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Abstract

Animal biodiversity in cities is generally expected to be uniformly reduced, but recent studies show that this is modulated by
the composition and configuration of Urban Green Areas (UGAs). UGAs represent a heterogeneous network of vegetated
spaces in urban settings that have repeatedly shown to support a significant part of native diurnal animal biodiversity. However,
nocturnal taxa have so far been understudied, constraining our understanding of the role of UGAs on maintaining ecological
connectivity and enhancing overall biodiversity. We present a well-replicated multi-city study on the factors driving bat and
nocturnal insect biodiversity in three European cities. To achieve this, we sampled bats with ultrasound recorders and flying
insects with light traps during the summer of 2018. Results showed a greater abundance and diversity of bats and nocturnal
insects in the city of Zurich, followed by Antwerp and Paris. We identified artificial lighting in the UGA to lower bat diversity
by probably filtering out light-sensitive species. We also found a negative correlation between both bat activity and diversity
and insect abundance, suggesting a top-down control. An in-depth analysis of the Zurich data revealed divergent responses of
the nocturnal fauna to landscape variables, while pointing out a bottom-up control of insect diversity on bats. Thus, to effec-
tively preserve biodiversity in urban environments, UGAs management decisions should take into account the combined eco-
logical needs of bats and nocturnal insects and consider the specific spatial topology of UGAs in each city.
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Introduction

Urbanisation is a heterogeneous, worldwide phenomenon
imposing important challenges to wildlife conservation.
Rapid urbanisation in the last decades negatively impacts
biodiversity in complex ways (e.g. Parris, 2016;
Rivkin et al., 2019). However, the specific effects of urbani-
sation are neither linear nor constant, but vary amongst and
within cities (Beninde, Veith & Hochkirch, 2015). In
Europe, most cities have developed in former agricultural
lands sharing similar environmental histories. Nonetheless,
they are still heterogeneous in their cityscape. Although this
heterogeneity has been noticed previously (Ramalho &
Hobbs, 2012), most urban ecology studies still follow a sin-
gle-city approach hampering the extrapolation of the results
to other cities (Beninde et al., 2015). Finally, despite urbani-
sation reducing the amount of available habitat, cities also
contain a network of urban green areas (UGAs) that have
been shown to be a key factor enhancing biodiversity
(McIntyre, Rango, Fagan & Faeth, 2001; Sattler, Duelli,
Obrist, Arlettaz & Moretti, 2010).

In most European cities, densely built-up districts with lit-
tle or no green areas represent a small fraction of the whole
urban areas. The majority of the urban districts have inter-
mediate levels of urbanisation and contain a variable and
sometimes dominant proportion of UGA. UGAs represent a
network of highly heterogeneous patches usually distributed
forming mosaics, such as parks, green roofs or tree pits
(Lepczyk et al., 2017). Locally, UGAs strongly vary in
many features such as size, structure, vegetation composi-
tion, water availability, ownership or management. For
instance, UGAs may range from large sites with a complex,
multi-layered vegetation structure to linear, highly managed
lawn stripes. At the landscape scale, the contribution of
UGAs to the habitat amount is mediated by their composi-
tion and configuration as well as by the permeability of the
surrounding matrix (Lepczyk et al., 2017). Altogether, this
hampers disentangling the factors shaping biodiversity and
ultimately making conservation assessments. Finding tools
to successfully measure and synthesise these complex rela-
tionships is a key step towards a more holistic urban biodi-
versity management.

A long-lasting problem in urban ecology is how to reli-
ably infer the effects of urban intensification (e.g. modifica-
tions on habitat amount, heterogeneity, disturbances,
stressors or isolation) on biodiversity. Remote sensing tools
such as LiDAR (i.e. Light Detection and Ranging) or artifi-
cial light at night (ALAN) maps are becoming more accessi-
ble, and have been proven to be good proxies of habitat
amount and disturbance, respectively (S�anchez De
Miguel et al., 2019). Still, the potential of remote sensing
tools remains underutilised as few studies to date have
included this type of metrics (but see Hale, Fairbrass, Mat-
thews, Davies & Sadler, 2015; Zellweger et al., 2016), prob-
ably because their potential is not yet fully understood.
Habitat, land-cover and land-use maps are generally
available for most cities in Europe and used as proxies of
habitat amount, heterogeneity and connectivity (e.g.
Munzi et al., 2014). However, they significantly vary in
grain and most importantly, in the ecological information
used to define the different mapping categories. Finally,
ALAN maps have been used to show the responses of a
wide variety of organisms to light pollution (Hale et al.,
2015; Knop et al., 2017). Nevertheless, there is limited
understanding of the effects of artificial lightning on biotic
communities (Sanders & Gaston, 2018).

