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We present an analysis of excited-state solutions for a gravitationally localized system consisting of a
filled shell of high-angular-momentum fermions, using the Einstein-Dirac formalism introduced by Finster,
Smoller, and Yau [Phys. Rev. D 59, 104020 (1999). We show that, even when the particle number is
relatively low (Nf ≥ 6), the increased nonlinearity in the system causes a significant deviation in behavior
from the two-fermion case. Excited-state solutions can no longer be uniquely identified by the value of their
central redshift, with this multiplicity producing distortions in the characteristic spiraling forms of the
mass-radius relations. We discuss the connection between this effect and the internal structure of solutions
in the relativistic regime.
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I. INTRODUCTION

The study of how quantum matter may interact within
the framework of general relativity is an area in which
much current research is focused. Without a fully satis-
factory theory of quantum gravity, analysis of specific
systems is usually limited to a semiclassical description, in
which the gravitational field is treated as a purely classical
object.
Of interest here is the study of gravitationally localized

states, in which quantum particles are bound via their
mutual gravitational attraction, but prevented from col-
lapse by the effects of the uncertainty principle. We shall
consider a system of Nf neutral fermions, arranged in a
spherically symmetric filled shell, described by localized
solutions of the coupled Einstein-Dirac equations.
The existence of these structures relies heavily on the

backreaction of the constituent matter on the space-
time metric, and as such, they are difficult to model in a
(perturbative) quantum field theory approach. The Einstein-
Dirac formalism allows such solutions to be more readily
analyzed by treating the matter content as a first-quantized
wave function, as opposed to a quantum field. The resulting
solutions are therefore not fully quantum mechanical
but may nonetheless provide a reasonable semiclassical
approximation under which these objects may be studied.
Stable gravitationally localized quantum states were first

identified for bosonic systems, in the context of the coupled
Einstein-Klein-Gordon system [1,2], with the resulting
objects ultimately becoming known as boson stars.
Initial work on their fermionic counterparts was performed

by Ruffini and Bonazzola [3] and Lee and Pang [4], but it
was Finster et al. [5] who provided the first numerically
exact solutions for the simplest case of two neutral
fermions. These “particlelike” Planck-scale objects have
been known variously as “fermion stars,” “Dirac stars,” and
“Einstein-Dirac solitons.” It is the last of these which we
shall adopt.
Subsequent work has extended this analysis to charged

fermions [6], the addition of non-Abelian gauge fields [7],
proofs of existence [8–10], and consideration of the
Newtonian limit [11]. Comparison between the fermionic
and bosonic cases is presented in [12,13], while axisym-
metric solutions corresponding to single fermion states
have recently been found [14]. Ground state solutions with
large numbers of fermions have also been analyzed by the
current authors [15] and their structure interpreted in the
form of a fermion self-trapping effect. In this paper, we
shall consider the behavior of the corresponding excited
states.
Of particular relevance to this study is the work of

Bakucz Canário et al. [16], who were able to find an exact
solution to the massless Einstein-Dirac system, in which all
metric and fermion fields scale as simple power laws. (We
note that this solution, along with others, was independ-
ently found by Blázquez-Salcedo et al. [17].) They pro-
ceeded to show the relevance of this exact solution to
massive high-redshift Einstein-Dirac solitons (relativistic
states with a highly compressed central region), via a zonal
classification of their internal structure. In what follows, we
shall show that this classification requires alteration when
considering systems with large numbers of fermions.
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The paper is organized as follows. In Sec. II, we formulate
the equations of motion for a filled shell of Nf fermions,
using the Einstein-Dirac formalism. In Sec. III, we discuss
how localized solutions to these equations can be generated
numerically, and in Sec. IVwe review the knownbehavior of
the two-fermion system. In Sec. V, we increase the particle
number to Nf ¼ 14 and consider the effect on the first
excited states, studying the development of the multivalued
regions that appear in the fermion energy curves, and the
accompanying distortions of the mass-radius relations. In
Sec. VI, we extend to Nf ¼ 38 and analyze the resulting
high-redshift solutions, showing that the increased non-
linearity in the system allows for additional variations in
their internal structure.Wemove on to consider the behavior
of higher excited states in Sec. VII before concluding with a
discussion in Sec. VIII.

II. EINSTEIN-DIRAC SYSTEM

We begin with a brief outline of the derivation of the
equations of motion for a filled shell of Nf neutral fermions
in the Einstein-Dirac formalism, a more detailed calculation
of which can be found in [18]. We shall use the mostly
positive metric convention ð−;þ;þ;þÞ and set ℏ ¼ c ¼ 1.
Note that factors of the Newton constant G are retained in
the following derivation, but when numerically generating
solutions we shall set G ¼ 1.
The action for the Einstein-Dirac system can be

written as

SED ¼
Z �

1

8πG
Rþ Ψ̄ð=D −mÞΨ

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where R is the Ricci scalar, g ¼ detðgμνÞ, and m is the
fermion mass. Extremizing this action with respect to
the spinor wave function Ψ and metric gμν produces the
Dirac and Einstein equations as follows:

ð=D −mÞΨ ¼ 0; ð2Þ

Rμν −
1

2
gμνR ¼ 8πGTμν: ð3Þ

Using the vierbein formalism, the Dirac operator in
curved spacetime can be written as =D ¼ iγμð∂μ þ ΓμÞ,
where Γμ is the spin connection and γμ are generaliza-
tions of the Dirac gamma matrices to curved spacetime,
for which the anticommutation relations fγμ; γνg ¼
−2gμν hold.
We seek static spherically symmetric solutions to these

coupled equations, allowing the metric to be written, in the
usual spherical coordinate system ðt; r; θ;ϕÞ as

gμν ¼ diag

�
−

1

TðrÞ2 ;
1

AðrÞ ; r
2; r2sin2θ

�
; ð4Þ

where TðrÞ and AðrÞ are fields to be determined. With
the metric written in such a way, a straightforward
comparison with the Schwarzschild metric can be made,
for which

TSchðrÞ−2 ¼ ASchðrÞ ¼ 1 −
2GM
r

; ð5Þ

where M would be the Arnowitt-Deser-Misner (ADM)
mass of the localized state.
To allow for this simplification of spherical symmetry,

the fermions must be arranged such that their total
(spinþ orbital) angular momentum is zero. One way to
achieve this is to consider a filled shell, in analogy with
an atomic orbital. In this case, the spinor wave function
for each constituent fermion, having angular momentum
j with z-component k, can be written as

Ψjk ¼ e−iωt
ffiffiffiffiffiffiffiffiffi
TðrÞp
r

 
χk
j−1

2

αðrÞ
iχk

jþ1
2

βðrÞ

!
: ð6Þ

Each fermion oscillates at the same frequency ω, ensuring
that the overall wave function remains stationary. The fields
αðrÞ and βðrÞ are to be determined, while the two-
component functions χ take the explicit forms

χk
j−1

2

¼
ffiffiffiffiffiffiffiffiffiffiffi
jþ k
2j

s
Y
k−1

2

j−1
2

�
1

0

�
þ

ffiffiffiffiffiffiffiffiffiffi
j − k
2j

s
Y
kþ1

2

j−1
2

�
0

1

�
; ð7Þ

χk
jþ1

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1 − k
2jþ 2

s
Y
k−1

2

jþ1
2

�
1

0

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1þ k
2jþ 2

s
Y
kþ1

2

jþ1
2

�
0

1

�
;

ð8Þ

where Yl
mðθ;ϕÞ are the usual spherical harmonics. If

desired, the total wave function can be reconstructed using
the Hartree-Fock product,

Ψ ¼ Ψj;k¼−j ∧ Ψj;k¼−jþ1 ∧ … ∧ Ψj;k¼j: ð9Þ

For a filled shell with constituent fermions of angular
momentum j, the number of fermions contained is there-
fore Nf ¼ 2jþ 1, where j ∈ f1

