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Resumo

Para a boa prática e gestão cĺınica é fundamental o desenvolvimento de modelos para a tomada

de decisão médica. A admissão de doentes cŕıticos nas Unidades de Cuidados Intensivos (UCIs)

constitui um bom exemplo. Estes serviços têm como missão a prestação de cuidados de saúde a

pacientes em situação cŕıtica, o que constitui um desafio à gestão hospitalar tendo em conta os

pesados orçamentos que são necessários para a manutenção da qualidade de resposta. Por isso,

no dia a dia das UCIs, terão que ser tomadas decisões com base na eficácia do tratamento versus

o seu custo. Para auxiliar essas decisões, utilizam-se métricas, normalmente obtidas a partir de

modelos de regressão, sendo os mais utilizados o modelo linear generalizado (GLM), e o modelo

aditivo generalizado (GAM). Estes são geralmente orientados para a quantificação do risco de

mortalidade e caracterizam-se por um número reduzido de variáveis, a partir das quais se extrai

uma pontuação que reflete o estado da gravidade do doente além de uma estimativa de mortali-

dade intra-hospitalar. De entre as componentes que se podem trabalhar no sentido de melhorar a

qualidade dos modelos destacamos a função de ligação. Trabalhos recentes usando modelos com

funções de ligação paramétricas flex́ıveis, nomeadamente com funções de ligação pertencentes à

famı́lia de funções assimétricas de Aranda-Ordaz, revelaram uma melhoria no seu desempenho.

Por outro lado, estudos que envolvam funções de ligação pertencentes à famı́lia de funções Czado

são escassos. Neste último caso, a função depende de três parâmetros proporcionando maior

flexibilidade do que a função de ligação Aranda. Assim, neste estudo pretende-se efetuar uma

análise comparativa do desempenho dos modelos acima referidos (GLM, GAM), utilizando as

funções de ligação Aranda e Czado, tendo como baseline a função de ligação Loǵıstica.

O tratamento estat́ıstico de dados cĺınicos apresenta uma grande importância uma vez

que, ao retirar conclusões da análise estat́ıstica, estas irão ser aplicadas em situações reais

do quotidiano e influenciar diretamente o tratamento de doentes admitidos no hospital. Esta

análise apresenta, assim, uma influência muito direta e determinante na tomada de decisões e

deverá ser encarada com grande seriedade. A manutenção adequeada de tratamentos e respostas

adequadas para doenças depende, em muitos casos, de um tratamento estat́ıstico coerente e com

resultados de fácil interpretabilidade que possam facilmente ser passados à comunidade cient́ıfica.

Os resultados estat́ısticos obtidos, influenciam assim, não só o tratamento direto de pacientes

como, a eficiente gestão hospitalar e de verbas.

Os modelos lineares generalizados, são já bastantes comuns na análise de dados cĺınicos,

e apresentam uma grande vantagem pela sua simplicidade de utilização e fácil interpretabili-

dade. No entanto, o facto de assumirem uma relação entre a combinação linear das variáveis

explicativas e a variável de resposta pode apresentar um problema consoante os dados a serem
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analisados. Caso a suposição acima referida esteja correta, a sua utilização não apresenta um

problema, caso contrário, existe a necessidade de aplicar outro tipo de modelos para contornar

esta suposição.

Os modelos aditivos generalizados encontram-se como uma boa alternativa para a limitação

apresentada pelos modelos lineares generalizados, uma vez que não assumem a relação entre a

combinação linear das variáveis independentes e a variável resposta. Para o efeito, esta classe

de modelos utiliza funções suavizadores que permitem uma maior flexibilidade na relação entre

variáveis. Apresentam ainda a vantagem de muita da interpretabilidade dos modelos lineares

generalizados ser aplicável a estes modelos, facilitando assim a sua utilização num contexto real

médico com consequências diretas na vida dos ı́ndividuos.

As funções de ligação utilizadas no contexto deste projecto, permitem uma maior flexi-

bilidade relativamente às funções de ligação utilizadas comumente. O principal objetivo é tentar

melhorar a adequabilidade da função de ligação aos dados utilizados, esperando assim obter um

melhor resultado. Para isso duas famı́lias de funções foram utilizadas, Aranda-Ordaz e Czado.

A famı́lia de funções assimétricas de Aranda-Ordaz engloba as funções loǵıstica e log log,

como casos especiais, e podem variar através de um único parâmetro, permitindo assim ter uma

maior flexibilidade na função de ligação, apresentado já uma melhoria relativamente a utilizar

somente, como é realizado frequentemente, a função de ligação loǵıstica.

A famı́lia de funções Czado, engloba igualmente a função loǵıstica, podendo, no entanto,

ser adaptável através de três parâmetros independentes, permitindo uma grande flexibilidade e

representado uma inovação em termos de funções de ligação, especialmente para o ramo médico.

Foram elaborados modelos diferentes utilizando a combinação de modelos lineares general-

izados e modelos aditivos generalizados com as duas funções de ligação, Aranda-Ordaz e Czado.

Os parâmetros de cada combinação de modelos foram variados de forma a obter os valores para

cada parâmetro ideais dentro do problema apresentado, tendo-se, seguidamente, comparado os

diferentes modelos obtidos de forma a poder selecionar qual o mais adequado aos dados. Para a

comparação dos modelos foram utilizadas as medidas de qualidade AUC e o Brier score. Ambas

as medidadas de qualidade foram utilizadas para comparar todos os modelos. Para garantir que

a diferença ocorrida entre as AUCs de modelo para modelo era estatisticamente significativa foi

utilizado o teste de DeLong para comparação de AUCs. Este teste permitiu perceber se o au-

mento do valor das AUCs de modelo para modelo, significava uma melhoria efetiva nos modelos,

ou se a diferença nos valores não correspondia a uma melhoria estatisticamente significativa.

Foram elaborados gráficos a representar a função de ligação de base, a loǵıstica, e as funções de

ligação ótimas para cada um dos modelos, de forma a poder comparar visualmente as diferenças

existentes enrte estas.

Nenhuma melhoria foi observada através da utilização dos modelos apresentados para

a situação aplicada e para os dados utilizados. No entanto, o estudo utilizando funções de

ligação que apresentam maior flexibilidade, e por isso, a obtenção de resultados mais precisos

no contexto do problema, é sempre benéfica. O trabalho encontra-se desenvolvido e poderá ser



aplicado futuramente, noutro contexto, podendo, potencialmente, obter melhores resultados.

Uma sugestão pricipal será de utilizar estas metodologias no contexto de outros problemas e

outros dados na esperança de obtenção de resultados mais significativos e mais pertinentes para

a solução do problema.

Este trabalho permitiu verificar que a utilização de funções de ligação mais comuns pode

encontrar-se correta e não comprometer por isso os resultados, mas demonstrou igualmente como

garantir que a escolha da função de ligação se encontra correta. A escolha de qual a função

de ligação a ser utilizada deve passar sempre por um estudo mais aprofundado e baseado em

evidência. Este trabalho, vem assim, apresentar também um método mais sistemático, eficiente

e rigoroso na escolha da função de ligação adequada. Ao variar entre diferentes distribuições que

apresentam um ou três parâmetros, permite de forma eficiente, simples e rápida garantir que a

escolha da função de ligação é de facto a mais apropriada.

A escolha entre modelos lineares generalizados e modelos aditivos generalizados permite

também a obtenção de resultados mais robustos, uma vez que não existe o pressuposto de

linearidade entre a variável resposta e as varáveis independentes. Assim, a escolha do modelo é

também feita de forma criteriosa e tendo em conta o problema em questão, de forma a obter os

melhores resultados posśıveis no contexto do problema. Este trabalho apresenta um avanço na

forma como a estat́ıstica e a medicina se relacionam, na medida em que pretende fornecer, através

de um trabalho estat́ıstico coerente, os melhores resultados posśıveis e e de fácil compreensão

pasśıveis de serem aplicados em contexto médico.

Palavras Chave: GLM, GAM, Aranda-Ordaz, Czado.
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Abstract

For a good clinical practice and management to be attained, statistical analysis can perform

a major role. Statistical models can greatly aid in medical decision making, as for example

in the admission of critically ill patients to the Intensive Care Units (ICUs). These services

have the mission of providing health care to patients in critical situations, which constitutes a

challenge to hospital management, considering the heavy budgets that are necessary to maintain

the quality of response. Therefore, decisions are made daily bearing in mind the effectiveness

of the treatment versus its cost. In order to help the decision-making process metrics can

be obtained, usually via Generalized Linear Models (GLMs) and Generalized Additive Models

(GAMs). These are generally oriented towards the quantification of the risk of mortality and

are characterized by a small number of variables, from which a score is extracted that reflects

the patient’s state of severity in addition to an in-hospital mortality estimate. Among the

components of GLMs and GAMs which can be focused on in order to improve the quality of the

models, the link function is highlighted. Recent work using models with flexible parametric link

functions, namely with link functions belonging to the family of asymmetric functions of Aranda-

Ordaz, showed an improvement in their performance. On the other hand, studies involving link

functions belonging to the family of Czado functions are scarce. Using a Czado link function

provides a greater flexibility, by it depending on three parameters, rather than the Aranda-Ordaz

link function, which merely depends on one. Thus, a comparative analysis of the performance

of both models referred (GLM, GAM), using the Aranda-Ordaz and Czado link functions, and

considering the Logistic link function as a baseline was the primary line of work. The results

presented themselves as inconclusive regarding the greater performance of either of the link

functions, which can be related to the data used and not necessarily the actual performance of

the models and link functions. Further studies should be carried using different data sets in

order to truly access the performance of the models using both Czado and Aranda-Ordaz link

functions.

Keywords: GLM, GAM, Aranda-Ordaz, Czado.
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Chapter 1

Introduction

The first chapter of this work, aims to make an introduction both to the importance of

developing it and the context in which is created. The problem at question is discussed during the

chapter, making reference to already implemented solutions as well as presenting the alternative

solution here proposed, the core of the project.

1.1 Clinical Data

Clinical data is often collected with the intent of conducting a study to obtain a better

knowledge of a certain disease, group of patients or a diagnostic test. As its analysis is a primary

step in decision making, a correct statistical analysis is of crucial importance [Geraldes, 2016].

Both planing and delivery of services depend greatly on data from clinical resources.

