
Abstract—Use-after-free (UAF) vulnerabilities, which are
abused by exploiting a dangling pointer that refers to a freed
memory, execute an arbitrary code. The vulnerability is caused
by bug in a program. In particular, it is contained in a large scale
program such as browser. HeapRevolver [1] [2], which prohibits
freed memory area from being reused for a certain period, has
been proposed. HeapRevolver in Windows uses the number of
the freed memory areas for prohibiting as a trigger to release
the freed memory area. In other words, HeapRevolver uses the
number of the freed memory areas as a threshold for releasing.
However, when the size of individual freed memory areas is large,
the HeapRevolver on Windows increases the memory overhead.
In this paper, we propose improved HeapRevolver for Windows
considering the size and number of the freed memory areas.
Improved HeapRevolver enables to prohibit the reuse of the
certain number of the freed memory areas at any time via the
size and number of the freed memory areas as a threshold. The
evaluation results show that the improved HeapRevolver can
prevent attacks that exploiting UAF vulnerabilities. In particular,
when the size of individual freed memory areas is small in the
programs, it is effective to decrease the attack success rate.

Index Terms—Security, Use-After-Free, dangling pointer, mem-
ory allocation

I. INTRODUCTION

There has been an increase in use-after-free (UAF) vul-
nerability. UAF vulnerability can be exploited by referring
a dangling pointer to a freed memory. A UAF-attack abuses
the dangling pointer that refers to a freed memory area and
executes an arbitrary code by reusing the freed memory area.
The number of UAF vulnerabilities based on the investigation
in [3] is shown in Figure 1. The figure shows that the number
of UAF vulnerabilities has rapidly increased since 2010 [3].

In particular, it is contained a lot of dangling pointer in a
large scale program such as browser, and is frequently abused.
One of the reasons is that a modern browsers have a JavaScript
engine inside. When a UAF-attack succeeds, an attacker has to
exploit the written attack code via dangling pointer. However,
if ASLR (Address Space Layout Randomization) works, it
is difficult to write an attack code in the target location.
Therefore, an attacker uses JavaScript to bypass ASLR. It is
because it is possible to increase an attack success rate by
allocating and releasing object using JavaScript and handling
the heap area indirectly.

In references [1] [2], HeapRevolver, which is a novel UAF-
attack prevention method that delays and randomizes the
release timing of a freed memory area via a memory-reuse-
prohibited library, has been proposed. UAF-attack has a feature
of reusing the target memory immediately after it is released.

0

50

100

150

200

250

300

350

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

(9/5)

N
u
m

b
e
r 
o
f 
U
A
F 

V
u
ln

e
ra

b
ili

ti
e
s

Year

Fig. 1. Number of UAF vulnerabilities

The program applying HeapRevolver prevents reuse of the
memory areas immediately after freed because it prohibits
reuse of the freed memory areas for a certain period. In
references [1] [2], HeapRevolver on Linux use the size of
freed memory areas for prohibiting as a trigger to release the
memory area. However, HeapRevolver on Windows used only
the number of the freed memory areas for prohibiting as a
trigger to release the memory area. Even when the number of
the freed memory areas is used as a threshold, the entropy can
increase and complicate UAF attacks using a large threshold
and randomizing it. On the other hand, Windows does not
limit the upper limit of individual memory areas size to 128
KB like Linux. Therefore, when the size of individual freed
memory areas is large in the programs, there is a possibility
that the memory overhead increases.

In this paper, we propose, in addition to the number of the
freed memory area, the improved HeapRevolver on Windows
which use the size of the freed memory areas as a threshold.
Improved HeapRevolver releases the memory area for which
reuse is prohibited when the total size of the freed memory
areas for which reuse is prohibited is more than the size
threshold. Release is performed in FIFO (First-In-First-Out)
while the number of the freed memory areas prohibiting reuse
is more than the number threshold and the total size of the
freed memory areas is not less than the half of the size
threshold. It is necessary to prohibit the reuse of a certain

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Mitigating Use-After-Free Attack using Library
Considering Size and Number of Freed Memory

Authors names are omitted for double blind review

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/477934473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


number or more of the freed memory areas to decrease the
attack success rate at any time. It is possible to prohibit the
reuse of a certain number or more of the freed memory areas
via the size and number thresholds at any time. Even if the
total size of a small number of the freed memory areas is
more than the size threshold because the size of individual
freed memory areas is large, via the number threshold, it is
possible to prohibit the reuse of the freed memory areas of
more than a certain number at any time. In addition, even if
the size of individual freed memory areas is small, via the total
size of the freed memory areas as a threshold, it is effective
to decrease the attack success rate because it is possible to
prohibit the reuse of the freed memory areas of more than a
certain number.

