
Received June 28, 2021, accepted July 3, 2021, date of publication July 7, 2021, date of current version July 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3095391

Studying the Applicability of Generative
Adversarial Networks on HEp-2
Cell Image Augmentation
ASAAD ANAAM , HANI M. BU-OMER , (Graduate Student Member, IEEE),
AND AKIO GOFUKU
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan

Corresponding author: Asaad Anaam (asaadanam@s.okayama-u.ac.jp)

ABSTRACT The Anti-Nuclear Antibodies (ANAs) testing is the primary serological diagnosis screening
test for autoimmune diseases. ANAs testing is conducted mainly by the Indirect Immunofluorescence (IIF)
on Human Epithelial cell-substrate (HEp-2) protocol. However, due to its high variability, human-
subjectivity, and low throughput, there is an insistent need to develop an efficient Computer-Aided Diagnosis
system (CADs) to automate this protocol. Many recently proposed Convolutional Neural Networks (CNNs)
demonstrated promising results in HEp-2 cell image classification, which is the main task of the HE-p2 IIF
protocol. However, the lack of large labeled datasets is still the main challenge in this field. This work
provides a detailed study of the applicability of using generative adversarial networks (GANs) algorithms
as an augmentation method. Different types of GANs were employed to synthesize HEp-2 cell images
to address the data scarcity problem. For systematic comparison, empirical quantitative metrics were
implemented to evaluate different GAN models’ performance of learning the real data representations. The
results of this work showed that though the high visual similarity with the real images, GANs’ capacity
to generate diverse data is still limited. This deficiency in the generated data diversity is found to be of
a crucial impact when used as a standalone method for augmentation. However, combining limited-size
GANs-generated data with classic augmentation improves the classification accuracy across different
variants of CNNs. Our results demonstrated a competitive performance for the overall classification accuracy
and the mean class accuracy of the HEp-2 cell image classification task.

INDEX TERMS Computer-aided diagnosis systems (CADs), convolutional neural networks (CNNs), data
augmentation, data diversity, evaluation metrics, generative adversarial networks (GANs), HEp-2 cell image
classification.

I. INTRODUCTION
Antinuclear autoantibodies (ANAs) testing plays a pivotal
role in the serological diagnosis of autoimmune diseases [1]
such as Systemic Lupus Erythematosus, Sjorgren’s syn-
drome, and Rheumatoid Arthritis, etc. In this respect, Indirect
Immunofluorescence (IIF) using the human Epithelium
larynx carcinoma substrate (HEp-2) is considered the ‘‘gold-
standard’’ protocol for ANAs testing [2]. However, this
protocol of classifying the staining patterns of the HEp-2
cells suffers from high variability, observer-subjectivity,
and low throughput. Therefore, there was an insistent
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need for developing an efficient Computer-Aided Diagnosis
system (CAD) system to overcome these issues [1].

In this regard, a considerable amount of research was
introduced to develop efficient HEp-2 cell pattern classifiers,
mainly in the HEp-2 cell classification contests [3]–[6].
While the early works tried to handle this task based
on hand-crafted feature methods, the recently proposed
CNNs-based classifiers demonstrated superiority in HEp-2
cell image classification [7]. However, a large amount of
labeled data is required for efficiently training Convolutional
Neural Networks (CNNs) to avoid overfitting and improve
the generalization capability, which is a challenging problem
in many medical imaging fields. Collecting accurately
annotated data is a complex and resources-consuming task
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FIGURE 1. Block diagram of the proposed approach for data
augmentation using GANs. Phase I: Different variants of GANs are trained
and evaluated. Phase II: The best performing GAN is used for
augmentation for CNNs classifiers.

for medical applications. Thus, various data augmentation
methods are commonly used to enlarge the data size and
alleviate this problem. Recently, since the unfolding of
the generative adversarial networks (GANs) [8], it gained
increasing research attention in the medical imaging fields,
including image segmentation, registration, translation, syn-
thesis, and classification [9]. Mainly, the continuously
improving capabilities of GANs algorithms to approximate
the real data distributions are of high interest to the recent
studies in the medical imaging fields to address the problem
of size limitations of annotated medical images.

This paper provides an investigation study of the effec-
tiveness of using GANs approaches for synthesizing HEp-2
cell images for data augmentation purposes. We adopted
two cascaded sets of experiments as described in the
block diagram depicted in Fig. 1. In Phase I, four dif-
ferent approaches of GANs, characterized by their well-
stability, were implemented to generate HEp-2 cell images,
particularly: Deep Convolutional GAN (DCGAN) [10],
Wasserstein GAN (WGAN) [11], Wasserstein GAN with
gradient penalty (WGANGP) [12], And a modified version
of WGANGP (annotated here as Info-WGANGP) [13] that
inherits the mutual informationmaximization loss function of
the Info-GAN [14]. To evaluate the quality of the generated
images, two robust empirical quantitative metrics were used,
which are the Fréchet Inception Distance (FID) [15] and
1-Nearest Neighbor classifier in two-sample tests [16]. These
metrics provide the capability to analyze the statistical
characteristics of the generated and real images and conduct a
systematic assessment and comparison between the different
implemented GANs models. Phase II includes experiments
to compare the classification performances of some of
the HEp-2 cell classification state-of-the-art CNN models
[17]–[20] and the Inception-V3 model [21] when different
data augmentation methods are used for training. This set

of experiments evaluated the effectiveness of augmenting
HEp-2 cell data with optimal GAN-synthesized images.

