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Abstract: The design of biosensors and artificial organs using biocompatible materials with a low
affinity for amyloid β peptide (Aβ) would contribute to the inhibition of fibril growth causing
Alzheimer’s disease. We systematically studied the amyloidogenicity of Aβ on various planar mem-
branes. The planar membranes were prepared using biocompatible polymers, viz., poly(methyl
methacrylate) (PMMA), polysulfone (PSf), poly(L-lactic acid) (PLLA), and polyvinylpyrrolidone
(PVP). Phospholipids from biomembranes, viz., 1,2-dioleoyl-phosphatidylcholine (DOPC), 1,2-
dipalmitoyl-phosphatidylcholine (DPPC), and polyethylene glycol-graft-phosphatidyl ethanolamine
(PEG-PE) were used as controls. Phospholipid- and polymer-based membranes were prepared to
determine the kinetics of Aβ fibril formation. Rates of Aβ nucleation on the PSf- and DPPC-based
membranes were significantly higher than those on the other membranes. Aβ accumulation, cal-
culated by the change in frequency of a quartz crystal microbalance (QCM), followed the order:
PSf > PLLA > DOPC > PMMA, PVP, DPPC, and PEG-PE. Nucleation rates exhibited a positive
correlation with the corresponding accumulation (except for the DPPC-based membrane) and a
negative correlation with the molecular weight of the polymers. Strong hydration along the poly-
mer backbone and polymer–Aβ entanglement might contribute to the accumulation of Aβ and
subsequent fibrillation.

Keywords: biocompatible polymer; amyloid fibril; amyloid β; nucleation; quartz crystal microbal-
ance; hydration; entanglement; hydration

1. Introduction

Recent developments in medical devices, including artificial organs and biosensors,
have focused on the inhibition of protein accumulation or adsorption. This is because the
deposition of protein on the surface often leads to the deterioration of artificial organs due
to surface contamination or the development of human amyloidosis. For example, the
dialyzer, an artificial organ, is used to filter β2-microglobulin (β2-mg) in dialysis-related
amyloidosis (DA) [1,2] and amyloid β peptides (Aβ) in Alzheimer’s disease (AD) [3]
from the bloodstream. However, β2-mg and Aβ accumulate on the surface of dialyzing
membranes to induce amyloidosis [1]. Likewise, the biosensor also requires the suppression
of adsorption of pathological proteins such as β2-mg, Aβ, and α-synuclein (α-syn) in
Parkinson’s disease, as well as serum albumin. Therefore, robust operation of medical
devices requires effective inhibition of protein adsorption.

Many hydrophilic polymers developed for this purpose are biocompatible. Poly
(vinylpyrrolidone) (PVP) [4,5], poly(L-lactic acid) (PLLA) [6,7], poly(methyl methacrylate)

Appl. Sci. 2021, 11, 4408. https://doi.org/10.3390/app11104408 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/app11104408?type=check_update&version=1
https://doi.org/10.3390/app11104408
https://doi.org/10.3390/app11104408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11104408
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4408 2 of 14

(PMMA) [8], poly(sulfonate) (PSf) [9], and others [10] are well-known examples. Several
homopolymers have been used to produce blends [11,12] and block copolymers [13].
Nanoscopic architectures using these polymers, viz., planar membranes [7], membranes
with asymmetric pore structures [14], (nano)particles [15], polymer brushes [16], and
vesicles (polymersomes) [13] have been reported. From the perspective of biocompatibility,
the surfaces of these polymeric materials require hydrophilicity or the reduction in protein
adsorption [16].

With the development of polymer engineering, the pathological mechanisms of amy-
loidosis, such as DA [2], AD [17,18], and Parkinson’s disease [19], have been revealed
in the past two decades. Furthermore, amyloid fibril formation, as the key process in
amyloidosis, has been clarified at the molecular level [2,20]. The mechanisms of fibril
formation for β2-mg, Aβ, and α-syn are similar, i.e., fibril formation proceeds by nucleation
and subsequent elongation [2]. Of these, only Aβ is addressed in this study.