We describe the implementation of improved HeapRevolver
and the results of evaluations. We evaluated attack success
rate and memory overhead of browser applying improved
HeapRevolver. The evaluation results show that improved
HeapRevolver enables to prohibit more memory area than
HeapRevolver using only the number threshold, and is effec-
tive to decrease the attack success rate.

The contributions of this paper are as follows:
1. We show the design and implementation of improved

HeapRevolver on Windows. The implementation of im-
proved HeapRevolver uses the total size of individual
freed memory areas as a threshold in addition to the
number threshold. Improved HeapRevolver obtain the
size of a freed memory area via HeapSize() function.

2. The evaluation results show that improved HeapRevolver
enables to prohibit more memory area than HeapRe-
volver using only the number threshold. Consequently
it is effective to decrease the attack success rate.

II. DESIGN OF HEAPREVOLVER

A. Concept of HeapRevolver

We describe HeapRevolver [1] [2], which prohibits the freed
memory areas from being reused for a certain period. The
freed memory area is immediately reused after the memory
area is released to exploit the UAF vulnerabilities. It is
because the probability of reusing the target memory area
without being reused by another process increases. Therefore,
HeapRevolver focuses on the timing of memory reuse in UAF
vulnerability attack, thereby preventing UAF vulnerability
attack by reusing memory for a certain period of time.

However, if the freed memory area is not reused, the
overhead of creating new memory area will be increase. To
solve this problem, HeapRevolver prohibit the reuse of the
freed memory area for a certain period after it is freed.

B. Overview of HeapRevolver

UAF vulnerabilities immediately reuse freed memory area
after the memory area is released. Therefore, HeapRevolver
prohibit freed memory area from being reused for a certain
period. The conditions for reuse are as follows:
Condition 1: The total size of the freed memory area is

��������	
����

����	��

�������

����	��

�������

�

������	��

�������

��� ���

�����������
�

�	 ����	
���� �	 ����	
����

�

������	��

�������
!"�	#	���

�$� �$�

Fig. 2. Flow of hooking HeapFree() function on Windows

beyond the designated size.
Condition 2: The freed memory area is merged with an
adjacent

When condition 1 is satisfied, the memory area that satisfies
condition 2 is released. The released memory size is at most
half of the designated total size in the freed memory. Condition
1 refers to technique used in DelayFree [5], can prevent the
immediate reuse of the freed memory area immediately after
it is freed. However, the designated total size (threshold) in
the freed memory in these techniques is constant and the
threshold is 100 KB. When an attacker creates a memory area
of 100 KB, the freed memory is released. Thus, an attacker
can attempt to reuse a memory area by creating a memory
area. Hence, UAF attacks can be attempted. HeapRevolver
develop two countermeasures for this problem. First, the total
size threshold of the freed memory area is set to a larger value
than that in DelayFree. Second, the threshold is randomized
in the designated ranges. This measure increases the threshold
entropy against UAF-attacks because threshold estimation
becomes more difficult. In addition, HeapRevolver releases
at most only half of the freed memory area. Furthermore, by
adding condition 2, a UAF attack fails if an offset of a dangling
pointer to the memory area is not appropriately calculated.

C. Implementation of HeapRevolver on Windows

We describe details of the realization method in Windows,
because we propose improved HeapRevolver on Windows in
this paper. In references [1] [2] and this paper, HeapRevolver
is implemented using a dynamic link library (DLL) injec-
tion and API hook. Figure 2 shows the implementation of
HeapRevolver on Windows. DLL injection is a DLL mapping
method to other processes and executes DLL processing in
the processes. Windows API hook is a method that hooks a
Windows API call and executes a certain processing before the
hooked Windows API call. HeapRevolver deployed an import
address table (IAT) hook for the Windows API hook. The
address of the API functions exported from DLL is stored in
IAT during the loading-process time. IAT hook is a method
that modifies the address of APIs in IAT to call a target
function.

