Newtonian flow

in a porous medium, may be modified in the same way as the

Navier-Stokes equations are to account for the presence of a

yield threshold. Thus the diffusion terms are altered from their

Newtonian form to account for the Bingham rheology by the

use of the appropriate form of the stress tensor; see Eq. (2.2) in

Zhang et al.1, for example. Subsequently the Papanastasiou27

regularization is applied to those diffusion terms. One conse-

quence of this is that regions of unyielded flow are not neces-

sarily stationary, something which cannot happen in practice

because of the presence of pores or particles. In other words,

the motion of a Bingham fluid within a porous matrix is dom-

inated by the microstructure of the medium, and the type of

averaging which was used in Nash and Rees26 demonstrates

that the macroscopic effect is the existence of a threshold body

force that modifies Darcy’s law, and not the Brinkman terms.

D. Numerical approximation.

We have used standard second-order accurate central dif-

ferences to approximate Eqs. (20) and (22). The Neumann

conditions for temperature on the sidewalls were approxi-

mated using the fictitious point technique. We employed line-

relaxation alternately in each direction with Successive over-

relaxation (SOR) to converge to the steady state. A small

value (typically 1.2) of the relaxation factor was used to try

to speed up the computations a little, but larger values caused

oscillatory nonconvergence. The original intent was to use

the Full Approximation Scheme multigrid to improve itera-

tive convergence, but it was found that even a two-level imple-

mentation was not always reliable and therefore we elected to

use SOR in all cases even though convergence to the steady-

state was slow when compared with that for a Newtonian fluid.

However, the multigrid code which was developed was used

with just one grid because the presence of a subroutine to com-

pute residuals meant that we could assess the accuracy of so-

lutions in a manner that was independent of the speed of con-

vergence of the iterations. Convergence was deemed to have

taken place once the maximum residual became smaller than

10−5, and this corresponds to about four significant figures in

our computations.

In Eq. (20) the values q2 and q3 appear in the denominators

of two terms, and these could cause round-off error to become

very large when q is small. This possibility was circumvented

by the use of a Taylor’s series approximation to the tanh and

sech2 terms whenever q < 10−3. In such cases we used the

following version of Eq. (20),

[

1+ c

{

1−
1

3

( cq

Rb

)2

+
2

15

( cq

Rb

)4

−
17

315

( cq

Rb

)6

+
62

2835

( cq

Rb

)8

+ · · ·

}]

∇2ψ

+
c3

Rb3

[

−
2

3
+

8

15

( cq

Rb

)2

−
34

105

( cq

Rb

)4

+
496

2835

( cq

Rb

)6

+ · · ·

]

×
[

ψxxψ2
x + 2ψxψzψxz +ψzzψ

2
z

]

= Raθx,

(25)

which provides a smooth transition between the small-q and

large-q cases in double precision Fortran.

We used a uniform NX× NZ grid and the step length in

each direction was 1/64 in all of our computations. Therefore

NZ= 64 in all cases, while the cavity aspect ratio (A = NX/NZ)

could then be varied by taking different values of NX. We

found that this amount of resolution was more than adequate

for cases where Ra ≤ 150. As in Rees21 a detailed study was

undertaken to determine how large a value could be used for

the regularization constant, c. For the present grid we found

that c = 30 always worked well. Smaller values gave slightly

different overall rates of heat transfer, while larger values

yielded convergence difficulties. One of the main conclusions

made in the Appendix of Rees21 is that larger values of c may

only be used reliably with a finer grid.
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III. RESULTS AND DISCUSSION

A. Some flow patterns and isotherms

We shall set the context for the rest of the paper by present-

ing typical streamlines and isotherms for strongly nonlinear

convection.

Figure 2 illustrates how increasing values of Rb affects

convection within a square cavity when Ra = 150. For a

Newtonian fluid this value of the Darcy-Rayleigh number is

just below 4Rac (i.e. 16π2), and therefore the flow is suf-

ficiently strong that the isotherms bend into a distinctive S-

shape. When Rb = 2, the yield threshold is sufficiently weak

that the streamlines (continuous) and isotherms (dotted) are

hardly affected. Nevertheless, there is a small region of stag-

nation in the very centre of the cell which is shaded in orange.

