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Abstract: The leaking of information has increased in recent years. To address this problem, we previously proposed
a function for tracing the diffusion of classified information in a guest OS using a virtual machine monitor (VMM).
This function makes it possible to grasp the location of classified information and detect information leakage without
modifying the source codes of the guest OS. The diffusion of classified information is caused by a file operation, child
process creation, and inter-process communication (IPC). In a previous study, we implemented the proposed function
for a file operation and child process creation excluding IPC using a kernel-based virtual machine (KVM). In this pa-
per, we describe the design of the proposed function for IPC on a KVM without modifying the guest OS. The proposed
function traces the local and remote IPCs inside the guest OS from the outside so as to trace the information diffusion.
Because IPC with an outside computer might cause information leakage, tracing the IPCs enables the detection of such
a leakage. We also report the evaluation results including the traceability and performance of the proposed function.

Keywords: information leakage prevention, inter-process communication, virtualization

1. Introduction

With the increase in the use of personal computers, the abil-
ity to process classified information using a computer has also
increased. Associated with this, the leakage of classified in-
formation to an outside computer has become a serious prob-
lem. According to a personal information leakage analysis [1],
a leakage often occurs as a result of inadvertence and misman-
agement, which accounts for approximately 57% of all known
leakage cases. To prevent information leakage, it is important for
the user to grasp the situation surrounding the classified informa-
tion. In addition, cyber-attacks aiming at the theft of classified
information have become increasingly sophisticated. Therefore,
it is difficult to completely prevent such attacks, and it has become
important to reduce the amount of damage to users by detecting
the transfer of classified information outside their computer [2].

To trace the status of classified information in a computer, and
manage the resources that contain such information, we devel-
oped an operating system (OS) based function for tracing the
diffusion of classified information [3] (particularly, an OS-based
tracing function). In addition, the proposed function visualizes
the diffusion using a directed graph [4], and traces the diffusion of
the classified information on multiple computers [5]. Such func-
tions are efficient for grasping the use situation and preventing the
leakage of classified information.

On the other hand, an OS-based tracing function is executed
within the OS, and therefore, has the potential of being detected
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and disabled by an adversary or a malicious user. If the OS-based
tracing function is disabled, the victim cannot detect the informa-
tion leakage and there is a risk of increased damage. In addition,
the function cannot be installed in a closed-source OS such as
Windows, because its implementation requires a modification of
the source code.

Similar to an OS-based tracing function, a large number of
methods for protecting sensitive files have been proposed [6], [7],
[8], [9]. However, because they are implemented within the OS,
there is a problem in that the operational environment is lim-
ited, and they can be detected and disabled, similar to an OS-
based tracing function. To resolve the above mentioned prob-
lems, methods for protecting sensitive files from outside the OS
have been proposed [10], [11]. These methods demonstrate the
effectiveness of an outside OS implementation of a security sys-
tem. However, it is difficult to identify the cause of information
leakage because these methods are aimed solely at information
leakage prevention and do not trace the diffusion of classified in-
formation.

Based on the above mentioned observations, we designed a
function for tracing the diffusion of classified information in a
guest OS using a virtual machine monitor (VMM) specifically,
a VMM-based tracing function [12]. This VMM-based tracing
function provides the guest OS with functions that are equivalent
to an OS-based tracing function, without the need to modify the
source code of the guest OS. It is expected that attacks specif-
ically targeting this function will be difficult to achieve because
a VMM is more robust than an OS. There are three paths of in-

The preliminary version of this paper was published at Computer Secu-
rity Symposium 2015 (CSS2015), October 2015. The paper was recom-
mended to be submitted to Journal of Information Processing (JIP) by
the chief examiner of SIGCSEC.
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formation diffusion: file operations, child process creation, and
Inter-process communication (IPC). In a previous work, we im-
plemented and evaluated the proposed VMM-based tracing func-
tion for a file operation and child process creation through a
kernel-based virtual machine (KVM) [13].

IPC is an important diffusion path of classified information.
However, this function for IPC is not implemented because IPC
tracing is a complex process. IPC is conducted through a commu-
nication medium and includes the possibility for communication
outside the computer; thus, it may be made untraceable through
a method similar to a file operation and child process creation.
Thus, a new tracing function for IPC is needed to grasp all dif-
fusion paths of classified information. Additionally, IPC using
a socket is applied not only for local IPC, but also for remote
IPC. During remote IPC, communication with an outside com-
puter might cause information leakage. An example of such in-
formation leakage is the improper transmission of an e-mail. At
this time, when a personal information is leaked, there is the pos-
sibility of suffering damage such as an unauthorized login. Ad-
ditionally, in a company, information leakage is likely to cause
damages to trust. Therefore, IPC tracing has a higher level of im-
portance. A system call monitoring method used by VMwatcher
is proposed in Ref. [14]. This method can monitor all system calls
invoked in VMs. However, it is insufficient to trace the diffusion
of classified information because it requires a large cost for ana-
lyzing the diffusion path. Since the fast detection of information
leakage is preferable, the cost for tracing information diffusion
must be reduced.

This paper describes the design and implementation of a
VMM-based tracing function for IPC using a socket communi-
cation through a KVM. Further, this design and implementation
are tailored for a 64-bit version of Linux as a guest OS. This
paper also describes an evaluation including the traceability and
performance of the VMM-based tracing function.

The contributions of this paper are as follows:
- We point out the IPC-related path of diffusion and the leak-

age of classified information, as well as their related system
calls.

- We propose a VMM-based function for tracing the diffusion
and leakage of classified information through a socket com-
munication. This has the following two functions: 1) tracing
the diffusion of classified information inside the guest OS
and 2) detecting a leakage outside the computer.

- We evaluate and report the traceability and performance of
the proposed VMM-based tracing function for IPC. The
evaluation of traceability shows that the VMM-based trac-
ing function is able to trace both the local and remote IPC.
In addition, the performance evaluation shows that the per-
formance degradation of the application is small.