2
; 3
2
; 5
2
;…g. As such, we are

limited to systems containing an even number of fermions.
Note that the fermions are assumed to have positive parity
(negative parity solutions do exist, but we shall not consider
them here).
Upon restriction to a spherically symmetric filled shell,

the following explicit form for the Dirac operator can be
derived (see [5] for a detailed calculation):
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=D ¼ iγt
∂
∂tþ iγr

� ∂
∂rþ

1

r

�
1 −

1ffiffiffiffi
A

p
�
−

T 0

2T

�

þ iγθ
∂
∂θ þ iγϕ

∂
∂ϕ ; ð10Þ

where 0 ≡ d=dr. The curved space gamma matrices
γμ are related to their flat space counterparts γ̄a by the
relation γμ ¼ eμaγ̄a, where in this case the only nonzero
vierbein components are ett ¼ TðrÞ, err ¼

ffiffiffiffiffiffiffiffiffi
AðrÞp

, and
eθθ ¼ eϕϕ ¼ 1.
Using this form for the Dirac operator, along with the

metric (4) and fermion ansatz (6), the Dirac and Einstein
equations reduce to the following set of four coupled
differential equations for the four unknown fields αðrÞ,
βðrÞ, AðrÞ, and TðrÞ:

ffiffiffiffi
A

p
α0 ¼ Nf

2r
α − ðωT þmÞβ; ð11Þ

ffiffiffiffi
A

p
β0 ¼ ðωT −mÞα −

Nf

2r
β; ð12Þ

−1þ Aþ rA0 ¼ −8πGNfωT2ðα2 þ β2Þ; ð13Þ

−1þ A − 2rA
T 0

T
¼ 8πGNfT

ffiffiffiffi
A

p
ðαβ0 − α0βÞ: ð14Þ

This set of equations, along with appropriate boundary
conditions, fully describes the gravitational interaction
of a filled shell of fermions within the Einstein-Dirac
formalism.

III. GENERATING LOCALIZED SOLUTIONS

We now discuss the method by which localized solutions
to Eqs. (11)–(14) can be numerically generated. In terms of
boundary conditions, the metric is required to be asymp-
totically flat, i.e., TðrÞ; AðrÞ → 1 as r → ∞. In addition, we
require the fermion wave function to be correctly normal-
ized, giving the integral condition

4π

Z
∞

0

ðα2 þ β2Þ Tffiffiffiffi
A

p dr ¼ 1: ð15Þ

Furthermore, we look for solutions that are regular (i.e.,
nonsingular) at the origin, for which the following unique
asymptotic expansion exists, valid for small r:

αðrÞ ¼ α1rNf=2 þ � � � ; ð16Þ

βðrÞ ¼ 1

Nf þ 1
ðωT0 −mÞα1rNf=2þ1 þ � � � ; ð17Þ

TðrÞ¼T0−4πGT2
0α

2
1

1

Nfþ1
ð2ωT0−mÞrNf þ��� ; ð18Þ

AðrÞ ¼ 1 − 8πGωT2
0α

2
1

Nf

Nf þ 1
rNf þ � � � : ð19Þ

This set of initial conditions adds two further parameters to
the system—T0, the value of the metric field TðrÞ at the
origin and α1, the initial slope of the fermion field αðrÞ.
Taking into account the conditions of asymptotic flatness

and normalization is difficult from a computational point of
view. We therefore make use of the rescaling technique
introduced in [5] in order to convert these into a more
manageable form. To do so, we temporarily set T0 ¼ m ¼ 1
and look for solutions which instead obey the weaker
conditions,

τ ¼ lim
r→∞

TðrÞ < ∞; ð20Þ

λ ¼ 4π

Z
∞

0

ðα2 þ β2Þ Tffiffiffiffi
A

p dr < ∞: ð21Þ

These “unscaled” solutions are relatively straightforward to
generate numerically. Upon choosing values for the remain-
ing two unfixed parameters α1 and ω, initial values for the
fields are set using the small-r expansion, and the numerical
solver can proceed radially outwards. All that remains is to
tune the value ofω such that the fermion fields αðrÞ and βðrÞ
tend to zero as r → ∞. The true (physically relevant)
solutions can then be obtained by rescaling the fields and
parameters as follows:

αðrÞ →
ffiffiffi
τ

λ

r
αðλrÞ; βðrÞ →

ffiffiffi
τ

λ

r
βðλrÞ;

TðrÞ → 1

τ
TðλrÞ; AðrÞ → AðλrÞ;

m → λm; ω → τλω: ð22Þ

When generating solutions using this method, the only
parameter in the system that can be freely varied is the
unscaled quantity α1. After the rescaling, however, the
initial slope of αðrÞ cannot be used equivalently, and so we
instead introduce a (physically relevant) parameter—the
central redshift z≡ Tð0Þ − 1. This can take any value from
0 to ∞ and, for the solutions presented here, is observed to
be in one-to-one correspondence with α1. The central
redshift can be interpreted as a measure of how relativistic
a solution is, with z ∼ 1 providing an approximate boun-
dary between nonrelativistic and relativistic cases.
Here, we generate solutions via the method outlined

above using Mathematica’s built-in differential equation
solver, NDSolve, with an explicit Runge-Kutta method. A
one-parameter shooting method is implemented to deter-
mine the value(s) of ω for which the fermions become
normalizable. For the ground state solution, this takes the
form of a simple binary chop, based on which axis is
crossed in the α–β plane. A more involved technique is
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required, however, when generating excited states. As we
shall show, for systems with Nf ≥ 6, there is no longer
always a unique solution for each excited state at a given
value of redshift, and hence there may be more than one
value of ω for which the fermions can be normalized.
To ensure all solutions are found, we first perform an
initial sweep of 500ω values above the ground state,
before focusing in on the regions that exhibit features
indicating a solution may be present. Once all such regions
are identified and isolated from each other, a binary
chop can be used on each to determine the precise values
of ω.
Although this shooting method can be automated, it is

nonetheless costly from a computational point of view,
and there is an inevitable trade-off in terms of numerical
precision. The precision required to generate solutions
increases substantially with Nf, so our analysis is
limited to systems with Nf ≲ 70 fermions. Higher-redshift
solutions also require a high precision to obtain, so
our numerics in addition impose an upper limit in z.
Nevertheless, these ranges are more than sufficient for a
thorough analysis of the phenomena presented here.

IV. REVIEW OF Nf = 2

Before presenting results for large Nf, we first briefly
review the known behavior of the two-fermion system

initially studied by Finster et al. [5]. For every value of the
central redshift z ∈ ð0;∞Þ, there exists a unique ground
state solution followed by an (infinite) series of excited
states, distinguished by the number of zeros (nodes) in
the fermion wave function. Note that we choose to label
the nth exited state as that in which the sum of the number
of nodes in the fermion fields αðrÞ and βðrÞ is equal
to n. This labeling convention encompasses states of both
positive parity ðn ¼ 2; 4; 6; 8;…Þ and negative parity
ðn ¼ 1; 3; 5; 7;…Þ. We shall not, however, consider neg-
ative parity states in what follows since they form a separate
branch of solutions, but we would expect them to exhibit a
similar type of behavior to that shown here.
The overall behavior of the two-fermion system is

summarized in Fig. 1. The top left panel shows how
the fermion energy ω changes as the central redshift is
varied for the ground state and first three even-parity
excited states. Each curve represents a continuous family
of solutions parametrized by z, with the fermion energy
increasing for each subsequent excited state. At low
redshift, the curves approximate the expected nonrelativ-
istic relationship ω ∝ z1=4 [15], before the relativistic
transition occurs at z ∼ 1. This causes the onset of
damped oscillatory behavior, with each curve oscillating
around the appropriate infinite-redshift “power-law”
solution [16].

