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ABSTRACT
Spatial models of density and abundance are widely used in both ecological research
(e.g., to study habitat use) and wildlife management (e.g., for population monitoring
and environmental impact assessment). Increasingly, modellers are tasked with
integrating data from multiple sources, collected via different observation processes.
Distance sampling is an efficient and widely used survey and analysis technique.
Within this framework, observation processes are modelled via detection functions.
We seek to take multiple data sources and fit them in a single spatial model. Density
surface models (DSMs) are a two-stage approach: first accounting for detectability
via distance sampling methods, then modelling distribution via a generalized
additive model. However, current software and theory does not address the issue of
multiple data sources. We extend the DSM approach to accommodate data from
multiple surveys, collected via conventional distance sampling, double-observer
distance sampling (used to account for incomplete detection at zero distance) and
strip transects. Variance propagation ensures that uncertainty is correctly accounted
for in final estimates of abundance. Methods described here are implemented in the
dsm R package. We briefly analyse two datasets to illustrate these new developments.
Our new methodology enables data from multiple distance sampling surveys of
different types to be treated in a single spatial model, enabling more robust
abundance estimation, potentially over wider geographical or temporal domains.

Subjects Statistics, Natural Resource Management
Keywords Density surface model, Distance sampling, Generalized additive model, Spatial
modelling, Variance propagation, Abundance estimation

INTRODUCTION
As ecological data are amassed over time, the job of the modeller becomes increasingly
difficult. Faced with a large number of potentially useful datasets from multiple surveys
with different field protocols, the question becomes “how can I include all this
information?” Methods to address this kind of question should be clear in their
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asssumptions and implications as well as having easy-to-use software implementations
using methodological frameworks that researchers are familiar with. In this paper we
attempt to address this problem for the case of spatially-explicit abundance estimation
from distance sampling data.

Spatially-explicit estimates of abundance are used for a variety of purposes in
conservation and ecological settings. Distance sampling-based techniques (Buckland et al.,
2001) are extremely popular ways of estimating abundance or density of biological
populations. As techniques have advanced, methods have been developed to incorporate
spatial information (e.g., environmental covariates) (Hedley & Buckland, 2004; Johnson,
Laake & Ver Hoef, 2010; Yuan et al., 2017), moving towards model-based, spatially-explicit
abundance estimates. One approach is density surface modelling (DSMs; Hedley &
Buckland, 2004; Miller et al., 2013), which combine detectability information using
standard distance sampling methods with a spatial model using the generalized additive
modelling framework (Wood, 2017). DSMs have been used to obtain abundance estimates
for populations where the individuals are not uniformly distributed over the study area
(Harihar, Pandav & MacMillan, 2014), to inform spatial planning in impact assessments
(Winiarski et al., 2014, 2013) and to mitigate negative impacts of military operations
(Roberts et al., 2016).

Currently DSMs are most often applied to data from a single survey with a single
detection function, sometimes using one or more covariates to model variation in
detectability (multiple covariate distance sampling, MCDS; Marques & Buckland (2004)).
Here we extend these models to the case where we have detection functions that account
for missing observations at zero distance (mark-recapture distance sampling, MRDS;
Burt et al. (2014)) and where it is necessary or desirable to integrate data from multiple
surveys (hereafter, platforms) into one model. This could simply be because each
available dataset is limited in its spatial or temporal extent. Modellers may also find it
preferable to include data in a single spatial model rather than attempting model averaging
over several smaller models.

Essentially we wish to combine different observation processes, modelled in different
ways via one spatial model. Integrating these different observation processes is currently
possible via related fully Bayesian approaches (e.g., Sigourney et al., 2020), though these
may require considerable time investment in terms of both understanding and fitting the
model.

We envisage several possible situations where this kind of approach will be useful
(though we note this list is non-exhaustive):

1. Combining data from multiple distance sampling surveys. These may have used
different platforms, different observers or other factors which change the form of the
detection process. For example, Roberts et al. (2016) combined 23 years of cetacean
observations, some surveys were aerial and others ship-based; altitudes, observer
positions and weather/sea conditions differed between surveys, leading to a number of
detection models.
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2. A single survey where different field methods are used for different behaviours of the
animal. For example seabirds-at-sea (SAS) protocols (e.g., Tasker et al., 1984;
Camphuysen et al., 2004), where distances are recorded to birds detected on the water,
whereas birds detected in flight are recorded using a strip transect methodology
(assuming detection is certain out to some distance). Another example is the case where
distances were usually recorded, but when observers were overwhelmed in high density
areas, they switched into a strip transect mode to ensure all animals were recorded
(Clarke et al., 2020).

