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SUMMARY
Persistent senescent cells (SCs) are known to underlie aging-related chronic disorders, but it is now recog-
nized that SCsmay be at the center of tissue remodeling events, namely during development or organ repair.
In this study, we show that two distinct senescence profiles are induced in the context of a spinal cord injury
between the regenerative zebrafish and the scarring mouse. Whereas induced SCs in zebrafish are progres-
sively cleared out, they accumulate over time in mice. Depletion of SCs in spinal-cord-injured mice, with
different senolytic drugs, improves locomotor, sensory, and bladder functions. This functional recovery is
associated with improved myelin sparing, reduced fibrotic scar, and attenuated inflammation, which corre-
late with a decreased secretion of pro-fibrotic and pro-inflammatory factors. Targeting SCs is a promising
therapeutic strategy not only for spinal cord injuries but potentially for other organs that lack regenerative
competence.
INTRODUCTION

A spinal cord injury is a major cause of disability in humans and

other mammals, often leading to permanent loss of locomotor

and sensory functions. This type of traumatic lesion is defined

by three biological features: a lesion core or fibrotic scar with

no viable neural tissue; an astrocytic scar around the lesion

core; and a surrounding area of spared neural tissue with limited

function, which may exhibit some functional plasticity (O’Shea

et al., 2017). Although the lesion scar provides structural sup-

port, it also creates an inhibitory microenvironment for the re-

growth of severed axons, thus preventing re-enervation of the

original targets (Cregg et al., 2014). A spinal cord injury is further

defined as an inflammatory condition mediated by activated as-

trocytes and infiltrating macrophages that remain in the spinal

cord indefinitely (Donnelly and Popovich, 2008). Immediately af-

ter the injury, the blood-spinal cord barrier is disrupted and,

although it gradually recovers, it remains compromised for a

long period of time (Whetstone et al., 2003). This facilitates the

extravasation of immune cells contributing to the establishment

of a chronic inflammatory state (Beck et al., 2010).

In contrast to mammals, the zebrafish spinal cord has the

remarkable capacity to recover motor and sensory functions af-

ter injury. This regenerative ability seems to stem from the sup-

portive microenvironment where there is no formation of a glial
This is an open access article under the CC BY-N
or fibrotic scar and inflammation is dynamically controlled by

macrophages (Tsarouchas et al., 2018), allowing neurogenesis

and regrowth of severed axons (Becker et al., 1997; Vajn et al.,

2013).

While considerable knowledge was achieved on the biolog-

ical processes that occur after a spinal cord injury in mammals

and regenerative species, small progress was obtained on

therapeutic options, suggesting that other cellular players

might be relevant following an injury. Senescence is a cellular

concept traditionally seen as a permanent cell-cycle arrest

response related to aging (van Deursen, 2014; Gorgoulis

et al., 2019; Herranz and Gil, 2018). Studies in recent years

changed the way we perceive cellular senescence, placing it

at the center of tissue remodeling in disease settings by

limiting fibrosis, namely in wound healing (Demaria et al.,

2014; Jun and Lau, 2010), damaged livers (Kong et al., 2012;

Krizhanovsky et al., 2008), and infarcted hearts (Meyer et al.,

2016). In models with high regenerative abilities, such as sala-

mander limbs, zebrafish hearts and fins, and neonatal mouse

hearts, a burst of transient senescent cells (SCs) was shown

to be induced after an injury (Sarig et al., 2019; Da Silva-Ál-

varez et al., 2019; Yun et al., 2015). These cells were shown

to be efficiently cleared from the tissues as regeneration pro-

gressed, possibly by macrophages (Yun et al., 2015). Remark-

ably, if this initial senescence is depleted, zebrafish fin
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regeneration is impaired (Da Silva-Álvarez et al., 2019), sug-

gesting that a transient accumulation of SCs appears to

have beneficial functions. Alternatively, persistent senescence

is detrimental for tissue and organ function in aging and aged-

related diseases, such as atherosclerosis, osteoporosis, dia-

betes, and neurodegeneration (Calcinotto et al., 2019). Key

to their various roles is the fact that SCs secrete a plethora

of factors known as senescence-associated secretory pheno-

type (SASP) (Krtolica et al., 2001). It is through their SASP that

SCs communicate with neighboring cells and modulate the

tissue microenvironment, thus exerting most of their physio-

logical effects (Acosta et al., 2013; Calcinotto et al., 2019).

Importantly, the SASP mediates paracrine senescence, a pro-

cess where SCs induce neighboring cells to undergo senes-

cence (Acosta et al., 2013). It is becoming accepted that the

beneficial versus detrimental effects of the SASP depend not

only on its composition and stage of senescence progression,

but also on the cell type affected and the stressor/injury type

(Herranz and Gil, 2018).

Considering that persistent senescence was shown to be

harmful, we hypothesized that accumulation of SCs contributes

to the failure of spinal cord regeneration observed in mammals.

In agreement with this hypothesis, we have shown that SCs are

induced after spinal cord injury in both zebrafish and mice. While

induced SCs in the zebrafish spinal cord progressively decrease,

in mice these cells increase over time. We demonstrate that

pharmacological depletion of SCs during the subacute post-

injury phase in mice seems to attenuate the secondary damage

and maximize the extent of spared tissue by decreasing inflam-

mation burden, scar extension, and demyelination, leading to a

better functional outcome. Therefore, our data support the po-

tential use of therapeutics targeting SCs to promote neuropro-

tection in the context of spinal cord injuries.

RESULTS

Zebrafish and mice exhibit distinct senescence profiles
after spinal cord injury
A transient senescent profile was recently described in several

regenerating organs after an injury (Sarig et al., 2019; Da

Silva-Álvarez et al., 2019; Yun et al., 2015), but the senescence
Figure 1. Different senescent cell dynamics are induced after spinal c

(A and B) SA-b-gal+ cells (blue) were detected and quantified in non-injured (sha

60 days post-injury [dpi]). n = 5–16. Similarly, SA-b-gal+ cells were detected and q

time points. n = 4–16. Eosin counterstaining was performed after cryosectionin

sections spanning the ventral horn. A 0.5-mm interval (red dashed zone) was estab

SA-b-gal+ cells were only quantified in the gray matter (GM) and not in the white

zebrafish, SA-b-gal+ cells reach a peak at 15 dpi (238.6 cells/mm2), a 2-fold incre

fold increase at 60 dpi (80.0 cells/mm2) toward sham (19.0 cells/mm2). Data are pr

0.01, 60 versus 30 dpi. Scale bars, 100 mm.

(C andD) In zebrafish, SA-b-gal+ cells co-localized with the senescence biomarker

dpi. White arrows point to representative examples of co-localization, while yello

(E and F) In mice, a similar co-localization was found between SA-b-gal+ cells a

sentative examples of co-localization. Scale bars, 100 mm.

(G and H) At 15 dpi, the expression of senescence biomarkers, namely cdkn1a (en

p16 in mice), and p53, was evaluated by qPCR. Results are presented as relative

0.01, versus sham.
profile in injured non-regenerating organs has been poorly

characterized.

To determine whether senescence is induced following a spi-

nal cord lesion in zebrafish and in mice, we used the gold stan-

dard method to identify SCs, that is, the senescence-associated

b-galactosidase (SA-b-gal) assay (Itahana et al., 2007). In zebra-

fish, an animal with high regenerative abilities, SA-b-gal+ cells

were found mainly in the gray matter of the spinal cord ventral

horn of sham-injured animals (Figure 1A). Upon an injury, these

cells were induced at the lesion periphery, reaching a peak at

15 days post-injury (dpi), when they double in number, and

then returning to basal levels at 60 dpi (Figure 1A). Inmice, an an-

imal with limited regenerative capacity, SA-b-gal+ cells were also

detected mainly in the gray matter of the spinal cord ventral horn

of sham-injured animals and induced at the lesion periphery

upon injury (Figure 1B). However, in clear contrast to the zebra-

fish, these SA-b-gal+ cells did not return to basal levels and

instead accumulated over time, reaching a 4-fold increase at

60 dpi, when compared with sham animals (compare Figures

1A and 1B). Importantly, we confirmed that these profiles were

injury-driven and not age-dependent by showing that the num-

ber of SA-b-gal+ cells remained unchanged in the spinal cord

of sham-injured animals of different ages, spanning all experi-

mental time points of this study (Figures S1A and S1B). The ex-

istence of cell and matrix debris at the lesion core did not allow

reliable quantifications of SA-b-gal+ cells in this region. Yet, we

cannot discard the possible existence and/or induction of SCs

in the injury core. We further confirmed by immunofluorescence

the association of SA-b-gal+ cells with several senescence-

associated biomarkers (Calcinotto et al., 2019). In zebrafish,

wewere able to show that, at 15 dpi, SA-b-gal+ cells co-localized

with the cell cycle arrest marker p21CIP1 (Figure 1C) and were

devoid of the proliferation marker 5-bromo-20-deoxyuridine
(BrdU) (Figure 1D). In mice, SA-b-gal+ cells co-localized with

the cell cycle arrest marker p16INK4a (Figure 1E) and the DNA

damage marker gH2AX (Figure 1F). In zebrafish and in mice,

some SA-b-gal+ cells exhibited a clear enlarged morphology,

another hallmark of SCs (Narita et al., 2003). In sham-injured an-

imals, SA-b-gal+ cells also displayed immunoreactivity for

p21CIP1 (zebrafish) and p16INK4a (mice) (Figures S1C and S1D).