(a) (b) (c) (d)

FIG. 1. Properties of gravitationally localized states of two neutral fermions in the Einstein-Dirac approximation. Top left: The
fermion energy ω as a function of the central redshift z, for the ground state, and first three even-parity excited states. Top right: Mass-
radius relations for the same four families of states. Bottom row: The radial structure of the fermion fields αðrÞ and βðrÞ for the solutions
marked A–D, each corresponding to a redshift value of z ¼ 2. The dashed line indicates the rms radius of the soliton. Note that all
dimensionful quantities are measured in multiples of either the Planck mass, mP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=G
p

, or the Planck length, lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
.
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The top right panel shows the mass-radius relations for
the corresponding four families of states, where we define
the radius R of a soliton by

R ¼
�
4π

Z
∞

0

r2
Tffiffiffiffi
A

p ðα2 þ β2Þdr
�

1=2
; ð23Þ

i.e., the rms radius weighted by the fermion density. It is
worth emphasizing that the fermion mass is not a free
parameter here—its value is instead set by the rescaling
procedure outlined in Sec. III. The mass-radius relations
exhibit spiraling behavior, in common with models of
astrophysical phenomena, such as white dwarfs and neu-
tron stars, and there exists a maximum mass analogous to,
e.g., the Chandrasekhar limit. At low redshift, these curves
approximate the nonrelativistic relation m ∝ R−1=3 [15],
before spiraling towards their respective infinite-redshift
solutions.
Marked on both these plots are four points, one located

along each curve at a common redshift value of z ¼ 2. The
individual solutions that occur at these points are shown in
the bottom four panels, where we have plotted the radial
structure of the fermion fields αðrÞ and βðrÞ for each of the
four states. In the ground state solution, both fermion fields
are strictly positive, whereas an additional node arises in
each field for each subsequent excited state. Note that, as
mentioned, the nth excited state contains a total of n nodes
in the fermion fields.
The internal radial structure of these states is not

immediately obvious from these plots, but it has been
demonstrated that there can exist up to four distinct
zones within each solution [16]. The innermost of these,
referred to as the “core,” is a region in which the fields
roughly obey the small-r asymptotic expansions (16)–(19).
If the system is relativistic (z≳ 1), the solution then
transitions into a “power-law zone,” in which the fields
perform small-amplitude oscillations around the massless
power-law solution. These damped oscillations, which are
evenly spaced in logðrÞwith an envelope decreasing as 1=r,
are not strong enough at Nf ¼ 2 to generate nodes in either
of the fermion fields. Their number increases as log z, while
the radii at which they occur decrease as 1=z. For excited
states (n > 0), a “wave zone” then follows, containing the
nodes that define the value of n. Finally, the solution enters
the “evanescent zone,” characterized by exponential decay
of the fermion fields.
For relativistic solutions, it is also possible to separate the

internal structure into subrelativistic and relativistic regions
based on the local value of the metric field TðrÞ. Since TðrÞ
monotonically decreases from its maximal central value, a
single relativistic transition occurs at TðrÞ ≈ 2, coinciding
with the approximate end of the power-law zone. The
relativistic region therefore encompasses the inner core and
power-law zone, whereas the subrelativistic region contains
the wave and evanescent zones.

For the two-fermion case, the oscillations in the wave
zone are the dominant feature of the solutions, whereas the
power-law oscillations are of too small amplitude even to
be visible on the plots shown. For larger Nf, however, we
shall see that this is no longer the case and, consequently,
the distinction between power-law and wave-zone oscil-
lations is no longer as well defined.

V. VARYING Nf : 1ST EXCITED STATES

We now present results showing how the behavior of
excited-state solutions changes as we vary the number of
fermions in the system. For Nf ≥ 6, we shall find that
multiple solutions can occur for the same value of the
central redshift and that this multiplicity has a significant
effect on the structure of the mass-radius spirals. In this
section and the next, we shall restrict our analysis to the
first even-parity excited states (n ¼ 2), before moving to
higher excited states in Sec. VII.
Figure 2 illustrates how the fermion energies of the

families of ground and n ¼ 2 states change as the fermion
number is increased from Nf ¼ 4 to Nf ¼ 14. We have
isolated the relativistic portions of these curves since, prior
to this, there are no significant differences from the two-
fermion case. First, note the behavior of the ground state
curve: as Nf is increased, the amplitude of the oscillations
becomes larger, and the first few minima develop into sharp
points. We have previously interpreted this behavior by
way of a fermion self-trapping effect (see [15] for details),
where these sharp points correspond to the sudden appear-
ance of new trapping regions in the solutions corresponding
to those redshift values.
The n ¼ 2 curve, however, exhibits some additional

unexpected behavior. As Nf is increased, a distortion
develops, visible even for Nf ¼ 4, in the region surround-
ing the minimum of the first oscillation. From Nf ¼ 6

onwards, this distortion causes a portion of the curve to
become multivalued, while the locations of the first minima
of the n ¼ 0 and n ¼ 2 curves gradually converge towards
a common point. The overlapping region, or ‘fold’, extends
outwards in redshift as Nf is increased, with the curve
initially overshooting the minimum of the ground state
curve before turning back on itself, reaching this minimum,
and then proceeding as first expected. By Nf ¼ 14, the
turning point of the n ¼ 2 curve has extended beyond the
maximum redshift limit of our numerics, while the curve
itself appears to temporarily oscillate around the ground
state power-law solution.
In addition, notice that the second oscillation in the

n ¼ 2 curve begins to exhibit the same behavior as the
first, from Nf ¼ 8 onwards, approaching the second
oscillation in the ground state curve. By Nf ¼ 14, this
has developed into a further fold, and indeed the third
oscillation displays the beginnings of a similar distortion.
We therefore surmise that if Nf were to be increased
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further, then each subsequent oscillation would ultimately
behave in a similar fashion, with the curve becoming
increasingly multivalued in redshift as Nf is increased.
In spite of this multivalued nature, it is important to

emphasize that the curves nonetheless remain continuous
for all values ofNf, i.e., they still represent a one-parameter
family of solutions. The central redshift, however, is no
longer the appropriate parameter to define that family. An
attempt at obtaining a single-valued parameter for these
curves is presented in the Appendix.
The continuous nature of this family becomes more

evident when considering the corresponding change in
the mass-radius spirals, shown in Fig. 3. Here, as Nf is
increased, a distortion appears in the n ¼ 2 spiral, and a
portion of the curve begins to wrap itself around the ground
state spiral. One end of this distortion ultimately becomes
fixed near the first sharp turning point in the ground
state curve, while the other moves progressively inwards
towards the center of the ground state spiral. Indeed, by
Nf ¼ 14, the n ¼ 2 curve appears to complete two separate
spirals. It first closely follows the ground state spiral, then
reverses before completing a second spiral towards the
expected n ¼ 2 infinite-redshift solution. As with the
fermion energy plots, we can see that this behavior starts
to repeat a second time, with a similar distortion appearing
further along the n ¼ 2 curve from Nf ¼ 12 onwards.
Note two important points. First, it is not clear whether

the n ¼ 2 curve ever truly reaches the center of the ground
state spiral. Beyond Nf ¼ 14, the end of the fold extends
into a redshift regime that we cannot access, so it is not
possible to ascertain whether the curve turns back at a finite

value of redshift. This will be discussed further in Sec. VIII.
Second, one might be concerned as to whether all solutions
along these multivalued curves should be classed as n ¼ 2
states, given that some can have a fermion energy lower
than the ground state, or indeed have properties exceed-
ingly close to those of a ground state solution. Given that
the curves are still continuous, however, we feel that
classifying states by counting the number of zeros in
the fermion wave function continues to be the correct
approach. We shall also continue to refer to states with
n > 0 as “excited,” although here this does not necessarily
imply higher fermion energy.
It is worth considering more closely the development of

this multivalued region and, in particular, the evolution of
the fermion wave function as we move along the curve.
This is illustrated in Fig. 4 for the case of Nf ¼ 12, in
which the two upper plots show the multivalued portion of
the fermion energy, along with the mass-radius relations.
Indicated on the n ¼ 2 curves are the locations of the
twelve solutions presented below, which show the radial
structure of the fermion fields αðrÞ and βðrÞ at various
points along the curve.
The evolution of these individual solutions proceeds

as follows. Solution A is located prior to entering the
multivalued region and has the expected form for a non-
relativistic n ¼ 2 state, with two extrema separated by a
node in each fermion field. As we move into the multi-
valued region, a second minimum, located outside the
node, starts slowly developing, with its amplitude reaching
a peak around solution C. The curve then reverses in
redshift, however, and all trace of this minimum has