First, HeapRevolver maps Hook.dll that performs IAT hook
to a target process by DLL injection. Next, Hook.dll overwrites
the address of the HeapFree() function stored in IAT in the
address of the Hook HeapFree() function of Hook.dll. When
the Hook HeapFree() function of Hook.dll is called by IAT
hook, the Hook HeapFree() function of Hook.dll obtains the
arguments of the HeapFree() function and stores them in a ring



buffer. Next, the Hook HeapFree() function checks whether
the number of the freed memory are beyond the threshold.
If the number exceeds the threshold, the Hook HeapFree()
function obtains the arguments of the HeapFree() function and
calls the HeapFree() function to release the freed memory area.
The Hook HeapFree() function calls the HeapFree() function
until half of the threshold is released. If the number of the freed
memory does not exceed the threshold, the proposed function
returns without any operation. Thus, the Hook HeapFree()
function delays the release of the freed memory area until
the number of the freed memory area exceeds the threshold.

However, the HeapRevolver implementation of Windows
does not include the determination of whether or not a memory
area is already merged with an adjacent memory area. This
point needs to be further studied.

In references [1], [2], HeapRevolver on Windows did not
manage the size of the released memory area, and use only the
size threshold. In addition, even when the number of the freed
memory areas is used as a threshold, the entropy can increase
and complicate UAF attacks using a large threshold and
randomizing it. Improved HeapRevolver explained in section
III and later uses the total size as a threshold in addition to
the number.

D. Problem of Previous HeapRevolver on Windows

HeapRevolver on Windows was realized and evaluated. On
the other hand, the following problems exist in Windows
realization. The problem is follows:

Problem 1: There is a possibility that the memory overhead
increases.

On Linux, the upper limit of individual memory size is
128KB, but, on Windows, the upper limit is not limited to
128KB. On Windows, we investigated the size of individual
freed memory areas that browser released when attack suc-
cesses. Figure 3 shows the result of the investigation. We used
Internet Explorer 10 (IE10) of Windows 7 (64bit) and attack
code using CVE-2014-0322 distributed in Metasploit [6].

Figure 3 shows that about 70% of the freed memory areas
from the IE10 was 128 bytes or less. On the other hand,
memory areas exceeding 1 KB also existed. In particular, a
maximum of 256KB per memory area was released. When the
size of individual freed memory areas is large, HeapRevolver,
which prohibit reuse of some freed memory areas for certain
period, might increase the memory overhead. Therefore, we
assumed that we have to consider the total size of the freed
memory areas for which reuse is prohibited like HeapRevolver
on Linux. On Windows, we can use the HeapSize() function
of WindowsAPI to obtain the memory size.

Problem 2: There is a possibility that the reuse of a sufficient
number of freed memory areas can not be prohibited.

Figure 4 shows relation between attack success rate and
a threshold. This evaluation was done in reference [2], and
used HeapRevolver which has only the number threshold. The

7

4246

637

174
11 42 10

616

23 40 18 3 0 0 0 6 84

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r 
o
f 
fr

e
e
d
 m

e
m

o
ry

Size of freed memory (byte)

Fig. 3. Size of each freed memory area (CVE-2014-0322)

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000

A
tt

ac
k 

su
cc

e
ss

 r
at

e
(%

)

Threshold (number of freed memory areas)

CVE-2014-0322

Fig. 4. Relation between attack success rate and a threshold [2]

attack code used in the environments exploited CVE-2014-
0322 of IE10, and HeapRevolver were not applied to the
browser when the threshold is zero.

Figure 4 shows that the attack success rate decrease accord-
ing to the increase of threshold. This result indicates that it is
effective to prohibit the reuse of the freed memory areas of
more than a certain number to decrease attack success rate.