Evidence-based practice, at the efficiency seen nowadays, is only possible through access to

extensive research data, collated and presented in such a manner it can be easily understood by

a clinician in order to make a diagnosis or in other decision making situations. It is only logical to

conclude, the higher the quality of the data collected and the statistical analysis performed, the

better will be the patients outcomes. The greater quality in decision-making implies a reduction

in uncertainty and leads to more timely and accurate decision outcomes [Kerr et al., 2007].

In order to perform an analysis with useful, palpable results, data is collected based on

two types of studies. One of which is called a Prognostic study, being longitudinal due to the

continuous observation of a group of patients with the aim to observe a desired outcome. This

type of study can be divided in two: a prospective design, where the outcome is awaited for in

the future, and a retrospective design, where patients are followed continuously back in time,

mainly through hospital records. The other type, the Diagnostic study, is often cross-sectional,

and is characterized by having the study group defined by the presence of a symptom or the

exposure to a certain factor, without the precise knowledge of the disease presence or not.
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CHAPTER 1. INTRODUCTION

1.2 State of the Art

As stressed previously, statistical models take a major role in aiding clinicians making more

accurate predictions based on data. A prognostic model can then be defined as a statistical

tool that predicts a clinical outcome based on at least two points of patient data, being the

patient information more often used rather than information regarding the disease or condition

itself. Prognostic models can be divided into two categories: prognostic models at the patient

population level, where the objective is to find a trend or discrepancy in groups of patients for

a specific criterion, and prognostic models at the individual patient level [Vogenberg, 2009].

In longitudinal studies, referred to in the previous section, such as the one that will be

presented in this work, the interest lies in the association between longitudinal response process

and a binary outcome, and to predict a binary event in case of an existing association. The

aim of modelling the longitudinal and binary data is to provide an estimated probability of the

event of interest [Li et al.. 2015].

Both generalized linear models (GLMs) and generalized additive models (GAMs) have

been widely used to elaborate prognostics models. GLMs are built on the basis of an existing

linear relationship between a link function of the expected response variable and the explanatory

variables. GAMs represent a step further, being an extension of GLMs by replacing the explana-

tory variables with smooth functions, which are often used to deal with nonlinear relationships

between the response variable and explanatory variables [Yu et al., 2013]. These models are

commonly used to quantify the risk of mortality, being characterized by the usage of a reduced

number of variables, where a score is obtained in order to qualify the gravity of each patient.

These models also allow for an estimate of mortality within a hospital [Geraldes, 2016].

Generalized linear models present a more common solution due to their transparency in

terms of interpretability, which can present an advantage when dealing with clinical data. Mod-

els of this type are also able to deal with categorical predictors, common in the medical field, and

allow for a clear understanding of how each predictor influences the outcome. These character-

istics present as valuable, since they can connect the statistical results to the knowledge already

acquired empirically in the field. However, it is necessary to assume the linear relationship be-

tween a link function of the expected response variable and the explanatory variables, which can

be considered less than optimal, depending on the data itself [Amaral Turkman & Silva, 2000].

Generalized additive models present themselves as a more versatile solution compared to

GLMs. It maintains most of the interpretability GLMs possess, adding the advantage of not es-

tablishing a linear relationship between a link function of the expected response variable and the

explanatory variables. Instead a relation between the response variable and the predictors does

not need to be assumed prior to the application of the model, as it is estimated [Geraldes, 2016].

Another aspect of building a prognostic model using both GLMs and GAMs lies in the

importance of choosing a correct link function. A misspecification in the link function can

carry terrible mistakes to a prognostic model by increasing the MSE of the estimated response

probability which reflects in a considerable bias when estimating parameters [Li et al.. 2015].
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1.2. STATE OF THE ART

This implies that the choice of a correct link function may have a definite importance to a

correct characterization of a patient state. The most common link function for binary models

is the logit link function, where the curve between the probability of an event and covariates is

assumed to be symmetric. However, if there is an imbalance between the probability of the rate

of a binary response approaching 0 and 1 may occur, the logit function no longer presents itself

as satisfactory.

Parametric links are commonly chosen based on the fact that they include the canonical

link, their flexibility of different shapes, their mathematical simplicity and their comparison of

maximum likelihood fits in data sets. Their usage presents an improvement in terms of fit in

maximum likelihood. However the cost in terms of increasing the variances of the estimated

regression coefficients and mean response predictions when the link is estimated should also be

taken into consideration [Czado, 1992].

It is possible to find already some work develop towards finding more flexible and better

fitting link functions for such cases, both using parametric and non-parametric functions.

The work of Li, Xang & Seongho (2015) [Li et al.. 2015] presented two families of flexible

link functions used in joint models of longitudinal measurements and a binary outcome. One of

the families was the generalized extreme link, which allows for a more flexible skewness controlled

by a shape parameter. This is a particularly beneficial model when the binary outcome possesses

an imbalance between observed ones (1) and zeros (0). The other was the power link function

proposed by Jiang et al. (2013) [Jiang et al., 2013], based on the cumulative distribution function

corresponding to a symmetric baseline link function and its mirror reflection. The introduction

of a power parameter allows for flexibility in skewness both in positive and negative directions,

and allows to maintain the symmetric baseline link as a special case.

Another example of application of less common, yet more flexible link functions, is the

work of Geraldes (2016) [Geraldes, 2016], where, for a generalized additive neural network, both

a parametric link function and non-parametric were applied. The parametric link function

utilized was the Aranda-Ordaz function and for the non-parametric a multi-layer perceptron

was used to estimate the link function.

With the problematic of heterogeneous sets of binary data in mind Aranda-Ordaz proposed

in 1981 [Aranda-Ordaz, 1981] a family of power transformations for probabilities in order to

provide a representation of alternative scales for analysing binary response data. Such family of

transformations presents itself as a proper alternative for a more flexible link function already

seen in Geraldes (2016).

The Aranda-Ordaz asymmetric transformation is an extended model from the frequently

used logistic distribution, which includes the distribution mentioned, as well as others, as special

cases. Such is possible by the variation of a single parameter, which in a range from 0 to 1,

allows for a more flexible link function [Aranda-Ordaz, 1981]. This variation is the primary

factor here studied, as the greater the flexibility of the link function and the model, hopefully

the better the results according to the data.
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CHAPTER 1. INTRODUCTION

Czado (1992) [Czado, 1992], proposed parametric link families, which, due to parame-

ter orthogonality and standardization, are able to overcome the problem of estimating the link

parameter, reducing the variance inflation and thus increasing numerical stability while main-

taining the likelihood fit.

As flexibility is so important, the Czado family of transformations takes a step forward.

The family, which is a unified method for choosing parametric link functions, can use up to three

parameters for doing so [Czado, 1992]. The variation of these three parameters allows for a far

better adaptability, and thus for a finer selection and fit to the data.

Both lastly mentioned propositions of families can be considered as potential beneficial

link functions, as they try to overcome both the problematic of flexibility and cost implied

in the estimation of the link parameter. The combination between the more adaptable link

functions and greater versatility of models, by obtaining a final advantageous model, presents

as an attempted solution to the optimal prediction of outcomes in the medical field, and thus

representing an advance in formulation of a correct prognosis and a better health assistance.

1.3 Objectives

The objective of this report is to compare the performance of different statistical methods in

predicting a correct outcome, in a medical context. As mentioned previously, a correct statistical

prediction is of crucial importance, taking into consideration that a clinical prognosis can derive

from it. The aim is to compare the performance of two link parametric functions, Aranda-

Ordaz and Czado, using two different classes of models, GLMs and GAMs, in order to assess

which method has the most accurate results, and thus more reliable when applying to a real life

situation.

In order to elaborate this work, the following steps were defined:

• Understand the clinical data used, by doing an exploratory analysis of each variable indi-

vidually and choosing which variables should be incorporated in each model at test.

• Build different models using both GLMs and GAMs, applying both link functions Aranda-

ordaz and Czado family of functions.

• Analyse each model obtained through measurements such as AUC and Brier score. Apply

DeLong test to validate if differences between AUC values are considered statistically

significant.

• Compare the performance for the best models obtained, taking into special consideration

the potential difference in performance of models using the Aranda-Ordaz and Czado

families as link functions.

The data, which is comprised of the measurements made to several indicators on patients

on arrival day at São José Hospital, Lisbon, is merely used to fulfill the statistical purpose of
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the work, as no clinical conclusions are going to derive from its use. Nevertheless, the statistical

conclusions itself can, hopefully, be transposed into a real life situation and be applied in order

to aim in a medical context. All analysis were performed using software R.

All things considered, the main goal here proposed is to obtain better fitting statistical

models by having a greater flexibility to adapt to different types of sets of data, and thus

producing more accurate and usable results in a real life context.

1.4 Work Structure

The work here presented is divided into 4 chapters, namely, Introduction, Methods, Results

and Conclusions and Discussion.

In the first chapter a brief introduction is made to the overall theme of this report,

explaining the potential importance of the work here developed, presenting some previous related

works and the objectives to be attained.

Chapter two consists of explaining in somewhat detail the methods used for the devel-

opment of this report. GLMs, GAMs, the family of functions Aranda-Ordaz and Czado are

discussed. Also, evaluation methods used to compare models, variable selection and every nec-

essary methodology from data preparation to the conclusion to which is the best and final model

are included.

Chapter three contains the results obtained throughout the elaboration of this work.

It is the result of applying the methodology discussed in chapter two, to the data collected.

Hence forth, chapter three is the summary of all statistical analysis performed and their results.

Exploratory analysis, variable selection, estimation of each model and comparison of model

performance are the main sections included.

Lastly, chapter four is a critical discussion of the results obtained accompanied by sugges-

tions of possible future developments in the same line of work.
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Chapter 2

Methods

The chapter contains an explanation regarding all methods used to developed this project.

The detailed description of each method can be found in each section. Information on both types

of models used, generalized linear models (GLMs) and generalized additive models (GAMs), as

both link functions, Aranda-Ordaz and Czado, as well as the evaluation methods used, can be

found in the next pages of this work.

2.1 Data Collection and Variables

In order to conduct the work here developed, a set of clinical data, previously collected,

was used. The data used was obtained by measuring several indicators on the arrival day, on

patients admitted to São José Hospital, Lisbon, and observing if they were deceased by the

third day of hospitalization. The characteristics of the data collection are consistent with the

ones of a Prognostic study with a prospective design. A total of eight indicators were collected,

accounting for eight variables which can be used for the statistical analysis, plus an outcome

variable observed three days later from admission.

