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Abstract
Due to its high degree of complexity and its historical nature, evolutionary biol‑
ogy has been traditionally portrayed as a messy science. According to the supporters 
of such a view, evolutionary biology would be unable to formulate laws and robust 
theories, instead just delivering coherent narratives and local models. In this article, 
our aim is to challenge this view by showing how the Price equation can work as 
the core of a general theoretical framework for evolutionary phenomena. To support 
this claim, we outline some unnoticed structural similarities between physical theo‑
ries (in particular, classical mechanics) and evolutionary biology. More specifically, 
we shall argue that the Price equation, in the same way as fundamental formalisms 
in physics, can serve as a heuristic principle to formulate and systematise different 
theories and models in evolutionary biology.
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1 Introduction

Advanced areas in science, especially physics, have developed sophisticated math‑
ematical apparatus in which specific formulas such as Newton’s second law of 
motion, Einstein’s equations of special and general relativity, Schrödinger’s equa‑
tion, etc., play the role of fundamental equations. These fundamental equations pro‑
vide, among other things, unified patterns of explanation for the phenomena under 
study. Nevertheless, most evolutionary biologists and philosophers of biology are 
sceptical about the possibility of attaining similar formalisms in evolutionary biol‑
ogy. Due to its high degree of complexity and its historical nature (Bartholomew, 
1986), evolutionary biology is usually considered a messy science (Tawfik, 2010). 
Even Ronald Fisher, who is typically considered as a supporter of the view accord‑
ing to which physics and biology share some important similarities, in 1932 claimed:

I believe that no one who is familiar, either with mathematical advances in 
other fields, or with the range of special biological conditions to be considered, 
would ever conceive that everything could be summed up in a single math‑
ematical formula, however complex. (Fisher, 1932, p. 166).

A common view in evolutionary biology may be summarised as follows: biologi‑
cal evolutionary systems are too complex to be captured by an austere, general and 
encompassing formalism, thus we need to focus on narrow theories and specific 
models. This view is nowadays strictly linked to a distrust concerning the explana‑
tory power of the theoretical framework developed within the so‑called “Modern 
Synthesis”. Over the last hundred years, evolutionary biology has been extremely 
successful in explaining a wide range of evolutionary phenomena. A great deal of 
this success can be credited to the fact that biologists like Ronald Fisher, J.B.S. Hal‑
dane, and Sewall Wright developed a mathematical theory of evolution—i.e., popu‑
lation genetics—integrating Darwin’s ideas on natural selection with Mendelian 
genetics. However, starting from the 1960s, the apparent consensus over the Modern 
Synthesis began to be eroded (Mitchell & Dietrich, 2006). More recently, several 
researchers have called for an Extended Evolutionary Synthesis for evolutionary 
biology (Laland et al., 2015; Pigliucci & Müller, 2010), stressing the importance of 
different and diverse mechanisms and causes in evolution—such as niche construc‑
tion, macroevolution, gene networks, or nongenetic inheritance—which cannot eas‑
ily be accounted for through traditional population genetics.

The very ambition for a general and unified theory of evolution has frequently 
been labelled simply as a “physics envy” (Egler, 1986; Lockwood, 2007; Mayr, 
2004), and this kind of theory has been considered as unattainable for evolutionary 
biology. A related idea is that, due to the theoretical differences between physics 
and evolutionary biology, we should not waste our time seeking general principles. 
Instead, we should accept the particularity of evolutionary biology and only focus 
on local and circumstantiated models of evolution (Mitchell & Dietrich, 2006; Pig‑
liucci, 2002; Waters, 2011). Some of the authors arguing for such a “fragmental‑
ist” view selectively focus on the aspects that distinguish physics from evolutionary 
biology, ignoring other features that are possibly common to the two disciplines. 
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In our view, one of the reasons for this is that such authors implicitly ground part 
of their understanding of what a scientific theory is on an outdated philosophy of 
science. Common prejudices, in this sense, are that a scientific theory must provide 
“universal unrestricted generalisations” (e.g., Hempel, 1965) or that highly unified 
theories are constituted by sets of laws deductively connected (e.g., Carnap, 1995). 
Since evolutionary biology, unlike physics, is unable to attain such standards, then it 
would be unable to provide well‑defined and general theoretical frameworks. While 
some authors (e.g., Fodor & Piattelli‑Palmarini, 2010; Popper, 1974) take this as 
evidence that evolutionary biology is something like an “inferior science”, others 
interpret it as evidence that science does not require the formulation or identifica‑
tion of laws (Beatty, 1995; Lockwood, 2007; Mayr, 2004; O’Hara, 2005; Pigliucci, 
2002).

We think that the perspective dismissive of the life sciences is largely unwar‑
ranted. The great complexity of the phenomena that evolutionary biology is called 
on to explain does not imply that they cannot be tamed by some unificatory concep‑
tual apparatus similar to those developed within physics. The historical nature of 
biological evolutionary processes is not necessarily at odds with an overall formal 
approach to evolutionary dynamics. Recent works on the Price equation are shed‑
ding new light on the possibility of conceiving evolutionary biology as a highly uni‑
fied field. The Price equation has been proposed as the fundamental equation of evo‑
lution (Lehtonen, 2018; Luque, 2017; Queller, 2017; Rice, 2004) because, among 
other reasons, it requires fewer assumptions than other equations of evolutionary 
biology (e.g., Fisher’s fundamental theorem or the breeder’s equation) which have 
been historically considered as fundamental. In addition, these fundamental equa‑
tions can easily be derived from the Price equation with additional assumptions. Our 
goal in this article is to clarify in which way the Price equation may contribute to 
changing our view about the supposed peculiarities of evolutionary biology with 
respect to other sciences.

To this aim, we shall use the following argumentative strategy. First of all, in 
Sect.  2, we shall introduce some notions derived from metatheoretical structural‑
ism (Balzer et al., 1987) concerning the structure of scientific theories. As a para‑
digmatic example of a well‑structured scientific theory, we shall discuss Newtonian 
mechanics. In particular, we shall emphasise the role of Newton’s second law as the 
fundamental law of this theory. In Sect. 3, we shall outline the conceptual framework 
behind the Price equation. We shall then argue that the Price equation satisfies the 
structuralist criteria for a fundamental law. At the same time, we shall show that the 
genetic theory of evolution can indeed be represented as a well‑structured theory, 
unified under the Price equation. The goal of this discussion is to show that there 
are not, at least in principle, structural differences between a theory in physics and 
a theory in evolutionary biology. A supporter of the fragmentalist view might easily 
relativise this claim by arguing that, while Newtonian mechanics was once consid‑
ered to account for any physical phenomenon, the genetic theory of evolution (that 
is, the “good old‑fashioned” population genetics) is just a small part of evolutionary 
biology. A fully satisfactory theory of evolution should be able to account for all the 
diverse and complex phenomena which are not properly explained through tradi‑
tional population genetics. In Sect. 4, we shall show that the Price equation can be 
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reformulated and applied outside genetic evolution to explain a broad range of “non‑
classic” evolutionary dynamics. This will allow us to emphasise, in Sect. 5, another 
sense in which evolutionary biology resemble physics.

