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Resumo

O cancro do pulmao € dos cancros mais fatais a nivel mundial. As estimativas em 2018 para Portugal
indicam que 4671 individuos morreram de cancro do pulmio, o que corresponde a 16.1% do total de
mortes causadas por cancro. Estima-se que existam 5284 novos casos por ano, correspondendo a 9.1%
de todos os cancros. A taxa de incidéncia para homens € 38.8 por cada 100000 habitantes enquanto que
para mulheres € 12.6 por cada 100000 habitantes, o que corresponde a um aumento de 75%.

A elevada taxa de mortalidade neste tipo de cancro pode ser justificada pelo facto de se tratar de
uma doenca assintomadtica. Cancros em estadios avancados t€m um progndstico pouco favoravel quando
comparados com cancros detetados em estadios menos avancados, dai a importancia de um diagnéstico
precoce. O estadio determina a escolha de tratamento e representa a severidade do tumor, o que
influenciard o tempo de sobrevivénia. A classificacdo TNM € um sistema de estadios criado com base
em trés critérios de informagdo: o tamanho do tumor primdrio (T), extensdo para os ndédulos linfaticos
vizinhos (N) e extensdo para orgdos distantes (M). De acordo com os exames de diagndstico, a doenga
pode ser classificada como I, II, IITA, IIIB or IV, sendo um indicador da severidade da doenca.

A nova campanha , Treatment for All, da Unido para o Controlo Internacional do Cancro tem como
objetivo reduzir a morte prematura de cancro e promove 0 acesso equitativo para o tratamento e bem-estar.
As condicdes socioecondmicas sdo alguns dos fatores que podem comprometer o acesso aos cuidados de
saude. Portanto, o principal objetivo deste estudo foi perceber se os fatores socioecondémicos e 0 acesso
aos cuidados de sadde estdo associados com o estadio em que o cancro é diagnosticado.

A informacao foi recolhida pelo Registo Oncolégico Regional Sul (ROR-Sul), que inclui as regides
de Lisboa e Vale do Tejo, Alentejo, Algarve e Regido Auténoma da Madeira. O conjunto de dados tinha
incluido 2266 pacientes diagnosticados com cancro do pulmao em 2013 e 2014.

As varidveis incluidas foram o género, idade, concelho de residéncia, distrito de residéncia, morfolo-
gia, lateralidade, estadio ao diagndstico e estado vital. As varidveis socioeconémicas foram extraidas a
partir do INE e PORDATA. Através da revisdo de literatura, foram identificados alguns indicadores que
caraterizam as condicdes socioecondmicas, bem como as de acesso aos cuidados de saide.

Os dados foram modelados aplicando o modelo de regressdo ordinal e 0 modelo misto de regressdao
ordinal, usando o concelho de residéncia como um efeito aleatdrio, que corresponde a varidvel que liga
o conjunto de dados originais aos indicadores socioecondmicos e de acesso aos cuidados de satde. O
termo aleatdrio explicard as diferengas entre os concelhos e reduz a componente por explicar do modelo
sem um termo aleatdrio.

A correlagdo linear foi analisada para evitar a inclusdo de varidveis independentes fortemente correla-
cionadas. A varidvel escolhida entre o par fortemente correlacionado era a mais informativa, excluindo
aquela que, sendo menos informativa, estava associada a que foi incluida. A influéncia de cada uma das
variaveis foi analisado de acordo com o odds ratio (OR).

Considerando o sinal dos coeficientes de regressdo, os resultados do modelo miltiplo sem termo
aleatdrio indicaram que maior nimero de médicos por cada 1000 habitantes (OR 0.974, 95% CI: 0.942



- 1.008), idades avancadas (OR 0.996, 95% CI: 0.989 - 1.004) e maior nimero de beneficidrios por
cada 1000 habitantes (OR 0.998, 95% CI: 0.993 - 1.004) aparentam favorecer estadios mais baixos. Um
maior rendimento anual (OR 1.003, 95% CI: 0.949 - 1.060) e um maior nimero de atendimentos por
cada 1000 habitantes (OR 1.005, 95% CI: 0.995 - 1.016), aparentam contribuir para um diagnéstico
em estadios avancados. O impacto do género variou de acordo com a categoria da varidvel resposta.
Incluindo o termo aleatério, os resultados também indicaram que um elevado nimero de médicos por
cada 1000 habitantes (OR 0.971, 95% CI: 0.880 - 1.073), uma idade avangada (OR 0.996, 95% CI: 0.988
- 1.004) e um maior nimero de beneficidrios por cada 1000 habitantes (OR 0.998, 95% CI: 0.988 - 1.009)
aparentam favorecer estadios menos avangados. Um elevado rendimento anual (OR 1.008, 95% CI: 0.942
- 1.078) e um maior nimero de atendimentos por cada 1000 habitantes (OR 1.007, 95% CI: 0.988 - 1.026)
aparentam contribuir para um diagndstico em estadios avancados. Ao contrario do modelo sem termo
aleatdrio, o efeito do género ndo varia de acordo com a severidade da doenca. Com base no sinal do seu
coeficiente de regressao, a possibilidade de um homem ser diagnosticado num estadio avancado era menor
que uma mulher (OR 0.866 , 95% CI: 0.572 - 1.312). Apesar da variancia associada ao termo aleatério
(concelho de residéncia) tenha sido proxima de 1, a diferenca entre estas regides foram estatisticamente
significativas no que diz respeito a severidade do estadio ao diagndstico. A andlise geoespacial mostrou
que uma regido do Centro tinha menor possibilidade de diagndstico em estadios superiores. Na Regido
Auténoma da Madeira, a possibilidade de diagndstico em estadios superiores era maior.

Os resultados dos modelos mdltiplos ndo encontraram evidéncias de associagcdo entre as condi¢des
socioecondmicas e o acesso aos cuidados de saide e a severidade do cancro do pulmao. O trabalho futuro
deve passar pela recolha de mais informagdes individuais sobre o paciente, como estado civil, hdbitos
tabdgicos, aliment¢do, mas também condi¢cdes econémicas e de acesso aos cuidados de satde, como ter
médico de familia, proximidade de centros de sadde, facilidade para sair do trabalho, cobertura de seguro,
etc.

Palvras-chave: cancro do pulmao, dados ordinais, condi¢des socioeconémicas, modelo cumulativo,
modelo de odds proporcionais, modelo de odds proporcionais parciais, modelo misto cumulativo, efeitos
aleardrios
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Abstract

Lung cancer is the most lethal type of cancer worldwide. The estimates for Portugal in 2018 indicate
that 4671 individuals died of lung cancer, corresponding to 16.1% of total cancer deaths, with 5284 new
cases estimated per year, corresponding to 9.1% of all cancers. The incidence rate for males is 38.8 per
100000 inhabitants whereas for females is 12.6 per 100000 inhabitants, which corresponds to an 75%
increase.