Aβ is a soluble protein with a 4.5 kDa peptide related to AD [20]. Aβ aggrega-
tion on neuronal cell membranes is a hallmark of AD [18]. Recent studies have demon-
strated a variety of molecular self-assemblies of Aβ, including oligomers [21], micellar
aggregates [22], protofibrils [23], and fibrillar aggregates, including spherulitic fibrillar
aggregates (spherulite) [24–27]. At most, ten monomeric Aβ form an oligomer on the
biomembrane, and indicate strong cytotoxicity [21]. Oligomers bind with monomeric Aβ
to grow up to protofibrils, eventually forming mature fibrils (fibrillar aggregates) [21].
In addition, spherulites have a structure similar to senile plaques on neuronal cell mem-
branes [24]. These morphologies can be induced on the phospholipid membranes, polymer
membranes, and others [21,24–29]. Hence, interaction of external factors with Aβ fibril
formation affords a variety of morphologies of Aβ aggregates. Thus, Aβ fibril formation
is the result of the contribution of external environments, including the interfaces of lipid
and polymer membranes, i.e., the partitioning of Aβ into the interfaces.

Electrostatic interaction [30,31], hydrophobic interaction [27,32], or topological in-
teraction [33,34] are possible mechanisms of Aβ partitioning into the interfaces. For
polymer-based interfaces, the topological interaction between Aβ peptides and polymers
should be considered. This is because, in an earlier study, the partitioning behavior of
peptides in the biphasic water/polymer solution system was determined by the entan-
glement of peptides with the polymer [34]. For example, poly(ethylene oxide) (PEO),
having a molecular weight (Mw) of 5,000,000, entangled with proteins, contributing to their
partitioning [34]. The entanglement features of polymers determine peptide partitioning
as well as polymer–polymer interaction [35]. The entanglement of polymers or polymer–
peptide originates from the fact that polymers with long-chain structures cannot cross over
each other. In the field of polymer chemistry and physics, the entanglement of polymers
has been accordingly characterized by the entanglement molecular weight (Me), which
corresponds to the Mw between entanglements. The Me value can be estimated from the
viscoelastic modulus [11,36] and 1H-NMR [37].

The physicochemical properties of polymers at the interface are generally different
from those of the bulk polymer phase [38]. This is (i) because polymers in the random
coiled state collapse, and thus, charge a higher elastic energy, and (ii) because of the
constraint of self-diffusion of polymers due to entanglement [39,40]. This property is
prominent in polymer membranes prepared by the layer-by-layer method [41]. If this
effect would result in an interfacial environment that is advantageous for the binding of
amphiphilic molecules, the induction of various morphologies of Aβ fibrils [29] might
be explained. However, the influence of the entanglement between polymers or between
polymers and peptides on peptide binding is still unknown. It is anticipated that the
influence of the entanglement of polymers at the interface would provide helpful insights
into the development of biocompatible polymers for medical devices, such as artificial
organs or biosensors, with low protein adsorption.
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In this study, we selected various polymers, viz., PVP, PLLA, PMMA, and PSf, as
shown in Figure 1. These linear polymers were selected to discuss the effect of their
Me [5,38,39,42] (Table 1) and hydration structure [16,23,43–45]. PLLA with different Mw
(5000 to 50,000) was used to examine the effect of the entanglement of polymers while
avoiding the influence of its chemical structure. PVP and PSf were selected as hydrophilic
and hydrophobic standard polymers, respectively. Syndiotactic-PMMA (syn-PMMA) and
isotactic-PMMA (iso-PMMA) were used to investigate the influence of the tacticity of the
polymers. Phospholipids, viz., 1,2-dioleoyl-phosphatidylcholine (DOPC), 1,2-dipalmitoyl-
phosphatidylcholine (DPPC), and phosphoethanolamine-N-[Methoxy(Polyethylene Glycol)
2000] (PEG-PE) were also used for comparison with polymer membranes, because the
planar phospholipid membranes have been regarded as model biomembranes. In the
first series of experiments, the fibril formation behavior of Aβ on various planar polymer
membranes was investigated in terms of the morphology of fibrils and kinetics according
to previous reports [28] using total internal fluorescence microscopy (TIRFM) [29]. Kinetic
analysis of fibril formation was performed according to a previous report [28] to obtain the
kinetic parameters, such as the nucleation rate. The nucleation rate was compared with
Aβ accumulation on the planar membrane. Here, Aβ accumulation was estimated using a
quartz crystal microbalance (QCM) following immobilization of planar membranes [23].
Finally, we discussed the interaction of Aβwith planar polymer membranes in terms of
entanglement and hydration structure.
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Table 1. Summary of polymers.