The boundary of this region corresponds to that fluid speed, u,

which is the solution of Eq. (16) with px =±Rb, i.e.

u+Rb tanh(cu/Rb) =±Rb. (26)

The distance of the orange disks from the u= 0 axis in figure 1

show the range of values of u which are deemed to be stagnant

from the point of view of plotting streamlines. Given that this

is a region of stagnation, both the normal and tangential ve-

locities at its edge will be zero, and hence the derivative of

the streamfunction in the direction perpendicular to that edge

will also be zero; this may be seen by the increasing distance

between the streamlines as the stagnant region is approached.

As Rb increases, the resistance to flow also increases. One

by-product of this is an increase in the size of the central stag-

nant region. Another is the emergence of stagnant regions in

all four corners of the cavity. Accompanying this is a weaken-

ing of the flow; this cannot be seen in figure 2 by an inspection

of the streamlines because 20 equally-spaced intervals have

been used in each subfigure, but it may be inferred by the de-

creasing deformation of the isotherms. Some numerical data

corresponding to figure 2 are given in Table 1 where we define

the circulation and the Nusselt number to be

Q = |ψ |max, Nu =
1

A

∫ A

0

∂θ

∂ z
(z = 0)dx, (27)

and hence a pure conduction solution corresponds to Q = 0

and Nu = 1 independently of the aspect ratio of the cavity.

Table 1 shows clearly how both Q and Nu decrease as Rb in-

creases.

For a square cavity and for Ra = 150, the flow correspond-

ing to Rb = 11 represents the largest integer value of Rb for

which a convecting solution may be attained. As Rb increases

slowly from 11, the flow continues to decrease in strength, but

there is a value of Rb beyond which there is a dramatic col-

lapse to the state of no flow — this will be discussed later. In

other contexts, such as the sidewall-heated cavity discussed in

Rees21, there is instead a continuous reduction in the strength

of the flow down to zero with an accompanying increase in the

proportion of the cavity which is stagnant. In this latter sce-

nario, the flow pattern which exists when Rb is just below its

critical value consists of a narrow but weak circuit of moving

fluid around the boundary of the cavity.

TABLE I. Computed values of Q and Nu for Ra = 150 and k = π
for the given values of Rb. Cases shown in red correspond to those

presented in figure 2.

Rb Q Nu

0 7.380 3.358

1 7.021 3.280

2 6.676 3.199

3 6.331 3.113

4 5.985 3.022

5 5.637 2.925

6 5.284 2.822

7 4.925 2.712

8 4.556 2.591

9 4.165 2.452

10 3.724 2.298

11 3.146 2.076

TABLE II. Computed values of Q and Nu for Ra = 150 and Rb = 5

for nine different aspect ratios. Cases shown in red correspond to

those presented in figure 3.

A NX Q Nu k/π
1/2 32 3.042 2.420 2
5/8 40 4.160 2.859 8/5

3/4 48 4.843 2.967 4/3

7/8 56 5.318 2.971 8/7

1 64 5.637 2.925 1
9/8 72 5.838 2.846 8/9

5/4 80 5.949 2.743 4/5

11/8 88 5.973 2.617 8/11

3/2 96 5.917 2.464 2/3

Figure 3 shows the effect of having three different

wavenumbers when Ra = 150 and Rb = 5. The effect of this

changing aspect ratio is small, at least visually. The central

slightly elliptical stagnant region changes its orientation, al-

though it increases its size very slightly as the aspect ratio in-

creases. The degrees of deformation of the isotherms appear

not to change greatly and therefore another set of data are pro-

vided in Table 2 which shows how Q and Nu vary with aspect

ratio. In this Table we see that both the circulation and the rate

of heat transfer first increase with A, but then achieve a max-

imum and decrease subsequently. This is a property which is

shared by a Newtonian fluid.

B. Weakly nonlinear analysis

The aim of this subsection is to consider in detail the linear

and weakly nonlinear theories of the onset of convection using

the regularised Pascal model; this will provide an important

context for the rest of the paper.

When the velocities are small then the tanh and sech2 terms

in Eq. (20) may be replaced by their Taylor’s series approx-

imations; only the first two terms need to be retained here

in order to achieve the following weakly nonlinear analysis.
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1

Rb = 2

1

Rb = 5

1

Rb = 11

FIG. 2. Showing the streamlines (continuous) and isotherms (dashed) for a unit square with Ra = 150 and c = 30, and for Rb taking the

indicated values. The stagnant regions are shaded in orange. Both the streamlines and isotherms are plotted using 20 equal intervals between

their respective extrema; this convention also applies to Fig. 3.

 

A = 3/4

 

A = 1

 

A = 3/2

FIG. 3. Showing the streamlines (continuous) and isotherms (dashed) for Ra = 150, Rb = 5 and c = 30, and for the indicated cavity aspect

ratios.