On the other hand, as explained above, the upper limit
of individual memory size is not 128KB on Windows, and
HeapRevolver has to consider the total size of the freed
memory areas for which reuse is prohibited like HeapRevolver
on Linux. However, if HeapRevolver on Windows uses only
the total size of the freed memory areas for prohibiting as a
trigger to release the memory area, the reuse of a sufficient
number of the freed memory areas is not prohibited to prevent
UAF-attack. It is because there is a possibility that the total
size of a small number of the freed memory areas is more than
the size threshold when the size of individual freed memory
areas is large. Therefore, we assume that HeapRevolver has to
use the number threshold because the number threshold enable
to prohibit the reuse of the freed memory areas of more than
a certain number at any time.

To cope with the abovementioned problems, in this paper,



HeapRevolver use the total size and number of the freed mem-
ory area as thresholds. We explained improved HeapRevolver
in section III.

III. HEAPREVOLVER CONSIDERING SIZE AND NUMBER OF
THE FREED MEMORY AREA

A. Concept of improved HeapRevolver on Windows

As mentioned in section II, our investigation shows that
there is a possibility of releasing a large freed memory area.
Owing to the possibility, on Windows, if HeapRevolver uses
the number of the freed memory areas as a threshold to release
the memory area and a size of individual freed memory areas
is large, memory overhead will increase. On the other hand,
on Windows, if HeapRevolver uses only the total size of the
freed memory areas as a threshold to release the memory area,
there is a problem that the reuse of a sufficient number of the
freed memory areas is not prohibited to prevent UAF-attack.

To cope with the abovementioned problems, we propose
improved HeapRevolver using the total size of the freed
memory areas as a threshold in addition to the number. Owing
to using the total size of the freed memory areas as a threshold
in addition to the number, it is possible to prohibit reuse of the
minimum number of memory areas at any time. In addition,
improved HeapRevolver enables to prohibit more memory area
than HeapRevolver using only the number threshold, and is
effective to decrease the attack success rate.

B. Proceeding flow of HeapRevolver on Windows

Figure 5 shows proceeding flow of Hook HeapFree() func-
tion of improved HeapRevolver which use the size and number
of the freed memory areas as a threshold.

1) Hook HeapFree() function is called.
2) Via HeapSize() function, the size of memory area for

which reuse is prohibited can be obtained. In addition,
update variables HeapSizeTotal, which is the total size of
memory areas for which reuse is prohibited, HeapNum-
Total, which is the number of memory areas for which
reuse is prohibited.

3) Enqueue arguments to the queue. The queue is realized
with a ring buffer.

4) Check whether the total size of the freed memory area
for which reuse is prohibited is not less than the size
threshold, which is named size threshold.
(A) If the total size of the memory areas for

which reuse is prohibited is not less than the
size threshold; the process proceeds to process 5).

(B) If the total size of the memory area for which reuse
is prohibited is less than the size threshold; the
processing of the Hook HeapFree() is finished.

5) Check whether the memory area for which reuse is
prohibited is more than half size threshold.
(A) If it is more than half the size threshold; the

process proceeds to process 6).
(B) If it is not more than half the size threshold; the

process proceeds to process 10).

����������	�� 
�������

�����
������� � � �����
��� �

������������ � �

������� �
�� �����	��� �

������� �	�������� 	��������

�����
������� � � �����
��� �

������������ � �

!������ �	��������
�������

���������	
�� � �����
�����	��

���

���

���

���

���

���

�	�

���������

��������

���������	
�� � �����
�����	����

��������	
�� � ����
�����	��

�
�

���

����

���������

���������

��������

��������

������������	��
�����������
����������

Fig. 5. Proceeding flow of Hook HeapFree function

6) Check whether the number of memory areas prohibiting
reuse is not less than the number thresholds, which is
named num threshold.

(A) If the number of memory areas for which reuse is
prohibited is not less than the num threshold; the
process proceeds to process 7).

(B) If the number of memory areas for which reuse
is prohibited is less than the num threshold; the
process proceeds to process 10).

7) Dequeue arguments from the queue.
8) Obtain size of the memory area which is released; update

the variables HeapSizeTotal and HeapNumTotal.
9) Release the memory area of the dequeued arguments via

the original HeapFree(); the process proceeds to process
5).

10) Set the size threshold to a random value within
the specified range; finish the processing of the
Hook HeapFree().



