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MED - Instituto Mediterrâneo para a Agricultura, Escola de Ciências e Tecnologia, Universidade de Évora, Ap
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Abstract

Cynara cardunculus L. is a cardoon species native to the Mediterranean region, which is

composed of three botanical taxa, each having distinct biological characteristics. The aim of

this study was to examine wild populations of C. cardunculus established in Portugal, in

order to determine their genetic diversity, geographic distribution, and population structure.

Based on SSR markers, 121 individuals of C. cardunculus from 17 wild populations of the

Portuguese Alentejo region were identified and analysed. Ten SSRs were found to be effi-

cient markers in the genetic diversity analysis. The total number of alleles ranged from 9 to

17 per locus. The expected and observed means in heterozygosity, by population analysed,

were 0.591 and 0.577, respectively. The wild population exhibited a high level of genetic

diversity at the species level. The highest proportion of genetic variation was identified within

a geographic group, while variation was lower among groups. Geographic areas having

highest genetic diversity were identified in Alvito, Herdade da Abóboda, Herdade da Revil-

heira and Herdade de São Romão populations. Moreover, significant genetic differentiation

existed between wild populations from North-Alentejo geographic locations (Arraiolos,

Évora, Monte da Chaminé) and Centro Hortofrutı́cola, compared with other populations.

This study reports genetic diversity among a representative number of wild populations and

genotypes of C. cardunculus from Portugal. These results will provide valuable information

towards future management of C. cardunculus germplasm.
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Introduction

Cynara cardunculus L. is a perennial species native to the Mediterranean area and is well

adapted to hot and dry climates. It belongs to the Asteraceae family, and it comprises three

botanical varieties: C. cardunculus var. scolymus (L.) Fiori (globe artichoke), C. cardunculus
var. altilis (DC). (cultivated cardoon) and C. cardunculus var. sylvestris (Lamk) Fiori (wild car-

doon) [1] C. cardunculus is diploid (2n = 2x = 34) and allogamous species. Crosses between

members of the three varieties are highly variable, conferring a wide degree of genetic and phe-

notypic diversity [1–5].

The globe artichoke has been widely used for human consumption, in southern Europe,

mainly Portugal, Spain and Italy, while wild cardoon can also serve as a rennet for production

of cheese, resulting from aspartic proteinases activity from its flower heads [6–8]. Additionally,

C. cardunculus has been worldwide cultivated and investigated as a potential source of solid

biofuel/lignocellulosic biomass, seed oil, biodiesel, paper pulp, green forage and pharmacologi-

cally active compounds [9–11]. As a source of several nutraceutical and pharmaceutical com-

pounds, such as phenylpropanoids and sesquiterpenes [12–20], due their biological activity, C.

cardunculus has been well studied regarding its biological potential. According to studies that

characterized chemically the different parts of C. cardunculus plants [leaves, stalks and capitula

(receptacle and bracts, and florets) [21, 22]], cardoon is a rich source of different valuable com-

pounds. Among them, we highlight the sesquiterpene lactones (SL) present in C. cardunculus
leaves (94.5 g/kg dry weight), with cynaropicrin as the major SL presented (87.5 g/kg dry

weight) [21, 23]. Cynaropicrin biological potential is well described, as well as its use in the

food industry [24, 25].

In order to develop a breeding strategy to enhance content of bioactive compounds, having

pharmaceutical and/or nutraceutical applications, it is advantageous to screen C. cardunculus
genetic diversity. Genetic markers, such as microsatellites (SSRs, simple sequence repeats), are

informative molecular markers and are useful in breeding programs for marker-assisted selec-

tion. The technical ability to characterize germplasm [26] and detect the basis of complex

genetic traits of C. cardunculus has vastly improved the ability to construct genetic linkage

maps [27]. Since the introduction of the first linkage map for globe artichoke [5], studies have

identified and located major loci controlling key agronomic traits of C. cardunculus, based on

different classes of molecular markers [28]. More recently, the sequences of the globe artichoke

nuclear genome [29] and of the chloroplast genome of C. cardunculus taxa [30, 31] have been

described.

