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Abstract

Inspired by the recent literature on aggregation theory, weaim at relating the long range
correlation of the stocks return volatility to the heterogeneity of the investors’ expectations
about the level of the future volatility. Based on a semi-parametric model of investors’ an-
ticipations, we make the connection between the distributional properties of the heterogene-
ity parameters and the auto-covariance/auto-correlationfunctions of the realized volatility.
We report different behaviors, or change of convention, whose observation depends on
the market phase under consideration. In particular, we report and justify the fact that the
volatility exhibits significantly longer memory during thephases of speculative bubble than
during the phase of recovery following the collapse of a speculative bubble.

JEL classification: G10, G14, D84, C43, C53

Keywords: Realized volatility, aggregation model, long memory, bounded rationality

Introduction

The slow hyperbolic decay of the auto-correlation functioncharacterizing the behavior of many
economic and financial time series has been the topic of active debates for more than two
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seminar at the Universities of Lausanne and Lyon, at ETH Zurich, at the13th International Conference on Fore-
casting Financial Markets and at the23rd International Conference of the French Finance Association. The views
expressed herein are those of the authors and do not necessarily reflect the views of their institutions.
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decades. Several interpretations and models have been provided in an attempt to explain the
origin of this phenomenon, also known as the long-memory phenomenon. Among the most
relevant explanations that have been proposed up to now, onecan focus on three major mech-
anisms acting separately or in conjunction: (i) the aggregation approach suggested by Granger
and Joyeux (1980) who have shown that the time series resulting from the aggregation of
micro-variables exhibiting short-memory often yields long-memory, (ii) the presence of infre-
quent structural breaks, which allows mimicking long term non-stationarity of the economic
and financial activity (Diebold and Inoue 2001, Gouriérouxand Jasiak 2001, Granger and
Hyung 2004, Gadea, Sabaté, and Serrano 2004, among others), and (iii) the presence of non-
linearities in economic and financial systems (see Davidsonand Sibbersten (2005) for a survey).

Our aim, in this article, is to provide a model that relates the long memory of the realized
volatility of assets returns, which is a pervasive feature of financial time series (Taylor 1986,
Ding, Granger, and Engle 1993, Dacoragna, Müller, Nagler,Olsen, and Pictet 1993, for the
pioneering works), to the heterogeneous behavior of the economic agents. Based on the fact
that the market participants perform heterogeneous anticipations about the future level of the
realized volatility and that they act as bounded rationality agents, we propose an explanation of
the long memory phenomenon that relies on the aggregation bythe market of the heterogeneous
beliefs of the investors, revealed through the market pricing process.

The heterogeneity of market investors is now an well-recognized fact – in particular amongst
the supporters of behavioral finance (see LeBaron (2000), Hommes (2006), Challet, Marsili
and Zhang (2005) or Barberis and Thaller (2003) for a survey)– that can take several forms.
Heterogeneity can first be considered as resulting from the diversity of the nature, the size and
strategies of the economic agents: individual investors who invest their money to finance the
education of their children, traders who manage money for their own account or for the account
of their clients, institutional investors who manage pension funds, and so on... do not have
the same financial resources (depending on their size), the same purposes (short term or long
term profits and allocation frequency for example), or the same skills. All these differences
make them focusing on different pieces of information and therefore anticipating differently
the future value of the firms. The role of different classes ofagents in determining the market
structure is also investigated in Lux and Marchesi (1999) and Giardina and Bouchaud (2003).

In this respect, Di Matteo, Aste, and Dacorogna (2005) have recently provided evidence for
the existence of a relation between the degree of heterogeneity amongst the market participants
and the stage of development of financial markets. Indeed, relating the stage of maturity of
a financial market to the speed of the hyperbolic decay of the auto-correlation function of the
volatility of the assets traded on the market under consideration, Di Matteoet al. suggest that
the more mature and efficient the market is, the larger is the number of different classes of agents
and strategies and the smaller is the effect of long-memory.In addition, other phenomena such
as mass psychology and contagion must be taken into account.Indeed, clear evidence has
shown that rumors (Banerjee 1993), mimetism (Orlean 1995),herding (Banerjee 1992, Froot,
Scharfstein, and Stein 1992, Kirman 1993, Cont and Bouchaud2000), fashions (Shiller 1989)
and so on, affect the agents’ behavior.

In order to account for these various sources of heterogeneity but still keep a parsimonious
representation, we provide a model that relates the investors’ behavior to few heterogeneity
parameters that allow accounting for their individual tendency to perform optimal anticipations
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on the basis of the flow of incoming news they receive or, on thecontrary, on the basis of a self-
referential approach which leads them to mainly focus on their past anticipations and on their
past observations of the market volatility. This approach permits us to focus on the fact that, in
addition to the heterogeneity of sizes and strategies, another main source of heterogeneity comes
from the way the agents actually anticipate the many factorswhich impact future earnings of the
firm and their volatility. These factors are captured, in ourmodel, by help of a flow of incoming
public and private information which can be considered as embedding several macroeconomic
variables affecting stocks volatility such as the businesscycles (see Schwert (1989) who has
found a higher volatility of many key economic variables during the Great Recession), oil price
whose volatility is important in explaining technology stock return volatility (Sadorsky 2003),
or inflation and interest rates which have large impacts on the stock market volatility (Kearney
and Daly 1998).

Then, we make the connection between the distributional properties of the heterogeneity
parameters and the auto-covariance/auto-correlation functions of the realized-volatility. It al-
lows us to discuss the kind of economic behaviors that yieldsthe long memory of the realized-
volatility time series. Finally, the calibration of our model over the last decade, on a database
of 24 US stocks of large and middle capitalizations, allows us reconstructing the distribution of
the heterogeneity parameters and then to have access to the overall behavior of the investors.
Notably different behaviors are observed, depending on themarket phase under consideration
with (i) a strong tendency to self-referential anticipations before the crash of the Internet bub-
ble, and (ii) a redistribution in favor of the investors performing their forecasts on the basis the
incoming piece of information after the crash. Our findings are in part similar to Giardina and
Bouchaud (2003) who studied the behavior of agents during bubbles and crashes in the context
of an agent based market model.

The paper is organized as follows. The next section briefly recalls some basic stylized
facts about the so-called realized-volatility, a measure of the volatility introduced by Andersen,
Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2002a), among
others. Then in section 2, we present our model of bounded rationality investors with hetero-
geneous beliefs in order to investigate the impact of both the agents’ bounded rationality and
their heterogeneous beliefs in a market that is assumed to perform an aggregation of the indi-
vidual anticipations. In section 3, we discuss the calibration issues of the model and derive the
asymptotic law of the estimator of the parameters of the model. The fourth section present our
empirical results while the fifth section concludes.

1 Stylized facts about the realized volatility of asset prices

Many stylized facts about the volatility of financial asset prices have been reported in several
studies over the recent years (Ding, Granger, and Engle 1993, Lo 1991, among many others).
In particular, people now agree on the fact that (i) returns display, at any time scale, a high
degree of variability which is revealed by the presence of irregular bursts of volatility and (ii)
the volatility displays a positive auto-correlation over large time lags, which quantifies the fact
that high (resp. low) volatility events tends to cluster in time, as already reported by Mandel-
brot (1963) and Fama (1965) who first mentioned evidence thatlarge changes in the price of
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assets are often followed by other large changes, and small changes are often followed by small
changes. This behavior has also been noticed by several other studies, such as Baillie, Boller-
slev, and Mikkelsen (1996), Chou (1988) or Schwert (1989) for instance. Bouchaud, Giardina
and Mezard (2001) provide a explanation on the origin of volatility clustering.

In this section, after we have recalled the definition of the notion of realized volatility, we
document some of the common features of the process of the asset price realized volatility and
relate them to the relevant literature.

1.1 Definition of the realized volatility

Based upon the quadratic variation theory within a standardfrictionless arbitrage-free pricing
environment, Andersen, Bollerslev, Diebold, and Labys (2003) have suggested a general frame-
work for the use of high frequency data in the measurement, the modeling and the prediction of
the daily volatility of asset returns. In fact, as also recalled by Barndorff-Nielsen and Shephard
(2002a, 2002b), when the underlying asset price process is asemi-martingale, the realized vari-
ance (the squared realized volatility) provides a consistent estimator of the quadratic variation,
in the limit of large samples. Indeed, denoting byPi,t theith observation of the asset price dur-
ing the trading dayt and byri,t = ln(Pi,t)− ln(Pi−1,t) the continuously compounded return on
the asset under consideration over the periodi − 1 to i, the realized variance, at dayt, defined
by

σ̂2
t =

nt∑

i=2

r2i,t, (1)

with nt the number of observations during this day, is a consistent estimator of the integrated
variance of the price process. In addition, as shown by Barndorff-Nielsen and Shephard (2002a),
the asymptotic properties of this estimator are such that

σ̂2
t −

∫ t

t1
σ2(s) ds

√

2
3

nt∑

i=1

r4i,t

L−→ N (0, 1), and
ln σ̂2

t − ln
∫ t

t1
σ2(s) ds

√

2
3

∑nt

i=1 r
4
i,t

[∑nt

i=1 r
2
i,t

]2

L−→ N (0, 1), (2)

whereσ(t) is the instantaneous (or spot) volatility of the log price process.

If the estimator (1) does not require the time series of assetreturns to be homoscedastic
during dayt, it is however assumed that the returns are uncorrelated. Therefore, in order to
account for the market microstructure effects, which may produce spurious correlations (Roll
1984, for instance), it is often necessary either to filter the raw series of intraday returns to
remove these correlations1 or to focus on sufficiently large time scales – 5 minutes instead of 1
minute or tick by tick quotations, for instance – in order to smooth out the microstructure effects
and correlations. The immediate drawback of this later approach is to decrease the numbernt

of available observations, which may bias the estimates.

[Insert figure 1 about here]

1See the comparative study in Bollen and Inder (2002) for instance.
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As an illustration, we present, on the figure 1, the realized volatility for two time series
drawn from our intraday database of 24 US stocks prices (see section 4 for details on the
database). On the left panel, we can observe the realized volatility of the daily returns of a
middle capitalization stock (The Washington Post) during the time period from 01/01/1994 to
12/31/2003 while, on the right panel, is depicted the realized volatility of a large capitalization
stock (Coca-Cola) over the same time period. Since our investigation of the time dependence
between the intradayreturnsof these asset prices has not revealed the presence of a significant
correlation beyond the one minute time scale, the market microstucture effect are negligible,
which allows us to directly estimate the realized volatility from the one-minute raw returns.
We can notice that the two autocorrelation functions depicted on figure 1 are typical of the two
kinds of autocorrelation functions we can observe with the 24 stocks of our sample.

[Insert figure 2 about here]

On the figure 2, we have drawn the auto-correlation function of the previous realized volatil-
ity (still The Washington post on the left and Coca-Cola on the right) from lag 0 to lag 250 days,
which corresponds to a one year period or so. The slow decay ischaracteristic of the long mem-
ory. However, the two graphs seem different. For The Washington Post the auto-correlation
falls down to 0.4 quickly and then decreases very slowly, whereas for Coca-Cola, it decreases
more regularly and the auto-correlation becomes not significantly different from zero beyond
lag 180, or so. This general feature could mean that the correlation function of the volatility
of large capitalization stocks would exhibit shorter memory than middle capitalization stocks.
This remark, that will be confirmed later, is in line with the observation reported by Di Matteo,
Aste, and Dacorogna (2005) and according to which the more efficient a stock (or a market),
the faster the decay of the correlation function of its volatility.