However, the expression of these senescence biomarkers was
ord injury in zebrafish and in mice

m) and injured zebrafish spinal cords at different time points (3, 7, 15, 30, and

uantified in mouse laminectomized (sham) and injured spinal cords at the same

g. Cells were quantified at the lesion periphery along 2.0 mm in longitudinal

lished between the lesion border and the beginning of the quantification region.

matter (WM). Quantifications are presented as fold change toward sham. In

ase compared to sham (127.2 cells/mm2). In mice, SA-b-gal+ cells display a 4-

esented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, versus sham; ##p <

p21 andwere devoid of the proliferationmarker BrdU. Imageswere taken at 15

w arrows point to the absence of co-localization. Scale bars, 100 mm.

nd the senescence biomarkers p16 and gH2AX. White arrows point to repre-

codes for p21), cdkn2ab (encodes for p15/16 in zebrafish), cdkn2a (encodes for

expression toward sham. Data are presented as mean ± SEM. *p < 0.05, **p <
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Figure 2. Different profiles of SA-b-gal+

neuronal populations between zebrafish

and mouse

(A and B) In zebrafish and mice, SA-b-gal+ cells

(black) co-localized with the neuronal markers (A)

HuC/D (red) and (B) NeuN (green), respectively.

Representative images were taken at 15 days

post-injury (dpi). Scale bars, 100 mm.

(C and D) Percentages of total SA-b-gal+ cells

that are HuC/D+ or NeuN+ and of total HuC/D+ or

NeuN+ neurons that are SA-b-gal+ are compared

between both models. Cells were quantified

at the lesion periphery along 2.0 mm in longitu-

dinal sections. A 0.5-mm interval was estab-

lished between the lesion border and the

beginning of the quantification region. Quantifi-

cations are presented for uninjured/laminec-

tomized (sham) zebrafish/mice at 15 and 60 dpi.

n = 2–4. Data are presented as mean ± SEM.

*p < 0.05, **p < 0.01, versus sham; #p < 0.05,

versus 15 dpi.
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significantly increased upon injury (Figures 1G and 1H). In zebra-

fish spinal cords, we observed an augmented expression of

cdkn1a (which encodes for p21) and p53, another important

cell cycle regulator (Figure 1G). No differences were found in

the expression of cdkn2ab (encodes for p15/p16 in zebrafish).

In mouse spinal cords, we detected an increased expression

of cdkn1a, cdkn2a (encodes for p16), and p53 (Figure 1H).

Altogether, these results reveal two clearly distinct senescence

profiles in an injured spinal cord, a transient profile observed in

regenerative zebrafish and a persistent one observed in scarring

mice.

SCs in the zebrafish and mouse spinal cord are mostly
neurons
To identify which cell types comprise the senescent SA-b-gal+

population, we searched for co-localization with cell type-

specific markers using seriated slides from the same samples

of the initial characterization. We observed that most SA-

b-gal+ cells detected in the gray matter at the lesion periphery

co-localized with known neuronal markers, namely HuC/D

(Figure 2A) and NeuN (Figure 2B). In injured zebrafish spinal

cords, 87.8%–89.1% of SA-b-gal+ cells detected in the

gray matter co-localized with HuC/D at 15 and 60 dpi, respec-

tively (Figure 2C). Similarly, in mouse spinal cords, 94.8%–

96.0% of SA-b-gal+ cells detected in the gray matter co-local-

ized with the pan-neuronal marker NeuN at 15 and 60 dpi,
4 Cell Reports 36, 109334, July 6, 2021
respectively. When we calculated the

percentage of SA-b-gal+ cells of the to-

tal neuronal population at the lesion pe-

riphery, we again observed two distinct

profiles between these two models. In

zebrafish, the percentage of total neu-

rons that are SA-b-gal+ reaches a peak

of 8.9% at 15 dpi and then returns to

basal levels (2.3%) at 60 dpi. Alterna-

tively, mice display 25.3% of senescent

neurons at 15 dpi (Figure 2D), and this
number keeps increasing until 60 dpi, reaching 35.3% of total

neurons.

Targeting SCs with senolytic drugs improves motor,
sensory, and bladder functions in a mouse spinal cord
contusion injury model
The role of senescence in diverse biological contexts is still

poorly understood. Yet, it is accepted that accumulation or

persistence of SCs and subsequent chronic exposure to their

SASP contribute to loss of tissue function and diminish the repair

capacity in aged tissues (Acosta et al., 2013; Calcinotto et al.,

2019; Campisi, 2013; Childs et al., 2015).

We hypothesized that accumulation of SCs in the mouse spi-

nal cord is an important factor for the inhibitory microenviron-

ment that undermines the regenerative potential after an injury.

To evaluate the impact of depleting SCs in a mouse contusion

model of spinal cord injury, we used the ABT-263 drug, known

to work as a powerful senolytic (Zhu et al., 2016). We adminis-

tered ABT-263 within the first 14 dpi (subacute injury phase),

during which the blood-spinal cord barrier remains leaky (Whet-

stone et al., 2003), thus ensuring maximum accessibility of this

drug to the tissue (Figure 3A).

Before injury, all mice presented a normal locomotor behavior

in the open field test, which corresponds to the maximum score

of 9 in the Basso Mouse Scale (BMS) (Basso et al., 2006). After

injury, most injured mice exhibited complete hindlimb paralysis
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at 1 dpi and gradually improved locomotor ability reaching a

plateau at around 21 dpi (Figure 3B), similarly to what has been

previously described for a contusion injury model in C57BL/6J

mice (Basso et al., 2006). In ABT-263-treated animals, BMS

scores were significantly higher from 7 until 30 dpi (Figure 3B)

and BMS subscores were significantly higher from 12 to 60 dpi

(Figure 3C), when compared with animals treated with vehicle.

At 30 dpi, all ABT-263-treated mice achieved frequent plantar

stepping with 93% (14 out of 15) of mice displaying parallel

placement of both hindpaws at initial contact and 40% (6 out

of 15) also at lift off. Remarkably, 33% (5 out of 15) of mice

treated with ABT-263 exhibited consistent plantar stepping

andmild trunk stability, one animal showed normal trunk stability

with mostly coordinated forelimb-hindlimb walking, and a sec-

ond animal displayed some forelimb-hindlimb coordination, im-

provements never achieved in vehicle-treated mice.

A finer assessment of locomotion was performed using the

horizontal ladder (HL) test. Prior to the injury, all mice completed

the HL test with few to no mistakes or negative events (Figures

3D and 3E). Animals treated with ABT-263 made significantly

fewer stepping mistakes (Figure 3D) and displayed significantly

more positive stepping events (Figure 3E) at 30 and 60 dpi,

when compared with vehicle-treated mice, thus largely corrobo-

rating the results obtained in the open field.

Thermal allodynia, i.e., hypersensitivity to normally non-noxious

stimuli, is a commonpain-related symptomassociatedwith spinal

cord injuries (Nakae et al., 2011; Watson et al., 2014). Using an in-

cremental thermal plate (ITP), we could compare the temperature

threshold necessary to elicit an avoidance behavior to a cold or

hot stimulus between the two experimental groups. Considering

that uninjured C57BL/6J mice only exhibit a nocifensive reaction

to cold between 2�C and 4�C (Yalcin et al., 2009), ABT-263 treat-

ment significantly decreased cold hypersensitivity at 30 dpi

(6.4�C), compared to vehicle-treated animals who showed an

average temperature reaction to cold of 10.6�C (Figure 3F). We

found no effect of ABT-263 administration on the threshold tem-

perature required to prompt a nocifensive reaction to a hot stim-

ulus when compared to vehicle administration (Figure 3G).

Another common consequence of spinal cord injury is bladder

dysfunction (Yoshimura, 1999). We assessed bladder function
Figure 3. Targeting senescent cells with ABT-263 improves motor, sen

mice

(A) Schematic of the experimental setup. Animals were habituated to the different b

severe (force, 75 Kdyne; displacement, 550–750 mm) T9 contusion injury. Injured

(B and C) Basso Mouse Scale (BMS) score and subscore were evaluated in an op

n = 18–19.

(D and E) The locomotor performance in the horizontal ladder (HL) was assessed a

centimeter and the percentage of singular positive events (plantar step, toe step

(F and G) Thermal allodynia was tested at 30 and 60 dpi by determining the tem

(H) Bladder function was grossly evaluated by attributing a bladder score to the a

(I) SA-b-gal+ cells were quantified in a total of 10 different transversal sections (5 ro

dashed zone) was established between the lesion and the beginning of the quan

(J) Eosin counterstaining was performed after cryosectioning. SA-b-gal+ cells (blu

Scale bars, 200 mm.

(K) Quantifications were performed at all experimental endpoints (15, 30, and 60

b-gal+ cells/mm2 in the total gray matter and in the ventral horn by 68.4% and 58

mm2 in ABT-263-treated animals was still observed in the ventral horn.

n (15 dpi) = 3–4; n (30 dpi) = 3–4; n (60 dpi) = 2–3. Data are presented as mean ±
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by attributing a score to the amount of urine retained each day.

