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Enhancement of protein 
thermostability by three 
consecutive mutations using 
loop‑walking method and machine 
learning
Kazunori Yoshida1,2, Shun Kawai3, Masaya Fujitani3, Satoshi Koikeda1*, Ryuji Kato3* & 
Tadashi Ema2*

We developed a method to improve protein thermostability, “loop‑walking method”. Three 
consecutive positions in 12 loops of Burkholderia cepacia lipase were subjected to random 
mutagenesis to make 12 libraries. Screening allowed us to identify L7 as a hot‑spot loop having 
an impact on thermostability, and the P233G/L234E/V235M mutant was found from 214 variants 
in the L7 library. Although a more excellent mutant might be discovered by screening all the 8000 
P233X/L234X/V235X mutants, it was difficult to assay all of them. We therefore employed machine 
learning. Using thermostability data of the 214 mutants, a computational discrimination model was 
constructed to predict thermostability potentials. Among 7786 combinations ranked in silico, 20 
promising candidates were selected and assayed. The P233D/L234P/V235S mutant retained 66% 
activity after heat treatment at 60 °C for 30 min, which was higher than those of the wild‑type enzyme 
(5%) and the P233G/L234E/V235M mutant (35%).

Enzymes play pivotal roles in various industries, exerting powerful and specific catalytic performances. The 
inherent enzymatic properties such as catalytic activity, substrate specificity, and optimal temperature are however 
unsatisfactory in some cases. Enzymatic functions can be strengthened by various methods including protein 
 engineering1–10. For example, random  mutagenesis11–18, rational  alteration19–26, loop-structure  modification27,28, 
and amino-acid sequence  alignment29 have been studied. Although directed evolution with random mutagenesis 
is a powerful  method1–10, both a huge mutant library and a high-throughput screening system are needed to cre-
ate and select an excellent mutant. To this end, cell-surface display  systems30,31, flow  cytometry32, and  robotics33 
have also been developed although costs are required.

Enzymes are often sensitive to temperature and suffer from denaturation. Therefore, various methods have 
been developed to create thermostable mutants. Loop structures are susceptible to temperature, pH, and solvent, 
and frequently show high B-factors; the B factor is a crystallographic temperature factor, which can be used as an 
index for predicting destabilization sites. B-FIT is a method that combines the B-factor with directed evolution, 
and the thermostability of Bacillus subtilis lipase has been  improved34,35. Directed evolution, DNA shuffling, and 
yeast cell surface display are also effective for gaining thermostable  variants36–38. Bioinformatic approaches such 
as machine learning have also been reported, where a target mutant is designed by analyzing the characteristics 
of available  mutants39. A thermostable mutant of Bacillus subtilis lipase has been created by using quantitative 
structure–thermostability relationship models and nonlinear support vector  machine40. A convolution neural 
network-based prediction model has been used to create a thermostable mutant of Rhizomucor miehei  lipase41.

Lipases are enzymes widely used in academia and  industry42,43. Burkholderia cepacia lipase, commercialized as 
lipase PS (LPS), is one of the most useful biocatalysts, and robust mutants are required. Here we have developed 
a “loop-walking method” for the creation of thermostable mutants. We introduced random mutations into three 
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consecutive positions in each of twelve loop regions of LPS (L1 to L12, Fig. 1), expecting the synergistic effect 
of the contiguous triple mutations. Screening of twelve mutant libraries allowed us to identify L7 as a hot-spot 
loop having an impact on thermostability, and the P233G/L234E/V235M mutant was found. Because this triple 
mutant was found by the screening of 214 variants in the L7 library, a more excellent mutant might be discovered 
by the screening of all the 8000 (=  203) possible P233X/L234X/V235X mutants. However, it was experimentally 
difficult to cover all of them. Therefore, we introduced machine learning to effectively narrow down the possible 
combinations, based on the concept of our in silico mutant screening, which analyzes physicochemical rules in 
the experimental data with multivariate  analysis44–55. By modeling the thermostability data of the 214 variants, 
all the remaining triple combinations were ranked in silico. Top 20 candidates were experimentally prepared, and 
the P233D/L234G/V235G and P233D/L234P/V235S triple mutants were discovered. The loop-walking method 
in combination of machine learning is a powerful strategy for the creation of thermostable mutants of proteins.