TABLE I
EVALUATION OF RANDOMIZED THRESHOLD (CVE-2014-0322)

Threshold
Number Range of size Attack success rate
Without improved HeapRevolver 90%

100 KB–500 KB 80%
500 500 KB–1 MB 15%

1 MB–1.5 MB 0%
100 KB–500 KB 80%

1,000 500 KB–1 MB 35%
1 MB–1.5 MB 0%
100 KB–500 KB 80%

1,500 500 KB–1 MB 25%
1 MB–1.5 MB 0%
100 KB–500 KB 70%

2,000 500 KB–1 MB 20%
1 MB–1.5 MB 0%
100 KB–500 KB 0%

2,500 500 KB–1 MB 0%
1 MB–1.5 MB 0%

IV. EVALUATION

A. Evaluation Environment

We used a computer with Intel Core i5-4590 (3.30 GHz)
and 8 GB main memory and Core i7-3770 (3.40 GHz) and 4
GB main memory for the evaluation. OSs and versions used in
the evaluations are Windows 8 (64 bit) and Windows 7 (64bit).
To show the attack success rate and memory overhead of
the improved HeapRevolver, the following experiments were
performed: we evaluated the attack success rate against actual
UAF vulnerability attack using HeapRevolver with the size of
the thresholds variously. In addition, we evaluated the memory
overhead using three browser benchmarks [7]–[9] in order to
evaluate the performance in the browser which is the main
target in the real world.

B. Evaluation of HeapRevolver

1) Evaluation of Success rate: We evaluated using Inter-
net Explorer 10 (IE10) on Windows 8 (64bit). Various size
thresholds were used. We experimented on whether or not
UAF attacks using real attack codes distributed in Metasploit
[6] could be prevented. We tried 20 times for each threshold,
and measured the attack success rate. We evaluated the attack
success rate by comparing with the state applied improved
HeapRevolver and not. The number threshold used for the
evaluation is 500, 1,000 1,500, 2,000 and 2,500. These number
are half of each threshold of HeapRevolver used in the evalua-
tion of [2]. The size threshold was randomized, respectively, in
the range of 100 KB–500 KB, 500 KB–1 MB, and 1 MB–1.5
MB. The evaluation results are shown in Table I.

As shown in Table I, when the range of size threshold is
100 KB–500 KB and the number threshold is 2,000 or less,
the attack success rate is high. However, when the range of
size threshold is 100 KB–500 KB and the number threshold

is 2,500, the attack success rate is 0%. Although the number
threshold is possible to prohibit reuse of more than the number
thresholds, the range of 100 KB–500 KB is impossible to
prohibit reuse of more than the number thresholds. Therefore,
the range of 100 KB–500 KB is insufficient to prevent UAF-
attack. It is clear that it is important to prohibit reuse of
sufficient number of the freed memory areas via the number
threshold. It is because decreasing attack success rate is more
important than suppression of memory overhead

When the range of size threshold is 500 KB–1 MB and
number threshold is at the most 2,000, attack success rate
can be suppressed. It is estimate that sufficient number of the
freed memory areas are prohibited reuse in many time when
the range of size threshold is 500 KB–1 MB.

Compare with number threshold and attack success rate in
the range of 100 KB–500 KB, it is estimate that the number of
prohibiting reuse of the freed memory areas is around 2,500
when the range of size threshold is 1 MB–5 MB.

For the abovementioned, the number threshold is important
to decrease attack success rate. In addition, it is found that
there are cases where it is possible to achieve both decreasing
attack success rate and suppressing memory overhead via the
size threshold. It is possible to keep all the freed memory area
from being released via the number thresholds when memory
area of larger than threshold is released.

2) Evaluation of Memory consumption: We performed an
experiment to evaluate the memory consumption of HeapRe-
volver on Windows via browser benchmark with IE11 of Win-
dows 7. We used Performance Monitor, which is preinstalled
on Windows, to measure virtual memory usage of browser
process. In this evaluation, the number threshold used is 1,500
and 2,500. In addition, these number thresholds have three
different size thresholds, which are the randomizing range of
100 KB–500 KB, 500 KB–1 MB and 1 MB–1.5 MB. We ran
three types of browser benchmark, namely, Octane, SunSpider,
and Kraken. We measured the memory usage of the browser
and calculated the maximum value and the average value of
the memory usage during execution of the browser benchmark.
Using the measurement results, compared with applying im-
proved HeapRevolver and not, we evaluated memory overhead
for each threshold. Table II shows evaluation results. Values
in parentheses in the table are overhead values.