While there have been some studies of genetic diversity and genetic relationships between

cardoon from certain European countries and Tunisia [32–35], there is little information avail-

able on the genetic background of wild Portuguese populations of C. cardunculus. In order to

fill this gap, our study aimed to gain knowledge on C. cardunculus genetic diversity and popu-

lation structure in Portuguese cardoon by characterizing genotypes from multiple geographic

locations using SSR markers.

Materials and methods

Plant material

Samples of Cynara cardunculus L. (121 individuals) were collected from populations found in

the wild in 17 geographic locations, distributed across the Alentejo region in southern Portugal

(see Table 1; Fig 1), during June-July 2016 and 2017. In result of the not so clear taxonomy of

intraspecific taxa of C. cardunculus in the wild [36], we chose to refer to the cardoon plants of

our study just as C. cardunculus.
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Table 1. Abbreviated reference names, population origin and geographic locations of Cynara cardunculus samples.

Reference

name

(Abbr.)

Field-plot name Field-plot Location No. genotypes sampled Biological status Geographical coordinates

Latitude Longitude

CH Centro Hortofrutı́cola Beja, PT 7 Indeterminate 38˚01‘57.1” –007˚52‘29.6”

BA Base Aérea Beja, PT 7 Wild 38˚03‘55.21” –007˚54‘01.53”

QS Quinta da Saúde Beja, PT 7 Wild 38˚02‘12.6” –007˚53‘02.0”

PG Penedo Gordo Penedo Gordo, Beja, PT 7 Wild 37˚59‘12.4” –007˚55‘00.1”

SAL Salvada Salvada, Beja, PT 7 Wild 37˚56‘16.3” –007˚45‘47.0”

SV Santa Vitória Santa Vitória, Beja, PT 7 Wild 37˚58‘09.5” –008˚01‘35.1”

HB Herdade dos Barretos Serpa, Beja, PT 7 Wild 37˚56‘39.9” –007˚35‘52.2”

HA Herdade da Abóbada Vila Nova de São Bento, Beja, PT 9 Wild 37˚59‘51.5” –007˚26‘00.8”

ALV Alvito Alvito, Beja, PT 7 Wild 38˚14‘08.1” –008˚00‘44.1”

MC Monte da Chaminé Mora, Évora, PT 7 Wild 38˚57‘56.2” –008˚08‘06.1”

HP Herdade do Peral Monte do Trigo, Évora, PT 7 Wild 38˚22‘32.8” –007˚39‘45.9”

HR Herdade da Revilheira Santo António do Baldio, Évora, PT 7 Indeterminate 38˚28‘02.6” –007˚28‘27.4”

HSR Herdade de São Romão São Romão, Sétubal, PT 7 Wild 38˚16‘19.9” –008˚21‘33.7”

JUR A Juromenha A Juromenha, Évora, PT 4 Wild 38˚45‘08.6” –007˚13‘17.3”

B Juromenha B 3 Wild 38˚45‘18.1” –007˚12‘59.9”

TR Trindade sem picos Trindade, Beja, PT 7 Wild 37˚53‘56.2” –007˚53‘48.3”

AR Arraiolos Arraiolos, Évora, PT 7 Wild 38˚44‘02.12” –007˚56‘48.32”

EV Évora Évora, PT 7 Wild 38˚33‘29.58” –007˚53‘06.29”

TOTAL 121

https://doi.org/10.1371/journal.pone.0252792.t001

Fig 1. Maps indicating geographic locations and distribution of the wild populations of Cynara cardunculus, sampled in Portugal.

https://doi.org/10.1371/journal.pone.0252792.g001
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From each location, seven to nine different genotypes were selected for genetic analysis. In

total, samples (leaves) of C. cardunculus included 121 genotypes from 17 populations (Table 1;

Fig 1), leaves were air-dried and ground to a powder for DNA isolation.

DNA isolation

Total genomic DNA was extracted from samples using the DNeasy Plant Mini Kit (Qiagen,

Germany), following manufacturer protocols. Prior to PCR amplification, DNA concentration

and purity were determined spectrophotometrically (NanoVue plus, GE Healthcare Life Sci-

ences, USA), while DNA integrity was assessed electrophoretically on 1% agarose gels, stained

with GreenSafe Premium (NZYTech, Portugal) using a GelDoc XR System (BioRad, USA) for

image capture and analysis.