In contrast to injured mice treated with vehicle, injured mice

treated with ABT-263 exhibited smaller volumes of retained urine

from 9 to 20 dpi (Figure 3H), an effect that was lost after 20 dpi

(data not shown).

We demonstrate that ABT-263 administration by oral gavage

from 5 to 14 dpi reduced the number of SA-b-gal+ cells in the spi-

nal cord at the lesion periphery, when compared to vehicle

administration (Figures 3I–3K). SA-b-gal+ cells were quantified

along transversal spinal cord sections spanning the lesion pe-

riphery (Figure 3I). We performed two separate quantifica-

tions—one covering the total gray matter area and other only

in the ventral horn—in order to assess the effect of ABT-263

along the whole dorsal-ventral axis but also to have amore direct

comparison with the initial characterization profile (Figure 3J).

Targeting SCs during the subacute phase of the injury signifi-

cantly decreased the number of SA-b-gal+ cells by 68.4% (total

gray matter) and 58% (ventral horn), preventing their accumula-

tion at 15 dpi (Figure 3K). Although SA-b-gal+ cells seemingly

start to re-emerge following the end of the senolytic administra-

tion period, these were still significantly reduced in the ventral

horn region at 60 dpi (Figure 3K). We also show that ABT-263

treatment leads to a reduction in the levels of p16 protein and

cdkn2a expression (Figures S2A and S2B). In addition, there

was a decreased immunoreactivity for gH2AX in ABT-263-

treated spinal cords (Figure S2C). These results thus confirm

the senolytic activity of ABT-263 in the mouse spinal cord.

In a completely independent study, we targeted SCs with a

cocktail of two different drugs, dasatinib plus quercetin (D+Q),

known to have a strong senolytic activity (Zhu et al., 2015), using

the same injury parameters and administration time window for

the sake of comparison (Figures S3A–S3C). D+Q-treated ani-

mals exhibited a significantly improved locomotor function after

a spinal cord injury toward vehicle-treated mice, resulting in

higher BMS scores (Figures S3D and S3E) and improved HL per-

formances (Figures S3F and S3G). Similarly to ABT-263, D+Q

administration also decreased the hypersensitivity to a cold

stimulus at 30 dpi (Figure S3H), while no effects were observed

in response to a hot stimulus (Figure S3I). These results corrob-

orate those obtained with ABT-263, reinforcing the positive
sory, and bladder function recovery following a spinal cord injury in

ehavioral setups for a 15-day period, before being submitted to amoderate-to-

animals received daily vehicle or ABT-263 via oral gavage, from 5 to 14 dpi.

en field at different time-points (0, 1, 3, 5, 7, 10, 12, 15, 21, 30, 45, and 60 dpi).

t�1 (control), 15, 30, and 60 dpi by quantifying the total number of mistakes per

, and skip) measured and averaged across three successful trials. n = 3-6.

perature at which injured mice reacted to a cold or hot stimulus. n = 6–8.

mount of urine collected each time a bladder was manually voided. n = 18–19.

stral and 5 caudal) along 2.0 mm at the lesion periphery. A 0.5-mm interval (red

tification region.

e) were quantified in the total sectional gray matter and only at the ventral horn.

dpi). At 15 dpi, ABT-263 treatment significantly decreased the number of SA-

.0%, respectively. At 60 dpi, a significant reduction (41.9%) of SA-b-gal+ cells/

SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ABT-263 versus vehicle.



Figure 4. White matter sparing is increased

after targeting senescent cells with ABT-263

Transversal sections at different distances from

the lesion epicenter of an injured spinal cord at

15, 30 and 60 dpi, treated with vehicle or ABT-

263, and stained with FluoroMyelin (green) and

the corresponding quantifications. White matter

sparing was assessed by normalizing the area

stained with FluoroMyelin (green) to the total

cross-sectional area (CSA) of spinal cord sections

every 100 mm ranging from 2 mm rostral and 2 mm

caudal to the lesion epicenter. Scale bars, 500 mm.

n (15 dpi) = 3–4; n (30 dpi) = 3–4; n (60 dpi) = 2–3.

Data are expressed as % CSA and presented as

mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001,

ABT-263 versus vehicle.

Article
ll

OPEN ACCESS
effect of targeting SCs on locomotor and sensory recovery after

a spinal cord injury inmammals. In accordance, the D+Q cocktail

significantly decreased the number of SA-b-gal+ cells at the

lesion periphery (Figure S3J), thus confirming its senolytic effect

in the mouse spinal cord.

The senolytic ABT-263 promotes myelin preservation
after spinal cord injury
After a spinal cord injury, oligodendrocytes undergo both

necrotic and apoptotic cell death, which results in demyelination

around the lesion, impairing function of unprotected fibers,

contributing to the accumulation of cell debris, and potentiating

the inhibitory microenvironment for repair (Crowe et al., 1997;

Emery et al., 1998; Totoiu and Keirstead, 2005). To evaluate

the effect of depleting SCs on the demyelination status after

injury, we used FluoroMyelin green fluorescent myelin staining

to compare the spared white matter area per total cross-

sectional area (% CSA) between ABT-263-treated mice and

vehicle-treated mice along 2 mm around the lesion epicenter.

Treatment with ABT-263 consistently resulted in significantly

greater white matter sparing levels across all experimental time

points, an effect that at 30 dpi was more prominent at the caudal

side of the lesion (Figure 4).

The normal neuronal circuit organization is disrupted after a

spinal cord injury. However, spared neural tissue can, to a certain

extent (depending on the severity of the lesion), reorganize itself
in order to establish new lines of commu-

nication across and beyond the injury

(Courtine and Sofroniew, 2019). This plas-

ticity potential explains why after an

incomplete lesion (e.g., our contusion

injury model) mice can partially restore

their locomotor function.

Considering that ABT-263 increased

the amount of spared myelin, we hypoth-

esized that targeting SCs would also pro-

vide a more favorable environment for

axonal preservation and growth after a

spinal cord injury. To assess this, we

tested the expression of neuronal

growth-associated protein 43 (GAP43),
which is highly expressed in neuronal growth cones during

development and axonal regeneration (Benowitz and Routten-

berg, 1987). Although GAP43 staining does not allow us to

discriminate between new axons and spared ones, it is an

intrinsic determinant of neuronal plasticity and strongly corre-

lates with enhanced regenerative capacity (Mason et al., 2002).

We performed immunostainings for GAP43 in dorsal-ventral lon-

gitudinal sections spanning the ventral horn (where the motor

neurons are located) and quantified the number of GAP43+ fibers

at specific distances from the lesion epicenter (Figures S4A and

S4B), as previously described (Almutiri et al., 2018; Hata et al.,

2006). At 30 and 60 dpi, ABT-263-treated mice had a signifi-

cantly increased number of GAP43+ axons at the caudal side

of the lesion, compared to vehicle-treated mice (Figure S4B

and S4C).

Administration of the senolytic ABT-263 reduces the
fibrotic scar
Scar formation following spinal cord injury constitutes a major

barrier for axonal regrowth (Cregg et al., 2014). Inside the lesion

core, a subset of proliferating PDGFRb+ perivascular cells give

rise to a fibrotic scar with dense deposition of extracellular matrix

components (Soderblom et al., 2013). In fact, it has been shown

that reducing the pericyte-derived fibrotic scar facilitates func-

tional recovery after spinal cord injury in mice (Dias et al.,

2018). We examined the size and length of the fibrotic scar using
Cell Reports 36, 109334, July 6, 2021 7



Figure 5. Targeting senescent cells leads to a reduction of the

fibrotic scar

Transversal sections at the lesion epicenter of an injured spinal cord at 15, 30,

and 60 dpi treated with vehicle or ABT-263 and stained with the fibrotic scar

marker PDGFRb+ (magenta) and with the astrocytic scar marker GFAP (green).

The fibrotic scar area was evaluated by normalizing the PDGFRb+ area to the

total cross-sectional area at the lesion epicenter. GFAP+ tissue surrounds the

fibrotic core. Scale bars, 200 mm. n (15 dpi) = 3–4; n (30 dpi) = 3–4; n (60 dpi) =

2–3. The lower panel shows the percentage of fibrotic tissue in the injury core

as quantified at 15, 30 and 60 dpi. Data are presented as mean ± SEM. *p <

0.05, **p < 0.01, ABT-263 versus vehicle.
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a double immunostaining with PDGFRb (a pericyte marker that

labels the fibrotic component of the scar) and GFAP (a glial

marker that helps delineate the fibrotic scar compartment). At

the lesion epicenter, mice treated with the senolytic exhibited a

significantly reduced PDGFRb+ area at 15 and 60 dpi when

compared to mice treated with vehicle (Figure 5). Using the

same double immunostaining, we were able to define the exten-
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sion of the scar by tracing, rostrally and caudally to the epicenter,

signs of fibrotic PDGFRb+ staining in the dorsal side of the spinal

cord (Figure S5A). With this analysis, we observed that the total

length of the fibrotic scar was shorter at 15 dpi in ABT-263-

treated mice, an effect sustained until 30 dpi only at the caudal

side (Figure S5B).