Results and discussion
Exploration of triple mutants with the loop‑walking method. Using the crystal structure of LPS 
(PDB code: 1OIL)56, we selected twelve loop regions (L1 to L12, Fig. 1) and introduced random mutations into 
three consecutive positions to make twelve mutant libraries. Approximately 200 variants for each library were 
picked up and produced by recombinant Escherichia coli (E. coli)57, and enzymatic activity and residual activity 
after heat treatment (60 °C for 30 min) were measured. The relative activity and residual activity of mutants as 
compared to those of the wild-type enzyme are visualized by quadrant classification (Fig. 2). The mutants with 
improved thermostability appear in the first and second quadrants, while the mutants with reduced thermo-
stability appear in the third and fourth quadrants. The difference between the first and second quadrants or 
between the third and fourth quadrants represents the difference in enzymatic activity without heat treatment. 
Therefore, an ideal variant with improved activity and thermostability will appear in the first quadrant.

Figure 3 shows the results of the assay. To our delight, many variants having mutations in the L7 region 
appeared mainly in the first or second quadrant (Fig. 3g). The P233G/L234E/V235M and P233H/L234V/V235H 
mutants were the best ones, showing 11-fold and 12-fold residual activity, respectively, as compared with the 
wild-type enzyme. Obviously, L7 is a hot-spot loop capable of enhancing thermostability. In sharp contrast, all 
the remaining libraries had most data in the third and fourth quadrants although the L10 library seemed to be 
slightly promising. Interestingly, no positive variants were obtained in the L2 and L5 libraries (Fig. 3b,e) despite 
the high B-factors around the L2 and L5 regions (Fig. 1). This result sharply contrasts with the previous reports, 
where loop regions with high B-factors were altered to create excellent variants of various  enzymes58, including 
Bacillus subtilis  lipase34,35. The loop-walking method has good potential for the creation of thermostable mutants 
that cannot be obtained by the B-FIT method, which always depends on the B-factors of X-ray crystal structures.

The two best triple mutants were compared in more detail. As a result of heat treatment at 70 °C for 30 min, 
the P233G/L234E/V235M mutant was more thermostable than the P233H/L234V/V235H mutant (Fig. S1a,c); 
the former exhibited a residual activity of more than 40% whereas the latter showed little or no residual activity. 
On the other hand, although the P233G/L234E/V235M mutant showed lower activity at 60 °C than the P233H/
L234V/V235H mutant, they exhibited comparable activities at 70 °C (Fig. S1b,d). Based on these results, the 
P233G/L234E/V235M mutant was taken as the best one.
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Figure 1.  (a) Front and back views of LPS (PDB: 1OIL) with the B-factor, where the catalytic triad (S87/H286/
D264) is shown in red. Twelve loop regions are indicated: L1_A74/A75/T76, L2_V199/G200/G201, L3_L127/
A128/Y129, L4_P216/T217/I218, L5_S219/V220/F221, L6_G222/V223/T224, L7_P233/L234/V235, L8_R258/
G259/S260, L9_Q292/L293/L294, L10_G25/V26/L27, L11_P58/N59/G60, L12_Q39/R40/G41. (b) A concise 
summary of thermostability enhancement achieved in this work.
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Synergistic effect of triple mutations. It is interesting to investigate the synergistic effect of the triple 
mutations. New libraries of saturation mutagenesis were constructed for each amino-acid residue (P233, L234, 
and V235), and enzymatic activity and residual activity after heat treatment were measured (Fig. 4). Several 
single mutants (P233D/G/S/W, L234C/F/W/Y, V235C/F/G/I/K/N/R/S/T/W/Y) showed improved thermostabil-
ity (residual activity), among which the P233D/G/S, L234F/Y, and V235F/G/K/N/R/S/T/W/Y mutants showed 
improved enzymatic activity as well. However, these single mutants were inferior to the best triple mutant, which 
suggests the synergetic effect of the three amino-acid residues of the triple mutant (Figs. 3g, 4). Furthermore, the 
high thermostability of the P233G/L234E/V235M and P233H/L234V/V235H mutants is difficult to rationalize 
with Fig. 4; for example, single mutations such as P233H, L234E/V, and V235M/H resulted in no enhancement 
of thermostability (residual activity): P233G = 327%, L234E = 45%, V235M = 62%; P233H = 20%, L234V = 59%, 
V235H = 36%. Obviously, the effect of the triple mutations on thermostability (Fig. 3g) is much greater than the 
sum of the individual effects. This fact strongly supports the synergetic effect of the three consecutive amino-acid 
residues introduced by the loop-walking method. The synergistic effect of the three amino-acid residues of the 
best mutant in the L10 library, G25G/V26L/L27F, was also confirmed in the same way (Fig. 3j, Supplemental 
Fig. S2).