Bats and nocturnal insects represent an understudied
assemblage showing ecological features that make them a
striking group to monitor the effects of urbanisation. First,
they represent a prey-predator system as European bats feed
on nocturnal insects. Prey-predator systems might exhibit
two types of responses towards modifications of the habitat
amount or disturbances: bottom-up, such as greater feeding
bat activity with increasing insect biomass (Threlfall, Law
& Banks, 2012a) or top-down, for instance insect pest con-
trol by bats (Puig-Montserrat et al., 2020). Second, nocturnal
animals, such as bats and nocturnal insects, might have a dif-
ferent susceptibility towards anthropogenic disturbances (e.
g. light pollution) than diurnal ones. Further, they strongly
differ from diurnal organisms in terms of the orientation sys-
tem they use to move and forage. These two traits regulate
the scale at which the organisms perceive the environment
and thus the modifications and disturbances that occur
(Concepci�on, Moretti, Altermatt, Nobis & Obrist, 2015).
Finally, bats can be classified in three general guilds (i.e.
long-, mid- and short-range echolocators) with differences
in their foraging strategies (see Frey-Ehrenbold, Bontadina,
Arlettaz & Obrist, 2013; Froidevaux, Zellweger, Bollmann
& Obrist, 2014). Therefore, bats can be considered a poten-
tial bioindicator of land-use changes, particularly urbanisa-
tion, but studies on these groups are still scarce (but see
Jones, Jacobs, Kunz, Wilig & Racey, 2009).

Prior research testing the effects of urbanisation on bats
and nocturnal insects has yielded mixed results. Generally,
urbanisation has been reported to simplify bat communities
by filtering out sensitive species and keeping those with gen-
eralistic traits leading to a certain degree of biotic homogeni-
sation (Russo & Ancillotto, 2015), a process documented
also for other taxa (Chong et al., 2014; but see
Fournier, Frey & Moretti, 2020). For instance, earlier
research has revealed a decrease in bat diversity following
reductions of the amount of available habitat due to urban
intensification (e.g. Kurta & Teramino, 1992). Nonetheless,
other urban intensification drivers have unclear effects.
Light pollution has been shown to negatively impact many
groups, particularly nocturnal animals (Stone, Harris &
Jones, 2015). Still, some studies propose that this distur-
bance might not have a significant effect on bats, as they
could move to more suitable patches (Krauel & LeB-
uhn, 2016); or even be advantageous for them. For instance,
streetlights on linear paths attract large amounts of nocturnal
insects facilitating foraging of light-opportunistic bats
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(Russo & Ancillotto, 2015). Conversely, bat species with
low tolerance to light pollution (i.e. light-averse) are filtered
out (Stone et al., 2015). On the other hand, the effects of
urbanisation on nocturnal insects have been little investi-
gated but some patterns have been reported. Similarly to
bats, a negative relationship appears between building den-
sity and nocturnal insect diversity (Krauel & LeBuhn, 2016;
Russo & Ancillotto, 2015). Threlfall et al. (2012a) suggest
that the negative effects on nocturnal insects’ biomass could
be explained by the increase in impervious surfaces, leading
to loss and fragmentation of available habitat and, thus, to
low primary productivity. On the contrary, urban native veg-
etation has been proposed to sustain nocturnal insect popula-
tions (Russo & Ancillotto, 2015). Thus, it is expected that
insect abundance and its drivers greatly influence bat distri-
bution in urban areas (Krauel & LeBuhn, 2016).