3. When both point and line transect surveys have been used to survey a species and these
need to be combined into one spatial analysis. For example combining camera trap
distance sampling (Howe et al., 2017) with conventional line transect surveys.

4. Combining mark-recapture distance sampling and conventional distance sampling
survey data.

In this article, we show how data can be integrated from the above situations by
combining multiple observation models (detection functions) to build one
spatially-explicit abundance model that accounts for varying detectability conditions.

MATERIALS AND METHODS
Density surface modelling
Density surface models (DSMs) are a two-stage approach where the first stage of the model
is to estimate the observation process and then in the second stage uses the estimated
detectability in a spatial model of abundance. The observation process is modelled using a
detection function (Buckland et al., 2001), which is estimated using the distances from the
line or point transect to the detections. The detection function models the decrease in
probability of detection with increasing distance, potentially including the effects of
covariates such as sea state or weather. Once the detection process is modelled, the
detectability can be estimated unconditional of distance from the observer (by integrating
distance out of the detection function; Buckland et al. (2001)).

The detectability of objects subsequently contributes to an offset in a spatial model
of the counts. For line transects, counts are aggregated in small line sections called
segments (Miller et al., 2013); for point transects, counts are aggregated to the points
(which we also refer to as segments for brevity). The counts are assumed to come
from some count distribution and are modelled (on the link scale) as a sum of flexible
smooth functions of environmental and spatial covariates (such as location, sea surface
temperature, bathymetry, etc) as part of a generalized additive model (GAM; Wood
(2017)). The linear predictor for the model includes an offset term consisting of the
product of the area of the segment and the detectability in that segment (this product
can be thought of as an “effective area”, analogous to the “effective strip width” or “effective
radius” used in line/point transect distance sampling). The DSM can be written as:

E nijβ; λ; pðθ̂; ziÞ
h i

¼ aipðθ̂; ziÞ exp b0 þ
X
m

fmðximÞ
 !

; (1)
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where ni, the number of individuals in segment i (of area ai), follows some flexible
count distribution such as Tweedie or negative binomial (where above we assume a
log link). pðθ̂; ziÞ is the detection probability for objects in segment i, with detection
covariates zi which vary by segment (we refer to aipðθ̂; ziÞ as the offset). The fm are
smooth functions of environmental covariates, xim, represented by a basis expansion
(i.e., fmðxÞ ¼

P
j bjbjðxÞ for some basis functions bj) penalized by a (sum of) quadratic

penalty (or penalties); β0 is an intercept term, included in parameter vector β; λ is a vector
of smoothing parameters which control the wiggliness of the smooth components of
the model (Wood, 2017). We may also include unpenalized terms in the model, as we
would in a generalized linear model.

In practice, these models can be fitted using the R packages Distance (Miller et al.,
2019) for simple detection function fitting and dsm (Miller et al., 2013) for spatial
modelling. dsm uses the mgcv package to fit GAMs using restricted maximum likelihood
(REML).

One might be tempted to extend the above model to multi-platform data by using
one detection function with a categorical covariate controlling for differences in platform
(e.g., a factor for boat/plane). This approach makes the assumption that the same detection
function form was used for all data (e.g., that all data originated from a detection
process that was hazard-rate in shape), which is unlikely to be realistic when there are
different platforms (e.g., when combining aerial and shipboard surveys). Moreover, such
an approach does not address when one of the surveys is a strip transect with detection
assumed to be perfect, nor when there are multiple MRDS detection functions present.

Multi-detection function density surface modelling
We wish to build models that include data from multiple platforms. Platforms include:
physically different surveys conducted via different means (e.g., aerial and shipboard, or
surveys taking place at different times), different survey protocols taking place in the
same survey (e.g., in SAS, birds on the water via line transect vs. those flying via strip
transect) or some combination of these.

