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A B S T R A C T

Hepatocyte growth factor (HGF)/c-Met pathway is implicated in embryogenesis and organ development and
differentiation. Germline or somatic mutations, chromosomal rearrangements, gene amplification, and tran-
scriptional upregulation in MET or alterations in autocrine or paracrine c-Met signalling have been associated
with cancer cell proliferation and survival, including in renal cell carcinoma (RCC), and associated with disease
progression. HGF/c-Met pathway has been shown to be particularly relevant in tumors with bone metastases
(BMs). However, the efficacy of targeting c-Met in bone metastatic disease, including in RCC, has not been
proven. Therefore, further investigation is required focusing the particular role of HGF/c-Met pathway in bone
microenvironment (BME) and how to effectively target this pathway in the context of bone metastatic disease.

1. Introduction

Bone metastases (BMs) are an important clinical issue in several
tumor types, particularly prostate, breast, lung, and kidney, and are
associated with severe comorbidities related with skeletal-related
events (SREs), including severe bone pain, spinal cord compression,
pathological fracture, and hypercalcemia [1]. Although subject of in-
tensive research, several questions remain unanswered due to the
complexity of bone microenvironment (BME), key for cancer cell sur-
vival [1,2].

Bone is one of the most common metastatic sites in renal cell car-
cinoma (RCC), together with lung, liver, lymph nodes, and brain [3]. In
RCC, 20–35% of patients with advanced disease develop BMs, mostly
osteolytic lesions [3,4], a negative prognostic factor associated with a
10.2-month OS decrease and severe morbidity [5].

Time from nephrectomy to BMs development is an important

prognostic factor [6]. Patients with BMs should be identified as early as
possible and treated accordingly. A comprehensive survey in 398 RCC
patients with BMs risk-stratified patients according to the Memorial
Sloan-Kettering Cancer Center (MSKCC) score [7] and reported a
median time to BMs diagnosis of 24 months for good-risk patients, five
months for intermediate-risk patients, and zero months for poor-risk
patients [8]. In addition, 71% of patients experienced at least one SRE.

It should be acknowledged that not all RCC patients with BMs have
poor survival. Some patients with oligometastatic disease can be long
survivors, especially if submitted to surgical treatment [9–13]. Several
studies have shown that radical resection of oligometastatic disease is
an important prognostic factor, suggesting that bone surgery should be
considered to achieve local tumor control and increase OS in this subset
of patients [9–13].

Bone targeting agents (BTAs), including bisphosphonates (BPs) and
denosumab, widely used as standard of care in bone metastatic disease
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[14], can also have a role in RCC in this setting. Although effective in
preventing or delaying SREs, they have failed to improve overall sur-
vival (OS) [15]. Like for other tumor types, pre-clinical data suggest
that BPs can induce apoptosis of RCC cell lines in vitro [16]. In the
clinical setting, two studies have shown an improvement in progres-
sion-free survival (PFS) and OS in RCC patients with BMs treated with
zoledronic acid in combination with targeted therapy [17,18]. How-
ever, a large pooled analysis of clinical trials including 2749 RCC pa-
tients with BMs showed no PFS (5.1 versus 4.9 months; p = 0.1785) or
OS (13.3 versus 13.1 months; p = 0.3801) improvement for patients
who received BPs versus those who did not [19].

Denosumab, a monoclonal antibody against receptor activator of
nuclear factor-κB ligand (RANKL), is also a standard-of-care BTA, pre-
venting osteoclast differentiation and survival [20]. A combined ana-
lysis of three randomized phase III trials evaluating the efficacy and
safety of denosumab versus zoledronic acid in patients with BMs in-
cluding 155 patients with RCC, showed denosumab superiority in de-
laying time to first SRE by a median of 8.21 months and reducing the
risk of first SRE by 17% (HR 0.83; p < 0.001) [21], but no specific
subgroup analyses was reported for patients with RCC [22].

c-Met is abnormally expressed in different tumors and has a pro-
minent role in urogenital cancer [23]. Overexpression of c-Met and its
hepatocyte growth factor (HGF) ligand, together with excessive HGF/c-
Met signalling pathway activation has been reported in both clear-cell
and papillary RCC (pRCC) [23–25]. HGF/c-Met pathway is also im-
portant in bone physiology and has been implicated in development of
BMs, particularly in prostate cancer [26]. Additionally, c-Met has been
shown to be overexpressed in RCC with BMs [27]. Overall, this provides
the scientific rationale for c-Met inhibition as a potential therapeutic
strategy in RCC, including in bone metastatic disease.