In this paper, we studied the influence of biotic and abi-
otic factors in shaping the diversity, activity and abundance
of bats and nocturnal insects in urban green areas using two
contrasting designs in terms of the number of cities included
and the type of the urban intensification proxies used. First,
we investigated the responses across three European cities
(Antwerp, Paris and Zurich) to test whether the effects of
urbanisation on the response variables were consistent. We
used a standardised set of urbanisation proxies across all cit-
ies including land use and light pollution maps. Second, we
additionally studied the same set of responses of bats and
nocturnal insects but adding high-resolution predictors avail-
able for the city of Zurich to further infer the amount of
available habitat and the role of vegetation structure.
Materials and methods

Study region and selection of sampling sites

The study region is Western and Central Europe, in partic-
ular Paris, France (48°5102300N, 2°2005800E), Zurich, Swit-
zerland (47°2204000N, 8°3202300E) and Antwerp, Belgium
(51°1204800N, 4°2405500E). These cities vary in terms of pop-
ulation density, size and percentage of green areas
(United Nations, 2019).

We focused on the UGAs mapped and defined in the
European Urban Atlas (see EEA, 2012) to select patches.
We used an orthogonal gradient of patch size (area in m2)
and connectivity. Connectivity was calculated using the
Proximity Index (PI) which considers the area and the dis-
tance to all nearby patches with a favourable habitat, within
a given search radius. Thus, the PI measures the degree of
patch isolation, with highest values given to less isolated
patches (McGarigal, Cushman & Ene, 2012). We considered
as favourable habitat all patches with high probability of
having trees (that is, UGAs, urban forest and grey urban
land-cover with less than 30% impervious surface, see
EEA, 2012). The search radius was set to 5 km from each
focal patch, in order to accommodate all possible animal
mobility ranges. Lower buffer values (from 500 m onwards)
did not greatly change the PI values, because the distance is
squared, thus greatly limiting the impact of patches beyond
a certain distance. To select patches using the orthogonal
design, all possible patches were classified in six size classes
and six classes of PI (36 possible combinations). Within
these combinations patches were selected randomly (random
stratified sampling design). Due to resource limitations we
only used 1/3 of the possible combinations in Paris and Ant-
werp (maximizing the gradient) and the full range of combi-
nations in Zurich (32 combinations, the other combinations
were not available). This resulted in the final selection of 56
sites: 12 in Paris, 12 in Antwerp and 32 in Zurich. Sites
were selected keeping a minimum distance of 500 m (except
for two sites in Zurich selected by their position in the urban
gradient, separated by 360 m). Median distance to the near-
est site was 1050 m and 85% of the sites were separated by
at least 800 m.
Field data collection

Cities were visited twice from mid-May to mid-July 2018.
Bat recordings and nocturnal insect collections were con-
ducted simultaneously at the 12 selected UGAs of each city,
except the 32 sites in Zurich, which were split in two sam-
pling periods due to limited equipment. Samplings were
scheduled for 5 consecutive nights per site for each of the
two sampling periods, in order to avoid insufficient data
sizes and reliably sample the species community. Samplings
were carried out under favourable weather conditions,
that is, without rain and temperatures above 12 °C
(Hutson, Mickleburgh & Racey, 2001).
Acoustic bat survey
Echolocation sampling was conducted with acoustic data

loggers installed on the trunk of a suitable tree with open
canopy (1 m2 with no branches in front of the device),
between 3�4 m above ground. Bat foraging activity was
measured with the autonomous ultrasound recorders Batlog-
ger M (Elekon AG, 2018). The recording systems were sen-
sitive from 10 to 150 kHz (§ 5 dB) and were set up to
record from 15 min before sunset to 15 min after sunrise �
adapted to each city and date � during 5 consecutive nights.
Bat echolocation calls were identified using Batscope 3
(http://www.batscope.ch; Obrist & Boesch, 2018). This soft-
ware automatically processes the sequences and assigns
each single call to a suitable species with a mean rate of cor-
rect classifications of 95.7% (Obrist & Boesch, 2018). Not
all calls could be identified to species level for some cryptic
calls. In such cases, classification was done manually to the
best possible taxonomic level (see Appendix A), thereby
avoiding errors that can occur in automated species identifi-
cation (Russo & Voigt, 2016; Rydell, Nyman, Ekl€of, Jones
& Russo, 2017). Subsequently, taxa were classified into

http://www.batscope.ch
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three ecologically meaningful guilds, according to their clut-
ter resistance and echolocation range: short-range echoloca-
tors (SRE), mid-range echolocators (MRE) and long-range
echolocators (LRE) (Frey-Ehrenbold et al., 2013;
Froidevaux et al., 2014).