FIG. 2. Fermion energy-redshift relations for the families of ground states (n ¼ 0) and first even-parity excited states (n ¼ 2) of many-
fermion Einstein-Dirac solitons. These are plotted for six values of the fermion number, from Nf ¼ 4 toNf ¼ 14. Note the development
of a multivalued region in the n ¼ 2 curve, the extent of which increases in redshift as Nf is increased.
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disappeared entirely by solution E. As we move through
solutions F and G, we can see that the amplitude of the
fermion peak inside the node increases, while that of the
minimum outside the node decreases, and the region
around the node deforms into an inflection point. We then
approach the sharp turning point in the n ¼ 2 curve, either
side of which are located solutions H and I (see zoomed
regions). Solution H has the same structure as F and G, but
now the amplitude of the minimum has decreased even
further. Solution I looks ostensibly similar, but a zoom
reveals that the inflection point has developed into a new
maximum, located inside the node. The curve then pro-
ceeds forward in redshift once more, with the amplitude of
the two outer extrema increasing, until more recognizable
n ¼ 2 states are obtained (K and L), these now containing
two maxima at a smaller radius than the node.
This behavior differs in one important respect from the

redshift evolution of the two-fermion system. For Nf ¼ 2,
we never observe nodes of the fermion fields in the
relativistic power-law zone, only in the subrelativistic wave
zone. In solution C, however, we can see a new power-law
oscillation beginning to form outside the radii of the nodes
in the fermion fields. As we move along the curve, there is
then a transition of these nodes from the inner relativistic
power-law zone to the outer subrelativistic wave zone. This
will be discussed further in Sec. VI.
It is important to emphasize that the evolution shown in

Fig. 4 is continuous—solution A can be smoothly trans-
formed into solution L via intermediate states, all of
which contain only a single zero in each fermion field.

This informs our opinion that all points along the n ¼ 2
curve should indeed be classified as first (even-parity)
excited states. The reason that the curve so closely
approaches that of the ground state in some regions can
be seen by considering solutions H and I. In both these
cases, the extrema around the nodes are of very small
amplitude and so, viewed on a large scale, the solution
resembles an n ¼ 0 state. It is not surprising, therefore, that
these solutions have properties very similar to those of a
ground state.

VI. HIGH-REDSHIFT SOLUTIONS

What causes this multiplicity in redshift, and why does
the first even-parity excited-state curve temporarily oscil-
late around that of the ground state at large Nf? A partial
answer to these questions can be obtained by considering
the structure of individual solutions at high central redshift.
These highly relativistic solutions contain an extended
power-law zone, allowing their structural differences to
be more easily identified.
Figure 5 shows the behavior of the family of first even-

parity excited states for Nf ¼ 20. As with Nf ¼ 14, the
multivalued portion of the fermion energy curve extends
beyond the redshift limit of our numerics, and a section
oscillates around the n ¼ 0 infinite-redshift solution. The
mass-radius relation similarly shows the curve spiraling
towards the center of the n ¼ 0 spiral, before reversing
and spiraling towards the n ¼ 2 infinite-redshift solution.
For clarity, we have separated the curve colorwise into
three separate branches—the incoming section that spirals

FIG. 3. Mass-radius relations for the families of ground states (n ¼ 0) and first even-parity excited states (n ¼ 2) for the same set of
Nf values as in Fig. 2. For Nf ¼ 6, a visible distortion in the n ¼ 2 curve appears, and this region begins to wrap itself around the n ¼ 0

spiral as Nf is increased. Once Nf ¼ 14 is reached, this effect has become so extreme that the n ¼ 2 curve appears to complete two
spirals around both the n ¼ 0 and n ¼ 2 infinite-redshift solutions.
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towards the infinite-redshift ground state solution (light
blue), the intermediate section that then spirals outwards
again, traversing backwards in redshift (orange) and,
finally, the section beyond the redshift reversal at z ¼
2.1 (purple). At a sufficiently high redshift value, there are
three distinct n ¼ 2 states, one occurring along each of the
three branches. For the case of z ¼ 40, the fermion fields
for these solutions are shown in the bottom panels of Fig. 5,
together with those of the ground state. Included on each
plot as dashed curves are the fermion field profiles
corresponding to the infinite-redshift solution that lies at
the center of the appropriate spiral.
Consider first the structure of the ground state (solution

A). At this value of z, there is an extended relativistic

power-law zone in which both αðrÞ and βðrÞ oscillate
around the infinite-redshift solution. In comparison with
the two-fermion case, these oscillations are of much larger
amplitude, so much so that the first minimum in the
fermion fields is very close to zero. We have previously
demonstrated [15] that these oscillations can be interpreted
in terms of a fermion self-trapping effect, with the positions
of the fermion field peaks corresponding to the locations of
stable null circular geodesics (photon spheres) in the soliton
spacetime. The fermion field minima occur at the locations
of the accompanying unstable photon spheres, from which
the fermions are effectively repelled. This trapping effect
becomes progressively stronger as Nf is increased since the
additional mass results in a more severe distortion of the

(a)

(e) (f) (g) (h)

(l)(k)(j)(i)

(b) (c) (d)

FIG. 4. A study of the Nf ¼ 12 fermion system, showing the evolution in structure of the fermionic wave functions within the region
of multivalued redshift that occurs. Top left: The fermion energy-redshift relations of the ground and first even-parity excited-state
families, focusing on this multivalued region. Top right: The corresponding mass-radius relations for these families of states. Bottom
panels: The radial structure of the fermion fields αðrÞ and βðrÞ for twelve solutions located at the indicated points on the n ¼ 2 curves
above. The redshift value of each is recorded in the upper right-hand corner of each plot.
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spacetime. This accounts for the increase in amplitude of
the power-law oscillations. Finally, note that the trapping
effect becomes progressively weaker moving outwards in
radius, resulting in the value of the fermion fields at each
subsequent minimum being higher than the previous.
Now consider solutions B–D. All three contain a single

node in both αðrÞ and βðrÞ and can therefore be classified
as n ¼ 2 states. They differ, however, in terms of structure.
Solution D exhibits the standard structure observed for
Nf ¼ 2, with the node in each fermion field occurring
outside the power-law zone, within the subrelativistic wave
zone. In solutions B and C, however, the nodes in the
fermion fields occur within the power-law zone, just
outside the first peak in the power-law oscillations. The
reason that nodes can form within the power-law zone
appears to be related to the fact that the minimum of the
first power-law oscillation is close to zero. Note that,
outside the node radii, the fermion fields switch to
oscillating around the infinite-redshift solution in which
both αðrÞ and βðrÞ are negative.
Solutions B and C lack a wave zone, containing instead a

direct transition from the power-law to the evanescent zone.
Note that, although we have separated these two solutions
onto different branches, there are no significant structural
differences between them. The precise behavior around the
fermion nodes differs, and there is an additional oscillation