2  Theories, laws and unification in metatheoretical structuralism

Metatheoretical structuralism (Balzer et  al., 1987) is a semantic approach to the 
reconstruction of the structure of scientific theories. Over the last 30  years or so, 
it has been employed to elucidate the structure of many different scientific theories 
in physics (classical and relativistic mechanics, thermodynamics, etc.), biochem‑
istry, biology (Darwinian theory, Mendelian genetics, population genetics, etc.) 
economics and sociology (see Diederich et al., 1994; Díez & Lorenzano, 2002 for 
overviews).

One of the tenets of metatheoretical structuralism is that the term “scientific 
theory” is intrinsically polysemic, that is, it admits many characterisations (see, 
for instance, Moulines, 2010). Sometimes, we talk about theories in quite a strict 
sense, to denote the core of a mature theory. This is, for instance, the case when 
we present—frequently for pedagogical reasons—Newtonian mechanics as the set 
composed of Newton’s three laws of motion and the law of universal gravitation. 
This narrow characterisation of the notion of theory places in the foreground gener‑
alisations which are considered, both conceptually and historically, as fundamental 
for the development of a scientific field. These generalisations roughly correspond to 
what old‑fashioned syntactic conceptions of scientific theories (e.g., Carnap, 1995; 
Feigl, 1970) considered the axioms of the theory. One of the reasons for the obso‑
lescence of these conceptions, nonetheless, is precisely that in a scientific theory 
there is far more than its axioms. In a broader, and more proper sense, a theory, in 
fact, also includes many other more specific laws with a more restricted domain of 
application. In Newtonian mechanics, this broader set of laws includes Hooke’s law, 
the laws of pendulum, etc. Moreover, since theories in this broader sense are histori‑
cal entities, when characterising them we must also take into account their possible 
reformulations (such as Lagrangian and Hamiltonian mechanics in the case of New‑
tonian mechanics) and the changes in their intended domain of application.

To make sense of this complex picture, metatheoretical structuralists give up the 
logical empiricist ideal that scientific theories have an axiomatic‑deductive struc‑
ture, characterisable in purely syntactic terms. Instead, they represent theories—in 
the broader sense—as collections of models (in the sense of mathematical model 
theory) called theoretical elements, which are connected by an antisymmetric and 
transitive relation of specialisation. Each theoretical element roughly corresponds 
to a law of the theory and identifies, so to speak, a portion of the world that works 
according to that law.1 By adopting this characterisation, structuralists also give up 

1 The theoretical elements of a theory are usually analysed, in metatheoretical structuralism, as set‑the‑
oretical predicates. This analysis permits a formally rigorous characterisation of the constitutive features 
of the laws of a theory (such as its intended scope, the theoreticity of the concepts occurring in the law, 
etc.). We need not enter into such a fine‑grained level of analysis here (the interested reader is referred to 
Balzer et al., 1987).
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the logical empiricist notion of law as a “universal unrestricted generalisation”. For 
metatheoretical structuralism, as for most semantic approaches, nomicity does not 
necessarily imply universality, but rather counterfactual support. Counterfactual 
support does not require universality because a statement can offer counterfactual 
support even when it is not intended to account for a wide range of phenomena, but 
is limited in its scope (for more details about this, see Lorenzano, 2006; Lorenzano 
& Díaz, 2020).

In mature theories, theoretical elements can profitably be arranged in the form 
of an inverted tree called a theory-net. At the top of a theory‑net we usually find a 
single theoretical element, including some very general assertion about the way in 
which the theory accounts for a class of phenomena: this is the fundamental law. 
The specialisations specify regularities concerning subclasses of the class of phe‑
nomena described by the fundamental law. The relation of specialisation is thus 
understood as restricting the scope of application of the fundamental law. Through 
its specialisations, a theory can provide the details of the behaviour of specific parts 
of the world which it is intended to explain. A theory‑net can change its configura‑
tion through the history of the theory, depending on the discovery/formulation of 
new specialisations and/or the broadening or the narrowing of the domain of appli‑
cation of the theory.

This is (Fig. 1) a possible structuralist reconstruction of the overall structure of 
Newtonian mechanics in a specific phase of its historical development: 

Fig. 1  Structuralist reconstruction of Newtonian mechanics as a theory‑net (from Díez & Lorenzano, 
2013, p. 1161). The specialisations of Newton’s second law are hierarchically represented as follows: the 
first branching distinguishes between space‑dependent and velocity dependent forces; the space‑depend‑
ent forces branch into direct and indirect space‑dependent forces; direct space‑dependent forces branch 
into linear negative space‑dependent forces and others; and so forth
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As we have just said, the laws of a theory do not usually gain their explanatory 
or predictive role from their generality, but from the fact that they identify invariant 
relations of counterfactual dependence between certain properties of the phenomena 
under study. An important exception to this is the fundamental law, which in the case 
of Newtonian mechanics is Newton’s second law. According to structuralists, this law, 
taken individually, is “almost (empirically) vacuous”: it does little more than provide a 
definition for the notion of force (Díez & Lorenzano, 2013). Its domain of application 
is almost entirely specified by the other theoretical elements of the theory—such as the 
Newton’s third law, the law of gravitation, Hooke’s law, etc.—which are its specialisa‑
tions. So, why is Newton’s second law so important? Because it is the guiding prin-
ciple of Newtonian mechanics (Moulines, 1984a). The fundamental law of a theory 
establishes “what the theory is about” by providing a very general and comprehensive 
schema for explaining a class of phenomena. Newton’s second law states a condition 
of possibility for something to be considered as a physical force (Baravalle & Vec‑
chi, 2020; Jammer, 1956). It inspired generations of physicists, by pointing out “where 
they had to look” in order to explain the behaviour of the physical world. The structur‑
ing role provided by the fundamental law of a theory with respect to its development is 
thus, in the structuralist conception, mostly heuristic. It is not an “axiom” from which 
all the other laws of the theory must be derived, but a general assertion providing a 
shared (formal) vocabulary for the practitioners in a field (Lorenzano, 2006).

