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Abstract 

Ion implantation of oxygen in MoO3 lamellar crystals allows tuning their electrical conductivity 

by defect formation. X-ray diffraction (XRD) is a particularly sensitive technique to study such 

defects that cause changes in the lattice parameters and crystal quality. In this work, dynamical 

theory was applied to fit XRD patterns to obtain the strain and static Debye-Waller (DW) factor 

distributions as a function of depth. A two-step method was tested to estimate the uncertainties of 

these parameters within a certain region of interest. The limitations of the XRD characterization 

to study regions with low values of static DW factor are discussed. 
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1. Introduction 

Molybdenum oxide (MoO3) is a wide band gap semiconductor crystallizing in the orthorhombic 

phase, which is thermodynamically stable at room temperature (α-MoO3).[1] An interesting 

feature of α-MoO3 is the possibility to tune the electrical properties of this material by creating 

oxygen vacancies. For example, depending on the MoOx stoichiometry, samples show 

semiconducting behavior for MoO3-x (2 < x ≤3) and metallic behavior for MoO2.[2,3]  

The possibility of tuning the electrical properties of MoO3 lamellar crystals using 170 keV oxygen 

ion implantation to create defects was explored in ref. [4]. Based on I-V measurements of these 

implanted crystals, a significant and reproducible increase of conductivity was reported after 

implantation to fluences above 1×1015 cm-2. Furthermore, a detailed study of the evolution of 

defects induced by implantation was realized, based on the evolution of the strain and damage 

(static Debye-Waller (DW) factor) profiles obtained by simulation of X-ray diffraction (XRD) 

curves with the RaDMaX (Radiation Damage in Materials analyzed with X-ray diffraction) 

software.[4] XRD has been used in many crystalline materials to investigate the strain introduced 

by implantation defects. [5–15] However, the estimation of the uncertainties associated with the 

strain and damage profiles is challenging since the fit results strongly depend on the considered 

fitting model. Therefore, simple statistical methods evaluating the goodness of fit may not be 

meaningful. Indeed, distinct combinations of strain and damage profiles may give similarly good 

fits. 

In this paper, we present a two-step method to estimate and validate the uncertainties associated 

with the strain and damage profiles obtained from the fits of the XRD measurements. As an 

application example, the uncertainties associated with the strain and static DW factor values will 

be analyzed within the depth region of maximum nuclear energy deposition, for a fluence range 

from 5×1012 cm-2 to 1×1017 cm-2.  

 

2. Experimental Details 

 

α-MoO3 lamellar crystals, with typical thicknesses of few micrometers and lateral dimensions of 

about 2×5mm2, were grown by an evaporation-solidification method, described in detail in refs. 

[4,16,17].  Briefly, this method consists of placing a compacted Mo powder disc at the center of 

a horizontal tube furnace, where the temperature of 750ºC and an air flow of 2l/min are set for 

10h. Under these conditions, the Mo is oxidized in contact with the air and is transported to the 

tube extremities, where MoO3 deposits due to the existing temperature gradient. The crystals were 

then fixed on Si or glass substrates using Kapton tape or silver ink, so that they can be implanted 

and characterized. 
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The ion implantation process was done at room temperature with 170 keV oxygen ions and for a 

fluence range from 1×1012 cm-2 to 1×1017 cm-2.[4] The expected defects and implanted oxygen 

ions profiles obtained by the SRIM 2013 (Stopping and Ranges of Ions in Matter) Monte Carlo 

simulations [18] are shown in figure 1.  

In order to evaluate the structural changes, XRD 2θ−ω measurements of the 060 reflection of 

MoO3 were performed on a Bruker D8 Discover high resolution diffractometer. The primary 

beam optics is constituted of a Gӧbel mirror, a 0.2 mm collimation slit and a 2-bounce Ge (220) 

monochromator to select the 𝐾𝛼1 X-ray radiation of copper (λ = 1.5406Å). In the secondary path, 

a 0.1 mm slit was placed in front of the scintillation detector. By fitting the XRD curves using the 

