
applied  
sciences

Article

Glyphosate-Based Herbicide Toxicophenomics in
Marine Diatoms: Impacts on Primary Production
and Physiological Fitness

Ricardo Cruz de Carvalho 1,2,* , Eduardo Feijão 1, Ana Rita Matos 3,4 , Maria Teresa Cabrita 5,
Sara C. Novais 6, Marco F. L. Lemos 6 , Isabel Caçador 1,4, João Carlos Marques 7,
Patrick Reis-Santos 1,8 , Vanessa F. Fonseca 1,9 and Bernardo Duarte 1,4

1 MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa,
Campo Grande, 1749-016 Lisbon, Portugal; emfeijao@fc.ul.pt (E.F.); micacador@fc.ul.pt (I.C.);
pnsantos@fc.ul.pt (P.R.-S.); vffonseca@fc.ul.pt (V.F.F.); baduarte@fc.ul.pt (B.D.)

2 cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon,
Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal

3 BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de
Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa,
Portugal; armatos@fc.ul.pt

4 Departamento de Biologia Vegetal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
1749-016 Lisboa, Portugal

5 Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT) da
Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal; tcabrita@campus.ul.pt

6 MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
sara.novais@ipleiria.pt (S.C.N.); marco.lemos@ipleiria.pt (M.F.L.L.)

7 University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences,
3000 Coimbra, Portugal; jcmimar@ci.uc.pt

8 Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide,
SA 5005, Australia

9 Departamento de Biologia Animal da Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
1749-016 Lisboa, Portugal

* Correspondence: rfcruz@fc.ul.pt

Received: 9 September 2020; Accepted: 19 October 2020; Published: 22 October 2020
����������
�������

Featured Application: Application of non-invasive bio-optical techniques to evaluate the ecotoxicity
of glyphosate-based pesticide in marine diatoms with confirmation by classical biochemical tools.

Abstract: Glyphosate is the main active component of the commercial formulation Roundup®,
the most widely used chemical herbicide worldwide. However, its potential high toxicity to the
environment and throughout trophic webs has come under increasing scrutiny. The present study
aims to investigate the application of bio-optical techniques and their correlation to physiological
and biochemical processes, including primary productivity, oxidative stress, energy balance,
and alterations in pigment and lipid composition in Phaeodactylum tricornutum, a representative
species of marine diatoms, using the case study of its response to the herbicide glyphosate-based
Roundup® formulation, at environmentally relevant concentrations. Cultures were exposed to
the herbicide formulation representing effective glyphosate concentrations of 0, 10, 50, 100, 250,
and 500 µg L−1. Results showed that high concentrations decreased cell density; furthermore,
the inhibition of photosynthetic activity was not only caused by the impairment of electron transport
in the thylakoids, but also by a decrease of antioxidant capacity and increased lipid peroxidation.
Nevertheless, concentrations of one of the plastidial marker fatty acids had a positive correlation with
the highest concentration as well as an increase in total protein. Cell energy allocation also increased
with concentration, relative to control and the lowest concentration, although culture growth was
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inhibited. Pigment composition and fatty acid profiles proved to be efficient biomarkers for the
highest glyphosate-based herbicide concentrations, while bio-optical data separated controls from
intermediate concentrations and high concentrations.

Keywords: photobiology; energetic metabolism; pesticide; oxidative stress; glyphosate

1. Introduction

In recent years, the concern over emerging pollutants and their effects on the marine biota
metabolism has grown exponentially. Man-made contaminants invariably present new challenges in
monitoring efforts and risk prevention [1]. These chemicals, including pesticides, pharmaceuticals,
and personal and household care products, are used daily worldwide and their presence in the
environment stems from an exponential increase in human activities related to their usage [2].
In the first decade of the 21st century, more than 50% of the total production of chemicals included
environmentally harmful compounds [3]. Furthermore, the speed of technological advances made
in synthetic chemical production continues to increase the list of these novel substances [4], raising
important questions and concerns about their ecotoxicity and efficient monitoring methodologies.

Glyphosate (N-(phosphonomethyl) glycine) is a phosphonate herbicide and the main active
ingredient in the commercial mixture Roundup®, the most used chemical herbicide worldwide [5,6].
Glyphosate is a broad-spectrum herbicide with a unique mode of action: It acts as a glycine analogue,
inhibiting the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) of the shikimate pathway,
thus affecting the synthesis of aromatic amino acids [7]. The dramatic increase in its use globally
is also associated with the development of glyphosate-tolerant crops that present a tolerant EPSPS
synthase and/or a glyphosate metabolism gene [8]. Being relatively unsusceptible to chemical- and
photodecomposition, glyphosate can easily reach coastal and marine areas via a multitude of direct
and/or diffuse pathways [9]. While pesticides are mainly used in both agriculture and weed control,
their persistence in any given aquatic environment can allow them to be carried into remote marine
environments, although the exact means by which this occurs is still a subject under debate [10,11].

Marine phytoplankton is a key biomonitor in many marine trophic webs which, under natural
conditions, responds to a wide range of environmental disturbances and contamination events [12–16]
and any impacts at this level are highly likely to lead to bottom-up impacts. Glyphosate was shown to
impair cyanobacteria growth at concentrations as low as 50 µg L−1 [17], and in freshwater, glyphosate
influences microbial community structure, changing the community from green algae and diatoms
(glyphosate sensitive) to cyanobacteria (glyphosate tolerant) [18,19]. Moreover, structural changes to
marine communities have been associated with glyphosate application [20]. Ultimately, ecotoxicological
studies on marine organisms are of the utmost importance to establish guidelines to safeguard local
biodiversity and the functioning of estuarine, coastal, and marine environments [21,22].