Bat foraging activity was calculated on a daily basis,
computing the activity of the three considered guilds in
windows of 5 min, to balance for possible extended for-
aging bouts of a single bat around a site. Counts were
then weighted by the number of possible observational
5-minute periods per night, resulting in a relative activ-
ity. Bat diversity was estimated per night with the Shan-
non Index in two ways: using the best possible
taxonomic level (i.e. bat group diversity) and only reli-
ably identified species (i.e. bat species diversity).
Nocturnal insect collection
We collected nocturnal flying insects (hereafter

referred to as insects) in parallel to bats. Based on the
assumption that nocturnal insects possess positive photo-
taxis (Price & Baker, 2016; van Grunsven et al., 2014),
we designed an intercept LED light-trap to sample
insects (for details see Appendix A). To minimize inter-
ferences, the faint (5 lx) light-traps were installed in a
suitable tree 10�20 m distant from the Batlogger, hung
from an open foliage branch at least 4.5 m above
ground. Traps were emptied daily after each sampling
night. In the laboratory, insects were classified to the
order level using an Olympus SZ40 stereo microscope,
entomological guidebooks (e.g. Chinery, 1988) and
expert advice. Insect diversity was estimated per night
with the Shannon Index and insect abundance as the
counts of each sample. As organism type or size may
influence its quality as bat food (Hutson et al., 2001),
each order was assigned a relative factor according to its
body length and a wet biomass index calculated per sam-
ple. We assumed insect shapes to be ellipsoids for the
calculations. Some orders were additionally divided into
size classes (e.g. Lepidoptera: <5 mm, 5�20 mm,
>20 mm; see Appendix A: Table 2). Note that insect
variables could not be estimated for all the sites, as sev-
eral of the initial light-traps were vandalised in the
course of the sampling. From the initial 56 sampling
patches, we obtained unbalanced data for 12 sites in
Paris, 11 in Antwerp and 26 in Zurich.
Biotic variables
We attempted to study the bottom-up and top-down con-

trols, as our groups represent a prey-predator system. To
infer the bottom-up control, we used insect diversity and
abundance, while top-down control was measured with bat
group and species diversity and both total bat and guild rela-
tive activity (Table 1).
Environmental and landscape variables
We used environmental and landscape variables of eco-

logical relevance for the studied organisms (Cusimano,
Massa & Morganti, 2016; Threlfall, Law & Banks, 2012b).
We obtained climatic predictors including night tempera-
ture, precipitation levels and wind speed for Zurich (Meteo
Schweiz database), Antwerp and Paris (Weather Under-
ground, 2018). Landscape variables were calculated with
different buffer radii from the focal sampling point: 50, 100,
350 and 500 m, in order to suit the dispersal abilities of
insects (Ropars, Dajoz, Fontaine, Muratet & Geslin, 2019)
and bats (Hutson et al., 2001). For each sampling site, we
used the European Urban Atlas (EEA, 2012) for calculating
the size (area of each patch), the Proximity Index, the edge-
to-edge distance to the nearest UGA and the proportion of
impervious surfaces (e.g. urban fabric, roads). We estimated
the distance to the nearest water body following Krauel and
LeBuhn (2016) and Price and Baker (2016). The land-use
heterogeneity (Matthies, R€uter, Schaarschmidt & Prasse,
2017; McIntyre et al., 2001) was calculated as the Shannon
Index of habitats per site, using the European Urban Atlas
for the three cities and in Zurich also using a high-resolution
land-cover map (Gruen Stadt Zuerich, 2010) (see Table 1).
All the connectivity and landscape measurements were cal-
culated in ESRI ArcMap 10.4.1.