Besides providing heuristic guidance, fundamental laws have—according to 
methateoretical structuralists (see, for instance, Moulines, 1991; Lorenzano, 2006)—
some other interesting properties. These properties are: (1) a synoptic character; (2) 
applicability to all the models of the theory; (3) empirical unrestrictedness; (4) a 
systematiser role. Concerning the first property, fundamental laws have a synoptic 
character insofar as they include all the fundamental concepts of the theory. These 
are the concepts that occur—albeit in some different form—in any specialisation of 
the theory. The second property—that is, its applicability to all the models of the 
theory—is especially important because it is linked to the generality of fundamen‑
tal laws. Regarding the third property, to say that fundamental laws are empirically 
unrestricted is similar to saying that, as we have already seen, they are “almost vacu‑
ous”. The phrase “empirical unrestrictedness”, however, better emphasises the fact 
that—differently from empirical generalisations—fundamental laws are somehow “a 
priori” and “constitutive” (see Friedman, 2001 for an analogous, non‑structuralist, 
view). Finally, fundamental laws play a systematiser role in the sense that they shape 
the theory, by pointing out a natural way to develop its structural features. Newton’s 
second law, of course, has all these properties. It contains all the fundamental con‑
cepts (force, mass, acceleration) of classical mechanics—that is, it has a synoptic 
character. The fact that all the specialisations of the theory are, so to say, attempts to 
empirically characterise Newtonian forces also reveals that Newton’s second law—
which exhibit what all Newtonian forces have in common—applies to any possi‑
ble model of the theory. This generality is attained, among other things, thanks to 
the empirically unrestricted character of Newton’s second law, which—rather than 
describing any real‑world phenomenon—states a condition of possibility for some‑
thing to be considered as a “Newtonian force”. Finally, and in virtue of the previous 
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three properties, Newton’s second law shaped classical mechanics insofar as it deter‑
mined an agenda for physicists.

To this sense of the notion of theory—i.e., theory as a theory‑net—we may 
finally add a last, perhaps vaguer, one. Historically, scientific theories do not develop 
in a disciplinary vacuum: laws and scientific concepts elaborated with the aim of 
explaining a certain domain of phenomena are frequently adopted by scientists 
working in other fields and adapted to account for other phenomena. Take again, as 
example, the case of Newtonian mechanics: although initially intended to explain 
phenomena related to planetary and terrestrial motion, it was progressively extended 
to explain other physical phenomena (such as fluid or gas dynamics, in hydrodynam‑
ics and thermodynamics respectively) and some of its fundamental concepts have 
been consistently adopted in other theories (e.g., the concept of force appears both 
in Newtonian mechanics and in Lorentz’s equation in electrodynamics; Moulines, 
1984b). Furthermore, Newtonian mechanics has been adopted as a general frame‑
work to understand phenomena outside the domain of physics (Darwin himself 
regarded Newtonian mechanics as a model for his theory; e.g., Depew & Weber, 
1996). In other words, we may say that theories (intended as theory‑nets) can estab‑
lish intertheoretical links with other theories—by exchanging with them concepts 
and nomological generalisations—and, thus, generate “families of theories”, which 
structuralists call theoretical holons (Balzer et al., 1987, Ch. 8).

We shall say something more on theoretical holons in Sect. 5. For the moment, 
and before proceeding to consider how these ideas can be applied to the genetic 
theory of evolution and the Price equation, let us consider some important lessons 
emerging from the structuralist conception of scientific theories and laws.

First of all, when we assess the “generality”, or the “unificatory power”, of a the‑
ory we need to be clear about the level at which we are examining the theory. Many 
laws in physics are not “universal unrestricted generalisations” (think, for instance, 
about Kepler’s law or Galileo’s law of free‑fall in classical mechanics). Only the 
fundamental law is required to be “universal” in the sense that it provides a general 
“explanatory pattern” (à la Kitcher, 1989). The components of a theory play very 
different roles within a theory: while it would be absurd to ask of a fundamental law 
that it provide any detail about specific features of the physical world, it would be 
equally unrealistic to ask of the specialisations of the theory that they be of universal 
application. This is because what we want from a fundamental law is that it unifies 
a certain class of phenomena under a very comprehensive description, whereas the 
specialisations are intended to empirically adapt such a description to explain specific 
phenomena. To complain that the specialisations of a theory are not general enough 
is tantamount to not having understood their role in the theory. Some specialisations, 
of course, will be more encompassing (in terms of their possible applications) than 
others, but generality is not the fundamental feature of a specialisation. This should 
be taken into account when it is sometimes loosely said that evolutionary models are 
“local” or of “limited scope” (van Veleen, 2005; Waters, 2011). In a sense, this is not 
something specific of evolutionary models, but common to any non‑fundamental law 
in science.

Possibly even more important to notice here is that, as long as there are at least 
three senses in which we can talk of “scientific theories”, we should be more careful 
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when we say things such as “physical theories are more unified than biological theo‑
ries”, or “physical theories are grounded on encompassing formalisms, while biologi‑
cal theories are not”. This may be true if we consider a “theory” in a certain sense, 
but false if we consider it in another sense. We suspect that when the supporters of 
the fragmentalist view say that evolutionary biology is too messy to be able to attain a 
unitary and cohesive form, like the one displayed by physical theories, they are incor‑
rectly comparing physical theories qua theory‑nets and evolutionary biology qua a 
theoretical holon. As we have seen, theory‑nets are hierarchically organised under 
a guiding‑principle, while theoretical holons are more disperse families of theories 
sharing concepts (they perhaps identify “scientific disciplines” as a whole). Thus, of 
course a theory‑net is more “unified” than a theoretical holon. The right thing to do, 
in order to fairly compare physics with evolutionary biology, would be first to check 
if it is possible to identify theory‑nets in evolutionary biology. This has been already 
done for the classic theory of natural selection (Díez & Lorenzano, 2013; Ginnobili, 
2018) and traditional population genetics (Lorenzano, 2014). In the next section, we 
shall argue that the genetic theory of evolution can be properly depicted as a theory‑
net, unified under a certain version of the Price equation. This would show, in our 
opinion, that there is no conceptual impediment, in evolutionary biology, to formu‑
lating theories which are structurally analogous to physical ones. We agree on the 
fact that these theories are somehow “specific”, in the sense that they are unable to 
account for all evolutionary phenomena. But, in a certain sense, the same happens 
in physics: neither Newtonian mechanics, nor thermodynamics or general relativity 
account for all physical phenomena. This kind of comprehensiveness is only attained 
at the level of theoretical holons: the family of all physical theories. If we look at that 
level, however, we again see similarities between physics and evolutionary biology: 
both disciplines are, to a certain extent, a patchwork of many theory‑nets, connected 
in a vaguer way by some fundamental concepts. Concerning this level of analysis, we 
shall suggest in Sect. 5 that, once more, the Price equation plays an important role in 
coordinating different theories within evolutionary biology.