Diatoms, as part of phytoplankton, are among the first organisms to be affected by contaminants,
quickly responding to suspended toxicants due to their small size (0.2–200 µm) and high uptake
rates [13,23–26]. Diatoms are also constantly re-adjusting the equilibrium between energy production
from photosynthesis and energy consumption under environmental stress conditions, an ability that
undermines their success in highly dynamic coastal and estuarine environments [27]. While they are
responsible for half of all the photosynthesis on Earth and thus have an important role in the global
biological carbon pump and the silica cycle [28], our knowledge of carbon allocation regulation in
diatoms is very limited, particularly because of these present distinct metabolic compartmentations
and additional metabolic pathways in comparison to the more widely studied green algae [29–32].

Diatoms are also major marine producers of specific fatty acids [32], including essential fatty acids
(EFA), linoleic acid (omega-6 [ω-6] class), and α-linolenic acid (ALA). Diatoms also produce long-chain
polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid
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(DHA) (omega-3 [ω-3] class) [33]. Vertebrates cannot synthesize essential fatty acids and the ability to
produce LC-PUFA is also limited; they do not obtain these through their diet [34,35]. Furthermore,
LC-PUFA plays key roles in animal and human health, being major components of neurological
tissues [36].

Photosynthesis has been shown to be impaired by glyphosate-based herbicides within wide ranges
of concentrations, including in cordgrass Spartina densiflora from spray application at concentrations of
720–7200 g ha−1 [37], to direct contact of 10–80 mg L−1 in Anabaena fertilissima [38]. In both cases, there
was inhibition of CO2 assimilation and depletion of intermediates from the photosynthetic carbon
reduction cycle due to deregulation of the shikimate pathway [39,40]. In such scenarios, non-invasive
high-throughput bio-optical screening tools, such as Pulse Amplitude Modulated (PAM) fluorometry,
emerge as invaluable techniques to evaluate ecotoxicity in photosynthetic organisms [12,41,42].
Through PAM it is possible to translate the fluorescence signals as proxies to the bioenergetics involved
in photosynthesis in a non-destructive form [13,41–44] to efficiently assess primary productivity [45,46]
and the physiological effects in plant material at different concentrations of contaminants [12,41,42,44].

The half-life of glyphosate in water varies between 45 and 60 days [47] and phytoplankton have a
fast response in the presence of contaminants [13,25]. Thus, it is of the utmost importance to evaluate
the potential effects of glyphosate in the environment, namely on primary producers. The present
study aimed to correlate bio-optical data with the ecotoxicological effects of the exposure of the
glyphosate-based herbicide Roundup® (i.e., currently found in estuarine and marine systems) [48–51],
with the working hypothesis that, similarly to other photosynthetic organisms, this herbicide will have
a negative impact on primary productivity, antioxidant enzyme activity, energy balance, pigment and
fatty acid composition of the model diatom Phaeodactylum tricornutum, and its potential implications
on estuarine or coastal marine ecosystems.

2. Materials and Methods

2.1. Experimental Setup

The model diatom P. tricornutum Bohlin (Bacillariophyceae) (IO 108–01, IPMA, ALISU—Algae
Collection of the University of Lisbon, Lisbon, Portugal) was harvested from monoclonal cultures
in 250 mL of f/2 medium [52] in culture flasks (Drechsel-type gas washing bottles) under controlled
conditions for 4 days (18 ± 1 ◦C, under constant aeration and a 14 h light/10 h dark photoperiod).
The growth chamber was programmed to simulate sunrise and sunset using a sinusoidal function with
a light intensity at noon simulating a natural light environment (RGB 1:1:1, Maximum PAR 80 µmol
photons m−2 s−1, 14/10 h day/night rhythm). According to the Organization for Economic Cooperation
and Development (OECD) guidelines for algae bioassays [53] and the recommended initial cell density
for microalgae cells with similar size to P. tricornutum, initial cell concentration was approximately
2.7 × 105 cells mL−1. Forty-eight hours after inoculation, cultures were exposed to 0, 10, 50, 100, 250,
or 500 µg L−1 glyphosate for 48 h [24,41,46], obtained from the glyphosate-based herbicide “Roundup®

Pronto” containing 7.2 g L−1 of glyphosate. Since no studies have measured glyphosate in marine
water, the herbicide concentrations were chosen based on the range of environmental concentrations
found in agricultural water streams in relevant literature [49–52], as it was found that this chemical
presents the same half-life in saltwater as it does in freshwater [10,11]. While other substances compose
Roundup®, glyphosate is the main active component. Exposure took place 48 h after inoculation
to ensure that the experiment was performed during the cell exponential growth phase [24,41,46].
There were three replicates for each herbicide concentration from a total of 18 experimental units.
To avoid contamination, the labware was washed with HNO3 (20%) for 48 h, rinsed thoroughly with
ultra-pure water and autoclaved. All culture manipulations were performed in a laminar airflow
chamber using aseptic techniques.