1.2 Normality of the log-volatility

We now turn to the distributional properties of the realizedvolatility. As suggested by many pre-
vious studies (Andersen, Bollerslev, Diebold, and Ebens 2001a, Andersen, Bollerslev, Diebold,
and Labys 2001b, Barndorff-Nielsen and Shephard 2002b, among others), the log-normal distri-
bution2 provides an adequate description of the distribution of thevolatility, at least in the bulk
of the distribution. These observations clearly support the modeling of the realized volatility in
terms of log-normal models, which goes back to Clark (1973) (see also Taylor (1986)).

Starting from these observations, let us illustrate the relevance of the log-normal model for
the realized volatility of the returns on the prices of the assets in our database. To this aim, let us
denote by{ωt}t≥1 the logarithm of the series of the realized volatility. Figure 3 shows the kernel
estimate (Pagan and Ullah 1999) of the density of the log-volatility of a mid-cap (Microchip
Technology) on the left panel and of a large cap (Coca Cola) onthe right one, over the whole

2Notice that Barndorff-Nielsen and Shephard (2002b) also show that the inverse Gaussian law provides an
accurate fit of the distribution of the log-volatility. In fact, the log-normal and the inverse Gaussian distributions
are indistinguishably close to each other over the entire range of interest.
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time period. The density of log-volatility of the price returns of Microchip Technology seems
very close to a normal density at the naked eye. On the overall, it is the case for all the mid-
caps. On the contrary, the densities of the large caps present sharp peaks and fat tails so that
they significantly depart from the normal density. These visual impressions will be formalized
later on, in section 4.

[Insert figure 3 about here]

2 Heterogeneity model

As recalled in introduction, several explanations have been proposed, in the now large body of
literature about the long memory of financial time series, topoint out the various origins of this
phenomenon. The first one, addressed by Granger and Joyeux (1980), concerns the nature of
financial time series. Indeed, they consider that financial series results from the aggregation of
micro-variables and that this aggregation is responsible for the long memory. The second one
is the presence of infrequent structural breaks (also called structural changes) in financial time
series (Diebold and Inoue 2001, Gouriéroux and Jasiak 2001, Granger and Hyung 2004, Gadea,
Sabaté, and Serrano 2004, Davidson and Sibbersten 2005, among others).

Our model is based upon Granger and Joyeux (1980)’s proposition; it explains the long
memory of the log-volatility of asset prices by the aggregation of micro-variables intended to
represent the heterogeneous expectations of each market participant. For, we suppose that the
market aggregates the agents’ anticipations of the log-volatility and that this aggregation drives
the realized log-volatility. We will formalize this assumption later on.

2.1 General framework

The role of the log-volatility as the central object underpinning our model comes from the
remark that, as recalled in the previous section, it is reasonable, in a first approximation, to con-
sider that the realized volatility follows a log-normal distribution. As an additional hypothesis,
we will assume that

(H1) the log-volatility process{ωt}t∈Z follows a Gaussian stochastic process,

which obviously ensures that the volatility itself has a log-normal stationary distribution.

Now, the standard economic theory tells us that any rationalagent facing a decision problem
aims at optimizing the output of her actions, based upon the entire set of information she has
at her disposal. In the present context, it means that any rational investor strives for the best
prediction of the future realized volatilitŷσt+τ , τ ≥ 1, based on the set{σ1, . . . , σt} of her past
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observations. In the sense of the minimum mean squared error, the best predictor is given by

σ̂t+τ = E [σt+τ |σ1, . . . , σt] , (3)

= E [eωt+τ |ω1, . . . , ωt] , (4)

= e2σω(τ)2 · eω̂t+τ , (5)

whereω̂t+τ denotes the best predictor of the log-volatility, based on the same set of observations
andσω(τ)2 is the (τ -step ahead) prediction error,i.e. the mean squared error E

[
(ω̂t+τ − ωt+τ )

2].
Since the log-volatility is assumed to follow a Gaussian process, the best predictorω̂t+τ is given
by a linear combination of the past observations and the pastanticipations. In particular (see
Brockwell and Davis (1990, pp. 162-168))

ω̂t+1 = ω̄ +
t−1∑

i=0

ϕt,i · (ω̂t−i − ωt−i) , (6)

where the sequence of coefficients{ϕt,i}i≥0 and the long term mean̄ω depend on the specific
model each investor relies on and on the particular calibration method she uses to estimate the
structural parameters of her model. Thus, one expects that theϕi’s are specific to each market
actor so that each investor performs different expectations about the level of the future realized
volatility. In addition, each agent can incorporate some exogenous economic variables or some
piece of (private) information she thinks to improve her prediction.

Besides, considering that the market carries out an aggregation of the agents’ anticipations,
we postulate that

(H2) the realized log-volatility is the average of all the individual anticipa-
tions.

Thus, denoting bŷωi,t the agenti’s forecast, the realized log-volatility is given by

ωt(n) =
1

n

n∑

i=1

ω̂i,t, (7)

if the market in made ofn participants. Under the assumption of an infinitely large number of
investors, the realized log-volatility writes

ωt = lim
n→∞

ωt(n). (8)

Our approach can appear utterly simplistic insofar as the real process yielding the realized
volatility certainly involves non-linear transforms of the individual anticipations before they
are actually aggregated through the price formation process, which is well-known to rely on
various positive or negative feedback mechanisms (Shiller2000, Sornette 2003). However, in
this first attempt to capture the impact of the heterogeneityof the investors’ anticipations on the
dynamics of the realized volatility, and in the absence of arguments allowing us to model these
non-linear interactions, it is necessary to restrict ourselves to this assumption of linearity.
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Moreover, in order to be able to make tractable calculations, we need some other simplifying
assumptions. Focusing on agenti, we denote byX̂i,t its expectation about the future level of
theexcesslog-volatility over its long term mean

X̂i,t = ω̂i,t − ω̄ (9)

on dayt, and by

X̄n,t = ωt(n)− ω̄ =
1

n

n∑

i=1

X̂i,t (10)

the excess of the realized log-volatility over its long termmean. We assume that the anticipa-
tion X̂i,t depends on the anticipation,̂Xi,t−1, the agent made the day before and on the excess
realized log-volatilityX̄n,t−1, but also on a public piece of informationεt as well as on a private
piece of informationηi,t according to the recursion equation

X̂i,t = ϕi · X̂i,t−1 + ψi · X̄n,t−1 + ciεt + ηi,t t ≥ 0, i = 1, 2, . . . , n. (11)

From equation (6), one should expect thatψi = −ϕi if we consider rational agents who strive
for the best prediction (in the minimum mean-squared sense)of the volatility. However, in order
to generalize our model to the case where the market participants can beboundedrationality
agents, we allow forψi 6= −ϕi. Nonetheless, we will assume that these coefficients remain
constant from time to time.

Let us stress that the first order dynamics (11) can seem too simple, and it probably is. How-
ever, our approach amounts to postulate that the agents assume that the (log)-volatility follows
some kind of ARCH process, which is quite reasonable. In addition, even if real agents use more
sophisticated prediction schemes to perform their expectations about the future level of the real-
ized (log)-volatility, and thus use higher order dynamics,we can still make the assumption that
these higher order dynamics can be reduced to an aggregationof first order dynamics. There-
fore, X̂i,t does not exactly characterize the expectation of individual agents but more precisely
of a class of agents.

In this basic setting, then-dimensional vector̂Xt =
(

X̂1,t, . . . , X̂n,t

)′

follows a first order

(vectorial) auto-regressive process. The Gaussian noises{εt}, {η1,t}, {η2,t}, . . . , are indepen-
dent, centered, and of variance Var(εt) = σ2

ε and Var(ηi,t) = σ2
ηi

, ∀i, respectively. Moreover the
structural coefficients(ϕi, ψi) andci, which characterize the investors’ behavior, can be consid-
ered as the result of independent draws from the same law called the heterogeneity distribution.
These draws are independent of the values of the noises and the variables(ϕ, ψ) andc are in-
dependent of each other. The parameterc that allows introducing heteroscedasticity must be
strictly positive, while the distribution of(ϕ, ψ) has to fulfill some hypotheses, which will be
made explicit hereafter, in order to ensure the stationarity of the stochastic process{X̂t}t∈Z and
of the aggregated excess realized volatility{X̄n,t}t∈Z.

The appeal of the dynamic (11) rests on the simple interpretation that can be made of the
structural coefficient(ϕ, ψ) and of its distributional properties. It is obvious that theimpact
of the previous anticipation̂Xi,t−1 on the current anticipation̂Xi,t depends on the value of the
heterogeneity coefficientϕi:

8



1. whenϕi is close to (but less than) one, the impact of the previous anticipation on the
current anticipation is very important and, unless a very large piece a information arrives
– i.e. unless one observes a largeεt and/or a largeηi,t – the current value of the expected
excess log-volatilityX̂i,t will be very close to the previous one. On the overall, the agent
believes in the continuation of the previous market conditions;

2. whenϕi is close to (but larger than) minus one, the impact of the previous anticipation
still remains more important than the arrival of a new piece of information, but the agent
exhibits a systematic tendency to believe in the reversal ofthe volatility since her antici-
pation appears to be the opposite of the one she made the day before;

3. eventually, when|ϕi| is close to 0, the anticipations are only scarcely related tothose
made the day before and mainly rely on the flow of incoming news.

To sum up, in the two first situations, we can notice that the market is highly self-referential: the
impact of a new incoming piece of information remains weak, all the more so the closer to one
the magnitude ofϕi. On the contrary, when|ϕ| is close to zero, the degree of reactivity of the
market participants to a new incoming piece of information is high. Thus, the magnitude ofϕ
can be seen as a way to quantify the degree of efficiency of the market. The same considerations
obviously holds forψi, but instead of referring to the past anticipation it refersto the publicly
observed past realized volatility.

2.2 Properties of the (log-) volatility process

Equation (11) can be written in a more compact form as follows

X̂t = AX̂t−1 + εt · C + ηt, (12)

whereA = D + 1
n
Ψ · 1′n is ann × n matrix withD = diag(ϕ1, . . . , ϕn), Ψ = (ψ1, · · · , ψn)

′

and1n = (1, . . . , 1)′
︸ ︷︷ ︸

n times

, whileC = (c1, . . . , cn)
′ andηt = (η1,t, . . . , ηn,t). Besides, the range of

the distribution of(ϕ, ψ) is assumed to be such that the spectral radius ofA is less the one. This
condition is necessary and sufficient to ensure the stationarity of the vectorial process{X̂t}t≥0.

Under the assumption||A|| < 1, that will be assumed in all the sequel of this article, the
stationary and causal solution to equation (12) is given by

X̂t =
∞∑

k=0

AkCεt−k +
∞∑

k=0

Akηt−k, (13)

so that, as proved in appendix A:

Proposition 1. In the limit of a large number of economic agents,n → ∞, the excess realized
log-volatility {X̄t}t∈Z follows an infinite order auto-regressive moving average process

(

1−
∞∑

k=0

E
[
ψϕk

]
Lk+1

)

X̄t = E [c] ·
(

∞∑

k=0

E
[
ϕk
]
Lk

)

εt, (14)

whereL denotes the lag operator.
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Not surprisingly, the flows of private information{ηi,t} does not come into play since, under
our assumptions, it does not convey any piece of informationon average across agents.