Each platform has a different detection function, which we index by k = 1, …, K.
We index segments associated to a given platform (k) by jk = 1, …, nk. For each platform
we have a different corresponding probability of detection, derived from that detection
function’s parameters (θk) and covariates (zjk). We then write the detectability as pk(θk; zjk)
for an observation in segment j using detection function k. For strip/plot transects, we
assume perfect detection, so pk(θk; zjk) = 1. Once we have fitted detection functions and
estimated pkðθ̂k; zjkÞ, we can then fit model (1) as:

E njk jβ; λ; pkðθ̂k; zjkÞ
h i

¼ ajkpkðθ̂k; zjkÞ exp b0 þ
X
m

fmðxm;jkÞ
 !

; (2)

where notation is as in (1) with the addition that xm, jk indicates the value of covariatem in
segment j for platform k.
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In the case where different survey protocols are used simultaneously (e.g., during a
seabird survey from a ship, when birds on the water are recorded using distance sampling
and birds in flight are recorded simultaneously using plot sampling), we treat each as a
separate platform. In this case, the segment data are duplicated, so we have one copy
for each platform (e.g., in the previous scenario, with n1 segments we analyse 2n1 segments
in total, n1 for birds on the water and n1 for flying birds). Examples of doing this in practice
are given in Supplementary Material B.

Differing density by platform/observation type
Including multiple platforms as in (2) assumes that any differences in observed counts are
a result of detectability alone and that mean density does not differ between the two
platforms. This may be unrealistic, especially when surveys were conducted from
different platforms at different times (e.g., seasonal surveys) or when platforms operate
simultaneously but record animals in differ behavioural states (e.g., SAS). A simple
adaptation to model (2) would be to include a per-platform intercept, βk:

E njk jβ; λ; pkðθ̂k; zjkÞ
h i

¼ ajkpkðθ̂k; zjkÞ exp bk þ
X
m

fmðxm;jkÞ
 !

: (3)

Model (3) assumes that the density only shifts the intercept via βk and has no effect
on the fms, which may be overly restrictive. We can extend our model using the
hierarchical GAM framework (Pedersen et al., 2019) to allow the smooth parts of the
model to vary by platform (factor-smooth interactions). We allow information to be
shared between these smooths, such as how wiggly they are (shared smoothing
parameters) or that they have similar shapes (smoothing towards a global term). To do so,
we extend (2) as:

E njk jβ; λ; pkðθ̂k; zjkÞ
h i

¼ ajkpkðθ̂k; zjkÞ exp b0 þ
X
m1

fm1ðxm1;jkÞ þ
X
m2

fm2ðxm2;jk ; kÞ
 !

; (4)

where the m1 smooths are as in (3) and m2 are factor-smooth interactions. Using a spatial
smooth (f(x, y)) as an example, we can then fit a spatial smooth for each platform: we
have f(x, y, k) for k = 1,…, K. We may choose a subset of terms in the model that seemmost
likely to vary by platform or, include all terms as factor-smooths. Pedersen et al. (2019)
enumerate all the models possible under this framework.

Incomplete detection at zero distance and availability
A fundamental assumption of distance sampling is that objects at zero distances are
observed with certainty: that is, g(0) = 1 if g is the detection function (Buckland et al.,
2001). In one approach to dealing with a violation of this assumption, two observers (or
teams of observers) can be used to set-up a capture-recapture experiment where the
probability of observing an animal at zero distance is estimated by considering one
observer as setting-up trials for the other when animals are detected (mark-recapture
distance sampling; MRDS). Using this approach we estimate g(0; zg(0), θg(0)) where θg(0) are
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parameters specifically for the estimation of g(0) and zg(0) are (optional) covariates. Burt
et al. (2014) give details of models for g(0; θg(0)). Here we consider only the independent
observer mode of MRDS where each observer’s detections are trials for the other.

Including MRDS models into the DSM framework is simply a case of using g(0; θg(0)) as
an additional multiplier on the detection probability in the offset. We re-write pðθ̂; ziÞ in
model (1) as the product gð0; θgð0ÞÞpðθ̂; ziÞ. Accordingly we can index the MRDS model
with k and include it as one of our multiple surveys in models (2), (3) or (4).

As we will see below, we can also account for animals not being available to be detected
(e.g., due to diving behaviour) in our models by using an estimate from other sources
(such as tag data) and including this in the same way as g(0). For now we assume that
the estimate of availability is independent of the surveys (i.e., data were collected at a
different time, using different methods, perhaps in a different area) and therefore that we
can add the squared coefficient of variation to the DSM’s to obtain a total uncertainty on
our abundance estimates. Availability estimates can be specified at the segment level, so
can vary between platform (see below).