3  The Price equation and the genetic theory of evolution

In the early 1970s, George Price (1970, 1972) presented an abstract formula to rep‑
resent evolutionary change. Because of the lack of substantive biological assump‑
tions, it is usually stated the Price equation does not involve idealisations (Godfrey‑
Smith, 2009) or that it is an assumption‑free statement about evolution (Walsh & 
Lynch, 2018). To be precise, the Price equation does actually rely on some mini‑
mal assumptions, but they are not simplifying ones. They are instead intended to 
establish the basic properties of any evolutionary system.2 It is worthwhile, in this 
respect, to compare the traditional approach in population genetics and the Pricean 

2 Some additional assumptions made by George Price when he derived the original Price equation (such 
as the conceptualisation of a population as a closed system) are less fundamental, and therefore can be 
relaxed in order to incorporate more complex scenarios (Godfrey‑Smith 2009). See also footnote 6.
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approach. The former starts deliberately with idealised assumptions of the target 
systems, producing simplified models. The Pricean approach, in contrast, starts with 
postulates or assumptions that we think are true about the target system (what the 
properties of the system are) and we then derive its mathematical rules (Rice, 2004, 
2020; Luque, 2017).3

These basic properties of evolutionary systems, according to the Pricean 
approach, can be summarised as follows (Rice, 2004, p. 169):

• Change over time To be considered as evolutionary, a system requires a popula‑
tion of characters changing over generations. In order to represent generations, 
we may use any time interval that is appropriate for the system under study.

• Ancestor/Descendant relations Different generations of an evolving population 
must be connected by some character. This is the basic requirement for inherit‑
ance.

• Character or phenotype Any feature of an entity that can be represented with a 
real number is, potentially, a phenotypic character. Accordingly, very different 
entities—such as alleles, genotypes, groups of individuals, etc.—can be inter‑
preted as endowed with evolving characters.

Although sometimes presented with different notation, the Price equation is usually 
written as

where Δz is the change in average value of a character z (in this case its mean, but it 
can also be adapted to represent higher moments such as variance, skew, etc.) over 
an arbitrary time step (usually one generation), w is the absolute fitness of an indi‑
vidual (calculated as the number of descendants), and w is the average fitness. The 
first term on the right‑hand side is the covariance between fitness w and the charac‑
ter z , and represents the change in the average value of z due to differential survival 
and reproduction. Note that, since this term is just a measure of the statistical asso‑
ciation between the character and fitness, it does not necessarily represent a causal 
connection between them. For this reason, although it is typically interpreted as 
representing natural selection, it represents the effects of drift as well (Rice, 2004). 
The second term on the right‑hand side is the expected value of the quantity Δz , 
which measures how much the offspring deviate from their parents with respect to 
the character z (i.e., it accounts for the change in the value of the character from the 
parents to the offspring due to processes involved in reproduction). Thus, the second 
term represents the fidelity of the transmission of the organisms with respect to the 

wΔz = Cov(w, z) + E(wΔz)

3 Sean Rice characterises this procedure as axiomatic: “A goal of the axiomatic method in mathematics 
is to start out with a minimal set of necessary axioms and then derive further results from these. The ana‑
logue in science would be to start out with a minimal set of scientific axioms and ask how far we can get 
deriving new results from these before we have to introduce simplifying assumptions” (Rice 2020, p. 1).
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character z . If the fidelity of the transmission is not perfect, then some evolutionary 
forces such as mutation, recombination, selection at a lower level of organisation, or 
other processes, are causing a transmission bias.

Arguably, the Price equation has all the properties that structuralists ascribe to 
fundamental laws in science.4 First, it contains all the fundamental concepts in the 
description of evolutionary dynamics, that is, it has a synoptic character. One may in 
fact say that the most important result that George Price obtained in his 1970’s deri‑
vation of his equation was the identification of the basic ingredients of any evolu‑
tionary process, as well as of a procedure to formalise them. To many people, these 
ingredients and this procedure may now seem “obvious” or “trivial”. But evolution‑
ary biology had to wait until the arrival of George Price to have a clear grasp of 
them.5 Any model in population genetics can be interpreted as specifying a particu‑
lar mode of evolution, in which the change over time of a character is determined by 
a certain ancestor/descendant relation in a concrete ecological scenario. This satis‑
fies the second structuralist criteria for fundamental laws, that is, its applicability 
to all the models of the theory. The Price equation can be employed, in order to 
account for specific modes of evolution, by adopting further assumptions concern‑
ing more circumscribed scenarios.

Within traditional population genetics, the relation between the Price equation 
and the other nodes of the theory‑net (i.e., the models accounting for the effects of 
specific evolutionary forces, like selection, drift, etc.) should be considered as fol‑
lows: the Price equation offers a mathematical partition between two possible kinds 
of evolutionary change; the change produced by selection, or other sorting/sampling 
forces (such as drift), which modify the distribution of a trait; and the change pro‑
duced by transmission biases, which modify the trait itself (by modifying some of 
its characteristic features; e.g., mutation). There is no evolutionary change without 
these forces acting on a population of traits and, at the same time, there are no other 
forces acting within the evolutionary process besides them6 (see Fig. 2 for a tentative 

6 The only possible exception is migration. The original Price equation assumes a closed population. 
Although the equation can track migration between subpopulations (Frank 1986), it can’t take into 
account migration from outside of the entire population (or meta‑population). Still, the equation can be 
expanded, including an extra term, in order to model an open population (Kerr and Godfrey‑Smith 2009).

4 A reviewer pointed out that it may be argued that the Hardy–Weinberg law is more fundamental than 
the Price equation, in the same way that the law of inertia would be more fundamental than Newton’s 
second law. We disagree with that position. First, the Hardy–Weinberg law only applies to diploid sexual 
organisms, so it lacks the kind of generality that a fundamental law must have. Second, the Hardy–Wein‑
berg law applies only on the assumption of particulate inheritance, while the Price equation can account 
for hypothetical evolutionary systems with blending inheritance as well (see Gardner 2011). That is, the 
Hardy–Weinberg law limitedly applies to an actual, historically accidental, scenario (i.e., the evolution of 
diploid sexual populations with particulate inheritance), while the Price equation applies more broadly 
to any possible evolutionary scenario. Third, from the structuralist point of view that we adopt in this 
article, it can be shown that the Hardy–Weinberg law is just a specialisation of the Price equation, which 
is obtained when all the terms in the Price equation are assumed to be equal to zero (analogously, the law 
of inertia is a specialisation of Newton’s second law in which acceleration is taken to be equal to zero; 
Balzer et al., 1987; Lorenzano 2014).
5 In Steven Frank’s words: “It is always difficult, in retrospect, to see the originality and insight of a sim‑
ple idea” (Frank 1995, p. 381).
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graphical representation). While the Price equation describes the net change in the 
diffusion of a trait as the product, or effect, of forces, the specialisations of the the‑
ory provide causal characterisations of each force, and these characterisations allow, 
in their turn, empirical descriptions of the processes acting in evolutionary change. 
Of course, what concretely counts as a specific sorting factor or transmission bias in 
a real‑world scenario may be different from what counts as a sorting factor or trans‑
mission bias in another scenario. This may be considered as a difference between 
population genetics and Newtonian mechanics, where the specialisations of the the‑
ory are usually considered themselves as laws whose applicability is not conditioned 
by contextual factors. However, this difference is not fundamental once we accept 
that what the specialisations of a theory do (regardless of if they are usually called 
“laws” or not) is to identify invariant conditions under counterfactual circumstances, 
rather than universal regularities.7

To continue with how the Price equation satisfies structuralism’s requirements for 
fundamental laws, we can appreciate that the equation is empirically unrestricted. 