As shown in Table II, Octane was a small memory overhead.
It was found from this result that even if you prohibit the reuse
of 2,500 or more memory areas which equal to the number
threshold, memory overhead is not less than range of the size
threshold.

On the other hand, SunSpider and Kraken were a large
memory overhead. It estimates that two reasons are exist.
First, the total size of the memory area for which reuse was
prohibited exceeded the range of the size thresholds. Second,
the size of individual freed memory areas is larger than Octane
one. Therefore, the total size of the freed memory area for
which reuse was prohibited was increased, and the memory
overhead was increased.



TABLE II
MAXIMUM AND AVERAGE MEMORY CONSUMPTION ON BROWSER BENCHMARKS

Octane SunSpider Kraken
max average max average max

Without improved HeapRevolver 633.49 MB 103.31 MB 113.54 MB 213.95 MB 364.43 MB
100 KB-500 KB 638.92 MB (0.86%) 109.25 MB (5.76%) 122.21 MB (7.64%) 314.44 MB (46.96%) 664.03 MB (82.21%)

1,500 500 KB-1 MB 622.05 MB (-1.81%) 108.31 MB (4.84%) 119.12 MB (4.92%) 317.19 MB (48.25%) 687.97 MB (88.78%)
1 MB-1.5 MB 641.57 MB (1.28%) 111.35 MB (7.79%) 136.16 MB (19.93%) 309.55 MB (44.68%) 774.91 MB (112.64%)
100 KB-500 KB 650.42 MB (2.67%) 111.30 MB (7.74%) 127.14 MB (11.98%) 336.56 MB (57.30%) 719.22 MB (97.36%)

2,500 500 KB-1 MB 622.05 MB (-1.81%) 112.00 MB (8.41%) 128.45 MB (13.14%) 321.45 MB (50.24%) 722.17 MB (98.17%)
1 MB-1.5 MB 625.40 MB (-1.28%) 110.23 MB (6.70%) 124.64 MB (9.78%) 326.52 MB (52.61%) 735.15 MB (101.73%)

For these results, when the size of individual freed memory
areas is small in the programs, the size threshold enables
to prohibit more memory area than using only the number
threshold. Therefore, it is effective to decrease the attack
success rate. In addition, when the size of individual freed
memory areas is large in the programs, it is difficult to decrease
memory overhead. However, via the size threshold, it is a
possible to keep the sufficient memory areas, which decrease
the attack success rate, from being release.

V. RELATED WORK

References [10]–[16] were methods to prevent UAF-attacks.
Reference [10] detects dangling pointers via static analysis
and dynamic symbolic execution. References [11] and [12]
add codes that detect dangling pointers in a compilation and
detect UAF attacks in runtime. Reference [13] detects UAF
vulnerabilities via machine learning and Typestate analysis.
These approaches [10]–[13] require a source code.

References [14] and [15] shows a method that prevents
VTable hijacking, which is often used for UAF-attack. By
rewriting the pointer to VTable, attackers succeed UAF-attack.
In order to cope with VTable hijacking, reference [14] place
VTables in read-only memory, and reference [15] pin all the
freed VTable pointers on a safe VTable under VTPin’s control.
These approaches change the VTable pointer to call only safe
objects because most UAF attacks rewrite the pointer stored in
VTable. However, these methods cannot handle a UAF attack
that does not alter VTable. In addition, rewriting the binary of
a target program beforehand is required.

Reference [16] was prevented using a method that alters
library which randomizes the location of the allocated memory
area. This method manages 4 free lists for each size. Freed
objects were managed by 4 free lists, and released in FIFO
(First-In-First-OUT). Since this method uses free lists, even if
the number of managing objects increase, allocation costs fits
within a certain time. On the other hand, owing to using free
list and four free lists, the memory overhead increases.