The tyrosine kinase inhibitor (TKI) cabozantinib – a multi-kinase c-
Met, vascular endothelial growth factor 2 (VEGFR2), and AXL receptor
tyrosine kinase (AXL) inhibitor – has shown activity in prostate cancer
cells in vitro and in RCC models in vivo [28,29]. Cabozantinib has been
shown to inhibit osteoclastogenesis by eliciting BME changes, sup-
porting the role of HGF/c-Met pathway in BMs development and pro-
gression [28]. In the clinical setting, it has also been shown to be
beneficial in RCC patients with BMs [29–31].

This review summarizes the relevance of c-Met expression in the
development of BMs in cancer, highlighting its role in RCC.

2. HGF/c-Met pathway in cancer

MET is a proto-oncogene encoding for c-Met, a membrane-spanning
receptor tyrosine kinase (RTK) [32]. HGF, c-Met activating ligand, is
secreted by mesenchymal stromal cells, such as fibroblasts. HGF
binding to c-Met induces receptor dimerization and trans-phosphor-
ylation of two catalytic tyrosine residues, Tyr1234 and Tyr1235
[33,34]. Phosphorylation events induce downstream signal transduc-
tion via mitogen-activated protein kinase (MAPK) cascade, phosphoi-
nositide 3-kinase (PI3K)-protein kinase B (AKT) axis, signal transducer
and activator of transcription proteins (STATs), and nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) [34]. c-Met ac-
tivation leads to cell proliferation, survival, and migration, thus re-
presenting an important mechanism in cancer development [34].

Accordingly, c-Met aberrant expression is observed in several tumor
types, being implicated in tumor progression, metastases development,
and resistance to anti-epidermal growth factor receptor (EGFR), RAS-
RAF-MEK, mammalian target of rapamycin (mTOR), and vascular en-
dothelial growth factor receptor (VEGFR) therapies [35].

Different molecular alterations account for c-Met pathological ac-
tivation. TRP-MET chromosomal translocation has been identified in
gastric carcinoma [34]. Hereditary pRCC is characterized by trisomy of
chromosome 7, together with missense mutations in MET tyrosine ki-
nase domain coding region, with similar mutations found in sporadic
pRCC [36]. MET amplification, leading to c-Met overexpression and

constitutive activation, has been reported in non-small cell lung carci-
noma (NSCLC), endometrial, gastro-esophageal and colorectal cancers,
glioblastoma, and medulloblastoma [37]. However, c-Met constitutive
activation driven by gene amplification is relatively rare, being more
often attributed to MET overexpression induced by hypoxia and in-
flammatory cytokines or pro-angiogenic factors, such as interleukin
(IL)-1α, IL-6 and tumor necrosis factor (TNF)-α, highly expressed in
tumor microenvironment [37,38]. Finally, oncogene mutations, such as
activated Ras, or oncosuppressors may also drive MET overexpression
[39–41].

Several c-Met targeting therapies, including monoclonal antibodies
(mAb) and TKIs, are currently in clinical development for use as single
agents or in combination (Fig. 1). However, only cabozantinib and
crizotinib have received approval for cancer treatment by the US Food
and Drug Administration (FDA) and by the European Medicines Agency
(EMA). Phase III trials targeting HGF/c-Met pathway are summarized in
Table 1.

Multimodal treatment is also being investigated, through the com-
bination of c-Met inhibitors with radiotherapy. Pre-clinical studies
showed that c-Met is upregulated in irradiated cells, inducing treatment
resistance [42–44], suggesting that c-Met inhibition could be useful in
overcoming radiation resistance. Accordingly, c-Met inhibitors

Fig. 1. Therapeutic targeting of HGF/c-Met pathway. c-Met pathway in-
hibition can be achieved using c-Met tyrosine kinase inhibitors, like cabo-
zantinib, tivantinib, and TAS-115 (black boxes), through inhibition of several
signalling pathways responsible for promoting proliferation, migration, inva-
sion, and metastases formation. AKT serine/threonine-protein kinase, AXL AXL
receptor tyrosine kinase, BAD BCL2 associated agonist of cell death, ERK ex-
tracellular signal-regulated kinase, MEK mitogen-activated protein kinase ki-
nase , mTOR mammalian target of rapamycin, NF-κB nuclear factor kappa B,
p38 p38 mitogen-activated protein kinase, PI3K phosphoinositide 3-kinase, RAS
rat sarcoma virus homolog, RAF RAF serine/threonine-protein kinase, SRC
proto-oncogene tyrosine-protein kinase, STAT signal transducer and activator
of transcription, VEGF vascular endothelial growth factor, VEGFR vascular
endothelial growth factor receptor.
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enhanced radiosensitivity in different pre-clinical models [45–48].
HGF/c-Met pathway in RCCc-Met is expressed in tubular epithelial