Macrophage numbers at the injury site are reduced
following ABT-263 treatment
A spinal cord lesion in mice elicits a strong and long-lasting in-

flammatory response that potentiates secondary injury (Blight,

1985; Popovich et al., 1997). Macrophages are the most abun-

dant inflammatory cells in a spinal lesion, infiltrating the injury

core and releasing several molecules, namely nitrogen/oxygen

metabolites, cytokines, proteases, and chondroitin sulfate pro-

teoglycans that can cause cellular damage and inhibit axonal

growth (Fitch and Silver, 1997). Importantly, depletion of macro-

phages was demonstrated to promote repair and partial motor

recovery after spinal cord injury in rats (Popovich et al., 1999).

Additionally, senescence is closely linked to inflammation.

SCs, through their SASP, can secrete a plethora of immunemod-

ulators and proinflammatory cytokines such as tumor necrosis

factor (TNF)-a, macrophage colony-stimulating factor (M-CSF),

and CCL2 (three potent macrophage recruiters), as well as inter-

leukin (IL)-6, IL-8, and IL-1a (Coppé et al., 2010). Therefore, the

accumulation/persistence of SCs in tissues is usually associated

with chronic inflammation. To investigate the impact of the accu-

mulation of SCs on inflammation in the mouse spinal cord after

an injury, we performed immunostainings with the pan-macro-

phage marker F4/80. As anticipated, by depleting SCs with

ABT-263, we observed lower levels of inflammatory macro-

phages (% F4/80+ area) in spinal cord sections spanning the

lesion area, particularly at 15 and 30 dpi (Figure 6).

Targeting SCs downregulates key pro-fibrotic and pro-
inflammatory secreted factors induced upon spinal cord
injury
SCs modulate the surrounding tissue microenvironment and

exert their pathophysiological effects through their SASP (Coppé

et al., 2010; Acosta et al., 2013). Therefore, the timely clearance

of SCs, in a given setting, seems to be critical to prevent chronic

and uncontrolled SASP responses.

We conducted a separate study to evaluate the abundance of

secreted factors in the injured spinal microenvironment at 15 dpi

using a cytokine array. In this second study, the injury biome-

chanics and behavioral locomotor scores were similar and com-

parable to those previously observed (Figure S6). Also, in this

study sham-injured animals were included to assess the

response of every factor in the context of our spinal cord injury

model. Thus, the amount of each factor was compared between

sham, vehicle-treated, and ABT-263-treated mice (Figure S7).

From a total of 111 factors present in the array, 26 were both up-

regulated upon injury (sham versus vehicle) and significantly

decreased after ABT-263 treatment (vehicle versus ABT-263)

(Figure 7). Factors were grouped according to their known roles,

although some of them are not exclusive of their attributed

group and may have additional roles. Some of the identified

factors, such as amphiregulin, platelet-derived growth factor



Figure 6. ABT-263 treatment decreases the

number of macrophages at the injury site

Transversal sections at the lesion epicenter of an

injured spinal cord at 15, 30 and 60 dpi treated

with vehicle or ABT-263 and stained with the

pan-macrophage marker F4/80 (green). Scale

bars, 200 mm. The area of F4/80+ tissue was

measured at the lesion epicenter and 600 mm

rostrally and caudally from the epicenter. The

panel on the right displays zoomed images of

three different zones (a–c) of an ABT-263-treated

spinal cord transversal section stained with F4/80

at 15 dpi. Macrophages form a network inside the

central lesion core, but they can be individually

distinguished outside of it. Scale bars, 100 mm.

Measurements are expressed as a percentage of

the total cross-sectional area. n (15 dpi) = 3–4; n

(30 dpi) = 3–4; n (60 dpi) = 2–3. Data are presented

as mean ± SEM. *p < 0.05, **p < 0.01, ***p <

0.001, ABT-263 versus vehicle.
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(PDGF)-BB, IGFBP-5, and Serpin E1, are strongmitogens and/or

have been previously linked to fibrosis (Figure 7A). Notably, 14

out of 26 identified factors (e.g., IL-15, TNF-a, M-CSF, LIX,

chemerin, I-TAC, and CCL11) are strong chemoattractant and/

or pro-inflammatory agents (Figure 7B). Other factors, such as

I-CAM, VCAM, and osteopontin, are involved in immune cell

adhesion and migration (Figure 7C). Finally, CCL20, a known

inducer of paracrine senescence, was reverted to pre-injury

(sham) levels after ABT-263 treatment (Figure 7D), and CCL2,

another stimulator of paracrine senescence, was greatly

reduced in ABT-263-treated mice, although we could not find

a significant upregulation upon injury. Of the 26 identified factors,

11 were previously described as SASP factors, namely amphir-

egulin, PDGF-BB, IGFBP-3, Serpin E1, IL-15, TNF-a, M-CSF,

I-TAC, CCL11, ICAM-1, and CCL20 (Coppé et al., 2010).

These results provide mechanistic insights for the positive

effects of ABT-263 on inflammation, fibrosis, and myelin preser-

vation in the context of a spinal cord injury and are in line with our

previous cellular analysis. Moreover, they reveal potential key

SASP factors that contribute to the inhibitory microenvironment

for repair in mammalian spinal cord injury settings.
DISCUSSION

The concepts of cellular senescence and

their SASP have evolved remarkably dur-

ing recent years. Yet, most of the mech-

anisms underlying the complexity of

each senescent program remain un-

known. While further studies are neces-

sary to understand and reconcile the

physiological and pathological roles of

senescence, current knowledge favors

the premise that transient and controlled

induction of SCs is beneficial whereas

accumulation and persistence of SCs is

detrimental (Rhinn et al., 2019). Interest-

ingly, the role of senescence in wound
repair and organ regeneration contexts is still quite uncharted

ground.

Herein, we describe the induction of SCs as a cellular

response triggered by an injury in the spinal cord. These induced

SCs exhibit several senescence features, including the co-

expression of SA-b-gal with cell cycle inhibitors (namely p21 or

p16) and the DNA damage marker gH2AX, as well as the

absence of the proliferation marker BrdU. Our characterization

is aligned with the three-step multi-marker system that has

been recently proposed to identify SCswithmore accuracy (Gor-

goulis et al., 2019). Moreover, the significant accumulation of SA-

b-gal+ cells that we described at 15 dpi is consistent with the

increased mRNA expression of p16, p21, and p53.

Our data show that most SCs, quantified in the gray matter

located at the lesion periphery of injured spinal cords, are neu-

rons. Post-mitotic neurons exhibiting several senescence fea-

tures have already been described in the rat cortex in both rodent

and human aging brains (Chinta et al., 2015; Jurk et al., 2012;

Kang et al., 2015; Moreno-Blas et al., 2019; Walton and Ander-

sen, 2019). Moreover, a recent study has demonstrated that se-

nescent cortical neurons have their own SASP that is able to
Cell Reports 36, 109334, July 6, 2021 9



Figure 7. Targeting SCs with ABT-263 re-

duces key pro-inflammatory and pro-

fibrotic factors that are induced upon spinal

cord injury

(A–D) Cytokine and chemokine expression was

measured in spinal cord homogenates from lam-

inectomized (sham), vehicle-, and ABT-263-

treated animals at 15 dpi. From a total of 111 fac-

tors analyzed, 26 were both upregulated upon

injury (sham versus vehicle) and significantly

decreased after ABT-263 treatment (vehicle versus

ABT-263). Factors were divided in different groups

regarding their role in (A) fibrosis, (B) inflammation,

(C) cell adhesion, or (D) paracrine senescence.

Some of the identified factors, displayed in bold,

have been previously described as SASP factors.

Data are expressed as mean density and pre-

sented as mean ± SEM. *p < 0.05, **p < 0.01, ***p <

0.001, vehicle versus sham; #p < 0.05, ##p < 0.01,
###p < 0.001, ABT-263 versus vehicle.
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induce paracrine senescence in mouse embryonic fibroblasts

(Moreno-Blas et al., 2019). We do not discard the possibility

that other SC types, besides neurons, might also contribute to

the pathophysiology of spinal cord injuries.

In the regenerative zebrafish model, SCs start to accumulate

at the lesion periphery but are eventually cleared and returned

to basal levels. This transient profile of SC induction seems to

be a conserved injury response in organs with regenerative ca-

pacities, since it was also described in amputated appendages

and damaged hearts of zebrafish, salamanders, and neonatal

mice (Sarig et al., 2019; Da Silva-Álvarez et al., 2019; Yun

et al., 2015). In the scarring mouse, however, the induced

SCs persist at the lesion periphery and do not show any signs

of being efficiently reduced over time. Albeit the outcome of ze-

brafish and mouse cellular responses to a spinal cord injury is

different, the initial timing of major cellular events is similar be-

tween both models. Thus, even though we did not trace the

senescence profile beyond 60 dpi, we argue that an inefficient

clearance of SCs at early stages will contribute to the contin-

uous increase of paracrine senescence alongside a chronic in-

flammatory environment, making the clearance of SCs from the

mouse spinal cord highly improbable at later stages. This argu-

ment is in agreement with several studies in the field of senes-

cence in which the inexistence of a timely clearance of SCs

will result in the persistent propagation of chronic responses
10 Cell Reports 36, 109334, July 6, 2021
(Calcinotto et al., 2019; Rhinn et al.,

2019). How are these transient versus

persistent senescent profiles estab-

lished is not known, but it is possible

that these are associated with a specific

SASPwith different capacities to support

a cell clearance mechanism. This seems

to be the case in the salamander regen-

erative limb paradigm, where macro-

phages were shown to be an essential

part of the mechanism that eliminates

SCs (Yun et al., 2015). The functional
demonstration of the positive role of transient SCs in a regener-

ative context comes from the observation that reducing SCs

leads to a regeneration delay of amputated pectoral fins in ze-

brafish (Da Silva-Álvarez et al., 2019). These findings are in line

with what was previously reported for skin wound healing,

where transient SCswere found to be fundamental for tissue re-

modeling and repair (Demaria et al., 2014). In our hands, ABT-

263 and two recently identified senolytic agents, ouabain and

PF-573228 (Gil et al., 2018; Guerrero et al., 2019; Triana-Martı́-

nez et al., 2019), failed to target SCs in the zebrafish spinal cord

using several different doses, vehicle solvents, and administra-

tion routes. Even though there is currently no tool to efficiently

eliminate SCs in the zebrafish spinal cord, the observed tran-

sient profile suggests that a timely clearance of SCs might be

required for proper regeneration to occur. In line with this

idea, the persistent senescence profile we found in mice is

compatible with the inability of mammals to regenerate the spi-

nal cord after a lesion. Consequently, investigating the func-

tional role of induced SCs after a spinal cord injury in mice

became of paramount importance.