The contribution of this work could be summarized as:
1) We implemented four different GANs variants, charac-

terized by their training stability, for the task of learning
the HEp-2 cell images’ visual representation. This
aims to explore the learning capacity and the training
robustness of the different GANs configurations in
imitating the visual representations of such real-world
data.

2) We applied two robust empirical GANs evaluation
metrics to quantitatively assess the performances of the
implemented GANs and evaluate their capabilities to
approximate the real data distribution. These quantita-
tive metrics provide systematic tools to understand the
capabilities and limitations of the GANs variants under
study.

3) We investigated the applicability of using GANs-
generated images for augmentation by evaluating
the performance of various HEp-2 cell images
state-of-the-art CNNs classifiers [17]–[20] and the
Inception-V3 model [21] trained with different aug-
mentation methods. Multiple CNNs classifiers with
different architectures were implemented to particu-
larly inspect the effectiveness of the GANs-generated
images regardless the CNNs configuration.

In the next section, the related work in HEp-2 cell
image classification and GANs for medical image synthesis
is introduced. Then, a brief description of the proposed
GANs models and the evaluation metrics were introduced
in the methods section. The experiments section describes
the dataset and preprocessing, the classic augmentation
methods, and the experimental details of each phase. Finally,
the achieved results are demonstrated and discussed in
section V and concluded in section VI.

II. RELATED WORK
A. CNNs FOR HEp-2 CELL IMAGE CLASSIFICATION
Unlike the conventional machine learning approaches,
CNNs-based methods have the advantage of offering an
automatic feature-learning process that demonstrates supe-
riority over the hand-crafted ones for the HEp-2 cell
classification task. One of the earliest works on this topic
was proposed by Gao et al. [22] using a shallow CNNs
model. Despite its unpowerful results, their study revealed
interesting observations about the important rule of rotation
in HEp-2 cell image augmentation and the informative nature
of their extracellular textures for classification learning.
Bayramoglu et al. [23] used AlexNet architecture with
various approaches of pre-processing and data augmentation,
and Jia et al. [24] adopted a customized CNN model
that shares the general structure of the VGG network [25]
configuration.

A deeper CNN model called the Deep Residual Inception
Network (DRI-Net) was proposed by Li and Shen [18]
that merges the general architectural configuration of both
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Inception-net [21] and ResNet [26]. DRI-net integrates the
multi-scale feature extraction property of Inception-net and
the efficient network optimization advantage of ResNet.
In other prominent work, Lei et al. [20] introduced a
pre-trained ResNet50-based model called Deeply Super-
vised Residual Networks (DSRNet) that combines three
depth-stages layer predictions into the final classification
layer of the ResNet50 architecture and applies a transfer
learning among two different datasets. This method repre-
sents one of the state-of-the-art performances for the HEp-2
cell classification task at the cost of significantly increasing
the number of learnable parameters.

Another state-of-the-art result was achieved by a cus-
tomized residual-based CNN model called Deep-Cross
Residual Network (DCR-Net) with an intensive data aug-
mentation approach suggested by Shen et al. [17]. In a
recent work, Yuexiang and Linlin [19] introduced a fully
customized lighter-weight network called ‘‘HEpNet’’ specif-
ically to solve this problem. HEpNet is built from a small
module called multi-scale convolutional component (MCC)
which composed of different scales dilated convolutional
layers and one shortcut connection. HEpNet demonstrated
a high capability of learning representative features from
fewer HEp-2 data, achieving competitive performance with
less augmented data and shorter training time. Recently,
Vununu et al. [27] proposed the use of the Discrete Wavelet
Transform (DWT) as a pre-processing stage to capture more
discriminative information than that of the spatial space of
the original images. In their method, four DWT coefficient
images are obtained for each original image before feeding
them into a parallel-stream network paradigm that achieved
competitive results.

While the studies mentioned above adopted the end-
to-end configurations, other works proposed using CNN as
a feature extractor, followed by a separated classifier. For
example, Lu et al. [28] used the VGG16 network to learn
the representative features and SVM-RBF for classification.
Vununu et al. [29] suggested using two distinct VGG-like
convolutional autoencoders (CAE) to extract two levels of
features from regular and gradient images. The two features
are then combined and classified using a simple neural
network-based classifier. Recently, Cascio et al. [30] adopted
a two-phases classifier framework for features extracted
based on a pre-trained AlexNet network. A comprehensive
review in this topic could be found in [7].