cells in the healthy adult kidney, where it stimulates cell growth [49]. c-
Met is also important for branching tubulogenesis induction during
tubule repair, following ischemic and chemical injuries or contralateral
nephrectomy [49]. In contrast with the normal kidney, c-Met upregu-
lation is usually observed in RCC, where it has been correlated with
therapy resistance and disease progression, as recently reviewed by
Marona P et al. [35].

The most common RCC subtype, clear-cell RCC (ccRCC), is ex-
tremely vascularized due to frequent loss-of-function mutations in the
von Hippel-Lindau tumor suppressor gene (VHL), responsible for reg-
ulating HIF-1 (hypoxia-inducible factors) stability [24]. Loss of VHL
activity results in HIF accumulation, leading to excessive VEGF or
platelet-derived growth factor (PDGF) secretion and resulting in in-
creased ability of tumor cells to metastasize [50,51]. HGF may also
regulate VEGF expression and promote angiogenesis via c-Met activa-
tion [52]. Furthermore, it has been shown that VHL mutations together
with a hypoxic environment lead to increased HGF and c-Met expres-
sion in ccRCC [53–55].

Given the relevance of angiogenesis and the VEGFR pathway in
RCC, some anti-angiogenic molecules became standard-of-care in RCC
treatment, such as sunitinib, pazopanib, and bevacizumab [56].

However, therapy resistance often occurs. It has been proposed that
acquired resistance to anti-angiogenic therapies may occur as the result
of epithelial-to-mesenchymal transition (EMT) and compensation of
blocked receptors, as well as activation of alternative proteins or sig-
nalling pathways – such as HGF/c-Met pathway −, capable of driving
tumor angiogenesis or growth independently of VEGFRs [57,58]. A
study using xenograft mouse models showed that inhibition of AXL and
MET activity may overcome induced resistance to sunitinib in meta-
static RCC [59]. Based on this data, it has been proposed that a com-
bination strategy targeting VEGF and HGF/c-Met could have significant
survival impact and anti-tumor efficacy [60]. However, clinical studies
are still required to corroborate this hypothesis.

A second hypothesis is that lack of endothelial cell influx caused by
VEGF lack or blockade may cause vasculogenic mimicry within tumors,
where blood vessel-like structures are formed by cancer cells [34].

Several studies have shown an association between c-Met expres-
sion and poor survival in RCC. A meta-analysis of 12 studies including
1724 patients with RCC showed that high c-Met expression was asso-
ciated with high nuclear grade (2–4; odds ratio [OR] 2.45; 95% CI
1.43–4.19; p = 0.001) and high pT stage (pT3 and pT4; OR 2.18; 95%
CI 1.27–3.72; p = 0.005) [61]. In addition, patients with c-Met-high
RCC had decreased OS compared with patients with c-Met-low tumors
(HR 1.32; 95% CI 1.12–1.56, p = 0.0009).

Table 1
c-MET inhibitors in phase III trials of advanced-stage solid tumors.

Drug Characteristics Phase III trial Cancer type

Rilotumumab HGF neutralizing mAb NCT01697072-RILOMET 1
NCT02137343-RILOMET-2
NCT02926638-LungMAP

Gastric and GEJ cancer
Gastric and GEJ cancer
SCLC

Onartuzumab Fully humanized mAb binding to extracellular c-Met domain NCT02031744
NCT01887886
NCT01662869
NCT01456325-MetLung
NCT02488330

NSCLC
NSCLC
GEJ cancer
NSCLC
Solid tumors

Crizotinib Oral multi-target c-MET, ALK and ROS1 TKI NCT01154140-PROFILE 1014
NCT03126916
NCT03194893
NCT02201992
NCT04009317
NCT02075840-ALEX
NCT02838420
NCT03052608
NCT02767804-eXalt-3
NCT02737501-ALTA-1L

NSCLC
Neuroblastoma
ALK+ and RET+ cancer
NSCLC
NSCLC
NSCLC
NSCLC
NSCLC
NSCLC
NSCLC