in solution C, but such features cannot be consistently used
to distinguish between the solutions that occur along these
two branches.
The positions of the three solutions on the n ¼ 2 curve

are marked on the fermion energy and mass-radius plots.
Solution D lies along the branch that spirals towards the
n ¼ 2 infinite-redshift state, whereas B and C lie on the
branches that follow the ground state curve. Why is it that
solutions B and C appear to have properties so similar to
n ¼ 0 states? To explain this, first note that the majority of
the fermion mass is in fact located in the outer regions of
the soliton. The properties of a solution are therefore
primarily determined by the form of the wave function
at large r. Note also that all physically observable quantities
involve only bilinears of the fermion fields αðrÞ and βðrÞ.
These two factors imply that neither a change in sign of the
fermion fields, nor the presence of nodes deep within the
power-law zone, should significantly affect a solution’s
properties. At high redshift, therefore, the properties of a
solution are overwhelmingly determined simply by the
number of fermion nodes within the outer wave zone. Since
solutions B and C contain no nodes in the wave zone, their
properties are very similar to those of a ground state
solution.
Despite this, it is important to emphasize that solutions

such as B and C should nonetheless be classified as n ¼ 2

(a) (b) (c) (d)

FIG. 5. Plots summarizing the behavior of theNf ¼ 20 fermion system. Top left: The fermion energyω as a function of redshift for the
ground state family (n ¼ 0) and first even-parity excited-state family (n ¼ 2). We have separated the n ¼ 2 curve into three sections,
indicated by the color coding. Top right: The corresponding mass-radius relations for the same two families of states. Bottom panels:
The fermion fields of the ground state solution and three n ¼ 2 solutions that occur at a redshift of z ¼ 40. The locations of these are
indicated on the plots above. Included on each plot as dashed lines are the fermion field profiles of the infinite-redshift solution that
contains the same number of nodes within the wave zone.
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states since they contain a single node in each of the
fermion fields. In addition, they are continuously connected
to solution D via the n ¼ 2 curve, along which the fermion
nodes transition from within the inner power-law zone to
the outer wave zone. This transition is illustrated in Fig. 6,
in which the radii of the fermion nodes are plotted as a
function of redshift. Note that we have multiplied the node
radii by a factor of ω in order to remove the oscillatory
behavior that occurs within the power-law zone. The curves
are color coded in the same manner as Fig. 5, with the light
blue and orange portions assumed to meet at some (perhaps
infinite) value of redshift beyond the maximum shown.
The evolution is as follows. The curve enters from the

nonrelativistic regime, and the nodes in the fermion fields
move steadily inwards in radius as the redshift increases.
This portion contains solutions in which the fermion nodes
are located within the power-law zone, just outside the first
peak in the power-law oscillations. Since the radial extent
of the core shrinks as redshift is increased, the inner radius
of the power-law zone becomes ever smaller, and the
fermion nodes consequently move inwards. Once the curve
reverses, the nodes move outwards again, occurring at
slightly larger radii than those on the outgoing branch,
albeit still within the power-law zone. This difference in
radius can be seen in the structure of solutions B and C in
Fig. 5. The curve then gradually diverges from the lower
branch as redshift decreases, until only a single power-law
oscillation remains in the constituent solutions. This then
allows the nodes to transition from the power-law zone to
the wave zone, culminating in the sharp radial increase at
z ¼ 2.1. The mechanism by which this occurs is similar to
that shown previously in Fig. 4. Beyond this transition, the
curve reverses in redshift once again and proceeds to

oscillate around a constant radius. The solutions along
this branch are those in which the fermion nodes are located
within the wave zone. Note that the final branch contains a
secondary multivalued portion, or ‘fold,’ which is begin-
ning to develop in a similar manner to the first. This can be
seen also in the fermion energy plot in Fig. 5.
In order to analyze the effects of this second fold, we

must increase the value of Nf until the fold extends into the
high-redshift regime. To this end, Fig. 7 summarizes the
behavior of the ground and first even-parity excited-state
families for a system with Nf ¼ 38 fermions. We have
again introduced a color coding, whereby the n ¼ 2 curve
transitions from light blue to orange to purple as we move
continuously along it. The outgoing and incoming portions
of each fold are now distinguished by solid and dashed
lines, respectively. The behavior of the fermion energy and
mass-radius relations is complicated but can be briefly
summarized as follows. Entering from the nonrelativistic
regime, the n ¼ 2 fermion energy curve oscillates, along
the first fold (light blue), towards the n ¼ 0 infinite-redshift
solution, before reversing and returning to z ¼ 1.95. Note
that the incoming portion of this fold (dashed light blue)
lies almost on top of the ground state curve. The curve then
transitions to the orange branch and oscillates for a second
time around the n ¼ 0 infinite-redshift solution, once again
reversing at a redshift value beyond the limit of our
numerics. The final transition (from orange to purple) then
occurs at z ¼ 4.68, after which the curve oscillates around
the n ¼ 2 infinite-redshift solution. This behavior is mir-
rored in the mass-radius relation plot, in which the n ¼ 2
curve spirals twice towards the ground state infinite-red-
shift solution (along the light blue and orange branches)
and once towards the n ¼ 2 infinite-redshift solution (along
the purple branch).
It appears, therefore, that the effect of the second fold is

similar to that of the first—it also results in the n ¼ 2 curve
temporarily spiraling towards the n ¼ 0 infinite-redshift
solution. In order to ascertain the precise difference
between these folds, we must once again consider the
structure of high-redshift solutions. The bottom panels of
Fig. 7 show the fermion field profiles for the ground state
and the five distinct n ¼ 2 states that now occur at z ¼ 41.
Solutions B and C are located along the first fold and
have an identical nodal structure to their counterparts at
Nf ¼ 20, with a single node in each fermion field appear-
ing between the first and second power-law oscillations.
Solution F, in which the nodes appear within the wave zone,
is also present atNf ¼ 20 (and indeed allNf). The two new
solutions, located along the second fold, are D and E, in
which the fermion nodes now occur outside the second
peak in the power-law oscillations. This new behavior is
possible due to the increased strength of the second
trapping region at high values of Nf, which lowers the
minimum of the second power-law oscillation, allowing the
fermion fields to change sign at this point. Note that, as is

FIG. 6. Change in radii of the fermion nodes as a function of
central redshift for the family of first even-parity excited states
when Nf ¼ 20. The curve has been separated into the same three
branches as in Fig. 5. The effect of the fold is to carry the nodes
radially inwards as redshift is increased. Note that along each
branch the node in β (dashed) always occurs at a larger radius
than the node in α (solid).
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the case with the incoming and outgoing solutions along
the first fold, there is no significant structural difference
between solutions D and E.
As discussed earlier, the overall properties of high-

redshift solutions are primarily determined by the number
of fermion nodes within the wave zone. Solutions B–E
are therefore located near the center of the n ¼ 0 spiral,
whereas F is on the branch that spirals towards the n ¼ 2
infinite-redshift solution. We once again emphasize, how-
ever, that all five solutions should correctly be classified as
n ¼ 2 states since they contain a single node in each
fermion field and are connected continuously by the n ¼ 2
curve. For Nf ¼ 38, there are now two important transition
points along this curve. The first (from the light blue to the
orange section) occurs at z ¼ 1.95, where the fermion

nodes transition from just outside the first peak in the
power-law oscillations to outside the second. The transition
between the orange and purple branches then occurs at
z ¼ 4.68, in which the nodes move outwards into the wave
zone. This latter transition requires the presence of two
power-law oscillations and thus takes place at a higher
redshift than the first. Note that, although these points may
appear sharp on the fermion energy and mass-radius plots,
they are both in fact smooth continuous transitions.
We now have a reasonably complete picture for the

behavior of the first even-parity excited states as we vary
the number of fermions in the system. At small Nf, the
power-law oscillations are of small amplitude, restricting
the fermion nodes to the wave zone, and thus the fermion
energy curve is single valued. As Nf is increased, however,