Strip and plot sampling
If we assume that all objects within a given distance of the sampler are detected with
certainty, we have strip or plot transects (as analogues to line and point transects). Strip
transects are common when video/photo surveys are conducted from planes or drones,
so detectability is not an issue or, when the truncation distance is sufficiently small that
it is believed that all objects will be detected. In this case we simply replace the pðθ; ziÞ in
model (1) with one.

Variance estimation

Each fitted detection function included in the DSM has its own covariance matrix for
that model’s parameters. If we assume independence between the detection functions,
we can create a joint covariance matrix as a block diagonal matrix with each block
representing one of the K platforms: Vθ = diag(Vθ1, Vθ2, …, VθK), where Vθk is the
covariance matrix for the parameters of the detection function for platform k. When a
strip/plot transect is used there is no corresponding θk and therefore no uncertainty, so it
does not appear in Vθ.

If we are willing to assume independence between the detection function and spatial
model, we could apply the delta method (Seber, 1987) to combine the detection function
and GAM variances. The delta method is unappealing if there are implicitly spatial
covariates in the detection model (e.g., wind speed varies in space) as there will be non-zero
covariance between those model components. Instead we can adapt the variance
propagation approach of Bravington, Miller & Hedley (2021) to include multiple detection
functions. This approach uses a quadratic approximation to the detection function in a
refit of the spatial model to adjust the detectability estimates in light of the additional
spatial information from the GAM covariates. The quadratic adjustment takes the form of
a random effect with mean zero and covariance matrix Vθ, so the detection function
uncertainty is included in the final variance estimate. In this way Vθ can be plugged-in to
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the variance propagation method of Bravington, Miller & Hedley, 2021 and a posterior
covariance matrix for all model components (Vβ, θ) can then be estimated. Note that the
assumption of independence is made a priori but the variance propagation procedure
can estimate the off-diagonal elements of Vβ, θ. In the next section we show how this
uncertainty about the model parameters can be applied to the uncertainty in abundance
estimates.

Estimating abundance and its variance

DSMs are most often used to provide estimates of abundance over the study area (or some
subset(s) of it), which are calculated as sums of predictions over grids (Miller et al., 2013).
We can express this in matrix form as N̂ ¼ a expXpβ, where a is a row vector of grid
cell areas, Xp is the matrix that maps model coefficients to predictions (a design matrix for
the predictions) and β̂ are the estimated GAM parameters.

To calculate the uncertainty in estimates of N̂ , we can use posterior sampling
(sometimes referred to as parametric bootstrapping), using the procedure outlined in
(Wood, 2017, Section 7.2.6). We use the posterior distribution of β to generate possible
abundance estimates, then calculate appropriate summary statistics. The following
algorithm can be used:

1. Calculate the matrix Xp using the model and prediction grid.
2. For b ∈ {1, …, B}:

a) Generate new model parameters β�b.

b) Calculate the new linear predictor η� ¼ Xpβ
�
b for each prediction cell.

c) Calculate predictions on the response scale N̂�
b ¼ a expXpβ

�
b.

d) Store N̂�
b for this iteration.

3. Calculate empirical variance and mean of the B stored N̂�
b values.

The posterior distribution of β is approximately multivariate normal with mean β and
varianceVβ, θ. To sample from this distribution we can directly sample using a multivariate
normal random number generator, but may obtain better results by avoiding this
assumption and using the Metropolis–Hastings algorithm to sample from the model
posterior (such a sampler is provided as part of the package mgcv, see Supplementary
Material B for an example of its use).

This method is extremely general. For example, we can extend this algorithm to
calculate per-cell estimates by calculating per-cell abundances at 2.(c) above. A more
complex example is when we include βk in the model as in (3). In this case we are assuming
that although the study area is the same, the densities are different for the different
platforms. When making predictions we predict for each platform (k = 1,…, K) then sum
these per-platform predictions.

Software implementation
The above methods are implemented in the R package dsm version 2.3.1 (Miller et al.,
2021), available on CRAN. Detection functions can be fitted using the R packages
Distance version 1.0.2 (Miller et al., 2019) or mrds version 2.2.4 (Laake et al., 2020).
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The software implementation puts some requirements on the data. Specifically, one must
be able to identify each observation as being from a particular platform and therefore
detection function. The same must be true for the segments. Examples of data setup are
available as part of Supplementary Material B.