Appl. Sci. 2020, 10, 7391 4 of 21

2.2. Growth Rates and Cell Harvesting

During the exposure trials, daily cell counting of P. tricornutum subjected to different glyphosate-based
herbicide concentrations was performed using a Neubauer improved counting chamber, with an
Olympus BX50 (Tokyo, Japan) inverted microscope, at 400-times magnification. Culture growth was
determined from the difference between initial and final logarithmic cell densities divided by the
exposure period [54], expressed as the mean specific growth rate per day. Samples for photochemical
and biochemical analysis were collected after 48 h of exposure to glyphosate-based herbicide (4 days
after inoculation). Based on the glyphosate-based herbicide concentrations, we determined the No
Observed Effect Concentration (NOEC) and the Lowest Observed Effect Concentration (LOEC) [55].
Furthermore, by application of a sigmoidal dose-response curve to the endpoint measurement for
each exposure concentration, we also determined the Effective Concentration (EC) which inhibited
growth by 10% (EC10), 25% (EC25), and 50% (EC50) [55]. At the end of the exposure time and after
the chlorophyll fluorescence measurements (see next section), samples of 30 mL of culture were
centrifuged at 4000× g for 15 min at 4 ◦C (Sigma 2-16K, Sigma Laborzentrifugen GmbH, Germany).
The supernatant was removed, and pellets were immediately frozen in liquid nitrogen and stored at
−80 ◦C until analysis.

2.3. Bio-Optical Assessment through Chlorophyll a Pulse Amplitude Modulated (PAM) Fluorometry

Pulse amplitude modulated (PAM) chlorophyll fluorescence measurements were performed
using a FluorPen FP100 (Photo System Instruments, Drasov, Czech Republic) on 15 min dark-adapted
samples using a 1 mL cuvette. Culture cell density was assessed daily, using a non-actinic light
to measure minimum chlorophyll fluorescence (F0). Analysis of chlorophyll transient light curves
(Kautsky plot) was carried out using the OJIP test according to [41]. Fluorometric analysis parameters
and their description can be accessed in Table 1.

Table 1. Fluorometric analysis parameters and their description.

OJIP Test

Area Corresponds to the oxidized quinone pool size available for reduction and is a function
of the area above the Kautsky plot

N Reaction center turnover rate

SM Corresponds to the energy needed to close all reaction centers

M0 Net rate of PS II RC closure

γRC Probability that a PS II chlorophyll molecule will function as an RC

PG Grouping probability between the two PS II units

ABS/CS Absorbed energy flux per cross-section

TR/CS Trapped energy flux per cross-section

ET/CS Electron transport energy flux per cross-section

DI/CS Dissipated energy flux per cross-section

RC/CS Number of available reaction centers per cross-section

TR0/DI0 Contribution or partial performance due to the light reactions for primary photochemistry

δR0/(1 − δR0) Contribution of PS I, reducing its end acceptors

ψ0/(1 − ψ0) Contribution of the dark reactions from QA
− to PC

ψE0/(1 − ψE0) Equilibrium constant for the redox reactions between PS II and PS I

RE0/RC Electron transport from PQH2 to the reduction of PS I end electron acceptors

RC/ABS Reaction center II density within the antenna chlorophyll bed of PS II
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2.4. Pigment Analysis

Pigment extraction was performed according to methodologies from previous works [12,13,46].
Pure acetone was added to sample pellets and maintained in an ultra-sound cold bath for 2 min,
ensuring total disaggregation of cell material, and kept in the dark at −20 ◦C for 24 h to prevent
degradation. Samples were centrifuged for 15 min at 4000× g and 4 ◦C and the supernatants were
scanned by a dual-beam spectrophotometer from 350 nm to 750 nm at 0.5 nm steps (Shimadzu UV-1603,
Shimadzu Co., Kyoto, Japan). Using the SigmaPlot Software, the absorbance spectrum was introduced
in the Gauss-Peak Spectra (GPS) fitting library. Pigment analysis was performed according to [56],
allowing the detection of chlorophyll a and c, pheophytin a, β-carotene, fucoxanthin, diadinoxanthin
(DD), and diatoxanthin (DT).

2.5. Antioxidant Enzyme Assays

The soluble protein fraction was extracted at 4 ◦C from cell pellets in 1 mL of 50 mM sodium
phosphate buffer (pH 7.6) with 0.1 mM Na-EDTA and placed in an ultrasound bath for 1 min from the
previously collected pellets. The homogenate was centrifuged at 10,000× g for 10 min at 4 ◦C to remove
debris and the supernatant collected to a new tube. Protein concentration was determined according
to [57]. Catalase (CAT) activity was measured according to [58], monitoring H2O2 consumption and the
consequent decrease in absorbance at 240 nm (ε = 39.4 mM−1 cm−1). The reaction mixture contained
50 mM of sodium phosphate buffer (pH 7.6), 0.1 mM of Na-EDTA, and 100 mM of H2O2 with the
reaction being started by the addition of 100 µL of extract. Ascorbate peroxidase (APX) was assayed
according to [59]. The reaction mixture contained 50 mM of sodium phosphate buffer (pH 7.0), 5 µM of
H2O2, and 0.25 µM L-ascorbate, and the reaction was also initiated with the addition of 100 µL of the
extract. The activity was recorded as the decrease in absorbance at 290 nm and the amount of ascorbate
oxidized calculated from the molar extinction coefficient (ε = 2.8 mM−1 cm−1). Superoxide dismutase
(SOD) activity was assayed according to [60] by monitoring the reduction of pyrogallol at 325 nm.
The reaction mixture contained 50 mM of sodium phosphate buffer (pH 7.0) and 0.24 mM of pyrogallol
and ultra-pure water, with the reaction being started by the addition of 10 µL of extract. Control assays
were done in the absence of substrate to evaluate the autoxidation of the substrates. All the assays
were performed at 25 ◦C in a UV500 UV-Visible Spectrometer (Unicam, Waltham, MA, USA).