Microsatellite analysis

Twenty-three pairs of primers for microsatellite analysis were retrieved from the available liter-

ature for artichoke [37–39] (S1 Table). Pairs of primers were chosen according to linkage-

group positions and to level of potential polymorphism.

PCR amplifications were performed using a total volume of 20 μL containing 0.1–0.5 ng of

genomic DNA, 0.5 μM of forward and reverse primers and 1x Dream Taq PCR Mastermix

(Thermo Scientific, USA). Amplification was performed using the following conditions: ini-

tially 95 ˚C—10 min; then 40 cycles at 95 ˚C– 45 s; optimal annealing temperatures respective

to primers—60 s (Table 2); 72 ˚C– 45 s; and a final elongation at 72 ˚C—10 min. Controls lack-

ing a DNA template were included in each PCR reaction for each primer pair. Only ten of

twenty three pairs of primers listed in S1 Table with amplification and specific PCR products

were used for the following fragment analysis.

Amplicons of each primer pair were sequenced using the ABI 3730xl platform, to confirm

the specificity of PCR products. Thereafter, multiplex PCRs were carried out using NYZProof

DNA polymerase 2x Colourless Master Mix (NYZTech, Portugal) according to manufacturer’s

instructions, using the annealing temperatures listed in Table 2. Each forward primer was fluo-

rescent-labelled with 6-FAM or HEX dyes (STAB VIDA, Portugal), and two loci were

Table 2. Genetic parameters based on 10 Simple Sequence Repeat (SSR) loci and 121 Cynara cardunculus individuals.

SSR Loci Name Ta N Ho He I PIC

(˚C)

CELMS-05 53 15 0.442 0.528 0.985 0.702

CELMS-61 53 13 0.735 0.675 1.290 0.805

CyEM-138 60 16 0.674 0.644 1.261 0.823

CELMS-58 60 17 0.708 0.693 1.369 0.867

CyEM-183 55 9 0.554 0.499 0.804 0.487

CyEM-229 55 15 0.584 0.584 1.091 0.752

CELMS-03 51 16 0.634 0.591 1.133 0.813

CELMS-11 51 14 0.642 0.624 1.219 0.850

CELMS-14 51 13 0.664 0.648 1.292 0.817

CELMS-17 51 10 0.134 0.423 0.695 0.497

Total 138

Mean 13.8 0.577 0.591 1.114 0.741

Note: Ta-annealing temperature; N-number of alleles; Ho-observed heterozygosity; He-expected heterozygosity; I-Shannon’s Information Index; PIC-Polymorphic

information content.

https://doi.org/10.1371/journal.pone.0252792.t002
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amplified in the same reaction, according to the combinations described in S1 Table. PCR was

carried out as follows: 95 ˚C—3 min; followed by 40 cycles at 94 ˚C—30 s, respective annealing

temperature (Table 2) - 45 s; 72 ˚C—45 s; and final extension at 72 ˚C—10 min.

All PCR amplifications were performed using a MyCycler (BioRad, USA) thermocycler.

For fragment analysis, PCR products were separated by capillary electrophoresis on an ABI

3130 Genetic Analyser (Applied Biosystems, Foster City, CA, USA) and peaks identified using

internal size GeneScan™ 500 LIZ1 Size Standard (Applied Biosystems) (S1 Fig). DNA frag-

ment lengths were determined using GeneMapper software (Applied Biosystems, USA).

Data analysis

Genetic diversity parameters, such as total number of alleles (N) and polymorphic information

content (PIC), were calculated using PowerMarker v.3.25 software [40]. Mean number of

alleles (Na), expected heterozygosity (He), observed heterozygosity (Ho), Shannon’s diversity

index (I) and Fixation Index F (Inbreeding Coefficient) and Wright’s FST used to estimate

genetic diversity and population differentiation, were generated by GenALEx v 6.5 software

[41]. Analysis of molecular variance (AMOVA) was also performed using GenAlEx v6.5, to

evaluate genetic variation among and within populations. Genetic distance was estimated

according to Nei parameter [42]. MICROCHECKER [43] was used to test for the possibility of

scoring errors, allelic dropout, and null alleles. Principal coordinate analyses (PCoA) [44] were

performed, using GenAlEx v6.5 to identify genetic variation patterns among C. cardunculus
genotypes. Genetic dissimilarity matrices and neighbour-joining (NJ) cluster analyses were

used to construct genetic affiliation trees using Darwin v.6 software [45].