Moreover, for the city of Zurich we used Airborne Laser
Scanning (ALS) metrics of woody vegetation (>1 m). These
types of remote sensing data are surrogates of habitat
amount and vertical heterogeneity of vegetation structure
and have been shown to be good predictors of biodiversity
in urban ecosystems (Frey et al., 2018; Zellweger et al.,
2016). The habitat amount was estimated as the woody veg-
etation cover and the heterogeneity of structures as the stan-
dard deviation of woody vegetation heights at 50, 100, 350
and 500 m radii (Table 1; for details see Frey et al., 2018).

Increasing ALAN has been shown to disturb bat and insect
biodiversity (Knop et al., 2017; Lewanzik & Voigt, 2017). We
estimated ALAN by measuring illuminance levels in a set of
randomly selected points in each city (Paris = 50, Zurich = 40,
Antwerp = 43) using a lux metre Testo 540 (https://www.testo.
com). We intended to cover the radiance range of every city to
calibrate a night image from the International Space Station
(Earth Science & Remote Sensing Unit NASA, 2018). Once
the raster was calibrated, light emission in lux at each sampling
site was extrapolated. However, the correlation of the lux metre
readings with the calibration data was low in Paris
(R2 = 0.1189), thus the raw RGB colour values (of the night
image) of the raster were calculated at each focal sampling point
(pixel size of 40 £ 40 m) and used as surrogate of ALAN
(Table 1).
Statistical analysis

All the analyses and statistical figures were done with the sta-
tistical computing software R v.3.5.1 (R Core Team, 2018) and

https://www.testo.com
https://www.testo.com


Table 1. Classification of predictors into categories. The table depicts the seven categories (i.e. City, Connectivity, Landscape, Remote sens-
ing, Prey and Predator estimates and Statistical interactions) used to aggregate the 44 predictors included in the models in order to facilitate
reporting of the results (see Figs. 1�3). Each category is described and the number and type of predictors included and their availability in
each city for analysis is reported (A=Antwerp, P=Paris, Z=Zurich).

Category Description Number of
predictors

Predictors Availability

City Contains a single variable, the
city identity

1 City �

Connectivity Metrics of habitat connectivity
used as proxy of the amount of
available habitat based on the
European Urban Atlas

6 Distance near patch A, P, Z
Distance water A, P, Z
Area A, P, Z
Isolation A, P, Z
Proximity Index (500 and 5000 m) A, P, Z

Landscape Landscape metrics measuring the
diversity of land-uses (land-use
heterogeneity) and the amount of
impervious surfaces (impervious
cover) used as proxy of the
amount of available habitat and
based on the European Urban
Atlas and the Zurich Habitat Map

12 Land-use heterogeneity (50, 100, 350,
500 m) of European Urban Atlas

A, P, Z

Land-use heterogeneity (50, 100, 350,
500 m) of Zurich Habitat Map

Z

Impervious cover (50, 100, 350, 500 m) A, P, Z

Remote sensing High-resolution remote sensing
predictors used to assess light
pollution (ALAN and ALAN
RGB) and vegetation structure
(vegetation cover, heterogeneity
and foliage height diversity)

14 ALAN A, P, Z
ALAN RGB A, P, Z
Vegetation cover (50, 100, 350, 500 m) Z
Vegetation heterogeneity (50, 100, 350,
500 m)

Z

Foliage height diversity (50, 100, 350,
500 m)

Z

Prey estimates Insect biodiversity metrics 2 Insect diversity A, P, Z
Insect abundance A, P, Z

Predator estimates Bat biodiversity metrics 9 Bat group diversity A, P, Z
Bat species diversity A, P, Z
Bat relative activity A, P, Z
Long-/Mid-/Short-Range Echolocators
relative activity

A, P, Z

Long-/Mid-/Short-Range Echolocators
relative activity quadratic

A, P, Z

Statistical interactions Interaction between pairs of
predictors

4 City x Distance water A, P, Z
City x Impervious cover (100, 500 m) A, P, Z
City x Proximity Index 5000 m A, P, Z
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packages lme4 v.1.1-20, glmmLasso v.1.5.1, car 3.0-3, npar-
comp v.3.0 and multcomp v.1.4.14.
Variable selection
Due to the high number of predictors, we first selected the

relevant ones using an L1-Penalised Estimation via the
glmmLasso function (Groll & Tutz, 2014). In addition, we
also included possible interactions (identified by exploratory
analysis) and ecologically meaningful variables. Finally, we
checked the correlation amongst predictors (see Appendix
A) and discarded those highly correlated (r > 0.7) to avoid
collinearity (Zuur, Ieno & Elphick, 2010).
Effects of predictors on bat and insect response variables
in the three cities and in Zurich