As a byproduct of the proposition above, we see that the solution to equation (14) can conve-
niently be expressed in terms of an infinite order moving-average provided that

∑∞
k=0 E

[
ψϕk

]
zk+1 6=

1 for all z inside the unit circle:

X̄t = E [c] ·
∞∑

k=0

β̃kεt−k, (15)

where theβ̃k’s are formally given by the coefficients of the power series

∞∑

k=0

β̃kx
k := E

[
1

1− x · ϕ

](

1− xE

[
ψ

1− x · ϕ

])−1

, (16)

= E

[
1

1− xϕ

](

1− E

[
xg(ϕ)

1− xϕ

])−1

, (17)

whereg(ϕ) = E[ψ|ϕ].

The processYt :=
(∑∞

k=0 E
[
ϕk
]
Lk
)
εt, is stationary if and only if

∑∞
k=0 E

[
ϕk
]2
< ∞,

which requires that the law ofϕ be concentrated on(−1, 1). It is however not sufficient, as
shown by Gonçalves and Gouriéroux (1988). Furthermore,Yt exhibits long memory provided
that

∑∞
k=0 |E

[
ϕk
]
| = ∞. Restricting our attention to the case whereYt is said to exhibit long

memory if its spectral density

fY (λ) =
σ2
ε

2π

∣
∣
∣
∣
∣

∞∑

k=0

E
[
ϕk
]
e−ikλ

∣
∣
∣
∣
∣

2

∼ λ−2dY , dY ∈
(

−1

2
,
1

2

)

, (18)

we conclude that the density ofϕ – if it exists – should behave as(1− ϕ)−dY asϕ goes to one.
Actually,Yt exhibits long-memory ifdY ∈ (0, 1/2) and anti-persistence ifdY ∈ (−1/2, 0). The
upper bound ondY is necessary in order for the process to be second order stationary.

The filterA(L) := 1 −∑∞
k=0 E

[
ψϕk

]
Lk+1, in the left-hand side of (14), is well defined

if
∑∞

k=0 E
[
ψϕk

]2
< ∞ which, by Cauchy-Schwartz inequality, is satisfied if E[ψ2] < ∞ and

∑∞
k=0 E

[
ϕ2k
]
< ∞. This requirement is, however, not necessary. As a further hypothesis, we

will assume that
∑∞

k=0 E
[
ψϕk

]2
xk+1 6= 1 for all x ∈ [−1, 1] which ensures thatA(z) does

not vanish for anyz inside the unit circle. The behavior ofA(z), asz goes to one, depends
on the conditional expectation ofψ givenϕ, namelyg(ϕ) := E [ψ|ϕ]. EitherA(z) remains
finite asz → 1, andXt exhibits long memory if and only ifYt itself exhibits long memory or
A(z) diverges hyperbolically, asz → 1, and the memory (short or long) of the log-volatility
process results from a mix between the properties of the distribution ofϕ and of the conditional
expectationg(ϕ). More precisely, we can state that (see the proof in AppendixB)

Proposition 2. Under the assumptions above, if the density ofϕ is f(ϕ) ∼ (1 − ϕ)−α, α ∈
(0, 1/2), and if the conditional expectation ofψ givenϕ is g(ϕ) ∼ (1 − ϕ)β, β > α − 1/2, as
ϕ → 1−, the spectral density of the log-volatility process behaves asfX(λ) ∼ λ−2min{α,β}, as
λ→ 0.
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2.3 Analysis of the heterogeneity parameter of the model

2.3.1 Absence of heterogeneity

Let us assume that the investors only focus on the past realized volatility and completely neglect
their past anticipations,i.e., ϕ = 0. Consequently, the dynamics of the individual anticipations
is

X̂i,t = ψi · X̄n,t−1 + ciεt + ηi,t t ≥ 0, i = 1, 2, . . . , n. (19)

By summation over all the agentsi, and in the limitn→ ∞, one gets

X̄t = E [ψ] · X̄n,t−1 + E [c] εt t ≥ 0, (20)

which is a simple AR(1) process exhibiting only short memorysince

ρ(h) = E [ψ]|h| . (21)

Thus, we notice that the heterogeneity coefficientϕ is responsible for the long memory whileψ
mainly impacts the short memory. It clearly shows that the long memory phenomenon is rooted
in the self-referential behavior of the investors, and moreprecisely in the heterogeneity of their
self-referential behaviors.

2.3.2 Absence of reference to the past realized volatility

At the opposite of the previous case, let us consider that each agent only bases her present
anticipation on her past anticipation and on the flow of incoming news, but that she neglects the
past realized volatility so that the dynamics of the individual anticipations reads

X̂i,t = ϕi · X̂i,t−1 + ciεt + ηi,t t ≥ 0, i = 1, 2, . . . , n, (22)

and the expression of thẽβk’s then simplifies to

β̃k = E
[
ϕk
]
, (23)

which allows us to write the excess realized log-volatilityand its auto-correlation function as

X̄t = E [c]

∞∑

k=0

E
[
ϕk
]
εt−k, and ρ(h) =

∞∑

k=0

E[ϕk]E[ϕk+h]

∞∑

k=0

(E[ϕk])2
, (24)

provided that the stationarity condition
∞∑

k=0

(E[ϕk])2 <∞ holds.

It turns out that the properties of this dynamics has been investigated by Gonçalves and
Gouriéroux (1988). Based on their result, one can remark, in passing, that this correlation
function, namely the auto-correlation function of the aggregated time series, is very different
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from theaveragecorrelation function̄ρ. Indeed, before the aggregation, the auto-correlation
function of each individual agent’s expectation is

ρi(h) = ϕ
|h|
i , i = 1, 2, . . . , h = 0, 1, . . . (25)

so that
ρ̄(h) = E[ϕ|h|] h = 0, 1, . . . (26)

Besides, the dynamics exhibits long memory if (and only if) the density ofϕ diverges at one
in order to get a hyperbolic decay of the correlation function (24). In other words, the density
should behave like(1−x)−d, d < 1/2, in the neighborhood of one, that is to say like the density
of the Beta law for instance, in order to obtainρ(h) ∼ λ · |h|2d−1, as|h| goes to infinity. In such
a situation, one can conclude that a significant part of the agents base their anticipations on their
own previous anticipation and therefore exhibit heterogeneous self-referential behaviors.

2.3.3 Independence between the parametersϕ andψ

Let us assume thatϕ
law
= Beta(−α, 1 + α) with α ∈ (−1, 0) for definiteness. Such a choice is

for illustration purpose since it allows tractable calculations. We deduce that E
[
(1− xϕ)−1] =

(1− x)α. If, in addition, we assume thatψ andϕ are independent, equation (16) reads

∞∑

k=0

β̃kx
k =

1

(1− x)−α − x · E [ψ]
. (27)

The denominator does not vanish for any|x| ≤ 1 if and only if E[ψ] ∈
(
−2−(α+1), 0

)
. Since

α < 0, the right-hand side of (27) diverges as(1−x)α if and only if E[ϕ] = 0. As a consequence,
for the case under investigation, the volatility exhibits long memory when the parametersϕ and
ψ are independent if and only if E[ψ] = 0 which is the case investigated in the previous section.

2.3.4 Dependence between the parametersϕ and ψ

Let us now assume that the parametersϕ andψ are dependent. We still assume thatϕ
law
=

Beta(−α, 1 + α) with α ∈ (−1, 0) and we assume, in addition, that E[ψ|ϕ] = (1 − ϕ)β.

Again, this choice is for reason of tractability of the calculations. We then get E
[

g(ϕ)
1−xϕ

]

=
Γ(1+α+β)

Γ(1+α)Γ(1+β)
F (1,−α; 1 + β; x), whereF is the hypergeometric function (see Abramowitz and

Stegun (1965) for the definition). Thus, equation (16) reads

∞∑

k=0

β̃kx
k =

(1− x)α

1− Γ(1 + α + β)

Γ(1 + α)Γ(1 + β)
xF (1,−α; 1 + β; x)

. (28)

Under the assumption thatβ > 1, which assures that the denominator in equation (28)
remains bounded for all|x| ≤ 1, the series

∑∞
k=0 β̃kx

k behaves likeC(1− x)α in the neighbor-
hood of 1 and thus diverges hyperbolically sinceα < 0. The expression of the spectral density
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is then deduced from equations (15) and (28):

fX(λ) =
E [c]2 σ2

ε

2π

|1− e−iλ|2α
∣
∣
∣1− Γ(1+α+β)

Γ(1+α)Γ(1+β)
e−iλF (1,−α; 1 + β, e−iλ)

∣
∣
∣

2 (29)

and, sincefX(λ) ∼
λ→0

C ′|λ|2α, the auto-correlation function readsρ(h) ∼ K|h|−2α−1 as

|h| → ∞, provided that the second order stationarity conditionα > −1/2 holds.

For the sake of completeness, let us discuss the role played by the two parametersα andβ
in the model. Asϕ is assumed to follow a Beta(−α, 1 + α) law, then E[ϕ] = −α ∈ (0, 0.5).
It implies that the anticipation of an agent is not mainly based on her past anticipation. Re-
call that|ϕ| should be close to one in order to observe a strongly self-referential behavior. In
other words, the agents attach more importance to the realization of the past volatility and to the
information flows, on average. The closerα to 0, the less importance is given to the past antici-
pation. Consequently, as the anticipations of the agents are more based on common facts (past
realized volatility and informations), then the heterogeneity of the agents’ beliefs decreases. As
a conclusion the long memory should decrease. This phenomenon is shown on the left panel of
figure 4, where auto-correlation functions for a fixedβ = 1.5 and different values ofα ranging
in [−0.45,−0.05] are drawn.

[Insert figure 4 about here]

The right panel of figure 4 shows the densities ofϕ for the same set of values ofα. This
figure confirms that the closerα to -0.5, the stronger is the divergence in the neighborhood of
1. It means that the relative proportion of agents attachingimportance to their past anticipation
increases and thus the long memory increases. Furthermore,we notice that the speed of the
decrease of the auto-correlation function and the divergence of the density function are strongly
related. It means thatα impacts both on short and long memory, which is not a surprisesince
– with this simple parameterization –α controls both the behavior of the density ofϕ close the
one and in the neighborhood of zero.

In order to illustrate the role ofβ, we focus on the other heterogeneity parameterψ whose
mean is E[ψ] = Γ(1+α+β)

Γ(1+α)Γ(1+β)
. The limits of E[ψ] whenβ goes to 1 and to infinity are respectively

E[ψ] −→
β→1

1 + α and E[ψ] −→
β→+∞

0. So, the largerβ, the closerψ to 0 on average.

Now, by aggregation of the system (11), the realization of the volatility on dayt is equal
to a quantity depending on the past anticipations plus the past realization of the volatility times
the mean ofψi plus the information flows. Thus the aggregation of equation(11) could be
interpreted as an an AR(1) process where E[ψ] would be the auto-regressive coefficient. Even if
the quantity depending on the past anticipations impacts onthe short memory as we previously
pointed out, all things being equal furthermore, when E[ψ] decreases there are less short-term
correlations and then the short memory falls. It is the reason why when E[ψ] gets close to 0
(that is equivalent toβ tends to infinity), the short memory drops (see figure 5).
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[Insert figure 5 about here]

2.4 Examples

Let us now discuss in details several typical examples of dynamics encompassed by our model
and relate them with the agents’ behaviors.