Population structure was performed using the Bayesian model-based clustering approach,

using software STRUCTURE v2.3.4 software [46], to elucidate relationships among popula-

tions. Initially, geographic populations were assigned to 17 groups (Table 2). Number of popu-

lations (K) was estimated by performing five independent runs for each K (from 1 to 10),

using 100 000 MCMC steps and 50 000 burn-in periods, assuming the following parameters:

admixture model and correlated allele frequencies model. The optimum number of popula-

tions (K) was processed and identified by STRUTURE HARVESTER web v 0.6.94, July2014 by

comparing log probabilities of data for each value of K [47, 48]. The clustering pattern was

visualised using the Structure Plot V2 [49].

Results

Having a thorough comprehension of the genetic diversity and population structure of wild C.

cardunculus, in Portugal, is an important step towards using available genetic resources, to

develop cultivars useful to agriculture and industry. Until now, available knowledge regarding

cardoon germplasm in the Iberian Peninsula was limited. The results of our study significantly

enhance that knowledge.

For our study, SSR markers were used to characterize genetic diversity of 121 genotypes of

C. cardunculus collected across the Alentejo region (southern Portugal), from 17 Portuguese

populations. For this characterization we analyzed several parameters including, number of

alleles (N), polymorphic information content (PIC), number of different alleles (Na), number

of effective alleles (Ne), Shannon’s Information Index (I), observed (Ho) and expected (He)

heterozygosity, and Fixation Index (F).

Diversity parameters for Cynara cardunculus individuals

For genetic characterization, initially 23 SSRs were used for microsatellite screening of the car-

doon collection. Of these, only 10 showed reproducible and specific PCR amplification, as
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confirmed by sequencing (S2 Table). A total of 138 alleles were generated from all 121 C. car-
dunculus individuals under study. The number of alleles per locus showed a range from nine

(CyEM-183) to 17 (CELMS-58), with an average of 13.8 (Table 2; S3 Table).

He values for loci had a range from 0.423 (CELMS-17) to 0.693 (CELMS-58), with an aver-

age of 0.591, while Ho had a range between 0.134 (CELMS-17) and 0.735 (CELMS-61), with

an average of 0.577 (Table 2).

Average PIC was 0.741, varying from 0.487 (CyEM-183) to 0.867 (CELMS-58). The major-

ity of optimized markers were highly informative (PIC�0.70). The Shannon information

index varied from 0.695 (CELMS-17) to 1.369 (CLEMS-58), with an average of 1.114

(Table 2).

These results demonstrated that the employed SSR markers were effective in providing

valid estimates of genetic diversity of the cardoon population, as represented by the average of

genetic diversity indices (PIC = 0.741, He = 0.591, I = 1.114).

Genetic diversity of Cynara cardunculus populations

Genetic diversity analysis were performed for all C. cardunculus populations (Table 3). Among

populations, the number of different alleles Na varied from 2.7 (TR) to 5.5 (HA), with an aver-

age of 4.100. The number of effective alleles, Ne, had a range from 1.961 (AR) to 3.713 (HA)

and an average of 2.912. Ho values for each geographic population ranged from 0.443 (EV) to

0.733 (HA), with an average of 0.577. Whereas, expected heterozygosity had a variation from

0.419 (AR) to 0.700 (ALV) with an average of 0.591. The Shannon information index had a

range from 0.737 (AR) to 1.388 (HA) (Table 3).

Fixation indices revealed the existence of at least two distinct groups showing values round

zero and/or negative. The BA, QS, SAL, SV, HB, MC, EV, JRA/B, HR, HP and HSR

Table 3. Genetic diversity analyses of Cynara cardunculus from 17 populations.