B. GANs FOR MEDICAL IMAGE CLASSIFICATION
Many recent studies in the field of medical image classi-
fication proposed using GANs to address scarcity in the
annotated training data. In this regard, two general groups
of studies using GANs in medical image classification tasks
could be recognized. The first group is related to the works
that adopted GANs for synthesizing new images from the real
data domain and then train CNNs classifiers as a separated
step. For example, a study for synthesizing artificial chest
X-ray images to balance and augment modest size real

datasets using DCGAN showed improvement in the classifier
performance [31]. In another work, Frid-Adar et al. [32] also
implement class-wise DCGAN models to enlarge the data
size of liver lesions images which improved the classification
performance when concatenating with the real training data.
Baur et al. [33] studied using a modified version of LAPGAN
to generate skin lesions images. Moreover, using CGAN was
proposed by Finlayson et al. [34] for detecting bone fractures
from pelvic radiographs.

The works in the second group adopted GANs in a
semi-supervised manner. In these approaches, the trained
GANs’ discriminators are used as independent classifiers.
For example, Hu et al. [13] proposed training a combined
WGANGP [12] and Info-GAN [14] framework in an
unsupervised manner for cell-level feature representation
learning in the histopathology images classification task.
Lecouat et al. [35] applied a patch-based semi-supervised
GAN learning approach to classify diabetic retinopathy from
funduscopic images. In the field of cardiac abnormality
classification using X-ray imaging, Madani et al. [36]
proposed a GAN-based semi-supervised learning approach to
improve the classification performance with less annotated
data. Moreover, in cellular structure image classification,
Wang et al. [37] transferred a trained GAN’s discriminator
network into a new Alex-style CNN before fine-tuning
with real images for improving the classification perfor-
mance. More studies on this field are summarized in these
reviews [9], [38].

C. GANs FOR HEp-2 IMAGE CLASSIFICATION
Using GANs for addressing HEp-2 image tasks is still in
its preliminary stage, as just a few works were published
in this area. One of the early studies used GANs for
HE-p2 cell image segmentation was proposed by Li and
Shen [39]. They used a U-net generator based on a modified
framework that combines both pix2pix [40] andACGAN [41]
with a transfer-learning technique to boost the segmentation
performance across different cell modalities. In the field of
HEp-2 cell image synthesis, Kastaniotis et al. [42] proposed
using a Teacher-network to guide the attention maps in the
discriminator hidden layers in DCGAN [10] framework to
improve the quality of the generated HEp-2 cell images.
However, no evaluation measures have been applied in their
study. In a recent work, Gupta et al. [43] applied the DCGAN
framework with slight modification in the models’ archi-
tectures to generate synthetic samples of the minor HEp-2
mitotic class. As demonstrated in their work, augmenting
the minor mitotic class with GAN-synthesized images shows
promising results to alleviate the problem of unbalanced
data of the HEp-2 mitotic/interphase classification task.
Furthermore, Xie et al. [44] used pix2pix [40] like GAN
model to generatemask images of theHep-2 cell-level images
as a pre-stage before inputting pairs of the original images
and their corresponding generated masks into a modified
ResNet-50 classifier. Adding the generated mask images are
suggested to enrich the classification network with more
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boundary information. However, their results showed less
classification performance comparing to the current state-of-
the-art CNN approaches.

To the best of our knowledge, the work proposed by
Majtner et al. [45] is the only published study that has
proposed to explore using GAN-based synthesized images as
a data augmentation method for HEp-2 cell-level classifica-
tion task. In their work, an individual DCGAN [10] model
was trained for each HEp-2 class in the I3A dataset [4] to
cope with the high within-class heterogeneity of HEp-2 data.
For evaluation, performance comparison has been conducted
using three generic CNN configurations trainedwith different
data augmentation methods. Their results revealed that
DCGAN-based synthesized images were found to be less
effective than those obtained by classic augmentation routines
for training CNNs classifiers. However, the mentioned study
investigated only the use of DCGAN [10], which does not
yield the best results in many real-world data generating
tasks [13]. Furthermore, no quantitative evaluation metrics
were applied to assess the quality of the generated images
and understand to which extent GANs could successfully
approximate the underlying distribution of the real data.

To fill this gap, this paper aims to extend the research in
this area and provide a deeper study on the capabilities and
limitations of applying different GANs variants for HEp-2
cell images augmentation purposes.

III. METHODS
A. GANs FOR HEp-2 CELL IMAGES SYNTHESIS
Generative adversarial networks (GANs) [8] are recently
proposed generative models that are used to learn the
data representation in an unsupervised manner. GANs are
composed of two competing CNNs. The first is the generator
(G) which is a scale-up CNNs that is designed to transform
a noise vector z (sampled from known distribution pz) into
an image space data G(z) that is similar to the real images.
The second is the discriminator (D) which is a binary
classifier network trained to correctly distinguish between
the real and the generated images (D(.) outputs a probability
of 1 for real input and 0 for generated images). The two
competing models are trained together in an adversarial
zero-sum game until the convergence takes place whenG can
generate plausible examples and D becomes just 50% certain
about the input image source. Many GANs variants were
proposed pursuing to ensure converging training and efficient
representation-learning capacity. In this work, we examined
four well-stable variants of GANs in the task of learning the
visual representation of HEp-2 cell images, which are:

1) DCGAN
The original architecture of Deep Convolutional GAN
(DCGAN) [10] was trained by optimizing the original GAN
loss function of a two-player minimax game:

m
G
in m

D
ax [Ex∼pr log (D(x))+ Ez∼pz log (1− D(G(z)))], (1)

where x is a real image sampled from unknown real data
distribution pr , z is a latent noise vector sampled from a noise
distribution pz, and G(z) is the generated image.