The indicators measured on the arrival day, the independent variables x = (x1, x2, . . . , x8),

consist of:

• Blood pressure of the patient at the admission moment (BPre);

• Serum sodium level of the patient at the admission moment (SSLev);

• Urinary output of the patient at the admission moment (UOut);

• Age of the patient at the admission moment (Age);

• Serum urea Level of the patient at the admission moment (SULev);

• Bilirubin Level of the patient at the admission moment (BLev);

• Serum bicarbonate Level of the patient at the admission moment (SBLev);

• If the patient was ventilated at time of admission in the hospital (Ventilated).

7
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The outcome variable y, consists of:

• State of the patient, deceased or alive, after three days of the admission date (Death).

2.2 Exploratory analysis and Variable Selection

The first step for any statistical analysis is to understand the data being analysed. The

exploratory analysis intends to do so. For each variable, basic metrics such as the mean and

quantiles, measurements of location, standard deviation, a measurement of variation, should

be calculated, as well as a graphic representation of binary variables. It should be taken into

consideration the symmetry, or not of the distribution of each variable.

For testing the symmetry of the distribution of each variable, the Cabilio-Masaro test of

symmetry about an unknown unique median of a distribution, θ, of a probability distribution

with density function f and distribution function F , can be used. The test, considering a

random sample X1, . . . , Xn identically drawn from a probability distribution, has the hypothesis

[Cabilio & Masaro, 1996]:

H0 : f(θ − x) = f(θ + x)

The test statistic under H0 is:

SK =

√
n(X̄ −m)

S
∼ N (0, σ2

0(F )), (2.1)

where X̄ is the sample mean, m is the sample median, S2 is the sample variance and

σ2
0(F ) = 1 +

1

em,X̄(F )
− 2

em,X̄(F )
E

∣∣∣∣X − µσ

∣∣∣∣ . (2.2)

The test hypothesis H0, for a sample of size n and a significance level of α, is rejected if

|SK | ≥ P1−α/2, where P1−α/2 is the quantile of order 1 − α/2 of distribution N (0, σ2
0(F )). For

values of P1−α/2 and further developments on equation (2.2) please refer to Cabilio and Masaro

(1996).

The Pearson’s correlation between continuous variables should also be included. The corre-

lation, which varies between -1 and 1, allows for understanding the existence of a linear relation

between the variables and therefore understand how variables behave together and influence

each other in a linear fashion. The correlation equation is as follows [Benesty et al., 2009]:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(2.3)

Moreover, boxplots for each continuous variable, represent as well a good visualization

technique for understanding, initially, how the remaining variables relate to the outcome variable

and consequently if they should be included in the model or not.
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In order to obtain an optimal model, a rather important component is the variable selection.

The main objective in doing so, is to be able to find the most parsimonious model while still

being able to correctly explain the data [Hosmer & Lemeshow, 2000]. Models which contain a

lower number of variables tend to be numerically stable, making it easier for their generalization.

Moreover, a higher number of variables may mean the model is more dependent on the data.

On the other hand, an argument in favor of including a higher number of variables in the model

is that in doing so, it allows for a complete control of confounding, given that variables may

only display confounding when incorporated together.

For each variable a univariable logistic regression model, a regression model using a logistic

link function, discussed ahead, should be fitted. For decision making purposes, the estimated

coefficient, the univariable Wald statistic and its correspondent p-value should be obtained. Each

variable is incorporated in the multivariable model if its p-value is below 0.25. The p-value is

higher than the more conservative, and more commonly used, value of 0.05, in order to identify

variables known as important. Nevertheless, a critical look at the variables should always be

taken before incorporating them in the model.

Another measurement important for model selection is the AIC (Akaike Information Cri-

terion). The information criterion, which presents itself as a review of the maximum likelihood

estimation procedure, can be defined as [Akaike, 1974]:

AIC = −2 log(L) + 2k. (2.4)

As understood by the formula, where L is the likelihood function and k is the number of

selected parameters for the given model, the lower the value of the AIC, the better the model.

The AIC is particularly useful for nested models, being much more precise in this case rather

than for non-nested ones.

2.3 Generalized Linear Models

A linear model presents as follows :

Y = β0 + β1x1 + · · ·+ βpxp + ε, (2.5)

where Y is the response variable, β0, β1, ..., βp are the regression coefficients, x1, ..., xp are the

explanatory variables, and ε accounts for the random component. The model attempts to explain

the relationship between one, or more predictor variables and one response variable, where the

linearity of the model is assumed. The linearity is only applicable to the regression coefficients

and not to the variables x, using the least squares theory as the analytical technique. For the

random component, the error, a normal distribution is assumed [Rencher & Schaalje, 2008].

A generalized linear model (GLM) can be obtained from the linear model using techniques

for non-normal data. The model uses other functions than the identity function as a linear pre-

dictor, extending the linear model to fit data in which the response variable probability function

can be different from the normal distribution, though still belonging to the exponential family

9



CHAPTER 2. METHODS

[Geraldes, 2016]. The exponential family includes distributions such as normal, Bernoulli, bino-

mial, Poisson, exponential and gamma distributions. Distributions belonging to the exponential

family present as follows:

f(y|θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
, (2.6)

where θ is the canonical form of the location parameter and φ is the scale parameter, supposedly

known. Functions a(·), b(·) and c(·, ·) are known. The following expressions represent the mean

and variance of functions which belong to the exponential family [Amaral Turkman & Silva, 2000]:

E[Y ] = b′(θ)

var(Y ) = a(φ)b′′(θ)
(2.7)

The class of generalized linear models was created to unify the procedure for fitting models

regarding the distributions previously mentioned, through the usage of maximum likelihood

estimation, by Nelder and Wedderburn (1972) [Nelder & Wedderburn, 1972].

GLMs are then comprised of two components:

• A random component, which, given a vector of covariates xi = (xi1, . . . , xip), the compo-

nents Yi have independent normal distributions with E(Yi|xi) = µi = b′(θi), i = 1, ..., n;

• A systematic component, a linear predictor defined by

η = Xβ (2.8)

where

X =


1 x11 . . . x1p

1 x21 . . . x2p

...
...

. . .
...

1 xn1 . . . xnp


is a specification matrix, function of the vectors of covariates xi, i = 1, ..., n and βT =

(β0, . . . , βp) is a vector of parameters of dimension p+ 1.

A relationship between the linear predictor ηi = zTi β
∗ and the mean value can be estab-

lished:

µi = h(ηi) = h(zTi β
∗), ηi = g(µi), i = 1, . . . , n (2.9)

where h is a monotonous, differential function, g = h−1 is the link function and, as previously

mentioned, can take other forms than the identity, β∗ is a parameter vector of dimension p and

zi is a specification vector of dimension p, function of the covariate vector xi.

Generally, zi = (1, xi1, . . . , xik)
T where k = p − 1. However, for qualitative variables a

codification as to be made recurring to dummy variables.

Regarding the link function, its choice should depend on the type of response and the

particular study under consideration. For when the linear predictor coincides with the canonical
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parameter, θi = ηi, which implies θi = zTi β
∗, the corresponding link function is then called

canonical link function [Amaral Turkman & Silva, 2000].

Finally, in order to be considered adequate, a GLM should follow the subsequent assump-

tions [Montgomery et al., 2012]:

• The error term ε has zero mean;

• The error term ε has constant variance σ2;

• The errors are uncorrelated;

• The errors are normally distributed.

2.4 Generalized Additive Models

Generalized additive models (GAMs) represent a step forward when compared to GLMs, when

it comes to the relationship between the independent variables and the dependent variable. As

mentioned, GLMs assume a linear relationship between a link function of the expected response

variable and the explanatory variables, being GAMs created to overcome this limitation allowing

for more accurate model adjustment [Geraldes, 2016].

GAMs are characterized by replacing in the GLM definition, the linear predictor

η =

p∑
j=1

βjXj by an additive predictor η =

p∑
j=1

sj(Xj). The local scoring technique is used

for estimating the sj(·), where, in order to allow the generalization of Fisher scoring procedure

necessary for the calculation of maximum likelihood estimates, scatter-plot smoothers are used

[Hastie & Tibshirani, 1986].

Considering a structure similar to the one presented in section 2.3, with a random com-

ponent composed of a response variable Y and a vector of covariates X1, X2, . . . , Xp, a linear

regression model can also be defined as:

E(Y |X1, X2, . . . , Xp) = β0 + β1X1 + · · ·+ βpXp. (2.10)

Based on the previous expression, a GAM can be easily defined by:

E(Y |X1, X2, . . . , Xp) = s0 +

p∑
j=1

sj(Xj), (2.11)

where sj(·) are smooth standardized functions so the equality E(sj(Xj)) = 0 can be true.

For a model as referenced in section 2.3, with equation (2.9) being rewritten as η(X) = g(µ),

where η is a function of p variables, it is now possible to write the expression for a multiple

covariate additive model [Hastie & Tibshirani, 1986]:
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η(X) = s0 +

q∑
j=1

sj(Xj) +

p∑
j=q+1

βjXj , (2.12)

where each function is estimated trough smoothing on only a coordinate at a time.

Estimation of the model is done by means of a back-fitting algorithm, an iterative process.

Considering

E(Y |X) = s0 +

p∑
j=1

sj(Xj), (2.13)

where for every j the condition E(sj(Xj)) = 0 is true, and the partial residual, defined as

Rj = Y − s0 −
∑
k 6=j

sk(Xk), (2.14)

then E(Rj |Xj) = sj(Xj) which minimizes E(Y − s0 −
∑

k 6=j sk(Xk))
2, allows for the estimation

of each ŝj(·), for j = 1, . . . , p.

The backfitting algorithm, where smj (·) is the estimate at the m-th iteration of sj(·) runs

as follows:

Initialization: s0 = E(Y ), s1
1(·) ≡ s1

2(·) ≡ · · · ≡ s1
p(·) ≡ 0, m = 0.

Iterate m = m+ 1 for j = 1 to p do:

Rj = Y − s0 −
j−1∑
k=1

smk (Xk)−
p∑

k=j+1

sn−1
k (Xk)

smj (Xj) = E(Rj |Xj).

Until: RSS = E(Y − s0 −
∑p

j=1 s
m
j (Xj))

2 fails to decrease.