2.6. Lipid Peroxidation Analysis

Lipid peroxidation products were determined according to [61]. Sample pellets were homogenized
briefly in 1.5 mL of 10% (v/v) Trichloroacetic acid (TCA), containing 0.4% (w/v) thiobarbituric acid
(TBA) and placed in an ultrasound bath for 1 min. The reaction was conducted at 100 ◦C for 30 min;
immediately after it was halted through placement in ice, and after centrifugation at 15,000× g for
10 min at 4 ◦C, 1 mL of the supernatant was collected and mixed with 1 mL of 0.4% TBA and incubated
again under the same conditions. After again cooling down in ice and centrifuging, the absorbance
at 532 nm and 600 nm of the supernatant was recorded by spectrophotometry. The concentration of
malondialdehyde (MDA) was determined using the molar extinction coefficient (ε = 155 mM−1 cm−1).

2.7. Fatty Acid Profiles

The fatty acid analysis was performed according to [46] by direct trans-esterification of sample
pellets, in freshly prepared methanol sulfuric acid (97.5:2.5, v/v), at 70 ◦C for 60 min, using the internal
standard pentadecanoic acid (C15:0). Fatty acid methyl esters (FAMEs) were recovered using petroleum
ether, dried with an N2 flow, and re-suspended in an adequate amount of hexane. Through gas
chromatography (Varian 430-GC gas chromatograph equipped with a hydrogen flame ionization
detector set at 300 ◦C, Middelburg, The Netherlands), 1 µL of the FAME solution was analyzed,
setting the injector temperature to 270 ◦C, with a split ratio of 50. The fused-silica capillary column
(50 m × 0.25 mm; WCOT Fused Silica, CP-Sil 88 for FAME; Varian, Middelburg, The Netherlands)
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was maintained at a constant nitrogen flow of 2.0 mL min−1 and the oven set to 190 ◦C. Fatty acids
identification was performed by comparison of retention times with standards (Sigma-Aldrich) and
chromatograms analyzed by the peak surface method, using the Galaxy software. To determine the
membrane saturation levels, the double bond index (DBI) was calculated according to [46]:

DBI =
2 × (% monoenes + 2×% dienes + 3×% trienes + 4×% tetraenes + 5×% pentaenes)

100
(1)

2.8. Energy Balance

Cell pellets were homogenized by ultrasonication on ice (3x 10s at A = 20%) using 1 mL of Milli-Q
water. Aliquots were taken from each sample for the analysis of lipid, carbohydrate and protein
contents, and electron transport system (ETS) activity. In all assays, ultrapure water was used as
reaction blank. The spectrophotometric measurements were performed in triplicates, at 25 ◦C, using a
synergy H1 Hybrid Multi-Mode microplate reader (Biotek® Instrument, Winooski, VT, USA).

2.8.1. Energy Available

The energy available (Ea) was measured by determining the total protein, carbohydrate, and lipid
contents and transforming the results into energetic equivalents (combustion energies: 17,500 mJ mg
carbohydrates−1, 24,000 mJ mg protein−1, and 39,500 mJ mg lipid−1) [61]. Extraction and quantification
of total lipids, proteins, and carbohydrates were performed according to [62,63] with minor
modifications [64]. Cell pellets were resuspended in 50 mM sodium phosphate buffer (pH 7) containing
1 mM phenylmethylsulfonyl fluoride (PMSF). Cell disruption was performed with 0.42–0.6 mm
glass beads (Sigma-Aldrich) for 15 min at 6.5 ms–1 (FastPrep-24, MP Biomedicals). Cell extract was
centrifuged at 10,000× g for 20 min at 4 ◦C. The supernatant was stored at −80 ◦C until further analysis.
Total protein content in the samples was determined using Bradford’s method [56]. Total lipids were
extracted by adding 250 µL of chloroform (spectrophotometric grade, Sigma-Aldrich), 250 µL of
methanol (spectrophotometric grade, Sigma-Aldrich) and 125 µL Milli-Q water to 150 µL of the sample.
After centrifugation at 1000× g for 5 min, the organic phase and interphase were removed and 500 µL
of H2SO4 was added to 100 µL of lipid extract and charred for 15 min at 200 ◦C. The mixture was
cooled down to 20 ◦C, 1.5 mL of deionized water was added, and total lipid content was determined
by measuring the absorbance at 375 nm and compared to a calibration curve using tripalmitin values
as standard. Total carbohydrate content was determined by adding 50 µL of 15% TCA to the 150 µL
of sample and subjected to −20 ◦C for 10 min. After centrifugation at 1000× g for 10 min, the total
carbohydrate content of the supernatant fraction was quantified by adding 50 µL of 5% (v/v) phenol
and 200 µL of 18 M H2SO4 to 50 µL extract [65]. Following 30 min of incubation at 20 ◦C, absorbance
was measured at 492 nm and compared to a calibration curve using glucose as standard.

2.8.2. Energy Consumption

Cellular oxygen consumption and metabolism are directly linked to mitochondrial ETS activity.
As such, ETS was determined according to [66] with major modifications [65]. In 30 µL of sample
or blank, 20 µL of homogenizing buffer [0.3 M Tris, 15% (w/v) polyvinyl pyrrolidone (PVP), 459 µM
MgSO4, 1.5 mL Triton X-100, pH 8.5], 100 µL of buffered substrate solution (reduced nicotinamide
adenine dinucleotide (NADH) (1.79 mM) and reduced nicotinamide adenine dinucleotide phosphate
(NADPH) (280 µM) in 0.13 M Tris, 0.3% (w/v) Triton X-100, pH 8.5) were added. The reaction was
initiated by adding 50 µL of 8 mM p-iodonitrotetrazolium (INT), following the change in absorbance
at 490 nm over a 3 min period at 20 ◦C. The formazan formed was calculated by using the extinction
coefficient, ε = 15,900 mM–1 cm–1.