The high mortality rate of this type of cancer can be attributed to the fact that it is an asymptomatic
disease, which delays diagnosis. Cancers in more advanced stages have reduced favourable prognosis
compared to cancers detected in earlier stages, hence the importance of early diagnosis. The stage
determines the choice of treatment and represents the severity of the tumour, which will influence
survival time. TNM classification is a staging system created based on three information criteria: the
size of the primary tumor (T), the spread to nearby lymph nodes (N) and the spread to distant organs
(M). According to the diagnostic exams, the disease can be classified as I, II, IIIA, IIIB or IV, being an
indicator of the severity of the disease.

The new campaign, Treatment for All, of the Union for International Cancer Control (UICC) aims to
reduce premature mortality from cancer and promote equitable access to treatment and care. Socioeco-
nomic conditions can compromise access to primary health care. Therefore, the main aim of this study
was to understand if socioeconomic factors and access to primary health care are associated with the
stage at which the cancer is diagnosed.

Data were collected from the Southern Portugal Cancer Registry (ROR-Sul), which includes the
regions of Lisbon and the Tagus Valley, Alentejo, Algarve and Autonomous Region of Madeira. The
dataset had included 2266 patients diagnosed with lung cancer in 2013 and 2014.

The variables included in the original dataset were gender, age, residence county, residence district,
morphology, laterality, stage at diagnosis and vital status. Socioeconomic variables were downloaded
from the INE and PORDATA. Through a literature review several indicators characterizing the socioe-
conomic conditions as well as the access to healthcare conditions were identified.

The data were modelled applying the ordinal regression model and the ordinal regression mixed
model using the residence county as a random effect, which corresponds to the variable that links the
original dataset to the socioeconomic and access healthcare indicators. The random term will explain
the differences between counties and reduce the unexplained component of the model without a random
term.

The linear correlation was analysed to avoid the inclusion of strongly correlated independent variables.
The variable chosen among the strongly correlated pair was the most informative, excluding the one that,
being less informative, was associated with the one that was included. The influence of each variable was
analysed according to the odds ratio (OR).

Considering the sign of the regression coefficients, the results of the multivariable model without
random term indicated that higher number of doctors per 1000 inhabitants (OR 0.974, 95% CI: 0.942 -
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1.008), higher age (OR 0.996, 95% CI: 0.989 - 1.004) and higher number of welfare recipients per 1000
inhabitants (OR 0.998, 95% CI: 0.993 - 1.004) appeared as favouring lower stages. A higher annual
income (OR 1.003, 95% CI: 0.949 - 1.060) and a higher number of attendances per 1000 inhabitants
(OR 1.005, 95% CI: 0.995 - 1.016), appeared as contributing to a diagnosis in higher stages. The impact
of gender varied according to the category. Including the random term, the results also indicated that
a higher number of doctors per 1000 inhabitants (OR 0.971, 95% CI: 0.880 - 1.073), a higher age (OR
0.996, 95% CI: 0.988 - 1.004) and a higher number of welfare recipients per 1000 inhabitants (OR 0.998,
95% CI: 0.988 - 1.009) appeared favouring lower stages. A higher annual income (OR 1.008, 95%
CI: 0.942 - 1.078) and a higher number of attendances per 1000 inhabitants (OR 1.007, 95% CI: 0.988
- 1.026), appeared as contributing to a diagnosis in higher stages. Unlike the model with no random
term, the effect of gender does not vary according to the severity of the disease. Based on the sign of
its regression coefficient, the odds of a male being diagnosed at a later stage was less than a woman
(OR 0.866, 95% CI: 0.572 - 1.312). Although the variance associated with the random effect (residence
county) was close to 1, the difference within regions were statistically significant regarding the severity of
stage at diagnosis. The geospatial analysis has shown that a region in the Center had a lower possibility
of having a diagnosis at higher stages. In the Autonomous Region of Madeira, the possibility of having
a diagnosis at higher stages was higher.

The multivariable models results found no evidence of a statistically significant association between
socioeconomic conditions and access to healthcare, as they were measured, and lung cancer severity.
Future work should collect more individual information about the patient, such as marital status, smoking
habits, diet, but also economic conditions and conditions accessing healthcare, such as having a family
doctor, proximity to health centres, ease of leaving work, insurance coverage, etc.

Keywords: lung cancer, ordinal data, socioeconomic conditions, cumulative link model, proportional
odds model, partial proportional odds model, cumulative link mixed model, random effects
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Chapter 1

Introduction

This section will describe lung cancer epidemiology, diagnosis and treatment, including the criteria
defining the lung cancer stage. A brief review of the risk factors associated with lung cancer disease
and severity will also be presented. An overall description of the project will be made, considering
two approaches: individual and area-based information. The area-based information will be crucial to
achieving the aim of the project since socioeconomic conditions and access to healthcare are not presente
dat the individual level. The chapter ends with a description of the main objectives within this project.

1.1 Lung Cancer

Lung cancer results from an abnormality in the basic unit of life, the cell. Normally, the body
maintains a system of checks and balances on cell growth so that cells divide to produce new cells only
when new cells are needed. Disruption of this system of checks and balances on cell growth results in an
uncontrolled division and proliferation of cells that eventually form a mass known as a tumor.

Lung cancers are generally divided into two main categories: small cell lung cancer (SCLC) and
non—small cell lung cancer (NCSLC) [30, 32]. SCLC are clinically aggressive and they are usually cen-
trally located with extensive mediastinal involvement and associated with early extrathoracic metastases,
including paraneoplastic syndrome. Despite a good response to chemotherapy, SCLC are often diagnosed
at a late stage and patients have poor prognosis. Histologically, NSCLC are further divided into adeno-
carcinoma, squamous cell carcinoma, and large cell carcinoma. These three categories share treatment
approaches and prognoses but have distinct histologic and clinical characteristics. It should be noted that
85% are NSCLC. Histologically, adenocarcinomas are heterogeneous peripheral masses that metastasize
early, and often occur in patients with underlying lung disease. Overall, about 40% of lung cancer are
adenocarcinomas. Typically, squamous cell carcinomas are centrally located endobronchial masses that
may present with hemoptysis, postobstructive pneumonia or lobar collapse. Unlike adenocarcinomas,
squamous cell carcinomas generally metastasize late in the disease course. About 25% to 30% of lung
cancers are squamous cell carcinomas. Large cell carcinomas can begin in any part of the lung. They
tend to grow and spread quickly, which can make it harder to treat. A subtype of large cell carcinoma,
known as large cell neuroendocrine carcinoma, is a fast-growing cancer similar to SCLC. This type of
tumor accounts for about 10% to 15% of lung cancers. Figure 1.1 illustrates the different types of cancer.
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® Adenocarcinoma (40%)

This is the most prevalent
form of lung cancer and
usually arises in the cells
lining the alveoli. It is a
common form of lung cancer
in people who have never
smoked, but is also seen in
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Small-cell lung cancer (15%)
Usually seen in cells near the
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almost always caused by smoking
and is very aggressive. Only 6% of US
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Figure 1.1: Classification of the different types of lung cancer. [7]

According to the World Health Organization (WHO), in 2013 the worldwide mortality rate due to
lung cancer was 38.3 per 100000 inhabitants, that is, in 100000 inhabitants, about 38 died due to this
pathology per year. For every 100000 inhabitants, about 16 women die and 75 men die per year [18].