2) WGAN
Wasserstein GANs [11] uses Earth Mover distance between
the real data distribution and the generator distribution
W (pr , pg) to formulate theWGANobjective function. It turns
out that the D (called critic) is trained to maximize this
distance while G is trained to minimize it. The objective
function of WGAN is written as follows:

min
G

max
D∈D

[
Ex∼pr [D(x)]+ Ez∼pz [D(G(z))]

]
, (2)

where D is the set of 1-Lipschitz functions. However,
to maintain the Lipschitz constraint, the weight of the critic
D is explicitly clipped within a compact space [−l, l]. While
WGAN demonstrated good training stability, it could not be
guaranteed to converge with very deep architectures. Thus,
the WAGN objective function was implemented using the
DCGAN [10] model architecture.

3) WGANGP
Wasserstein GAN with gradient penalty [12] was proposed
to improve WGAN by introducing a gradient penalty on the
discriminator to ensure maintaining the continuity condition
within the space of 1-Lipschitz functions. The objective
function of the WGANGP is written as:

min
G

max
D∈D

[
Ex∼pr [D(x)]+ Ez∼pz [D(G(z))]

]
+λEx∼pr ,z∼pz,α∼(0,1)[(‖∇D(αx + (1− α)G(z))‖2 − 1)2],

(3)

where λ is a regularization hyperparameter, α is an interpola-
tion vector of values between 0 and 1. ResNet-based network
architecture as proposed in [12] was used to implement this
model.

4) INFO-WGANGP
As proposed in [13], the WGANGP [12] objective function
is unified with the information maximization functionality
proposed in Info-GAN [14] to form a new hybrid GAN
loss that takes advantage of both models. Introducing
mutual information condition into the stable WGANGP loss
formulation enforces the model to learn interpretable and dis-
entangled representations underlying the data distribution in
correspondence to a chosen latent variable c. For optimizing
this objective function, an auxiliary classifier network Q is
used to maximize the mutual information between the latent
random variable c and the visual features of the generated
samples G(z, c). Thus, the objective function is defined as
follow:

min
G,Q

max
D∈D

Ex∼pr [D(x)] + Ez∼pz [D(G(z))]

+ λ1 Ex∼pr ,z∼pz,α∼(0,1)[(‖∇D(αx + (1− α)G(z))‖2 − 1)2]

− λ2 Ez∼pz,c∼pc [logQ(c|G(z, c))], (4)

VOLUME 9, 2021 98051



A. Anaam et al.: Studying Applicability of GANs on HEp-2 Cell Image Augmentation

where λ1 and λ2 are hyperparameters, and c is a categorical
latent variable sampled from a fixed noise distribution p(c).
Info-WGANGPmodel was implemented usingResNet-based
network as proposed in [13]. In this model, the discriminator
(critic) architecture was extended to have two output layers.
The first is of a single dimension corresponding to the
Wasserstein distance (D(.)), and the other is of c dimensions
representing the Q network that predicts the category of the
input images.

B. GANs EVALUATION METRICS
Seeking quantitative interpretable measures for ranking and
analyzing the GANs performance, we implemented two
samples-basedmetrics that had demonstrated their robustness
in the literature of GANs evaluation, as follows:

1) FRÉCHET INCEPTION DISTANCE (FID)
FID [15] measures the similarity between two sample sets
based on their Fréchet distance in an embedded space. The
embedding is computed using the Inception V3 network [21]
fixed up to a specific layer. The distributions of both real and
generated images are assumed to follow amultivariate normal
distribution which is estimated by computing their means and
covariances. In particular, the FID is computed as:

FID(χ1, χ2) = ‖µ1 − µ2‖
2
2+Tr(61 +62 − 2(6162)

1
2 )),

(5)

where χ1 and χ2 are the embedding features of the real
and generated sets, respectively. The µ1 and 61 refer to
the mean vector and the covariance matrix of the real set
features, respectively. Likewise for the generated set features,
µ2 and 62 are the mean vector and the covariance matrix.
Since FID scoresmeasures distance, the lower the FID scores,
the better the generated images are.