Polymer Molecular Weight, Mw Entanglement
Molecular Weight, Me

Possible
Entanglement, Mw/Me

PVP 1,200,000 12,000 * 100
iso-PMMA 500,000 14,600 # 34.2
syn-PMMA 400,000 9200 # 43.5

PSf 75,000 2250 % 33.3

PLLA

5000

9000 $

0.56
10,000 1.1
20,000 2.2
50,000 5.6

* [38], % [46], # [47], $ [48].

2. Materials and Methods
2.1. Materials

DOPC and DPPC were obtained from Avanti Polar Lipids (Alabaster, AL, USA). PEG-
PE was obtained from Funakoshi Co., Ltd. (Tokyo, Japan). PLLA (Mw = 5000, 10,000,
20,000, and 50,000) was purchased from Wako Pure Chemical (Hiroshima, Japan). PMMA
(Mw = 400,000 and 500,000), PSf (Mw = 75,000), and PVP K90 (Mw = 1,200,000) (supplied
by Nacalai Tesque) were gifted by TORAY Co. Ltd. (Shiga, Japan).

Aβwith forty amino acid residues was purchased from the Peptide Institute (Osaka,
Japan); its sequence was as follows: H2N-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-
Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-
Gly-Leu-Met-Val-Gly-Gly-Val-Val-COOH. Thioflavin T (ThT) for monitoring fibrilliza-
tion was obtained from Dojindo (Kumamoto, Japan). All other reagents used were of
analytical grade.

2.2. Preparation of Planar Membranes Using Phospholipid and Polymers

We prepared a planar phospholipid-based membrane as described previously [23,49].
Briefly, a thiol self-assembled membrane using 1-decane thiol was formed on an AT-cut
quartz crystal with a gold electrode having 5.1 mm diameter. Next, this substrate was
immersed in a DOPC/chloroform solution overnight to obtain a planar phospholipid-
based membrane. The dried membrane was washed with distilled water at least three
times to remove the excess lipid layers. Consequently, a DOPC monolayer was obtained
on the thiol self-assemblies. The same was done for DPPC and PEG-PE.

For the polymer-based membrane, the above electrode was dipped into a 1% (w/w)
polymer/chloroform solution for 24 h. The dipped substrate was dried in vacuum and
washed twice by double-distilled water. The spin-coating method was also used to form
planar polymer-based membranes. An aliquot (0.3 mL) of 1% (w/w) polymer/chloroform
solution was dispensed on the substrate attached to the spin coater. A rotation rate of 1000
was imposed on the substrate for 1 min so that the polymers could be fully stretched to
form a surface with low roughness [50]. The resultant substrate was dried for 1 h at 60 ◦C.
Here, drying the polymer solution at the edges of the substrate created ridges that affected
the surface roughness and fibril formation behavior of Aβ. Hence, to maintain the quality
of the data, the edge of the substrate was not used for other measurements.

2.3. Aβ Fibril Formation and Its Observation

Aβwas dissolved in a 0.02% ammonia solution at a concentration of 200 µM at 4 ◦C.
This solution was occasionally centrifuged at 10,000 rpm, at 4 ◦C for 20 min, to separate
the aggregates, because such aggregates can act as nuclei for fibrillation. The Aβ solution
was maintained at 4 ◦C to avoid fibril formation. Next, Aβ fibrils were prepared using
the fibril extension method, as previously described [23,24]. Briefly, a stock solution of
Aβ was diluted in Tris buffer (50 mM) at 37 ◦C to a final concentration of 10 µM, which
triggered fibril formation. This sample was incubated on a variety of planar membranes
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at 37 ◦C for the desired time (up to 120 h). As for TIRFM, the fluorescence microscopic
system used to observe individual amyloid fibrils was developed based on an inverted
microscope (IX70; Olympus, Tokyo, Japan), as described previously [24]. The ThT molecule
was excited using an argon laser (model 185F02-ADM; Spectra Physics, Mountain View,
CA, USA). The sample solution was mixed with ThT (5 µM) and observed using TIRFM.