Prediction of promising mutants by machine learning. Because L7 was identified as a hot-spot loop 
by the screening of 214 variants, we expected that a more excellent variant might be discovered by the compre-
hensive examination of all the 8000 (=  203) amino-acid combinations in the L7 library. To accelerate our explo-
ration, we decided to employ machine learning (multivariate analysis) with the data of the 214 mutants. The 
amino-acid residue in each position was individually converted into 13 physicochemical parameters (Fig. S3)44–

55 as explanatory valuables and trained with their thermostability activities as objective variables. In this model 
construction step, the total data were divided into two categories, “improved” or “non-improved”, and a dis-
crimination model for reducing non-effective combinations was constructed. Since the model accuracy was high 
(94.5%), 7786 amino-acid combinations, which are the remaining combination candidates in the 8000 combina-
tions, were evaluated in silico. From this in silico screening, 5292 combination candidates were predicted to be 
improved. To select more reliable combination candidates, we constructed the second discrimination model that 
can classify “high thermostability improvement” and “medium thermostability improvement” (model accuracy 
of 85.5%). With this model, we evaluated 5292 combination candidates in silico and ranked them with their 
prediction possibilities (Tables S8, S9).

Experimental validation of the prediction model. To confirm the thermostability of the predicted 
candidates (Tables S8, S9), we experimentally prepared 40 mutants: 20 mutants predicted to show “high thermo-
stability improvement” (high 20 mutants) and 20 mutants predicted to show “medium thermostability improve-
ment” (medium 20 mutants) (Fig. 5). As a result of experiments, all the high 20 mutants were more thermostable 
than the wild-type enzyme, some of which exhibited thermostability that was higher than 1000% with a hit rate 
of 70% (14 out of 20) (Fig. 5a). In addition, most of the mutants exhibited improved enzymatic activity (first 
quadrant), and the hit rate reached 80% (16 out of 20). This hit rate was much higher than the original hit rate 
in the first screening (50%, 108 out of 214). To our delight, two top mutants, P233D/L234G/V235G and P233D/
L234P/V235S (relative residual activity: 1500%), were clearly superior to the P233G/L234E/V235M mutant (rel-
ative residual activity: 1100%). The representative raw data are shown in Table 1. Although the residual activity 
of the wild-type enzyme decreased to 5% after heat treatment at 60 °C for 30 min, the corresponding value for the 
P233G/L234E/V235M mutant was 35%, and P233D/L234G/V235G and P233D/L234P/V235S mutants retained 
59% and 66% activity, respectively, after the heat treatment. In addition, these variants were more active without 
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Figure 2.  Quadrant classification of mutants: relative activity without heat treatment (horizontal axis) and 
relative residual activity after heat treatment at 60 °C for 30 min (vertical axis) as compared to the wild-type 
enzyme (blue square).
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heat treatment than the wild-type enzyme. On the other hand, although most of the medium 20 mutants showed 
higher thermostability than the wild-type enzyme, the improvement level was modest (< 1000%) (Fig. 5b). Over-
all, our prediction model is reliable, successfully extracting rules for the improvement of thermostability from 
the limited number of the first screening data.