Cabozantinib Oral multi-target c-MET, VEGFR-1, -2, and -3, RET, AXL, KIT, TRKB, FLT-3, and TIE-2 TKI NCT00704730-EXAM
NCT03141177-CheckMate 9ER
NCT03729245
NCT03793166-PDIGREE trial
NCT01522443-COMET-2 trial
NCT03375320
NCT03937219-COSMIC 313
NCT03755791-COSMIC 312
NCT01865747-METEOR
NCT01605227-COMET-1
NCT01908426-CELESTIAL
NCT03690388

Medullary thyroid cancer
RCC
RCC
RCC
CRPC
Neuroendocrine tumors
RCC
HCC
RCC
CRPC
HCC
Thyroid cancer

Capmatinib Potent oral, ATP-competitive, class I c-MET TKI NCT03784014-MULTISARC Soft tissue sarcoma

Savolitinib Potent and selective oral c-MET TKI NCT03091192-SAVOIR Prcc

Tivantinib Oral class III c-MET allosteric TKI NCT02029157-JET-HCC
NCT01377376-ATTENTION
NCT01244191
NCT01755767-METIV-HCC

HCC
NSCLC
NSCLC
HCC

ALK, anaplastic lymphoma kinase gene; ATP adenosine triphosphate; AXL tyrosine-protein kinase AXL; CRPC, castration-resistant prostate cancer; FLT-3, FMS-like
tyrosine kinase 3; GEJ, gastroesophageal junction; HCC, hepatocellular carcinoma; HGF hepatocyte growth factor; KIT tyrosine-protein kinase KIT; mAb, monoclonal
antibody; MET, MET proto-oncogene, receptor tyrosine kinase; NSCLC, non-small cell lung cancer; pRCC, papillary renal cell carcinoma; RCC, renal cell carcinoma;
RET, rearranged-during-transfection proto-oncogene; ROS proto-oncogene tyrosine-protein kinase ROS; SCLC Squamous Cell Lung Cancer; TIE-2, Tyrosine-Protein
Kinase Receptor TIE-2; TKI, tyrosine kinase inhibitor; TRKB Tropomyosin receptor kinase B; VEGFR vascular endothelial growth factor receptor.

R. Silva Paiva, et al. Journal of Bone Oncology 25 (2020) 100315

3



Ta
bl
e
2

Cl
in
ic
al
tr
ia
ls
of

c-
M
et

in
hi
bi
to
rs
in

bo
ne

m
et
as
ta
tic

di
se
as
e.

St
ud
y

Ph
as
e

Te
st
ed

dr
ug
s

El
ig
ib
ili
ty

Re
su
lts

CO
M
ET

-1
N
CT

01
60
52
27

[7
2]

III
Ca
bo
za
nt
in
ib

vs
pr
ed
ni
so
lo
ne

m
CR

PC
af
te
r
do
ce
ta
xe
la
nd

en
za
lu
ta
m
id
e/
ab
ir
at
er
on
e

M
ed
ia
n
O
S:
11

vs
9.
8
m
on
th
s

(H
R
0.
90
;9

5%
CI

0.
76
–1
.0
6;

p
=

0.
21
3)

M
ed
ia
n
PF
S:
5.
6
v
2.
8
m
on
th
s
(H
R
0.
48
;9

5%
CI

0.
40
–0
.5
7;

st
ra
tifi

ed
lo
g-
ra
nk

p
<

0.
00
1)

Ca
bo
za
nt
in
ib
w
as

as
so
ci
at
ed

w
ith

CT
C
co
nv
er
si
on
,b
on
e
bi
om

ar
ke
r
no
rm

al
iz
at
io
n,

an
d
po
st
-r
an
do
m

as
si
gn
m
en
t
in
ci
de
nc
e
of

SS
Es
,b

ut
no
t
w
ith

PS
A
ou
tc
om

es
.

CO
M
ET

-2
tr
ia
lN

CT
01
52
24
43

[7
3]

III
Ca
bo
za
nt
in
ib

vs
m
ito

xa
nt
ro
ne

+
pr
ed
ni
so
lo
ne

Pr
ev
io
us
ly

tr
ea
te
d
sy
m
pt
om

at
ic
m
CR

PC
Pa
in

pa
lli
at
io
n
at
w
ee
k
6,
co
nfi

rm
ed

at
w
ee
k
12

(≥
30
%
de
cr
ea
se

fr
om

ba
se
lin

e
in

pa
tie
nt
-r
ep
or
te
d
av
er
ag
e
da
ily

w
or
st
pa
in

sc
or
e
vi
a
Br
ie
fP

ai
n
In
ve
nt
or
y
w
ith

ou
t

in
cr
ea
se
d
na
rc
ot
ic
us
e)
:1

5%
vs

17
%
,p

=
0.
8

M
ET

EO
R
tr
ia
lN

CT
01
86
57
47

[2
9,
30
]