The cellular energy consumption (Ec) was determined by using the ETS data (for each 2 µmol of
INT-formazan formed, 1 µmol of O2 was consumed in the ETS), transforming the calculated quantity
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of oxygen consumed into energetic equivalents by using the specific oxyenthalpic equivalents for an
average lipid, protein, and carbohydrate mixture of 480 kJ mol O2

−1 [62].

2.8.3. Cellular Energy Allocation

The cellular energy allocation (CEA), a methodological approach that integrates the energy
available and energy consumption of an organism, was standardized to 106 cells and calculated based
on measurements of lipid, carbohydrate, and protein content and ETS activity for each sample as
follows [67]:

CEA =
Ea
Ec

(2)

where:
Ea (available energy) = carbohydrate + lipid + protein

(
mJ 10−6 cells

)
(3)

Ec (energy consumption) = ETS activity
(
mJ h−1 10−6 cells

)
(4)

2.9. Statistical Analysis

Each variable was evaluated through one-way ANOVA with Tukey’s multiple comparisons test
(GraphPad Prism 6.03 for Windows, GraphPad Software, San Diego, CA, USA), regarding differences
among glyphosate-based herbicide concentrations. The data obtained from the Kautsky plots, pigment,
and fatty acid profiles, were used as the basis for the construction of the respective resemblance
matrixes based on the Euclidean distances between samples. To classify and separate the different
treatment groups, statistical multivariate models based on the Kautsky plot, pigment composition,
and fatty acid profile variable were generated using Canonical Analysis of Principal Coordinates
(CAP), through the non-parametric multivariate analysis packages in Primer 6 software as described
previously in other works [12,45,68,69].

3. Results

3.1. Cell Growth Rates

Regarding cell density, after 48 h exposure P. tricornutum cultures were negatively affected,
in particular by the two highest concentrations of glyphosate-based herbicide (250 and 500 µg L−1),
with slight decreases in cell density observed only at lower concentrations (50 and 100 µg L−1)
(Figure 1A).
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Figure 1. Growth indicators ((A) cell density and (B) derived growth parameters) of Phaeodactylum
tricornutum following exposure to a herbicide formulation representing different glyphosate-based
herbicide concentrations for (A) 24 h and 48 h, and (B) 48 h (mean ± s.d., n = 3, different letters indicate
significant differences at p < 0.05).
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However, after 48 h exposure only decreases in specific growth rates, with lower divisions
per day and higher doubling time, were observed at the highest glyphosate-based herbicide
concentrations (>250 µg L−1) (Figure 1B). Therefore, a negative effect was observed in the two highest
herbicide formulation concentrations regarding all the determined growth parameters. Based on
the glyphosate-based herbicide concentrations present in the environment surrounding the diatom
population used in the experiment, we determined the respective NOEC (10 µg L−1), the LOEC
(50 µg L−1), the EC10 (15.4 µg L−1), the EC25 (94.4 µg L−1), and the EC50 (225.9 µg L−1).

3.2. Bio-Optical Assessment of Diatom Photochemistry

Apart from the lowest concentration (10µg L−1), the Kautsky plots showed decreasing fluorescence
values with increasing herbicide quantities (Figure 2), particularly at the highest glyphosate-based
herbicide concentrations (250 and 500 µg L−1).
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Figure 2. Chlorophyll transient kinetics (OJIP curves) in Phaeodactylum tricornutum following a 48 h
exposure to a glyphosate-based herbicide formulation in different concentrations (mean ± s.d., n = 3).

The analysis of the photochemical process from light-harvesting electronic transport, represented
by the four main energy fluxes, demonstrates the effects of exposure of the different herbicide
concentrations in P. tricornutum cultures (Figure 3).

The amount of energy absorbed by the photosystem II (PS II) antennae (ABS/CS), the energy flux
that was effectively trapped inside the PS II (TR/CS) and transported within the electron transport
chain (ETC) (ET/CS), as well as in the energy dissipation flux (DI/CS) and the reduction of the
number of oxidized PS II reaction centers (RC/CS), all showed the same pattern with increasing
concentrations. Overall, no effects relative to the control were observed at the lowest glyphosate-based
herbicide concentration (10 µg L−1), but a small decreasing effect of intermediate concentrations (50 and
100 µg L−1) and a high decrease in the highest glyphosate-based herbicide concentrations (250 and
500 µg L−1) was evident. These changes can be further analyzed through inspection of the functioning
of different components of the photosystems and ETC in response to glyphosate-based herbicide
concentration (Supplementary Figure S1). Regarding the oxidized quinone pool size, there was a
decrease only in the highest glyphosate-based herbicide concentrations (250 and 500 µg L−1). However,
there were no significant changes in the number of QA redox turnovers until maximum fluorescence
was reached (N), except for the highest concentration in which enhancement was observed. The same
pattern occurred in the energy needed to close (reduce) all RCs (SM). At the highest glyphosate-based



Appl. Sci. 2020, 10, 7391 9 of 21

herbicide exposure concentrations (250 and 500 µg L−1), a decrease in the probability of a PS II
chlorophyll molecule functioning as an RC (γRC) was detected. However, no differences were observed
in the QA reduction rate (M0).
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Figure 3. The energy fluxes (absorbed (ABS/CS), trapped (TR/CS), transported (ET/CS) and dissipated
(DI/CS)) and the number of available reaction centers per cross-section (RC/CS) in Phaeodactylum
tricornutum following a 48 h exposure to a glyphosate-based herbicide formulation in different
concentrations (mean ± s.d., n = 3, different letters indicate significant differences at p < 0.05).