To estimate fibrillogenesis, fibrils stained by ThT were counted in the field of view in
TIRFM. ThT fluorescence intensity was estimated using ImageJ (version 1.32) imaging soft-
ware. In short, the image was subtracted by the background within the same image, i.e., the
place where there was no fibril. Subsequently, the fluorescence intensity originating from
ThT bound to amyloid fibrils was extracted and integrated within the image. Afterwards,
the integrated fluorescence intensity was averaged using more than ten images.

2.4. QCM Method

Aβ accumulation was measured using a QCM [23]. As described in Section 2.2, the
planar membrane was immobilized on an AT-cut quartz crystal with a gold electrode
(diameter 5.1 mm, resonance frequency 7.995 MHz; BAS Inc., Tokyo, Japan). The quartz
crystal was connected to ALS/CHI electrochemical QCM equipment (400; BAS Inc.).
Aβ solution (10 µM) was loaded onto the immobilized membranes to monitor the frequency
change. In general, the frequency decrease (−∆f ) relates to both mass increase per unit
area and viscoelastic change. However, as the device used in this study provides only the
frequency change, the plateau value of the frequency change was adopted, and not the
time course of frequency which sensitively depends on the viscoelastic change.

2.5. Entanglement Molecular Weight (Me)

The Me value was calculated using the following equation [36]:

Me = ρRT/G0
n, (1)

where ρ is the density of the polymer, T is the temperature, R is the gas constant, and G0
n is

the plateau value at the higher limit of the frequency range of the storage modulus Gn(ω).
As the Me value is generally independent of temperature, the G0

n value obtained from
rheological measurements using the melting polymer at a given temperature condition
could yield the Me value. The Me values for the individual polymers are summarized
in Table 1.

3. Results
3.1. Fibrillogenesis of Aβ on Each Planar Membrane

The amyloid fibril formation of Aβ was first examined on each planar membrane.
TIRFM permits direct observation of amyloid fibrils stained by ThT, because ThT can specif-
ically bind to fibrils with a rich β-sheet structure to give its blue-colored fluorescence [23,24].
The fibril growth behavior of Aβ on each planar membrane was then examined by TIRFM
combined with ThT.

Figure 2A–G shows the TIRFM images of fibrils formed on a variety of planar mem-
branes. As a control (without planar membranes), typical fibrillar aggregates were ob-
served (Figure 2A). In contrast, branched fibrils were observed on the DOPC membrane
(Figure 2B). The same was true for the PSf-membranes (Figure 2F). A small number of
fibrils was observed on other planar membranes (Figure 2C–E). Interestingly, ring-shaped
fibrils were observed on the PLLA-50k-based membranes (Figure 2G,G’). Such a topology
of fibrils might be related to the surface topology of the PLLA-50k-based membranes. The
surface was subsequently observed using a scanning electron microscope (SEM). As shown
in Figure 2H, a definite pore or pothole structure was formed on the surface. This topology
is quite similar to the surface of the PLLA membrane prepared with a casting solution
containing 5% (w/w) PLLA (85–160 k) [7]. The size of pores present on the surface of the
PLLA membranes corresponded to the size of the ring-shaped fibrils. This suggests that
the pore structure acted as a template for the formation of ring-shaped fibrils.
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Figure 2. TIRFM images of ThT-stained amyloid fibrils of Aβ on various planar membranes: (A) con-
trol; (B) DOPC; (C) iso-PMMA; (D) syn-PMMA; (E) PVP; (F) PSf; (G) PLLA-50k. (G’) TEM image of
Figure 3G. (H) SEM image of PLLA-50k-based membrane.