III
Ca
bo
za
nt
in
ib

vs
ev
er
ol
im
us

cc
RC

C
af
te
r
pr
og
re
ss
io
n
un
de
r
an
ti-
VE

G
FR

th
er
ap
y

M
ed
ia
n
PF
S:
7.
4
vs

3.
9
m
on
th
s
(H
R
0.
51
,9

5%
CI

0.
41
–0
.6
2,

p
<

0.
00
01
)

M
ed
ia
n
O
S:
21
.4

vs
16
.5

m
on
th
s
(H
R
0.
66
,9

5%
CI

0.
53
–0
.8
3,

p
=

0.
00
02
6)

Su
b-
an
al
ys
is
of

pa
tie
nt
s
w
ith

BM
s:

M
ed
ia
n
PF
S:
7.
4
vs

2.
7
m
on
th
s
(H
R
0.
33
,9

5%
CI

0.
21
–0
.5
1)

M
ed
ia
n
O
S
20
.1

vs
12
.1

m
on
th
s
(H
R
0.
54
,9

5%
CI

0.
34
–0
.8
4)

SR
Es
:2

3%
vs

29
%

Bo
ne

sc
an

re
sp
on
se

pe
r
IR
C:

20
%

vs
10
%

PF
S,
O
S,
an
d
O
RR

w
er
e
al
so

im
pr
ov
ed

w
ith

ca
bo
za
nt
in
ib
in

pa
tie
nt
s
w
ith

ou
tB

M
s.

In
cr
ea
se
d
no
rm

al
iz
at
io
n
of

bo
ne

re
so
rp
tio

n
bi
om

ar
ke
rs
in

th
e
ca
bo
za
nt
in
ib

ar
m
.

Ja
pi
cC
TI
-1
32
33
3
[7
5]

I
TA

S-
11
5

So
lid

tu
m
or
s
re
fr
ac
to
ry

to
st
an
da
rd

tr
ea
tm

en
t,
w
ith

no
av
ai
la
bl
e
tr
ea
tm

en
t
op
tio

ns
Bo
ne

sc
an

in
de
x
(B
SI
)
re
sp
on
se

ra
te

in
pa
tie
nt
s
w
ith

bo
ne

le
si
on
s:
56
.0
%

N
CT

01
57
55
22

[7
7]

II
Ti
va
nt
in
ib

m
on
ot
he
ra
py

M
et
as
ta
tic

tr
ip
le
ne
ga
tiv

e
br
ea
st
ca
nc
er

w
ho

ha
ve

re
ce
iv
ed

pr
io
r1

to
3
lin

es
of
ch
em

ot
he
ra
py

in
th
e
m
et
as
ta
tic

se
tt
in
g

O
RR

:5
%

(9
5%

CI
0–
25
%
)

6-
m
on
th

PF
S:
5%

(9
5%

CI
0–
25
%
)

BM
sb

on
e
m
et
as
ta
se
s;
CI

co
nfi

de
nc
e
in
te
rv
al
;C

RP
C
ca
st
ra
tio

n
re
si
st
an
tp

ro
st
at
e
ca
nc
er
;C

TC
ci
rc
ul
at
in
g
tu
m
or

ce
lls
;H

R
ha
za
rd

ra
tio

;I
RC

in
de
pe
nd
en
tr
ev
ie
w
co
m
m
itt
ee
s;
O
RR

ov
er
al
lr
es
po
ns
e
ra
te
;O

S
ov
er
al
ls
ur
vi
va
l;

PF
S
pr
og
re
ss
io
n
fr
ee

su
rv
iv
al
;R

CC
re
na
lc
el
lc
ar
ci
no
m
a;
SS
E
sy
m
pt
om

at
ic
sk
el
et
al
ev
en
ts

R. Silva Paiva, et al. Journal of Bone Oncology 25 (2020) 100315

4



These evidences support that c-Met can be an important target in
RCC. The randomized phase III METEOR trial compared the efficacy
and safety of the dual c-Met/VEGFR2 inhibitor cabozantinib with the
mTOR inhibitor everolimus in patients with advanced RCC who pro-
gressed after previous anti-VEGFR therapy [29]. Compared with ever-
olimus, cabozantinib significantly prolonged OS (median 21.4 vs.
16.5 months, HR 0.66; 95% CI 0.53–0.83; p = 0.00026) and PFS
(median 7.4 vs. 3.9 months, HR 0.51; 95% CI 0.41–0.62; p < 0.0001).
Based on these results, the FDA approved cabozantinib for treatment of
advanced RCC patients who received prior anti-angiogenic therapy. It
would be interesting to study if cabozantinib efficacy is HGF/c-Met
specific or also depends on VEGF pathway inhibition.