More recently, the estimates for Portugal in 2018 indicate that 4671 individuals died from lung cancer,
corresponding to 16.1% of total cancer deaths, with 5284 new cases estimated, corresponding to 9.1% of
all cancers. The same trend in gender was observed in Portugal, with an incidence rate of 38.8 for males
and 12.5 for females, per 100000 inhabitants per year [24]. The estimated number of new cases was 3998
for males, while for females it was 1286 (see Appendices - Figures 1 and 2).

In 2013 and 2018, the Portuguese mortality rate was lower than the European mortality rate [23, 20].
In 2018, 20% of total cancer deaths in Europe (1943478 cases) were caused by lung cancer. The European
incidence of this disease was 11.1%, in which, in a total of 4229662 new diagnosed cancer cases, 470039
correspond to the lung [23]. In Europe, the incidence between genders was also different, the associated
incidence to the males and females patients was 44.3 and 18.3 per 10000 inhabitants, respectively (see
Appendices - Figures 5 and 6).

The worldwide mortality rate of lung cancer in 2018 was 18.4%, lower than Europe but higher
than Portugal [25]. In 18078957 of diagnosed new cases with cancer, 11.1% corresponded to the
lung. Worldwide, the incidence in male patients was 54% higher comparing to the female patients (see
Appendices - Figures 5 and 6).

Overall, comparing the incidence rate of lung cancer, Portugal (9.1%) is below the levels of Europe
(11.1%) and worldwide (18.4%). Regardless of the geographic region, Portugal, Europe or worldwide,
there is a clear difference in the incidence rate between male and female patients.

1.1.1 Diagnosis

The common tests used to diagnose lung cancer are image tests, tissue sample (biopsy), among others
[8]. Based on the results and the staging criteria, the severity of the lung cancer is assessed.
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1.1.2 Stage

After the patient is diagnosed with NSCLC, doctors will assess if the tumour has metastasised, its
size and the involvement of lymph nodes. This process is called staging. The stage of cancer describes
how serious the cancer is and how to approach treatment [33].

The stages range from I through IV. As a rule, the lower number corresponds to the initial phase of
the tumor. A higher number means cancer has spread to more regions.

The staging system widely used for cancer is the TNM system, which is based on three key pieces
of information: the size and extent of the primary tumor (T); the spread to nearby lymph nodes (N); the
spread (metastasis) to distant sites (M). Non-small cell lung cancer staging can be classified as follows:

Stage I: The dimension of the tumor is lower than 5cm, invaded the deeper tissue of the lung without
affecting nearby lymph nodes or the chest wall.

Stage II: The dimension of the tumor is lower than 7cm and there is the possibility of invasion of
the adjacent lymph nodes; or its dimension is lower than 5cm but it has already invaded adjacent tissues,
such as the wall, diaphragm, pleura, bronchi, or tissues around the heart.

Stage ITI1A:

* The dimension of the tumor is Scm or smaller and cancer has spread to lymph nodes on the same
side of the chest as the primary tumor. The lymph nodes with cancer are around the trachea or
where the trachea divides into the bronchi. One or more of following will also be present:

— Cancer has spread to the main bronchus, but has not spread to carina.
— Cancer has spread to the innermost layer of the membrane that covers the lung.

— Part of the lung or the whole lung has collapsed or has developed pneumonitis.

* Cancer has spread to lymph nodes on the same side of the chest as the primary tumor. The lymph
nodes with cancer are in the lung or near the bronchus. One or more of following will also be
present:

— The dimension of the tumor is larger than Scm but not larger than 7cm.
— There are one or more separate tumors in the same lobe of the lung as the primary tumor.

— Cancer has spread to the membrane that lines the inside of the chest wall, chest wall, the nerve
that controls the diaphragm or outer layer of tissue of the sac around the heart.

» Cancer may have spread to lymph nodes on the same side of the chest as the primary tumor. The
lymph nodes with cancer are in the lung or near the bronchus. One or more of following will also
be present:

— The dimension of the tumor is larger than 7cm.
— There are one or more separate tumors in a different lobe of the lung with the primary tumor.

— The tumor is of any size and cancer has spread to the trachea, carina, esophagus, breastbone
or backbone, diaphragm, heart, major blood vessels that lead to or from the heart or nerve
that controls the larynx.

Stage I11B:

e The dimension of the tumor is Scm or smaller. Cancer has spread to lymph nodes above the
collarbone on the same or opposite side of the chest as the primary tumour. One or more of
following will also be present:
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— Cancer has spread to the main bronchus, but has not spread to the carina.
— Cancer has spread to the innermost layer of the membrane that covers the lung.

— Part of the lung or the whole lung has collapsed or has developed pneumonitis.

* The tumor may be of any size and cancer has spread to lymph nodes on the same side of the chest
as the primary tumor. The lymph nodes with cancer are around the trachea or where the trachea

divides into the bronchi. Also, one or more of the following is found:

— There are one or more separate tumors in the same lobe or a different lobe of the lung with
the primary tumor.

— Cancer has spread to the membrane of the chest wall inside, chest wall, the nerve that controls
the diaphragm, outer layer of tissue of the sac around the heart, trachea, carina, esophagus,
breastbone or backbone, diaphragm, heart, major blood vessels that lead to or from the heart
or nerve that controls the larynx.

Stage IV: The cancer is present in both lungs or has metastasised to more distant organs such as the
brain, bones or liver, or there is the presence of lung cancer cells in the fluid located between the two
layers of the pleura.

Figure 1.2, illustrates the different stages of lung cancer.

STAGE 1 STAGE 2 STAGE 3A

CANCEROUS
LYMPH NODES

STAGE 3B STAGE 4

CANCEROUS
LYMPH NODES

BONE

LIVER - . ADRENAL
GLAND

Figure 1.2: Staging of non-small cell lung cancer. [2]

1.1.3 Treatment and Prognosis

The decision about which treatments will be appropriate for a given individual must consider the
location and extent of the tumor (stage of the cancer), and the overall health of the patient [30, 34].
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Treatment for lung cancer involves primarily surgical removal of the tumour, chemotherapy, radiation
therapy, and combinations of these treatments. Therapy may be prescribed that is intended to be curative
(removal or eradication of cancer) or palliative (measures that are unable to remove the tumour but can
reduce pain and suffering). In such cases, the therapy, referred to as adjuvant therapy, is added to enhance
the effects of the primary therapy. An example of adjuvant therapy is chemotherapy or radiotherapy,
which is administered after surgical removal of a tumor in an attempt to kill any tumor cells that remain
following surgery.