RaDMaX software [19], the strain and static DW factor profiles were obtained. The static DW 

factor is used as a measure of the damage in the lattice and it is given by 

∫𝑑𝑢𝑧. 𝑝(𝛿𝑢𝑧)exp(𝑖𝑄𝛿𝑢𝑧), where 𝑄 = 4𝜋𝑠𝑖𝑛(𝜃) 𝜆⁄  is the scattering vector length and, 𝑝(𝛿𝑢𝑧) is 

the probability distribution function of the random atomic displacement at depth 𝑧 (𝛿𝑢𝑧). [20,21] 

This factor has an impact on the simulated diffraction intensity, and can take a minimum value of 

0 for fully damaged crystals (amorphized or heavily disordered), and a maximum value of 1 for 

a perfect crystal. [20,22]  

 

Figure 1 – Depth-profiles of the concentration of oxygen vacancies (solid black line) and implanted oxygen ions 

(dashed red line) obtained from SRIM simulations for the fluence of 5×1013 cm-2. The grey area represents the region 

of interest (ROI) where the concentration of defects is expected to be maximum. 

 

3. Results and Discussion 

Figure 2 shows the evolution of the average strain and static DW factor as a function of the oxygen 

fluence, in the region of interest (ROI) represented in figure 1 by the grey area. This ROI 

corresponds to the depth at which the energy deposition by nuclear collisions, and hence the 
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concentration of primary defects, is maximum. Analyzing figure 2, it is possible to observe a 

moderate increase of the average strain, accompanied by a decrease of the average static DW 

factor for fluences below 7.5×1013 cm-2, which was attributed to the formation of point defects 

[4]. When the fluence increases, a more significant increase of the average strain is observed, 

followed by a saturation at values of about 2.5%. On the other hand, the average of the static DW 

factor continues to decrease with increasing fluence, reaching values close to zero for the fluences 

above 1×1015 cm-2. Similar strain and damage accumulation curves are observed in many ion 

implanted materials such as III-nitrides, III-V arsenides, cubic zirconia, and oxide materials (for 

example MgO, ZnO and UO2)[5,6,8–12,14,23], where the strain saturation was attributed to the 

morphological alteration of the defect structures (from simple point defects to more complex 

defects), promoted by the high mobility of point defects during the implantation process. Figure 

2 also shows the estimated uncertainties associated with the average strain and static DW factor 

values for each fluence, obtained by the method described in detail below. 

 

Figure 2 - Evolution of the average strain and static DW factor in the region of interest (ROI) marked in figure 1 and, 

respective uncertainties. Symbols that correspond to the average values with very high experimental uncertainties are 

crossed out (see text for a detailed discussion). 

The method used to estimate the uncertainties shown in figure 2 is composed of two steps, both 

implemented using the RaDMaX software [19]. The first step consists in modifying slightly the 

strain and damage profiles in the whole implanted region (so as not to change the shape of the 

profiles) until the fit obtained was no longer acceptable. For quantification purposes, we define 

the increase of the root-mean-square error (∆rms) given by equation (1): 

 

∆rms =
rms(exp, sim) − rms(exp, fit)

rms(exp, fit)
× 100% (1) 
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where, the root-mean-square error (rms) calculated from the experimental diffractogram and the 

original fit – rms(exp, fit) – and, that from the experimental diffractogram and the simulations 

using the modified strain/static DW factor profiles – rms (exp, sim) – are given by equation (2): 

 

rms(exp, fit/sim) =
√∑ [𝑙𝑜𝑔(𝐼𝑖

𝑒𝑥𝑝
)− 𝑙𝑜𝑔 (𝐼𝑖

𝑓𝑖𝑡/𝑠𝑖𝑚
)]

2
𝑁
𝑖=1

𝑁
 

(2) 

 

with 𝑁 being the number of data points and, 𝐼𝑖
𝑒𝑥𝑝

 and 𝐼𝑖
𝑓𝑖𝑡/𝑠𝑖𝑚

 the normalized intensities of the 

experimental and calculated XRD curves, respectively. Note that, the rms error is widely used by 

XRD curve fitting programs to optimize the strain and damage profiles.[24–26]  