Senolytic drugs selectively eliminate SCs by transiently

disabling the pro-survival networks and inducing their apoptosis

(Zhu et al., 2015). One such drug is ABT-263, a specific inhibitor

of anti-apoptotic proteins BCL-2 and BCL-xL (Zhu et al., 2016),

already shown to selectively and efficiently kill SCs in vivo in
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mice (Chang et al., 2016; Demaria et al., 2014). We used ABT-

263 to reduce the number of SCs after a spinal cord T9 contusion

injury in mice, and its effects on motor, sensory, and bladder

function recovery were evaluated. We targeted the elimination

of SCs in the subacute injury phase to guarantee that we were

acting when macrophage infiltration, reactive astrogliosis, and

scar formation are taking place (Siddiqui et al., 2015) but also

to prevent their accumulation at the lesion periphery, which be-

comes statistically significant already at 15 dpi. We were able to

show that SCs were decreased in injured mice treated with ABT-

263, with targeting efficiencies similar to what was previously

described (Demaria et al., 2014). Although the numbers of SCs

are indeed reduced in all time points analyzed, they start to

slowly re-emerge after the end of ABT-263 administration. This

might be a consequence of paracrine senescence, a SASP-

mediated event where the remaining SCs can induce senes-

cence in nearby cells (Acosta et al., 2013). In fact, as a BCL-2/

BCL-xL inhibitor, ABT-263 induces apoptosis in existent SCs,

but it does not prevent the induction of new SCs. This becomes

relevant when thinking in a translational approach where the

administration time window should be carefully established for

high efficacy with low toxicity.

The treatment of spinal-cord-injured mice with the senolytic

ABT-263 significantly improved locomotor performance in

BMS and HL tests, an effect maintained until the end of the study

(i.e., 60 dpi), and also bladder function during the administration

period. Interestingly, at 30 dpi, ABT-263-treated animals showed

a normal sensitivity to a non-noxious cold stimulus, but no ef-

fects were observed upon a hot stimulus. This may indicate

that SCs and their SASP are acting through specific neural sub-

strates, namely through transient receptor potential member 8

(Trpm8) cation channels—primary molecular transducers of

cold somatosensation (Ran et al., 2016).

Importantly, the effects of ABT-263 on locomotor and sensory

recovery were corroborated by a second independent assay us-

ing the D+Q senolytic cocktail, known to exert its activity prefer-

entially via phosphatidylinositol 3-kinase (PI3K) inhibition (Zhu

et al., 2015). In addition, we could show that, similarly to ABT-

263, the D+Q cocktail also resulted in an efficient depletion of

SCs at the spinal cord lesion periphery. Taken together, these re-

sults highlight the detrimental impact of the persistent accumu-

lation of SCs on motor and sensory functions after a spinal

cord injury.

Persistent senescent fibroblasts and myogenic cells, through

their SASP, were shown to promote a pro-fibrotic response

and to limit tissue repair in fibrotic lung disease (Schafer et al.,

2017) and injured muscles (Le Roux et al., 2015), respectively.

Accordingly, we showed that the effect of ABT-263 on SCs

depletion was translated into a consistently reduced fibrotic

scar area and length. In addition, SCs depletion with ABT-263 re-

sults in a higher myelin preservation over time. While decreasing

demyelination helps preserve the function of spared axons, a

smaller scar provides a better microenvironment for the reorga-

nization of spared axons around the lesion (Courtine and Sofro-

niew, 2019). Consistent with this scenario, ABT-263 treatment

promoted an increased expression of the growth-associated

GAP43 protein. Altogether, these effects are likely underlying

the locomotor improvements observed.
The neuroinflammatory response after a spinal cord injury

worsens throughout the secondary damage phase, becomes

chronic, and is associated with neurotoxicity (Fleming et al.,

2006). Preventing the accumulation of SCs during the subacute

injury phase with the administration of ABT-263 led to a

reduction in the number of inflammatory macrophages and

concomitantly to a better functional outcome in injured mice.

Interestingly, persistent SCs are known to create a chronic in-

flammatory tissuemicroenvironment by secreting pro-inflamma-

tory cytokines such as IL-1a, IL-1b, M-CSF, or TNF-a, which are

all well-established components of the SASP (Coppé et al.,

2008, 2010). Moreover, neutralization of IL-1b and TNF-a

signaling has already been shown to improve functional recovery

after spinal cord injury (Genovese et al., 2008; Nesic et al., 2001).

Indeed, our cytokine array identified M-CSF and TNF-a, two

potent macrophage recruiters, as major factors upregulated af-

ter spinal cord injury and downregulated upon ABT-263

treatment.

The array analysis allowed us to identify crucial factors that

may contribute to the inhibitory microenvironment for spinal

cord repair and which expression is (at least partially) regulated

by SCs. Amphiregulin has been demonstrated as a driver of tis-

sue fibrosis but can also act as a pro-inflammatory agent (McKee

et al., 2015; Perugorria et al., 2008; Yamane et al., 2008; Zaiss,

2020). PDGF and IGFBP factors, such as PDGF-BB and

IGFBP-3/5, are widely recognized as strong mitogens for fibro-

blasts and are associated with fibrotic diseases (Lou et al.,

2004; Nguyen et al., 2018; Pilewski et al., 2005; Trojanowska,

2008; Ying et al., 2017). Serpin E1, also known as plasminogen

activator inhibitor-1 (PAI-1), is a known SASP factor that inhibits

fibrinolysis and contributes to excess matrix deposition under

pathological conditions (Ghosh and Vaughan, 2012). In turn, IL-

11 signaling has been linked to chronic inflammation in fibrotic

disease (Ng et al., 2020). Importantly, IGFBP-5, Serpin E1, and

IL-11 were all shown to be upregulated after spinal cord injury

(Cho et al., 2012; Hammarberg et al., 1998; Streeter et al.,

2020; Zhang and Yang, 2017). The array pinpointed M-CSF

and TNF-a, along with a plethora of other pro-inflammatory cyto-

kines/chemokines, as key secreted factors that are upregulated

by SCs upon mammalian spinal cord injury. These factors are

either reduced or totally reverted to pre-injury (sham) levels after

targeting SCs with ABT-263 during the subacute injury phase.

This inflammatory group includes factors such as LIX, IL-33, en-

doglin, lipocalin-2, and CCL6, which have all been previously

connected to spinal cord injury pathology (Glaser et al., 2004;

Li et al., 2019; McTigue et al., 1998; Pomeshchik et al., 2015; Ra-

thore et al., 2011). Thus, these factors establish a causal corre-

lation between the persistent senescence profile and both the

chronic inflammatory and fibrotic responses that result from a

spinal cord injury.

Some of the identified factors are cell adhesion molecules,

which play essential roles in the recruitment and migration of im-

mune cells to the site of the injury during inflammation. Such is

the case of ICAM-1, VCAM, P-selectin, and osteopontin, which

have also been shown to be upregulated in spinal-cord-injured

mice and/or human patients (Bao et al., 2004; Esposito et al.,

2010; Hashimoto et al., 2003; Hu et al., 2015; Jing et al., 2014;

Segal et al., 1997). In fact, ICAM-1/P-selectin-deficient mice
Cell Reports 36, 109334, July 6, 2021 11
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display improved functional recovery after injury (Farooque et al.,

1999, 2001), while osteopontin-deficient mice exhibit less

inflammation and significantly reduced area of sparedwhitemat-

ter (Hashimoto et al., 2007).

Finally, one of the identified factors, CCL20, is a major medi-

ator of paracrine senescence (Acosta et al., 2013). Curiously,

antibody blockage of CCL20 has been reported to improve

recovery after spinal cord injury (Hu et al., 2016). In addition,

paracrine senescence has been shown to mediate the delete-

rious effects of SCs on disrupting tissue homeostasis and

impairing organ regeneration (Campisi, 2005; Ferreira-Gonzalez

et al., 2018). Therefore, the determination of a mediator of para-

crine senescence and its downregulation upon targeting SCs

with ABT-263 is crucial to comprehend the contributing role of

senescence in mammalian spinal cord injury, especially how a

senescence response can, if not controlled, spread itself across

the spinal tissue. Moreover, the propagation of SASP responses

throughout the tissue may explain the damage-signaling cross-

talk between the lesion core and the lesion periphery.