(a) (b) (c)

(f)(e)(d)

FIG. 7. Summary of the behavior of the Nf ¼ 38 fermion system. Top left: The fermion energy as a function of redshift for the ground
and first even-parity excited-state families. There are now two folds in the n ¼ 2 curve, the first shown as light blue and the second
orange. The incoming branches of these folds are shown as dashed lines. Top right: The mass-radius plots for the n ¼ 0 and n ¼ 2
families. The n ¼ 2 curve spirals twice towards the n ¼ 0 infinite-redshift solution. Bottom panels: The fermion fields for the ground
state solution and five n ¼ 2 solutions that occur at z ¼ 41, the locations of which are indicated on the fermion energy and mass-radius
relations. Note that solutions A and C lie almost on top of each other.
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and the system becomes increasingly nonlinear, the first
trapping region becomes strong enough that the first
minimum in the power-law zone drops close to zero,
allowing for the possibility of the fermion fields changing
sign before the wave zone is reached. This results in a fold
appearing in the n ¼ 2 fermion energy curve, containing
new pairs of solutions in which the fermion nodes are
located just between the first and second power-law
oscillations. Along this fold, the mass-radius curve tem-
porarily spirals towards the ground state infinite-redshift
solution since the solutions along it contain no nodes within
the wave zone. At even higher Nf, the second trapping
region becomes strong enough for a node to form between
the second and third power-law oscillations. This creates
another fold in the fermion energy curve, along with an
accompanying new pair of solutions, and a second region
that spirals around the ground state curve. We expect this
pattern to continue as we increase Nf further, with new
solutions appearing in which the fermion nodes occur
outside the third, fourth, and fifth peaks in the power-law
oscillations, and so on. The fermion energy curve will
therefore become increasingly multivalued in redshift.

VII. HIGHER EXCITED STATES

So far, we have considered only the behavior of the first
even-parity excited states (n ¼ 2). What happens to the
higher excited states? In this section, we shall show that, at
sufficiently large Nf, the number of solutions at constant

redshift increases substantially with each subsequent fam-
ily of states, owing to the increasing number of possible
ways to distribute the (now multiple) fermion nodes within
the power-law zone.
First, however, we shall detail how the higher excited

states behave at relatively small Nf. This is illustrated in
Fig. 8, which shows the fermion energy and mass-radius
relations for Nf ¼ 6, Nf ¼ 8, and Nf ¼ 12 for the ground
state and first three even-parity excited-state families
(n ¼ 2, 4, 6). These are to be compared with the two-
fermion case shown in Fig. 1. From the fermion energy
plots, it is clear that the families of higher excited states
behave in a similar manner to the first, with a fold
appearing in each curve, moving to higher redshift as
Nf is increased. For Nf ¼ 12, the precise structure of the
folds begins to differ, but they still extend over roughly the
same redshift range. The mass-radius relations reveal a self-
similar behavior, whereby each excited-state spiral begins
to wrap around the curve directly below it as the folds
develop. The additional solutions that arise due to this
folding are also alike in internal structure for all excited-
state families. Each fermion field contains a single node
within the power-law zone, with the remainder located in
the outer (wave) zone. Since the properties of a solution are
dictated by the number of nodes in the wave zone, this
explains why a portion of each curve follows that of the
previous excited state—the solutions located along the fold
have one fewer wave-zone node in each fermion field than
those on the rest of the curve. Given this behavior, it follows

FIG. 8. Plots showing how the ground and first three even-parity excited-state families behave for Nf ¼ 6, Nf ¼ 8, and Nf ¼ 12. Top
row: The fermion energy-redshift relations for these four families of states, illustrating the parallel development of the first fold that
appears in each of the three excited-state curves. Bottom row: The corresponding change in the mass-radius relations, in which each
excited-state spiral begins to wrap around the curve directly below it.
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that the number of solutions present at a particular value of
redshift will be the same for each excited-state family. For
Nf ¼ 20, for example, there are three n ¼ 4 states at high
redshift, the structures of which are identical to those of the
three n ¼ 2 states shown previously in Fig. 5, but with an
additional pair of fermion nodes within the wave zone.
This landscape changes, however, as we increase Nf

further. Figure 9 illustrates the behavior of the family of

second even-parity excited states (n ¼ 4) for a system with
Nf ¼ 38 fermions. Compared with the n ¼ 2 family (see
Fig. 7), the fermion energy curve contains two additional
folds (making a total of four). We have again used color
coding to separate the curve into sections, transitioning
from red → light blue → orange → purple → black as we
move continuously along the curve. As before, the out-
going and incoming portions of each fold are represented,

(a) (b) (c)

(f)

(i)

(e)(d)

(g) (h)

FIG. 9. Plots showing the behavior of the second even-parity excited state for Nf ¼ 38. Top left: The fermion energy curve for the
family of n ¼ 4 states, now containing a total of four folds, each indicated by a different color. Top right: The mass-radius relation for the
family of n ¼ 4 states, which spirals twice towards both the n ¼ 0 and n ¼ 2 infinite-redshift solutions. Bottom panels: The nine distinct
n ¼ 4 solutions that occur at a redshift value of z ¼ 40. The locations of each solution along the mass-radius spiral can be predicted by
counting the number of fermion nodes within the outer wave zone.
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respectively, by solid and dashed lines. The evolution is
complicated but can be briefly summarized as follows.
Entering from the nonrelativistic (low redshift) regime, the
fermion energy curve first oscillates around the n ¼ 0
infinite-redshift solution, before reversing at a redshift
value beyond the maximum shown. It then transitions to
the light blue branch at z ¼ 2.24 and moves forward in
redshift once again. It then oscillates around the n ¼ 2
infinite-redshift solution, reverses at high redshift, and then
transitions to the orange branch at z ¼ 1.95. This behavior
is then repeated with the curve oscillating around that of the
ground state along the orange branch and around that of the
n ¼ 2 excited state along the purple branch. The final
transition occurs at z ¼ 4.68, after which the curve oscil-
lates around the n ¼ 4 infinite-redshift solution. This
behavior is mirrored in the mass-radius relation, where it
is clear that there are three distinct points towards which the
n ¼ 4 curve spirals—the n ¼ 0 infinite-redshift solution
(along the red and orange branches), the n ¼ 2 infinite-
redshift solution (along the light blue and purple branches),
and the n ¼ 4 infinite-redshift solution (along the black
branch). The primary difference in this behavior from that
seen at lower Nf is the fact that the n ¼ 4 curve spirals not
just around the excited-state curve directly below it, but
also around that of the ground state.
At high redshift, there are now nine distinct n ¼ 4

solutions, which are shown in the bottom panels of
Fig. 9, for the case of z ¼ 40. Five of these (solutions
C, D, G, H, and I) correspond to the n ¼ 2 states shown in
Fig. 7, with each containing an additional pair of fermion
nodes within the outer (wave) zone. These are located along
the branches of the curve that spiral towards the n ¼ 2 and
n ¼ 4 infinite-redshift solutions. The four new solutions are
A, B, E, and F. In all four of these, both pairs of fermion
nodes are located within the power-law zone, but it is not
immediately obvious how to interpret the structural
differences between those on the red branch (A and B)
and those on the orange (E and F). We suggest that, in
solutions A and B, both pairs of fermion nodes are located
between the first and second power-law oscillations,
whereas in solutions E and F, one is located outside the
peak of the first oscillation and the other outside the peak
(now a minimum) of the second. In all four cases, however,
no nodes appear within the wave zone, and the solutions
therefore lie along the branches that spiral towards the
n ¼ 0 infinite-redshift solution.
Overall, we have shown that the complexity of the