An example of this analysis is presented in figure 3 for the fluence of 5×1013 cm-2. Observing the 

experimental curve in figure 3.(a), it is clear that after implantation a second peak at 2θ ≈ 38.73º 

is formed slightly shifted to lower 2θ angles from the main Bragg peak at ~39.01º (corresponding 

to the unimplanted deep regions of the sample). This new peak reveals an expansion of the b 

lattice parameter within the implanted layer. The experimental XRD curve can be well fitted 

assuming the strain and static DW factor profiles shown in figures 3.(b) and 3.(c) (black lines), 

respectively. The red lines in figure 3 represent the best fit of the experimental diffractogram 

whereas the blue and orange lines represent the simulations from the modified strain/static DW 

factor profiles. In figures 3.(a)-(c), a shift in the peak attributed to the implanted region from 2θ 

≈ 38.73º towards lower angles is verified in the simulations, when the strain profile is changed in 

the direction of higher values (dashed blue line) and the static DW factor profile is kept constant. 

In contrast, when the strain profile is shifted to lower values (dotted orange line), maintaining the 

same static DW factor profile, there is an opposite behavior in which the peak initially at 2θ ≈ 

38.73º moves towards higher angles. If a similar procedure is applied to the static DW factor 

profile, a different effect is observed in the simulated diffractogram as shown in figures 3.(d)-(f). 

When the static DW factor values are increased in the entire damaged region (dashed blue line), 

an increase in the peak intensity (2θ ≈ 38.73º) is observed. Contrary, if the static DW factor profile 

is moved to the lower values (dotted orange line), a decrease of peak intensity is verified. Indeed, 

such behavior is expected since a higher crystalline quality will lead to increased diffracted 

intensity, whereas an increase of material damage translates into a decrease in the intensity. In the 

first step (figure 3), the strain and static DW factor profiles were changed until the ∆rms value 

increases to about 80%, considering the region defined by the black double arrow at the bottom 

of figures 3.(a) and 3.(d). This threshold value of ∆rms = 80% was chosen to yield significant 

differences between the simulated and experimental diffractograms for the entire set of samples. 

Note that, as seen from equations (1) and (2), the ∆rms value depends on the size of the analyzed 
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region and the order of magnitude of the intensity for each 2θ value, which can require different 

thresholds for ∆rms, depending on the considered region and material in study. From the curves 

in figures 3.(b) and 3.(f), the average strain and static DW factor values in a certain region of the 

implanted layer can be determined and their uncertainties estimated by calculating the respective 

average values in the modified profiles. For the ROI, marked by the grey shaded area in figure 3, 

corresponding to the region of maximum nuclear energy deposition, the obtained uncertainties 

are shown in figure 2. 

 

Figure 3 – Step 1: (a) Effect on the simulated XRD patterns of decreasing/increasing the (b) strain profile while 

maintaining a (c) fixed static DW factor profile. (d) Effect on the simulated XRD patterns of decreasing/increasing the 

(f) static DW factor profile while maintaining a (e) fixed strain profile. The ∆rms value associated to the simulated 

XRD patterns is about 80% in the region delimited by the black double arrow at the bottom of (a) and (d). The 

experimental diffractogram (black curves in (a) and (d)) and respective fit (solid red lines) are also shown. Experimental 

data corresponds to the fluence of 5×1013 cm-2. The region of maximum nuclear energy deposition is indicated by the 

grey shaded area.  
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In the second step, the main goal is to evaluate in detail the influence of the ROI on the simulated 

diffractogram and use this information to validate (or discard) the uncertainties estimated in step 

one. For this, the strain and static DW factor values are changed only within the ROI, and the 2θ 

regions on the simulated diffractogram influenced by these changes are determined. For example, 

figures 4.(a)-(c) show that changing the strain in the ROI by the same factor as used in the first 

step (figure 3.(b)), changes only slightly the position of the maximum of the peak at 2θ ≈ 38.73º. 

Instead, a widening and narrowing of the curve at 2θ < 38.73º is verified when the strain values 

are increased and decreased inside the ROI, respectively. This behavior is expected, since the 

maximum of the diffraction peak has a strong contribution from less damaged regions with higher 

static DW factor values. For the case of the static DW factor - figures 4.(d)-(f) - an 

increase/decrease of the diffraction intensity at 2θ ≈ 38.73º and below is observed when the static 

DW factor values were increased/decreased within the ROI, to the same values represented in 

figure 3.(f). The differences between the fit and the simulated diffractograms, figures 4.(a) and 

4.(d), show that the ROI mainly influences the simulated diffractograms in certain 2θ regions. 