» Surgery: Surgery is generally performed when cancer has not spread beyond the lung, hence stage
I and sometimes stage II. About 10%-35% of lung cancers can be removed surgically, but removal
does not always result in total remission.

» Radiation: Radiation therapy is used to kill dividing cancer cells. This treatment may be given as

curative therapy, palliative therapy, or as adjuvant therapy combined with surgery or chemotherapy.

This therapy generally only shrinks a tumor or limits its growth when given as a sole therapy,
yet in 10%-15% of people it leads to long-term remission and palliation of the tumour. Com-
bining radiation therapy with chemotherapy can further prolong survival when chemotherapy is
administered.

* Chemotherapy: Chemotherapy refers to the administration of drugs that stop the growth of cancer
cells by killing them or preventing them from dividing. Chemotherapy may be given alone or as
adjuvant therapy to surgery or radiotherapy.

* Immunotherapy: Immunotherapy may be an effective option for some patients with advanced
lung cancers. Immunotherapy drugs work by strengthening the activity of the immune system
against tumor cells. These drugs are inhibitors that target checkpoints or areas that control the
immune response and promote the immune response.

After diagnosis, the treatment is given according to the stage at diagnosis. The treatment
may be simple for early stages, like surgery, and there is a possibility to eradicate the tumour. For
later stages, the procedure may be more evasive and aggressive without guarantees of total tumor removal.

For people with stage I NSCLC, the five-year survival rate is between 60% and 70%. For the
diagnosed patients with stage I lung cancer, the five-year survival rate is about 40% - 50%. The five-year
survival rate for patients with stage IIIA NSCLC is between 10% and 30% depending if the tumour is
resectable or not. For stage IIIB, the five-year survival is between 10% and 20%. Sadly, for people with
stage IV NSCLC, the available measure is two-year survival because the patients diagnosed in stage IV
does not survive 5 years. So, the two-year survival for these patients is between 10% and 20%.

1.2 Lung Cancer Risk Factors

Lung cancer is a malignant neoplasm with a high mortality rate. Several risk factors have been studied
associated with lung cancer disease and survival [3, 11, 17, 35]. One of the commonly associated factors
is the smoking habits. The effect of smoking is directly associated with the number of cigarettes smoked
per day, the duration of smoking, the age of starting smoking, and even passive smokers have some risk
[21, 35]. The epidemiological evidence supports a causal association between secondhand exposure to
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cigarette smoke and lung cancer risk in nonsmokers [21]. The risk of a nonsmoker individual being
diagnosed with lung cancer is 20%-30% higher if their spouse/partner is a smoker than a nonsmoker.
The effect of involuntary smoking appears to be present for household exposure, mainly from spousal
and workplace exposure.

Another factor associated with lung cancer is indoor air pollution, specifically coal burning in poorly
ventilated houses, burning of wood and other solid fuels, and fumes from high temperatures cooking
using unrefined vegetable oils. In several regions of Asia, indoor air pollution is a major risk factor for
lung cancer in never-smoking women. [21] In Europe, a positive association between indicators of indoor
air pollution and lung cancer risk has been reported [16]. Outdoor air pollution is considered a lung
carcinogen in humans by the International Agency for Research [17]. However, the studies exploring
the association between air pollutants and lung cancer have limitations since air pollution is measured
using proxies, such as the number of inhabitants in the community of residence and residing near a major
pollution source. Nevertheless, outdoor air pollution is another important risk factor for lung cancer.

Diet and alcohol are also indicators that have been studied. According to case-control studies, a diet
rich in vegetables and fruits may exert some protective effect against lung cancer. A high intake of meat,
in particular fried or well-done red meat, may increase the risk of lung cancer. Regarding the alcohol
consumption, there is an article that reveals that it is associated with an increased risk of lung cancer.
Alcohol consumption was categorized as follows: 0, 0.1-12, 12.1-24 and greater than 24g/day and for
these categories, the incidence rates of lung cancer were 7.4, 13.6, 16.4 and 25.2 per 10000 person -
years, respectively [9]. However, after adjustment for smoking status and other major risk factor, alcohol
consumption was no longer statistically significantly associated with the risk of lung cancer [9]. Since
the correlation between alcohol consumption and tobacco smoking in many populations, it is difficult to
evaluate the contribution of alcohol to lung carcinogenesis while properly controlling for the potential
confounding effect of tobacco.

Gender appears to be an important independent risk factor for developing lung cancer. The worldwide
lung cancer incidence and mortality rates show higher values for men than for women. This trend is
observed in all evaluated continents — Africa, Asia, America, Europe and Oceania. Some studies report
that the risk of all major histological types of lung cancer is increasing more rapidly for women than for
men [12]. These differences can be related to confounding factors, such as the income [26] or smoking
habits [12].

Family history of lung cancer and genetic mutations also increase the risk of developing lung cancer
[17].

1.3 Impact of Socioeconomic Conditions

Several socieconomic conditions, such as income, education, occupational exposure or household
conditions, may increase the risk of lung cancer [3]. People with lower socioeconomic conditions have
the highest incidence rates. The position in societal hierarchies is defined by socioeconomic status
and, generally it is assessed by these three independent different dimensions: education, occupation and
income. Education can determine the occupational opportunities and earning potential. For people with
higher education level, it is easier to access information and resources to promote health [3]. Regarding
income, there is a clear relation between income and health. People with higher income can access better
life conditions: nutrition, housing and/or schooling. For survival, especially during the first semester
since diagnosis of lung cancer, income may be a stronger marker of vulnerability than education, because
it is a measure of overall resources during an especially vulnerable period, when access to care is of major
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importance. For all these reasons it is considered that "the most fundamental cause for health disparities
are socioeconomic disparities" [3].

Socioeconomic conditions can be measured individually or based on socioeconomic statistics avail-
able for the residential area of each patient. This last type of data is used in ecological approaches or
area-based studies, where the unit of observation is the residential area. A systematic review assessed
the effect of socioeconomic conditions, measured at the individual and area-based level, on lung cancer
survival. Overall, 94 studies were included, in which 23 used measures socioeconomic status on an
individual level and 71 area-based. The main objective is to provide a summary on the current litera-
ture on socioeconomic differences in lung cancer survival, focusing on the impact of aggregation and
individualization level.

The education can be an important factor to determine the risk of death and, combining the individual
income, the results revealed no significant associations between this factor and lung cancer survival.
However, with area-based data, an association was found, in which the lung cancer survival is lower in
regions with less educated patients.