The remainder of this paper is constructed as follows: Sec-
tion 2 presents an overview of the function for tracing the diffu-
sion of classified information. Sections 3 and 4 discuss the de-
sign and implementation of the function for tracing the diffusion
of classified information for IPC on a KVM, respectively. Sec-
tion 5 describes an evaluation of the proposed function. Section 6
discusses previous studies related to this topic. Finally, Section 7

provides some concluding remarks regarding this research.

2. Function for Tracing the Diffusion of Classi-
fied Information in a Guest OS Using a Vir-
tual Machine Monitor

2.1 Classified Information Diffusion Path
The OS-based tracing function [3] manages any files or pro-

cesses that have the potential to diffuse classified information.
Classified information can be diffused through any process that
involves opening a classified file, reading its contents, commu-
nicating with another process, or writing such content to another
file. Therefore, the diffusion of classified information is caused
by the following operations.
(1) File operation
(2) Child process creation
(3) Inter-process communication
An OS-based tracing function traces the diffusion of classified
information by monitoring the system calls related to such oper-
ations.

2.2 Purpose
As described in Section 1, the leakage of classified informa-

tion often occurs as a result of inadvertent handling and misman-
agement (e.g., the improper transmission of an e-mail). This is
attributed to the user’s inability to grasp the location of classi-
fied information. In addition, it is difficult to completely prevent
the leakage of such information. Therefore, when information
leakage occurs, it is important to detect the event and grasp its
cause. Based on the above background, the tracing function aims
at achieving the following.
(Purpose 1) Tracing the diffusion of classified information in-

side the computer.
(Purpose 2) Detecting the leakage of classified information to

the outside of the computer and recording its cause.

2.3 Overview of the OS-based Tracing Function
We proposed an OS-based tracing function [3], an overview

which is shown in Fig. 1. This OS-based tracing function traces
the diffusion of classified information as follows:
(1) The OS-based tracing function hooks system calls that are

related to the diffusion of classified information.
(2) The OS-based tracing function collects information for trac-

Fig. 1 Overview of the OS-based tracing function.
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ing the diffusion of classified information such as files han-
dled by a system call or the transmission-destination process.

(3) The OS-based tracing function updates the diffusion infor-
mation using the information collected during (2), and audits
the potential leakage of classified information.
(A) If the audit discovers the possibility of a leakage of clas-

sified information, the OS-based tracing function noti-
fies such leakage to the monitoring application program
(AP).

(B) If the audit does not detect any possibility of such leak-
age, the OS-based tracing function returns control to the
system call.

(4) After receiving the results of the user’s judgment based on
the monitoring AP, the OS-based tracing function controls
the system call accordingly as follows:
(A) If the user’s judgment is affirmative, the system call pro-

cessing is continued.
(B) If the user’s judgment is negative, the system call pro-

cessing is terminated as an error.
In addition, the OS-based tracing function excludes files and pro-
cesses that are unrelated to the diffusion of classified information.
These files and processes are registered with the exception infor-
mation.

2.4 Overview of the VMM-based Tracing Function
The OS-based tracing function meets the purpose described in

Section 2.2. However, this function has certain problems as fol-
lows:
(Problem 1) There is a risk of an attack invalidating the tracing

function.
The OS-based tracing function is implemented in the OS.
Therefore, an adversary or a malicious user can invalidate
the function by attacking the OS. If the function is invali-
dated, it becomes difficult to prevent information from being
leaked and grasp the location of the classified information.

(Problem 2) The OS’s source code must be modified before it
can be installed.
In order to introduce the OS-based tracing function, it is nec-
essary to modify the OS’s source code. Therefore, the OS-
based tracing function cannot be implemented in a closed-
source OS such as Windows. Furthermore, when the kernel
version of the OS is updated, the OS-based tracing function
must modify the source code again after the OS is updated.

Further, as described in Section 1, there are similar problems in
the existing methods for protecting sensitive files. To resolve
these problems, we proposed a VMM-based tracing function [12],
which is functionally equivalent to an OS-based tracing function.
In particular, the VMM-based tracing function manages any files
or processes that have the potential to diffuse classified informa-
tion. Moreover, the VMM-based tracing function traces the status
of the classified information in a computer, and manages the re-
sources that contain the classified information by monitoring the
three operations described in Section 2.1. The user can always
grasp the location of their classified information using the list of
classified information stored in the VMM. Furthermore, when a
diffusion of classified information is detected, the VMM-based

Fig. 2 Overview of the VMM-based tracing function.

tracing function records the pathname of the destination file, in-
ode number, name of the command causing diffusion, and the
process ID (PID). Therefore, the user can detect the informa-
tion leakage using the above information and suppress the dam-
age even if a leakage has occurred.

Figure 2 shows an overview of the VMM-based tracing func-
tion. The VMM-based tracing function traces the diffusion of
classified information as follows:
(1) A user program in the guest OS requests a system call.
(2) The VMM-based tracing function hooks the system call in

the guest OS from the VMM. After identifying the hooked
system call, the following processing is conducted.
(A) When a hooked system call is unrelated to the diffusion

of classified information, control is returned to the guest
OS and the system call processing is continued.

(B) When a hooked system call is related to the diffusion of
classified information, the VMM-based tracing function
collects the information needed to trace the diffusion.

(3) The VMM-based tracing function updates the diffusion in-
formation using the information collected in (2-B).

(4) Control is returned to the guest OS and the system call pro-
cessing is continued.

Given these steps, the VMM-based tracing function provides the
guest OS with functions equivalent to an OS-based tracing func-
tion. Furthermore, the user registers the inode number of the files
including classified information to the VMM beforehand.

3. Tracing the Diffusion of Classified Informa-
tion for IPC on KVM

3.1 Target Tracing
We described a method for tracing the diffusion of classified

information using (1) a file operation and (2) child process cre-
ation [12]. Next, this paper describes a method for tracing the dif-
fusion of classified information through (3) IPC using the VMM-
based tracing function.