Fig. 2  Tentative reconstruction of the theory‑net of Population Genetics. Some branches are left open to 
stress that it is not a static representation, but a sketch of a theory that is still in development. Equations 
for natural selection and genetic drift are identical except for the fact that the former requires a causal 
connection between the trait and fitness, while the latter doesn’t. This causal connection is represented by 
a “c” in gc . Also stabilising and disruptive selection equations are identical. If Cov

[

w,
(

g − g
)2
]

< 0, 
then there is stabilising selection. If Cov

[

w,
(

g − g
)2
]

> 0 , then there is disruptive selection. Finally, 
selection at lower levels is pictured in the transmission bias branch due to the fact that it is derived as a 
covariance within the transmission term

7 At any rate, note that even some Newtonian forces such as elastic and friction forces, and their respec‑
tive laws (Hooke’s law, Amontons’ law, Coulomb’s law of friction, etc.), are conditioned by contextual 
factors (see Hitchcock and Velasco 2014).
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As a matter of fact, if considered without its specialisations, the Price equation says 
very little about concrete scenarios. This is an aspect that has led some authors 
to equate the Price equation to a kind of mathematical tautology (e.g., Nowak & 
Highfield, 2011; van Veelen, 2005), devoid of any empirical significance. Instead of 
seeing this as a defect, we believe (in line with Frank, 2012, Luque, 2017, and our 
previous discussion in Sect. 2) that this is a strength of the Price equation. A funda‑
mental law does not need, in itself, to be committed to any specific empirical claim 
concerning the causes of the phenomena to be explained by the theory. Rather, it 
must provide the heuristics that practitioners must follow in order to succeed in pro‑
viding the details of the theory. The Price equation is well suited to attaining this 
goal because it promotes a systematic approach to the categorisation and discov‑
ery of the possible causes of evolutionary change (note that this is precisely what is 
required by the fourth structuralist requirement for fundamental laws).

First of all, the Price equation helps in recovering old results in population and 
quantitative genetics and clarifying the connections between them. For example, if 
we assume that g represents the breeding values for a trait, then the “natural selec‑
tion equation” yields Robertson’s theorem, which measures the additive covariance 
between fitness and the trait, wΔg = Cov

(

Aw,Ag

)

. This procedure has been applied 
to many important equations in evolution, such as Fisher’s fundamental theorem, 
the breeder’s equation, mutation and recombination equations for haploid and dip‑
loid models, etc.8 In addition, several new equations and models can and have been 
derived from the original Price equation, most notably in social evolution (such as 
several variants of Hamilton’s rule and the Multilevel Price equation, Lehtonen, 
2020; Marshall, 2015). Moreover, as we shall see in the next section, new “Price‑
like equations”—derived by adopting Price’s approach to evolutionary dynamics, 
but not necessarily its original equation—have been formulated outside the tradi‑
tional boundaries of population and quantitative genetics, to explain a wide range of 
phenomena.

4  Complexity in evolutionary systems

As we mentioned in the Introduction, part of the scepticism concerning the possi‑
bility of attaining a well‑defined and encompassing “theory of evolution” is due to 
the fact that evolutionary systems are far more complex than most of the architects 
of population genetics and the Modern Synthesis seemed to believe. Thus, some 
researchers have called for an extension of the Modern Synthesis, insisting that evo‑
lutionary biology is also called on to explain phenomena such as macroevolution, 
non‑genetic inheritance and developmental constraints on evolution (among others). 
If we accept the evolutionary relevance of all these phenomena, we must also rec‑
ognise that traditional models in population genetics cannot easily and systemati‑
cally account for them. This complexity has required the development of different 

8 Due to space limitations we will not show this. See Frank and Slatkin 1990; Rice 2004; Frank 2012; 
Queller 2017; Lehtonen 2018, for full mathematical details.
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theories and models, reinforcing the idea that a unifying framework connecting all 
of them is doomed to failure.

In this section we shall review evidence that, in spite of the above, researchers 
have used the Price equation to deal with previously unnoticed aspects of evolu‑
tionary systems in a quite effective way. First, in Sect. 4.1, we shall show how the 
Price equation helps evolutionary biologists to control the explosion of complexity 
related to the consideration of structural features of populations, and to model spe‑
cific aspects of evolutionary ecology dynamics in a reasonably straightforward way. 
In Sect. 4.2, we shall generalise our point, by showing how Price‑like equations are 
proliferating in many areas of evolutionary biology to account for multiple evolu‑
tionary causes acting on natural populations—thus contributing to explain many of 
the neglected phenomena on which the critics of the Modern Synthesis insist.

4.1  A case study: age‑structured populations in evolutionary ecology

A usual simplifying assumption in population genetics is to think of the target system 
as a discrete population—i.e., all individuals are born at the same time, reproduce at 
the same time, and die at the same time. To follow the evolutionary trajectory, and 
especially the intensity of selection, in this kind of populations, researchers use clas‑
sical formalisms such as the breeder’s equation (or its multivariate form, the Lande 
equation; Walsh & Lynch, 2018). Although the evolution of some insect and plant 
populations can be indeed accommodated within this simplified framework, most 
other species display overlapping populations, in which individuals coexist with their 
offspring, mate multiple times, and so on.9 In this more realistic and complex situa‑
tion, the population can be structured by taking into account the distribution of ages of 
the individuals at a given time, obtaining an age‑structured population.10 In this kind 
of scenario, the probability of survival and reproduction of the individuals in a popula‑
tion depends on their age, which affects different components of their fitness. In fact, 
different parts of a life cycle are correlated with different fitness components such as 
survival, mating success, fecundity, etc. This phenomenon has been approached using 
optimality theory and game theory (e.g., evolutionary stable strategy).11 These models 
show that the improvement of one trait that is a component of the fitness of an individ‑
ual will have a cost on other fitness components. Traits that help to survive may have a 
cost in terms of fertility and/or reproduction (and vice versa).