Also, the impact of income has been evaluated in this type of studies. The results showed that the
lung cancer survival is lower for patients whose income is lower. Most of area-based studies revealed
that chance to survive is poor for the lowest income group compared to the highest group.

The occupation was another favor evaluated in this set of studies, where the lowest survival chance
is not associated to the lowest socioeconomic conditions for occupational groups. However, including
the education level, the main conclusion was that the risk of death in patient with high-level non-manual
occupation and medium education is lower compared to the low educated patient with manual occupation.

Health insurance coverage is an important indicator of access to care and a possible cause of disparities
in lung cancer outcomes. There is an article in which the association of insurance status with measures
of access to care was evaluated [31]. The results suggested that patients with no insurance had poorer
lung cancer outcomes, including higher incidence rate, later stage at diagnosis, and poorer survival than
patients with insurance [31]. Some of the disparities may be a secondary to residual confounding from
other health behaviours, but data suggested that patients with lung cancer without insurance do poorly
because access to care is limited [31].

Living conditions were also associated with lung cancer development. Cancers in patients who live
alone were more likely to be diagnosed at a higher stage and were less likely to receive appropriate
treatment [15]. The percentages of patients who were married, single, divorced, and widowed who
received no cancer treatment were 30%, 33%), 38%, and 39%, respectively. The percentages of patients
who underwent surgery based on martial status were 41%, 39%, 35% and 41%. For chemotherapy,
the percentages were 34%, 27%, 31% and 19%, respectively. Differences in radiation administration
were 27%, 26%, 24% and 19%, respectively, with widowed patients having the lowest rate of radiation
administration and chemotherapy. Also, the conditions in which the patient lives also influence the
evolution of lung cancer. Cancers in patients who live alone are more likely to be diagnosed at a later
stage, as well as they are less likely to receive more appropriate treatment. There are evidences that
living together are associated with better cancer outcomes. Structural and emotional support are crucial
throughout diagnosis, treatment and rehabilitation. Similarly, regardless of sex, married individuals had
better 5-year survival than non-married individuals [15]. The positive effects of marriage on lung cancer
were attributed to strong social networks, which can positively influence neuroimmune pathways and
health behaviours [28].

There is no data regarding the effect of socioeconomic conditions and access to healthcare on lung
cancer severity in Portugal. Hence, the motivation for this thesis was to explore this theme.
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1.4 Case Study

Lung cancer is one of the most common malignant tumours with the highest mortality rate of the
total cancer deaths [22]. Among other factors, the asymptomatic characteristics of the disease contribute
to the fact that most cases are diagnosed at an advanced stage which decreases the survival probability of
patients with lung cancer. Lung cancer is considered an asymptomatic disease because it may take years
to develop symptoms or it may not be detected until the disease is at an advanced stage or simply because
the symptoms may be similar to symptoms from other causes - cough, chest pain, hoarseness, efc.

Lung cancer corresponds to the most common cause of cancer death worldwide for men and the second
most common for women. Several factors impact lung cancer severity, some of which are socioeconomic
conditions, smoking habits and gender.

This project aims to study the association between the severity of the disease at diagnosis and the
socioeconomic conditions the patient is exposed, and access to healthcare.

The original dataset contains demographic information regarding each patient such as gender, age,
residence area (county and district) and status (dead or alive). Data about income, education and occupa-
tion were obtained for each county through an external source - INE or PORDATA. This information was
merged with the original dataset through the residence county of each patient. The collected information
is chosen based on literature review and the available information between the two external sources.

With spatial data, the severity of the disease is modelled according to the characterization of each
patients’ area of residence and not by their own characteristics. Thus, if significance differences are
found, preventive measures to combat the high mortality in that specific area can be taken.

1.5 Objective and Analysis Plan

The main objective of this project is to study the association between the stage at diagnosis and
socioeconomic and access to healthcare conditions at the time of diagnosis in a group of patients
diagnosed with non-small cell lung cancer in 2013 and 2014 in the southern region of Portugal.

The first step of this project concerns data collection and treatment. The original dataset includes
neither socioeconomic conditions nor access healthcare indicators. So, this type of information will
be merged with the original data using geographical level variables. In the presence of correlated
variables and to avoid variance inflation, contributing to a parsimonious model, only one variable will
be chosen. Here, two main sets are considered: set of socioeconomic variables and set of access to
healthcare variables. Exploratory analysis will be done for both demographics and the variables selected
previously. After knowing how the sample is distributed and the behavior between some variables, the
statistical inference follows. Considering that the stage at diagnosis is an ordinal variable with more
than 2 categories, ordinal regression models will be used. One model will have a random effect to
accommodate differences between regions because socioeconomic data and access to healthcare were
available at region-based level.

The statistical software used in this project is R version 4.0.5 and the required packages are readx|
to import the dataset; tidyverse to data representations and data managements; ordinal to implement the
cumulative link model as well as the cumulative link mixed model; ggplot2 to create graphics; rgdal to
bindings for the ’geospatial’ data abstraction library; maptools to manipulating geographic data; maps to
draw geographical data and mapproj to converts latitude and longitude into projected coordinates. The
last four packages were used to build the maps in R.
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1.6 Overview

In chapter 2, both demographic data and socioeconomic and access to healthcare indicators used in
this project are described, and the correlation between variables is measured.

Chapter 3 describes the methodology used in this project - ordinal logistic regression and its extension,
including a brief overview of the multinomial regression.

Chapter 4 contains the exploratory analysis and the model results in which it is possible to analyse the
impact of each explanatory variable on the severity of lung cancer. Both univariable and multivariable
analysis are included.

In chapter 5, the results are discussed, and the two applied models (ordinal regression model and
ordinal regression mixed model) are compared. Limitations, future work and alternative approaches to

model this type of outcomes are also discussed.
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Chapter 2

The data

This chapter describes the dataset obtained from the South Regional Cancer Registry (ROR-Sul)
and the variables used for the analysis. Since the project aims to study the association between the
severity of NSCLC: non-small cell lung cancer and the socioeconomic conditions and access to health
care, several variables were downloaded from INE and PORDATA. Some variables were transformed -
to eliminate the population scale factor - and merged with the main dataset. Finally, due to the similarity
of some socioeconomic variables, the linear correlation among them was calculated. In the presence of
linear correlation, only one variable was selected. Since the response variable is ordinal with more than
two categories, the ordinal regression model was applied. Additionally, in order to accommodate the
differences within the regions, the ordinal regression mixed model was applied.

2.1 Study Population

The South Regional Cancer Registry (ROR-Sul) collected the data used in this project, and it is the
base of this retrospective cohort study. ROR-Sul is a population-based cancer registry, established in
1988, and covers approximately 50% of the Portuguese territory - Lisbon and the Tagus Valley (Leiria,
Lisbon, Santarém and Settibal districts), Alentejo (Portalegre, Evora and Beja districts), Algarve (Faro
district) and the Autonomous Region of Madeira are (see Figure 2.1). About 128 counties of Portugal
are included in the area that covers the ROR-Sul. On the 1%* January of 2018, according to the Decree
Law n.o 53/2017 of the 14" July, the National Cancer Registry (RON) was established, centralizing the
information of all patients diagnosed with cancer in Portugal in one database. However, only data from
ROR-Sul was included in the analysis since it was internally validated for scientific purposes.