Example data
We give two brief examples illustrating the above method. In the first example we
combined two different platforms. The second example explores the use of models (3) and
(4). We have included the code to run these examples in Supplementary Material B and
data is available at the following DOI 10.5281/zenodo.5116140.

Multiple surveys with uncertain detection on the trackline-fin whales
These data consist of observations of fin whales (Balaenoptera physalus) as part of NOAA’s
Atlantic Marine Assessment Program for Protected Species. Data were collected during
two distance sampling surveys: one shipboard (requiring adjustment for g(0)) and one
aerial (requiring an adjustment for availability and g(0)). The left panel of Fig. 1 shows
effort and detections. Details on field methods are available in Sigourney et al. (2020). Here
we reproduce the analysis from that article using the DSM approach.

Shipboard observations (truncated at 6 km) were conducted in independent observer
mode mark-recapture distance sampling with the model for g(0) only including distance as
a covariate; a hazard-rate detection function was used, with Beaufort wind speed and a
subjective measure of the effect of weather conditions on detectability as covariates.
Observations from the aerial survey (truncated at 900 m) were modelled using a

38°N
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74°W 72°W 70°W 68°W 66°W 64°W

Survey
type

Air Ship Group
size

1

2

3

4

5

6

38°N

40°N

42°N

44°N

74°W 72°W 70°W 68°W 66°W 64°W

Density (whales/km2)

<0.000017

1.7e−05 − 3.76e−05

3.76e−05 − 8.33e−05

8.33e−05 − 0.000184

0.000184 − 0.000408

0.000408 − 0.000903

0.000903 − 0.002

0.002 − 0.00443

0.00443 − 0.0098

0.0098 − 0.0217

0.0217 − 0.048

>0.048

38°N

40°N

42°N

44°N

74°W 72°W 70°W 68°W 66°W 64°W

CV

0 − 0.35 0.35 − 0.5 0.5 − 1 >1

Figure 1 Fin whale data, predictions and uncertainty. Left: transects (lines, colour-coded by platform) and detections (points, size scaled to
observed group sizes) of fin whales; inset shows position of the study area off the Atlantic coast of North America. Middle: predictions from the fin
whale model, density is calculated as animals per km2. Right: corresponding map of coefficient of variation for the predictions. Comparable maps
from the fully Bayesian model of Sigourney et al. (2020) are available at https://doi.org/10.7717/peerj.8226/fig-3; breaks are as in those figures for
comparability. Full-size DOI: 10.7717/peerj.12113/fig-1
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hazard-rate detection function with Beaufort wind speed as a covariate; a fixed g(0) and
availability adjustment was applied based on results in Palka et al. (2017).

We specified the following DSM:

EðniÞ ¼ aipigð0Þiui exp f ðDIST125Þ þ fðDEPTHÞ þ fðDIST2SHOREÞ þ fðSSTÞ½ � (5)

where for segment i, ni is the count (assumed to be Tweedie distributed), ai is the area, ui is
the availability (one for shipboard segments, 0.37 for aerial segments), pi is the probability
of detection and g(0)i is the correction for detection at zero distance (0.67 for aerial
segments and based on the MRDS model for shipboard segments). f indicates a smooth
constructed using thin plate regression splines with shrinkage (Marra & Wood, 2011),
each with a maximum basis size of five. The covariates used were DIST125, distance to
the 125 m isobath; DEPTH, depth; DIST2SHORE, distance to shore; SST, sea surface
temperature. We used the variance propagation method of Bravington, Miller & Hedley,
2021 to propagate uncertainty from the two detection functions. Model checking gave
reasonable results (see Supplementary Material A).

Abundance was calculated on a grid over shelf and shelf slope waters of the North East
United States and South East Canada from Delaware to Nova Scotia. To estimate
uncertainty in abundance, we can first take a Metropolis–Hastings sample from the
posterior of our model (post variance propagation). The resulting samples capture
uncertainty in the spatial model, aerial detection function, shipboard detection function
and shipboard g(0). Assuming independence between the aerial estimates of g(0) and
availability, we can use the fact that squared CVs add to combine uncertainty for these
estimates in a way which is comparable to the estimate given in Sigourney et al. (2020).