Finding rules in the L7 region. It is significant to find a rule for acquiring protein thermostability. The 
careful inspection of the predicted amino-acid combinations (Fig. 5a, Table S8) and the weighted parameters 
for the prediction of high/medium improvement (Table 2, Fig. S3) allowed us to discover rules of amino-acid 
combinations. First of all, position 233 is the most weighted and influential. Although “polarity” (high in Arg, 
Lys, His, Asp, and Glu) has a positive weight (0.129), “isoelectric point” (high in Arg and Lys) has a negative 
impact (− 0.27). In addition, this position disfavors aromatic residues; “side-chain contribution to protein stabil-
ity” (high in Phe and Trp) and “free energy in beta-strand region” (high in Pro and Gly) have negative weights 
(− 0.348 and − 0.196, respectively). Consequently, acidic residues (Asp or Glu) make major positive contribu-
tions. On the other hand, position 234 is less influential, exhibiting small weight values. Nevertheless, there 
are some amino-acid preferences; “side chain interaction parameter” (high in Lys, Pro, Gln, Glu, and Asp) and 
“free energy in beta-strand region” (high in Pro and Gly) are positively weighted (0.084 and 0.047, respectively) 

Figure 3.  Thermostability plots for the twelve libraries with random mutations in each loop region: (a) L1, (b) 
L2, (c) L3, (d) L4, (e) L5, (f) L6, (g) L7, (h) L8, (i) L9, (j) L10, (k) L11, and (l) L12. Relative activity without heat 
treatment (horizontal axis) and relative residual activity after heat treatment at 60 °C for 30 min (vertical axis) 
are based on the wild-type enzyme (blue square).
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whereas “polarity” (high in Arg, Lys, His, Asp, and Glu) is negatively weighted (− 0.041). Position 235 disfavors 
amino acids with a bulky side chain; “the stability scale from the knowledge-based atom–atom potential” (high 
in Phe, Trp, and Tyr) is negatively weighted (− 0.219). In contrast, “free energy in beta-strand region” (high 
in Pro and Gly) is positively weighted (0.043). Accordingly, the Pro and Gly residues at positions 234 and 235 
are likely to have a positive effect on thermostability. Overall, the two top mutants, P233D/L234G/V235G and 
P233D/L234P/V235S, are consistent with the above rules.

The result that the P233D/L234P/V235S triple mutant exerted the most excellent thermostability was surpris-
ing because the L234P single mutant exhibited no enhanced thermostability (Fig. 4b, residual activity 34%). This 
fact supports the synergy effect of the three consecutive mutations, which is one of the most important advan-
tages of the loop-walking method over conventional random mutagenesis. To gain a molecular insight into the 
origin of heat resistance enhanced by these amino-acid substitutions, three-dimensional structural models were 
constructed (Fig. 6). The wild-type enzyme and the P233G/L234E/V235M triple mutant have a hydrogen bond 
between the backbone amide groups of residues 233 and 235 (Fig. 6a,b), while the P233D/L234P/V235S triple 
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Figure 4.  Thermostability plots for (a) P233X, (b) L234X, and (c) V235X single mutants using relative activity 
without heat treatment (horizontal axis) and relative residual activity after heat treatment at 60 °C for 30 min 
(vertical axis). The blue square represents the wild-type enzyme while the pink triangle represents the mutants 
with improved thermostability, and the green circle represents the mutants with reduced thermostability.
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Figure 5.  Thermostability plots for (a) high 20 mutants and (b) medium 20 mutants. Relative activity without 
heat treatment (horizontal axis) and relative residual activity after heat treatment at 60 °C for 30 min (vertical 
axis) are based on the wild-type enzyme (blue square). The predicted ranking number is indicated together with 
three amino-acid residues in the L7 region.

Table 1.  Raw data of enzymatic activity and residual activity.

Lipase Enzymatic activity without heat treatment (U/mL)
Residual activity after heat treatment at 60 °C for 
30 min (U/mL)

Wild-type 1000 52 (5%)

P233G/L234E/V235M 1580 560 (35%)

P233D/L234G/V235G 1350 800 (59%)

P233D/L234P/V235S 1220 800 (66%)
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mutant has hydrogen bonds between the protein backbone C = O group of Asp233 and the sidechain OH group 
of Ser235 and between the backbone amide groups of residues 232 and 235, retaining the hydrogen-bonding 
networks between Ile232, Asp236, and Ala238 (Fig. 6c). These attractive interactions are likely to rigidify the 
loop, contributing to the high thermostability of the whole protein.