It is noteworthy that the effects of ABT-263 seem to be more

pronounced at the caudal side of the lesion. These differences

in lesion responses to treatment suggest the existence of

different SASP programs between the rostral and caudal sides.

Although we did not explore such a possibility in our cytokine

array, which was performed in a homogenate of both rostral

and caudal tissue, this is something that may be worth further

investigation in the future.

Our data provide evidence for the remarkable beneficial out-

comes of targeting SCs in the context of a spinal cord injury,

namely by reducing inflammation, limiting scarring, preserving

myelin, and allowing axonal growth. This study presents compel-

ling evidence that the accumulation of SCs after mammalian

spinal cord injury is a major contributor to the inhibitory (pro-in-

flammatory and pro-fibrotic) microenvironment that compro-

mises tissue repair and functional recovery. Targeted elimination

of SCs emerges as a promising therapeutic approach to promote

functional repair of an injured spinal cord, repurposing the use of

senolytic therapies already under clinical trials for cancer and

age-related disorders (Paez-Ribes et al., 2019). Given the

extreme complexity and multifaceted mechanisms underlying

spinal cord repair, it is important to acknowledge that, much

like what happens with other therapies, a senolytic drug by itself

may not be sufficient to generate clinically meaningful functional

improvements. We do think, however, that the impact of senes-

cence in the pathophysiology of spinal cord injuries should

definitely be considered in future therapeutic strategies and

that targeting SCs shows great potential to be combined with

other existing biological and engineering approaches in a combi-

natorial therapeutic logic.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-p21 Santa Cruz Cat#sc-397; RRID: AB_632126

Mouse anti-BrdU Sigma Cat#B2531; RRID: AB_476793

Rabbit anti-gH2AX Novus Biologicals Cat#NB100-384; RRID: AB_10002815

Rabbit anti-p16 ProteIntech Cat#10883-1-AP; RRID: AB_2078303

Mouse anti-HuC/D Life Technologies Cat#A21271; RRID: AB_221448

Rabbit anti-NeuN ProteIntech Cat#26975-1-AP; RRID: AB_2880708

Rat anti-GFAP ThermoFisher Scientific Cat#13-0300; RRID: AB_2532994

Rabbit anti-PDGFRb Abcam Cat#ab32570; RRID: AB_777165

Rat anti-F4/80 Abcam Cat#ab6640; RRID: AB_1140040

Rabbit anti-GAP43 Novus Biologicals Cat#NB300-143; RRID: AB_10001196

Mouse anti-GADPH ThermoFisher Scientific Cat#AM4300; RRID: AB_2536381

Goat anti-rabbit Alexa Fluor 488 ThermoFisher Scientific Cat#A11008; RRID: AB_143165

Goat anti-rabbit Alexa Fluor 568 ThermoFisher Scientific Cat#A11011; RRID: AB_143157

Goat anti-rat Alexa Fluor 488 ThermoFisher Scientific Cat#A11006; RRID: AB_141373

Goat anti-mouse Alexa Fluor 594 ThermoFisher Scientific Cat#A11020; RRID: AB_141974

Chemicals, peptides, and recombinant proteins

ABT-263 Selleckchem Cat#S1001; CAS: 923564-51-6

Dasatinib Sigma Cat#SML2589; CAS: 302962-49-8

Quercetin Sigma Cat#1592409; CAS: 6151-25-3

Corn oil Sigma Cat#C8267; CAS: 8001-30-7

PEG400 Sigma Cat#81172; CAS: 25322-68-3

Tricaine Sigma Cat#MS222; CAS: 886-86-2

Gelatin Sigma Cat#G6144; CAS: 9000-70-8

DAPI Sigma Cat#D9564

FluoroMyelinTM Green ThermoFisher Scientific Cat#F34651

Critical commercial assays

SA-b-gal assay kit Cell Signaling Cat#9860

Proteome Profiler Mouse XL Cytokine Array R&D Systems Cat#ARY028

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River Laboratory RRID:IMSR_JAX:000664

Zebrafish ZIRC Cat#ZL1; ZFIN ID: ZDB-LAB-991005-53

Oligonucleotides

Primers for qPCR, see Table S2 This paper N/A

Software and algorithms

Fiji Herranz and https://imagej.nih.gov/ij/

GraphPad Prism GraphPad Software V7.00

Sigmaplot Systat Software Inc V14.0

ZEN 2 Zeiss Blue edition

Adobe Illustrator Adobe https://www.adobe.com/

Image Studio Lite LI-COR V5.2

e1 Cell Reports 36, 109334, July 6, 2021

https://imagej.nih.gov/ij/
https://www.adobe.com/


Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Leonor

Saúde (msaude@medicina.ulisboa.pt).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This study did not generate any datasets/code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
All handling, surgical and post-operative care procedures were approved by Instituto de Medicina Molecular Internal Committee

(ORBEA) and the Portuguese Animal Ethics Committee (DGAV), in accordance with the European Community guidelines (Directive

2010/63/EU) and the Portuguese law on animal care (DL 113/2013). All efforts weremade tominimize the number of animals used and

to decrease suffering of the animals used in the study.

Zebrafish
AB strain zebrafish (Danio rerio) were obtained from Zebrafish International Resource Center (ZIRC). Animals were bred, grown and

maintained on a 14-hour/10-hour light/dark cycle at 28�C following the standard guidelines for fish care and maintenance protocols.

Adult (3-6 months old) male and female fish were used in the experiments.

Mouse
Adult (8-9 weeks old) female C57BL/6Jmice (Musmusculus) were purchased fromCharles River Laboratory. Animals were housed in

the Instituto deMedicina Molecular animal facility under conventional conditions on a 12-hour light-dark cycle with ad libitum access

to food and water. 10-11 weeks old mice were used in the experiments.

Study design
Rationale and experimental design

This study was designed to investigate the role of senescence in a spinal cord injury context. Standard senescence biomarkers (SA-

b-gal, p21CIP1, p16INK4a and gH2AX) were used to characterize SCs induced after injury. We used ABT-263, a drug with powerful

senolytic activity, to pharmacologically deplete SCs during the sub-acute phase of the injury. BMS and HL tests were used to study

locomotor recovery, while the ITP assessed sensory function. At the cellular level, we evaluated the impact of targeting SCs onmyelin

and axonal preservation, fibrosis and inflammation. A cytokine array was performed in order to identify potential factors secreted by

SCs that may contribute to inhibitory microenvironment for repair after spinal cord injury.

Randomization and blinding

After the injury, animals were randomly assigned to each experimental group and end-point. Experimenters were blinded for the

whole duration of the study and data analysis.

Sample size and inclusion criteria

Our inclusion criteria depended on our biomechanical and behavioral injury parameters (displacement: 550-750 mm; BMS score %

0.5 averaged across both hindlimbs at 1 day post-injury, dpi). According to these criteria, a total of 19 and 18mice were used in study

1 for the ABT-263-treated and Vehicle-treated experimental groups, respectively. In study 2, each experimental group (Sham, Vehicle

and ABT-263) was composed of 9 mice.

Selection of endpoints

The selection of endpoints was based on previous studies and pilot experiments in which we characterized both models. We took in

account the different phases of the injury progression (subacute and chronic) in amouse contusionmodel and thewhole regeneration

period (60 dpi) of the zebrafish.

METHOD DETAILS

Spinal cord injury (SCI) and post-operative care
Zebrafish

Animals were anaesthetized in 0.016% tricaine (Sigma, MS222), and a spinal cord crush injury was performed according to a pre-

viously described method (Fang et al., 2012). Upon cessation of opercular respiratory movements, the fish were transferred into

a fixed thin filter paper (3 cm x 2 cm) placed on crushed ice and positioned on their side with their head pointing left, under a
Cell Reports 36, 109334, July 6, 2021 e2
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stereoscope. With a dissecting knife, 4-5 squamae were removed and an incision was made at a distance 4 mm caudal to the brain-

stem/spinal cord junction. The skin andmuscle were cut with a spring scissor until the spinal cord was exposed. The spinal cord was

then crushed using Dumont #55 forceps (Fine Science Tools, 11255-20). Special attention was given not to damage the ventral verte-

brae under the spinal cord, whichmay compromise the recovery process. Finally, thewoundwas sealedwith tissue adhesive surgical

glue (3M VetbondTM, 1469SB). Zebrafish were allowed to recover at 28�C in individual tanks until different experimental time-points

(3, 7, 15, 30 and 60 dpi), upon which they were sacrificed and the spinal cords (5-6 mmwidth) dissected. In control fish, a Sham injury

was performed by making an incision at the side of the animal but leaving the spinal cord intact before sealing the wound.

Mice

Before being assigned to SCI, mice went through a two weeks-period of handling and acclimatization, during which body weight was

assessed to ensure ideal surgical weight (18-20 g). Animals were anesthetized using a cocktail of ketamine (120 mg/kg) and xylazine

(16 mg/kg) administered by intraperitoneal injection (IPi). For spinal contusion injuries, a laminectomy of the ninth thoracic vertebra

(T9), identified based on anatomical landmarks, was first performed (Harrison et al., 2013) followed by a moderate-to-severe (force:

75 Kdyne; displacement: 550-750 mm) contusion using the Infinite Horizon Impactor (Precision Systems and Instrumentation, LLC.)