Thus Eq. (20) may be replaced by

(1+ c)∇2ψ −
c3

3Rb2

[

ψ2
x +ψ2

z

]

∇2ψ

−
2c3

3Rb2

[

ψxxψ2
x + 2ψxψzψxz +ψzzψ

2
z

]

= Raθx.

(28)

while Eq. (22) remains unchanged. We expand in the usual

way:

(ψ ,θ ) = (0,1− z)+ ε(ψ1,θ1)+ ε2(ψ2,θ2)+ · · · , (29)

where

Ra = Ra0 + ε2Ra2 + · · · , (30)

and where the O(1) terms in Eq. (29) represent the motionless

conduction state whose stability is being analysed. We shall

also replace t by 1
2
ε2τ , a slow time scale, where the 1/2 is

present for numerical convenience.

At leading order we have,

(1+ c)∇2ψ1 −Ra0θ1x = 0, (31)

∇2θ1 +ψ1x = 0. (32)

The solution of this system will be taken to be the onset mode

which minimises the critical Darcy-Rayleigh number:

ψ1 =
2

π
Asinπxsinπz, θ1 =

1

π2
Acosπxsinπz, (33)

and

Ra0 = 4(1+ c)π2, (34)

where A = A(τ) and where the constants have been chosen so

that all the terms in the resulting amplitude equation have unit

coefficients when the fluid is Newtonian. The solutions given

in Eq. (33) have a horizontal wavenumber which is equal to

π , and therefore each cell occupies a unit square.

At second order in ε we have the equations,

(1+ c)∇2ψ2 −Ra0θ2x = 0, (35)

∇2θ2 +ψ2x =
1

π
A2 sin2πz. (36)

The solution is

ψ2 = 0, θ2 =−
1

4π3
A2 sin2πz. (37)

At third order the equations are

(1+ c)∇2ψ3 −Ra0θ3x = −
( 1

π
Ra2A+

20c3

3Rb2
A3
)

cosπxsinπz

+ nonresonant terms

≡ R1,
(38)
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∇2θ3 +ψ3x =
1

2π2

(

Aτ +A3
)

cosπxsinπz

+ nonresonant terms

≡ R2,

(39)

where R1 and R2 are defined to be the respective right hand

sides of Eqs. (38) and (39). A solvability condition may be

applied and it may be written in the form,

∫ 2

0

∫ 1

0

[

ψ1R1 +Ra0θ1R2

]

dzdx = 0. (40)

Application of this condition yields the amplitude equation,

(1+ c)Aτ = Ra2A−
[

(1+ c)−
10π2c3

3Rb2

]

A3. (41)

Thus when c = 0, the Newtonian case, the above reduces to

Aτ = Ra2A−A3, (42)

and therefore the onset of convection is clearly supercritical

because the coefficient of A3 is negative. When c ≫ 1 in

Eq. (41) the coefficient of A3 is positive, and therefore the

onset of convection is subcritical. The transitional case arises

when the coefficient of A3 is zero. This happens when

Rb =

√

10

3

π2c3

(1+ c)
. (43)

If we choose Rb = 5 as a representative value then the transi-

tion between supercritical and subcritical onset occurs when

c = 1.183954. The form taken by the Landau equation given

in (41) is identical to that derived by Balmforth and Rust30 in

their analysis of a weakly viscoplastic Bénard problem.

Although we shall be presenting representative nonlinear

computations in the next subsection, figure 4 displays how the

variation of Q with Ra varies as the regularization constant

increases from zero. This case uses Rb = 5.

When c = 0 the fluid is Newtonian and the bifurcation from

the zero-flow state takes place at Ra = Rac = 4π2. The bifur-

cation is supercritical, and Q begins to rise in a manner which

is proportional to (Ra− Rac)
1/2. As c increases from zero,

the value of Ra at which onset takes place also increases and

it does so in a manner which is given precisely by the value

for Ra0 given in Eq. (34). When c = 1.25 the computed so-

lution curve terminates above the Q = 0 axis, which is above

the value of 1.183954 that marks the transition from the bifur-

cation being supercritical to being subcritical when Rb = 5.

Thus we infer that there will be a solution branch correspond-

ing to unstable solutions which connects the fold bifurcation,

marked by the black disk, and the point of subcritical onset,

marked by the circle. The dashed line is a sketch of the quali-

tative shape taken by that unstable solution branch.