Conclusion
Robust mutants are necessary for finding more applications in academia and  industry59–61. Here we have devel-
oped the loop-walking method for the enhancement of protein thermostability; random mutations are introduced 
into three consecutive amino-acid residues of each loop, and mutants with high thermostability are searched for. 
Using this method, we have successfully improved the thermostability of Burkholderia cepacia lipase, lipase PS 
(LPS). The twelve loop regions (L1 to L12) were genetically modified to make twelve mutant libraries, from which 
the P233G/L234E/V235M mutant (relative residual activity: 1100%) was discovered. Although the residual activ-
ity of the wild-type enzyme decreased to 5% after heat treatment at 60 °C for 30 min, that of the P233G/L234E/
V235M mutant was 35%. Importantly, we have confirmed the synergistic effect of the three consecutive mutations 
on the thermostability of the triple mutant. Although L7 was identified as a hot-spot loop by the screening of 214 
variants, it was difficult to assay all the 8000 (=  203) combinations. To enhance the efficiency of mutant screen-
ing, we introduced machine learning (multivariate analysis). Using mutation data linked with experimentally 
determined performances of the 214 mutants as training data, we predicted promising mutants with improved 
thermostability. As a result of experiments, the P233D/L234G/V235G and P233D/L234P/V235S mutants (relative 
residual activity: 1500%) were discovered; the latter mutant retained 66% activity after heat treatment at 60 °C for 
30 min, which was much higher than that of the wild-type enzyme (5%). We studied physicochemical rules from 
the weighted parameters of each amino acid predicted by the machine learning model. We have noticed rules of 
thermostability improvement, illuminating the mechanistic aspect. Some of the triple mutants obtained in this 
study are promising biocatalysts, and the loop-walking method combined with machine learning is a powerful 
strategy, which will be useful for the optimization of various biocatalysts in future.

Table 2.  Physicochemical parameters weighted in the discrimination model for mutants showing high/
medium thermostability. Positive values indicate parameter contribution to “high thermostability” while 
negative values indicate parameter contribution to “medium thermostability”.

Physicochemical parameter

Weight in the model

233 234 235

Isoelectric  point45  − 0.270  − 0.002 0

Normalized van der Waals  volume46  − 0.102 0 0

Alpha-helix indices for beta-proteins47 0 0 0

Beta-strand indices for beta-proteins47  − 0.066 0  − 0.100

Side-chain contribution to protein  stability48  − 0.348 0 0

The stability scale from knowledge-based atom–atom  potential49 0 0  − 0.219

Hydropathy  index50 0 0  − 0.027

Normalized frequency of  turn51 0.023 0 0

Free energy in beta-strand  region52  − 0.196 0.047 0.043

Free energy in alpha-helical  region52 0 0 0

Polarity45 0.129  − 0.041 0

Side chain interaction  parameter53 0 0.084 0

Amino acid  distribution54 0 0.013 0
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Figure 6.  The L7 loop region of (a) the wild-type enzyme (PDB: 1OIL), (b) P233G/L234E/V235M, and (c) 
P233D/L234P/V235S.
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Methods
General methods. Takara PCR Thermal Cycler Dice Gradient was used for DNA amplifications. PrimeS-
TAR GXL DNA polymerase (Takara Bio Inc., 1 μL), 5× PrimeSTAR GXL buffer (10 μL), dNTP Mixture (2.5 mM 
each) (4 μL), forward primer (10 pmol), reverse primer (10 pmol), and template (10 ng) were used after filling up 
to 50 μL with sterilized distilled water. PCR was done for 15 cycles of (98 °C for 10 s, 60 °C for 30 s, and 68 °C for 
1.5 min). DNA manipulation reagents such as restriction enzymes and ligases were purchased from Takara Bio 
Inc. and TOYOBO. To confirm nucleotide sequences, pET upstream primer (5′-ATG CGT CCG GCG TAGA-3′), 
duetdown1 primer (5′-GAT TAT GCG GCC GTG TAC AA-3′), duetup2 primer (5′-TTG TAC ACG GCC GCA TAA 
TC-3′), T7 terminator primer (5′-GCT AGT TAT TGC TCA GCG G-3′) were used.

Preparation of the E. coli codon‑optimized LPS gene. Burkholderia cepacia lipase was produced 
with the structural gene (LipA) and the chaperone gene (LipX); the former is a lipase-encoding gene, and the 
latter is a private chaperone responsible for the folding of the lipase. For the recombinant E. coli expression of 
LPS, codon-optimized structural gene (LPS_LipA_opti) and chaperone gene (LPS_LipX_opti) were prepared by 
artificial gene synthesis (GenScript).