(Scheff et al., 2003). Themean applied force and tissue displacement for each experimental group are shown in Figure S6. Therewere

no differences in injury parameters between experimental groups. After SCI, the muscle and skin were closed with 4.0 polyglycolic

absorbable sutures (Safil, G1048213). In control uninjured mice (Sham), the wound was closed and sutured after the T9 laminectomy

and the spinal cord was not touched. Animals were injected with saline (0.5 ml) subcutaneously, then placed into warmed cages

(35�C) until they recovered from anesthesia and for the following recovery period (3 days). To prevent dehydration mice were sup-

plemented daily with saline (0.5 ml, subcutaneously) for the first 5 dpi. Bladders were manually voided twice daily for the duration

of experiments. Body weight was monitored weekly.

Drug treatment
ABT-263 (Selleckchem, S1001, 50mg/kg/day) or Vehicle (Corn oil, Sigma, C8267) were administered by oral gavage, as described pre-

viously (Chang et al., 2016). In our experimental model, oral gavages were performed for 10 consecutive days starting at 5 dpi until

14 dpi. Animalsweremildly sedatedwith isoflurane to facilitate handling and gavage procedure,whichwas conducted using disposable

flexing feeding needles (Cadence Science, #9928B). After SCI, mice were randomly assigned to each treatment cohort for each

endpoint group. The impact of targeting SCs with ABT-263 was evaluated in two separate studies. In study 1, which comprised the

functional analysis at the behavioral and cellular level, animals were distributed between 3 endpoint groups: 15 dpi (n = 10), 30 dpi

(n = 14) and 60 dpi (n = 13). Study 2 aimed at assessing the secretory profile using a cytokine array as well as the protein/mRNA expres-

sionof senescencemarkers (namely p16/cdkn2a) after ABT-263 treatment. This studywas composed of a single endpoint group: 15dpi

(n = 18).

Dasatinib (Sigma, SML2589, 5 mg/kg/day) + Quercetin (Sigma, 1592409, 50 mg/kg/day) or Vehicle (10% PEG400, Sigma, 81172)

were administered by oral gavage, as described previously (Zhu et al., 2015). In our experimental model, oral gavages were per-

formed for 10 consecutive days starting at 5 dpi until 14 dpi. Animals were mildly sedated with isoflurane to facilitate handling

and gavage procedure, which was conducted using disposable flexing feeding needles (Cadence Science, #9928B). After SCI,

mice were randomly assigned to each treatment cohort for each endpoint group, 15 dpi (n = 7) and 30 dpi (n = 15).

Within the same cage animals received different treatments to exclude specific environmental cage input. Experimenters were

blinded for the whole duration of the study by coding the treatment.

Behavior assessment
Basso mouse scale (BMS)

Two weeks before the beginning of the study mice were habituated to the open-field arena to decrease anxiety and distress. On the

day of the behavioral test two investigators, blind to treatment, assessed mouse hind limb function and locomotion using the BMS

(Basso et al., 2006). Locomotor behavior (BMS scores and subscores) was assessed at 0 (baseline), 1, 3, 5, 7, 10, 12, 15, 21, 30, 45

and 60 dpi.

Horizontal ladder (HL)

On the previous week before SCI, mice were trained to walk along a HL as previously described (Cummings et al., 2007). This

task requires mice to walk across a HL that consists of a 60 cm length x 8 cm width transparent corridor with rungs spaced 1 cm

apart. A mirror was placed underneath the ladder and mice were video-recorded from the side view to be able to see paw placement

on the rung in themirror. Home cage bedding and/or treat-pellets were placed at the end to stimulatemotivation. Ideally, eachmouse

was able to perform at least three successful trials along the ladder. The three best attempts were scored. A paw falling below the

rungs of the ladder during a step in the forward direction was counted as one mistake. The total number of mistakes was averaged

across the three trials per mouse and quantified as mistakes per centimeter. The total number of positive and negative events for

each rung in each attempt were also quantified and are divided as singular positive events (plantar step, toe step and skip) or singular

negative events (slip, miss and drag). Baseline data were assessed 1 day before SCI. Mice were tested on the HL at 15, 30 and 60 dpi.

Incremental thermal plate (ITP)

Each mouse was placed into the observation chamber of the IITC’s Incremental Hot Cold Plate (IITC Inc. Life Science) with a starting

temperature of 37�C, as previously described (Yalcin et al., 2009). The plate was then either heated up to 49�C or cooled down to 0�C
e3 Cell Reports 36, 109334, July 6, 2021
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at a rate of 6�C per minute until the animal showed nocifensive behavior involving either hindpaw. The typical response was hindpaw

licking, shaking and lifting of the paw, jumping and extensor spasm. The plate temperature evoking any of these nocifensive reactions

confined to any hindpaw was regarded as the noxious heat/cold threshold of the animal. Following the recording of the threshold

temperature, the animal was immediately removed from the plate. The threshold measurement was repeated after 30 minutes

and the mean of the two thresholds was considered as the control noxious heat/cold threshold of the animal. Animals were tested

in the ITP at 30 and 60 dpi.

Bladder function
Bladder function was grossly evaluated by attributing an averaged bladder score (from 0 to 3) to the two daily urine collections, de-

pending on the amount of retained urine (0 – empty bladder; 1 – small bladder; 2 – medium bladder; 3 – large/full bladder). Bladder

voiding times, as well as voiding-responsible experimenters, were maintained consistent throughout the experiment.

Tissue processing
Zebrafish

The vertebral column of adult zebrafish was dissected and fixed in 4% paraformaldehyde (PFA) at 4�C overnight. After fixation, the

spinal cord was isolated from the vertebral column. Samples were washed 3 times in phosphate-buffered saline (PBS) during the day

and incubated overnight with SA-b-gal staining solution (see details below). Following the SA-b-gal staining protocol, samples were

cryoprotected in 30%sucrose/0.12Mphosphate buffer (PB) for aminimumof 72 hours at 4�Cor until the tissue sinks to the bottom of

the vial, followed by another embedding in 7.5% gelatin (Sigma, G6144)/15% sucrose/0.12MPB and subsequently frozen. The sam-

ples were cryosectioned in 12 mm-thick longitudinal slices using a Cryostat Leica CM 3050S and either processed for immunohis-

tochemistry or counterstained with eosin for SA-b-gal quantifications.

Mice

Mice were anesthetized with ketamine/xylazine mix (120 mg/kg + 16 mg/kg, IPi) and then transcardially perfused with 0.9% sodium

chloride followed by 4% PFA. Post-mortem anatomical assessment of the T9 was confirmed to ensure correct thoracic contusion.

Spinal cords were removed, post-fixed in 4% PFA for 2 hours and then incubated overnight with SA-b-gal staining solution (see

details below). Samples (1 cm in length) were then submitted to the same cryoprotection/embedding and cryosection/staining

procedures as for zebrafish spinal cords. Tissue sections were cut in series either transversally (10 mm thick, 10 slides per series)

or longitudinally (10 mm thick, 6 slides per series). For each time-point, samples were distributed as equally as possible in cuts along

the coronal (rostral-caudal) axis and horizontal (dorsal-ventral) axis. Slides were stored at�20�C until needed. Every block, as well as

every slide, was coded until the end of each analysis.

SA-b-gal staining
SA-b-gal activity was determined in isolated spinal cords using the SA-b-gal kit (Cell Signaling, #9860) according to manufacturer’s

instructions, with minor adaptations. Spinal cords were fixed overnight in 4% PFA, washed three times in PBS and stained overnight

at 37�C using the SA-b-gal staining solution (pH 5.9-6.1, prepared according to kit’s instructions). The samples were then washed in

PBS, fixed in 4% PFA for 4 hours, washed 3 3 5 minutes in PBS and embedded in sucrose as described above.

Immunohistochemistry
To perform immunostaining in sections, the gelatin was removed from the cryosections using PBS heated to 37�C (4 3 5-minute

washes). After incubation with blocking solution for 2 hours at room temperature, the sections were incubated overnight with primary

antibody solution at 4�C. Sections were then washed in PBS/0.1% Triton X-100 and incubated with the secondary antibody (1:500)

and 1 mg/ml DAPI (Sigma, D9564) for 2 hours at room temperature. Details on the blocking solutions, primary and secondary anti-

bodies used are described in Table S1 and Key resources table. After incubation with the secondary antibodies, the sections were

washed in PBS and mounted in Mowiol mounting medium.

For 5-Bromo-20-deoxyuridine (BrdU) incorporation, the day before collection of the spinal cord, zebrafish were injected intraper-

itoneally with 50 mL of 2.5 mg/ml BrdU solution (in 110mMNaCl pH 7.2) using an insulin syringe. To detect BrdU in cryosections, prior

to the antibody staining procedure, the DNA was denatured for 30 minutes at 37�C in pre-heated 2 N HCl followed by three 5-minute

washes in 0.1 M Tris pH 8.5 and two washes in PBS.