Geographic population Na Ne I Ho He F

CH 3.000 2.295 0.867 0.657 0.506 -0.305

BA 3.500 2.518 0.983 0.514 0.555 0.057

QS 4.700 3.366 1.266 0.614 0.639 0.076

PG 4.200 2.808 1.161 0.629 0.630 -0.008

SAL 4.300 2.971 1.146 0.571 0.592 0.094

SV 4.300 3.038 1.180 0.600 0.621 0.033

HB 4.300 2.998 1.124 0.529 0.579 0.088

HA 5.500 3.713 1.388 0.733 0.689 -0.031

ALV 4.500 3.572 1.332 0.714 0.700 -0.023

MC 3.600 2.542 0.988 0.514 0.542 0.074

HP 4.400 3.33 1.223 0.490 0.641 0.257

HR 5.300 3.499 1.358 0.586 0.668 0.171

HSR 5.300 3.411 1.376 0.600 0.684 0.150

JURA/B 4.000 3.017 1.201 0.586 0.654 0.097

TR 2.700 2.037 0.761 0.557 0.458 -0.227

AR 3.000 1.961 0.737 0.471 0.419 -0.143

EV 3.100 2.434 0.844 0.443 0.465 0.039

Mean 4.100 2.912 1.114 0.577 0.591 0.026

Note: Na—Number of different alleles; Ne- Number of effective alleles; I-Shannon’s Information Index; Ho-observed Heterozygosity; He-Expected Heterozygosity;

F-Fixation Index.

https://doi.org/10.1371/journal.pone.0252792.t003
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populations were more homozygous than expected (F positive). CH, PG, ALV, TR and AR

populations showed negative F values, indicating significantly higher heterozygosity than

expected, possibly resulting from negative assortative mating or selection for heterozygotes.

MICROCHECKER analysis did not detect evidence for scoring errors due to stuttering, nei-

ther for allele dropout, nor for a high frequency of null alleles in any of the tested loci, although

still not perturbing Hardy-Weinberg equilibrium of the natural populations.

Genetic differentiation within and among geographic populations

Analysis of molecular variance (AMOVA) for genetic differentiation among and within popu-

lations of C. cardunculus showed only an occurrence of 14% of genetic variation occurred

among populations (Table 4). Contrastingly, 86% of remaining variability in genetic variation

was represented within the population.

The results of principal coordinate analysis (PCoA), based on Nei’s genetic distance, are

presented in Fig 2. The first two coordinates of the analysis account for 36.6% of the total varia-

tion. The first coordinate explains 18.88% of the variation and indicates mainly, the degree of

separation of AR, MC, CH, EV from the remaining populations. The second coordinate

explains an additional 17.71% of the variation (Fig 2 and S4 Table).

Table 4. Analysis of Molecular Variance (AMOVA) within/among Cynara cardunculus populations.

Source df SS MS Est. Var. %

Among Populations 16 88644.178 5540.261 273.621 14%

Within Populations 225 370406.798 1646.252 1646.252 86%

Total 241 459050.975 1919.873 100%

Note: df, degrees of freedom; SS, sum of squared; MS, mean squared; Est.Var., Estimated variance; %, percentage of AMOVA values.

https://doi.org/10.1371/journal.pone.0252792.t004

Fig 2. Principal coordinate analysis of Nei’s genetic distance for the 17 geographic populations of Cynara cardunculus.

https://doi.org/10.1371/journal.pone.0252792.g002
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Pairwise FST values, a measure of genetic differentiation among populations, showed the

most differentiated wild populations in C. cardunculus were EV and AR (FST = 0.32), while the

least differentiated wild populations were PG and SV (FST = 0.054) (S5 Table). The high pair-

wise population Fst values (S5 Table) observed between the AR, EV and MC wild populations

indicate those populations were probably undergoing differentiation process, concurring with

the data presented in Fig 2. The remaining wild populations presented lower pairwise FST val-

ues (S5 Table), indicating a lower genetic differentiation.

Population structure

The 121 individuals of C. cardunculus were further evaluated for population stratification

based on the admixture model approach using STRUCTURE software [46]. When SSR data

were analysed, the number of subpopulations (K) tested were increased from one to 10. Esti-

mation of ΔK by LnP(D) and Evanno’s ΔK method analysis, revealed the highest value for

K = 2 (ΔK = 159.78), while K = 3 (ΔK = 3.17) and K = 8 (ΔK = 19.21) presented also the high

levels of K (S2 Fig; S6 Table).