IPC is implemented through various methods, for example, a
pipe, FIFO, message queue, shared memory, or socket. Among
these, IPC using a socket is applied not only for local IPC, but
also for remote IPC. Remote IPC has the possibility of classi-
fied information leaking outside the user’s computer. Therefore,
tracing remote IPC has a higher level of importance.

IPC tracing on KVM is more complex and more difficult than
tracing file operation or child process creation because KVM
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Table 1 System call utilized for socket communication. The relevant parts are marked with “×.”

Category Name of system call Possibility of diffusion Possibility of leakage Necessity for tracing

Setup
socket
bind

Server
listen
accept

Client connect

Output

sendto

× × ×sendmsg
write
sendfile
recvfrom

× ×Input recvmsg
read

Termination
shutdown ×
close

must grasp relations between sockets and processes. It requires
more information than the case in file operation and process cre-
ation. File operations and child process creation are traceable
by just associating source file/process to destination process/file.
However, on IPC using a socket, KVM must understand which
socket corresponds to which process. Finding the correspond-
ing socket from the process control block of a current process
requires the analysis of many data structures and its cost is quite
high. Finding the receiver socket corresponding to the sender
socket also requires a negligible data structure analysis. In addi-
tion, IP addresses and port numbers used in the socket communi-
cation must be acquired and managed by KVM. Collecting and
managing the information makes it difficult to trace the informa-
tion diffusion. Generally, monitoring data structures inside a VM
from the outside causes a semantic gap problem. Thus, the IPC
tracing on KVM is more difficult than file operation and process
creation.

In this paper, we describe a method for tracing IPC using a
socket.

3.2 Tasks
To detect the diffusion and leakage of classified information

through IPC using the VMM-based tracing function, the follow-
ing tasks are required:
(Task 1) Hooking a system call with a VMM.
(Task 2) Detecting the diffusion and leakage of classified infor-

mation through socket communication.
(Task 3) Obtaining the necessary information for tracing a

socket communication.
To trace a socket communication using a VMM, it is necessary

to hook the system call related to the socket communication, and
use it to detect the diffusion and leakage of classified information.
Furthermore, tracing the socket communication from the VMM
is complex and difficult when using a similar method to trace a
file operation or child process creation because the socket inter-
mediates the communication and is used for the communication
with an outside computer. It is therefore necessary to manage the
socket, which is used as an IPC communication path, and detects
the propagation of classified information. When the VMM-based
tracing function detects the socket that have the potential to dif-
fuse classified information, it registers this socket to a list (man-

aged socket list). The managed socket list is a list managing the
sockets that have a potential to diffuse classified information. It is
one of the diffusion information (shown in Fig. 2) which manages
the classified information. Therefore, the VMM-based tracing
function can audit whether the socket has classified information
by referring to the managed socket list.

We accomplished (Task 1) in Ref. [12]; therefore, we focus on
(Task 2) in the present paper. To accomplish (Task 2), the VMM-
based tracing function hooks the system calls, which causes the
diffusion and leakage of classified information through a socket
communication. For (Task 3), we describe the solutions to each
socket communication, i.e., local IPC and remote IPC.

3.3 Detecting the Diffusion and Leakage of Classified Infor-
mation through a Socket Communication

Table 1 shows the system calls used for a socket communica-
tion along with its name, category, possibility of classified infor-
mation diffusion and information leakage, and tracing necessity.
Table 1 shows a case for Linux 3.6.10, which differs depending
on the kernel version.

The diffusion and leakage of classified information do not oc-
cur during the socket creation or the establishment of a connec-
tion because the data cannot be exchanged. Therefore, from a
socket creation to the establishment of a connection, the VMM-
based tracing function does not trace the processed system calls.

The diffusion of classified information occurs when the
data communication by an Output/Input system call is actu-
ally conducted. Thus, the VMM-based tracing function traces
Output/Input system calls. In addition, an actual information
leakage occurs through the transmission of data outside the com-
puter using an Output system call. Therefore, the VMM-based
tracing function audits the potential for leaking classified infor-
mation when it hooks to an Output system call.

Furthermore, the terminated socket is excluded from the man-
aged socket list because it remains unused.

3.4 Obtaining the Necessary Information for Tracing a
Socket Communication

3.4.1 Local IPC
In local IPC through a socket communication, the VMM-based

tracing function hooks an Output/Input system call and identi-
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fies the socket of the communication medium. At that time, the
VMM-based tracing function traces the diffusion of classified in-
formation through IPC by managing whether the socket can ob-
tain this information.
3.4.2 Remote IPC

During remote IPC using socket communication, the VMM-
based tracing function hooks the Output system call and detects
information leakage. Then, by identifying the process and com-
puter at the destination of the communication, the VMM-based
tracing function obtains its IP address and port number.

3.5 Flow of Tracing Socket Communication
Solving these tasks enables the VMM-based tracing function

to trace the diffusion of classified information through a socket
communication. The flow of the socket communication tracing is
as follows:
(1) The VMM-based tracing function hooks the system call re-

lated to the Output in the guest OS from the VMM.
(2) When a process issuing the Output system call is managed,

the following processing is conducted.
(A) In the case of local IPC, the socket is appended to the

managed socket list.
(B) In the case of remote IPC, the possibility of informa-

tion leakage is determined, and the VMM-based tracing
function notifies the user as such by producing a log.

(3) Control is returned to the guest OS and the Output system
call process is continued.

(4) The VMM-based tracing function hooks the system call re-
lated to the Input in the guest OS from the VMM.

(5) When the socket utilized for IPC is managed, the process
issuing the Input system call is appended to the managed
process list.

(6) Control is returned to the guest OS and the Input system call
process is continued.