We performed Generalised Linear Mixed-Effects Models
(GLMMs) on insect abundance and relative bat activity (i.e.
total, LRE, MRE and SRE), with a negative binomial error
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structure and log link for the former, and a binomial
error structure and logit link for the latter (Zuur, Ieno,
Walker, Saveliev & Smith, 2009). We ran the function
glmmTMB and glmer, respectively. In each model, the
sampling site was included as a random factor to allow
for repeated measures of the same UGA on different
nights. Meteorological values were also included as ran-
dom factors to avoid them masking the effects of other
predictors. Once the models were fitted, the Variance
Inflation Factor (VIF) was used to identify multicolli-
nearity via the function vif. When VIF >3, we sequen-
tially dropped the predictor with the highest VIF and
recalculated the VIFs (Zuur et al., 2010). We also
checked that the selected model was the one with the
lowest corrected AIC value (AICc). The goodness-of-fit
was investigated by calculating the conditional coeffi-
cient of determination for Generalised Mixed-Effects
Models (R2

C) (Nakagawa & Schielzeth, 2013). Finally,
the model assumptions were validated by plotting the
residuals against fitted values and the Q-Q plots of the
random effects (Zuur & Ieno, 2016). We ran Linear
Mixed-Effects Models (LMMs) on bat and insect diver-
sity, with a normal error (Crawley, 2007), using the
function lmer. The model that best explained the data
variability was the one with no multicollinearity (VIF
<3), the lowest AICc value and a plot of residuals ver-
sus fitted values without pattern.

Models were run separately for each response variable:
first for the 36 sites in Paris, Zurich and Antwerp (12
each) including the city as a fixed factor in order to iden-
tify biodiversity differences between the cities, and sec-
ondly for the 32 sites in Zurich. Overall, the graphics of
the residuals versus the fitted values of the GLMMs and
LMMs pointed out to a good fit of the model, as the
point clouds did not exhibit any particular trend and
were well dispersed over the axis (see Appendix A). We
also computed the Moran's I test on the model residuals
to check for spatial autocorrelation and no autocorrela-
tion was found (data not shown).
Pairwise comparisons between the three cities
To investigate the possible differences between the three

cities on each response variable, we made the respective
multiple pairwise comparisons via the functions mctp (count
data) and glht (continuous and binary data).
Results

We sampled a total of 12,714 insects and recorded
283,126 bat passes containing 5 million echolocation calls.
Small Diptera and Trichoptera represented 56% of the sam-
pled individuals, while medium-sized Lepidoptera and
small-sized Coleoptera together represented 20%. The
remaining groups accounted for less than 10% of total
abundance each. Around 91% of the bat calls belonged to
Pipistrellus pipistrellus, while LREs and SREs accounted
for 5% and 4% of the bat calls, respectively. Thus, MREs
were significantly more present than the remaining guilds.

Nocturnal insect diversity showed a significant negative
effect with increasing isolation. Conversely, insect abun-
dance was reduced with increasing quadratic MRE relative
activity and bat group diversity, but increased with bat spe-
cies diversity (Fig. 1). We found artificial light (i.e. ALAN
RGB) to have a city-specific effect on bat group diversity.
Moreover, the range of ALAN RGB and the response of bat
diversity differed amongst cities (Fig. 2). In Antwerp and
Paris bat diversity was strongly reduced with increasing val-
ues of ALAN RGB, despite having a different range of illu-
mination. Conversely, Zurich had the shortest range of
illuminance values, which translated into a small increase of
bat diversity (Fig. 2). In addition, Zurich harboured a more
diverse bat community than Antwerp and Paris (see Appen-
dix B). The total bat relative activity in Antwerp was signifi-
cantly higher than in the other cities (see Appendix B).
Moreover, we found the relative activity of the guild of LRE
to be significantly decreased with increasing ALAN RGB in
all cities, but not with any other category of predictors. Simi-
larly, no significant effects were found for the connectivity,
landscape or remote sensing predictors on MRE. The model
only selected an increase of the MRE relative activity with
insect diversity gain. Finally, SRE activity was negatively
affected by the proportion of impervious cover in the 100 m
radius (Fig. 1). The pairwise comparison between cities
revealed that Paris and Antwerp were different in terms
of total bat, LRE and MRE relative activity; while Paris
and Zurich differed in insect abundance, bat group and
species diversity and LRE and SRE relative activity.
Likewise, Antwerp and Zurich showed differences in
insect abundance and bat group and species diversity
(see Appendix B).