The blue and orange double arrows at the bottom of the figures delimit the 2θ regions altered by 

the increase and decrease of the strain/static DW factor values inside the ROI. The different 

behaviors shown in figures 3 and 4, indicate that the methodology used in the first step can lead 

to unrealistic conclusions, since the main changes in the simulated diffractogram may not be due 

to the ROI. Note that, these discrepancies become more significant for high fluences where, within 

the ROI, the crystal is highly damaged. Thus, to validate the uncertainties obtained in the first 

step, it is crucial to confirm that the changes seen in the simulated diffractograms indeed reflect 

the changes in the properties within the ROI. 
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Figure 4 – Step 2: (a) Effect on the simulated XRD patterns of decreasing/increasing the (b) strain profile while 

maintaining a (c) fixed static DW factor profile, within the ROI. (d) Effect on the simulated XRD patterns of 

decreasing/increasing the (f) static DW factor profile while maintaining a (e) fixed strain profile, within the ROI. The 

strain and static DW factor values within the ROI were changed by the same factor as used in the first step (represented 

in figure 3). The best fit obtained by using the strain and static DW factor profiles given by the solid black lines is 

represented in (a) and (b) by the solid red lines. The region of maximum nuclear energy deposition is indicated by the 

grey shaded area. The orange and blue double arrows in (a) and (d) define the region of 2θ values influenced by the 

strain/ static DW factor values inside the ROI. 
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For the ROI considered here, the procedure used in step one clearly fails for the fluence of 5×1015 

cm-2, as shown in Figure 5. The red lines represent the best fit and, the black lines the respective 

strain and static DW factor profiles. Figure 5.(a) corresponds to the first step and shows the 

diffractograms (for which the ∆rms is about 80%) obtained by simulations of the strain and 

damage profiles in figures 5.(b) and 5.(c), respectively. The second step is presented in figures 

5.(d)-(f). Based on figure 5, it is possible to conclude that an increase/decrease of the strain values 

inside the ROI, keeping the respective static DW factor unchanged, causes only a slight 

modification in the simulated diffractogram for 2θ values delimited by the blue and orange double 

arrows at the bottom of figure 5.(d), a region where the signal-to-noise ratio is too low to draw 

any meaningful conclusion. This proves that the significant changes seen in the simulations of 

figure 5.(a) – corresponding to the step one - do not originate from the ROI and, therefore, the 

estimated uncertainties from this method have to be discarded. Such behavior is expected, since 

the static DW factor values are very low inside the ROI, with an average value of about 0.04 - 

figure 2. This means that the crystal is highly damaged and, consequently, the diffracted intensity 

arising from this region is extremely reduced. Indeed, when the static DW factor approaches zero, 

the strain can take a wide range of values without any visible change in the simulated 

diffractogram. In the present conditions, the static DW factor limit below which the strain is no 

longer well-defined was estimated to be about 0.06.[4] This value is very similar to that reported 

by A. Debelle et al. [14], where the diffracted intensity from cubic zirconia single-crystals was 

considered null, for regions where the static DW factor is below ~0.05. Thus, the uncertainties 

associated with the strain values in the ROI are very high, making these values meaningless. Note 

that in figures 5.(b) and 5.(e), an additional peak in the strain profile is seen at around 375 nm, as 

a possible consequence of the migration of point defects from regions of higher nuclear interaction 

to deeper regions in the sample (see ref.[4] for a detailed discussion). 
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Figure 5 – (a-c) Step 1: (a) Effect on the simulated XRD patterns of decreasing/increasing the (b) strain profile while 

maintaining a (c) fixed static DW factor profile, so that ∆rms ≈ 80%. (d-f) Step 2: (d) Effect on the simulated XRD 

patterns of decreasing/increasing the (e) strain profile while maintaining a (f) fixed static DW factor profile, within the 

ROI. Note that, the strain values inside the ROI have the same values in (b) and (e). Experimental data corresponds to 

the fluence of 5×1015 cm-2. The fit obtained by simulating the strain (solid black lines in (b) and (e)) and static DW 

factor profiles (solid black lines in (c) and (f)) is represented by the solid red line. The region of maximum nuclear 

energy deposition is indicated by the grey shaded area. The black double arrow in (a) represents the region where the 

∆rms was determined and, the orange and blue double arrows in (d) define the region of 2θ values influenced by the 

ROI. 