2.4.1 Rational agents

As recalled in the previous section, rational agents base their anticipations at timet on the
innovationsX̂i,s − X̄n,s, s ≤ t − 1. Thus, settingψi = −ϕi, for all i = 1, . . . , n allows us to
model the behavior of the realized volatility when the investors are fully rational agents since
it allows us to retrieve the expression of the optimal predictor (6), in the particular case where
the agents focus on the last innovationX̂i,t−1 − X̄n,t−1 only. In this case, the dynamics on the
individual anticipation reads

X̂i,t = ϕi ·
(

X̂i,t−1 − X̄n,t−1

)

+ ci · εt + ηi,t t ≥ 0, i = 1, 2, . . . , n, (30)

and by equation (16), we immediately obtain
∞∑

k=0

β̃kx
k = 1, so that

X̄t = E [c] εt. (31)

Notice, in passing, that we do not need each agent to be rational by settingψi = −ϕi, but
only that E[ψ|ϕ] = −ϕ which means that the agents are not necessarily individually rational
but only on average. Thus, if the agents are rational (individually or in average), the excess of
the realized log-volatility only reflects the aggregated information, publicly available at timet,
namelyεt, times the aggregated sensitivity E[c] of the volatility to the public information. This
result is not surprising insofar as rational investors perform optimal anticipations and, therefore,
the realized volatility can only convey the piece of information not present in the past innovation
X̂i,t−1 − X̄n,t−1. Then, since the information flow is assumed to be a white noise, the realized
volatility should also be a white noise in the case where all the investors were rational.

2.4.2 Deviation from rationality

Let us now focus on a particular case of bounded rationality agents. We assume3 ψ = −α ·ϕ+
ϕ̄′, whereα and ϕ̄′ are two constants whileϕ follows a “stretched” Beta(p, q) law, namely a
Beta(p, q) law extended over the entire range[−1, 1]. As we expect that the fraction of investors
characterized by a heterogeneity parameterϕi close to one diverges at 1, the parameterp must
be larger than one,p > 1. On the contrary, we expect that the fraction of agents characterized

3Remark that most of the results in the section still hold if weonly assume E[ψ|ϕ] = −α · ϕ+ ϕ̄′.
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by a heterogeneity parameterϕi close tominusone remains finite, so thatq must be smaller than
one,0 < q < 1. The case of rational agents is obviously encompassed by this representation,
since it corresponds to the situation whereα = 1 andϕ̄′ = 0.

In this setting, the dynamics of the anticipation of the agent i becomes

X̂i,t = ϕi · X̂i,t−1 + (ϕ̄′ − αϕi) · X̄n,t−1 + ci · εt + ηi,t t ≥ 0, i = 1, 2, . . . , n. (32)

and, from equation (16), the excess log-volatilityX̄t follows the infinite order moving-average
(15) with coefficients̃βk’s given by the relation

∞∑

k=0

β̃kx
k =

(1− x)q−1G(p, q, x)

1− α+ (α− xϕ̄′)(1− x)q−1G(p, q, x)
, (33)

where

G(p, q, x) =

{

(1 + x)−q · F (p+ q − 1, q; p+ q, 2
1+x−1 ) if x ≥ 0,

(1− x)−q · F (1, q; p+ q, 2
1−x−1 ) if x < 0,

(34)

withF (., .; ., .) is the hypergeometric function. Two conditions are required in order forG(p, q, x)
to remain finite for all|x| ≤ 1: p > 1 and0 < q < 1. Since0 < q < 1, the numerator diverges.
Let us study the behavior of the denominator, and figure out the conditions for its convergence.

∞∑

k=0

β̃kx
k =

G(p, q, x)

(1− α)(1− x)1−q + (α− xϕ̄′)G(p, q, x)
−→
x→1

1

α− ϕ̄′
, (35)

which yields the following condition for long memory

ϕ̄′ = α. (36)

The dynamics of the anticipation of the agenti then becomes

X̂i,t = ϕi · X̂i,t−1 + α(1− ϕi) · X̄n,t−1 + ci · εt + ηi,t t ≥ 0, i = 1, 2, . . . , n. (37)

Whenϕi is close to 1 thenα(1 − ϕi) is close to 0 and inversely whenϕi is close to 0 then
α(1 − ϕi) is close toα. Finally, whenϕ is close to -1, thenα(1 − ϕi) is close to2α. There
is a kind of balance for an agent to the weight she gives to her past anticipation and to the past
realized volatility. The more importance she gives to her past anticipation, the less the past
realization matters. And inversely. Besides, when an agentdecides to base her anticipation in
contradiction to her past anticipation (corresponding toϕ = −1), for example she thinks she
was wrong, then she also gives and important weight to the past realization via the coefficient
2α. This is a reasonable behavior.

Replacingϕ̄′ by α in equation (33) leads to the simplified expression

∞∑

k=0

β̃kx
k =

(1− x)q−1G(p, q, x)

1− α + α(1− x)qG(p, q, x)
. (38)

So, under the assumption that the denominator in equation (38) remain bounded for all|x| ≤ 1,
which requires that

1− p

q
< α < 1, (39)
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the series
∑∞

k=0 β̃kx
k behaves likeC(1 − x)q−1 in the neighborhood of 1 and thus diverges

hyperbolically ifq < 1. In such a case, the auto-correlation function behaves likeK|h|1−2q as
|h| → ∞, provided that the second order stationarity conditionq > 1/2 holds.

Now, we will study the influence of the parameters on the shapeof the auto-correlation
function. First we focus on the short memory case whereϕ̄′ 6= α, then on the long memory case
whereϕ̄′ = α.

Short memory In the casēϕ′ 6= α, the condition for the denominator not to vanish becomes

α > max

(

ϕ̄′,
(1+ q

p−1)ϕ̄
′+2

1− q

p−1

)

if q

p−1
> 1 andϕ̄′ < α <

(1+ q

p−1)ϕ̄
′+2

1− q

p−1

if q

p−1
< 1. We setp = 5,

q = 0.75 andα = 0.8. Figure 6 shows how the auto-correlation function behaves when ϕ̄′

tends toα. We observe that the closerϕ̄′ is toα the slower the decrease of the auto-correlation
function.

[Insert figure 6 about here]

As a special case, let us setα = 1, as in the case of rational agent, butϕ̄′ 6= 0. It is, in some
sense, the simplest way to account for the departure from rationality. The anticipation of the
agenti then reads

X̂i,t = ϕi ·
(

X̂i,t−1 − X̄n,t−1

)

+ ϕ̄′ · X̄n,t−1+ ci · εt+ ηi,t t ≥ 0, i = 1, 2, . . . , n, (40)

which means that the agent performs her anticipation on the basis of the past innovation̂Xi,t−1−
X̄n,t−1 but, in addition, also pays attention to the past realized volatility in itself, as pointed out
by the presence of the term̄ϕ′ · X̄n,t−1.

Equation (16) yields
∞∑

k=0

β̃kx
k =

1

1− x · ϕ̄′
, (41)

which shows that the dynamics of the (excess) realized log-volatility is nothing but a simple
short memory AR(1) process

X̄t − ϕ̄′ · X̄t−1 = E[c]εt, (42)

whose auto-correlation function is given by

ρ(h) = ϕ̄′|h| (43)

Thus, ifϕ̄′ = 0, we get exactly the behavior of fully rational agents, whichshows again that the
rationality at the individual level is not a necessary condition for the volatility, at the aggregated
level, to behave as if the agent were individually rational.

Long memory Let us now focus on the case where the model exhibits long memory, namely
when ϕ̄′ = α. We are interested in the role of the parametersp, q andα in the short and
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long memories. On figure 7, the role ofp is depicted. The two other parametersq andα are
fixed respectively to 0.75 and 0.3 andp ranges between1.05 and8. On the left panel the auto-
correlation functions are drawn over 200 lags, and on the right one the corresponding density
functions. It shows that the largerp, the slower the decrease of the auto-correlation function at
short lags. Thus,p only influences the short term behavior of the auto-correlation function.

[Insert figure 7 about here]

On figure 8, the role ofq is studied. The two other parametersp andα are fixed respectively
to 5 and 0.3 whileq ranges between0.55 and0.85. The closerq is to 0.5, i.e. to the lower
bound for second order stationarity, the faster is the divergence of the density function in the
neighborhood of 1 and the slower is the decay of the auto-correlation function. Consequently,
q impacts on the long memory.

[Insert figure 8 about here]

Figure 9 shows the role ofα. The two other parametersp andq are fixed respectively to 5
and 0.75 andα ranges between0.1 and0.9. We observe thatα has an important impact on the
short memory. Indeed, the smallerα, the slower the short-lag decrease.

[Insert figure 9 about here]

2.4.3 Generalization

Let us now take into account a larger class of agents’ behavior in the case of̄ϕ′ = α. To this
aim, we modify the density function: we still keep the beta law but we add another law which
have a bell-like density. The bell will be able to move all over [-1,1]. For example, if the bell is
set around zero, it means that the agents do not give importance to their past anticipation.

f(ϕ) = w
1

2p+q−1B(p, q)
(1+ϕ)p−1(1−ϕ)q−1+(1−w) 1

K(m, σ)
(1+ϕ)(1−ϕ) exp

(

−1

2

(ϕ−m)2

σ2

)

,

(44)
whereK is the normalizing constant (that can be expressed in closed-form) law andw in [0, 1]
is the weight given to the stretched Beta law.The conditionsof long memory remain the same,
only the conditions of stationarity change. They can be easily expressed in closed-form but their
expression is rather cumbersome; That is why we will not givethem here.

On figure 10, the role of the relative weight of the singular part the density,w, is studied.
The parametersp andq are fixed respectively to 5 and 0.75,α = 0.3, m = 0, σ = 0.2 andw is
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ranged over[1/4, 3/4]. The weight given to each density impacts on the short but notthe long
memory. The larger the relative part of the bell-like density compared to the stretched Beta one,
the faster the decay of the short memory. In terms of agents’ behavior, it means that the more
the agents base their anticipations on the incoming information flows and on the past realization
of the volatility, the smallest the short-term correlations are.

[Insert figure 10 about here]

Figure 11, shows the impact of the width of the peak of the bellcontrolled byσ. The
parametersp andq are fixed respectively to 5 and 0.75,α = 0.3,m = 0, w = 1/2 andσ ranges
between0.1 and0.3. The intensity of the peak of the bell-like density has only alittle impact
on the short memory. The sharper the bell is, the more important is the short memory.

[Insert figure 11 about here]

On figure 12, the role ofm which determines the position of the bell is studied. The param-
etersp andq are fixed respectively to 5 and 0.75,α = 0.3, σ = 0.2, w = 1/3 andm is ranged
over [−0.8, 0.8]. The translation of the bell plays a part on short memory. Over the very first
lags, we notice that the closer the bell is to -1, the faster the decrease of the auto-correlation
function is. But after a few lags, this situation does not hold anymore.