For a function of sample size n, E(ŝmj (X)− smj (X))2 → 0 as n→∞, when m is fixed.

2.5 Logistic Function

The logistic function is presented as the most common solution as a GLMs link function used

for binary response data. It was invented in the 19th century for the description of the growth

of populations and the course of chain reactions [Cramer, 2003].

If considered n independent response variables Yi ∼ Binomial(1, πi) then:

f(yi|πi) = πyii (1− πi)1−yi , yi = 0, 1 (2.15)

and that each individual i, is associated with a specification vector zi, resulting of the covariate

vector xi, i = 1, . . . , n. Since µi = E(Yi) = πi and since θi = ln
(

πi
1−πi

)
, by doing θi = ηi = zTi β,

it is possible to conclude that the logistic function is the canonical link function.
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The probability of success, P (Yi = 1) = πi is related to vector zi:

πi =
exp(zTi β)

1 + exp(zTi β)
. (2.16)

The distribution function F : R→ [0, 1] can then be defined by:

F (x) =
exp(x)

1 + exp(x)
, (2.17)

The visual representation of the corresponding link function of the logistic function can

be seen in figure 2.1.

Figure 2.1: Graphic representation of the Logistic distribution function.

2.6 Aranda-Ordaz Asymmetric Family of Functions

As mentioned previusly, using a logistic function as a link function is the most common

alternative used in GLMs for binary response data. Nevertheless, it may not be the most

correct alternative as a link function, according to the data used. In order to overcome the

limitation of using a logistic function, Aranda-Ordaz proposed in 1981 [Aranda-Ordaz, 1981],

two new families of transformations for binary response data. These are extended models, which

not only include the logistic distribution but also others, as special cases.
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The asymmetric family, here presented, is most beneficial when talking about extreme

value problems, for example. Considering 0 < θ < 1 denotes the probability of success and λ,

0 6 λ 6 1, denotes the transformation parameter, a family designed to respond appropriately

is:

W (θ) =
(1− θ)−λ − 1

λ
. (2.18)

Assuming:

logW (θ) = τ, (2.19)

where τ is real.

As mentioned, the logistic function represents a special case of the family of transformations

here presented, for λ = 1, whereas the complementary log log model represents a special case

for λ = 0. It can then be easily concluded that the models can be compared through a single

parameter, here represented as λ.

The inverse of (2.19) is as follows:

θ(τ) =

1− (1 + λeτ )−
1
λ if λeτ > −1,

1 otherwise.
(2.20)

The same structure mentioned in section 2.3, for GLMs, can be defined for the example here

discussed. The same two components can be identified for m sets of independent observations,

where for each set the probability of success is the same:

• The random component, where components Yi have binomial distributions, B(ni, θi),

where ni is the number of trials and θi is the probability of success in the ith set (i =

1, . . . ,m);

• The systematic component, a linear predictor defined by η = Xβ, where β is a vector of

unknown parameters and X is a specification matrix, as previously defined in section 2.3.

The link function can be defined by equation (2.20), and the moment parameter by µi =

niθi, i = 1, . . . ,m, making the association between the former and the latter dependent on the

family chosen.

Figure 2.2 allows for a visual representation of the flexibility characteristics of the Aranda-

Ordaz family of asymmetric functions as a link function:

The code corresponding to the Aranda-Ordaz link function is available in Appendix A.

2.7 Czado Family of Functions

The usage of parametric link families, even though providing an improvement in terms of

maximum likelihood fit compared to a more commonly used GLM, means an increase in the
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Figure 2.2: Graphic representation of Aranda-Ordaz distribution function.

variances of estimated regression coefficients and mean response predictions, leading to numeric

instability and consequently to a more difficult interpretation of the model. However the Czado

family of link functions, due to parameter orthogonality and standardization, allows for a re-

duction of variance inflation while maintaining the advantage of a better maximum likelihood

fit.

The Czado family of link functions also adds to the flexibility allowed for the link function.

Depending on three parameters, instead of just one similar to Aranda-Ordaz link function, allows

for a greater fit to the data and problem at hand.

As in previous sections, the definition of a GLM should be kept in mind. As it is defined in

section 2.3, it is comprised of a random component, Yi, a systematic component, ηi = β0 +XT
i β

and a parametric link. The parametric link can be defined as µi = F (ηi,ψ) for some F (·,ψ) in

{F (·,ψ) : ψ ∈ Ψ}, where µi = E(Yi) and ψ = (ψ1, ψ2) [Czado, 1992].

15



CHAPTER 2. METHODS

The following expressions represent then the η0 standardize parametric link function for

GLMs proposed by Czado (1992). In the second expression the modification of the right tail is

given by the first branch, and the left tail by the second branch [Geraldes, 2016].

h(η,ψ) =
eF (η,ψ)

1 + eF (η,ψ)
(2.21)

f(η,ψ) =

η0 + (η−η0+1)ψ1−1
ψ1

if η ≥ η0,

η0 − (−η+η0+1)ψ2−1
ψ2

if η < η0.
(2.22)

Figure 2.3 allows for a visual representation of the flexibility characteristics, varying the

three different parameters, of the Czado family of functions:

Figure 2.3: Graphic representation of Czado family of functions.

16



2.7. CZADO FAMILY OF FUNCTIONS

2.7.1 Parameter Orthogonality

As mentioned in the beginning of the chapter, being Czado a parametric link family can

represent an improvement in terms of maximum likelihood fit, needing, however, parameter

orthogonality for a reduction of variance inflation.

As a general example of what parameter orthogonality is, for a vector of length n of

Y random variables, with density function fY (y; η) depending on a p-dimensional vector of

unknown parameters θ. Partitioning vector θ into two, θ1 of length p1 and θ2 of length p2

where p1 + p2 = p, then θ1 is orthogonal to θ2 if the elements of the information matrix satisfy

the following condition:

Iθsθt =
1

n
E

(
∂l

∂θs

∂l

∂θt
;θ

)
=

1

n
E

(
− ∂2l

∂θs∂θt
;θ

)
= 0, (2.23)

where I is the information for each observation, s = 1, . . . , p1 and t = p1 + 1, . . . , p1 + p2, and l

is the log-likelihood. Local orthogonality can always be achieved, occurring when the previous

equation is only valid for a single parameter value, θ0, yet global orthogonality can only be

achieved in certain cases [Cox & Reid, 1987].

Consequently, a sufficient condition for the previous expression, even though only a local

condition as F (·, ψ) would have to be independent of ψ, is given by:

∂

∂ψ
F (ηi, ψ) = 0 for every 1 ≤ i ≤ n. (2.24)

2.7.2 Parameter Standardization

For GLMs with parametric link belonging to the exponential family, both β0 and β can be

seen as parameters for finding the most suitable location and scale of the covariates, making the

link family F (·, ψ0) somewhat invariant in terms of location and scale.

Approaches can be defined in order for a link family to be called location and scale

invariant, such as:

• η0-location invariant if ∃ a value η0 such that F (η0, ψ) = α0 for all ψ ∈ Ψ.

• (η1, η2)-scale invariant if ∃ η1 and η2 such that F (η1, ψ) = α1 and F (η2, ψ) = α2 are

independent of ψ.

• η0-location invariant if ∃ a value η0 such that F (η0, ψ) = α0 and ∂
∂ηF (η, ψ)|η=η0 is inde-

pendent of ψ for all ψ ∈ Ψ.

In terms of choosing a value for η0, a reference given by Czado (1992) is, if in binary

regression the observed proportions in a data set are approximately symmetric around 0.5, then

η0 = 0 is considered a good choice.

The R code corresponding to the Czado link function is available in Appendix A.
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2.8 Evaluation Methods

As the main objective of this work is to evaluate the performance of different models and

different link functions, having an efficient mechanism of comparison between them is of great

importance. These measurements will be used for the selection of the best fit model in each

combination possible, between GLMs, GAMs and the two types of link functions, Aranda-Ordaz

and Czado, but also to determine the final model.

2.8.1 Brier Score

Brier Score was initially proposed by Brier (1950), in which he designed a verification scheme for

forecasts expressed probabilistically [Brier, 1950]. Brier defined a verification score Sc, varying

from 0 to 1, where 0 represents a perfect prediction, meaning the event is correctly predicted with

a probability of 1, and 1 the least accurate predicted possible, in which a probability different

than 0 is given for an event which did not occur.

Given an event occurring on n occasions, with r possible classes or categories, on occasion

i, the forecast probabilities are ft1, ft2, ..., ftr that the event will occur in classes 1, 2, ..., r,

respectively. The r possible classes have to be chosen in a manner the following condition must

apply:

r∑
j=1

fij = 1, i = 1, 2, 3, ..., n (2.25)

The verification score Sc is defined as:

Sc =
1

n

r∑
j=1

n∑
i=1

(fij − Iij)2 (2.26)

where Iij according to the event happening in class j or not, assumes the value 1 or 0, respectively.

A variation of this score for assessing the accuracy of binary prediction was created,

and its usage in terms of clinical data is increasing. The score addresses calibration, statistical

consistency between the predicted probability and the observations and sharpness, defined as

the concentration of the predictive distribution [Rufibach, 2010].

The Brier score, which in this case equals the mean square error of prediction, is the

following:

B(p, x) = n−1
n∑
i=1

(xi − pi)2 =

= n−1
n∑
i=1

(xi − pi)(1− 2pi) + n−1
n∑
i=1

pi(1− pi),
(2.27)
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where p = (p1, ..., pn) refers to the predictive probabilities, with 0 ≤ pi ≤ 1, and n realizations

x = (x1, ..., xn) of Bernoulli random variablesXi ∼ Bernoulli(πi) with 0 ≤ πi ≤ 1, π = (π1, ..., πn)

and xi ∈ {0, 1}, i=1, . . . , n.

2.8.2 Area under a ROC curve

The area under the ROC curve (AUC) represents the probability that a positive example,

chosen randomly, is correctly rated with greater suspicion when compared to a negative example

chosen at random [Bradley, 1997]. However, in order to understand what the AUC measurement

is, it is necessary to understand firstly what a Receiver Operating Characteristics (ROC) curve

is, and to do so, understand what Sensitivity and Specificity are.

In the case of a binary outcome, the classification can be exemplified in a contingency

table, where the the concepts of true positives and true negatives can be visualized:

Table 2.1: Contingency table of predicted values versus actual values.