Finally, it is possible to define a criterion which allows to validate (or discard) the uncertainty 

values estimated in step one. For this purpose, in the simulations obtained in step one, the increase 

in the root-mean-square error, ∆rms(ROI), was calculated in the region of 2θ values influenced by 

the ROI (as defined in step two). Thus, it can be assumed that the first step provides a good 

estimation of the uncertainties when ∆rms(ROI) is at least 80% (i.e. equal to or higher than the value 

obtained when considering the entire diffractogram). Figure 6 shows the evolution of ∆rms(ROI) 
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with the fluence, for the case of changing the strain profile. The ∆rms(ROI) values are significantly 

greater than 80% for fluences below 1×1014 cm-2, which means that the ROI has, locally, a high 

influence on the simulated diffractogram. Indeed, for low fluences, the average static DW factor 

values are higher than 0.25 inside the ROI (figure 2) and, therefore, the strain in that region will 

have a significant contribution to the obtained fit. When the fluence increases, the ∆rms(ROI) values 

approach 80%, falling below for fluences above 1×1015 cm-2. For these cases, our method cannot 

be validated, and the average strain values were crossed out in figure 2. In other words, the 

uncertainty becomes too large to determine any meaningful value for the average strain in the 

ROI. The first fluence for which this happens is 5×1015 cm-2 (shown in figure 5), where the 

average static DW factor value within the ROI is about 0.04. This value agrees well with the limit 

value of the static DW factor of 0.06 (limit below which no reliable strain values can be obtained) 

mentioned before and estimated in ref. [4]. In the case of static DW factor profiles, the ∆rms(ROI) 

lies above 80% for all fluences (not shown) and, therefore, the respective estimated uncertainties 

within the ROI are validated. 

 

Figure 6 – Evolution, with increasing oxygen fluence, of the increase in the root-mean-square error - ∆rms(ROI) - 

corresponding to the region of 2θ values influenced by the strain values inside the ROI. The blue dots (S+) and orange 

triangles (S-) represent the evolution of the ∆rms(ROI) value caused by the increase and decrease of the strain values 

inside the ROI, respectively. The dashed black line represents the limit of 80% in the increase of the root-mean-square 

error. 
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4. Conclusion 

Fitting XRD curves of ion implanted crystals using dynamical theory allows the extraction of 

strain and damage (static DW factor) profiles. However, the estimation of the associated 

uncertainties is not straightforward and, in fact, it is often omitted. In this paper, an empirical two-

step method to evaluate these uncertainties is tested for a wide range of fluences. The depth region 

with the highest nuclear energy deposition (according to SRIM simulations), caused by 170 keV 

oxygen implantation in MoO3, is used as a case study. After finding the best fit of the experimental 

diffractogram, the first step consists in changing the strain and static DW factor profiles in the 

entire implanted region, until the root-mean-square error increases by about 80%. Comparing the 

modified profiles with those of the best fit, the uncertainties associated with the average strain 

and static DW factor values inside a certain depth region (ROI) can be estimated. However, this 

method fails when the static DW factor within the ROI is very low and, consequently, the 

diffractogram is dominated by other less damaged depth regions of the sample. Therefore, a 

second step was implemented which allows validating the obtained uncertainties. In this step, the 

strain and static DW factor values are changed only within the ROI and the 2θ region influenced 

by these changes is determined. Then, using the simulations obtained in step one, the increase of 

the root-mean-square error in this 2θ region - ∆rms(ROI) - can be calculated. The uncertainties of 

the average strain and static DW factor, obtained in the first step, are considered validated if the 

∆rms(ROI) value is higher than 80% (the limit established for considering the entire diffractogram). 

For this case, the static DW factor values inside the ROI are sufficiently high and, therefore, the 

respective strain values have an important contribution to the obtained diffractogram. On the other 

hand, a ∆rms(ROI) value lower than 80% indicates that the static DW factor values within the ROI 

are too low. As the diffracted intensity from the highly damaged region is negligible, no reliable 

strain value can be determined. Finally, it is important to mention that the limit of 80% in the 

increase of the root-mean-square error is an empirical value and, therefore, may change depending 

on the depth region considered and material being studied.  
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