[Insert figure 12 about here]

3 Statistical Inference

Let us now turn to the question of the estimation of the parameters of the model. As exempli-
fied in the previous section, the long memory phenomenon can be ascribed to the hyperbolic
divergence of the density of the heterogeneity parameterϕ in the neighborhood of1−. It is thus
convenient to split the density of the heterogeneity variable ϕ in two terms: a regular one and
a singular one. For this reason, we will model the law of the realized log-volatility of financial
assets as the mixture of a regular law, with densityf1, and of a Beta(2, 1 − d) law (d ∈]0; 1[)
with densityf2, that will allow capturing the hyperbolic divergence of thedensity ofϕ at one.
As a consequence, the density ofϕ can be written as

f(x) = wf1(x) + (1− w)f2(x), w ∈ [0, 1], (45)
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wheref1 is any regular,i.e. continuous and bounded, density function defined on[−1, 1] and

f2(x) = (1− d)(2− d)
x

(1− x)d
1[0;1](x). (46)

Given a densityf1(x) which admits an expansion in terms of a Fourier series, an assumption
that will be made in all the sequel of this article,

f1(x) =
1

2
+

∞∑

n=1

an cos(nπx) +
∞∑

n=1

bn sin(nπx), x ∈ [−1, 1], (47)

the expression of the auto-covariance and auto-correlation functions of the realized log-volatility
can be numerically calculated by use of the expression of themoment of orderk of the hetero-
geneity variableϕ

E
[
ϕk
]
= wE1

[
ϕk
]
+ (1− w)E2

[
ϕk
]
, (48)

where E1[·] and E2[·] denotes the expectations with respect tof1 andf2 respectively, which
yields

E
[
ϕk
]
= w

(

1

2
Ak +

∞∑

n=1

anBn,k +
∞∑

n=1

bnCn,k

)

+ (1− w) · Γ(k + 2)

Γ(k + 3− d)
Γ(3− d), (49)

where the expressions ofAk, Bk andCk are given in appendix D.

3.1 Asymptotic Normality of the estimator

For simplicity, and for ease of the exposition, we will assume that the coefficients(an, bn) of
the Fourier expansion (47) vanishes beyond the rankq, so that the densityf1 reads

f1(x) =
1

2
+

q
∑

n=1

an cos(nπx) +

q
∑

n=1

bn sin(nπx), x ∈ [−1, 1]. (50)

In addition, we focus on the case where E[ψ|ϕ] = −α(ϕ − 1), which ensures that the long
range memory of the volatility is controlled by the parameter d of the Beta law, as shown in the
previous section.

Let us denote byθ = (a1, . . . , aq, b1, . . . , bq, α, w, σε, d)
′ the2q + 4 dimensional vector of

the parameters involved in our problem and byγ(h; θ) the value of the auto-covariance function
at lagh for the distribution of heterogeneity defined by equations (45), (46) and (50) and for the
parameter valueθ.

Given theT -sample of the logarithm of the realized volatilities{ω1, . . . , ωT}, treated as ob-
served data, it seems natural to estimateθ by minimization of the weighted difference between
the sample auto-covariance function

γ̂T (h) =
1

T

T−h∑

i=1

(ωi − ω̄T ) (ωi+h − ω̄T ) , h = 0, 1, . . . (51)
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andγ(h; θ), the auto-covariance function at the parameter valueθ. We could thus consider the
classical minimum distanceestimator̂θT,L (Newey and McFadden 1994) solution to

argmin
θ∈Θ

[γ̂T,L − γL(θ)]
′W−1

L [γ̂T,L − γL(θ)] , (52)

whereγL(θ) = (γ(1; θ), . . . , γ(L; θ))′, γ̂T,L = (γ̂T (1), . . . , γ̂T (L))
′ andWL is any symmetric

positive definiteL× L matrix, whileΘ is the parameter set

Θ = {θ = (a1, . . . , aq, b1, . . . , bq, α, w, σ, d)
′; f1 ≥ 0, 0 < d < 1 and0 ≤ w ≤ 1} . (53)

However, when dealing with long-memory time series,i.e such that
∑∞

h=0 |γ(h)| = ∞, the
asymptotic properties of the sample estimatesγ̂T,L are not really suitable. Indeed, as recalled
by Hosking (1996), the limiting distribution ofγT (h) whend > 0 is such that

T 1−2d (γ̂T (h)− γ(h))
L−→ R, (54)

whereR denotes the modified Rosenblatt distribution. In particular, the mean of the Rosenblatt
distribution is not equal to zero and can even be much larger than its standard deviation ford
larger than or of the order of one fourth.

As a consequence, it is desirable to rely on the minimizationof another criteria with more
suitable asymptotic properties. In fact, irrespective of the value ofd ∈ (−1

2
, 1
2
), the limit

distribution of any subset of the variablesDh =
√
T [(γ̂T (h)− γ̂T (0))− (γ(h)− γ(0))], h ≥ 1

is a multivariate normal with zero mean and asymptotic covariance matrix (see Hosking (1996,
th. 5))

[
Σ2
]

kl
= lim

T→∞
Cov (Dk, Dl) , (55)

=
1

2

∞∑

s=−∞

[γ(s)− γ(s− k)− γ(s− l) + γ(s− k + l)]2 . (56)

In view of this asymptotic result, a convenient estimator ofthe parameterθ is given by the
solution to

argmin
θ∈Θ

[η̂T,L − ηL(θ)]
′W−1

L [η̂T,L − ηL(θ)] , (57)

where
ηL(θ) = (γ(1; θ)− γ(0; θ), . . . , γ(L; θ)− γ(0; θ))′ , (58)

and
γ̂T,L = (γ̂T (1)− γ̂T (0), . . . , γ̂T (L)− γ̂T (0))

′ . (59)

The consistency and the asymptotic normality of the estimator θ̂T,L follows from the general
asymptotic properties of the classical minimum distance estimators. Concerning the asymptotic
normality, we can state the following result

Proposition 3. Assuming thatθT,L
P−→ θ0, for all L ≥ 2q + 4, asT −→ ∞,

√
T
(

θ̂T,L − θ0

)
L−→ N (0, AL(θ0)) , (60)
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with

AL(θ0) = [GL(θ0)
′WLGL(θ0)]

−1
GL(θ0)

′WLΣ
2
L(θ0)WLGL(θ0) [GL(θ0)

′WLGL(θ0)]
−1
, (61)

where
GL(θ0) = gradθηL(θ)|θ=θ0

, (62)

and

[
Σ2

L(θ0)
]

lk
=

1

2

∞∑

s=−∞

[γ (s; θ0)− γ (s− k; θ0)− γ (s− l; θ0) + γ (s− k + l; θ0)]
2 , (63)

l, k = 1, . . . , L.

Proof. By theorem 5 in Hosking (1996),
√
T (η̂T,L − ηL(θ0))

L−→ N
(
0,Σ2

L(θ0)
)
, thus, the

result follows straightforwardly from theorem 3.2 in Neweyand McFadden (1994).

For fixed L, the minimum of the asymptotic varianceAL(θ0) is reached whenWL =
[Σ2

L(θ0)]
−1, so that

√
T
(

θ̂T,L − θ0

)
L−→ N

(

0, GL(θ0)
′
[
Σ2

L(θ0)
]−1

GL(θ0)
)

. (64)

On the other hand, givenWL, one can get an optimal valueL∗ of L as the solution to

L∗ = arg min
L∈{2q+4,...,T−1}

||AL(θ0)||2. (65)

Proposition 4. Under the assumptions in proposition 3, denoting byD(θ) the vector

D(θ) =





















w cos(πx)
...

w cos(qπx)
w sin(πx)

...
w sin(qπx)

0
f1(x)− f2(x)

0

(w − 1)f2(x)
[

ln(1− x) + 3−2d
(1−d)(2−d)

]





















, (66)

the estimator̂f(x) of the densityf(x) is asymptotically Gaussian

√
T
(

f̂(x)− f(x)
)

L−→ N (0, D(θ0)
′A(θ0)D(θ0)) . (67)

Proof. D(θ) is nothing but the gradient off(x) with respect toθ. Thus, by use of the Delta
method (van der Vaart 2000), the result follows straightforwardly from proposition 3.
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4 Empirical results

In this section we present the conclusions drawn from the calibration of our model whose im-
plementation is discussed in appendix E. To this aim, we use the intraday prices of ten middle
and fourteen large capitalization stocks traded on the NYSEor the Nasdaq from 01/01/1994
to 12/31/2003 (which represents 2518 trading days). The description of the data, provided by
TickData, is given in table 1. According to Standard and Poor’s methodology, stocks are classi-
fied as middle capitalization stocks if their (average) market capitalization ranges between US$
750 million and US$ 3.3 billion and as large capitalization stocks beyond. An exception has
been made for Gilead Science inc. which has been classified asa middle capitalization stock
while its average market capitalization is US$ 3.9 billion,which should have led us to classify
it as a large capitalization stock. This choice is for reasons of homogeneity, in terms of market
capitalization, of our two sub-sample (midcaps, on the hand, large caps on the other hand).

[Insert table 1 about here]

We first estimate the daily realized-volatility by use of theestimator (1), as already dis-
cussed in section 1. We stress that this variable will be considered as an observed variable in
all the sequel. Before going further, it is worth to notice that we should get 390 one-minute
prices for all assets since the quotations begin at 9:30 am and end at 16:00 pm. However, we
have much less observations for the middle capitalization stocks than expected: typically 133
per day, on average. In addition, the number of intraday quotations is not constant over time.
Indeed, the number of available data is much smaller from 1994 to 1997 than from 1998 to 2003
(respectively 45 and 192 for the middle capitalizations and282 and 374 for the large capital-
izations). Nevertheless, we has chosen to estimate the realized volatility over the whole time
period ranging from 01/01/1994 to 12/31/2003. Notice that the fact that we restrict our attention
to middle and large capitalization stocks is motivated by the too low number of quotations per
day of small capitalization stocks – i.e. stocks whose market capitalization in less than US$
750 million – to allow for an accurate estimation of their realized volatility. It is the reason why
they are not considered in this study.

4.1 Calibration of the model over the whole time interval

Let us underline that the estimation of the density of the heterogeneity variableϕ provides us
access to the parameterd that characterizes the long-memory behavior of the time series of the
realized log-volatility. It is then interesting to comparethe values ofd obtained with our model
and those obtained by other methods like the rescaled range method set by Hurst (1951) and
the regression method introduced by Geweke and Porter-Hudak (1983). Notice that the former
method has been refined by Mandelbrot (1972, 1975), Mandelbrot and Taqqu (1979) and later
by Lo (1991). However, this generalization involves an additional parameter whose value has a
great influence on the results (Teverovsky, Taqqu, and Willinger 1999). As a consequence, we
have only resorted to the classical rescaled range statistic.
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First we show the graphical results obtained for a middle capitalization: Fidelity National
Financial inc. (FNF, see figure 13). On the right panel the estimated auto-correlation function
fits very well the sample one. The density of the heterogeneity variableϕ is depicted on the
left panel (plain curve) with the pointwise 95% confidence interval (dashed curves). This shape
with three distinct masses (one close to -1, an other close to1 and the last one around 0) is
representative of half of the assets (The other half is depicted afterwards). In terms of agents’
behavior, it means that there is mainly three kinds of agents. First, looking at the central part
of the density function, we can conclude that most of the agents base their anticipations on
the incoming flow of information and on the past realization (depending on the value ofα).
Some others believe in the anticipation they performed the day before, which is related to the
diverging part of the curve, in the neighborhood of one, while only a few, shown by the part of
the density near -1, systematically take the opposite of their previous anticipations.