Actual Values

Predicted Values Positive Negative

Positive True Positive (Tp) False Positive

Negative False Negative True Negative (Tn)

P N

Sensitivity can be defined as the proportion of real positive cases that are correctly predicted

positive [Powers, 2008]. Given Tp represents the number of true positives and P the number of

real positive cases, then Sensitivity presents as follows:

Sensitivity =
Tp
P
. (2.28)

Specificity is the proportion of real negative cases that are correctly identified as negative.

Representing Tn as the number of correctly identified negative cases and N as the total number

of negative cases, Specificity can be defined [Powers, 2008]:

Specificity =
Tn
N
. (2.29)

However, Specificity in not directly used in this particular case, but the False Positive Rate

which can be obtained as 1− Specificity.

Receiver Operating Characteristics (ROC) curves, are two-dimensional graphs were Sensi-

tivity is displayed in Y axis and the False Positive Rate is plotted on the X axis, accounting for a

visual display of the trade-offs between benefits, the true positives and costs, the true negatives

[Fawcett, 2006]. This type of curve can be interpreted having the (0,0) point has a reference,

which represents the strategy of never issuing a positive classification, meaning, even though

there is no possibility of obtaining false positive cases, there are also no true positive cases. The
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point (1,1) represents the opposite strategy of issuing only positive cases. A perfect classification

would then be obtained at point (0,1). The following graphic represents an example of a ROC

curve.

Figure 2.4: Example of a ROC curve.

In order to reduce ROC performance interpretability to a single scalar value, so that

classifiers can easily be compared, the area under the ROC curve is usually calculated. Given

it is an area under a unit square, AUC values vary between a minimum of 0.5 and a maximum

of 1. One major characteristic of the AUC is that its value is equivalent to the probability that

the classifier will rank a randomly chosen positive case higher than a randomly chosen negative

case [Fawcett, 2006].

2.8.3 DeLong test for comparing AUCs

The DeLong test is a non-parametric approach to the analysis of two or more areas under

correlated ROC curves, by means of the generalized U -statistics. The area under the points com-

prising an empirical ROC curve calculated by the trapezoidal rule is equal to the Mann-Whitney

U -statistic, a statistic applied to two samples, {Xi} and {Yi}. The result is an estimated co-

variance matrix [DeLong et al., 1988].

Considering a sample of N individuals, where m of which undergo the event of interest,

denominated C1, and n individuals who did not undergo any occurrence of the event of interest,

denominated C2, and considering the definitions of sensitivity and specificity previously pre-

sented, the probability, θ, to randomly select an observation from the population represented by

C2 be less than or equal to randomly select an observation from the population represented by

C1, is presented below, as an average over a kernel, ψ:
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θ̂ =
1

mn

n∑
j=1

m∑
i=1

ψ(Xi, Yj), (2.30)

where

ψ(X,Y ) =


1 Y < X

1
2 Y = X.

0 Y > X

(2.31)

Generalizing the previous equation to k binary classifiers, where for observation i in C1,

Xk
i denotes classifier k estimated probability that it belongs to class 1. Likewise, Y k

j can be

defined for observations in C2. The definition of k -th empirical AUC is:

θ̂k =
1

mn

m∑
i=1

n∑
j=1

ψ(Xk
i , ψ

k
j ). (2.32)

Considering θ̂ = (θ̂1, . . . , θ̂K)T ∈ IRK is the vector of K empirical AUCs, θ = (θ1, . . . , θk)

is the vector of true AUCs, and L is a row vector of coefficients, in order to compare two AUCs,

the null hypothesis is then given:

H0 : θ1 = θ2, i.e. LTθ = 0.

and then the test statistic is given by:

Lθ̂
T − LθT[

L
(

1
mS10 + 1

nS01

)
LT
] 1
2

∼ N (0, 1) under H0. (2.33)

The elements (r,s)th of a matrices S10 and S01 of size K ×K are defined as:

sr,s10 =
1

m− 1

m∑
i=1

[V r
10(Xi)− θ̂r][V s

10(Xi)− θ̂s], (2.34)

and

sr,s01 =
1

n− 1

n∑
j=1

[V r
01(Yj)− θ̂r][V s

01(Yj)− θ̂s], (2.35)

where

V r
10(Xi) =

1

n

n∑
j=1

ψ(Xr
i , Y

r
j ) (i = 1, 2, . . . ,m), (2.36)

and

V r
01(Yj) =

1

m

m∑
i=1

ψ(Xr
i , Y

r
j ) (j = 1, 2, . . . , n). (2.37)
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If the p-value associated with the test statistic (2.33) is inferior to the significance level

considered, usually of 0.05, it is assumed there is statistical evidence to reject the null hypothesis.
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Chapter 3

Results

The following chapter is a compilation of all the results obtained throughout the development of

this work. It is divided into five sections, namely, Exploratory Data Analysis, Variable Selection,

Aranda-Ordaz GLM and GAM Model Estimation, Czado GLM and GAM Model Estimation,

and Model Comparison. Each section results from the application of the previously discussed

methods to the data collected from patients admitted to São José Hospital.

3.1 Exploratory Data Analysis

As stated in section 2.2, the first step in a thorough statistical analysis is the exploratory

analysis. The data is comprised of eight independent variables, one of which, Ventilated is

binary, being the remaining continuous. The outcome variable, Death, is also binary.

Firstly, all continuous covariates were analysed to determine whether the population from

which each sample was drawn, is symmetric or asymmetric, in order to most accurately present

summary statistics. The Cabilio and Masaro symmetry test was used, referenced in section

2.2. For variable blood pressure (BPre) the p-value obtained was close to 0, which, considering

the commonly used significance level of 0.05, indicates there is evidence towards rejecting the

null hypothesis, being the variable distribution considered asymmetric. For serum sodium level

(SSLev) the p-value obtained was 0.17 which means there is no evidence for rejecting the null

hypothesis and the population is considered symmetric. Variable urinary output (UOut) had

a p-value close to 0, which means the population from which the sample was taken from is

considered asymmetric. Covariate Age had a p-value close to 0 as well , which according to the

significance level of 0.05 considered, accounts for a variable with an asymmetric distribution. For

serum urea level (SULev) the p-value obtained was equally close to 0, meaning the distribution

from which the variable is drawn is considered asymmetric. Variable bilirubin level (BLev) had

a p-value close to 0 which leads to the immediate conclusion that the population from which

the sample was drawn is asymmetric. Finally, for serum bicarbonate level (SBLev) the p-value

obtained was close to 0, similarly to the majority of variables here discussed, being the variable

distribution considered asymmetric as well.
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The following tables summarize the location and variability statistics for all the contin-

uous independent variables considered further for variable selection. The variables are divided

according to the symmetry of their distributions, or lack there of, and the statistics presented

are accordingly to such distinction, already presented. Variables with symmetric distribution

should be represented by their mean, which in fact should coincide with the median, and stan-

dard deviation, while variables with an asymmetric distribution should be represented by their

median, first and third quantiles.

Table 3.1. presents the only variable with a symmetric distribution, showing statistics as

the minimum (Min.), maximum (Max.), mean and standard deviation (Std. Dev.). It is possible

to see SSLev varies from 119 to 164 with a mean of 138.556 and a median of 139.

Table 3.1: Summary statistics for the variable with a symmetric distribution, SSLev.

Min. Mean Max. Std. Dev. Median

SSLev 119.000 138.556 164.000 7.722 139.000

On the other hand, table 3.2. shows variables with an asymmetric distribution, with

statistics such as the minimun, maximum, median, the first (1st Qu.) and the third quantile

(3rd Qu.). For BPre the median is 97, while for UOut is 2.2. Variable Age has a median of 63

years, and SULev has a median of 57. BLev has a median of 0.89 and the median of the variable

SBLev is 20.1.

Table 3.2: Summary statistics for continuous variables with an asymmetric distribution.

Min. 1st Qu. Median 3rd Qu. Max.

BPre 30.000 78.000 97.000 147.000 268.000

UOut 0.000 1.500 2.200 3.090 7.775

Age 14.000 46.500 62.000 73.000 100.000

SULev 6.000 31.000 57.000 95.500 384.000

BLev 0.100 0.530 0.890 1.600 39.900

SBLev 2.000 16.100 20.100 27.000 59.900

Table 3.3 presents the correlation matrix between covariates. It is possible to see there is a

light tendency for BPre to increase as UOut also increases and as well that SULev increases as

Age increases. On the other hand there is a tendency for SULev to decrease as UOut increases

and vice versa. However, none of the values presented in table is high, meaning covariates are

very little correlated between themselves, having a very weak linear relationship. In terms of

modeling, this lack of correlation between variables presents itself as favourable when performing

a regression analysis, since it indicates there is no sign of existence of multicollinearity and

therefore the statistical significance of an independent variable is not undermined due to it

being correlated to another independent variable.
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Table 3.3: Pearson correlation matrix.

BPre SSLev UOut Age SULev BLev SBLev

BPre 1.00 -0.02 0.26 -0.09 -0.16 -0.08 0.13

SSLev -0.02 1.00 0.00 0.07 0.01 0.02 0.00

UOut 0.26 0.00 1.00 -0.17 -0.20 -0.06 0.13

Age -0.09 0.07 -0.17 1.00 0.25 -0.06 0.10

SULev -0.16 0.01 -0.20 0.25 1.00 0.18 -0.20

BLev -0.08 0.02 -0.06 -0.06 0.18 1.00 -0.17

SBLev 0.13 0.00 0.13 0.10 -0.20 -0.17 1.00

Figure 3.1: Count of ventilated patients at time of admission according to observed outcome

variable, Death.

Regarding the only categorical variable, Ventilated, figure 3.1 was built. The graph allows

for a visual representation of the outcome observed, Death, according to the patient being

ventilated, or not at the moment of arrival at the hospital. Among patients who survived, 116

were not ventilated, whereas 144 were. For patients who died, only 30 were not ventilated while

109 were indeed ventilated. A distinction can be made in the relationship between the necessity

of ventilating a patient and its final outcome. This distinction can be an indicator that variable

Ventilated does indeed explain at least to some extent the outcome variable and should then be

included in the final model.

The following set of graphics display each continuous variable through boxplots against

each level of the outcome variable, Death.

Variable Age appears to be fairly equally distributed either the event of interest, Death,

occurred or not. The median of ages for patients who did not die is 60, while for patients who

died is a little higher, being 66. No outliers are observed in figure 3.2. The similarity between
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medians and overall distribution of both categories of Death, may be an indication the variable

does not explain very clearly the outcome variable and may be a potential candidate to be

excluded from the final model.