In order to explain the evolution of age‑structured populations, evolutionary 
biologists have therefore to take into account the trade‑offs emerging from the dif‑
ferent fitness components, which, in their turn, dictate the life span, senescence, 

9 Both equations make further simplifying assumptions: there is no transmission bias between parents 
and offspring, environmental conditions and population demography are constant, traits are normally dis‑
tributed, etc. (Walsh and Lynch 2018).
10 More complex situations in age‑structured populations may occur (for example, that there is no stable 
age distribution).
11 Lehtonen (2018) shows how to recover these different models using the Price equation.
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number and size of offspring, etc., of every organism in a population.12 To han‑
dle such scenarios, evolutionary biologists have combined different models from 
population genetics and population ecology. Traditionally—as we already men‑
tioned—these models keep track of the evolutionary change using genetic and 
demographic parameters and adopting typical simplifying assumptions (such 
as our population being large enough to ignore stochastic effects, fecundity 
of females of a given age is independent of the age of their mates, etc.). More 
recently, age‑structured versions of the breeder’s and the Lande equations were 
derived for cases of weak selection and stable age structure (see Charlesworth, 
1994 for a detailed analysis). In 2008, Coulson and Tuljapurkar (2008) presented 
an age‑structured Price equation which was able to handle a wide variety of sce‑
narios without appealing to the simplifying assumptions of the previous models. 
In particular, they decomposed fitness into age‑specific components, instead of 
considering it a scalar. This allowed them to study different processes that affect 
organisms and their traits during their life histories (i.e., the progress of these 
organisms throughout their lives). Coulson and Tuljapurkar provided two equiva‑
lent versions of their equation (we present just one):

where the change in the mean of the trait Z, ΔZ, is equal to the contribution in Z due 
to ageing 

∑�−1

a=1
[Δc(a, t)]Z(a, t) − c(�, t)Z(�, t) , plus the contribution of age‑specific 

processes 
∑�−1

a=1

�

c(a,t)

W(t)

�

, such as survival selection differential on Z Cov(Z, S) , plus 
the mean phenotypic plasticity SG , plus the mean age‑specific recruitment R and 
mean trait value Z , plus the mean age‑specific recruitment R and the mean differ‑
ence between offspring and parental trait value D , plus the covariation between off‑
spring size and offspring number Cov(D,R) , plus the selection differential on recruit‑
ment Cov(Z,R) . All the terms on the right‑hand side of the equation are calculated 
across all individuals in age and time (a, t).

This detailed decomposition helps us to understand the complex interactions 
of different biological processes that act upon populations and makes it easier to 
find equilibrium situations. In the same way that the basic Price equation envis‑
ages two possible states of equilibrium (either both terms, the covariance and the 
expectation, are zero or they balance each other out), all these new terms in the 
age‑structured Price equation show us a larger number of combinations by which 
a population may be in equilibrium. The most usual example of equilibrium is 

ΔZ =

�−1
∑

a=1

[Δc(a, t)]Z(a, t) − c(�, t)Z(�, t)

+

�−1
∑

a=1

(

c(a, t)

W(t)

)

[

Cov(Z, S)(a, t) + SG(a, t)

]

+

�
∑

a=1

(

c(a, t)

W(t)

)

[

R(a, t)Z(a, t) + R(a, t)D(a, t) + Cov(D,R)(a, t) + Cov(Z,R)(a, t)

]

12 Also, phylogenetic constraints may produce additional trade‑offs (Futuyma 2013).
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due to a trade‑off between survival selection and fertility selection. Using the 
age‑structured Price equation we can see that this condition is reached if there 
is zero transmission bias and stable demography, and selective pressures in sur‑
vival and fertility balance each other out. Coulson and Tuljapurkar expressed this 
trade‑off, formally, as

where the left‑hand side represents the effect of survival selection, and the right‑
hand side represents the effect of fertility selection. Coulson and Tuljapurkar also 
described how to achieve other types of equilibrium involving the other forces act‑
ing upon populations,13 and applied their formalism to a specific age‑structured pop‑
ulation of red deer, finding no change in the mean trait even when survival selection 
acts strongly as individuals aged. This is due to the existence of substantial transmis‑
sion biases, producing significant differences between parents’ and offspring’s trait 
values, and then balancing the action of survival selection.

This case study shows how researchers can put into practice the Pricean approach 
outlined in the previous section. Coulson and Tuljapurkar started with the basic 
ingredients of evolutionary systems described by Price and postulated new assump‑
tions. They then derived a Price‑like equation for age‑structured populations. Next, 
they asked how many equilibrium states could be derived from this equation. 
Finally, they applied their age‑structured Price equation to a real population.14

4.2  Price‑like equations outside traditional population genetics

In the previous subsection, we discussed how the Price equation has been satis‑
factorily employed, outside traditional population genetics, to model evolutionary 
dynamics related to evolutionary ecology. This served us as an example to point 
out a more general tendency in evolutionary biology. Evolutionary biologists have 
adopted Price‑like formalisms to account for a broad variety of evolutionary phe‑
nomena. Take, for instance, the recent studies on different mechanisms of inherit‑
ance beyond genetic inheritance, such as epigenetic, behavioural, or symbolic inher‑
itance. Day and Bonduriansky (2011) applied the Pricean approach and developed 
the following equations for genetic ( g ) and nongenetic ( h ) inheritance

A
∑

a=1

c(a + 1)
Cov(Z, S)(a)

S
= −

�−1
∑

a=1

c(a + 1)
Cov(Z,R)(a)

S

(

c(a, t)

W(t)

)

13 Of course, equilibrium can be also reached by selection alone (for example, survival selection), acting 
at different ages in opposite directions.
14 There already exist different versions of the Price equation dealing with different kinds of class‑struc‑
tured populations (Barfield et al., 2011; Grafen 2015). The age‑structured Price equation does not take 
into account possible stochastic factors, such as demographic and environmental stochasticity (produc‑
ing drift and fluctuating selection, respectively) that can affect the evolutionary trajectory of our target 
systems. Still, stochastic versions of the Price equation have been developed in order to handle this pos‑
sibility (Rice 2008; Rice and Papadopoulos 2009; Engen and Saether 2014), by adding new assumptions 
(e.g., fitness is considered a random variable instead of a parameter).
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where the first terms of each equation represent the effect of natural selection on the 
genetic and nongenetic components; the second terms represent the “reproductive 
transmission”, that is, the change in genetic and nongenetic values that occur during 
transmission from parent to offspring; and the third terms represent the “survival 
transmission”, i.e., the change in genetic and nongenetic values that occur in paren‑
tal individuals as they survive from one time step to the next. From these equations 
Day and Bonduriansky were able to derive specific models that represent concrete 
nongenetic mechanisms of inheritance (such as transgenerational epigenetic inherit‑
ance, maternal effects, environmental noise, or RNA inheritance).