2) 1-NEAREST NEIGHBOR CLASSIFIER IN TWO-SAMPLE TEST
1-NN classifier in two-sample test [16] is a particular type
of classifier two-sample test (C2ST) family [46], which are
used to statistically assess whether two sample sets belong to
the same distribution. This metric provides a useful tool to
understand how the generator and the real distributions differ
in interpretable units. The 1-NN classifier in two-sample test
was implemented as follows: 1) Two equally sized sets Sr
and Sg were sampled from a holdout real data distribution
pr and the generator distribution pg, respectively. 2) The
embedding space of both sets is computed using a pre-trained
HEpNet [19] model to linearize the image manifolds. 3) A
binary dataset is constructed by assigning positive labels to
the real samples and negative labels to the generated samples.
4) The leave-one-out (LOO) accuracy of a binary 1-NN
classifier is computed. According to this setup, the 1-NN
classification accuracy is interpreted as follows:
• When both sample sets are drawn from identical data
distributions, the 1-NN accuracy should remain around
50% (the chance-level accuracy). This is the ideal

FIGURE 2. Examples of images from the I3A dataset showing different
classes of HEp-2 cells.

scenario for GANs, indicating that pg is perfectly
matching pr .

• Straightforward, as the 1-NN accuracy increases over
50%, that unveils increasing in the distribution differ-
ences between pr and pg. However, 1-NN accuracy
lower than 50% indicates that GAN overfits pg to Sr .

However, more information about the properties of the
generator distribution could be achieved when analyzing
the LOO accuracy for each class separately. Particularly,
for the real-class LOO accuracy (true positive rate), if it is
relatively high, that might indicate that GAN suffers from
a mode dropping because the generative model does not
capture some portions (modes) of the real data distribution.
However, if it is relatively low (around 50%), that would be
because GANs-generated samples could cover all modes in
the real distribution, which is the desired scenario. On the
other hand, examining the generated-class accuracy (true
negative rate) reveals information about the mode collapsing.
In the mode collapse scenario, this measure is expected to
be high as the generated samples tend to cluster in a few
centers, increasing the generated-class accuracy. These three
measures were annotated in the evaluation experiments of this
study as 1-NN accuracy, 1-NN real-class accuracy, and 1-NN
generated-class accuracy.

IV. EXPERIMENTS
As demonstrated in the block diagram shown in Fig. 1,
a paradigm of two cascaded phases was adopted for using
GAN as an augmentation method. The first phase involved
training GANs to learn the visual representations of HEp-2
cell images and evaluate their performance. In the second
phase, the effectiveness of using the optimal GAN model
for augmentation was examined using some of the state-of-
the-art CNNs. In this section, we introduced the used dataset,
preprocessing, the classic augmentation method, and then
discussed the experimental details of each phase.
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A. DATASET AND PREPROCESSING
This study was conducted using the I3A dataset,1 that
was introduced in ICIP2013 [4] and then subsequently
reused in ICPR2014 [5], and ICPR2016 [6]. While the
test portion of this dataset is kept private for evaluation
purpose, the training set containing 13,596 monochrome
pre-extracted and annotated cell images were made publicly
available. This dataset consists of six classes: Centromere,
Golgi, Homogeneous, Nucleolar, Nuclear Membrane, and
Speckled. Hereafter annotated as Ce, Gl, Ho, Nu, NuM, and
Sp, respectively. Fig. 2 shows an example image from each
class. The dataset was randomly partitioned into 64%, 16%,
and 20% for training, validation, and testing, respectively.
The training partition is used for training networks in both
phases’ experiments: training GANs models, and training
CNNs classifiers. As well, the validation set is also used for
evaluating the training performance in the experiments of
both phases. The test set is kept for evaluating the final CNNs
classifiers’ performance. Table 1 summarizes the number of
images in each partition per class. The HEp-2 IIF images
demonstrated high variance in the image intensity, which
correlates to the strength of the pattern of each particular
sample [1]. To alleviate the intensity variation severity of the
HEp-2 cell images, a contrast stretching was applied using a
method represented by the following equation:

Io =
Iin−c

d−c
× 255, (6)

where Io is the output image, Iin is the input images, c and
d are pixels values of the 1st and the 99th percentile of
the Iin histogram, respectively. Furthermore, all images were
resized to the dimension of 64 × 64 pixels using bicubic
interpolation.

B. CLASSIC AUGMENTATION
An intense classic augmentationmethod similar to that in [17]
was implemented for two reasons. The first is to train both
the GANs and the CNNs classifiers efficiently. The second
is to examine the effectiveness of using GANs-generated
images for training CNNs compared to the highest limit of
the classic augmentation techniques. In other words, with the
maximum potential capacity of both augmentation methods,
we would like to investigate which one is more informative
to the CNNs classifiers. Therefore, each cell image was
rotated by 360◦, with an angle step of 18◦. Thus, for each
input image, 20 rotated-version output images were acquired.
However, for the minor (Golgi) class, which has about 1/3
of the average images number of the other individual classes,
the rotation angle step was set to 6◦ to compensate for
the difference in image numbers. Then, the horizontal and
vertical filliping of each image was added. Thus, the original
size of the data is enlarged by a factor of 60 (180 for Golgi).
An augmented version of the validation set was created to
evaluate the implemented GANs models. For the rest of

1Download link for the I3A dataset: https://hep2.unisa.it/dbtools.html
(Accessed on June 14, 2021)

this paper, we referred to the original training set as tr_orig
and the augmented training set as tr_aug. Similarly, val_orig
and val_aug are referred to the original and the augmented
versions of the validation set, respectively. Table 1 reports
the number of images in each class before and after data
augmentation.