Figure 3.2: Boxplot of Age according to the outcome variable, Death.

For variable BLev the case is different. The majority of values are low, and it is possible

to see the presence of a few outliers in figure 3.3. The median for individuals who did not die is

of 0.86 and for individuals who died is 1. The maximum value of BLev for deceased individuals

is 39.9, while for individuals who did not die is 21.3. In this particular case, the medians do not

seem too different between both categories of variable Death, however the clear distinction of

extreme values given by the outliers seems to be an indication of how the variable can contribute

to explain the outcome variable, and therefore be a good candidate to be included in the model.

Figure 3.3: Boxplot of BLev according to the outcome variable, Death.

Boxplots corresponding to variable BPre are shown in figure 3.4. The boxplots are quite

distinct according to the levels of the outcome variable. The median for individuals who did

not present the event of interest is 103 while the median for the individuals who died is 81. For

the first group mentioned no outliers are observed, while for the second group it is possible to

observe their presence, being the highest value 214. Given there is such a clear difference in

the distribution of values of BPre between categories of the variable Death, BPre is a strong
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candidate to be included in the final regression model.

Figure 3.4: Boxplot of BPre according to the outcome variable, Death.

Variable SBLev (figure 3.5) has, for both categories of the outcome variable, a similar

median. For patients who did not suffer the event of interest the median is 20.9, and for

patients who were deceased by the third day of hospitalization the median is 18.7. Both levels

have outliers associated to them, where for category 0 of variable Death the highest outlier

corresponds to 59.9, whereas for category 1 of variable Death the solely outlier has a value of

45.1. SBLev presents some differences across both categories fo variable Death, being therefore

a potential candidate to be included in the regression model.

Figure 3.5: Boxplot of SBLev according to the outcome variable, Death.

The next variable to be graphically analysed (figure 3.6), SSLev possesses the same median

for both levels of variable Death, 139, which can be verified visually through the boxplots. The

difference between both groups lies in the distribution of the number of individuals throughout

the values of SSLEV. From the analysis of the boxplot corresponding to the group of patients

who died, there are no visible outliers, and values range from 119 to 161. As for the remaining

group, values vary from 122 to 164, corresponding the latter to an outlier. As the distribution

of SSLev between both categories of the outcome variable is so similar, it seems it does not

contribute greatly for the explanation of Death and seems to be likely its exclusion from the
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final regression model.

Figure 3.6: Boxplot of SSLev according to the outcome variable, Death.

Variable SULev has quite disparate medians, as seen in figure 3.7. For patients who died,

the median is 87, while for the other group the median is 45. Both groups possess quite a few

outliers, where for the group where patients died the outlier furthest from the median has a value

of 384, and for remaining group the highest outlier has a value of 297. Variable SULev seems a

good candidate to be included in the final model, since the disparity between medians implies

that the variable ads a significant contribution to the explanation of the outcome variable, Death.

Figure 3.7: Boxplot of SULev according to the outcome variable, Death.

Finally, boxplots in figure 3.8 correspond to the graphical representation of variable UOut

according to the two levels of the outcome variable Death. For UOut the median is higher for

the group of patients who did not die, with a value of 2.467, while for the group were patients

who did, the median is 1.7. As in the previous analysed variable, both groups present outliers.

The furthest from the median in the group with level 0 for the outcome variable is 7.775, while

for the other group the highest value corresponds to 7.4, much closer together in value when

compared to the median values. Similarly to variable SULev, UOut distribution differs between

both categories of variable Death, and therefore is a good candidate to be included in the final

regression model.
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Figure 3.8: Boxplot of UOut according to the outcome variable, Death.

3.2 Variable Selection

As explained in section 2.2., the variable selection takes great importance in order to find the

best fitting model to the data. Table 3.4 represents the result of the function summary() in R,

for each univariable model.

For variable BPre, the outcome of the univariable model with Death as the dependent

variable, puts BPre as a significant variable. The p-value of the variable in the model is close to

zero, being lower than 0.25, the criteria for variable selection previously explained. According

to such criteria the variable will be considered for the final model. Variable SSLev is considered

not significant, as represented below, as its p-value in the model is largely over the threshold

of 0.25. As for variable UOut, the outcome below, shows a p-value of approximately 0 for the

univariable model. The p-value is close to zero, making the the variable important to include in

the final model. The p-value for SULev is similar to the one for UOut, and so logically, SULev

is also of importance to include in the final model. Variable Age, which output can be seen

below, has a p-value of 0.016, when its univariable model is built. Since the p-value is below

0.25, this variable should also be taken into account for the final model. Variable BLev has, as

shown below, a p-value of 0.0112 as a covariate in its univariable model. Taking into account

the rule in which every p-value below 0.25 should make the variable it is linked to, of importance

to include in the final model, BLev is then selected for such purpose. SBLev, shows a p-value

of approximately 0, considerable below 0.25, and given so, SBLev should be considered for the

final model. Finally, variable Ventilated, has a p-value close to zero, and for that, should be

considered for the final model.

The analysis above, allows for a model in which only the variable SSLev should be

excluded from it, between the variables taken into consideration. The generalized linear model

is as follows:

y = β0 +β1(BPre)+β2(UOut)+β3(Age)+β4(SULev)+β5(BLev)+β6(SBLev)+β7(Ventilated)+ε
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Table 3.4: Results for the univariable logistic regression model

for each variable.

Estimate Std. Error z value Pr(> |z|)
BPre -0.0199 0.0030 -6.731 < 0.0001 ***

SSLev -0.0110 0.0137 -0.808 0.4190

UOut -0.6116 0.1031 -5.934 < 0.0001 ***

SULev 0.0124 0.0021 -5.934 < 0.0001 ***

Age 0.0153 0.0063 2.419 0.0155 *

BLev 0.0930 0.0367 2.536 0.0112 *

SBLev -0.0478 0.0133 -3.591 0.0003 ***

Ventilated 1.0739 0.2410 4.456 < 0.0001 ***

* Statistically significant at 0.05 significance level.
** Statistically significant at 0.01 significance level.
*** Statistically significant at 0.001 significance level.

Further analysis can be done, by exploring the significance of each variable when the

resulting model is compiled. The following table presents the coefficients corresponding to the

model mentioned above, in which variable Age seems to no longer have a statistical importance,

using 0.25 as the threshold, once the other variables are taken into account for the regression

model.

Table 3.5: Coefficients for model: Death ∼ BPre + UOut +

Age+ SULev +BLev + SBLev + V entilated.

Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.6529 0.6923 0.943 0.345583

BPre -0.0132 0.0031 -4.303 < 0.0001 ***

UOut -0.3824 0.1068 -3.579 0.0003 ***

Age 0.0037 0.0077 0.477 0.6330

SULev 0.0086 0.0023 3.712 0.0002 ***

BLev 0.0620 0.0404 1.533 0.1252

SBLev -0.0231 0.0148 -1.558 0.1193

Ventilated1 0.6914 0.2824 2.448 0.0144 *

* Statistically significant at 0.05 significance level.
** Statistically significant at 0.01 significance level.
*** Statistically significant at 0.001 significance level.

Considering the AIC, explained in section 2.2., as the final criteria for variable selection, a

backward elimination can be performed, The model Death ∼ BPre+ UOut+Age+ SULev +

BLev+SBLev+ V entilated has an AIC of 413.4. Removing variable Age, still considering the

0.25 significance level, makes the AIC drop, as desirable, to 411.63. If a more conservative p-

value is used, the ever so common 0.05, variables BLev and SBLev should also be removed from
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the model. However, if BLev is removed the AIC goes up to 411.99, if SBLev is removed AIC

goes up to 411.9, and if both are removed the final AIC is of 412.93. Although AIC differences

are minor, it goes up if BLev and SBLev are removed, making for the conclusion only Age should

be taken from the final model. The final model is then presented:

y = β0 + β1(BPre) + β2(UOut) + β3(SULev) + β4(BLev) + β5(SBLev) + β6(Ventilated) + ε

3.3 Logistic Model Estimation

After variable selection, it is possible to start analysing different models using both families of

link functions Aranda-Ordaz and Czado, and both GLMs and GAMs. A train dataset containing

seventy-five percent of the total dataset was used for model training and a test dataset, con-

taining the remaining twenty-five percent of the data was used for testing each model predictive

capability. The baseline model used for comparison was a GLM using the logistic link function

(figure 2.1), since the main goal is to try to find improvements to using such a conservative link

function.

Each value of AUC and the Brier score, used for evaluating each model predictive capability,

was stored accordingly to each value used for the functions’ parameters, either λ for Aranda-

Ordaz function or ψ1, ψ2, η0 for Czado function. The DeLong test was also included in the

analysis, were a p-value below the significance level of 0.05 entails there is evidence to refuse

the null hypothesis, which states the difference between the AUC for the baseline logistic model

and the AUC for the model at test is not significant.

Table 3.6 presents the results obtained for the GLM using the logistic function as its link

function. The results of the logistic function will be reproduced in each analysis, under the

corresponding parameters’ values within each function for a better visualization of significant

differences and better comparison.

Table 3.6: Results of AUC, p-value from the DeLong test and Brier score for model GLM using

the logistic function as the link function (baseline model).

Link function AUC p-value Brier

Logistic 0.8013 1.0000 0.1657

3.4 Aranda-Ordaz GLM and GAM Model Estimation

The first model to be analyzed is a GLM with Aranda-Ordaz link function. Only the variables

selected previously were used when building this model. The single parameter used in the

Aranda-Ordaz asymmetric function was varied between the values of 0 and 1, by steps of 0.01.

Table 3.7 presents itself as a summary of the highest values for the measures used, values of

AUC and Brier score. The first line of the table also presents the results obtained for the baseline
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model using a logistic link function. The following two lines represent the results corresponding

to the highest AUC value and Brier score, respectively. The third column corresponds to the

p-value associated with the DeLong test.

The values of AUC varied from 0.8008791 when λ is 0.98, to 0.8061538 when λ is 0 (figure

3.9). On the other hand, the Brier score varied from 0.1650408 when λ is 0.34 to 0.1657095

when λ is 1. As the variation of Brier score is so little, making it impossible to fully perceive

the difference in prediction capability of the models, taking conclusions considering solely the

AUC values is advisable. The best model obtained was for λ equal to 0, which corresponds to

the log log link function.