While the active OECs showed a decrease only under the highest glyphosate-based herbicide
concentration (500 µg L−1), the PG, the grouping probability that correlates with the disconnection
between the two PS II units, increased with the highest glyphosate-based herbicide concentration
(250 and 500 µg L−1) (Figure 4).

Between PS II and PS I, photochemical processes showed a significant decrease in the contribution of
light (TR0/DI0) and dark (ψ0/1−ψ0) reactions of the photochemical cycle in the highest glyphosate-based
herbicide concentration (250 and 500 µg L−1). A similar pattern was observed in the reaction center
density within the PS II antenna chlorophyll bed (RC/ABS). On the other hand, at the PS I level there
was a significant enhancement in the activity of this photosystem (δR0/1− δR0) in response to the highest
glyphosate-based herbicide concentrations, also leading to an increase in the equilibrium constant
for the redox reaction between both photosystems towards the PS II (ψE0/(1 − ψE0)). Furthermore,
regarding PS I, intrinsic changes led, in turn, to an increase of the electron transport from PQH2 to the
reduction of the PS I end acceptors (RE0/RC).

In the rapid light curve (RLC)-derived parameters, the photosynthetic efficiency (α) and the
maximum electron transport rate (ETRmax) only decreased with the highest glyphosate-based
herbicide concentration (500 µg L−1), with no effect on photoinhibition (β) and light saturation
(Ek), with only a slight reduction at 250 µg L−1 glyphosate-based herbicide exposure in the latter
parameter (Supplementary Figure S2).
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Figure 4. Photosystems I (PS I) and II (PS II) photochemical traits (A), active oxygen-evolving complexes
(OECs); (B), grouping probability between the two PS II units (PG); (C), the contribution of the dark
reactions from quinone A to plastoquinone (ψ0/(1 − ψ0)); (D), the equilibrium constant for the redox
reactions between PS II and PS I (ψE0/(1 − ψE0); (E), electron transport from PQH2 to the reduction
of PS I end electron acceptors (RE0/RC); (F), the contribution of PS I reducing its end acceptors
(δR0/(1 − δR0); (G), reaction center II density within the antenna chlorophyll bed of PS II (RC/ABS);
(H), contribution or partial performance due to the light reactions for primary photochemistry (TR0/DI0)),
in Phaeodactylum tricornutum following a 48 h exposure to a glyphosate-based herbicide formulation in
different concentrations (mean ± s.d., n = 3, different letters indicate significant differences at p < 0.05).

3.3. Diatom Pigment Composition

Overall, the highest glyphosate-based herbicide concentration (500 µg L−1) elicited significant
increases in pigment concentrations (Figure 5).
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Figure 5. Pigment profile content (chlorophyll a (Chl a), chlorophyll c (Chl c), pheophytin a (Pheo a),
β carotene (β Carot), fucoxanthin (Fuco), diadinoxanthin (DD), and diatoxanthin (DT)) in Phaeodactylum
tricornutum following a 48 h exposure to a glyphosate-based herbicide formulation in different
concentrations (mean ± s.d., n = 3, different letters indicate significant differences at p < 0.05).

3.4. Diatom Antioxidant Enzymes

The total protein content in P. tricornutum only showed a significant increase at the highest
glyphosate-based herbicide concentration (500 µg L−1) (Figure 6A). Regarding the antioxidant enzymes
CAT, APX, and SOD (Figure 6B–D), only the latter showed statistical differences and only at the highest
glyphosate-based herbicide concentration (500 µg L−1), where activity decreased significantly.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 23 
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Figure 6. Protein content (A), catalase (CAT, B), ascorbate peroxidase (APX, C), and superoxide
dismutase (SOD, D) enzymatic activities in Phaeodactylum tricornutum following a 48 h exposure to a
glyphosate-based herbicide formulation in different concentrations (mean ± s.d., n = 3, different letters
indicate significant differences at p < 0.05).
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3.5. Diatom Lipid Peroxidation and Fatty Acid Profile

Lipid peroxidation in P. tricornutum increased greatly after being subjected to the two highest
glyphosate-based herbicide concentrations (250 and 500 µg L−1) (Figure 7).
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Figure 7. Lipid peroxidation quantification, measured as malondialdehyde (MDA) equivalents,
in Phaeodactylum tricornutum following a 48 h exposure to a glyphosate-based herbicide formulation in
different concentrations (mean ± s.d., n = 3, different letters indicate significant differences at p < 0.05).

The total fatty acid content of P. tricornutum increased about two-fold after exposure to the two
highest concentrations of the herbicide formulation for 48 h (Figure 8). The fatty acid (FA) profile was
also affected by the same concentrations (Figure 9).
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Figure 8. Total fatty acid content in Phaeodactylum tricornutum following a 48 h exposure to a
glyphosate-based herbicide formulation in different concentrations (mean ± s.d., n = 3, different letters
indicate significant differences at p < 0.05).

The eicosapentaenoic acid (EPA) (20:5), an omega-3 fatty acid, showed a significant decrease at the
highest glyphosate-based herbicide concentration, whilst triunsaturated hexadecatrienoic acid (16:3),
exclusively present in plastidial lipids, increased (Figure 9).