3.2. Kinetic Analysis of Aβ Fibril Growth on Various Membranes

Variations in the ThT-stained aggregates were monitored for various membranes.
To discuss the effect of planar membranes on the kinetic properties of fibril growth, the ThT
intensity was plotted against the incubation time for four typical membranes (Figure 3A).
The planar membranes showed sigmoidal curves. ThT fluorescence intensity increased
at approximately 10 h in the PSf-based membrane, whereas the PVP-based membrane
showed an increase in ThT fluorescence intensity after 80 h. The lag time in the sigmoidal
curve corresponds to the nucleation period, and a subsequent increase in ThT intensity
represents the elongation of the nuclei [28]. The kinetic parameters associated with the lag
time were subsequently assessed using Equation (2):

I(t) = Ii + mit + (Imax + mft)/(1 + exp{− (t − tm)/τ}), (2)

where tlag (h) is the lag time, kapp (=1/τ) (h−1) is the apparent elongation rate constant,
Ii and Imax are the ThT intensities at the initial and final stages, respectively, and mi and
mf are the correction factors at the initial and final stages, respectively. The tm value is
associated with the tlag value as follows: tlag = tm − 2kapp

−1. Thus, the sigmoidal curve
shown in Figure 3A can be characterized by kapp, tlag, and Imax.

The kapp values were plotted against the corresponding tlag values (Figure 3B). Overall,
a negative correlation was observed between both. This suggests that the fibril formed
after the fast nucleation favored fast elongation. In other words, both processes are linked
to each other.
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Figure 3. Time-course of (A) ThT fluorescence intensity. Correlation coefficients for four membranes
were more than 0.990. (B) Comparison of lag time with apparent elongation rate constant. (C) Lag
time, (D) Imax, and (E) number density of fibrils on various planar membranes. The concentration of
monomeric Aβ was 10 µM in TIRFM observation. Error bars represent the average of experimental
data performed at least four times. Error bars represent the average of experimental data performed
at least four times.

The tlag values observed for various planar membranes are shown in Figure 3C. From
a comparison of PSf- (~10 h) with PVP-based membranes (~120 h), the tlag value was
likely strongly dependent on the hydrophobicity of the polymers. The same was true
for PEG-PE-based membranes (~100 h) considering the induction of hydrophilic PEG
chains into phospholipids, such as DOPC and DPPC. The tlag values for iso-PMMA- and
syn-PMMA-based membranes were relatively greater than those for the other membranes,
although the influence of tacticity in PMMA was not significant, suggesting that these
two membranes were disadvantageous for the nucleation of Aβ, as compared with other
membranes. In addition, there was no definite influence of the entanglement of polymers
on the lag time for PLLAs with different Mw.

The Imax values, one of the quantitative indices for fibrillogenesis [28], are shown
in Figure 3D. Imax for PEG-PE- and PVP-based membranes was very low. PSf-based
membranes exhibited high Imax values relative to those of PVP-based membranes. The
same was true for DOPC- and DPPC-based membranes relative to the PEG-PE-based
membrane. Therefore, the Imax value clearly depends on the hydrophobicity of the planar
membranes. The tacticity of PMMA was not significantly observed in Imax. Alternatively,
the Imax value for PLLA increased with an increase in molecular weight, suggesting a
possible influence of the entanglement of polymers. According to a previous report [28],
Imax is determined by the number of fibrils formed and/or their nanoscopic structure to
which ThT binds. The number density of fibrils after the growth of fibrils was counted
subsequently. It may be noted that TIRFM permits the visualization of the evanescent region
of 100 nm in depth. Therefore, the number of fibrils per unit volume of the evanescent
region (area of view field × depth) was defined as the number density of fibrils (# µm−3).
As shown in Figure 3E, the DOPC- and PSf-based membranes had a higher number density
of fibrils as compared with PEG-PE- and PVP-based membranes, suggesting the effect
of the hydrophobicity of polymers. Other planar membranes had a low number density,
giving the impression that there is no definite influence of the tacticity and entanglement
of polymers. However, the number density of fibrils indicated a similar trend to the Imax
value to some extent.
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From the results, both tlag and number density of fibrils were selected as kinetic param-
eters in the following section. This was because both directly reflected the fibrillogenesis
of Aβ.