According to these results (K = 2) the geographic locations of CH, MC, AR, EV were, clus-

tered together, included in group 2 (pink, Fig 3A). Most genotypes from these locations pre-

sented a very high membership coefficient, q value, above 0.80. Furthermore, some individuals

from other geographic locations, HB (HB1, HB5 and HB7), JURA (JURA1, 3 and 4) and HP1,

clustered in the same group 2 (q>0.80). However, genotypes HR1, JURA2, HR4 and ALV3

appears admixed, with a q value below 0.63. Other individuals from the BA, QS, PG, SAL, SV,

HA, ALV, HP, HSR, JURB and TR populations were included in group 1 (blue, Fig 3A).

Based on the K = 3 model (Fig 3B), genotypes from geographic locations MC and AR, and

CH4/CH5 genotypes from CH population were still clustered in the same group (pink), with a

q value above 0.80. However, genotypes CH1, CH2 and CH7 showed a q value of approxi-

mately 0.5, indicating an admixed ancestry. In the blue group, EV appears jointed with JURA

(JURA1-4), individuals from HB (HB2, HB3, HB5, HB6, HB7), HP1 and SAL3, with a high q

value (>0.80). The second higher value of ΔK was observed at K = 8. Individuals from TR, AR

and EV were maintained as distinct subgroups within the structure of the population

(q>0.80), while CH (CH1 to CH6) and MC still joint in the same cluster (pink; Fig 3C). The

CH7 genotype showed admixed with a q value of 0.75.

The differentiation of EV, CH, MC and AR locations was observed in PCoA analysis, and is

also supported by Fst values and confirmed by populations STRUCTURE analysis. In addition,

the admixture model approach shows there is a consistent structure within the Juromenha

location, concerning JURA and JURB populations, which is indicated by the K = 2 and K = 3

analyses. Although individuals from JURA and JURB are located within the same geographic

area, genotypes of JURA are in fact isolated from JURB by a water barrier.

A phylogenetic tree using neighbour-joining analysis, based on genetic distance, rendered

three distinct groups (I, II, III) of C. cardunculus (Fig 4). This analysis, based on a dissimilarity

matrix, grouped AR, MC, CH, EV and some individuals from HB, and JURA in cluster I. The

second cluster grouped individuals from TR, SAL, SV and HSR among others. The HA popu-

lation was assigned to an independent cluster, cluster III.

Discussion

Microsatellite polymorphism and genetic diversity of Cynara cardunculus
Characterization of genetic diversity is fundamental to design and manage strategies for spe-

cies conservation and breeding programs. However, concerning Portuguese C. cardunculus
germplasm there are only few studies supported by molecular markers, across its natural
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distribution [33, 35]. This study encompasses several wild genotypes of C. cardunculus from

different geographic locations in Portugal. Our study is comprehensive, and thus an important

contribution to improve the ability to assess and manage C. cardunculus germplasm in Portu-

gal. Consequently, it provides a contribution to our understanding of this species germplasm

characterization also in the Mediterranean region, supplementing the limited information cur-

rently available [35].

Efficiency of molecular markers, for population studies, is largely dependent upon their

ability to detect levels of polymorphism. The mean number of alleles per locus observed in our

study (N = 13.8) was higher than in prior studies of C. cardunculus [32, 34, 38, 50]. According

to Botstein et al. [51] eight SSR loci were found to be highly informative (PIC> 0.5), with two

others being moderately informative (0.5 > PIC > 0.25). The mean PIC of SSRs collectively

used in our study was higher than those used in previous C. cardunculus genetic diversity

Fig 3. Structure analysis based on 121 genotypes of Cynara cardunculus. Genetic clusters inferred from the population structure analysis at K = 2

(A), 3 (B) and 8 (C), are represented by individual colors. Each sample (represented by a vertical bar) is partitioned into colored segments representing

the estimated membership coefficients (q values). Genotypes names (geographic location followed by genotype number) are indicated on the x axis. Bar

colors indicate the groups identified through the STRUCTURE program.

https://doi.org/10.1371/journal.pone.0252792.g003
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Fig 4. NJ phylogenetic tree showing affiliations of the Cynara cardunculus populations based on genetic

dissimilarity of SSR microsatellite analyses. Geographic origin of populations is identified by a colour (see Table 1

for abbreviations of geographic populations).

https://doi.org/10.1371/journal.pone.0252792.g004
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studies using nuclear microsatellites [34, 38, 50]. Our findings indicate that the SSR markers

we used were sufficiently informative to suitably evaluate Portuguese C. cardunculus
germplasm.