While no significant differences were observed for FA major classes and derived ratios
(Supplementary Figures S3 and S4), a tendency for an increase was observed in the omega 6/omega 3
ratio at the two highest concentrations of herbicide formulation (Supplementary Figure S5).
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Figure 9. Fatty acid profile in Phaeodactylum tricornutum following a 48 h exposure to a glyphosate-based
herbicide formulation in different concentrations (mean ± s.d., n = 3, different letters indicate significant
differences at p < 0.05).

3.6. Energy Balance

Regarding the energy balance in P. tricornutum, the two highest glyphosate-based herbicide
concentrations (250 and 500 µg L−1) triggered an increase in Ea (within proteins, lipids, and carbohydrates)
and ETS, with CEA also higher in those concentrations and statistically different from control and the
lowest glyphosate-based herbicide concentration (10 µg L−1) but not from intermediate ones (50 and
100 µg L−1) (Figure 10).
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Figure 10. Energy balance ((A), energy available (Ea); (B), energy consumption rate (ETS); (C), cellular
energy allocation (CEA)) in Phaeodactylum tricornutum following a 48 h exposure to glyphosate-based
herbicide formulation in different concentrations (mean ± s.d., n = 3, different letters indicate significant
differences at p < 0.05).
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3.7. Multivariate Classification

The multivariate CAP analysis using the Kautsky plot, the pigment composition, and the fatty
acid profile of P. tricornutum cultures exposed to different glyphosate-based herbicide concentrations
revealed two different classifications, clearly dependent on the class of biomarkers applied (Figure 11).Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 23 
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Figure 11. Canonical analysis plot based on the Kautsky plot (A), pigment composition (B),
and fatty acid profile (C) of Phaeodactylum tricornutum following a 48 h glyphosate-based herbicide
formulation in different concentrations. Ellipses group samples with lower statistical distance based on
Euclidean resemblances.

The CAP plot based on the Kautsky plot allowed the separation in three groups: (1) Control,
(2) intermediate glyphosate-based herbicide concentrations (10 to 100 µg L−1), and (3) highest
glyphosate-based herbicide concentrations (250 and 500 µg L−1). On the other hand, the CAP analysis
of both pigment composition and fatty acid profile produced similar group classifications, clustering in
one group control and intermediate glyphosate-based herbicide concentrations (10 µg L−1 to 100 µg L−1)
but separating into distinct groups the highest glyphosate-based herbicide concentrations (250 and
500 µg L−1). The Kautsky plot CAP analysis produced the model with the highest overall classification
efficiency (72.2%), followed by the pigment content (61.1%) and lastly the fatty acid profile (44.4%).

4. Discussion

The cell density of Phaeodactylum tricornutum decreased with exposure to increasing concentrations
of glyphosate-based herbicide concentrations with an EC50 of 225.9 µg L−1. A comparable effect
was observed with similar glyphosate concentrations in freshwater diatoms Gomphonema parvulum,
Achnanthes minutissima, and Amphora veneta [19] and some cyanobacteria such as Planktothrix agardhii
and Microcystis aeruginosa [70]. Besides the potential direct effect of this herbicide, it is also possible
that, due to its chelating properties, the bioavailability of macro- and micronutrients (e.g., divalent
cations including calcium, magnesium, manganese, and iron) is reduced, limiting growth [71]. Current
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environmental concentrations and the unrestrained use of glyphosate-based products pose a continued
threat to diatom populations and likely bottom-up effects in trophic webs that need to be further
explored. The effect of the glyphosate-based mixture on P. tricornutum was very clear in several
photochemical-related variables and showed lower photosynthetic efficiency, particularly at the highest
concentrations of the glyphosate-based herbicide. However, exposure to the highest concentration led to
an increase in all pigments, particularly in chlorophyll content, in opposition to what has been described
for higher plants [72] and is likely a compensatory mechanism by which the diatoms counteract the
lower efficiency of the affected reaction centers. In other works [73–77], an increase in chlorophyll a
concentration was observed in algae communities exposed to low concentrations of atrazine (10 to
32 µg L−1) but not at higher concentrations. Thus, this rise in chlorophyll content associated with the
increase in fucoxanthin content may provide cells with the ability to counteract the decrease in the
number of RC/CS, and therefore an increase in the efficiency of each RC available to trap photons
occurs. In P. tricornutum, the PS II light-harvesting complex is composed of the fucoxanthin-chlorophyll
protein (FCP) complex, which may deregulate the light-harvesting capacity, increasing both the ability
to trap photons and the number of RC available for reduction [46]. However, there was an increase in
photoprotective pigments, including β-carotene, diadinoxanthin, and diatoxanthin, which often allows
the cells to increase the energy dissipation through non-photochemical processes, preventing possible
photoinhibitory events. Moreover, a decrease in the contribution of the dark reactions from QA

− to
plastocyanin reinforces the hypothesis that glyphosate at higher concentrations may have nefarious
effects on the responses studied, mainly at the ETC level in diatoms [45].