This is an example of how the Pricean approach can account for many phenom‑
ena and mechanisms whose importance is stressed by the Extended Evolutionary 

wΔg = Cov(w, g) + E
(

bΔgb
)

+ E(pΔgp)

wΔh = Cov(w, h) + E
(

bΔhb
)

+ E(pΔhp)

Table 1  Several mechanisms and phenomena (some of them vindicated by the Extended Evolutionary 
Synthesis) within the Price equation framework

wΔg = Cov(w, g) + E
(

bΔgb
)

+ E(pΔgp)

wΔh = Cov(w, h) + E
(

bΔhb
)

+ E(pΔhp)

Genetic and nongenetic Price equations (Day and Bonduransky, 2011)
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Niche construction (Otsuka, 2015)
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The Price equation for multiple habitats (Day & Gandon, 2006)
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Macroevolutionary Price equation (Rankin et al., 2015)
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Hierarchical Stochastic Price equation (Simpson, 2011)
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Community Price equation (Govaert et al., 2016)
Δz = Cov(c, z) + Ec(Δz)

Cultural Price equation (El Mouden et al., 2014)

𝜙
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Network Price equation (Dragicevic, 2016)
dz
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Symbiosis Price equation (Smith, 2007)
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ZFEL Price equation (Fleming, 2012)
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z
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k
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Evolutionary algorithm Price equation (Basset et al., 2005)
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Synthesis supporters (Lewens, 2019 makes a similar claim). As a matter of fact, 
besides nongenetic inheritance, this approach has already been applied to phe‑
nomena such as niche construction, hierarchies, macroevolution, or networks (see 
Table 1 for further examples). More generally, the Pricean approach is also able to 
account for many other evolutionary processes historically neglected or unnoticed 
by the Modern Synthesis that are not explicitly vindicated by the Extended Evolu‑
tionary Synthesis, such as symbiosis (e.g., symbionts transmissions, Smith, 2007), 
host–pathogen interactions (e.g., pathogens habitats, Day & Gandon, 2006), or 
other processes that increase “pure complexity” (McShea & Brandon, 2010)15 (see 
Table 1).16

These examples show how the logic and language of the Price equation can be 
used in several areas of evolutionary biology through the derivation of new forms of 
the Price equation. As this is not an algorithmic process, different researchers may 
develop different forms of the Price equation in a particular scientific area, depend‑
ing on their assumptions and mathematical abilities. This, in its turn, may produce 
theoretical controversies. For instance, Aguilar and Akçay (2018) point out that a 
possible limitation of the general framework for genetic and nongenetic inheritance 
put forward by Day and Bonduriansky is that it provides distinct measures of fit‑
ness depending on the systems of inheritance. By contrast, Aguilar and Akçay argue 
that a single measure for genetic and nongenetic inheritance is necessary in order to 
elaborate reliable causal explanations. Thus, they develop their own Price‑like equa‑
tion for genetic and cultural inheritance incorporating both systems of inheritance 
and their fitness measures directly.17 Rather than being problematic, these theoretical 
controversies reflect an additional valuable characteristic of the Pricean approach: it 
demands clarity from modellers (about the entities and characters involved in the 
evolutionary process, their relationships and partitions, the time step, etc.) and thus 
facilitates the comparison and discussion of different formalisms.

5  Evolutionary biology as a theoretical holon

In Sect. 2, we observed that, when certain supporters of the fragmentalist view com‑
plain about the “physics envy” of some evolutionary biologists, they usually assume 
a picture of physical theories as structurally well‑defined and all encompassing. Still, 

15 The “pure complexity” of an organism is defined as “the amount of differentiation among its parts 
or, where variation is discontinuous, the number of part types” (McShea and Brandon 2010, p. 45). In 
order to explain the increase of organisms’ pure complexity, McShea and Brandon argue that there is a 
background condition in all evolutionary systems. They call this condition the zero‑force law of evolution 
(ZFEL): “In any evolutionary system in which there is variation and heredity, in the absence of natural 
selection, other forces, and constraints acting on diversity and complexity, diversity and complexity will 
increase on average” (McShea and Brandon 2010, p. 3). Fleming (2012) derived a mathematical expres‑
sion of the ZFEL, based on the Price equation (see Table 1).
16 See also Rice 2004, and Luque 2017, for further evidence of the many applications of the Price equa‑
tion.
17 See Baravalle and Luque (forthcoming) for a detailed analysis on Aguilar and Akçay’s formalism and 
cultural evolutionary theory in general.
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while it can be argued that, as theory-nets, they can indeed be orderly reconstructed—
like, we have argued in Sect. 3, the genetic theory of evolution as well –, this is not the 
whole story. Theory‑nets do not live in a “theoretical vacuum”, but they are surrounded 
by other theory‑nets and models that complement them in crucial ways. Without these 
other theories and models—which are not directly derived from the original theory‑
net—no physical theory would be able to account for all the phenomena that the disci‑
plinary field is called to explain. In other words, the explanation of a certain discipli‑
nary domain of phenomena is never the result of a single theory (i.e., a theory‑net) but, 
more broadly, of a “net of theory‑nets”, that is, a theoretical holon.

In non‑relativistic classical mechanics, for instance, it is fair to acknowledge that 
Newtonian mechanics, while certainly central in the overall understanding of the phe‑
nomena related to physical motion, has been historically complemented by many other 
auxiliary theories. These theories—such as celestial mechanics, particle mechanics, 
aero‑ and hydro‑dynamics, or the kinetic theory of gases, among others (Corben & Ste‑
hle, 1994)—are fundamental in explaining specific physical phenomena. Even though 
they are conceptually dependent on Newtonian mechanics, their characteristic laws 
are not, strictly speaking, specialisations of Newton’s second law. In order to account 
for the phenomena that they are called on to explain, the formulation of these theories 
required a modification of Newton’s second law.

For instance, from the original formulation of classical mechanics, physicists rec‑
ognised that Newton’s second law, as originally stated, was not able to account for 
rotational motion (Sklar, 2013). This was because Newton’s second law employed 
the notion of “inertial mass” (i.e., bodies’ resistance to change of their linear motion). 
However, in order to explain rotational motion, an additional type of inertia—i.e., bod‑
ies’ resistance to change of their rotational motion—must be taken into account. Thus, 
the law of conservation of linear momentum needed to be supplemented by a law of 
conservation of angular momentum. This new law made it necessary to invent the con‑
cept of “moment of inertia”. In addition, new kinds of forces—i.e., rotational forces or 
“torques”—were introduced to supplement the traditional linear forces. Thus, the fol‑
lowing equation, analogous to Newton’s original second law, was developed

where � represents a torque, I the moment of inertia, and � the angular momen‑
tum. Here, the work of Euler was essential, which is why this equation is sometimes 
called Euler’s second law. It was subsequently applied to the rotation of rigid bodies, 
and this application led to the formulation of Euler’s equations of motion for rigid 
body dynamics.

In a similar fashion, fluid mechanics had to wait until the work of Cauchy in order 
to gain its fundamental equation (Granger, 1995). The following equation is known 
as the Cauchy momentum equation,

where � is the density of the fluid, u represents flow velocity (therefore Du
Dt

 is the 
acceleration of the flow), ∇ is the gradient, � is the stress tensor, and F represents the 

∑

� = I�

�
Du

Dt
= ∇ ⋅ � + F
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body forces acting on the fluid. This equation is valid for any kind of fluid and takes 
specific forms depending on the characteristics of the fluid (viscosity, compressibil‑
ity, etc.), yielding the Navier–Stokes equations, Stokes’ flow equation, Euler’s equa‑
tions for fluid dynamics, or the Stokes laws for friction and sound attenuation.