4. Implementation

4.1 Environment
In this section, we describe the implementation of the VMM-

based tracing function using a KVM as the VMM and 64-bit
Linux 3.6.10 as the guest OS. In addition, the system calls in
the guest OS is executed through SYSCALL/SYSRET. Further,
the guest OS is fully virtualized using Intel Virtualization Tech-
nology (VT).

4.2 Requirements and Tasks for Implementation
Based on the design described in Section 3, the following re-

quirements must be implemented;
(Requirement 1) Tracing the diffusion of classified informa-

tion using local IPC
(Requirement 2) Detecting the leakage of classified informa-

tion using remote IPC
(Requirement 3) Tracing the diffusion and detecting the leak-

age of classified information using only information obtain-
able by the VMM

To trace the socket communication, it is necessary to trace the dif-
fusion of classified information using local IPC and detect the in-

formation leakage through remote IPC, as described in Section 3.
In addition, the VMM-based tracing function can only use the
information obtainable from the VMM owing to its VMM imple-
mentation.

Under Linux, there are two ways for local IPC through a socket
communication: communication of UNIX domain and that of
INET domain to the loopback address or its host address. In
addition, remote IPC using a socket communication is achieved
through a communication with an external IP address using the
INET domain.

There are two tasks required to meet the above requirements
using a VMM-based tracing function:
(Implementation Task 1) Tracing the socket communication

through a UNIX domain socket using a VMM
(Implementation Task 2) Tracing the socket communication

through an INET domain socket using a VMM
Even though existing approaches can monitor all system calls

invoked in a VM and data structures related to those system calls,
it is insufficient for efficient tracing of information diffusion. To
suppress the amount of information collected by a VMM and
manage resources that possibly have classified information, we
develop the proposed system which can manage those resources
and quickly detect information leakage.

To trace IPC using a socket, it is necessary to associate two
sockets first because there are sender socket and receiver socket.
Subsequently, the communicated socket is made to correspond to
another socket. In order to do this, after identifying the sender
socket, identify the socket corresponding to receipt for each In-
put system call and audit whether this socket communicates with
sender socket are needed. The corresponding process is also ac-
quired by tracing data structures from the corresponding socket.

To bridge the semantic gap, first of all, the virtual address of the
information to fetch must be obtained by arguments and return
value, or stack pointer when the system call is hooked. Subse-
quently, we can obtain the target information by translating guest
virtual address into host physical address using shadow page ta-
ble. As shown in Figs. 3 and 4, there are many data structures
related to the socket. When a send or a receive event occurs,
the analysis of all data structures in Fig. 3 is required. In addi-
tion, when a receive event occurs, analysis of all data structures
in Fig. 4 is required. This analysis enables the KVM to bridge the
semantic gap.

The proposed method hooks system calls of guest OSes by a
method stated in the paper [12]. After system calls are hooked,
all tracing functions are implemented separately from the origi-
nal VMM’s source codes. Thus, the insertion to existing source
codes is kept to a minimum. Moreover, additional functions are
modularized. For these reasons, the cost for implementing the
proposed method to existing VMMs is kept low.

In Sections 4.3 and 4.4, we describe the procedures for accom-
plishing the above tasks, respectively.

4.3 Tracing the Socket Communication through a UNIX
Domain Socket Using a VMM

As described in Section 3.4.1, to trace the local IPC, the VMM-
based tracing function manages whether the socket handled by
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Fig. 3 Relationship of data structures related to a socket.

Fig. 4 Relationship between data structures of a connected UNIX domain
socket.

the Output/Input system call can obtain classified information.
Figure 3 (A) shows the relationship of the data structure related
to the UNIX domain socket. The UNIX domain socket is im-
plemented using the socket and unix_sock structures. As the
figure shows, data of UNIX domain socket are obtainable by trac-
ing the data structures from the file descriptor (fd). The VMM-
based tracing function identifies the socket handled by a system
call when it hooks the Output/Input system calls using the fd ob-
tained from their argument.

In addition, the classified information is diffused to a desti-
nation socket through a source socket. Therefore, after identi-
fying the socket handled by the Output system call, the VMM-
based tracing function also identifies the destination socket. Both
socket connections are established through a connection request
by the client-side connect() system call to the server-side listening
socket using an accept() system call. It can be seen in Fig. 4 that
the destination socket is identifiable by a peer of the unix_sock
structure. The VMM-based tracing function then identifies the
destination socket from the peer of the unix_sock structure by
tracing the socket data structure.

Further, to exclude the terminated socket from the man-
aged socket list, the VMM-based tracing function hooks the
Termination system call and identifies the socket handled by this
call.

4.4 Tracing the Socket Communication through an INET
Domain Socket Using a VMM

In the communication of the INET domain, unlike that of the
UNIX domain, both sockets are not always created in the com-
puter. Accordingly, to identify the communication destination,

the VMM-based tracing function utilizes the IP address and port
number of the destination socket. Figure 3 (B) shows the rela-
tionship of the data structure related to the INET domain socket.
Similar to the UNIX domain socket, the INET domain socket
is implemented through the socket and inet_sock structures.
Therefore, they are identifiable by tracing the data structure using
fd.

In addition, the IP address and port number of the destina-
tion socket are stored in the inet_daddr and inet_dport of
the inet_sock structure, respectively. The VMM-based trac-
ing function then obtains the values from the data structure of
the socket by hooking the Output/Input system calls. When the
destination IP address is a loopback address or the user’s own
host address, and when the destination port and source port are
matched, the VMM-based tracing function judges that the com-
munication between both sockets is achieved and traces the diffu-
sion of classified information. When the destination of the Output

system call is not a loopback address or own host address, the
VMM-based tracing function judges it as an external communi-
cation and detects a possibility of information leakage.