Regarding the fatty acid analyses, the most striking result was the significant increase in the total
lipid content, which was nearly twice that in control when cells were exposed to the two highest
herbicide concentrations. These increases in microalgae lipid contents are commonly associated with
stress conditions, such as nutrient limitation or temperature increase [16,46]. Additionally, exposure
to these higher glyphosate-based herbicide concentrations also induced changes in the fatty acid
profile of the diatom. It is interesting to note that concomitantly with the increase in the contents of
photosynthetic pigments there was also a rise in the relative amounts of 16:3 present in plastidial
lipids, namely monogalactosidiacylglycerol, one of the most abundant thylakoid lipids [46]. Changes
in chloroplastidial FA composition can lead to alterations of the redox potential [76]. Quinones in
the ETC are more efficient at the functional level, showing higher QA reduction rates, which follows
the mildly positive effects observed at the PS I level. On the other hand, there was a decrease in the
percentage of EPA, usually abundant in all P. tricornutum membranes, which likely translates into an
impairment in membrane-dependent reactions, such as transmembrane transport and thylakoid and
mitochondrial electron transport. This could explain the lower culture growth rates at the highest
glyphosate-based herbicide concentrations. Moreover, since EPA is an omega-3 fatty acid with key
roles in vertebrate biochemistry, the decrease in its contents (reflected also in the omega-6/omega-3
ratio) is likely to negatively affect the nutritional quality of the diatom, inevitably impacting all the
trophic web [77]. Nevertheless, because P. tricornutum showed tolerance to the lowest glyphosate-based
herbicide concentrations (up to 100 µg L−1) and is still able to remain alive in the highest concentrations,
this can lead to biomagnification induced by glyphosate-based herbicides, leading to a possible vector
of contamination and bioaccumulation. This should be addressed in future works due to the possibility
of contamination within the trophic web.

If, on one hand, photosynthetic and photoprotective antioxidant pigments increased, which may be
also partly explained by the lack of changes in CAT and APX activities, on the other hand, the decreased
activity of SOD can lead to the accumulation of lethal superoxide anions and consequent oxidation of
several biological components, such as proteins, lipids, and EPA fatty acid [78]. However, a decrease
in the energy transduction at the ETC, from QA to plastoquinone, originated a lethal situation of
increased redox accumulation in the affected photosystems [79]. Therefore, the energy reaching the
PS I was lower, although the effectiveness of the energy transport from PQH2 to the PS I was not
affected (RE0/RC), and even increased under the highest glyphosate-based herbicide concentrations.
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Yet, a severe shift in the redox equilibrium between photosystems towards the PS II (ψE0/(1 − ψE0))
was still observed, decreasing the redox potential reaching the PS I, and thus impairing the light and
dark reactions of photosynthesis and the renewal of substrates in the PS I [45].

Nevertheless, the available energy (Ea) increased in the highest glyphosate-based herbicide
concentrations, particularly at 500µg L−1, probably due to an increase in lipid and protein concentrations.
The increase in Ea has been observed in green algae, which accumulated energy reserves as a response
to environmental stress [64,80,81]. A possible explanation could be related to the need for algae
to counteract the increase in energy expenditure, as observed in the present study. Therefore,
following a similar pattern as Ea, the energy consumption demonstrated by the mitochondrial ETS of
P. tricornutum increased significantly at the highest concentrations, reaching a 300% increase in the
highest concentration relative to control. This increase in energy consumption has been observed in
other microalgae [65]. Nonetheless, the Ea was higher than the ETS, which led to a slight increase of the
CEA in the highest concentrations but only allowing a differentiation of the highest concentrations from
the control and the lowest concentrations. This increase in CEA may reflect a higher impairment in
mitochondria functioning relative to chloroplast functioning that can ultimately impact the latter due to
biophysical disturbances [82]. While these energy balances appear to indicate an increase in the energy
available for growth or cell division, the highest glyphosate-based herbicide concentrations inhibited
diatom culture growth. Based on this data, stress forces the energy to shift from photosynthesis into
energy consumption. This may change photosynthetic electron pathways, leading to Ea downregulation
and an increase in ETS to avoid carbon waste, as a strategy to handle an excess of metabolic energy.
There are different metabolic pathways under which energy spillover can be managed, but current
relevant knowledge is still very scarce [32].

The CAP analyses were very efficient in the assessment of the effects of the glyphosate-based
herbicide on the photochemistry, pigment composition, and lipid metabolism of P. tricornutum, as well as
on the potential of these metabolic features as toxicity biomarkers. However, only the use of bio-optical
techniques (e.g., Kautsky plot) allowed an efficient identification of all the different glyphosate-based
herbicide exposure treatments (control, low, intermediate, and high concentrations). As in previous
studies, multivariate analysis efficiently classified groups subjected to different exposure levels, in
comparison to the often-used univariate analysis [12,45,69]. While glyphosate is the main component
of Roundup®, other substances are also in its composition and it is of great interest in future works to
assess synergies and/or antagonisms between the herbicide formulation versus glyphosate in its pure
form, comparing the values to those measured in the habitats.

5. Conclusions

Glyphosate-based pesticides, particularly at high concentrations, have a clear effect on several
metabolic pathways in marine diatoms (changes in pigment profile, photosynthetic impairment,
and decreased antioxidant capacity). Even though photoprotective mechanisms were induced,
membrane damage still occurred. These facts highlight the application of pulse amplitude modulated
chlorophyll fluorescence bio-optical methods as a promising tool for inclusion in ecotoxicological
studies with several advantages relative to the classical biochemical approaches, namely fast data
acquisition, lower monetary costs, and a high number of variables obtained while ensuring a high
degree of accuracy. Thus, bio-optical tools appear as a fast, inexpensive, and reliable method for
toxicophenomic assessment of the impacts of this widespread pesticide in marine diatoms, with a clear
dose-response pattern. Moreover, the high volume of data produced by these bio-optical techniques can
be efficiently applied in multivariate analysis, providing a classification with a high degree of accuracy.
With this in mind, PAM fluorometry appears to be a promising tool for inclusion in ecotoxicological
studies aiming towards a possible use in long-range detection through satellite imagery in a global
chemical pollution-monitoring network.
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