Recent results of the phase III SAVOIR trial, comparing the c-Met
inhibitor savolitinib with sunitinib in MET-driven pRCC, have shown an
improvement in PFS (median 7.0 vs. 5.6 months, HR 0.71; p = 0.31),
OS (median not reached vs 13.2 months, HR 0.51; p = 0.11], and ORR
(27% vs 7%), although not statistically significant [62].

3. HGF/c-Met pathway in BMs

Bone marrow-derived CXCL12 is a major chemoattractant of CXCR4
and CXCR7-expressing cancer cells [63]. Following bone marrow
homing, bone colonization and metastases onset rely on tumor inter-
action with BME, as recently reviewed by our group [2]. Tumor-bone
interaction activates osteoclastogenesis and bone resorption, increasing
release of tumor growth factors, such as bone morphogenetic proteins
(BMPs), transforming growth factor-β (TGF-β), insulin-like growth
factor (IGF), and fibroblast growth factor (FGF). Additionally, cancer
cells secrete prostaglandins, parathyroid hormone (PTH), parathyroid
hormone-related peptide (PTHrP), activated vitamin D, IL-6, and TNF.
These increase RANKL expression on osteoblasts and bone marrow
stromal cells, further stimulating osteoclast proliferation, survival, and
activity, eliciting osteolytic metastases [2,64]. BME immune compart-
ment also regulates this process (specifically through T-cells), by
blocking osteoclast activity and decreasing skeletal lesions and overall
tumor burden [65]. Other cytokines, as IL-1, IL-6, and TGF-β, partici-
pate in this cycle by promoting the opposite effect: stimulating osteo-
clast growth and activation [64,66].

The relevance and expression of c-Met in bone was first described in
a study showing that c-Met was expressed and activated by HGF in both
osteoclasts and osteoblasts [67]. In osteoclasts, c-Met activation is fol-
lowed by an increase in intracellular Ca2+ concentration and pp60c-Src
kinase activation, eliciting alterations in osteoclast conformation, mi-
gration, and DNA replication. Osteoblasts respond to HGF by entering
the cell cycle, as indicated by DNA synthesis stimulation [67].

Initial findings regarding c-Met role in the development of BMs in
cancer came from studies on prostate cancer reporting c-Met over-
expression in metastatic lesions, as well as an inverse correlation be-
tween c-Met expression and androgen receptor expression [26]. It was
thus hypothesised that increased c-Met expression was related to dis-
ease progression and resistance to androgen deprivation therapy.

Subsequently, other studies, mainly in prostate cancer-induced BMs,
demonstrated the role of the HGF/c-Met pathway in bone environment.
In one study, cabozantinib showed a dose-dependent biphasic effect on
osteoblast activity and an inhibitory effect on osteoclastogenesis in
vitro, which reflected in prevention of prostate cancer-induced bone
lesions in vivo [24]. This was due to c-Met blockade and VEGFR2
phosphorylation in prostate cancer cells and osteoblasts, respectively.
Another study showed that cabozantinib inhibited subcutaneous pros-
tate cancer cell growth in bone in a mouse xenograft model and tumor
growth in a BMs mouse model [68]. The latter resulted in reduced bone
response to tumor and increased bone volume. Cabozantinib has also
been shown to have significant effects on BME, by reducing osteoclast
and increasing osteoblast numbers compared to controls and eliciting
changes in trabecular bone structure [69]. Finally, cabozantinib has
been shown to reduce RANKL and macrophage colony-stimulating

factor (M-CSF) expression, with subsequent suppression of osteolysis
and tumor growth [70].

These results supported clinical trials of cabozantinib in the treat-
ment of patients with BMs.

Several HGF/c-Met inhibitors have been studied in clinical trials of
c-Met inhibition in patients with BMs (Table 2).

In a phase II non-randomized expansion cohort study of metastatic
castration-resistant prostate cancer (mCRPC), cabozantinib evidenced
clinically meaningful pain palliation, reduced or eliminated patient
narcotic use, and improved patient functioning [71].