Multiple platforms on one survey-fulmars
RRS Discovery conducted a survey for seabirds in the mid-Atlantic in June 2017 as part
of cruise DY080. Figure 2 show the transects and observations (and Fig. S1 shows the
study area in context of the North Atlantic). A modified version of the Eastern Canada
Seabirds At Sea (ECSAS) protocol (Gjerdrum, Fifield & Wilhelm, 2012) was used while
on effort, comprising a line transect survey for birds on the water and a strip transect
survey for birds in flight. A single observer, located on one side of the bridge (varied
according to conditions to avoid, e.g., glare) searched for all birds flying or sitting on the
water within a 300 m wide strip to one side of the transect line, while a second person
recorded bird sightings and sighting conditions. Birds were detected using the naked eye
and identified using 10 × 40 or 8 × 40 binoculars. Birds on the water were detected in
one of four distance bins: [0–50 m], (50–100 m], (100–200 m] and (200–300 m].
A “snapshot” method was used to record birds first detected in flight, flagging records
of these birds if they were within a 300 m × 300 m box at the moment of the snapshot
(Tasker et al., 1984). We selected observations of fulmars (Fulmarus glacialis) for analysis.
Due to their distinctive plumage and flight behaviour, fulmars are generally easy to
distinguish from other species at sea, but confusion can occur with large immature gulls.
However, the latter are virtually absent from the study area during summer (Wakefield
et al., 2021), so misidentification of fulmars was assumed to be negligible.
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We therefore have two platforms. For fulmars on the water, we fitted a half-normal
detection function, with precipitation (factor; yes/no) and visibility (in km) as covariates.
For flying birds, we simply assume that detection is perfect out to 300 m (the width of the
strip transect).

To explore the formulations defined above, we fitted models based on (2)–(4).
Explanatory covariates were limited to spatial smooths of projected location (x, y) with
variations on how the differing animal behaviour (“platform” in our terminology) was
accounted for:

(A) Based on (2), with linear predictor β0 + f(x, y), the bivariate smooth of space used thin
plate regression splines with shrinkage (Marra & Wood, 2011).

(B) Based on (3), with linear predictor βk + f(x, y) where βk is an intercept depending on
the behaviour. The spatial smooth was as above.

(C) Based on (4), with linear predictor β0 + f(x, y, k) where we have a factor-smooth
interaction for the spatial effect. The factor-smooth model creates a smooth for each
platform as deviations from a reference level.

All models were constructed so that the maximum basis size was 100. As above, the
variance for the detection function was propagated using the method of Bravington, Miller
& Hedley, 2021. A complete analysis of these data is available in Wakefield et al. (2021).

We compared our models using the following techniques:

1. Residual model checking procedures outlined in e.g., (Wood, 2017, Chapter 7) can be
used to assess the models and potentially remove from consideration models that have
violated assumptions.

Flying Swimming

42°W 40°W 38°W 36°W 34°W 32°W 30°W 42°W 40°W 38°W 36°W 34°W 32°W 30°W

44°N

46°N

48°N

50°N

52°N

Figure 2 Fulmar observations and effort. Study area (grey outline box, as in Fig. S1) for the fulmar data
with effort (solid line) and faceted by platform (detection type: flying or swimming). Dots show locations
of observations. See Fig. S1 for the study area in context. Full-size DOI: 10.7717/peerj.12113/fig-2
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2. AIC scores can be used to compare models, as we might usually do for GAMs. Since here
we use the same detection model in each case we need not include the detection function
AIC in our considerations (but if different detection functions were used we would).

3. Goodness-of-fit can be assessed in terms of the number of observed vs. predicted
animals swimming or flying. Aggregating at the level of some binned covariate is
important as the smoother will (by its nature) tend to predict small values where
exact zeros were observed. We can aggregate by any covariate (whether or not it is
included in the model), here we use the platform covariate to assess our fitted models
since we are trying to address differences in platform.

4. For models that include additional terms to account for platform (models B and C),
plotting the difference surface between per-platform predictions spatially. We expect
that if that extra complexity is not needed we would not see a difference in predicted
densities.

RESULTS
Multiple surveys with uncertain detection on the trackline: fin whales
Checks of fit indicated reasonable conformity to model assumptions (see Supplementary
Material B) and effective degrees of freedom for each term in the fitted model were well
below the specified maximum of five. We obtained an abundance of 3,935 fin whales.
Combining the uncertainty from the posterior sample (spatial model, aerial detection
function, shipboard detection function, and shipboard g(0)) with aerial estimates of g(0)
and availability gave a total CV of 0.42. Middle and right panels of Fig. 1 shows maps of
predictions and coefficient of variation (without the fixed parameter additions just
discussed) over the prediction grid cells, patterns there match those in the original analysis.