Figure 3.9: Complementary log log link function, corresponding to λ = 0.

Table 3.7: Results of AUC, p-value from the DeLong test comparing AUCs to the logistic link

function and Brier score for model GLM with Aranda-Ordaz as link functions.

Link function λ AUC p-value Brier

Logistic 1 0.8013 1.0000 0.1657

Aranda-Ordaz 0 0.8062 0.6614 0.1656

0.34 0.8031 0.7815 0.1650

Nevertheless, the DeLong test shows, through a p-value of 0.6614 that there is no statistical

evidence to reject the null hypothesis, at the significance level of 0.05, meaning the difference

between values of AUC for both models, logistic and log log, is not sufficient to be considered

statistically significant.

Figure 3.10 represents the variation of AUC values according to the values of λ. It

is possible to see how the highest value is clearly associated with the smallest value for the

parameter, 0. The variation of the value of the AUC is not constant, dropping initially until it
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reaches the value of 0.8013187 when λ is 0.45, augmenting to 0.8043956 when λ is between 0.74

and 0.78, and dropping to its lowest value, 0.8008791 when the parameter is equal to 0.98.

Figure 3.10: AUC values according to different Aranda-Ordaz distribution parameter, for GLM.

The values for Brier score can be seen in figure 3.11, presenting a variation according

to the values of the parameter, represented as λ. It starts with a value of 0.1655828 when λ

is 0, dropping to its lowest value of 0.1650408 when λ is 0.34. Its highest value is when the

parameter equals 1, with a value of 0.1657095. Between the highest and the lowest value for

the coefficient the variation is only of 0.0007, which can be considered too small a difference to

make any correct assumptions based on it, as mentioned.
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Figure 3.11: Brier coefficient values according to different Aranda-Ordaz distribution parameter,

for GLM.

When the exact same analysis was performed using a GAM instead of a GLM the same

results were obtained. The analysis was performed using the variation of parameter λ between

0 and 1, with steps of 0.01. The variables included were the same previously selected ones.

The variations of AUC values and Brier score were the same, with exactly the same highest

and lowest values. The Brier score variation was then too small to take any proper conclusions

and the difference in AUC values between the baseline model and the model at test were not

considered significant. The unexisting difference between the usage of either GLM or GAM

indicates that the assumption of a linear relation between the outcome variable and covariates

is correct.

3.5 Czado GLM and GAM Model Estimation

In order to continue the pursue of a better fitting link function, the next analysis was performed

using the Czado family of functions as the link function. As mentioned, the inverse of equations

(2.21) and (2.22) were used. However, the inverse function has some limitations to its usage,

where the following condition ψ1 × (µ − η0) + 1 > 0, where µ is the expected value and η

corresponds to the input data, must be met in order for the function to be able to retrieve a

value.
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Table 3.8: Results of AUC, DeLong test comparing AUCs to the logistic link function and Brier

score for model GLM using Czado as the link function.

Link function η0 ψ1 ψ2 AUC p-value Brier

Logistic 1.00 1.00 0.00 0.8013 1.0000 0.1657

Czado 2.00 1.00 0.50 0.8018 0.9580 0.1666

The function was tested with different combinations of values for the three parameters at

test. For ψ1 and ψ2 between 1 and 5 by steps of 1, and η0 between 0 and 5 by steps of 0.5. If the

combination of any of these values did not follow the condition previously shown, the function

could not be applied, and the respective values were excluded from the analysis.

The same method as for Aranda-Ordaz was applied. Both GLM and GAM were used, and

values of AUC and Brier score were obtained. Table 3.8 summarizes these results, along with

the DeLong test for a GLM, having only the highest values for each statistic.

The AUC values varied from 0.2692308, when ψ1 = 1, ψ2 = 4, η0 = 0.0 to 0.8017582,

when ψ1 = 2, ψ2 = 1, η0 = 0.5, and the Brier score from 0.1657095, when ψ1 = 1, ψ2 =

1, η0 = 0.0, to 0.7224080, when ψ1 = 1, ψ2 = 5, η0 = 1.5. Taking into consideration the

Brier score, it indicates, still, the best solution is the logistic function. However, AUC values

are best when parameters are ψ1 = 2, ψ2 = 1, η0 = 0.5. The DeLong test, with a p-value

of 0.9579531 indicates the difference from the AUC value of the baseline logistic model and the

Czado link function model is not statistically significant at a 0.05 significance level.

The link function corresponding to the best model obtained can be seen in figure 3.12.

The slightest difference in curvature in the right branch of the function can be seen especially

when compared to figure 2.1.
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Figure 3.12: Czado function for parameters ψ1 = 2, ψ2 = 1, η0 = 0.5.

When using a GAM, the results, similarly to what happened for Aranda-Ordaz, are

the same as for the GLM. However more values were excluded from the analysis due to the

incapability of building a model when the necessary condition of the inverse Czado function

cannot be met. The conclusions are, then, similar to the ones presented for the GLM, adding

the indication, once more, that assuming a linear relation between covariates and the outcome

variable in this particular case seem to be correct.

3.6 Model Comparison

Considering solely the Aranda-Ordaz link function, no major improvements were observed

regarding both the model used and the link function. Using a GLM and a GAM did not make

a difference, indicating that having a prior assumption of a linear relationship between a link

function of the expected response variable and the explanatory variables may be correct in

this context. The link function Aranda-Ordaz did not produce any improvement in the specif

conditions of this work, making the usage of another link function important in order to better

understand the impact of using a parametric link function.

Regarding the Czado link function, however its greater flexibility, the results obtained

were not considered statistically significant when compared to the logistic regression model.

Considering the Brier score, the best result was obtained using the logistic link function, even
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though it was not the case considering the AUC as a measure of capability of the regression to

correctly predict the classification of each individual in each category of the outcome variable.

However, as mentioned, the difference between the values of the AUC corresponding to the

best fitted model and the logistic regression model were not statistically significant according

to the DeLong test. As occurred fo the Aranda-link function there was no distinction in results

between the GLM and GAM obtained. This conclusion only strengthens the belief a linear

relation between the outcome variable and the model covariates can be assumed.

By soling comparing AUC values, given the Brier score was discarded as informative

for the Aranda-Ordaz link function model and considering none of the models obtained had

statistically significant differences to the logistic function in their AUC values, it is possible

to determine which model produced better estimations for the outcome variable. Using the

Aranda-Ordaz link function, the best AUC value obtained was 0.8061538, for a parameter value

of 0, corresponding to the log log model. The best model obtained with Czado GLM had an

AUC value of 0.8017582, when ψ1 = 2, ψ2 = 1, η0 = 0.5. Comparing AUC values for both

models, the log log model presents a higher value of AUC, indicating it is the best data fitting

model, for the data at study.
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Chapter 4

Conclusion & Discussion

The aim of this work is to present a more accurate alternative when it comes to building

prognostic models in a medical context. In order to try to achieve such a challenging goal, the

strategy utilized was to test different models, GLMs and GAMs, with never before used link

functions, which allow for more flexibility than commonly used link functions.

The constant search for better statistical methods to be applied in the medical field,

reflects a necessity for statistical models which can approximate themselves to reality. Several

times response variables are considered to have a normal distribution, when in reality the normal

distribution is indiscriminately applied to data which should be handled otherwise, specially

when considering count data [Lindsey & Jones, 1988].

GLMs have still been quite unexplored in a clinical context, except for the use of normal and

logistic models [Lindsey & Jones, 1988]. With this in mind, the work here developed enables a

solution for a still limited statistical approach in the medical field. It explores not only GLMs but

also GAMs. GLMs are well known for analyzing dependencies between a possibly non normal

outcome variable and a number of covariates. However, GAMs allow for the incorporation of

non-parametric covariate effects [Czado et al., 2010].

Is is possible to find some work already related to the use of more versatile link functions

[Geraldes, 2016, Li et al.. 2015]. Even though Aranda-Ordaz was already used for a similar

study [Geraldes, 2016], it was not applied to a GAM, and, as the versatility of each link function

is important to try to better explain the relation between the covariates and the outcome variable,

different sets of data should be explored in order to fully understand how well the link function

can adapt to the data in question. Regarding the Czado family of functions, no previous work

was found to use it as a link function, despite its favorable adaptability properties and robustness.

The Aranda-Ordaz link function can be applied to binary response data and has a trans-

formation parameter, which already represents added flexibility to the commonly used link

functions. The Czado link function relies on three distinct parameters, allowing for a growing

increase on the adaptability of the link function. Both link functions mentioned have the logistic

function as a special case, becoming this the baseline function for comparison throughout this

work.
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Firstly, an exploratory analysis was performed in order to understand the data used.

Even though the aim of the study was not to draw any clinical conclusions, understanding the

behaviour of each variable before building any model is essential. The exploratory analysis,

through a boxplot, gave the indication the SSLev variable, since it had the exact same median

for both levels of variable Death, and possibly the Age variable for its similarity in distribution

for both categories of the outcome variable, added no relevant information about variable Death,

and that they might have been good candidates to be excluded from the model.

By performing a variable selection analysis, such suspicions about variables SSLev and Age

were confirmed, and both variables were excluded from the final regression model, according to

the criteria of excluding variables with a p-value for the Wald test, associated with a univariable

regression model, greater than 0.25.

When estimating both GLM and GAM models using the Aranda-Ordaz link function, the

best values obtained corresponded to the log log function. This is not the ideal result expected

once it corresponds to one of the extreme values the single parameter of the function can assume.

When the function parameter is equal to 1, the logistic link function is assumed and when the

parameter is equal to 0 the complementary log log link function is assumed. Both of these

functions are commonly used, and so the greatest advantage of the flexibility of the function was

to be able to fit the model to any parameter placed in between both parameters corresponding

to already used functions. However, two major aspects should be taken into consideration.

Firstly the data used. The asymmetric Aranda-Ordaz distribution is particular beneficial

when there is a disparity in the count of both levels of the outcome variable. Since the data

used presented a similar value of patients who died (139) and patients who did not die (260)

an advisable improvement regarding this analysis is to use data where the imbalance between

patients in which the event of interest occurred and not, is greater. With such improvement in

terms of data, the advantages of using Aranda-Ordaz as the link function can be greatly seen.