3.3. Aβ Accumulation on Membranes

Accumulation of Aβwould be required for the nucleation of Aβ on the planar mem-
brane. The important issue is how the accumulation of Aβ determines fibril growth on
planar membranes. Examination of Aβ accumulation on the planar membranes has been
discussed in this section. The QCM method combined with immobilization of lipid mem-
branes is a powerful tool for monitoring the accumulation of Aβ on planar membranes [23].
Accordingly, we evaluated the accumulation of Aβ on the respective planar membranes
from the frequency change after the injection of Aβ (10 µM).

As shown in Figure 4A, decline in frequency and a subsequent plateau value were
observed in the case of phospholipid- and polymer-based membranes. However, in the case
of PLLA-5k and PLLA-10k (Figure 4B), the frequency of QCM electrodes decreased initially,
followed by an increase up to a positive value relative to the initial state. This was probably
because Aβ accumulation on the membranes induced their disruption and detachment
from the QCM electrode. In any case, the plateau value of frequency (∆f ) corresponded
to Aβ accumulation on the membranes [23]. The ∆f values for all the membranes are
shown in Figure 4C. For simplification, both PLLA-10k- and PLLA-5k-based membranes,
indicating positive values, are depicted as the data (r.c.). For this, the argument concerning
the entanglement of polymers was ruled out. The ∆f values for DOPC-, PSf-, and PLLA-
50k-based membranes were higher than those for other planar membranes, suggesting the
possible contribution of the hydrophobicity of the polymers, rather than other factors, to
Aβ accumulation.
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3.4. Comparison of Aβ Accumulation with Its Fibril Formation

Aβ fibril growth consists of nucleation and subsequent elongation [28]. Further,
induction of fibril growth depends on the environment [24,29]. Nucleation of Aβ and its
elongation requires its accumulation. The number density of Aβ fibrils formed on each
membrane was compared with the corresponding ∆f value (Figure 5A) to confirm the effect
of planar membranes on Aβ fibril growth. Increment in ∆f increased the number density of
the fibrils. It was therefore considered that the accumulation of Aβ resulted in its nucleation.
It must be noted that the process involves primary and secondary nucleation [28]. Primary
nucleation refers to the nucleation process that occurs in a previously fibril-free solution.
In contrast, secondary nucleation is the generation of new fibrils by fibrils already present in
the suspension, which is associated with the variation in the number density of fibrils [28].
The present number density of fibrils was attained following both nucleation steps. In this
study, the DOPC- and PSf-based membranes indicated a definite variation in the number
density of fibrils after the increase in ThT fluorescence intensity (Figure 3A,E). Therefore,
primary nucleation is addressed in this study.
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The rate of primary nucleation can be defined as the reciprocal of the lag time. Accord-
ingly, the nucleation rate of Aβ was compared with the ∆f value (Figure 5B). The ∆f value
was linearly proportional to the nucleation rate except for the DPPC-based membrane, i.e.,
the accumulation of Aβ on planar membranes accelerated its primary nucleation. Thus, the
interaction between Aβ and the planar membranes determines the rate of Aβ nucleation.

The interaction between Aβ and planar membranes is affected by the hydrophobicity
of the polymers as well as by the entanglement of polymers [34]. As shown in Table 1, the
entanglement depends on the Mw of the polymers (see the possible entanglement Mw/Me).
The Mw of a polymer also regulates fibril growth [29]. Evans stated that condensed-fluid
membranes of lipids behave similarly to linear-flexible polymers [51]. Thus, the rates
of Aβ nucleation were compared with the Mw of polymers, by adding the polymers,
except PLLA, together with phospholipids (Figure 5C). The increase in Mw of the polymer
reduced the nucleation rate, except for PEG-PE. It is likely that the deviation of the PEG-PE-
based membrane originated from the entanglement by PEG chains. Notably, a correction
considering the disruption or detachment of PLLA-5k- and PLLA-10k-based membranes
due to their interaction with Aβ (Figure 4B) would be needed. Thus, an entanglement
between polymers and/or between Aβ and the polymer is likely to directly impact the
primary nucleation process.