As c increases still further, we see that the stable solution

branches and the turning points converge towards a limit (al-

though we also have the aforementioned convergence diffi-

culties when c takes values which are too large). Clearly,

the value of Ra at linear onset becomes infinitely large as

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

1

2

3

4

5

6

7

ο οο οο οο οο οο οο οο ο

•

••

•• •••••

Ra

Q

c = 0
0.1
0.25

0.5
0.75

1.0

1.25

1.5

FIG. 4. The variation of Q with Ra for different values of the regu-

larization constant, c. The aspect ratio of the cavity is A = 1. Con-

tinuous lines correspond to steady nonlinear solutions while dashed

lines display cubic curves which have been fitted between the turning

point (black disks) and the point of linear onset (circles) in order to

illustrate the qualitative shapes of the unstable solution branches.

c→∞, and thus the depth of subcriticality also increases with-

out limit. The evidence adduced so far suggests that the pure

Pascal model gives rise to two solution branches, neither of

which touches the line Q = 0. The use of an entirely different

numerical scheme, one which can compute unstable branches,

will now need to be used to confirm this conclusion defini-

tively.

C. Nonlinear convection

The streamline and isotherm patterns which have been

shown in figure. 2 and 3 are representative of all cases for

which Ra ≤ 150. There are no cases for which a gradual re-

duction in the value of Ra or a gradual increase in Rb will lead

to a smooth approach to full stagnation. Therefore we shall

not present further figures of this kind. Rather, we shall con-

centrate on the determination of how the Nusselt number, in

particular, varies with the governing nondimensional parame-

ters, Ra, Rb and A (or the equivalent wavenumber, k). In prac-

tice it is difficult to find suitable profiles for initial iterates near

the fold bifurcation, and therefore our general procedure was

first to compute a solution either for a large value of Ra or for

a small value of Rb, and then either to reduce Ra or to increase

Rb gradually, and by taking the previously-computed solution

as the initial iterate for the next. The increments in these pa-

rameters were chosen so that the change in Nu was controlled,

and therefore the fold bifurcations could be approached quite

closely. The locations of these points were then obtained a

posteriori by fitting a suitable quadratic to the final three data

points.

Figure 5 shows how both Q and Nu vary with Ra for some
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FIG. 5. Variation of Q and Nu with Ra for Rb = 0, 0.25, 0.5, 1, 2, · · ·
10, with c = 30 and A = 1. The dashed line corresponds to Rb = 0.5
and the dotted line to Rb = 0.25. The bullets on the Rb = 0 curve

show the individual computations.

chosen values of Rb within a square cavity. For a fixed value

of Rb both quantities increase with Ra because of the increas-

ing buoyancy forces, while for a fixed value of Ra both de-

crease as Rb increases because of the decreasing ability of

buoyancy to overcome the yield threshold. We also find that

the value of Ra at which strongly nonlinear convection ap-

pears also increases with increasing values of Rb, and the vari-

ation of this critical value of Ra is shown in figure 6. This

line is the locus of the fold bifurcation in (Rb,Ra)-space for a

square cavity. We also see that it approaches 4π2 as Rb → 0,

which is the Newtonian limit. In this Newtonian limit, the

strength of the flow which corresponds to the fold bifurca-

tion also decreases towards zero; this is illustrated in figure 7

which displays the Nusselt number as a function of Rb. Here

Nu → 1 as Rb → 0.

0 2 4 6 8 1 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0 •

••

••

••

••

••

••

••

••

••

••
••

•

Rb

Ra

Conduction

Convection

FIG. 6. Showing the variation with Rb of the value of Ra above

which strongly nonlinear convection exists. The cavity has a unit

aspect ratio. Black disks indicate the computed data points.

0 2 4 6 8 1 0
1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

1 . 8
•

••
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••
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••

••

••

••

••

••

••

•
Rb

Nu

FIG. 7. Showing how the Nusselt number corresponding to flow at

the fold bifurcation varies with Rb.

Finally we relax the restriction of having a cavity with a unit

aspect ratio. For three different values of Rb figure 8 shows

how Nu varies with wavenumber for chosen values of Ra; in

all of these computations the cavity contains only one cell and

therefore the wavenumber satisfies, k = π/A.

We concentrate first on the Newtonian case, Rb = 0. These

curves are in very close agreement with those obtained by the

present author using a spectral method, and this provides some

further corroboration that the present code is error-free. For

Ra= 100 the present computation also gives very good agree-

ment with the curve shown in de la Torre Juárez and Busse31.