Despite promising preliminary results, cabozantinib did not meet its
pre-specified primary endpoint in phase III trials in mCRPC. In the
phase III COMET-1 trial, cabozantinib displayed good bone scan re-
sponse (42% vs. 3%, p < 0.001) and improved bone biomarkers,
radiographic PFS, and circulating tumor cell (CTC) conversion, but
failed to demonstrate an OS benefit [72]. In the COMET-2 trial, cabo-
zantinib failed to improve pain palliation in patients with symptomatic
BMs [73].

The c-Met/VEGF TKI TAS 115 showed activity in bone by supressing
osteoclastogenesis and bone resorption in mouse xenograft models
[70,74]. Results from a phase I trial showed a bone scan index decrease
in 56% of patients, representing a decrease in the quantitative value of
primary lesions or BMs [75].

In metastatic breast cancer, the c-Met inhibitor tivantinib sup-
pressed BMs in an in vivo mouse model [76], but showed no PFS benefit
in a phase II study [77].

The most common grade 3 or 4 adverse events reported with c-Met
inhibitors are common to other TKIs and included diarrhea, fatigue,
anemia, neutropenia, palmar-plantar erythrodysesthesia syndrome, and
hypomagnesemia [29,72,73,76,77]. Multi-target agents, as cabo-
zantinib, also targeting VEGFR, showed a high incidence of hyperten-
sion [29,72,73].

Overall, further research is required to sustain HGF/c-Met pathway
targeting in bone metastatic disease and its association with metastatic
pattern of bone lesions. Patients with bone-only metastases are often
excluded from clinical trials, as it is very difficult to measure bone re-
sponse and address bone lesions as the main target lesions in trials.
RECIST 1.1 criteria consider BMs with soft tissue masses> 10 mm as
measurable disease, which excludes most BMs [78]. In this setting, it
would be useful to address BMs changes using other criteria, as the
PERCIST criteria [79] or the MDA criteria [80].

Overall, despite evidence that HGF/c-Met pathway plays an im-
portant role in BME and BMs, further studies are required to fully un-
derstand its regulation, function, and role as therapeutic target.

4. HGF/c-Met pathway in RCC BMs

Various mechanisms and biomarkers have been studied in the
context of BMs development in RCC, such as TGF-β, TGF-α/EFGR
pathway, insulin mRNA binding protein-3 (IGF2BP3), cadherin-11,
PTHrP, calcium/calcium-sensing receptor (CaSR), AKT/Integrin-α5
signalling, microRNAs, and HGF/c-Met [27,64,81–89]. However, it
remains unclear why the incidence of BMs in RCC is so high.

As previously mentioned, c-Met/HGF pathway is implicated in RCC
progression, and high c-Met expression in bone metastatic lesions is
associated with poor prognosis, as reported in a retrospective analysis
of nephrectomy and metastatic lesion specimens showing high c-Met
expression in 86% of BMs [27]. It was therefore hypothesized that
HGF/c-Met pathway could have a role in the development of BMs in
RCC (Fig. 2). c-Met is very important in sustaining a mesenchymal,
undifferentiated phenotype, and therefore key for the functional cancer
stem cell (CSC) phenotype in some tumors [24,90]. CSCs have been
shown to promote BMs formation in breast and lung cancer, suggesting
that targeting these cells may prevent or block the metastatic process in
bone [91,92]. More recently, it has been shown that the c-Met inhibitor
JNJ-38877605 inhibited osteoclast activation and reduced osteotropic
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cytokines IL-11 and CCL20 in a preclinical NOD/SCID mouse model,
blocking BMs formation from c-Met-expressing RCC CSCs [93]. It was
further shown that c-Met expression was increased in RCC patients with
BMs and that systemic IL-11 and CCL20 were increased in these pa-
tients. Overall, these results suggest a relevant role for c-Met in RCC
CSCs-induced BMs, but further studies are required to better understand
the underlying mechanism.

Association of c-Met inhibition with survival and disease progres-
sion benefit in RCC patients with BMs has also been shown [30].