In our study, relatively high allelic diversity and heterozygosity confirm the high level of

diversity represented by C. cardunculus populations of southern Portugal found in the wild,

perhaps related to the high level of outcrossing. The genetic diversity of Portuguese popula-

tions of cardoon in this study was higher (He = 0.591) than the wild cardoon populations from

other Iberian populations (He = 0.370), studied by Gatto et al. [33], based on SSR markers.

The lower genetic diversity observed by Gatto et al. [33] could be related to lower number of

genotypes (n = 5) analyzed. Within the present work, the genotypes from the ALV, HA, HR

and HSR populations presented the highest genetic diversity, compared to those from other

geographic locations. The mean Ho detected in our study was lower than mean He, which

might indicate population isolation. Similar lower levels of Ho were also detected in seeds

from leafy cardoon and wild cardoon, indicating that natural cross-breeding occurs in popula-

tions in the wild, as also noted by other authors [32, 33]. However, some populations have sim-

ilar values for He and Ho (fixation index F, close to zero) like PG, ALV indicating that the

population are under Hardy-Weinberg Equilibrium (HWE), undergoing random mating,

without significant natural selection, gene migration, mutation, or genetic drift [52]. The fixa-

tion index (F), also referred to as the Inbreeding Coefficient, represents any deviation from

HWE, and allows detection of inbreeding, population fragmentation, migration and selection

[53]. Most Portuguese populations showed more homozygous genotypes than expected (F pos-

itive), with exception of those from the CH, PG, HA, ALV, TR and AR locations. One factor

explaining the relatively lower heterozygosity found in some geographic locations might be a

result of inbreeding, resulting from small population size. The mean Fixation index from Por-

tuguese germplasm in our study was 0.026, similar to that found for Iberian wild germplasm

(F = 0.024), described by Gatto et al. [33]. In this study, wild populations from more easterly

locations in Europe, such as those from Italy, Greece, Tunisia and Malta had a slightly higher

level of inbreeding. Correspondingly, those populations were more homogeneous when com-

pared to Iberian wild germplasm, from Portugal and Spain.

Level of genetic diversity of a species can be dependent on length of life cycle, reproduc-

tion system, geographic range and gene flow [53]. In our study, we found the majority of

genetic variation occurred within populations of cardoon from the same geographic loca-

tion. This finding is in accordance to previous studies of other cardoon populations

described by others [33, 50, 54]. Higher diversity of C. cardunculus within the same geo-

graphic area might be related to the high level of outcrossing and degree of wind pollination

inherent to cardoon. Such processes would increase gene flow between populations and

reduce differentiation among them. For decades, cardoon has been used for multiple pur-

poses having a wide range of applications, such as in traditional cheese production, human

nutrition, and more recently for energy purposes [55, 56]. Hence, human factors may have

also played a role in the higher level of genetic diversity detected within population of C. car-
dunculus in Portugal, while variation was lower among groups. Although the actual contri-

bution of human activity to the rate of gene flow is unknown, low levels of differentiation

among some geographical groups might reflect human activity in different regions contrib-

uting to exchange of germplasm. In addition, pollination of cardoon is chiefly performed by

insects or mechanical (wind) agitation, according to Harwood and Markarian [57]. Cardoon

has been considered as a species that predominantly out-crosses, having a low capacity for

self-fertilization [34]. This association has resulted in a high level of within-species genetic

diversity in cardoon.
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Population structure and molecular phylogeny

The structure of a population affects the degree of its genetic variation and pattern of distribu-

tion [58]. Our study included an analysis of population structure based on the sampled popula-

tions in order to identify any domestication events, heretofore unknown.