C. GANs FOR HEp-2 CELL IMAGES SYNTHESIS
Four variants of GANs were trained in an unsupervised
manner to learn the visual representation of the HEP-2
cell images. Since HEp-2 data exhibits high intra-classes
variations, GAN models were trained individually for each
class of the HEp-2 I3A dataset for better representation
learning. All architectures of GANs models were set to
generate single-channel 64 × 64 pixels images. The noise
vectors z was sampled from random normal distributions
(z ∼ N (0, 1)). For efficient training, all GANs networks
were trained with the augmented training set (tr_aug).
The implementation details of each GAN network were
summarized in Table 2.
Across all implemented GANs variants, DCGAN was the

hardest to train and showed high instability during training
even with carefully tuning its hyperparameters. However,
Wasserstein-based GANs’ losses demonstrated more stable
training for this data. The best performing models across all
implemented GANs were selected based on the lowest FID
scores.

D. GANs EVALUATION METRICS
Since both FID and 1-NN classifier metrics are sample-based
methods, a real set Sr was sampled randomly from the
augmented version of the validation set (val_aug), whereas
GANs’ generators were used to synthesize the generated
sample sets Sg. The number of samples of each set was
fixed to be 5K in all evaluation experiments. Each reported
metric’s value in this paper is an average of five repetitions
with random seeds and random sampling from val_aug. The
1-NN classifier metric was implemented using the relatively
small HEpNet [19] network (to the final FC layer before the
final classifier layer) pre-trained on the augmented training
set (tr_aug) to extract data features of length 256.

E. CNNs FOR HEp-2 CELL IMAGE CLASSIFICATION
The optimal GAN models are used to generate two balanced
datasets with different sizes composed of 300K and 600K
images which are annotated as GAN_300K and GAN_600K,
respectively. To evaluate the different augmentation methods,
four CNNs that achieved the best performance in the literature
of HEp-2 cell image classification were implemented,
which are DRINet [18], DCRNet [17], DSRNet [20],
HEpNet [19], in addition to the InceptionV3 model [21]. The
classification performance of all CNNs were evaluated with
different training data variants, particularly, the original-size
training data (tr_orig), the classic augmentation data (tr_aug),
the Optimal-GANs-generated data (GAN_300K and
GAN_600K), and a combination of classic augmentation
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TABLE 1. Details of the classic augmentation for each I3A dataset class. tr_orig, val_orig are the training and the validation set before classic
augmentation, respectively. tr_aug, val_aug are the training and the validation set after classic augmentation, respectively.

TABLE 2. Experimental details of the implemented GANs. MB: mini-batch size, lr: learning rate, and iter: iterations.

and GANs-generated data (tr_aug + GAN_300K and tr_aug
+ GAN_600K). The pre-defined val_orig set was used to
evaluate the training processes, whereas the test set was used
for the final CNNs’ evaluation. Each model was trained from
scratch using the hyper-parameters proposed in the original
works, as shown in Table 3.

Two performance metrics were used to evaluate the CNN
classifiers; Average Classification Accuracy (ACA), and
Mean Class Accuracy (MCA). The ACA is the overall
accuracy defined as:

ACA =
1

N

N∑
i=1

I (ŷi = yi), (7)

where N is the number of testing samples, ŷi is the classifier
prediction of the true label yi, and I is the indicator function.
In addition, MCA calculates the mean accuracy of each class,
and is defined as:

MCA =
1

M

M∑
j=1

CCRj, (8)

where M is the number of classes and CCRj is the
classification accuracy of the jth class. All experiments in this
study were implemented utilizing Pytorch framework [47] on
a single GPU device (NVIDIA Geforce RTX 2060 SUPER,
8 GB RAM).

V. RESULTS & DISCUSSION
Tables 4 and 5 summarize the FID scores and 1-NN
classifier metrics of the implemented GANs across HEp-2
cell classes, respectively. To get an intuition about the
lower bounds (annotated in tables as ‘‘real’’), metrics were
computed between two disjoint sets sampled from the real
data distribution (val_aug). FID scores reported in Table 4
show that Info-WGANGP outperforms the other GAN
models, except for Golgi and Centromere classes in which

TABLE 3. Experimental details of the implemented CNNs. MB: mini-batch
size, lr: learning rate.

WGAN and WGANGP achieved slightly better FID scores,
respectively. FID scores indicate that introducing mutual
information maximization into the WGANGP formulation
was beneficial to improve the GAN’s capability of learn-
ing the underlying modes of the real data distribution.
As Info-WGANGP mutually maximized the association
between the disentangled visual features of the HEp-2 cell
images and the categorical latent vector c, this offered a
controllability over the semantic features of the generated
images, and as a final reward, enhanced the diversity of the
generated images. In the implementation of Info-WGANGP,
we uniformly generated HEp-2 cell images from all values
of the categorical latent variable c (0, 1, 2, 3 and 4), which
encourage capturing visual representations of the different
successfully learned modes.