solutions increases substantially as we increase the number
of fermions. This is further illustrated in Fig. 10, which
summarizes the behavior of the first four even-parity
excited states as a function of Nf. These plots show the
radius of all excited-state solutions (for a given n) that are
present at a constant redshift of z ≈ 100. Strictly speaking,
we have plotted R=

ffiffiffiffiffiffi
Nf

p
as this quantity varies only

slightly as the fermion number is increased. Note that it

is possible to solve Eqs. (11)–(14), along with the appro-
priate boundary conditions, for any strictly positive value of
Nf. We have therefore included noneven and noninteger
values of Nf in this analysis since it allows us to obtain a
continuous picture of how the system varies. It is important
to remember, however, that only systems where Nf is an
even integer correspond to physically realizable solitons.
Consider first the behavior of the first even-parity excited

states (top left). For small fermion numbers, there is only a
single n ¼ 2 state, in which the node in each fermion field
is located within the wave zone. AtNf ¼ 13.39, however, a
new pair of solutions emerges, originating from a single
common point. These two states lie along the first fold in
the fermion energy-redshift plots and appear at the value of
Nf at which the end of this fold has first extended outwards
in redshift to z ¼ 100. They correspond to solutions in
which the fermion nodes are located within the power-law
zone, just outside the first peak in the power-law oscil-
lations, and hence have a significantly smaller radius than
those with a wave-zone node. There remain only three
solutions up until Nf ¼ 35.19, when a second pair of states
appears, corresponding to the point when the second fold
reaches z ¼ 100. These are the solutions in which the
fermion nodes are located between the first and second
peaks in the power-law oscillations. Finally, a third pair of
states emerges at N ¼ 64.98, associated with the third fold,
making a total of seven distinct solutions. If we were to
increase Nf further, we would expect each subsequent fold
to result in the formation of an additional pair of solutions.
Beyond some value of Nf, however, the redshift transition
points from which new folds extend will begin to occur
beyond z ¼ 100. Once this becomes the case, the number
of states at z ¼ 100 will therefore remain constant, and
observing new solutions would require moving to a higher
value of redshift.
The equivalent behavior of the second even-parity

excited states (n ¼ 4) is shown in the top right plot of
Fig. 10. As for n ¼ 2, only a single solution exists for
Nf < 13.39, at which point the first new pair of states
emerges, these containing one pair of nodes within the
power-law zone and one within the wave zone. The
behavior begins to differ as Nf is increased, however, with
a new pair of states appearing at Nf ¼ 24.36 that are not
present at n ¼ 2. These are solutions with smaller radii, in
which both nodes in each fermion field are located just
outside the peak in the first power-law oscillations. At
N ¼ 35.19, nodes can now form between the second and
third power-law oscillations, with two new pairs of states
emerging at this value, one in which all nodes are within the
power-law zone, and the other in which one pair is located
in the wave zone. Subsequent states then appear at Nf

values of 44.70, 53.88, and 64.98, making a total of 19n ¼
4 states at the point at which the limit of our numerics is
reached.

LEITH, HOOLEY, HORNE, and DRITSCHEL PHYS. REV. D 104, 046024 (2021)

046024-14



The bottom two plots of Fig. 10 show the behavior of the
n ¼ 6 and n ¼ 8 states. Even more solutions are now
present, due to the increase in number of nodes, although
the Nf values at which new pairs emerge remain roughly
the same as for n ¼ 4. The solutions congregate into
distinct levels depending on their internal structure. The
lowest level contains states in which no nodes exist within
the wave zone, with the solutions on each subsequent
higher level having one additional pair of wave-zone nodes.
This allows us easily to read off the number of solutions,
along with their overall structure, at a given value of Nf.
For example, at Nf ¼ 50, there are 2n ¼ 8 states with no
wave-zone nodes, 4 with one pair of wave-zone nodes,
6 with two pairs, 4 with three pairs, and 1 with four pairs.
The solutions within each level are distinguished by the
precise distribution of the remaining nodes within the
power-law zone.
The change in the total number of excited-state solutions

(again at z ≈ 100) as Nf is increased is summarized in
Fig. 11. Below Nf ¼ 13.93, there is only a single solution

FIG. 10. Plots illustrating the behavior of the excited states of many-fermion Einstein-Dirac solitons, as the number of fermions in the
system is varied. These show how the radii of the excited-state solutions with a redshift value of z ≈ 100 change as a function of Nf for
n ¼ 2, 4, 6, and 8. Note that we included noneven and noninteger values of Nf in this analysis. For systems with small numbers of
fermions, only one of each excited state exists, but as Nf is increased, new states emerge in pairs. We have color coded the curves such
that those that emerge at approximately the same Nf are the same color.

FIG. 11. Plot showing how the number of solutions for each of
the first four families of even-parity excited-states (plus the
ground state) changes as the number of fermions in the system is
increased. The redshift value of each solution is roughly constant
(z ≈ 100). There remains a unique ground state in all cases,
while the number of excited-state solutions steadily increases
with Nf .
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for each family of excited states, and there are an equal
number of solutions in each family until Nf ¼ 24.36.
Beyond this, each higher excited-state family gradually
gains additional solutions relative to the state family
directly below, with this discrepancy growing ever larger
as Nf increases. By Nf ¼ 68 (the limit of our numerics),
there are 7 distinct n ¼ 2 states, 19n ¼ 4 states, 31n ¼ 6
states, and 39n ¼ 8 states, along with a unique ground
state. As mentioned previously, this difference arises
because a larger number of nodes can be distributed in a
larger number of ways within the power-law zone. This is
amplified as Nf is increased since the stronger trapping
effect results in more regions in which nodes can exist.
Note that the number of solutions increases with roughly
every 10 fermions added, and that the precise Nf values at
which this occurs differs slightly for each excited-state
family.

VIII. DISCUSSION AND OUTLOOK

We have shown that the behavior of the excited states of
gravitationally localized states of many neutral fermions
(Einstein-Dirac solitons) differs significantly from that
of the two-fermion case, especially in the high-redshift
(strongly relativistic) regime. Beyond Nf ¼ 6 fermions, the
families of excited states are no longer single-valued in
redshift, with a series of folds appearing in the fermion
energy curves as we increase Nf. The appearance of these
can be attributed to the existence of new structurally
distinct solutions, in which one or more fermion nodes
(zeros in the fermion wave function) are located within the
relativistic power-law zone. Since a solution’s properties
are determined primarily by the number of nodes within the
outer subrelativistic wave zone, these folds cause the mass-
radius relations of the higher excited states to follow those
of lower excited states over a range of redshift values. The
behavior of the system becomes increasingly complex as
more fermions are added, with the number of excited-state
solutions increasing at high redshift.
This picture is far from complete, however. We currently

have very little physical understanding of this excited-
state behavior, other than to remark that the system
becomes increasingly nonlinear as we increase the number
of fermions, and we should therefore not be surprised by
the presence of multiple solutions. The increase in strength
of the fermion self-trapping effect [15] (itself a result
of the nonlinearity in the system) is certainly linked to
the behavior, as it is ultimately responsible for allowing
fermion nodes to appear within the power-law zone. This
self-trapping explains why the minima in the fermion fields
approach so close to zero, but it does not explain why these
minima can transition into nodes. This could perhaps be
partially understood in terms of an effective potential
barrier that the fermion fields can overcome if the ampli-
tude of the preceding power-law oscillation is sufficiently

large. It is also unclear whether the precise location of the
fermion nodes (e.g., within the power-law zone or wave
zone) has any direct physical interpretation.
Although the self-trapping effect can provide some