[Insert figure 13 about here]

Secondly we show what we graphically obtain for the other half of the assets with the
example of a large capitalization: Microsoft (MSFT, see figure 14). Instead of noticing three
distinct masses, we only see two. The agents confident in their past anticipation still remains,
but it is now more vague with the second category. In fact the curve is symmetric with a peak
centered around -0.5. We still find agents who do not trust anymore in the anticipation they
performed the previous day (the part of the density functionnear -1), and others who only
care about incoming news (the part of the density function near 0), and between these two
situations there are many agents who both take into account the news and the opposite of their
past anticipation. This is quite logical if an agent realizes that her past anticipation was far from
the realization of the volatility, then she takes the opposite of her previous anticipation and also
becomes more careful in the incoming news.

[Insert figure 14 about here]

These two typical shapes of the distribution of heterogeneity do not appear to be related
to the size of the firms nor to any specific industry. However, the small number of assets per
industry in our database (maximum five) prevents us from drawing definitive conclusions.

The results of the estimations of the long memory parameterd by our model and by the two
semi-parametric methods are shown in table 2. It is quite obvious that, on the one hand, each
estimators agrees to say that long memory is present in almost all series while, on the other
hand, each estimator gives, for a same asset, different values ofd. Most of the values obtained
by our model range between0.2 and0.4 and a few are negative, instead of between0.3 and0.45
with Geweke and Porter-Hudak’s estimator. At least the longmemory parameter obtained by
the classical rescaled range analysis method is mainly comprised between0.40 and0.55.

It is common knowledge that beyondd = 0.5 the series is no longer stationary. As the
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estimations by the Hurst method are greater than, but close to, 0.5, we may say that it is due
to the uncertainty and, maybe, the inaccuracy of the method.Moreover, the differences noticed
between these results may be explained by the difficulty to use the estimators. Indeed, it is
well-known that Geweke and Porter-Hudak’s estimator is quite sensitive to the presence of
short memory. On the contrary, our estimates should be considered as more robustvis-a-visthe
presence of short-memory insofar as our model takes it into account explicitly.

We observe that the values of the parameterd estimated with our semi-parametric model
are significantly negatively correlated with the average size of the stocks (ρ = −0.48, p-value =
0.02). This observation is in accordance with Di Matteo, Aste, and Dacorogna (2005)’s results
which show that the more efficient a stock, the faster the decay of the correlation function of its
volatility. Clearly, the larger a stock the larger is the number of analysts who value this stock
and the larger the categories of investors who trade this stock. Hence, the most efficient should
be the stock price. It is important to notice, that the long memory parameterd estimated by
Geweke and Porter-Hudak’s estimator and by Hurst’s method are positivelycorrelated with the
average stock sizes. Form our point view, it illustrates thesuperiority of our approach in the
present context.

4.2 Study of the bubble burst effect

The study of the bubble burst effect is motivated by the fact that we will be able to get infor-
mations about the agents’ behavior during a prosperity period (before the bubble burst) and
during a recession period (after the bubble burst). In particular we will be able to answer the
question:“Do the agents behave differently before and after a bubble burst ?”

To perform the computations, we randomly selected 5 large capitalizations because the bub-
ble phenomenon is far more pronounced in their price evolution than it is for middle capitaliza-
tions. We simply split the series when the maximum price is reached into two subseries. The
first one is defined as the pre-bubble burst period while the other one is the post-bubble burst
period. Hereafter, the illustrations are drawn for a “new technology” company, Cisco Systems
(CSCO), and a non technology company, Coca Cola (KO). The point is that the bubble phe-
nomenon may be more pronounced in the price evolution of a newtechnology company, which
was more affected by the Internet bubble, than a non technology firm.

4.2.1 Study of a new technology asset: Cisco Systems

On the left panel of figure 15 we show the price evolution of CSCO between 01/01/1994 and
12/31/2003. On the right panel of figure 15 we have drawn the sample auto-correlation functions
of CSCO over the three periods. We deduce that before the bubble burst the long memory
parameter should be much larger than the one over the whole period while after the bubble
burst, it should be much smaller.

[Insert figure 15 about here]
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Let us complete these impressions with the densities and auto-correlation functions esti-
mated over the two subperiods (see figures 16 and 17). We show on the left panel the estimated
density with its 95% confidence interval and on the right one the sample and estimated auto-
correlation functions.

Concerning the pre-bubble burst period (see figure 16), on the right side, we see that the
estimated auto-correlation function fits pretty well with the sample one. Moreover on the left
side of this figure, the 95% confident interval is very thin. Wededuce that the optimization
performed well. The shape of the density is quite similar as the one we obtained with Microsoft
(see figure 14) and implies a strong long memory. To sum up, we get two masses: the one
close to 1 represents agents who believe in their past anticipation; the other one, from -1 to 0.2
includes several different behaviors. Nevertheless they have something in common: they do not
replicate their past anticipation. Some are rational and use the incoming information flows and
others not really. They are inspired by the opposite of theirpast anticipation or a mix between
the news and the contrary of the previous anticipation.

[Insert figure 16 about here]

As for the post-bubble burst period, we notice again, on figure 17, that the estimated auto-
correlation function fits very well with the sample one (on the right panel) and that the 95%
confident interval of the density function is good too. However, the situation is here a little bit
different: the value of the long memory parameterd is smaller (see table 3 hereafter). Basically,
it means that the proportion of agents who believe in the continuity of the previous market con-
ditions is smaller. Figure 18 helps us compare the agents behaviors during the two subperiods.
We observe that after the bubble burst the mass from -1 and 0.2changes. It was first com-
pressed between -1 and 0, then the mass has been divided into two masses. As a consequence,
on the one hand the proportion of agents who perform their anticipation based on the opposite
of their previous anticipation is larger. Those agents may recognize that they were wrong or it
can reflect the confusion resulting from the increase in the level of uncertainty about the future
evolution of the economic environment after the bubble burst. On the other hand, the proportion
of agents who mainly use information is larger too, in accordance with the increase in the level
of uncertainty and therefore with the increasing need for information.

[Insert figure 17 about here]

[Insert figure 18 about here]

25



4.2.2 Study of a non technology asset : Coca Cola

We reproduce for Coca Cola the same figures as for Cisco Systems. Here, the bubble burst
does not coincide with the burst of the Internet bubble but corresponds to the market turmoil
resulting from the Russian crisis during the summer 1998. Wenotice on the left side of figure
19 that the bubble phenomenon is less pronounced than the oneobserved in the case of Cisco
Systems. The immediate consequence is shown on the left sideof this figure where the sample
auto-correlation functions over the three periods are not as different as they are for CSCO. Then
we expect to get closer long memory parameters, especially over the whole period and after the
bubble burst.

[Insert figure 19 about here]

Let us be more accurate with the densities and auto-correlation functions estimated over
the two subperiods (see figures 20 and 21). For both of the figures, notice that the estimated
auto-correlation functions on the right panels fit very wellto the sample ones (in particular after
the burst), and the 95% confident intervals are good too.

[Insert figure 20 about here]

[Insert figure 21 about here]

As the shapes of these two densities look very similar let us put them together on the same
graphic in order to analyze them (see figure 22). Looking at the divergence at one, the long
memory parameter may be more or less the same. Contrary to theevolution of CSCO density
where the bulk of the post bubble burst density in the negative range was compressed, here it
does not change that much. It only slightly expands along thepositive axis after the bubble
burst. The mass from 0.2 to 0.7 for the pre-bubble burst period which represent the agents who
both believe in the continuity of the market and also take into account the information flows has
disappeared. It means that a smaller fraction of agents still use their past anticipation.

[Insert figure 22 about here]
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4.2.3 General observations

Let us look at the values ofd. The values of the long memory parameter obtained by our
model (see table 3) confirm our visual impressions. Indeed, before the burst, the long memory
parameter is often greater than the one over the whole periodfor 4 out of 5 cases (in the 5th they
are nearly similar). On the opposite, one observes that after the burst,d falls for all the assets
except for Coca Cola.

We have to mention that the optimization algorithm does not converge for Microsoft during
the second period. A reason might be the small number of available data. Indeed, for the post
bubble burst period we only have about 900 days for 4 out of 5 assets whereas we have about
1600 data available for the pre bubble burst period. In the case of a smaller data number, the
global optimum is more difficult to reach.

Nonetheless, to sum up, the results we obtained lead us to conclude that during a growth
cycle, the number of agents who are confident in the market andwhose strategy remains almost
the same day after day, is greater than the one during a decline cycle where the agents adopt
more various behaviors. Indeed, some still base their anticipation on the previous one. Some do
not believe in their past anticipation anymore and take intoaccount the information flow. Some
admit they were wrong the day before and make a contrary anticipation. Others make a mix
between a contrary anticipation and taking into account thenews. This observation is in line
with Giardina and Bouchaud (2003) who showed that during theperiod of very low volatility
following crashes, all agents keep using the same strategies.

5 Conclusion

Based upon the recent literature on the aggregation theory,we have provided a model of realized
log-volatility that aims at relating the behavior of the economic agents to the long memory of the
volatility of asset returns. In spite of its simplicity, this model allows taking into account many
agents’ behavior and performs good estimates in general. The estimated coefficients often lead
to auto-covariance and auto-correlation functions well fitted with their sample counterparts. In
addition, the results derived from the study of the bubble burst effect – namely a higher tendency
to replicate the anticipations of the day before and to neglect the incoming information flow
before the bubble burst than after – are quite reasonable.
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A Proof of proposition 1

Under the assumption||A|| < 1, the stationary solution to equation (12) is given by

X̂t =

∞∑

k=0

AkCεt−k +

∞∑

k=0

Akηt−k, (68)

and the excess realized log-volatility writes

X̄n,t =

∞∑

k=0

(
1

n
1′nA

kC

)

εt−k +

∞∑

k=0

1

n
1′nA

kηt−k. (69)

Accounting for the factA = D + 1
n
Ψ · 1′n, Ak is solution to

Ak = Ak−1

(

D +
1

n
Ψ · 1′n

)

, (70)

so that one has to solve the recurrence equation

1′nA
k =

(
1′nA

k−1
)
D + βk−11

′
n, (71)

whereβk = 1
n
1nA

kψ. It is then a matter of simple algebraic manipulations to show that

1

n
1′nA

kC =
1

n
1′nD

kC +
1

n

k∑

i=1

βi−1 · 1′nDk−iC, (72)

= E [c] · E
[
ϕk
]
+ E [c]

k∑

i=1

βi−1E
[
ϕk−i

]
(a.s), as n→ ∞, (73)

where

βk =
1

n
1′nD

kΨ+
k∑

i=1

βi−1 ·
(
1

n
1′nD

k−iΨ

)

, (74)

= E
[
ψϕk

]
+

k∑

i=1

βi−1 · E
[
ψϕk−i

]
(a.s), as n→ ∞, (75)

while

1

n
1′nA

kηtk =
1

n
1′nD

kηtk +
1

n

k∑

i=1

βi−1 · 1′nDk−iηtk , (76)

= E
[
ϕk
]

E [ηt] +
k∑

i=1

βi−1E
[
ϕk−i

]
E [ηt] (a.s), as n→ ∞, (77)

= 0, (78)

provided that E[ηt] = 0.
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So,X̄t = limn→∞ X̄n,t is equal to

X̄t = E [c] ·
∞∑

k=0

(

E
[
ϕk
]
+

k∑

i=1

βi−1E
[
ϕk−i

]

)

εt−k. (79)

Let us simplify this expression by setting

β̃k = E
[
ϕk
]
+

k∑

i=1

βi−1E
[
ϕk−i

]
, (80)

so that

X̄t = E [c] ·
∞∑

k=0

β̃kεt−k. (81)

Now, multiplying equation (80) byxk and summing overk from zero to infinity, we get