Imaging
The colorimetric images of SA-b-gal-stained sections were acquired using a NanoZoomer-SQ digital slide scanner (Hamamatsu) or a

Leica DM2500 brightfield microscope with HC PL FLUOTAR 20x / 0.5 NA Dry objective. Immunostained sections were imaged using

a motorized Zeiss Axio Observer widefield fluorescence microscope equipped with an Axiocam 506 mono CCD camera or a Zeiss

Cell Observer SD confocal microscope equipped with an Evolve 512 EMCCD camera (Plan-Apochromat 20x / 0.80 NA Dry objec-

tives). Each image is a maximum intensity projection of a z stack acquired from the 10/12 mmcryosection. F4/80- andGAP43-stained

immunosections were imaged using a Zeiss Axio Scan.Z1. The processing of acquired images was performed using Zeiss ZEN 2

(blue edition) and the image analysis software Fiji. Adobe Illustrator was used for assembly of figures.
Cell Reports 36, 109334, July 6, 2021 e4
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Quantification of SA-b-gal+ cells
To characterize the senescence profile in both models, SA-b-gal+ cells were manually quantified (using a Cell Counter plugin in Fiji)

and averaged across 4 (zebrafish) or 8 (mouse) longitudinal sections spanning the ventral horn and imaged at the lesion periphery

(from 0.5 to 2.5 mm laterally to the lesion) at 3, 7, 15, 30 and 60 dpi. In Sham-injured animals, sections were imaged laterally to

the injury segment.

Senolytic effects after SCI were evaluated by manually quantifying and averaging the number of SA-b-gal+ cells in 10 transversal

sections at the lesion periphery (from 0.5 to 2.5mm rostrally or caudally to the lesion) at 15, 30 and 60 dpi. Two distinct quantifications

were performed: one in the total sectional gray matter and other only in the ventral horn.

SA-b-gal+ cells were quantified in the gray matter but not in the white matter and normalized to the total area covered (cells/mm2).

White matter sparing
One set of sections spaced 0.1 mm apart and spanning the entire block was stained with FluoroMyelinTM Green (ThermoFisher Sci-

entific, F34651) for 1 hour. The percentage of cross-sectional area (% CSA) with spared myelin was calculated by manually

measuring the area of stained myelin in Fiji and normalizing it to the total cross-sectional area in each section (every 0.1 mm) along

2 mm rostrally and caudally from the lesion epicenter, which was identified as the section with the smallest % CSA.

Axonal preservation
GAP43+ axons were quantified at specific distances from the lesion epicenter, as previously described (Almutiri et al., 2018; Hata

et al., 2006). At 30 and 60 dpi, GAP43+ fibers were counted in the white matter of the ventral horn region using a custom-mademacro

in Fiji that, after manually establishing a threshold value and defining the lesion epicenter, determined the number of positive fibers

every 1 mm from 4mm rostral (above) to 4 mm caudal (below) from the lesion epicenter and normalized it to the tissue length covered

in eachmeasurement. Quantifications were averaged across 3 longitudinal spinal sections per biological sample and axon count was

calculated as number of GAP43+ fibers per millimeter (fibers/mm).

Fibrotic scar area and length
A distinct set of sections was stained with anti-PDGFRb and anti-GFAP in order to identify the fibrotic scar area and border. The per-

centage of fibrotic scar area at lesion epicenter was calculated bymanually outlining the PDGFRb+ area and normalizing it to the total

cross-sectional area. Measurements were performed using Fiji tools. Using the same set of sections, the rostral and caudal extents of

PDGFRb+ fibrosis were determined for each lesion, and total lesion length was calculated bymultiplying the number of sections con-

taining fibrotic tissue by the distance between each section (0.1 mm).

Inflammation
Spinal sections 0.1 mm apart extending from 1 mm rostral to 1 mm caudal to the lesion epicenter were stained for the pan macro-

phage marker F4/80. Macrophages form a network within the central lesion core and are difficult to be individually distinguished,

(Brennan and Popovich, 2018). Therefore, the measurements of F4/80+ cells were expressed as a percentage of the total cross-

sectional area. In each section. the area of F4/80+ staining was measured using a custom-made macro in Fiji that, after manually

setting a threshold value, calculated the F4/80+ area and normalized it to the total cross-sectional area. Quantifications were per-

formed at the lesion epicenter, 0.6 mm above (rostral) the epicenter and 0.6 mm below (caudal) the epicenter.

Quantitative real-time PCR
Total RNA was extracted from zebrafish and mouse spinal cord samples (1 cm of tissue spanning the lesion site) using TRIzol (Invi-

trogen)/ chloroform and purified using the RNA Clean & Concentrator-5 kit (Zymo Research), according to manufacturer’s instruc-

tions. RNA concentration was determined by NanoDrop (Thermo Scientific). cDNA synthesis was performed using the iScript

Reverse Transcription Supermix for RT-qPCR (Bio-Rad), according to manufacturer’s instructions. qPCR was performed using

7500 Fast Real-Time PCR System (Applied Biosystems) and Power SYBR Green PCR Master Mix (Applied Biosystems). For each

cDNA sample, three technical replicates were included. Relative mRNA expression was normalized to glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) (zebrafish) or cypA (mouse) mRNA expression using the DDCt method. Primers used for qPCR are listed in

Table S2.

Western blot
Protein samples were prepared by homogenizing mouse spinal cord samples (1 cm of tissue spanning the lesion site) in lysis buffer

(PBS + 1% Triton X-100) containing protease and phosphatase inhibitors. Protein concentrations were determined by BCA Protein

Assay (Pierce). For western blot analysis, 50 mg of protein content of each sample was loaded and separated by SDS-PAGE gel

(4 –15%;Bio-Rad). After the transfer, the blots were incubated overnight at 4�Cwith a polyclonal antibody against p16 (1:1000, rabbit;

ProteIntech), followed by incubation with HRP-conjugated secondary antibody. GAPDHmonoclonal antibody (1:1000, mouse; Ther-

moFisher Scientific/AM4300; RRID: AB_2536381) was used as loading control. Blots were developed in ECL solution and exposed

onto Amersham 680 (GE Healthcare) for 5 minutes. The intensity of the specific bands was quantified using Image Studio Lite

software.
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Cytokine array
Cytokine and chemokine expression was measured using the Proteome Profiler Mouse XL Cytokine Array (ARY028; R&D Systems,

Minneapolis, MN, USA) in spinal cord homogenates, prepared in the samemanner as for western blot analysis, and used according to

the manufacturer’s instructions. In brief, nitrocellulose membranes were blocked for 1 hour; then, spinal cord homogenates contain-

ing 200 mg of protein content was added and incubated overnight at 4�C. The following day, the membranes were washed and a

detection antibody cocktail (R&D Systems) was added. The membranes were incubated with the detection antibody for 1 hour,

washed and incubated with streptavidin-HRP for 30 minutes. Membranes were washed and spots detection was visualized by addi-

tion of enhanced chemiluminescence reagent. The membranes were imaged on an Amersham 680 (GE Healthcare) and dots density

was quantified using Image Studio Lite software.

QUANTIFICATION AND STATISTICAL ANALYSIS

GraphPad Prism 7 was used for data visualization and SigmaPlot 14 for statistical analysis. The senescence profile after SCI was

analyzed using a one-way ANOVA followed by a Bonferroni’s post hoc test (zebrafish) or a non-parametric Kruskal-Wallis one-

way ANOVA test (mouse). BMS and Bladder Score data were analyzed using a two-way repeated-measures ANOVA, followed by

a Bonferroni’s post hoc test. HL, ITP, white matter sparing, axonal preservation, fibrotic area and inflammation data were

analyzed using a normal two-way ANOVA, followed by a Bonferroni’s post hoc test. qPCR data were analyzed using an unpaired

t test, while data from western blotting and the cytokine array were analyzed using a one-way ANOVA followed by a Bonferroni’s

post hoc test. All data were expressed as mean ± SEM, with statistical significance determined at p-values < 0.05. Details on statis-

tical parameters, including sample numbers and precision measures (e.g., mean and p-values) are described in the figure legends or

in the main text.
Cell Reports 36, 109334, July 6, 2021 e6


	Targeting senescent cells improves functional recovery after spinal cord injury
	Introduction
	Results
	Zebrafish and mice exhibit distinct senescence profiles after spinal cord injury
	SCs in the zebrafish and mouse spinal cord are mostly neurons
	Targeting SCs with senolytic drugs improves motor, sensory, and bladder functions in a mouse spinal cord contusion injury model
	The senolytic ABT-263 promotes myelin preservation after spinal cord injury
	Administration of the senolytic ABT-263 reduces the fibrotic scar
	Macrophage numbers at the injury site are reduced following ABT-263 treatment
	Targeting SCs downregulates key pro-fibrotic and pro-inflammatory secreted factors induced upon spinal cord injury

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Ethics statement
	Zebrafish
	Mouse
	Study design
	Rationale and experimental design
	Randomization and blinding
	Sample size and inclusion criteria
	Selection of endpoints


	Method details
	Spinal cord injury (SCI) and post-operative care
	Zebrafish
	Mice

	Drug treatment
	Behavior assessment
	Basso mouse scale (BMS)
	Horizontal ladder (HL)
	Incremental thermal plate (ITP)

	Bladder function
	Tissue processing
	Zebrafish
	Mice

	SA-β-gal staining
	Immunohistochemistry
	Imaging
	Quantification of SA-β-gal+ cells
	White matter sparing
	Axonal preservation
	Fibrotic scar area and length
	Inflammation
	Quantitative real-time PCR
	Western blot
	Cytokine array

	Quantification and statistical analysis