13
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Figure 2.1: Area belonging to the ROR-Sul by counties.

2.1.1 Sample and Data Collection

The project included patients diagnosed with NSCLC cancer in 2013 and 2014 (from 01-01-2013 to
31-12-2014) living in the ROR-Sul residence area were included in the cohort. The data included in the
study was been externally validated by one of the researchers.

In this study the inclusion criteria were the following:

* adult patients (> 18 years old)
* patients who lived in ROR-Sul area

* histopathological or cytological diagnosis of non-small cell lung cancer according to ICD-O
374 revision

* diagnosis date in 2013 or 2014
The exclusion criteria were the following:
* patients without stage at diagnosis registered
* patients without laterality registered or registered as bilateral

* patients with foreign nationality

2.1.2 Original Data

An anonymised identification number was created - ID for each patient. Table 2.1 contains the
description of the clinical and sociodemographic variables included in the dataset. All the variables
correspond to individual data that characterizes the patient, such as gender, age, residence district, stage

14
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at diagnosis, etc. The table also contains information about the type of variable and its categories, when

applicable.

Table 2.1: Description of the variables included on data set.

Variable Description Type Categories (when applicable)

ID Patient identifier - anonymised identification number | Character

age Patient age at diagnosis Quantitative Continuous

gender Patient gender Categorical (Nominal) Female, Male

L. L X X X Beja, Evora, Faro, Ilha da Madeira, Leiria, Lisboa,
district District of residence Categorical (Nominal) ) )
Portalegre, Santarém, Settibal

Abrantes, Alandroal, Albufeira, Alcacer do Sal,

Alcanena, Alcobaga, Alcochete, Alenquer, Aljezur,

Aljustrel, Almada, Almeirim, Almodovar, Alpiarca,
Alter do Chao, Alvito, Amadora, Arraiolos, Arronches,
Arruda dos Vinhos, Avis, Azambuja, Barreiro, Beja,
Benavente, Bombarral, Borba, Cadaval, Caldas da
Rainha, Calheta, Camara dos Lobos, Campo Maior,
Cartaxo, Cascais, Castro Marim, Castro Verde,
Chamusca, Constancia, Coruche, Crato, Elvas,
Entroncamento, Estremoz, Evora, Faro, Ferreira do
Algarve, Ferreira do Zézere, Fronteira, Funchal, Gavido,
Golega, Grandola, Lagoa, Lagos, Lisboa, Loulé, Loures,
county County of residence Categorical (Nominal) Lourinha, Mag¢do, Machico, Mafra, Marvao, Mértola,
Moita, Monchique, Montemor-O-Novo, Montijo, Mora,
Moura, Mourdo, Nazaré, Nisa, Obidos, Odemira,
Odivelas, Oeiras, Olhdo, Ourém, Ourique, Palmela,
Peniche, Ponte de Sor, Portalegre, Portel, Portimao,
Redondo, Reguengos de Monsaraz, Ribeira Brava, Rio
Maior, Salvaterra de Magos, Santa Cruz, Santana,
Santarém, Santiago do Cacém, Sao Brés de Alportel,
Sardoal, Seixal, Serpa, Sesimbra, Settbal, Silves, Sines,
Sintra, Sobral de Monte Agrago, Tavira, Tomar, Torres
Novas, Torres Vedras, Vendas Novas, Viana do Algarve,
Vidigueira, Vila do Bispo, Vila Franca de Xira, Vila Nova
da Barquinha, Vila Real de Santo Anténio, Vila Vigosa
C34.0, C34.1,C34.2, C34.3, C34.4, C34.5, C34.6,
C34.7,C34.8,C34.9

M8012/3, M8046/3, M8070/3, M8071/3, M8072/3,
M8073/3, M8140/3, M8230/3, M8250/3, M8251/3,
M8252/3, M8254/3, M8255/3, M8260/3, M8480/3,
M8560/3, M8550/3

laterality | Laterality of the tumor Categorical (Nominal) Left, Right

stage_diag | Stage at diagnosis Categorical (Ordinal) L 1L, TITA, IIB, IV

status Vital Status Categorical (Nominal) Dead, Alive

top Primary tumor site Categorical (Nominal)

mor Tumor morphology Categorical (Nominal)

Some variables had missing values, such as stage at diagnosis - dependent variable, and laterality -
independent variable. Additionally, laterality was sometimes registered as "Bilateral", which is considered
mal-practice according to registry rules. Thus, patients with laterality "Bilateral" and with missing values
were excluded from the dataset.
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Figure 2.2: Sample size at different phases of data treatment.

2.2 Socioeconomic and access to healthcare data

As seen in the table 2.1, the dataset does not include information about socioeconomic conditions of
the patients, nor about access to healthcare. However, this information is crucial to accomplish the main
goal of this project - study the association between stage at diagnosis and socioeconomic conditions and
access to healthcare. Thus, socioeconomic and access to healthcare indicators were extracted from INE
and PORDATA, considering the residence county of each patient.

The socioeconomic conditions variables were selected based on the literature previously described in
section 1.3 of the introduction. Hence, the socieconomic factors downloaded were the following:

» monthly average base wage (€) by geographic location (NUTS II), gender and age group;
* declared gross income per inhabitant (€) by county;

* social security pensioners per 1000 inhabitants in active age (%o) by residence county;

* number of welfare recipients per 1000 inhabitants in active age (%o) by residence county
Regarding access to healthcare, the following variables were selected:

e number of nurses per 1000 inhabitants by work county;

* number of medical doctors per 1000 inhabitants by residence county;

* number of official clinics by county and type of service;

* number of attendances at emergency services in hospitals by county
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Table 2.2: Description of the socioeconomic indicators.

Variables Definition Available data for the years:
dgi Annual declared gross income per inhabitant (€) 2015-2017
mabs Monthly average base wage (€) 2007-2017
pens Social security pensioners per 1000 inhabitants (%o) 2011-2018
benef Welfare recipients per 1000 inhabitants (%oo) 2011-2018
nurs1000 Number of nurses per 1000 inhabitants 2011-2017
doc1000 Number of medical doctors per 1000 inhabitants 2011-2018
numb.oc Number of official clinics 2011-2012
att Number of attendances in health centers 2011-2012

As seen from table 2.2, most indicators are available for the period of the study - 2013 and 2014.
However, for some indicators, data was not available for the desired period. Thus, the closest year to
the diagnosis was considered. Excluding the variable mabs, all indicators can be merged with the main
dataset using the residence county. The monthly average base wage is available for different dimensions:
NUTS II, gender and age group. Although the main dataset does not have the NUTS II variable, it is
possible to identify the respectiveNUTS II region using the residence county, thus adding a new variable
in the dataset NUTS. Similarly, a new variable was created - age_cat with the following categories to
match with the variable mabs: 18-24; 25-34; 35-44; 45-54; 55-64 and 65+. Thus, using these two new
variables and gender, mabs was merged with the main dataset.