The Brier score, even though it was included initially in the analysis, was not used to

draw any conclusions here presented, as stated previously, since its variation was too little to be

possible to make any accurate decisions based on it.

Regarding the Czado function the results could be considered a little more promising, since

the best model obtained, considering AUC values, correspond to different values of parameters

when compared to the baseline logistic function. The parameter ψ2 was 1, similar to the one

in the logistic function, however both remaining parameters, η0 and ψ1, differed. Nevertheless,

when AUC values where compared through the DeLong test, it showed the difference between

the performance of both models was not significant. When Brier score was concerned the best

model obtained corresponded to the logistic link function. Once again, the results presented

unsatisfactory when compared to the expectation of improvement in terms of flexibility of the

link function. However, as previously brought up, the flexibly of the link function allowed for

a more thorough research of the best link function and the choice of either the logistic link

function, when considering the Brier score, or the function with parameters ψ1 = 2, ψ2 = 1,

η0 = 0.5.
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Independently of the link function used, the results obtained were equal either using GLMs

or GAMs. This indicates that in this specific case, for the data used the prior assumption of a

linear relation between the outcome variable and the independent variables seems to be correct.

Nevertheless, the analysis taking into consideration both types of models validates this prior

assumption of linearity, rather than just performing the analyses assuming it with no statistical

evidence to so. May further studies be performed the same analysis using a different set of data,

both models should be taken into consideration as the results may differ significantly.

As results were not as resounding as initially expected, the work developed allows for

a easily reproducible and systematic analysis regarding the best fitting link function to each

problem. It can be applied in multiple contexts, and specially in the medical field, as already

demonstrated throughout the work, as statistical results have such an impact in treatment

outcome and hospital management. For future developments it is suggested to use different sets

of data, especially data in which the relation between the outcome variable and the independent

variables is not linear given it will be more suitable to highlight the potential a flexible link

function has. Another suggestion for future developments on the theme is to perform a simulation

analysis where, with a controlled set of data, it is possible to better analyse the behaviour,

according to distinct situations and types of data, of the both considered link functions Aranda-

Ordaz and Czado.
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Appendix A

Aranda-Oradz and Czado Link

Functions

This appendix contains both R functions used for the Aranda-Ordaz link function and the

Czado link function.

A.1 Aranda-Ordaz Link Funcion

The code here available corresponds to the code which allows for the GLM Aranda-Ordaz link

function to be implemented. The function can be easily replaced bya a GAM link function by

replacing the class "family" for "link-gamlss".

Listing A.1: Aranda-Ordaz GLM link function

aranda_glm <- function(lambda = 1) {

if(lambda == 0) {

binomial(link = cloglog)

} else {

care.exp <- function(x, thresh = about36) {

about36 <- - log(. Machine$double.eps)

thresh <- min(thresh , about36)

x[x > thresh] <- thresh

x[x < ( - thresh)] <- - thresh

exp(x)

}

linkfun <- function(mu) { log(((1-mu)^(-lambda) -1)/lambda) }

linkinv <- function(eta) {1-( lambda*care.exp(eta)+1)^(-1/lambda) }

mu.eta <- function(eta) { care.exp(eta)*(lambda*

care.exp(eta)+1)^(-1/lambda -1)}

valideta <- function(eta) TRUE

variance <- function(mu) mu * (1 - mu)

validmu <- function(mu) all(mu > 0) && all(mu < 1)

dev.resids <- function(y, mu , wt) {

devy <-y
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nz<-y!=0

devy[nz]<-y[nz]*log(y[nz])

nz<-(1-y)!=0

devy[nz]<-devy[nz]+(1-y[nz])*log(1-y[nz])

devmu <-y*log(mu)+(1-y)*log(1-mu)

if(any(small <- mu*(1-mu) < .Machine$double.eps)) {

warning("fitted values close to 0 or 1")

smu <-mu[small]

sy<-y[small]

smu <-ifelse(smu < .Machine$double.eps , .Machine$double.eps ,smu)

onemsmu <-ifelse ((1-smu) < .Machine$double.eps , .Machine$double.

eps ,1-smu)

devmu[small]<-sy*log(smu)+(1-sy)*log(onemsmu)

}

devi <-2*(devy -devmu)

wt*devi

}

aic <- function(y, n, mu , wt , dev) {

m <- if (any(n > 1))

n

else wt

-2 * sum(ifelse(m > 0, (wt/m), 0) * dbinom(round(m * y), round(m),

mu , log = TRUE))

}

initialize = expression( {

if (NCOL(y) == 1) {

if (is.factor(y)) y <- y != levels(y)[1]

n <- rep(1, nobs)

if (any(y < 0 | y > 1)) stop("y values must be 0 <= y <= 1")

mustart <- (weights * y + 0.5)/(weights + 1)

m <- weights * y

if (any(abs(m - round(m)) > 0.001)) warning("non -integer #

successes in a binomial glm!")

} else if (NCOL(y) == 2) {

if (any(abs(y - round(y)) > 0.001)) warning("non -integer counts

in a binomial glm!")

n <- y[, 1]+ y[, 2]

y <- ifelse(n == 0, 0, y[, 1]/n)

weights <- weights * n

mustart <- (n * y + 0.5)/(n + 1)

} else stop(paste("For the binomial family , y must be",

"a vector of 0 and 1’s or a 2 column", "matrix

where col 1 is no. successes",

"and col 2 is no. failures"))

} )

structure(list(family = "Aranda", link = lambda , linkfun = linkfun ,

linkinv = linkinv ,

variance = variance , dev.resids = dev.resids , aic =

aic , mu.eta = mu.eta ,

initialize = initialize , validmu = validmu , valideta

= valideta), class = "family")
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}

}

A.2 Czado Link Function

The code here available corresponds to the code necessary for the GLM Czado link function.

In order for the code to work for a GAM the only difference lies in replacing the class "family"

for "link-gamlss".

Listing A.2: Czado GLM link function

czado_glm <- function(psi1 = 1, psi2 = 1, eta0 = 0) {

care.exp <- function(x, thresh = about36) {

about36 <- - log(. Machine$double.eps)

thresh <- min(thresh , about36)

x[x > thresh] <- thresh

x[x < ( - thresh)] <- - thresh

exp(x)

}

linkfun <- function(mu) {

f <- log(mu/(1-mu))

for (i in 1: length(f)){

h<-f

if((( alpha1*(mu -eta0)+1) ^(1/psi1) -1+eta0)[i] >= eta0){

h[i] <- (psi1*(f[i]-eta0) + 1)^(1/psi1) + eta0 - 1

} else {

h[i] <- eta0 + 1 - (psi2*(eta0 -f[i]) + 1)^(1/psi2)

}

}

return(h)

}

linkinv <- function(eta) {

f<-eta

for (i in 1: length(eta)){

if(eta[i] >= eta0){

f[i] <- eta0 + ((eta[i] - eta0 + 1)^psi1 - 1)/psi1

} else {

f[i] <- eta0 - ((-eta[i] + eta0 + 1)^psi2 - 1)/psi2
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}}

out = care.exp(f)/(1+ care.exp(f))

return(out)

}

mu.eta <- function(eta){

f<-eta

g<-eta

logistica.f <- eta

a <- eta

for (i in 1: length(eta)){

if(eta[i] >= eta0){

g[i] <- (eta[i] - eta0 + 1)^(psi1 -1)

f[i] <- eta0 + ((eta[i] - eta0 + 1)^psi1 - 1)/psi1

logistica.f[i] <- 1/(1+ care.exp(-f[i]))

a[i] <- (logistica.f[i]*(1-logistica.f[i]))*g[i]

}else{

g[i] <- (-eta[i] + eta0 + 1)^(alpha2 -1)

f[i] <- eta0 - ((-eta[i] + eta0 + 1)^alpha2 - 1)/alpha2

logistica.f[i] <- 1/(1+ care.exp(-f[i]))

a[i] <- (logistica.f[i]*(1-logistica.f[i]))*g[i]

}

}

return(a)

}

valideta <- function(eta) TRUE

variance <- function(mu) mu * (1 - mu)

validmu <- function(mu) all(mu > 0) && all(mu < 1)

dev.resids <- function(y, mu , wt) {

devy <-y

nz<-y!=0

devy[nz]<-y[nz]*log(y[nz])

nz<-(1-y)!=0

devy[nz]<-devy[nz]+(1-y[nz])*log(1-y[nz])

devmu <-y*log(mu)+(1-y)*log(1-mu)

if(any(small <- mu*(1-mu) < .Machine$double.eps)) {

warning("fitted values close to 0 or 1")

smu <-mu[small]

sy<-y[small]

smu <-ifelse(smu < .Machine$double.eps , .Machine$double.eps ,smu)

onemsmu <-ifelse ((1-smu) < .Machine$double.eps , .Machine$double.

eps ,1-smu)

devmu[small]<-sy*log(smu)+(1-sy)*log(onemsmu)
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}

devi <-2*(devy -devmu)

wt*devi

}

aic <- function(y, n, mu , wt , dev) {

m <- if (any(n > 1))

n

else wt

-2 * sum(ifelse(m > 0, (wt/m), 0) * dbinom(round(m * y), round(m),

mu , log = TRUE))

}

initialize = expression( {

if (NCOL(y) == 1) {

if (is.factor(y)) y <- y != levels(y)[1]

n <- rep(1, nobs)

if (any(y < 0 | y > 1)) stop("y values must be 0 <= y <= 1")

mustart <- (weights * y + 0.5)/(weights + 1)

m <- weights * y

if (any(abs(m - round(m)) > 0.001)) warning("non -integer #

successes in a binomial glm!")

} else if (NCOL(y) == 2) {

if (any(abs(y - round(y)) > 0.001)) warning("non -integer counts

in a binomial glm!")

n <- y[, 1] + y[, 2]

y <- ifelse(n == 0, 0, y[, 1]/n)

weights <- weights * n

mustart <- (n * y + 0.5)/(n + 1)

} else stop(paste("For the binomial family , y must be",

"a vector of 0 and 1’s or a 2 column", "matrix

where col 1 is no. successes",

"and col 2 is no. failures"))

} )

structure(list(family = "Czado", link = c(psi1 , psi2), linkfun =

linkfun , linkinv = linkinv ,

variance = variance , dev.resids = dev.resids , aic =

aic , mu.eta = mu.eta ,

initialize = initialize , validmu = validmu , valideta

= valideta), class = "family")

}
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