For each value of Ra there is a wavenumber which maximises

the rate of heat transfer, a fact which is consistent with the

stability analysis of Straus32 in which the range of wavenum-

bers for which convection is stable also drifts towards larger

wavenumbers as Ra increases.
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FIG. 8. Variation of Nu with wavenumber, k, for the given values of

Ra = 150, 140, 130, 120, · · · . The disks on the curves represent each

computation undertaken. The dotted line indicates the maximum rate

of heat transfer. The single black disks represent the first appearance

of nonlinear convection as Ra increases.

It is interesting to note that, as the wavenumber increases,

we were able to compute values of Nu all the way to when

convection ceases according to linearised theory. However, as

the wavenumber decreases, the curves terminate before reach-

ing Nu = 1 because the computed flow then becomes unsta-

ble to disturbances with three times the wavenumber, a mode

shape which shares the same symmetries as the one-cell solu-

tions and which is also present as a component of the one-cell

solution.

When Rb takes nonzero values we see again and imme-

diately that the strength of convection decreases but that

the value of Ra above which nonlinear convection exists in-

creases. Given our earlier weakly nonlinear analysis, the

curves shown for Rb = 2 and Rb = 5 cannot reach the Nu = 1

line and therefore there will be unstable branches like those

shown in figure 4 when c is large. Together with the displayed

stable branches these will form a closed loop. The detailed be-

haviour of such loops for small wavenumbers may perhaps be

complicated by the instability described in the previous para-

graph, but for cases such as Rb = 5 and Ra = 90 (see figure 8)

the loop will be close to being elliptical in shape.

For both Rb = 2 and Rb = 5, the maximum rate of heat

transfer is again attained for an increasing wavenumber as Ra

increases. However, as Ra decreases, the optimum wavenum-

ber returns to being at least quite close to π . The solitary black

disks represent an extrapolation back to when nonlinear con-

vection first appears as Ra increases; this may be regarded as

a nonlinear isola point.

IV. CONCLUSIONS

When a yield stress fluid saturates a porous medium and

when a uniform layer of such a porous medium is heated from

below, then the presence of an O(1) yield threshold means that

the no-flow conducting state is linearly stable. The weakly

nonlinear analysis of the regularised Pascal model also sug-

gests strongly that the solution curves for the convection of a

pure Bingham fluid will, for sufficiently small values of the

Darcy-Rayleigh number, be comprised of two branches, one

stable and one unstable, and that convection first appears as a

strongly convecting motion via a fold bifurcation.

Clearly, if Rb takes any positive value no matter how small,

then formally the basic state remains linearly stable and will

remain so in the Newtonian limit as Rb → 0 even though

the Newtonian Darcy-Bénard problem itself does undergo

linear instability. The resolution of this apparently singu-

lar behaviour is that the point of nonlinear onset approaches

Ra = 4π2 as Rb → 0 (see figure 6), and that the correspond-

ing amplitude of convection tends to a zero limit (see figure 7

where Nu → 1, which is characteristic of conduction rather

than of convection).

At this stage it is not known how the steady two-

dimensional flows presented here will undergo their sec-

ondary bifurcations. For a Newtonian fluid, Straus32 quotes

Ra = 380 ± 5 as the Darcy-Rayleigh number above which

no steady two-dimensional flow is stable. This corresponds

to a cross-roll instability and it is assumed that the resulting
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pattern will then be three-dimensional. At this limit of sta-

bility the wavenumber may be estimated to be roughly 8.1
from figure 4 in Straus32, as compared with π at onset. Given

that the presence of a yield threshold serves to reduce the

magnitude of convection it may be predicted that steady two-

dimensional Darcy-Bingham-Bénard convection may remain

stable to small-amplitude disturbances at larger values of the

Darcy-Rayleigh number. However, the later analysis by Ri-

ley and Winters33 found that steady two-dimensional convec-

tion with k = π loses its stability at a Hopf bifurcation when

Ra = 390.7, a value which is very close to that of Straus, but

with a very different wavenumber. Riley and Winters33 also

show that it is possible to have unsteady flow when Ra is as

small as roughly 250 when A = 2.5 (i.e. k = 1.26); this ap-

pears not to be the result of a linear instability of a steady

state, but was determined by the use of a curve-tracking al-

gorithm and therefore will be realised in practice via a large-

amplitude perturbation of a steady convecting state. We think

it highly unlikely that the presence of a Bingham fluid can in-

duce a persistently unsteady convection when Ra ≤ 150 given

that the yield threshold serves to reduce the effectiveness of

buoyancy forces to cause convective flow.
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