5. Evaluation

5.1 Experimental Setup
We evaluated the following four items.

(1) Traceability
(2) System Call Overhead
(3) Microbenchmark
(4) Application

During the socket communication, there is the possibility of
the diffusion of classified information through a local IPC and its
leakage through a remote IPC. Therefore, the VMM-based trac-
ing function is required for detecting the above two patterns. We
then audit whether the VMM-based tracing function can detect
them by conducting the assumed scenario in the guest OS. In ad-
dition, to audit the performance degradation of the VMM-based
tracing function, we measured the performance of the system call,
the microbenchmark, and the application.

Further, we evaluated the VMM-based tracing function using
Core i5-3470 (3.2 GHz, 4 cores) and 4,096 MB of memory. One
virtual CPU and 1,024 MB of memory are allocated to the guest
OS. The prototype of the VMM-based tracing function is imple-
mented by modifying KVM (kvm-kmod-3.6) with Linux 3.6.10
and the guest OS is the same version of the host, Linux 3.6.10.
The number of modified files for implementing the VMM-based
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tracing function is seven files. In addition, the amount of modi-
fied source code is 1,458 lines. During the performance evalua-
tion of the application in Section 5.5, we use the server and client
machines as mentioned above. Additionally, the EPT is disabled.

5.2 Traceability
5.2.1 Traceability Evaluation Method

To evaluate the traceability of the VMM-based tracing func-
tion, we applied the following scenarios:
(Assumed Scenario 1) Send the classified information through

local IPC using a UNIX domain socket.
Conduct local IPC through the UNIX domain socket (using
sendto()/recvfrom()) from the managed client to an unman-
aged server.

(Assumed Scenario 2) Send the classified information outside
the computer.
Send the managed file outside the computer using a scp
command.

(Assumed Scenario 3) Send an e-mail with an attached file
which include classified information.
Send the e-mail with managed file using a mail command.

5.2.2 Experimental Results of Traceability
During local IPC, the classified information is diffused to a

socket when the managed process sends it there. Next, the clas-
sified information is also diffused to the other process by receiv-
ing it from the managed socket. When (Assumed scenario 1)
is executed, the VMM-based tracing function detects the diffu-
sion of classified information to the socket and appends it to the
managed socket list when it hooks a sendto(). In addition, the
VMM-based tracing function detects the diffusion of classified
information from the socket to process and append it to the man-
aged process list when it hooks a recvfrom().

During remote IPC, the classified information is leaked when
the managed process sends it outside the computer. When (As-
sumed scenario 2) executed by a scp command, the VMM-based
tracing function detects the information leakage when it hooks a
write() system call that sends the classified information outside
the computer. Figure 5 shows the log generated by the VMM-
based tracing function when it detects information leakage. As
shown in Fig. 5, the VMM-based tracing function records the des-
tination IP addresses (daddr), port numbers (dport), command
names (comm), and PIDs (pid). The user can identify the cause of

Fig. 5 Log generated by the VMM-based tracing function in (Assumed Sce-
nario 2).

Table 2 Overhead of system calls incurred by the VMM-based tracing function (µs).

Bare
Traced (Relative performance) Overhead

Name of system call Operation of Operation of Operation of Operation of
unmanaged target managed target unmanaged target managed target

sendto 12.92 36.68 (283.83%) 47.10 (364.48%) 23.76 34.18
recvfrom 12.42 57.19 (460.36%) 62.00 (499.10%) 44.77 49.58
getpid 0.015 0.016 (106.86%) - 0.0011 -

the information leakage from such information. Correspondingly,
the VMM-based tracing function detects the information leakage
and records the equivalent information illustrated in Fig. 5 when
(Assumed Scenario 3) is executed.

To summarize, we confirmed that the VMM-based tracing
function is able to trace the diffusion of classified information
through local IPC and detect information leakage through remote
IPC.

5.3 System Call Overhead
5.3.1 Methods for Evaluating the System Call Overhead

To measure the overhead generated through the installation of
the VMM-based tracing function, we measured the performance
of the guest OS both before and after installation. Moreover, for
comparison, we measured the performance when the process was
both managed and unmanaged. In this evaluation, we measured
the overhead of sendto() and recvfrom() of the UNIX domain,
which is related to the diffusion of classified information. On the
other hand, the VMM-based tracing function hooks all system
calls even if a system call is unrelated to the diffusion of clas-
sified information. We then measured the performance of get-
pid() to clearly determine the impact of the performance of the
system calls unrelated to the diffusion of classified information.
To measure the performance of each system call, we utilized the
rdtsc (Read Time-Stamp Counter) instruction, which obtains the
value of timestamp counter. By comparing the value of times-
tamp counter obtained before and after the system call, we can
calculate the time taken for executing the system call.
5.3.2 Experimental Results of the System Call Overhead

Table 2 shows the overhead of the system calls incurred
through the VMM-based tracing function. In Table 2, Bare

shows the measurement prior to the installation of the VMM-
based tracing function and Traced shows the measurement af-
ter its installation. Operation o f managed target and Operation

o f unmanaged target in Traced show the measurements con-
ducted while operating a managed/unmanaged process or socket.
In addition, Overhead is calculated using the following formula:
(measurement in each environment – measurement be f ore the

installation o f the f unction).
The overhead of sendto() and recvfrom() during the operation

of an unmanaged target is 23.76 and 44.77 µs, respectively, with
a relative performance level of 283.83% and 460.36%, whereas
during the operation of a managed target it is 34.18 and 49.58 µs,
respectively, with a relative performance level of 364.48% and
499.10%. These are relatively large values. The overhead during
the operation of a managed target is greater than that of an unman-
aged target because the managed process/socket list is scanned
when judging whether the process/socket is managed. It seems
that the overhead incurred after the installation of the VMM-
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based tracing function will be increased with the number of man-
aged processes and sockets. Furthermore, when the process that
issued the Output system call is managed, the VMM-based trac-
ing function appends the destination socket to the managed socket
list. In addition, when the socket handling the Input system call
is managed, the VMM-based tracing function appends the pro-
cess that issued the Input system call to the managed process list.
It is suspected that this additional processing is the cause of the
overhead when operating the managed target.