In line with the FID metric, Table 5 shows that the
Info-WGANGP model achieved the best 1-NN classifier
test results (the closest to the chance-level accuracy 50%),
indicates the positive impact of integrating the mutual
information maximization with WGANGP configuration
in improving the capability of GANs to approximate the
real data distribution. Another observation is that WGAN
achieved the second best 1-NN classifier test scores followed
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TABLE 4. FID scores of each GAN model across all data classes
(calculated between generated images and real val_aug images). ‘real’
refers to the FID scores between two disjoint sets of real val_aug images.

by WGANGP and DCGAN, respectively. In general,
Wasserstein-based GANs yielded better results for both
metrics compared to theDCGAN.However, a deeper analysis
of the other 1-NN classifier measures could reveal interesting
observations:
• The real-class accuracies of all experimented GANs
are found to be relatively high, indicating that some
modes of the real data distribution are not covered by
the generator distribution, and hence, all GANs suffers
from modes dropping to some extent.

• The generated-class accuracies across all experimented
GANs are found to be relatively lower than the other
1-NN classifier metrics. This seems to suggest that
within the captured modes, GANs could generate rela-
tively diverse data. However, since the generated-class
accuracies are still higher than the chance-level value
(50%), there is a presence of some sort of mode
collapse too.

These findings demonstrated that the main problem with
all adopted GANs is that they tend to drop some modes of
the data distribution, in addition to the presence of some sort
of collapsing behavior too. This could be reasonable with
real-world data exhibiting high visual variances, which is the
case of HEp-2 cell images (see Fig. 3). Considering the two
metrics, It is clear that even with the best performing GAN,
there is still a considerable gap between Info-WGANGP
scores and the lower-bound indicating that GANs could not
perfectly capture the underlying distribution of the real HEp-2
cell images data, and hence, GANs-generated images are of
less diversity compared to the real images.

Fig. 3 depicts some visual examples of GANs-generated
images compared to real ones. Real data (upper left group)
shows an example of the visual heterogeneity and variances
within each HEp-2 data class which give an intuition
about the complexity of representation learning task of
this data. Even though, GANs-generated images exhibit a
reasonable visual similarity with the real data, particularly
of Info-WGANGP. As shown in Fig. 3, it is difficult to
evaluate the performance of each GAN model merely by
visual inspection and thus using quantitative evaluation
metrics is necessary for systematic comparison.

For experiments of Phase II, the trained Info-WGANGP
generators were used to generate the two balanced datasets,
GAN_300K and GAN_600K. The results obtained from
all CNNs trained with all variants of the training dataset

are reported in Table 6. Results show that training
CNNs with standalone GANs-generated data (GAN_300K
or GAN_600K) achieved lower classification perfor-
mance than training them with the classic augmentation
data (tr_aug). This may refer to the insufficient diversity of
theGANs-generated data, mainly due tomode dropping, even
if they could densely generate samples without signs of severe
collapsing.

On the other hand, training the CNNs with a combi-
nation of the classic augmentation data and the smaller
GANs-generated dataset (GAN_300K + tr_aug) achieved
a noticeable improvement in the classification performance
across all the CNNs under study. Although the training set
size was doubled by combining the larger GANs-generated
and the classic augmentation datasets (GAN_600K +
tr_aug), the obtained results did not show a clear trend
of improvement for both ACA and MCA metrics over
the classic augmentation dataset (tr_aug). These findings
suggest that GANs have a limited capacity for generating
informative diverse data. Thus, GANs-generated data could
be informative for augmentation up to some size limits
while densely sampling fromGANs-generators’ distributions
seem to yield diversity-saturated data, which is found
to be nonbeneficial or even have a negative impact on
the CNNs performance in some models such as DSR-
Net [20] and HEpNet [19]. Therefore, unlike the case of
augmenting with real data, further increasing the training
data with more GANs-generated images not necessarily
yields a corresponding improvement in the classification
performance.

It is clear that combining classic augmentation with a
limited-size GANs-generated data effectively improved the
classification performance of HEp-2 cell images as demon-
strated by the results of the combined dataset (GAN_300K+
tr_aug) across the five different architectural CNNs. It is
important to mention that Table 6 reports the results of
our implementations of the CNNs models using hyperpa-
rameters’ values as proposed in the original works without
further tuning. However, for a general overview, Table 7
provides a comparison of the results reported in the original
works and our best-achieved results for each implemented
CNNs, considering that all works applied almost similar data
splitting ratios. Obviously, including GANs-generated data in
the training enhanced the discriminability and generalization
capability of all the CNNs as shown by the robust accu-
racy metric MCA results, which indicates the informative
impact of the added GANs-generated data. Noticeably,
training DCRNet [17] with (GAN_300K + tr_aug) dataset
achieved a competitive classification performance for both
ACA (98.71%) and MCA (98.89%). Fig. 4 shows the
accuracy curves (training and validation) of the DCRNet
model across all training data variants during the training
process.