indication of which excited-state solutions may be present
at a given Nf, we cannot precisely predict which solutions
will occur at a particular value of redshift. One reason for
this is that we do not currently understand what causes the
folds in the fermion energy to end at the redshift values at
which they do. Along each fold, the fermion nodes move
inwards towards smaller radii, but at some point the curve
reverses, and the nodes move outwards again. Is there
perhaps a mechanism that precludes the existence of nodes
below a certain radius, the precise value of which depends
on the value of Nf? For large enough Nf, it might be that
the nodes are indeed able to reach r ¼ 0, with the fold
therefore reversing only at strictly infinite redshift. If this is
the case, then it may be that an analytic perturbation
analysis at small r could reveal a hidden degeneracy in the
infinite-redshift solutions [16].
In a broader context, we note that the excited-

state behavior presented here may not be confined to
Einstein-Dirac solitons. In particular, there does not appear
to be a particularly strong reliance on the fermionic nature
of the system, so we might expect to observe similar effects
in objects such as boson stars. Although a shell of high-
angular-momentum particles is not such a natural configu-
ration in the context of bosons, comparisons might be
drawn with the case of rotating boson stars. Such objects
have been widely studied, and an analysis of excited-state
solutions has been performed by Collodel et al. [19], with
their results potentially indicating a similar type of behavior
to that discussed here. In particular, they find that the
parameter ϕ0 used to describe the family of nodeless
(ground state) boson stars is no longer suitable when
considering solutions that contain a single node in the
scalar field (the first excited states). Instead, quantities such
as the boson frequency become multivalued in this param-
eter, with the set of solutions forming a loop that extends to
a maximum value in ϕ0 before reversing. The resulting
structures are not dissimilar to the folds in the fermion
energy-redshift curves presented here.
A major difference, however, is that unlike the ground

state, the excited-state boson star curves lack portions that
extend to infinite ϕ0 and hence take the form of closed loops.
These loops extend all the way to ϕ0 ¼ 0, with two solutions
present at each value of ϕ0 between the endpoints. This is in
contrast to the Einstein-Dirac case, in which the excited-state
curves are multivalued only above a certain redshift value,
and there exist three (or more) solutions within this region,
one of which is always located along a branch that extends to
infinite redshift. Given differences such as these, along with
others in the systems themselves (e.g., axisymmetric vs
spherically symmetric), it is difficult to say with certainty
that a common phenomenon is at work.
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Finally, we briefly discuss the question of stability.
Regardless of the value of Nf, we find that all solutions
within the relativistic regime have a positive binding
energy and are therefore expected to be dynamically
unstable. This does not mean, however, that the study of
these solutions should be neglected—unstable resonances
are important in the field of particle physics, for example.
It may also be possible to stabilize the solutions by
coupling additional fields to the system. We shall consider
the specific case of including a scalar Higgs field in a
future publication. Regardless of the issue of stability,
however, the results presented here nonetheless provide an
interesting example of how the effects of nonlinearity can
influence the interaction of quantum matter within the
framework of general relativity.
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APPENDIX: A SINGLE-VALUED
PARAMETRIZATION FOR THE FAMILIES

OF EXCITED STATES

In the analysis presented above, we have shown that,
for many-fermion Einstein-Dirac solitons with Nf ≥ 6,
excited-state solutions can no longer be uniquely identified
by the value of their central redshift z. At a given value of
redshift, multiple solutions can exist that belong to the same
family of excited states and, consequently, quantities such
as the fermion energy become multivalued when plotted as
a function of z. As evidenced previously, however, the
curves that define these families are still continuous, which
implies that there must exist a single-valued parameter that
increases monotonically as the curves are traversed. In what
follows, we shall outline a possible method by which such a
parameter can be obtained.
First, recall that the existence of the multivalued regions

(folds) in the fermion energy-redshift relations is due to the
occurrence of solutions that contain fermion-field nodes
within their power-law zones. As shown previously (see
Fig. 6), these nodes transition smoothly from the wave zone
to the power-law zone and back again along each fold. This
suggests constructing “redshiftlike” parameters that mea-
sure the value of the metric field TðrÞ at the radius of each
node, relative to its value at the origin. We therefore define

zpα ¼
Tð0Þ
TðrpαÞ

− 1; ðA1Þ

where rpα is the radius of node p (counting outwards from
the origin) in αðrÞ. Since TðrÞ decreases monotonically
from its central maximum, this quantity is guaranteed to be
positive. For solutions in which the node in question is

located within the wave zone, TðrpαÞ will be close to unity,
and so zpα will only differ slightly from the central redshift
(hereafter referred to as z0). If the node is within the power-
law zone, however, the difference will be significant. Of
course, a similar parameter can also be defined based on
βðrÞ, but since each node in αðrÞ is accompanied by a node
in βðrÞ at slightly larger radius, the two quantities will be
almost identical.
The result of this new parametrization is illustrated in

Fig. 12. The leftmost plots show the fermion energy of the
family of first even-parity excited states, for the case of
Nf ¼ 12, plotted as a function of both central redshift
z0 (top) and z1α (bottom). As can be seen, the parametri-
zation by z1α does indeed entirely remove the multivalued
portion of the curve, as desired.
For the case of Nf ¼ 20 (middle plots), however, it does

not prove quite so successful. Firstly, there is a small
portion of the curve around z1α ¼ 1.97 which remains
multivalued (see inset), corresponding to the region around
the redshift transition point at z0 ¼ 2.1. We suspect that this
could be removed by considering not only the node in αðrÞ
but also the node in βðrÞ, although we have been unable to
obtain the required combination. Secondly, there is a gap in
the curve from z1α ≈ 0.4 to z1α ≈ 1 (the points on either side
of which have been joined by a dashed line). This arises
because the fold in the fermion energy-redshift relation
extends beyond the upper redshift limit of our numerics,
preventing us from obtaining all the solutions that lie along
it. It is not clear, however, whether the entirety of this gap
would in fact be bridged by including these high-redshift
solutions. The rapid decay of the oscillations on either side
of the gap suggests that this might not be the case. If so,
then z1α would no longer be a continuous parametrization
of the curve.
The application of this method to the families of higher

excited states is not so straightforward. For the first excited
states, there is only a single node in αðrÞ and therefore the
only quantity that can be constructed is z1α. For higher
excited states, however, in which there exist multiple
fermion nodes, we have a choice of parameters—which
one should we use? For low values of Nf, it turns out that
z1α remains the quantity that results in single-valued curves.
This is because the first node in αðrÞ is the only one that
transitions into the power-law zone; the others remain in the
wave zone as the curve is traversed. Above Nf ≈ 24,
however, solutions appear in which multiple nodes exist
in the power-law zone, and z1α is no longer the appropriate
parameter to use. This is illustrated in the rightmost plots of
Fig. 12, for the case of Nf ¼ 38, showing the fermion
energy curve for the family of second even-parity excited
states (n ¼ 4). The parametrization by z1α appears largely
successful, but zooms of the oscillatory regions reveal that
there remain significant multivalued portions (see inset).
These regions correspond to the two folds that contain
solutions with two nodes within their power-law zones
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(such as A, B, E, and F in Fig. 9). Along these folds, the
first fermion node remains relatively static, while it is the
second that transitions from the power-law to the wave
zone. These regions can therefore be made single valued
by using the parameter z2α. The trade-off, however, is that
the remainder of the curve then becomes multivalued
once more.
Overall, it would theoretically be possible to obtain a

single-valued fermion energy curve by switching between

parameters, depending on the structure of the solutions
located along each fold. This is not entirely satisfactory,
however, as it requires prior knowledge of the entire curve
and, furthermore, could not be used to assign a unique
value to each excited-state solution. It may, of course, be
possible to construct a single-valued quantity that involves
a combination of the parameters zpα, although our attempts
at doing so have been unsuccessful. Alternatively, it may be
that a different approach is required.
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