On the other hand, the overhead of getpid(), which is unrelated
to the diffusion of classified information, is 0.0011 µs, with a rel-
ative performance level of 106.86%, which is a relatively small
value. In the case of system calls unrelated to the diffusion of
classified information, the performance impact is slight because
the VMM-based tracing function only judges whether the hooked
system call is related to the diffusion of classified information.

5.4 Microbenchmark
5.4.1 Evaluation Method of Microbenchmark

In this evaluation, we measure the latency of the IPC using LM-
bench [15] version 3. We then measured the performance of the
guest OS both before and after installing the VMM-based tracing
function as well as the evaluation described in Section 5.3.
5.4.2 Experimental Results of Microbenchmark

Table 3 shows the IPC latency measured by LMbench. Here,
slct TCP, AF UNIX, UDP, TCP, and TCP conn are the total la-
tency of the socket read/write, the communication standby time
of the socket, the communication standby time through UDP/IP,
the communication standby time through TCP/IP, and the total
time between the socket creation and connection establishment
respectively.

The overhead of slct TCP, AF UNIX, UDP, and TCP used to
conduct the transmission/reception processing is within the range
of 5 to 50 µs, which is a relative performance level of 327.88 to
546.55%. It seems that such overhead is caused by the process
used to determine whether the process/socket is managed as by
the evaluation described in Section 5.3. In addition, the over-
head of TCP conn is 52.67 µs, which is the largest value in our
analysis. It is thought that the cause of this overhead is the large
number of VM-Exits incurred by issuing a system call between
the socket creation and a connection establishment. On the other

Table 3 Latency of IPC (µs).

Item Bare
Traced

Overhead(Relative performance)
slct TCP 2.08 6.82 (327.88%) 4.74
AF UNIX 7.24 39.57 (546.55%) 32.33
UDP 13.33 63.23 (474.34%) 49.90
TCP 16.77 60.50 (360.76%) 43.73
TCP conn 80.33 133.00 (165.57%) 52.67

Table 4 Overhead and average response time of Web server (ms).

Bare
Traced (Relative performance) Overhead

File size Operation of Operation of Operation of Operation of
unmanaged target managed target unmanaged target managed target

1 KB 1.732 1.862 (107.506%) 1.868 (107.852%) 0.130 0.136
10 KB 1.783 1.839 (103.141%) 1.853 (103.926%) 0.056 0.0700

100 KB 5.916 6.183 (104.513%) 6.371 (107.691%) 0.267 0.455
1,000 KB 48.479 50.965 (105.128%) 51.991 (107.244%) 2.486 3.512

hand, the relative performance is 165.57%, and the ratio of in-
creased overhead is relatively small compared to the other deter-
mined value. This is attributed to the system calls issued between
the socket creation and a connection establishment being unre-
lated to the diffusion of classified information.

5.5 Web Server
5.5.1 Evaluation Method of Web Server

To evaluate the overhead on the application, we measure the
average response time of a web server by using ApacheBench,
version 2.3. We use the web server for the evaluation of the appli-
cation since the VMM-based tracing function monitors a socket
communication and a socket communication occurs frequently in
the processing of a web server. In this evaluation, we use Apache
2.4.6 as the web server. This web server runs on the guest OS
of the VMM-based tracing function and provides web pages with
1 Gbps network. To measure the average response time of the web
server, the client machine sends an HTTP request 1,000 times to
the web server by using ApacheBench and calculates its average.
The ApacheBench runs on the client machine described in Sec-
tion 5.1. In addition, for comparison, we measure the average
response time before and after the installation of the VMM-based
tracing function. In measurement after the installation, we mea-
sure the average response time both when the index.html is man-
aged and unmanaged.
5.5.2 Experimental Results of Web Server

Table 4 shows the overhead and average response time of the
Web server. As shown in Table 4, the relative performance of
Operation o f unmanaged target is within the range of 103.141
to 107.506% and that of Operation o f managed target is within
the range of 103.926 to 107.852%. In other words, the perfor-
mance degradation with the VMM-based tracing function is less
than about 10%. This is a very small value as compared to the
overhead of the system call (maximum 499.10%) and that of the
microbenchmark (maximum 546.55%). Although the overhead
percentage of the system call and the microbenchmark is rela-
tively large, that of the total processing time of the application is
small. Moreover, the overhead in case Operation o f unmanaged

target is larger than that of unmanaged target. This is attributed
to an additional processing for a managed file and a process as
well as the evaluation in Section 5.3.

Furthermore, the overhead per HTTP request is within the
range of 130 to 2,486 µs in Operation o f unmanaged target and
is within the range of 136 to 3,512 µs in Operation o f managed

target. These overheads may include the overhead of the system
call and the microbenchmark measured in Sections 5.3 and 5.4.
Although the overhead percentage of the system call and the mi-
crobenchmark is relatively large, that of the total processing time
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of the application is small.
In conclusion, the overhead generated by the installation of the

VMM-based tracing function is relatively large from the view-
point of the system call or the microbenchmark level, however, it
is small from the viewpoint of the application level.

6. Discussion

6.1 Usage Scenario
We assume that the user has the privilege of both a VMM and

a guest OS. We also assume that the user mainly operates in the
guest OS. The proposed system mainly aims at preventing infor-
mation leakage resulting from inadvertence or mismanagement
in a regular operation. This assumed situation shows that the pro-
posed system is best suited for personal use at home. Uploading
files to a remote server or sending e-mails can be considered as
the case of information leakage at home. The information leak-
ages are all achieved via IPC, therefore, those are detectable by
the proposed system. Further, although it is described that the
proposed system is best suited for personal use at home, we as-
sume that the proposed system can also be used in company of-
fices or other situations if the above assumptions are matched.