The variable pens corresponds to the number of social security pensioners per 1000 inhabitants
inactive age by residence county. This indicator was used as a proxy for the social context in which
the patient lives. The variable benef corresponds to the number of welfare recipients of the social
integration income, of social security by residence county. This integration income is a benefit included
in the solidarity subsystem, in order to provide people and their households with support adapted to
their personal situation, which contributes to the satisfaction of their essential needs and which favor the
progressive insertion of work, social and community. As the previous variable, the welfare recipients
help us to define the social context of each patient.

The variable nurs1000 corresponds to the number of available nurses per 1000 inhabitants by work
county, and the variable doc1000 corresponds to the number of available doctors per 1000 inhabitants
by residence county. The variable numb.oc refers to the number of public health establishments, which
aims to promote health, prevent disease and provide care, either intervening in the first line of action
of the National Health Service, or ensuring continuity of care, whenever there is a need to use other
specialized services and care. It directs its action both to individual and family health and to the health
of groups and the community. It may include inpatient service. The variable att refers to the number
of medical appointments at health centers by county. The medical appointment is defined by an act of
assistance provided by a doctor to an individual consisting of clinical observation, diagnosis, therapeutic
prescription, counselling or verification of the evolution of their health status. These four variables serve
as a proxy for accessibility to healthcare. However, the variable numb.oc and att are not being weighed
by the population of the respective county. So, in order to eliminate the population scale factor, the ratio
between each indicator and the resident population by county is considered.

Let’s consider the total number of residents in ¢ —th county and ¢ —th year, where c = 1,...,116 and
t =1,2. Notice that the indexed years correspond to the years of diagnosis - 2013 and 2014.

atte,

att1000.; =
p

% 1000, c=1,2,3,...,116, t=1,2 2.1

OPct
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numb.oc1000¢, = 0% L1000, e=1,23,...116, 1=1,2 2.2)
POPct

So, att1000,, and numb.oc1000., correspond to the number of attendance per 1000 inhabitants and
to the number of official clinics per 1000 inhabitants, respectively, for the ¢ —th county and 7 —th year.

As seen from table 2.2, some indicators do not have available information for the years of diagnosis.
And in these cases, as mentioned previously, the closest period containing information was considered.
However, there is one indicator - mabs - in which the information is not available for one region during
this period, Autonomous Region of Madeira. It has information in 2013 and 2014 for Center, Alentejo,
Algarve and Lisbon Metropolitan Area, but for Autonomous Region of Madeira, the last period with
available data is 2009. Thus, the monthly average base salary was compared between the Autonomous
Region of Madeira and the others for 2009. On average, the monthly wage is 727€ in Alentejo, 747€
in Algarve, 1056€ in Lisbon Metropolitan Area, 745€ in Center and 858€ in Autonomous Region
of Madeira. With a variation rate of -12.9%, Algarve is the most similar region to Madeira. So, the
assumption that Madeira evolved in the same way as the Algarve is assumed.

Let’s consider that A, 4, corresponds to the relative variation in » —th NUTS Il regions between 2009
and the t —th year, considering the a —th age group and g —th gender. Regarding monthly average base
wage, if Algarve is the most similar region when compared to Autonomous Region of Madeira in 2009,
the variation for this region is given by:

mabsr2009ag - mabsrtag

’

mabsr[ag (23)
r=1,2,..5t=12,a=1,..,5g=12

Arl‘ag =

Table 2.3 displays the monthly average base wage of a person who lives in Algarve, according to his
age, gender and years of diagnosis. The sixth column is used in order to rebuild the monthly average base
wage for Autonomous Region of Madeira.

Table 2.3: Estimated of monthly average base wage for Autonomous Region of Madeira in the years of diagnosis.

year age_cat gender mabsAjgarve2009ag mabsAjgarvetag AAlgarvetag mabs ARM2009ag mabsARM tag
18-24 583.38 633.11 0.085 580.33 629.80
25-34 749.37 739.08 -0.014 777.39 766.72
35-44 Male 8868.15 73.033 0.006 954.73 960.10
45-54 911.72 925.55 0.015 1060.88 1076.97
55-64 910.3 964.72 0.06 1108.83 1175.12

2013 65+ 863.09 923.28 0.07 1154.08 1234.56
18-24 575.42 577.73 0.004 564.18 566.44
25-34 709.71 711.63 0.003 746.8 748.82
35-44 Female 725.99 767.29 0.057 762.07 805.42
45-54 703.8 735.56 0.045 768.43 803.11
55-64 678.59 718.22 0.058 788.66 834.72
65+ 684.42 731.22 0.068 1029.87 1100.29
18-24 583.38 617.41 0.058 580.33 614.18
25-34 749.37 728.21 -0.028 777.39 755.44
35-44 Male 868.15 857.92 -0.012 954.73 943.48
45-54 911.72 911.02 -0.001 1060.88 1060.07
55-64 910.3 945.44 0.039 1108.83 1151.63

2014 65+ 863.09 887.60 0.028 1154.08 1186.85
18-24 575.42 584.58 0.016 564.18 573.16
25-34 709.71 711.98 0.003 746.8 749.19
35-44 Female 725.99 770.60 0.061 762.07 808.90
45-54 703.8 741.17 0.053 768.43 809.23
55-64 678.59 723.45 0.066 788.66 840.80
65+ 684.42 736.93 0.077 1029.87 1108.88
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CHAPTER 2. THE DATA

For the Autonomous Region of Madeira, the monthly average base wage is estimated for 2013 and
2014, based on its value in 2009, compounded by the variation rate, Aa/rgarverag-

mabsARMtag = mabSARM2009ag x (1 +AAlgurvetag)’
t=12, a=1,2,...,5, g=1,2

2.4)

This variable combines several features (age group, gender and NUTS II), which allows an greater
variability and differentiation when compared to an indicator whose aggregation level is only residence
region. But the residence region of variable mabs is a macro view (NUTS II). However, there is an
additional indicator in the data set, in which the patient is characterized about his economic situation,
dgi, where it depends exclusively on the residence county. So, combining these two indicators - mabs
and dgi - it is possible to build more accurate and individual information regarding patients’ income.