4. Discussion
4.1. Interaction of Aβ with Planar Membranes

First, we addressed the interaction between monomeric Aβ and planar membranes
in terms of electrostatic interactions. Matsuzaki et al. reported that the net charge of
monomeric Aβ under physiological conditions was slightly negative [30], which was based
on calculations using the pKa values for His13, His14, Glu22, and Asp23 of Aβ with 40
amino acid residues and Glu3, Glu11, His6, Asp1, Asp7, and Tyr10 of Aβ with 28 amino
acid residues [52,53]. In the present study, the direct electrostatic attractive or repulsive
forces between the aforementioned residues and membranes should be small, considering
the chemical structure of zwitterionic phospholipids and nonionic polymers. Even in such
a state, the electrostatic interaction between the local charge of planar membranes and the
individual charges of charged amino acid residues should be considered. For example, PSf-,
DOPC-, and PLLA-50k-based membranes showed higher Aβ accumulation than the other
membranes (Figure 4C). These membranes were zwitterionic or nonionic, based on their
chemical structures (see Figure 1). The choline group in phospholipids has two positive
and negative charges. These charges behave individually in the interaction between the
phospholipids and Aβ. Thus, the interaction of Aβwith these membranes cannot be simply
explained by electrostatic interactions.

Alternatively, we discuss the non-electrostatic contribution to the Aβ–membrane
interaction. Aβ has ten hydrophobic amino acid residues: six Val, two Ile, and two
Leu. It is possible that these residues behave individually in hydrophobic interactions.
PSf contains a hydrophobic benzene group. Therefore, the hydrophobic interaction between
the benzene group in PSf and the hydrophobic transmembrane region of Aβ (Gly29–Val40)
with six hydrophobic residues might contribute to the increased accumulation of Aβ.
In contrast, PVP, PEG-PE, iso-PMME, and syn-PMMA showed low Aβ accumulation.
PVP, which is widely used as a powerful hydrophilizing agent, is often blended with a
PSf-based membrane owing to its improved hydrophilicity [15]. This hydrophilic property
of PVP might be related to its weak Aβ accumulation behavior. In the case of PMMA,
a study using sum frequency generation (SFG) vibrational spectroscopy demonstrated
the following three aspects [54]: the PMMA surface was dominated by the ester methyl
groups; the alpha methyl groups tended to lie down on the PMMA surface; and the
methylene groups were not detected on the PMMA surface. In comparison, the surface
of the PMMA-based membranes was likely to be hydrophilic. Alternatively, PLLA has a
chemical structure similar to PMMA in terms of the inclusion of oxygen in the polymer
segment. However, the PLLA-50k-based membrane showed higher Aβ accumulation
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than PMMA-based membranes (Figure 4C). Considering PLLA-5k- and PLLA-10k-based
membranes, it is possible that Aβ formed a complex capable of detachment from the
surface of the PLLA-based membranes (Figure 4B). Thus, it is likely that these membranes
interact strongly with Aβ. Alternatively, in the case of DOPC and DPPC, both have an
identical headgroup, called the phosphocholine group, at the interface of lipid membranes.
However, DOPC-based membranes, rather than DPPC-based membranes, showed higher
Aβ accumulation (Figure 4C).

From the aforementioned discussion, it may be inferred that only the argument
concerning the chemical structure at the interface of polymer and phospholipid membranes
provides an insufficient scenario for the interaction of Aβwith the membranes.

4.2. Contribution of Polymer Entanglement to Aβ Accumulation

We addressed the topological features of membranes, such as the entanglement of
polymers. Polymer–peptide (Aβ) (i) or polymer–polymer entanglement (ii) may be con-
sidered as crucial factors affecting the Aβ accumulation on the membranes. For example,
poly(ethylene oxide) (Mw = 5,000,000) entangles enough to contribute to protein partition-
ing [34]. In this section, the effect of entanglement due to the polymer is discussed.

PLLA-5k and PLLA-10k are good examples of case (i). The Mw of both polymers is
comparable to that of Aβ (approximately 4300). The other polymers used here had a higher
Mw than Aβ. Importantly, only PLLA-5k and PLLA-10k exhibited the recovery of the
∆f value (Figure 4B). It may be assumed that these membranes were partly disrupted by
Aβ, possibly due to polymer–peptide entanglement. Entanglement of Aβwith polymers
bearing Mw near Aβmight be entropy-driven.