6.2 Limitations
In our proposed system, the mechanism of obtaining the guest

OS information (e.g., inode number, PID, socket information,
etc.) is dependent on the data structure of the guest OS and the
specification of the system call, and so the users cannot use
any Linux they like as a guest OS. For example, the proto-
type in this paper is implemented for Linux 3.6.10. In this ver-
sion, the prototype is dependent on the following data structures:
thread_info, task_struct, files_struct, file, dentry,
inode, socket_alloc, unix_sock, and inet_sock. There-
fore, if the above data structures and system call specifications
are the same as Linux 3.6.10, the tracing function is available.
Even if the above conditions are not satisfied, users can use any
OS by adapting the mechanism of obtaining the guest OS infor-
mation for a guest OS they want to use.

In this paper, we utilize Linux as a guest OS to unify the host
OS and guest OS. Also the reason why Linux is used as a guest
OS is that it requires deep understanding of guest OS’s data struc-
tures to implement the proposed method. This paper also consid-
ers the feasibility of the proposed method for other OS such as
Windows but it is not sufficient. Windows has a large share, and
so there are quite a few scenes treating the classified information
with Windows. Therefore, it is a future work to apply the pro-
posed system to Windows.

Since the proposed function is designed and implemented for
one guest OS, the prototype of the proposed function cannot ap-
ply to a lot of guest OSes on one VMM. However, we thought
that by distinguishing the guest OS, the proposed function can
apply to a lot of guest OSes on one VMM even in the local or
cloud environment. Thus, we will examine the feasibility of the
proposed function for a lot of guest OSes.

The proposed method can trace the diffusion of auto-generated
temporary/backup files on local drives. This is attributed to the
classified information is diffused through system calls described

in Table 1. Thus, it is not important the file is generated inten-
tionally or automatically. However, the case for diffusion to files
on a network drive is not able to trace but it is able to detect in-
formation leakage. Tracing diffusion of classified information on
network drives is the future work.

The proposed method cannot differentiate between normal
client access and malware access when a malware uses process
injection techniques. Because the proposed function manages if
a process has a potential of information leakage, it cannot differ-
entiate if the process is malicious or not. However, the proposed
function manages processes and files which diffuse classified in-
formation. Analyzing the information enables the manager of the
VMM to detect which process leaks classified information.

7. Related Work

In this section, we compare similar works related to the pro-
posed VMM-based tracing function. Many methods for tracing
the diffusion of information within an OS have been proposed.
Thus, we introduce approaches that aim to trace the classified in-
formation through both a dynamic and a static analysis. We also
refer the respective method used for preventing information leak-
age.

TaintDroid [16] is a method for tracing the diffusion of classi-
fied information using a dynamic taint analysis (DTA). A DTA is
used to track information that has been tainted by other data. Sub-
sequently, if the tainted data are written to another memory loca-
tion, the destination is marked as tainted. Thus, we can follow
the classified information through a DTA. TaintEraser [17] uses a
similar method. Implemented for smartphones, TaintEraser traces
the diffusion of sensitive information within such a device. Fur-
ther, when an external leakage of information is detected, the user
receives a notification. Taint-exchange [18] is a method for cross-
host taint tracking. This method is applied by injecting tainted
information into a data transfer. Argos [19] is a honey pot utiliz-
ing a DTA and is implemented on QEMU [20]. Argos marks the
data received from a network and tracks the tainted data. Sub-
sequently, when the data received from a network are executed,
Argos detects the data as an attack and obtains the information
related to the attack (e.g., a memory dump). In Ref. [21] a taint-
based protection system implemented on Xen [22] is described.
This method is used to track data received from a network by
tainting and preventing their execution. Thus, attacks based on a
malicious code injection are prevented. To mark the data using a
taint-tag, a DTA requires an additional storage, called a shadow
memory. Therefore, an additional non-trivial memory and disk
space are required. In contrast, the VMM-based tracing func-
tion can trace the diffusion of classified information without ad-
ditional memory or disk space. However, the tracing granularity
of the VMM-based tracing function is coarser than that of a DTA
because the VMM-based tracing function is based on the proba-
bility of information diffusion caused by system calls.

There are also other methods for dynamically tracing the in-
formation flow. CopperDroid [23] operates Android malware on
QEMU, and analyzes the behavior of this malware by hooking
the system calls. An analysis of Android-specific IPC using
Binder is achieved by hooking ioctl(), which sends Binder the
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data. Aquifer [7] prevents an unintended information leakage by
limiting the applications that can handle sensitive data using a
policy restricting the host exportation. AppIntent [24] detects the
transmission of sensitive data using an Android application and
notifies the transmission to the user. Subsequently, during an un-
intentional user operation, the application that executed the oper-
ation is judged to be malicious. The purpose of these methods is
to analyze malware or prevent information leakage. On the other
hand, the purpose of the VMM-based tracing function is to grasp
the location of classified information and identify the cause of
information leakage. Grasping the location of classified informa-
tion prevents an information leakage resulting from inadvertence
or mismanagement. In addition, identifying the cause of informa-
tion leakage leads to the prevention of its recurrence.

Collecting information inside a VM from the outside is known
as Virtual Machine Introspection (VMI) [25]. VMI is used in
many researches to offload security systems to the outside of
VMs. XenAccess [26] is a monitoring library for VMI and Lib-
VMI [27] is an extended version of XenAccess. These libraries
enable IDS applications on a Host OS to introspect the memory
and disks of other VMs. These libraries are useful for collect-
ing kernel data of other VMs from the Host OS. Kourai et al.
proposed KVMonitor [28], which offloads legacy intrusion de-
tection systems to KVM, for VM introspection. In addition to
XenAccess and LibVMI, KVMonitor enables IDSes on Host OS
to introspect network packets of other VMs. Because KVMonitor
monitors network packets of VMs, information granularity is dif-
ferent from the VMM-based tracing function. To trace informa-
tion diffusion by socket communication, it is required to recon-
struct semantic views from captured network packets. Because
the VMM-based tracing function detects system calls related to
socket communication, the cost for semantic view reconstruction
is less.