In a sub-analysis of the METEOR trial, comparing cabozantinib with
everolimus after previous VEGFR therapy, a significant PFS (7.4 vs
2.7 months; HR 0.33; 95% CI 0.21–0.51) and OS (20.1 vs 12.1 months;
HR 0.54; 95% CI 0.34–0.84) benefit was reported in the cabozantinib
arm in patients with BMs (Table 2) [30]. In addition, also patients with
both visceral and BMs benefited from the TKI compared with patients
with bone-only metastases. Bone scan response (30% decrease in bone
lesions) was observed in 20% of patients treated with cabozantinib
compared with 10% of those treated with everolimus, and SRE in-
cidence was 6% lower with cabozantinib. Additionally, a decrease in
P1NP bone formation and CTx bone resorption biomarkers was ob-
served in the cabozantinib arm. However, changes in bone biomarkers
were observed in patients both with and without BMs and associated
with cabozantinib pharmacodynamics [30]. These results suggest that
c-Met inhibition has a beneficial effect in BME [30], with further studies
currently ongoing to better understand the mechanism underlying c-

Met interaction with BME in RCC and how to better target it.
Following these results, the phase II RadiCaL clinical trial in RCC

patients with BMs was designed to evaluate the efficacy of the combi-
nation of cabozantinib with radium-223, an alpha-emitting radio-
isotope and calcium mimetic that was shown to decrease SREs in pa-
tients with mCRPC and to prolong survival in patients with bone-only
disease [94]. The combination of radium-223 with VEGF-targeting
therapy had already been studied in mRCC in a phase I trial showing
significant decline in bone turnover markers [95].

At present, there are no studies addressing the role of c-Met in-
hibitors in RCC, particularly in prevention of BMs, in the adjuvant
setting. Three large clinical trials investigated whether there was a
subset of patients that could benefit more from adjuvant treatment with
these agents, showing contradictory results with VEGFR TKIs [96–98].
None reported specific subgroup analyses for patients with BMs. These
trials used different prognostic models for patient stratification as in-
termediary/high-risk and none of them was prospectively validated
[99]. In the CABOSUN phase II trial, cabozantinib showed significant
PFS and ORR benefit compared with sunitinib in intermediate/poor-
risk metastatic patients [31]. In subgroup analyses according to pre-
sence of BMs, cabozantinib also showed significant PFS improvement
over sunitinib in patients with BMs (6.14 vs 3.38 months; HR 0.54; 95%
CI 0.31–0.95), appearing to be an interesting alternative to sunitinib. As
in pre-clinical studies cabozantinib showed an effect in BME regardless
of presence of tumor cells [70], it would be interesting to investigate in

Fig. 2. Role of c-Met in RCC BMs. Tumor-bone interaction favors osteoclastogenesis and bone resorption, increasing release of growth factors that support tumor
cell growth. c-Met is upregulated in tumor cells and in the bone microenvironment, being activated by hepatocyte growth factor (HGF) derived from stromal and
tumor cells. Upon binding, HGF induces c-Met autophosphorylation, initiating downstream signalling cascades that promote proliferation, migration, invasion, and
metastases formation. c-Met/HGF signalling on RCC stem cells (RCC CSCs) is important to sustain the undifferentiated phenotype of these cells and favours RCC cells
metastization. The osteotropic cytokines IL-11 and CCL20 induced by RCC CSCs are increased in RCC patients with BMs and may also have an important role in the
RCC metastatic process. AXL AXL receptor tyrosine kinase, BMPs bone morphogenetic proteins, IGF insulin-like growth factor, PTHrP parathyroid hormone-related
peptide, RCC renal cell carcinoma, CSCs cancer stem cells, IL-11 interleukin 11, CCL20 chemokine (c-c motif) ligand 20, TGF- β transforming growth factor-β, TNF
tumor necrosis factor, VEGFR vascular endothelial growth factor receptor.
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clinical studies in the adjuvant setting whether this translates in pre-
vention of BMs through changes in bone remodelling in high-risk pa-
tients, more likely to develop metastases.

5. Conclusions

c-Met may be an important therapeutic target in RCC, as HGF/c-Met
pathway is implicated in tumor cell survival and proliferation. Evidence
also shows that the HGF/c-Met pathway induced by RCC CSCs has an
important role in BME and may be implicated in BMs development;
however, more studies are necessary. Although c-Met inhibition was
shown to reduce skeletal lesions in the pre-clinical setting, clinical trials
were not always successful in meeting their pre-specified primary
endpoints. However, sub-analyses of phase III trials in RCC suggest an
additional benefit of HGF/c-Met pathway blockage in patients with
BMs, as well as a role in overcoming VEGFR TKI resistance. The impact
of targeting this important bone metastatic disease pathway in other
tumor types and how it changes their natural history is yet to be de-
termined. Further research is also required to better understand the role
of HGF/c-Met pathway in regulation of BMs microenvironment and
how to better target it, not only through development of new drugs, but
also by understanding drug resistance mechanisms and how to tackle
them.
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