Multiple platforms on one survey: fulmars
Residual model checking showed slightly better conformity to assumptions for the
factor-smooth model (see Supplementary Material B). This model performed best,
followed by the factor model (DAIC = 11.5) and then the model that assumes no
differences in density (DAIC = 32). Table 1 shows that the model using one additional
factor covariate for platform performs best, with predicted values closest to those observed.
Figure 3 shows the differences between platforms for the two models; in this case there
are differences between the predictions. These differences are larger (less white in the plot)
for the factor-smooth model but the factor model also shows differences between the two
platforms.

Differences between the models’ predictions are not reflected very well in the spatial
predictions for each model shown in Fig. 4, top row, as the per-platform effect has been
averaged out. Differences are better seen with Fig. 3 and Table 1, which show evidence
there are differences in density between the two platforms. Figure 3 shows a key difference
between the two models which account for differences in platform: the factor-smooth
interaction is more flexible and can fit better to the observed data, meaning that differences
between the two platforms’ predictions can be greater, whereas the factor only model
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must make a compromise in fit between the two platforms (up to the change in level
allowed by the factor platform covariate).

Uncertainty estimates are lower with the factor-smooth model: the lower uncertainty
areas (CV ≤ 0.4) remain roughly the same, but the higher uncertainty area has decreased.
Figure S3 shows the per-platform plots and highlights where the uncertainty originates:
the platform for flying birds has much higher uncertainty than that for swimming
birds, despite there being more observations of flying birds (383 swimming vs. 460 flying)
and the spatial patterns of observations being very similar (Fig. 2). Biologically, the
additional uncertainty in the data from birds in flight may be down to transient weather
conditions not fully captured in the spatial smooth (whereas variation in the birds on the
water may be better described by the spatial smooth). Supplementary Material A and
Fig. S2 shows a map of sighting conditions.

Factor Factor−smooth

40°W 35°W 30°W 40°W 35°W 30°W

44°N

46°N

48°N

50°N

52°N

0

2

4

6

Difference
in density

Figure 3 Prediction differences within fulmar models. Differences between per-platform density
predictions (flying minus swimming) for the factor and factor-smooth models for the fulmar data.
Figure S3 shows the separate surfaces for each platform from which these plots are derived. In both cases
we see greater numbers of fulmars predicted swimming in the north of the study region, especially around
31� W, with no differences south of 46� N. We can see much larger differences (in both directions) in the
factor-smooth model. Full-size DOI: 10.7717/peerj.12113/fig-3

Table 1 Observed vs. expected diagnostics for the fulmar models.

Observed No factor Factor Factor-smooth

Swimming 501 405 501 490

Flying 533 632 516 517

χ2 statistic 38.26 0.457 0.704

Note:
Observed vs. expected numbers of fulmars aggregated by behaviour (swimming/flying) for each model. χ2 statistics are
given in the final row as a summary comparison. From these results, it appears that the factor model gives the best match
to the data at this aggregation.
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DISCUSSION
Many articles conclude with the phrase “further data are needed” and while this may be
true, exactly how to utilise these new data while integrating previous information can be
tricky. The issue becomes serious when estimating the abundance of endangered
populations, when we must ensure that data are used wisely to inform management policy.
If we are able to combine data from multiple sources we can potentially make better
inferences about populations and make better decisions about how to ensure their
conservation.

In this article we have addressed the common issue of combining distance sampling
data from multiple platforms with different observation processes, into one spatial model.
Our approach shares information between the platforms at the spatial modelling stage
while also ensuring that variance is propagated correctly between the observation and
spatial models. Compared to fitting multiple spatial models and averaging the results, our
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48°N

50°N

52°N

No factor Factor Factor−smooth

40°W 35°W 30°W 40°W 35°W 30°W 40°W 35°W 30°W
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Figure 4 Comparison of fulmar model predicitons and uncertainty. Comparison of density predictions (top row) and coefficients of variation
(bottom row) by model (columns) for the fulmar data. Predictions and uncertainty appear to be very similar between models when aggregated but
see also Fig. S3. Full-size DOI: 10.7717/peerj.12113/fig-4
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approach allows for information to be shared via the spatial model (using the variance
propagation approch of Bravington, Miller & Hedley, 2021), not via post hoc averaging
(it also avoids the thorny issue of deciding how to weight such an average). The extension
using factor-smooth interactions allows the spatial model to vary between platforms if
necessary, while reducing to a combined model where appropriate. From a practical
perspective, model construction is more efficient for the modeller: we only need to fit
one model and the factor-smooth construction allows for the sharing of information
between data sources, so if there are not sufficient observations for a given platform,
the model can “borrow strength” from the others. Having fitted the model, we are still able
to make predictions at the platform level to disentangle the full model and explore our
results.