∞∑

k=0

β̃k+1x
k+1 =

∞∑

k=0

E
[
ϕk+1

]
xk+1 +

∞∑

k=0

(
k∑

i=0

βiE
[
ϕk−i

]

)

xk+1. (82)

As it is well-known that

∞∑

k=0

(
k∑

i=0

βiE
[
ϕk−i

]

)

xk+1 = x

(
∞∑

k=0

βk+1x
k

)(
∞∑

k=0

E
[
ϕk
]
xk

)

, (83)

we obtain
∞∑

k=0

β̃kx
k =

∞∑

k=0

E
[
ϕk
]
xk

{

1 + x
∞∑

k=0

βkx
k

}

. (84)

Then, focusing on
∞∑

k=0

βkx
k and by use of equation (75), the same argument yields

∞∑

k=0

βk+1x
k+1 =

∞∑

k=0

E
[
ψϕk+1

]
xk+1 +

∞∑

k=0

(
k∑

i=0

βiE
[
ψϕk−i

]

)

xk+1, (85)

∞∑

k=0

βkx
k =

∞∑

k=0

E
[
ψϕk

]
xk + x

(
∞∑

i=0

βix
i

)(
∞∑

i=0

E
[
ψϕi

]
xi

)

. (86)

In other words

∞∑

k=0

βkx
k =

∞∑

k=0

E
[
ψϕk

]
xk

1− x
∞∑

k=0

E
[
ψϕk

]
xk
, (87)
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which, by replacement in equation (84), leads to

∞∑

k=0

β̃kx
k =

∞∑

k=0

E
[
ϕk
]
xk

1− x
∞∑

k=0

E
[
ψϕk

]
xk
, (88)

and, provided that the permutation of the expectation and summation signs is allowed

∞∑

k=0

β̃kx
k =

E

[
1

1− x · ϕ

]

1− xE

[
ψ

1− x · ϕ

] , (89)

which concludes the proof.

B Proof of proposition 2

The expression of the spectral density ofXt follows from proposition 1 and reads

fX(λ) =
E [c]2 · σ2

ε

2π

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∞∑

k=0

E
[
ϕk
]
e−ikλ

1− e−iλ

∞∑

k=0

E
[
ψϕk

]
e−ikλ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

. (90)

Provided that the permutation of the expectation and summation signs is allowed, we can rewrite
this relation as

fX(λ) =
E [c]2 · σ2

ε

2π

∣
∣
∣
∣
∣
∣
∣
∣

E

[
1

1− e−iλ · ϕ

]

1− e−iλ · E

[
g(ϕ)

1− e−iλ · ϕ

]

∣
∣
∣
∣
∣
∣
∣
∣

2

. (91)

Now, focusing on the term

N(x) = E

[
1

1− x · ϕ

]

, (92)

it follows from Karamata’s theorem (Bingham, Goldie, and Teugels 1989) thatN(x) ∼ (1 −
x)−α, asx → 1, provided that the density ofϕ satisfiesf(ϕ) ∼ (1− ϕ)−α, α ≥ 0.

Similarly, provided that the density ofϕ satisfies the previous assumption and that the con-
ditional expectationg(ϕ) ∼ (1− ϕ)β, β ≥ α− 1/2, the term

D(x) = E

[
g(ϕ)

1− x · ϕ

]

∼
{

(1− x)−α+β , α > β

E
[
g(ϕ)
1−ϕ

]

<∞, α < β
(93)

asx→ 1.
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So, whenα is positive and larger thanβ, the ratioN(x)/D(x) ∼ (1 − x)−β so that the
spectral densityfX(λ) ∼ λ−2β. On the contrary, whenβ is greater than of equal toα, the ratio
N(x)/D(x) ∼ (1− x)−α and the spectral densityfX(λ) ∼ λ−2α.

C Calculation of the auto-correlation function by the use of
the Fast Fourier Transform

The Auto-covariance functionγX(h) of a time series{Xt} can be obtained by the spectral
densityfX(λ) of {Xt} according to

γX(h) =

∫ π

−π

eiλhfX(λ)dλ =

∫ 2π

0

eiλhfX(λ)dλ. (94)

Equation (94) in terms of a sum of integrals

γX(h) =

N−1∑

k=0

∫ 2π
N

(k+1)

2π
N

k

eiλhfX(λ)dλ. (95)

By the trapezes method one can express an integral over a short domain such as

N−1∑

k=0

∫ 2π
N

(k+1)

2π
N

k

eiλhfX(λ)dλ =
π

N

(

ei
2π
N

kfX

(
2π

N
k

)

+ ei
2π
N

(k+1)fX

(
2π

N
(k + 1)

))

. (96)

As, given the shape of the spectral density, we may face problems in 0 and2π, lets us rewrite
equation (95) as

γX(h) =

∫ 2π
N

0

eiλhfX(λ)dλ+

∫ 2π

2π
N

(N−1)

eiλhfX(λ)dλ

+
π

N

N−2∑

k=1

(

ei
2π
N

khfX

(
2π

N
k

)

+ ei
2π
N

(k+1)hfX

(
2π

N
(k + 1)

))

, (97)

γX(h) = 2K(α, β)

∞∑

k=0

(−1)k
(
2π
N
h
)2k

(2k)!(2k + 2α+ 1)
− 2π

N
Re
{

ei
2π
N

hfX

(
2π

N

)}

+
2π

N

N−1∑

k=1

ei
2π
N

khfX

(
2π

N
k

)

, (98)

where the spectral density is deduced from equations (15) and (28) :

fX(λ) =
σ2

2π

|1− e−iλ|2α
∣
∣
∣1− Γ(1+α+β)

Γ(1+α)Γ(1+β)
e−iλF (1,−α; 1 + β, e−iλ)

∣
∣
∣

2 , (99)
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with F (., .; ., .) is the hypergeometric function, andσ2 is the variance ofεt, and

K(α, β) =
σ2

2π

(
2π

N

)2α+1
1

∣
∣
∣1− Γ(α+β)

Γ(1+α)Γ(β)

∣
∣
∣

2 (100)

The last term of equation (98) can be easily calculated by theuse of the inverse Fast Fourier
Transform.

D Auto-correlation function

E1[ϕ
k] is given by

E1[ϕ
k] =

1

2
Ak +

∞∑

n=1

anBn,k +
∞∑

n=1

bnCn,k, (101)

where

Ak =







2

k + 1
if k is even,

0 if k is odd,
(102)

Bn,k =







(−1)n
2k

(nπ)2
− k(k − 1)

(nπ)2
Bn,k−2 if k is even,

−k(k − 1)

(nπ)2
Bn,k−2 if k is odd,

(103)

with Bn,0 = 0 andBn,1 = 0,

Cn,k =







−k(k − 1)

(nπ)2
Cn,k−2 if k is even,

(−1)n−1 2

nπ
− k(k − 1)

(nπ)2
Cn,k−2 if k is odd,

(104)

with Cn,0 = 0 andCn,1 = (−1)n−1 2

nπ
.

E2[a
k] is simply given by

E2[ϕ
k] =

Γ(k + 2)

Γ(k + 3− d)
Γ(3− d). (105)

E Implementation of the econometric procedure and conver-
gence of estimators

For finite size samples, the distance(η̂T,L − ηL(θ))
tW−1

L (η̂T,L − ηL(θ)) can exhibit several
local minima and, in practice, it actually does. Therefore,it turns out to be necessary to use a
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minimization algorithm that is able to deal with such a problem, preventing from being trapped
in a local minimum, and then to find the global minimum. Genetic algorithms provide relevant
solutions for such situations and they have been retained tosolve our problem.

The idea underlying genetic algorithms is based on the mimicry of the natural selection
process and genetic principles. The genetic algorithm starts with a population of trial vectors –
calledgenes– containing the parameterθ to optimize and unfolds as follows:

• The first step consists in thereplicationof the initial trial vectors according to their fitness,
that is the genes whose distance is the smallest have the highest probability to reproduce.
Thus, on the average, the new population has a smaller distance than the initial one, but
its diversification is also weaker since the fittest genes obviously appear twice or more in
the new population.

• The second step is thecrossoverwhich leads to combine the different parameters from
several vectors drawn from the new population in order to mixtheir characteristics.

• The third and last step is themutation, where some genes undergo random changes,i.e.,
some parameters of the vectors born of the crossover are randomly modified. This step is
essential to maintain the diversity of the population whichin turn ensures the exploration
of the whole optimization space.

The vectors obtained after this third step are then used as initial population and the process
is reiterated in order to get a new generation of genes and so on. The convergence of this
algorithm to the global minimum of the problem is ensured by the fundamental theorem of
genetic algorithms (Golberg 1989). An example of particularly efficient genetic algorithms is
the Differential Evolutionary Genetic Algorithm by Price and Storn (1997) or the Dorsey and
Mayer (1995) algorithm.

As the the genetic algorithm is particularly time consuming, we have turned to the Nelder
and Mead (1965) simplex method4, that is a multidimensional unconstrained nonlinear mini-
mization algorithm. This method presents however a seriousdisadvantage in our case : from
the starting point chosen to initialize the procedure, it finds the nearest local minimizer of the
function. In the case we are interested in, we know there are many local minima, thus an inad-
equate choice of the initial value leads to a local minimum instead of the global minimum we
are looking for.

In order to bypass this problem, we have developed an iterative procedure hereafter called
the “step by step” method, based on the Nelder Mead method, that has appeared very fast and
efficient when the coefficients(an, bn) in (50) decay at least as fast as1/n2. It consists in restrict-
ing the optimization toq = 1, in a first step. In such a case, the optimization can be performed

by the Nelder Mead method. It provides a first estimate
(

â1(1), b̂1(1), α̂(1), ŵ(1), σ̂(1), d̂(1)

)

. In a

second step, we setq = 2, and start the Nelder-Mead algorithm with the value
(

â1(1), 0, b̂1(1), 0 ,

α̂(1), ŵ(1), σ̂(1), d̂(1)

)

which yields a new estimate
(

â1(2), â2(2), b̂1(2), b̂2(2), α̂(2), ŵ(2), σ̂(2), d̂(2)

)

,

and so on until the actual value ofq is reached.

4see also Lagarias, Reeds, Wright, and Wright (1998) for a recent discussion of the convergence of the method.
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The figure 23 illustrates the convergence of this procedure in the case of a numerical exper-
iment that unfolds as follows :

1. we generate a reference density with a chosenq,

2. we apply the two procedures using the Nelder-Mead method,

3. we compare the accuracy of the two estimated densities to the reference density,

4. step (1) and (2) are iterated one thousand times.

The two graphs show the efficiency of the step by step method. On the left panel, the reference
density has been drawn forq = 5 and we estimated the densities forq = 5 too. The best
estimated density is irrevocably the one obtained by the iterative procedure. On the right panel,
we account for the fact that the density should have an infinite number of parameters (see
equation (47)) or, at least, that the right orderq in (50) is generally unknown. that is why we
have generated a reference density withq = 10 and performed the estimation forq = 5 only
to investigate the effect of the truncation on the accuracy of the two approaches. The result
obtained for a randomly chosen simulation is displayed on the right panel of figure 23. One
more time, the iterative method gives better results than global approach.