The analyses of bat and insect responses in an extended
set of sampling sites in Zurich unveiled the influence of
new predictors (Fig. 3). Insect responses were enhanced
by the size of the UGA and by the activity and diversity
of bats. Strikingly, we found a scale-dependant response
with increasing vegetation heterogeneity, which was posi-
tive at 100 m and negative at 350 m radius. Bat diversity
and activity responses depended on a combination of pre-
dictors including connectivity (distance to water), bottom-
up (insect diversity) and landscape (impervious surfaces
at different radii) variables. Overall, bat diversity and
activity increased together with insect diversity gain but
was constrained by increasing distance to water and the
amount of impervious surfaces at 100 m. The land-use
heterogeneity predictors, both from the Urban Atlas and
from the ecologically-based land-cover map of Zurich,
only showed significant effects for small landscape scales
(i.e. 50 and 100 m).

Detailed model results (e.g. fitted models, p-values) can
be found in Appendix B: Tables 2 and 3.



Fig. 1. Heatmap of the significant results of Generalised Linear Mixed-Effects Models for the three cities. Significance threshold is defined at
a 0.05 level. The colour gradient reflects the magnitude of a predictor’s estimate for individual response variables. Grey colour indicates lack
of statistical significance. SRE: short-range echolocators, MRE: mid-range echolocators, LRE: long-range echolocators (Frey-
Ehrenbold et al., 2013).

Fig. 2. Relationship between the RGB values of nocturnal rasters of the cities (ALAN RGB) and bat group diversity for Antwerp, Paris and
Zurich. Each city shows a specific range in radiance and a response of the bat diversity. Lines represent second order polynomial GLM mod-
els and bands the 95% confidence level interval for model predictions. Dots represent individual bat group diversity measurements.
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Fig. 3. Heatmap of the significant results of Generalised Linear Mixed-Effects Models in the city of Zurich. Significance threshold is defined
at a 0.05 level. The colour gradient reflects the magnitude of a predictor’s estimate for individual response variables. Grey colour indicates
lack of statistical significance. SRE: short-range echolocators, MRE: mid-range echolocators, LRE: long-range echolocators (Frey-
Ehrenbold et al., 2013). GSZ: habitat map of the city of Zurich, EUA: European Urban Atlas.
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Discussion

The multi-city approach revealed some consistent
responses of nocturnal biodiversity to urbanisation across
cities. Isolation had a negative influence on nocturnal insect
diversity, which might be related to the limited mobility of
insects and their dependence on vegetation for reaching new
patches (Concepci�on et al., 2015). Contrastingly,
Turrini and Knop (2015) found that patch isolation plays a
limited role in urban ecosystems and arthropods can be
diverse when sufficient vegetated space is provided. Except
for distance to water, connectivity metrics did not show sig-
nificant effects on bats, likely because they are highly
mobile organisms and can reach distant patches (Krauel &
LeBuhn, 2016). However, our connectivity metrics were
mainly at landscape scale, which might have underrepre-
sented the role of small-sized connecting elements (hedges,
tree lines, etc.) seen in previous studies (Frey-
Ehrenbold et al., 2013). Unlike SRE and LRE bats that are
respectively clutter- or open-adapted species, MRE bats
include a wide range of intermediate echolocation strategies
that could explain their tolerance to fragmentation and might
make the most common guild in our study prone to cross
less suitable areas (Frey-Ehrenbold et al., 2013).