DroidSafe [29] provides a static information flow analysis
framework. It analyzes an information flow that has the poten-
tial to include sensitive data. From such an analysis, it can be
verified whether an Android application has the potential to leak
sensitive data. DroidSafe detects the possibility of such a leak-
age statically. On the other hand, the proposed VMM-based trac-
ing function traces the diffusion of classified information dynami-
cally. Additionally, DroidSafe is specialized for Android because
it detects the possibility of leakage from an intent, which is an
Android-specific system. In contrast, the VMM-based tracing
function has high versatility because it traces the diffusion of clas-
sified information by hooking a system call, which is widely used
in various environments.

Tightlip [6] is a privacy management system that swaps an
original process for a dummy process, called a “Doppelgangers,”
when a process that includes sensitive data attempts to write the
data to a network. This protects the sensitive data from leak-
age because Doppelgangers do not contain sensitive data them-
selves. Filesafe [10] protects sensitive files on a guest OS using a
VMM. The user sets the security policy, such as read-only or not-
accessible, for the sensitive files beforehand. By enforcing the
security policies using VMM, Filesafe can prevent sensitive files
from unauthorized access. SVFS [11] operates a Normal VM run-

ning standard applications, an Admin VM for the purpose of sys-
tem administration, and a DVM to store sensitive files for other
VMs. These sensitive files can be edited only by the Admin VM.
Thus, it is possible to protect these files even if the Normal OS
is compromised by an attacker. In addition, VOFS [30] only per-
mits the user to view sensitive files using SVFS. The method in
Ref. [8] reduces the root privilege. It prevents the modification of
files that exceed the authority, thereby protecting important files.
The method of Ref. [31] is a provenance-aware system targeting
Linux OS. It records a data provenance using LPM (Linux Prove-
nance Module) and realizes an access control. In addition, an au-
thenticity and integrity are guaranteed by a Linux-IMA (Linux-
Integrity Measurement Architecture). TightLip, Aquifer, SVFS,
and the method of Refs. [8] and [31] are necessary for modifying
the structure of an OS, and hence, the operational environment is
limited. In contrast, the proposed VMM-based tracing function
can be installed in various environments owing to a lack of nec-
essary modifications to the OS. In addition, Filesafe necessitates
the setting of a policy for each file individually, which may cause
a leakage of classified information through a policy misconfigura-
tion. In contrast, the VMM-based tracing function automatically
traces the diffusion of classified information, and therefore, the
risk of information leakage through a policy misconfiguration is
low.

Cashtags [32] prevents information leakage that may occur
through shoulder surfing in public places. To prevent such in-
formation leakage, Cashtags are used to replace sensitive data
elements with non-sensitive data elements before they are dis-
played on the screen. I-BOX [9] prevents information leakage
by untrusted input method editor (IME) apps. It also intercepts
and analyzes the user’s input data. When sensitive data are in-
cluded in the user’s input data, I-BOX rolls back the execution of
the IME app state. This prevents an information leakage from an
untrusted IME app. Although these studies are targeted toward
smartphones, they have the same purpose as the present study
from the viewpoint of sensitive data protection.

8. Conclusion

In this paper, we describe a method for tracing the diffusion of
classified information through a socket communication using a
VMM-based tracing function. During local IPC, the proposed
VMM-based tracing function traces the diffusion of classified
information through a socket by managing whether the process
and socket have classified information. During remote IPC, the
VMM-based tracing function detects information leakage by de-
tecting a managed process used to send classified information
outside the computer. The VMM-based tracing function also
enables identifying the cause of information leakage by record-
ing the destination IP address, port number, command name, and
PID.

We implemented and evaluated the prototype of a proposed
VMM-based tracing function for a socket communication using
a KVM as the VMM and 64-bit Linux as the guest OS. In our
evaluation of the traceability, we confirmed that the VMM-based
tracing function can trace the diffusion of classified information
through local IPC and detect information leakage through remote
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IPC. During a performance evaluation, the overhead of the sys-
tem calls related to the diffusion of classified information was
within the range of 23.76 to 49.58 µs, with a relative performance
level of 283.83% to 499.10%, which are relatively large values.
On the other hand, the overhead of getpid(), which is unrelated
to the diffusion of classified information, was 0.0011 µs, which
is a relative performance level of 106.86%, a small value com-
pared to those obtained for system calls related to the diffusion of
classified information. In addition, the performance degradation
in a web server is less than about 10%. According to this result,
we can say that the overhead generated by the installation of the
VMM-based tracing function is small from the viewpoint of the
application level.

IPC is implemented through various methods, for example, a
pipe, FIFO, message queue, shared memory, or socket. In this
paper, we focus on tracing the socket communication because of
its high priority. However, it also important to trace the other
IPCs. Similar to the socket communication, these are conducted
through a communication medium. Therefore, these are also
traceable by managing whether their communication medium has
classified information based on the proposed method. In our fu-
ture work, we will implement the proposed VMM-based tracing
function for IPC, excluding a socket communication. In addition,
we will adapt the VMM-based tracing function to Windows and
cloud environment.
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Editor’s Recommendation
This paper proposed the tracing mechanism against IPC’s in-

formation exchange. The authors also implemented the prototype
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of proposed mechanism on a KVM (Kernel-based Virtual Ma-
chine). The proposed function is worthwhile to make grab all of
the diffusion path on the KVM so that the guest OS modifica-
tion are not necessary. An IPC tracing on KVM is more complex
and more difficult than tracing file operation or child process cre-
ation because KVM must grasp relations between sockets and
processes. The paper describes a valuable discussion of how to
solve these difficulties. The paper gives insights to readers in this
research field and thus is selected as a recommended paper.

(Chief examiner of SIGCSEC Satoru Torii)
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