[Insert figure 23 about here]

While we have not been able to prove the convergence of the “step by step” procedure, our
numerical simulations show that it provides estimates thatare always close to the true parameter
values (within the uncertainty predicted by proposition 3). In addition, these estimates are
almost always more accurate than the estimates obtained by use of the genetic algorithm, due
to the very slow convergence of this algorithm.
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Symbol Company Market Sector Cap.
BKS Barnes & Noble Inc. NYSE dist. (c) 1.62
VLO Valero Energy corp (new) NYSE energy 1.70
DHI DR Horton inc. NYSE dist. (c) 1.83
LEN Lennar corp CL a common NYSE dist. (c) 1.85
TCB TCF Financial Corp. NYSE financial 1.92
NYB New York Bancorp inc. NYSE financial 2.17
FNF Fidelity Natl Financial inc. NYSE financial 2.27
MCHP Microchip Technology inc. Nasdaq tech. 2.99
WPO Washington post co clb NYSE com. 3.71
GILD Gilead Science inc. Nasdaq dist. (nc) 3.90

GM General Motors co. NYSE dist. (c) 31.81
PG Procter & Gamble co. NYSE dist. (nc) 84.30
IBM Intel Business Machines corp. NYSE tech. 108.01
CSCO Cisco Systems inc. Nasdaq com. 112.26
MRK Merck & co inc. NYSE dist. (nc) 112.73
KO Coca-Cola co. NYSE dist. (nc) 118.97
AIG American intl group inc. NYSE financial 125.58
INTC Intel corp. Nasdaq tech. 140.77
WMT Wall-Mart Stores inc. NYSE dist. (c) 144.61
C Citigroup NYSE financial 148.79
PFE Pfizer inc. NYSE dist. (nc) 198.20
XOM Exxon mobile corporation NYSE energy 199.19
MSFT Microsoft corp. Nasdaq tech. 239.81
GE General Electrics co. NYSE industrial 290.44

Table 1: Average capitalization (in billion dollars) of every assets over the whole period
(01/01/1994 to 12/31/2003) and their characteristics.
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Asset d dgph dhurst
BKS 0.19 (0.04) 0.36 (0.02) 0.44
VLO 0.23 (0.04) 0.32 (0.02) 0.44
DHI 0.34 (0.04) 0.34 (0.02) 0.50
LEN 0.31 (0.05) 0.34 (0.02) 0.53
TCB 0.31 (0.04) 0.35 (0.02) 0.43
NYB 0.09 (0.05) 0.33 (0.02) 0.37
FNF 0.25 (0.04) 0.34 (0.02) 0.28
MCHP 0.19 (0.04) 0.45 (0.02) 0.42
WPO 0.45 (0.04) 0.28 (0.02) 0.46
GILD 0.37 (0.06) 0.44 (0.02) 0.42

GM -0.08 (0.05) 0.30 (0.02) 0.30
PG 0.22 (0.05) 0.41 (0.02) 0.53
IBM 0.21 (0.05) 0.36 (0.02) 0.44
CSCO 0.33 (0.06) 0.47 (0.02) 0.51
MRK 0.22 (0.05) 0.37 (0.02) 0.49
KO 0.16 (0.05) 0.41 (0.02) 0.55
AIG 0.10 (0.03) 0.44 (0.02) 0.48
INTC 0.23 (0.06) 0.38 (0.02) 0.53
WMT 0.31 (0.04) 0.42 (0.02) 0.46
C 0.08 (0.04) 0.40 (0.02) 0.51
PFE 0.16 (0.05) 0.40 (0.02) 0.55
XOM 0.10 (0.06) 0.41 (0.02) 0.49
MSFT 0.21 (0.03) 0.43 (0.02) 0.53
GE 0.04 (0.06) 0.44 (0.02) 0.50

Table 2: Estimation of the long memory parameter,d, by our method and different semi-
parameter methods (Geweke and Porter-Hudak (GPH) and Hurst) for all the assets, over the
whole period (from 01/01/1994 to 12/31/2003). For the GPH estimator we also give the stan-
dard deviation.
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Whole Before After
period bubble burst bubble burst

CSCO d (̄σ) 0.33 (0.06) 0.27 (0.04) 0.18 (0.04)
w (0.12) (0.57) (0.55)
α (0.12) (0.80) (0.55)

MRK d (σ̄) 0.22 (0.05) 0.30 (0.04) 0.08 (0.04)
w (0.43) (0.43) (0.45)
α (0.31) (0.66) (0.39)

KO d (σ̄) 0.16 (0.05) 0.19 (0.04) 0.20 (0.05)
w (0.46) (0.41) (0.47)
α (0.62) (0.66) (0.41)

AIG d (σ̄) 0.10 (0.03) 0.26 (0.05) -0.32 (0.04)
w (0.64) (0.61) (0.12)
α (0.64) (0.45) (0.85)

MSFT d (̄σ) 0.21 (0.03) 0.34 (0.04) -
w (0.66) (0.70) -
α (0.54) (0.50) -

Table 3: Estimation of the long memory parameterd (and its standard deviation), the param-
eterα and the weightw by using the auto-correlations method for some large capitalizations,
over the whole period (from 01/01/1994 to 12/31/2003). Notice that the optimization fails to
converge for the after bubble burst period for Microsoft.
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Figure 1: Daily realized volatility of two assets from 01/01/1994 to 12/31/2003. On the left a middle capitalization : The Washington Post,
and on the right a large capitalization : Coca Cola.
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Figure 2: Auto-correlation function of the daily realized volatility of two assets from 01/01/1994 to 12/31/2003. On the left a middle
capitalization : The Washington Post, and on the right a large capitalization : Coca Cola.
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Figure 3: Density oflog(σ̂t) and their approached normal law for different assets. On theleft a middle capitalization : Microchip Technology
inc., and on the right a large capitalization : Procter & Gamble co.
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Figure 4: The left panel and the right panel represent respectively the auto-correlation function over 200 days and the density of the
heterogeneity coefficientα for different values ofα ranging in[−0.45,−0.05] andβ = 1.5. The law ofϕ is a Beta(−α,1+α) and its density
equal tof(ϕ) = 1

B(−α,1+α)
ϕ−α−1(1− ϕ)α explains the divergence near 0 and 1.
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Figure 5: Auto-correlation function over 200 days forα = −.25 and different values ofβ.
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Figure 6: Auto-correlation function over 500 days forp = 5, q = 0.75, α = 0.8 and different
values ofϕ̄′ ranging in[0.60, 0.79].
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Figure 7: The left panel and the right panel represent respectively the auto-correlation function over 200 days and the density of the
heterogeneous coefficient forq = 0.75, α = 0.3 and different values ofp ranging in[1.05, 8]. The law ofϕ is a Beta(p,q) extended over
[−1, 1] and its density equal tof(ϕ) = 1

2p+q−1B(p,q)
(1 + ϕ)p−1(1− ϕ)q−1 explains the divergence near 0 and 1.
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Figure 8: The left panel and the right panel represent respectively the auto-correlation function over 200 days and the density of the
heterogeneous coefficient forp = 5, α = 0.3 and different values ofq ranging in[0.55, 0.85]. The law ofϕ is a Beta(p,q) extended over
[−1, 1] and its density equal tof(ϕ) = 1

2p+q−1B(p,q)
(1 + ϕ)p−1(1− ϕ)q−1 explains the divergence near 0 and 1.
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Figure 9: The left panel and the right panel represent respectively the auto-correlation function over 200 days and the density of the
heterogeneous coefficient forp = 5, q = 0.75 and different values ofα ranging in[0.1, 0.9]. The law ofϕ is a Beta(p,q) extended over
[−1, 1] and its density equal tof(ϕ) = 1

2p+q−1B(p,q)
(1 + ϕ)p−1(1− ϕ)q−1 explains the divergence near 0 and 1.
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Figure 10: The left panel and the right panel represent respectively the auto-correlation function over 200 days and thedensity of the
heterogeneous coefficient forp = 5, q = 0.75, α = 0.3, m = 0, σ = 0.2 and different values ofw ranging in[1/4, 3/4]. The density of the

law ofϕ is equal tof(ϕ) = w 1
2p+q−1B(p,q)

(1 +ϕ)p−1(1−ϕ)q−1 + (1−w) 1
K
(1 +ϕ)(1− ϕ) exp

(

−1
2
(ϕ−m)2

σ2

)

explains the divergence near 0

and 1.
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Figure 11: The left panel and the right panel represent respectively the auto-correlation function over 200 days and thedensity of the
heterogeneous coefficient forp = 5, q = 0.75, α = 0.3, m = 0, w = 1/2 and different values ofσ ranging in[0.1, 0.3]. The density of the

law ofϕ is equal tof(ϕ) = w 1
2p+q−1B(p,q)

(1 +ϕ)p−1(1−ϕ)q−1 + (1−w) 1
K
(1 +ϕ)(1− ϕ) exp

(

−1
2
(ϕ−m)2

σ2

)

explains the divergence near 0

and 1.
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Figure 12: The left panel and the right panel represent respectively the auto-correlation function over 200 days and thedensity of the
heterogeneous coefficient forp = 5, q = 0.75, α = 0.3, σ = 0.2, w = 1/3 and different values ofm ranging in[−0.8, 0.8]. The density of

the law ofϕ is equal tof(ϕ) = w 1
2p+q−1B(p,q)

(1 + ϕ)p−1(1 − ϕ)q−1 + (1 − w) 1
K
(1 + ϕ)(1 − ϕ) exp

(

−1
2
(ϕ−m)2

σ2

)

explains the divergence

near 0 and 1.
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Figure 13: Estimation of the density with its 95 % confidence interval (on the left panel) and the auto-correlation function of the daily
realized volatility from lag 0 to lag 120 (on the right panel)for FNF.
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Figure 14: Estimation of the density with its 95 % confidence interval (on the left panel) and the auto-correlation function of the daily
realized volatility from lag 0 to lag 120 (on the right panel)for Microsoft.
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Figure 15: On the left panel is presented the evolution of theprice of Cisco Systems over the period considered in order tostudy the bubble
burst effect. On the right panel, the auto-correlation functions of the daily realized volatility over different periods are drawn.
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Figure 16: Density of the heterogeneity coefficient (on the left) and auto-correlation function of the daily realized log-volatility of Cisco
Systems (on the right) over the pre-bubble burst period.
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Figure 17: Density of the heterogeneity coefficient (on the left) and auto-correlation function of the daily realized log-volatility of Cisco
Systems (on the right) over the post-bubble burst period.
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Figure 18: Pre bubble burst density compared to post bubble burst density of Cisco Systems.
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Figure 19: On the left panel is presented the evolution of theprice of Coca Cola over the period considered in order to study the bubble burst
effect. On the right panel, the auto-correlation functionsof the daily realized volatility over different periods aredrawn.
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Figure 20: Density of the heterogeneity coefficient (on the left) and auto-correlation function of the daily realized log-volatility of Coca
Cola (on the right) over the pre-bubble burst period.

6
1



−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

φ

D
en

si
ty

 f(
φ)

 

 
Density
95% confidence interval

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag h

A
ut

o−
co

rr
el

at
io

n 
ρ(

h)

 

 
Sample ACF
Estimated ACF

Figure 21: Density of the heterogeneity coefficient (on the left) and auto-correlation function of the dailty realized log-volatility of Coca
Cola (on the right) over the post-bubble burst period.
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Figure 22: Pre bubble burst density compared to post bubble burst density of Coca Cola.
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Figure 23: Comparison of the goodness of the two Nelder Mead minimization algorithms. The estimated density is always obtained for
q = 5. On the left panel, the reference density is calculated withq = 5 and on the right one withq = 10.
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