VI. CONCLUSION

This paper proposed improved HeapRevolver on Windows
considering the size and number of freed memory areas. In
addition, we described its design and implementation. The
HeapSize() function is used to obtain the memory size so
that improved HeapRevolver can manage the total size of the

freed memory areas. Therefore, improved HeapRevolver uses
the size of freed memory areas as thresholds in addition to
the number threshold. Consequently improved HeapRevolver
enables to prohibit more memory area than HeapRevolver
using only the number threshold, and is effective to decrease
the attack success rate.

The evaluation of the attack success rate indicated that the
number threshold was important to decrease attack success
rate. In addition, the evaluation of memory consumption
indicated that memory overhead became large when a size
of individual memory area is large.

From these results, when the size of individual freed mem-
ory areas is large in the programs, improved HeapRevolver
is difficult to decrease memory overhead. On the other hand,
when the size of individual freed memory areas is small in the
programs, improved HeapRevolver is effective to decrease the
attack success rate.

REFERENCES

[1] Yamauchi, T. and Ikegami, Y., “HeapRevolver: Delaying and Randomiz-
ing Timing of Release of Freed Memory Area to Prevent Use-After-Free
Attacks,” The 10th International Conference on Network and System
Security (NSS 2016), Lecture Notes in Computer Science (LNCS),
Vol.9955, pp.219-234 (9, 2016). DOI:10.1007/978-3-319-46298-1 15

[2] Yamauchi, T., Ikegami, Y. and Ban, Y., “Mitigating Use-After-Free
Attacks Using Memory-Reuse-Prohibited Library,” IEICE Transactions
on Information and Systems, volume E100 D, pp.2295–2306 (2017).
DOI:10.1587/transinf.2016INP0020

[3] Common vulnerabilities and exposures, https://cve.mitre.org/index.html
[4] Daniel, M., Honoroff, J. and Miller, C., “Engineering Heap Overflow

Exploits with JavaScript,” In Proc. USENIX Workshop on Offensive
Technologies (WOOT), 2008.

[5] Tang, J. “Mitigating uaf exploits with delay free for inter-
net explorer,” http://blog.trendmicro.com/trendlabs-security-intelligence/
mitigating-uaf-exploits-with-delay-free-for-internet-explorer/

[6] Metasploit, http://www.metasploit.com/
[7] Octane 2.0, http://octane-benchmark.googlecode.com/svn/latest/index.

html
[8] SunSpider 1.0.2 JavaScript Benchmark, https://www.webkit.org/perf/

sunspider/sunspider.html
[9] Kraken JavaScript Benchmark (version 1.1), http://krakenbenchmark.

mozilla.org/
[10] Josselin, F., Laurent, M., Sbastien, B., et al., “Finding the needle in

the heap: combining static analysis and dynamic symbolic execution
to trigger use-after-free,” Proc. 6th Workshop on Software Security,
Protection, and Reverse Engineering (SSPREW’16), Article No.2, 2016．

[11] Van der Kouwe, E., Nigade, V. and Giuffrida, C., “DangSan: Scalable
Use-after-free Detection,” Proc. Twelfth European Conference on Com-
puter Systems, (EuroSys ’17), pp.405–419, 2017.

[12] Younan, Y., “FreeSentry: Protecting Against Use-After-Free Vulnerabil-
ities Due to Dangling Pointers,” in the 2015 Network and Distributed
System Security Symposium (NDSS’15), 2015.



[13] Yan, H., Sui, Y., Chen, S., et al., “Machine-Learning-Guided Typestate
Analysis for Static Use-After-Free Detection,” Proc. 33rd Annual Com-
puter Security Applications Conference (ACSAC ’17), pp.42–54, 2017.

[14] Chao, Z., Dawn, S., Scott, A.C et al., “VTrust: Regaining Trust on
Virtual Calls,” in the 2016 Network and Distributed System Security
Symposium (NDSS’16), 2016.

[15] Pawel, S., Vasileios, P.K and Christiano, G., “VTPin: Practical VTable
Hijacking Protection for Binaries,” Proc. 32nd Annual Computer Secu-
rity Applications Conference (ACSAC ’16), pp.448–459, 2016.

[16] Silvestro, S., Liu, H., Crosser, C., et al., “FreeGuard: A Faster Secure
Heap Allocator,” Proc. 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17), pp.2389–2403, 2017.