Though we have used two marine examples here, we wish to stress that these
methods are applicable in any distance sampling (or combination of distance and plot/
strip transect sampling) situation. For example combining point and line transect methods
may be particularly useful for terrestrial surveys of birds where both methods can be used,
or (as mentioned above) when combining camera trap distance sampling with line
transects.

A perennial problem with advocating new methodology is in demarcating where it is
appropriate to use that new method. From our experience we recommend the use of the
factor-smooth approach (given in (4)) as a starting point and simplifying if there is no
evidence that the additional complexity is warranted (this can be investigated by plotting
predictions at the segment-level against each other). The process we outlined for model
selection gives a starting point, but of course usual model checking for both detection
functions and generalized additive models should be followed.

Sigourney et al. (2020) fitted a hierarchical Bayesian model to the fin whale data
which included informative priors on availability process, aerial g(0) and group size (their
model was fitted to number of observed groups rather than number of individuals),
making an exact comparison with our method difficult. Their model gave N̂ = 4,012
with CV = 0.32 (our estimate was 3,935, CV = 0.42). Presumably the inclusion of
informative priors helps the hierarchical model lower its uncertainty. Numerical results
and plots show that our new method is comparable to a more complex hierarchical
Bayesian analysis, though clearly there are some areas for improvement.

Our fulmar example takes data which have been collected using the de facto standard
methodology for surveying seabirds at sea: simultaneously recording birds in flight via
plot sampling and birds on the water via distance sampling. Previous techniques for
deriving abundance and distribution estimates from such data implicitly ignored potential
differences in the distributions of birds in these two behavioural states. The example
above suggests that although the distribution of fulmars in flight and on the water was
broadly correlated, the ratio of birds in these two states also varied in space.
Our framework allows for the modelling these effects giving more accurate abundance
estimates as well as potentially provide biological insights and allow the generation of
hypotheses regarding the behaviour of the animals in different conditions.
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There are two main limitations to the models presented here. The first, is that there is a
restriction on the kinds of covariates we can model in the detection function: we can
only fit the “count model” as defined inMiller et al. (2013) (count per segment as response,
detectability entering the offset) and so detection function covariates may only vary at the
segment level, not at the level of the individual observation. To circumvent this limitation,
we can use factor-smooth interactions where the factor levels are binned versions of the
covariates and duplicate the segments for each of these levels. For example, binning
group sizes to be small/medium/large, then fitting a smooth to each of these levels. Further
details of this approach are given in Bravington, Miller & Hedley (2021). The second
deficiency is that we cannot share detection parameters between platforms, as each
detection function is fitted separately. So, for example if multiple surveys are carried
out from the same vessel at different times, we cannot use a single “vessel” covariate which
is jointly estimated between the models. It is possible to do this, but it would require a more
complex fitting framework than we use here. Such situations can be handled relatively
easily in software such as JAGS (Plummer, 2003) or Nimble (de Valpine et al., 2017), in
which case mgcv::jagam (Wood, 2016) can be used with a dsm model to setup smoothers
in a fully Bayesian framework. For given common situations, further work could make
this process semi-automatic (in the sense that JAGS/Nimble code could be automatically
generated to link parameters), making the construction of these more complex models
easier.

Extension to further detection functions is a clear next step, including those for g(0)
which incorporate other observer configurations and accounting for point independence
(Buckland, Laake & Borchers, 2010). An additional extension is the use of other
observation processes beyond detection functions. For example models to account for
animals that are not always available to be observed, such as diving seabirds or cetaceans
(e.g., Borchers et al., 2013). Provided that such an availability bias correction enters
the model via the offset, the Bravington, Miller & Hedley (2021) procedure can be used; this
could include models built using GAMs themselves. We hope this article prompts further
exploration of these possibilities.
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