The likely number of different subpopulations we found, K = 2, was estimated using com-

puter-based clustering analysis available in STRUCTURE [46]. That analysis identified the

genotypes from AR, EV and MC geographic locations in the same cluster, pink group (Fig 3),

corresponding to the northern edge of the Alentejo region. Geographic isolation among C. car-
dunculus populations of northern Alentejo may have resulted in minimal gene flow among

them in surrounding areas. Moreover, in the same pink group, the CH population forms a

cluster having a high proportion of similar alleles. As far as we know, genotypes from the CH

location descended from Portuguese seeds of unknown origin, introduced along ago, into

Alentejo, considering the specific biochemical properties of the cardoon flower for cheese pro-

duction. In addition, the HR population partly represents a relictual experimental field popula-

tion, introduced for studies on genetic diversity in the region several decades ago. The seeds

for this study originated from different parts of Portugal, namely Beja, Quinta-do-Marquês in

Oeiras and Torre Vã in Santiago do Cacém. These different Portuguese sources, might explain

the similar ancestry proportion in the pink group, of 3 genotypes (HR1, HR4 and HR6) from

HR population.

From the phylogenetic tree using neighbour-joining (NJ) cluster analysis it is also inferred a

clear clustering of AR, MC, CH, EV geographic locations (Fig 4). The remaining populations

were more complex, suggesting they were genetically admixed. The wild conditions of these

populations and high level of outcrossing could explain the admixture of ancestry observed in

several genotypes.

Conclusions

Understanding genetic diversity and population structure of C. cardunculus is critical for effi-

cient management of its genetic characteristics when designing suitable cultivars. According

to our results, identification of microsatellites using SSR markers, proved to be a reliable

method to assess C. cardunculus population genetics. Our study is a significant contribution to

the knowledge of cardoon genetics and genotypes of wild populations in southern region of

Portugal.

The high level of genetic variability within the wild cardoon populations studied, provides

essential information for future germplasm conservation. Moreover, this study showed there is

significant genetic differentiation in the gene pools among various cardoon groups, namely

those from the northern edge of the Alentejo region. This differentiation provides a robust,

independent source of genetic variability and is a valuable resource of genetic traits for breed-

ers. Choosing optimal cardoon reproductive material, based on our genetic diversity findings

will help to support the stability of C. cardunculus. Moreover, previous studies showing vari-

ability in natural product profile and cynaropicrin content, the major SL presented in C. car-
dunculus leaves [14–16], merge our findings reflecting the high level of genetic variability in

populations of Portuguese cardoon.

A molecular database reflecting the variability of C. cardunculus genotypes, with identified

morphological and biochemical profiles, will be useful to develop new biotech strategies used

in future breeding programs. Such programs could significantly be designed to enhance con-

tent of bioactive compounds having pharmaceutical and/or nutraceutical applications. The

knowledge here disclosed, greatly contributes to augment the economic value of cardoon at

both regional and national levels.
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Supporting information

S1 Fig. Example of electropherograms showing the different alleles at the locus CELMS-58,

for five genotypes of cardoon (SAL4, QS4, PG4, BA7, AR6). The red peaks at 250 (nt) repre-

sent the standard size marker.

(TIF)

S2 Fig. Figures showing the four steps of the Evanno method used for detecting ideal num-

ber of populations, K value. A. Mean L(K) ± SD after five runs for each K value. B. Rate of

change of the likelihood distribution (mean ± SD) calculated as L’ (K) = L (K)-L (K-1). C.

Absolute values of the second order rate of change of the likelihood distribution (mean ± SD)

calculated according to the formula: |L” (K)| = |L’ (K+1)–L’(K)|. D. ΔK calculated as ΔK = m|

L”(K)|/ s(L(K)]. The modal value of this distribution is the true K, or the uppermost level of

structures, here designating three clusters.

(TIF)

S1 Table. Nucleotide sequences of 23 primer pairs used for PCR amplification of microsat-

ellites (SSRs) used in our study and characterization of those generated SSRs based on

nucleotide repeats, number of repeats, linkage group and expected allele size, described on

the literature. The multiplex loci combination and the respectively dyes used during our

work, are also indicated.

(XLSX)

S2 Table. The nucleotide sequences of amplicons obtained using 10 selected SSR primer

pairs for large scale PCR amplification.

(XLSX)

S3 Table. Allele frequencies by population and total of the 10 SSR loci.

(XLSX)

S4 Table. Percentage of variation explained by the first 3 axes using Principal coordinate

analysis.

(XLSX)

S5 Table. Pairwise population Fst values.

(XLSX)

S6 Table. Table showing the data output of the Evanno method. The asterisk mark shows

the largest values in the Delta K column.

(XLSX)
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