Preparation of the recombinant E. coli expression plasmid. The LPS E. coli expression plasmid 
was constructed by referring to the  reference57. The DNA fragment with linker sequences (Nco I, Hind III) 
was obtained by PCR amplification using primers (forward: 5′-TTTT CCA TGG CTC GTT CTA TGC GTT CTC 
G-3′, reverse: 5′-AAAA AAG CTT AAA CAC CCG CCA GTT TCA GACGG-3′) and the synthetic structural gene 
(LPS_LipA_opti), where restriction sites for Nco I and Hind III are underlined. The PCR product was electro-
phoresed on 1% agarose gel to cut out a target band and purified with NucleoSpin DNA clean-up kit (QIAGEN). 
The purified DNA fragment and expression vector (pETDuet-1) were digested with Nco I and Hind III, and 
both fragments were ligated using DNA Ligation Kit < Mighty Mix >. To obtain the recombinant strain (E. coli 
LPS_LipA), the plasmid obtained was used for the transformation of E. coli DH5α by the heat-shock method. 
The E. coli LPS_LipA strain was inoculated into a liquid medium (1 mL L broth (Invitrogen) with 100 μg/mL 
ampicillin per test tube) and cultured at 37 °C and 140 rpm for 16 h. The expression plasmid (pETLPS_LipA) 
was extracted from the culture broth using Nucleospin plasmid easypure kit (Macherey nagel). The chaper-
one gene (LPS_LipX_opti) was inserted into the expression plasmid (pETLPS_LipA). The DNA fragment with 
linker sequences (Nde I, Xho I) was obtained by PCR amplification using primers (forward: 5′-TTTT CAT ATG 
ACC GCA CGT GAA GGT CGC GC-3′, reverse: 5′-AAAA CTC GAG TTA CTG TGC AGA ACC CGC ACCG-3′) and 
the synthetic structural gene (LPS_LipX_opti), where the restriction sites for Nde I and Xho I are underlined. 
The PCR product was electrophoresed on 1% agarose gel to cut out a target band and purified. The purified 
DNA fragment and expression vector (pETLPS_LipA) were digested with Nde I and Xho I, and both fragments 
were ligated using DNA Ligation Kit < Mighty Mix >. To obtain a recombinant strain (E. coli LPS_LipA/LipX), 
the plasmid obtained was used for the transformation of E. coli DH5α by the heat-shock method. The E. coli 
LPS_LipA/LipX strain was inoculated into a liquid medium (1 mL L broth with 100 μg/mL ampicillin per test 
tube) and cultured at 37 °C and 140 rpm for 16 h. The expression plasmid (pETLPS_LipA/LipX) was extracted 
from culture broth with Nucleospin plasmid easypure kit.

Preparation of the recombinant E. coli expression strain. The expression plasmid (pETLPS_LipA/
LipX) was used for the transformation of E. coli BL21(DE3) to obtain the recombinant E. coli expression strain 
(E. coli LPS_LipA/LipX).

Preparation of the random mutant strain of each mutation region. The random mutation prim-
ers were designed to prepare a random mutation library for each loop region. The PCR product was obtained 
by PCR amplification using each designed primer (Table S1) and the LPS expression plasmid (pETLPS_LipA/
LipX). The PCR products were digested with Dpn I, and the digested PCR products were ligated with T4 Poly-
nucleotide Kinase and Ligation high Ver.2 (TOYOBO). To obtain the LPS random mutant expression strain for 
each mutation loop region (E. coli LPS_Ran_L1 to LPS_Ran_L12), the ligated plasmid was used for the trans-
formation of E. coli BL21(DE3).