However, for further comparison between the real and
GANs-generated data, an additional set of experiments were
performed by training the DCRNet [17] model five times on
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TABLE 5. 1-NN classifier scores of each GAN model across all data classes (calculated between generated data and real data val_aug). ‘real’ refers to the
lower-bound scores computed between two sets of the real data val_aug. 1-NN acc: the overall accuracy, real_class acc: the true positive rate indicating
the accuracy among the real data class, gen_class acc: the true negative rate indicating the accuracy among the generated class. The best value is the
closest to the chance-level accuracy (50%).

TABLE 6. Comparison of the classification performances of all used CNNs models across all training data variants. GAN-generated datasets is annotated
as GAN_300K and GAN_600K. The approximate size of each training set is written between parentheses. Reported values are in %.

TABLE 7. Comparison between our best results (achieved by training on
tr_aug + GAN_300K dataset) and the results reported in the original
works. Reported values are in %.

TABLE 8. Classification results of DCRNet model trained on a fixed-size
training set (600K) with changing the ratio between real images
(collected from tr_aug) and GAN-generated images (collected from
GAN_600K) in five steps. Additional random horizontal and vertical
shifting were performed on tr_aug images to reach 600K for the first
experiment (i.e., 100/0).

600K fixed size training set, with changing the (real/GANs-
generated) ratio by 25% step at each time, starting from
(100% real/ 0% GANs-generated) and ending with (0% real/
100% GANs-generated). Results are reported in Table 8,

which show that as the ratio of the real data decreased,
the data diversity in the training set is also decreased and
hence the performance of the classifier is consequently
deteriorated.

In general, although Info-GANGP demonstrated a supe-
riority in learning the visual representation of the HEp-2
cell images among the other GAN models, the standalone
GAN-based augmentation is not as effective as the classic
augmentation method as shown in the results of this
study. This implying that GANs’ capacity of generating
diverse data is still limited due to mode dropping and
collapsing. Similar findings were observed by [45] who
used DCGAN for generating HEp-2 cell images. However,
unlike their combined augmentation methods’ results, within
some data-size limits, using InfoWGANGP generated data
as a complementary augmentation method is found to be
beneficial to improve the classification performance. These
results are consistent with those found in other medical image
classification studies used GAN-augmentation methods
[31], [32]. As a final remark, the implemented intensive clas-
sic augmentation method on the I3A dataset has considerably
enlarged the data size to a limit that may eliminate the impact
of the information acquired by adding the GANs-generated
data in improving the classification performance. Therefore,
further investigations on smaller HEp-2 datasets such as
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FIGURE 3. Visual comparison between real augmented HEp-2 samples and images generated by the implemented GANs. The image sources are
annotated beside each group. Ten randomly selected images are plotted horizontally for each HEp-2 image class. Real data examples of HEp-2 cell
images (upper left) show the visual heterogeneity and high variance across classes. GANs-generated images show high similarity to the real data,
especially of the Info-WGANGP.

MIVIA2 and SNPHEp23 could help reveal the impact of
using GANs augmentation for boosting the classification
performance on potentially small training data. Since the
sizes of those datasets are approximately 1/10 of that of
I3A, GANs pre-trained on the larger I3A dataset could be
transferred to the smaller MIVIA or SNPHEp2 datasets. Such
investigation is suggested as future work. Moreover, further
works are suggested to propose systematic approaches for
estimating the optimal size of GANs-generated data to be
used as an effective augmentation method.

2Download link for theMIVIA (ICPR2012) dataset: https://mivia.unisa.it/
contest-hep-2 (Accessed on June 14, 2021)

3Download link for the SNPHEp2 dataset: https://staff.itee.uq.edu.au/
lovell/snphep2 (Accessed on June 26, 2021)

VI. CONCLUSION
This study provides a detailed investigation of the capabilities
of different types of well-known GANs to learn the visual
representations of HEp-2 cell images for augmentation pur-
poses. The empirical evaluationmetrics used to quantitatively
assess the performances of the implemented GANs showed
the superiority of WGANGP with a mutual information
maximization objective function over the other GAN models
under study. Visually, GANs-generated data showed high
similarity with the real HEp-2 cell images with no signs
of collapsing. However, the evaluation metrics demonstrated
that even the best performing GAN suffers from some
degrees of mode dropping and collapsing, limiting its
capabilities of producing sufficiently diverse data. Adding
a limited-size GANs-generated data to the classic augmen-
tation showed a clear improvement in the classification
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FIGURE 4. Training and validation accuracy curves of the DCRNet model across all training data variants during the training process.
A small portion of the overlapped validation curves was zoomed in for better visualization. The figure is better visualized in digital
format.

performance across different variants of CNNs architectures
achieving a competitive classification accuracy, especially
for the DCRNet [17] model. These findings demonstrated
the applicability of GANs-generated data for enhancing the
generalization performance of CNNs for the HEp-2 cell
image classification task.
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