We identified ALAN to be a prominent factor lowering
bat group diversity. Particularly, Paris and Antwerp showed
high radiance levels and low bat diversity, suggesting for
the filtering out of light-averse species. ALAN can modify
the foraging behaviour of bat communities (Russo & Ancil-
lotto, 2015), enhancing a subset of light-opportunistic spe-
cies (e.g. Pipistrellus pipistrellus, the most common bat in
our study) that can take advantage of insect resources at the
expense of light-averse ones. However, nocturnal biodiver-
sity responses are species- and context-dependant
(Mathews et al., 2015) as shown by the pairwise compari-
sons between cities (see Appendix B). This might indicate
an ongoing behavioural change of the urban bat community,
possibly caused by adaptation or plasticity towards light
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pollution as noted in moths (Altermatt & Ebert, 2016), yet
evidence is lacking. Future studies delving into the eco-evo-
lutionary dynamics of urban fauna could provide important
insights to better inform nocturnal biodiversity management
(Lambert & Donihue, 2020). Further, recent trends to
replace traditional street lighting with LED might help to
rebalance this filtering effect, as LEDs can reduce the photo-
taxis of insects and their availability (Wakefield, Broyles,
Stone, Jones & Harris, 2016), especially when combined
with appropriate choice of longer-wave emission spectra (i.
e. >500 nm, see Bennie, Davies, Cruse, Inger & Gaston,
2018; Bolliger et al., 2020). Moreover, the negative effect of
bat group diversity and relative activity on insect abundance
seems to indicate a top-down control. Still, our results have
to be taken cautiously due to opposite effect of bat species
diversity. In any case, our results point out the importance
of considering such urban trophic dynamics
(Shochat, Warren, Faeth, McIntyre & Hope, 2006).

Our single-city approach revealed that insect diversity
increased both bat relative activity and diversity in Zurich,
similarly as shown by Lewanzik and Voigt (2017). These
results emphasise a bottom-up regulation in the nocturnal
insect-bat trophic system in Zurich. In addition, vegetation
heterogeneity appeared to have a scale-dependant effect on
nocturnal insects, positive at 100 m and negative at 350 m
radius. Thus, our results are consistent with previous works
on arthropods (Turrini & Knop, 2015) and other little mobile
organisms, which more likely rely on local patch character-
istics (i.e. 100 m radius) (Concepci�on et al., 2015;
Threlfall et al., 2012a). On the other hand, we were not able
to assess an effect of vegetation structure metrics on bats
although their significance has been proven on prior studies
in urban environments (Suarez-Rubio, Ille & Bruckner,
2018). Furthermore, Threlfall et al. (2017) have pointed out
that native plant species in UGAs increase bat diversity,
likely because bats feed on insects that depend on plants.
Similarly, land use heterogeneity derived from the detailed
land-cover map of Zurich did not show significant effects
for most responses. In this regard, high-resolution predictors
did not contribute substantially to our data understanding.
Interestingly, no model selected ALAN or ALAN RGB,
likely because of the low radiance values within the city
(Fig. 2). Studying European cities with intermediate radi-
ance levels might help finding the tipping point at which
ALAN starts decreasing nocturnal biodiversity.

In summary, our study provides evidence of the role of
UGAs sustaining nocturnal biodiversity in European cities
and sheds light on the importance of proxies used to infer
the effects of urban intensification. Nocturnal habitats are
main ecological niches in cities responsible for several eco-
system services such as insect regulation and pollination,
but have been so far neglected in urban management
(Pinho et al., 2021 in this issue). We developed a standard-
ized multi-city design to consistently compare responses of
bats and nocturnal insects to urban intensification. Our
results may set a starting point for planning and managing
nocturnal biodiversity in UGAs of Western and Central
Europe. Overall, our findings showed an urgent need of reg-
ulating and reducing ALAN, but accounting also for the
existing trophic controls. The specific responses of our study
groups to urbanisation highlight the need for manifold man-
agement strategies in UGAs that reflect the different traits of
the nocturnal species. Currently, European cities face a sce-
nario of urban densification to avoid the sprawl to other eco-
systems, leading to increasing levels of stressors and thus
threatening biodiversity within cities. In this context, UGAs
are key elements to preserve and enhance present and future
urban biodiversity.
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