Preparation of the random mutation library. The random mutation library was prepared from the LPS 
random mutants (E. coli LPS_Ran_L1 to LPS_Ran_L12) in two steps. The first step is the selection of mutants 
with hydrolytic activity. Each random mutant strain was spread onto a plate medium (LB agar plate with 100 μg/
mL ampicillin, 0.1% tributyrin) and cultivated at 37 °C for 24 h, and a mutant strain forming a clear halo was 
selected. The second step is the preparation of the enzyme extract from the selected mutant strain. The selected 
mutant strains were inoculated into a liquid medium (1 mL terrific broth with 100 μg/mL ampicillin) in 96 deep-
well plate (Coastar) and cultured at 33 °C and 1000 rpm for 48 h with a plate shaker (TAITEC), during which 
0.1 mM IPTG was added to induce the enzyme expression at 24 h. The cell pellet was collected from the culture 
broth by centrifugation (3300×g × 15 min, 4 °C). To extract the enzyme from the cell pellet, a lysing agent (1 mL 
B-PER (Thermo Fisher Scientific)) was added and incubated at 25 °C and 1000 rpm for 2 h using a plate shaker. 
The lysis supernatant was collected by centrifugation (3300×g × 15 min, 4 °C).

Preparation of the site‑saturation mutagenesis library. To prepare the site-saturation mutagen-
esis library for each mutation site (G25, V26, L27, P233, L234, and V235), primers were designed as shown in 
Tables S2–S7. The mutation was performed by PCR amplification using the designed primers and pETLPS_LipA/
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LipX. The PCR product was digested with Dpn I at 37 °C for 16 h, and the digested PCR product was ligated 
with T4 Polynucleotide Kinase and Ligation high Ver.2. The ligated PCR product was used for the transforma-
tion of E. coli BL21(DE3) to construct each variant expression strain (E. coli LPS_G25A to LPS_G25Y, E. coli 
LPS_V26A to LPS_V26Y, E. coli LPS_L27A to LPS_L27Y, E. coli LPS_P233A to LPS_P233Y, E. coli LPS_L234A 
to LPS_L234Y, and E. coli LPS_V235A to LPS_V235Y). Each mutation was confirmed by DNA sequencing. 
Each LPS mutant E. coli expression strain was inoculated into a liquid medium (1 mL terrific broth with 100 μg/
mL ampicillin in 96 deep-well plate (Greiner)) and cultured at 33 °C and 1000 rpm for 48 h with a plate shaker, 
during which 0.1 mM IPTG was added to induce the enzyme expression at 24 h. The cell pellet was collected 
from the culture broth by centrifugation (3300×g × 15 min, 4 °C). To extract the enzyme from the cell pellet, a 
lysing agent (1 mL B-PER) was added and incubated at 25 °C and 1000 rpm for 2 h with a plate shaker. The lysis 
supernatant was collected by centrifugation (3300×g × 15 min, 4 °C).

Evaluation of thermostability of mutants. The thermostability of the wild-type enzyme or variant was 
evaluated by the residual activity of the sample after heat treatment, for example, at 60 °C for 30 min. The lipase 
activity was determined by using Lipase Kit S (DS Pharma Biomedical) according to the standard manual in the 
kit, and the absorbance at 412 nm was measured on a PowerScanHT (DS Pharma Biomedical). One enzyme unit 
was defined as the amount of enzyme hydrolyzing 1 μmol of 2,3-dimercaptopropan-1-ol tributyrate (BALB) per 
minute under the assay conditions, which was detected by the yellow color of 2-nitro-5-thiobenzoate generated 
by the addition of 5,5′-dithiobis(2-nitrobenzoic acid) (Ellman’s reagent). Averaged data of three measurements 
are reported. The experimental errors were less than 15%.

Thermostability and optimum temperature. The thermostability of mutants was evaluated by com-
paring the residual activity of the samples that were heat-treated at each temperature (from 40 to 70 °C) for 
30 min. The optimum temperature was evaluated by comparing the hydrolytic activity of the sample at each 
temperature (from 40 to 70 °C). The results are shown in Fig. S1.