However, we may possibly find the most striking example in Langevin dynamics. 
Coinciding with the two major physics revolutions of the twentieth century (relativ‑
ity and quantum mechanics), Paul Langevin extended the Newtonian approach to 
stochastic systems. Langevin dynamics studies the dynamics of molecular systems. 
The first phenomenon to which Langevin applied his new approach was Brownian 
motion. This is stochastically modelled by the following Langevin equation18:

where x represents the location of the particle within the fluid, m is its mass, −6��a 
characterises the damping coefficient (i.e., fluid viscosity that slows the movement 
of the particles), and X denotes a random “noise term” which describes the effect 
of the collisions between fluid atoms or molecules. In the first English translation of 
Langevin’s 1908 work, Lemons observes: “Langevin applied Newton’s second law 
to a representative Brownian particle. In this way Langevin invented the ‘F = ma’ 
of stochastic physics now called the ‘Langevin equation’’’ (Lemons 1997, p. 1079). 
This is a nice example of how Newton’s second law can be a fruitful inspiration 
to model and explain forces—i.e., stochastic forces—that could not be explained 
within the deterministic framework of Newtonian mechanics.

All these examples show that, even in the limited context of non‑relativistic clas‑
sical mechanics, Newton’s second law is not a “catch‑all” equation. In order to guar‑
antee a progressive understanding of the physical world, it needed to be reformu‑
lated accordingly. Note, in this regard, that these reformulations of Newton’s second 
law play, in classical mechanics, a role that is (at least prima facie) analogous to that 
developed by the Price‑like equations that we considered in the previous sections. 
In both cases, these modified equations extend the applicability of concepts origi‑
nally conceived to model certain phenomena to other related phenomena initially 
neglected.

One may think of the reformulations of Newton’s second law as new fundamental 
laws for new theory‑nets that complemented the original theory‑net of Newtonian 
mechanics. As a matter of fact, structuralists have already worked out the details 
of the theory‑nets of some of these other theories (e.g., particle mechanics; Balzer 
et al., 1987). What we would like to stress here, nonetheless, is not the fact that each 
theory can be depicted as a new theory‑net. Instead, we would like to point out that, 
at the level of the theoretical holon, classical mechanics does not exhibit a rigidly 
hierarchical structure. It is rather a “family” of theory‑nets, which exchange con‑
cepts and models that holistically account for the physical world.

m
d2x

dt2
= −6��a

dx

dt
+ X

18 The general Langevin equation is of the form: q̇ = F(q) +
√

Q𝜉(t) , where F(q) represents determinis‑
tic forces, and 

√

Q�(t) is the stochastic term (i.e., additive white noise with a zero mean and a Gaussian 
distribution) (Fuchs 2013).
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We can imagine the Price equation as a heuristic device for all the theoretical 
projects, such as those we discussed in Sect. 4 (e.g., the study of structured popu‑
lations in evolutionary ecology, the analysis of non‑genetic channels of inherit‑
ance, macroevolutionary theory, hierarchy theory, etc.), that aim to be considered 
as evolutionary. These theoretical projects compose what we may conceive as the 
theoretical holon of evolutionary biology. While in its original form the equation 
is indeed neutral with regard to the specificities of any particular evolutionary pro‑
cess, further modifications of the equation allow the capture of the salient traits of 
different evolutionary systems. In this sense, the theoretical approach based on the 
Price equation in evolutionary biology is not different from the approach that physi‑
cists have adopted to build theories from Newton onward. Starting from a general 
assumption concerning the overall features of the phenomena under study, Newton’s 
followers worked on progressively more specific applications of Newton’s second 
law, enriching Newtonian mechanics with the details that made it such a successful 
theory. The concepts elaborated within Newtonian mechanics were then exported 
to other physical domains, and modified according to the needs and interests of the 
practitioners. The Price equation, similarly, has first allowed a systematisation of the 
factors assumed to act in population genetics, and it is progressively being adopted 
in other areas of evolutionary biology as a framework for explaining other dynami‑
cal processes.

Possibly not every phenomenon traditionally accounted for by evolutionary biol‑
ogy perfectly fits the explanatory schema suggested by the Price equation. Moreo‑
ver, of course, the Pricean approach to evolution is still too young to observe the 
constitution of well‑defined theory‑nets complementary to the genetic theory of evo‑
lution, analogous to rigid‑body dynamics and fluid dynamics for classical mechanics 
(we should not forget that these complementary theories are the fruit of centuries 
of intellectual effort). However, we think (relying on the evidence we presented in 
Sects. 3 and 4) that there is room for optimism concerning the formulation of a gen‑
eral theoretical framework of evolution resembling those that we find in physics.

6  Conclusions

In this article we have argued, against a quite popular view in the philosophy of 
biology, that notwithstanding the complexity of evolutionary dynamics, we should 
not be pessimistic about the possibility of attaining an encompassing mathematical 
theory of evolution. The core of this theory should be the Price equation. In order 
to support this claim, we first grounded, in Sect. 2, our argument on a sophisticated 
conception of the structure of scientific theories (i.e., metatheoretical structuralism). 
This allowed us to spell out a useful distinction between theory‑nets and theoretical 
holons, as well as to dissipate some common misunderstandings about the role of 
different kinds of laws in scientific theories. From this, in Sect. 3, we outlined the 
structure of the genetic theory of evolution (aka traditional population genetics) and 
clarified the fundamental role that the Price equation plays in it. In Sect. 4 we broad‑
ened our scope, by showing how a Pricean approach to evolution is also being suc‑
cessfully adopted outside the boundaries of traditional population genetics in order 
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to account for a variety of evolutionary phenomena. Finally, in Sect. 5, we compared 
the possible development of evolutionary biology with the historical development of 
classical mechanics. Newtonian mechanics fully disclosed its explanatory power to 
the domain of all physical phenomena through a continuous reformulation and adap‑
tation of Newton’s second law. Analogously, we may expect—relying on the current 
advances in evolutionary biology—that a Pricean framework can help to coordinate 
the theoretical efforts of the practitioners.

In this sense, our characterisation of evolutionary theory as a holon, with the 
Price equation at its core, reinforces the ideas of unification and generality. We rec‑
ognise the plural nature of evolutionary phenomena and of its research, as well as 
the necessity to bring together as different and complementary approaches, mod‑
els, methodologies, and theories as possible, acknowledging their scope and limi‑
tations (Griesemer, 2006; Mitchell & Dietrich, 2006). The Pricean approach does 
not restrict our view of evolution to a unique theory or model. In order to allow 
us to explain specific phenomena, the Price equation can be complemented by fur‑
ther specific modelling techniques (including several causal modelling techniques) 
and additional information about the target system (Frank & Fox, 2020; Morrissey, 
2014; Otsuka, 2016). However, what we wanted to stress is that all these different 
models, techniques, and methods can be connected under the formal umbrella pro‑
vided by the Price equation, which may help researchers to develop bona fide scien‑
tific evolutionary theories, therefore giving us a sense of unification (Luque, 2017). 
Thus, the Price equation can be seen as the bridge between different approaches and 
different theories, encompassing the complex evolutionary world through its austere 
and elegant formalism.
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