An increase in the length of the polymer backbone significantly increases the possibility
of polymer–polymer entanglement (case (ii)). The Mw dependency of the nucleation rate
(Figure 5C) provides an interpretation with respect to the effect of the entanglement of
the polymer. Condensed-fluid membranes of lipids behave similarly to linear-flexible
polymers [51]. This is because the lipid molecules move on the solid support solely
via lateral diffusion. A study concerning lateral diffusion of DOPC reported that the
process was controlled by the entanglement between acyl chains of lipids [55]. Even in
the case of DOPC, the nucleation rate was comparable to that of membranes with low
Mw. Meanwhile, PEG-PE exhibited a low nucleation rate. Previously, Hashizaki et al. [56]
suggested PEG chain–chain entanglement due to van der Waals forces as well as inter-
and intra-chain hydrogen bonds that act in the PEG chains. Thus, PEG chains might
interfere with the association of accumulated Aβ on membranes, possibly due to their
entanglement. In addition, the surface roughness originating from the PEG chains would
act as an obstacle for the association of Aβ, because a rough surface made of polystyrene
reportedly decelerated the two-dimensional diffusion of Aβ with 42 residues and retarded
the fibrillation [33]. In contrast to PEG-PE, polymers with high Mw, such as iso-PMMA
(Mw = 5.0 × 105), syn-PMMA (Mw = 4.0 × 105), and PVP (Mw = 1.2 × 106), also easily
entangle in solution, because polymers with large molecular weights generally favor
their entanglement, as summarized by Wu [41]. A possible entanglement of Mw/Me is
considerably high, as shown in Table 1. These polymers reduced the accumulation of Aβ
and its nucleation rate in this order.

4.3. Contribution of the Hydrated Structure of Polymer Membranes

The influence of entangled polymers becomes prominent in the case of planar mem-
branes. This is because the formation of planar membranes is similar to viscous forced
crystallization [43]. Next, we discuss the interaction between Aβ and planar membranes
in terms of the amphiphilicity of Aβ. Analysis using an impedance analyzer [23,44] and
differential scanning calorimetry [45] suggests that the membrane materials used here
favor hydration. For instance, DOPC is hydrated by twenty water molecules per lipid
molecule [55]. DPPC also possesses the property of hydration derived from the water
of hydration [22]. For PVP, the –N–C=O backbone is hydrated by 5–6 H2O per unit (see
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Figure 1) [44]. Therefore, it is anticipated that the membrane matrix of PVP is well hydrated.
The same must be true for PMMA having a COO group, PSf having –O– and –SO2

−, and
PLLA with –C=O.

Accumulation of Aβ into phospholipid- and polymer-based membranes requires the
removal of hydrated water. Nagasawa et al. reported that the thermodynamic cost for the
removal of hydrated water in a polymer determines the extent of protein adsorption [16].
This effect likely resulted in the reduced accumulation of Aβ (Figure 4C) and/or its confor-
mational change, which is advantageous for fibril growth (data not shown). Furthermore,
the matrix structure assisted the above effect. The phospholipid- and polymer-based
membranes were 5 nm and at least several tens of nanometers thick, respectively. Aβs
accumulated on DOPC-based membranes easily bound to each other. In contrast, the ma-
trix of polymer-based membranes likely made the interaction between Aβs more difficult.
Therefore, a well-hydrated PVP-based membrane would afford low Aβ fibrillogenesis.

5. Conclusions

We successfully demonstrated that polymer-based membranes can alter the fibrillo-
genesis of Aβ and phospholipids. Specifically, PVP, syn-PMMA, and iso-PMMA had a
definite impact on fibrillogenesis. This was because both the hydration of polymers and the
entanglement between polymers reduced Aβ accumulation on the polymer membranes.
PEG-PE also inhibited fibrillogenesis strongly as compared with DOPC and DPPC. This
was also due to the hydration and entanglement between the PEG chains. Thus, the hy-
dration and entanglement of polymers had an impact on the fibrillogenesis of Aβ. The
present findings are considered to have a great potential for applications in the field of
biomedicine, such as medical assays and artificial organs, because of the biocompatibility
of these polymers.
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