Data processing and model construction for thermostability improvement prediction. The 
mutant thermostability evaluation data (214 mutants from the first screening) was converted into dataset for 
machine learning. The mutant profile, the amino-acid usage for each mutant at three positions (P233, L234, and 
V235), was converted into 13 physicochemical parameters (Table 2) for each  position45–54. All physicochemical 
parameters were downloaded from AAindex (Fig. S3) (https:// www. genome. jp/ aaind ex/). Using 544 amino acid 
indices registered in AAindex (version 9.1, as of January 2008), 21 major clusters with high correlations were 
selected through hierarchical clustering as representative amino acid parameter clusters. From such clusters, 
13 indices with implementable meaning were manually selected. Since they are selected from the unsupervised 
clustering of total AAindex indices, selected indices serve as objectively selected independent parameters to 
describe physicochemical properties of amino acids. Isoelectric point, normalized van der Waals volume, and 
hydropathy index have been used to model lipase  enantioselectivity44, while isoelectric point, normalized van 
der Waals volume, side-chain contribution to protein stability, hydropathy index, normalized frequency of turn, 
polarity, and side chain interaction parameter have been used to model oligopeptide  transporter55. In this work, 
amino acid indices were increased for more descriptive performances. Each position of mutation (P233, L234, 
and V235) was converted into the physicochemical properties described by these 13 indices. Therefore, the final 
explanatory valuables were 39 parameters (13 parameters × 3 positions). The thermostability activity was calcu-
lated as the ratio of the residual activity after heat treatment (60  °C for 30 min) to the enzymatic activity without 
heat treatment. As a result of our preliminary analysis, the dataset of the thermostability activity furnished a 
better regression model than the raw dataset of either the residual activity after heat treatment or the enzymatic 
activity without heat treatment. Therefore, the dataset of the thermostability activity was utilized for further 
prediction analysis. The thermostability activity was normalized in total sample and categorized into three levels 
[high (73 data: top 34%), low (73 data: bottom 34%), and medium (72 data: the rest of data)] using their ranking 
of thermostability improvement. Such data stratification was introduced since a total data modeling resulted in a 
low accuracy (< 75%). Dividing the dataset into the 3-equal parts successfully enhanced model accuracies (high/
low discrimination model: 93.1%, medium/low discrimination model: 93.5%, high + medium/low discrimina-
tion model: 94.5%, high/medium discrimination model: 85.5%). For the first discrimination analysis, a discrimi-
nation model for “high + medium variants (improved)” vs. “low variants (non-improved)” was constructed to 
screen the candidates briefly. The bottom 34% variants (low) were labeled as “non-improved”, and the rest of the 
variants were labeled as “improved” for model training. The discrimination analysis model was constructed by 
LASSO (least absolute shrinkage and selection operator) regression and validated by leave-one-out cross valida-
tion. After the model construction, 7786 remaining amino acid combinations among 8000 total combinations 
were synthesized in silico and converted into 39 parameters. Such in silico synthesized amino acid combination 
candidates were applied to the improved/non-improved discrimination model, and predicted “improved” can-
didates were selected. For the second discrimination analysis, a discrimination model for “high variants (high)” 
vs. “medium variants (medium)” was constructed. High and medium thermostability improvement data were 
categorized as “high” and “medium”, and its discrimination analysis model was also constructed by LASSO. 
Leave-one-out cross validation was used for the evaluation of the constructed model. The 5292 candidates that 
were predicted as “improved” in the first discrimination model were predicted by the second model. From the 
second discrimination model, their high/medium discrimination probabilities were calculated for all the candi-
dates and listed as prediction ranking (Tables S8, S9). All calculation and data analysis program was coded by R 
(https:// cran.r- proje ct. org/).

https://www.genome.jp/aaindex/
https://cran.r-project.org/
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Preparation and evaluation of 40 mutants selected from ranking predicted mutants. The 40 
mutants were selected from the prediction ranking list: 20 mutants predicted to show “high thermostability 
improvement” (= high 20 mutants) and 20 mutants predicted to show “medium thermostability improvement” 
(= medium 20 mutants). To create these mutants, each mutation PCR primer was designed (Tables S10, S11). 
Each mutant was prepared by site-directed mutagenesis using each designed PCR primer and expression plas-
mid (pETLPS_LipA/LipX) and then transformed into E. coli BL21(DE3). Cultivation of each mutant, prepara-
tion of enzyme extract, and evaluation of thermostability were carried out as described above.

Structures of LPS and the triple mutants. The structure of LPS (PDB: 1OIL) was optimized by Quick-
Prep function of MOE (Molecular Operating Environment, MOLSIS), where Amber 10: EHT was used as a force 
field. The structures of the triple mutants (P233G/L234E/V235M and P233D/L234P/V235S) were created by 
using LPS as a template with Protein Design and QuickPrep functions of MOE.

Received: 6 March 2021; Accepted: 25 May 2021
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