In order to combine these indicators, we started by standardizing the variable mabs. Thus, for a
patient diagnosed at ¢ —th year with g —th gender who lives in r —th region, that belongs to the a —th
age group is attributed a rank, f,;4q, ranging from 0 to 1.

mabs,;qg —min(mabs,;)

Jriag = max(mabs,;) —min(mabs,;)’ (2.5)

r=12,...,5 t=12, a=1,2,....,5, g=1,2

Both counties and NUTS II are two indicators which identify the residence location. The difference
between these two is that the residence location is more detailed with counties than with NUTS II. In
fact, the counties are nesting to the NUTS II. So, the equation 2.5 can be rewritten as follows:

mabscqg —min(mabs,)

Jerag = max(mabse;) —min(mabse;)’ (2.6)

c=1,2,...,116, t=1,2, a=1,2,....,5, g=1,2

Then, the product between f.;4¢ and dgi. gives rise to a new variable, called income.index.

income.indexciag = ferag X dgic,

c=1,2,...,116, t=1,2, a=1,2,....,5, g=1,2

2.7

So, this new variable is used to evaluate the economic condition of each patient, instead of using dgi
and mabs. In order to decrease the order magnitude, a transformation into thousands was applied to the
estimated annual income.

Some of the variables considered might be correlated to each other, for instance, the number of
attendances (att) might grow with the number of official clinics (numb.oc). Hence, the presence of
multicollinearity was assessed. Multicollinearity is a problem in which one independent variable is
strongly linearly correlated with one or more independent variables. In this situation, a unique least-
squares solution for regression coefficients does not exist and the marginal contribution of that independent
variable is influenced by other independent variables. Thus, the linear correlation between the independent
variables set should be analyzed.
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Figure 2.3: Correlation coefficient between access
to healthcare indicators.

Figure 2.4: Correlation coefficient between socioe-
conomic condition indicators.

Figure 2.3, presents the correlations coefficients between access to healthcare indicators. The number
of nurses per 1000 inhabitants is highly correlated with the number of doctors per 1000 inhabitant (r = 0.9),
and there is also a positive correlation between the number of official clinics per 1000 inhabitants and
the number of attendances per 1000 inhabitants (» = 0.6). Apart from that, there are no other strong
linear correlations. Thus, the number of doctors per 1000 inhabitants was the chosen indicator for health
professionals since doctors make the final diagnosis. The number of attendances per 1000 inhabitants was
chosen over the number of official clinics per 1000 inhabitants since the former can be more informative.
A higher number of clinics does not assure that all of them are available. On the other hand, the number
of attendances is an indicator that represents the healthcare response.

Figure 2.4 presents the correlation coefficients between socioeconomic conditions indicators. The
strongest correlation is between the number of welfare recipients per 1000 inhabitants and the number of
pensioners per 1000 inhabitants, r = 0.4. Welfare recipients are people in extreme poverty who receive
monetary support [1]. Thus, counties where this indicator is higher correspond to the poorest ones, and
for that reason that indicator was chosen over the number of pensioners.

Figure 2.5 presents the variables included in the final dataset.

Demographics

Socioeconomics

Figure 2.5: Demographic, socioeconomic and access to healthcare variables available.
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Chapter 3

Methodology

In the present chapter the applied models to assess the impact of each variable will be presented. The
models’ choice is justified not only by the typology of the response variable but also by the characteristics
of the data collection and by the research question. As explained in chapter 2 the variable of interest is of
the ordinal categorical type with five categories.

Since the response variable - stage at diagnosis - is ordinal, the most appropriate model is the ordinal
logistic regression, which is an extension of the multinomial logistic regression. There are three variants
of the ordinal logistic regression model with respect to the imposition or relaxation of constraints involving
the linear systematic component of the model - proportional odds case, partial proportional odds case
or unconstrained case. The first one is the most restrictive but also the most parsimonious case, where
the parallel lines assumption holds for all outcome categories, that is, the same coefficient vector for all
outcome categories is assumed.

The partial proportional odds case relaxes the parallel lines assumption for a subset of the regression
coeflicients across the outcome categories. The unconstrained case is the most flexible and least parsi-
monious case. It relaxes the parallel lines assumption for all outcome categories, where the difference of
the regression coefficients for each outcome category is allowed. These assumptions will be assessed in
order to choose the most adequate approach.

The assumption of independence of observations applies to all regression models, but there is a
particularity in the data of the current project. All the variables regarding socioeconomic conditions are
collected at the residence county, which means that patients living at the same county have the same
information. One of the approaches used to handle clustered or grouped data is to consider a mixed
model, where random and fixed are included.

Independence test

The chi-square (y?) independence test is used to analyze the joint behaviour or two categorical
variables. It evaluates whether there is a significant association between the categories of the two
variables. The building of y? test is based on following hypotheses:

Hy: There is no association between categories of the two variables
H;: The categories of the two variables are associated

Test statistic:

oy Y um el (3.1)
) i=1 j=1 €ij HOX(('“—I)(C—I)) ‘
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3.1. MULTINOMIAL LOGISTIC REGRESSION

where r and ¢ correspond to the number of rows and columns in the contingency table, respectively. In
equation (3.1), O;; represents the observed frequency of category i of the first variable, and category j
of the second variable, simultaneously, and e;; is the expected frequency, where O;. are the marginal
observations of category i of the first variable and O .; are the marginal observations of category j of the
second variable.

i=10i- X35, 0.
N 2

€ij = (32)

where N is the total number of observations.
The hypothesis Hy is rejected if X(%bs > X%l—(z) ((r=1)(c—1)) or, the p-value associated to the test
statistic is smaller than a, the significance level. p-value is the probability of observing a sample statistic

as extreme or more extreme than the statistic test: P( X(Zr,l) (c-1) = ngs).

3.1 Multinomial Logistic Regression

Multinomial logistic regression is a widely used statistical modeling technique. This procedure is an
extension of the binary logistic regression.

In multinomial logistic regression, the response variable is a qualitative nominal variable with more
than two categories. The independent variables can be either qualitative (factor) or quantitative (numeric).

Consider the response variable Y;,Vi = 1,...,n, which can be equal to one of the several categories
labelled j, with j =1,...,J, and let 7r;; = P(Y; = j|x;) correspond to the probability that the i —/h response
falls in the j —th category. Since the J categories cover all possibilities and are mutually exclusive,
ZJJ.:  7ij = 1,Vi. The number of groups corresponds to the number of categories of the response variable
(J groups). There are J different groups of different sizes. Let n; denote the number of cases in the j —1h
group. Then, ZJJ.: 1j = n, that is, the sum of sizes of each group is the sample size.

Let Y;; be the number of responses from the i —th group that fall in the j —th category. With observed
value y;;, the probability distribution of ¥;;,Vj = 1,...,J is given by the multinomial distribution:

n; . .
P(Yllzyll7"'9YlJ :le):( ! )ﬂ'?)lll...ﬂly‘l]l, i:l,...,n (3.3)
Yit--YiJ

Consider n independent observations, p explanatory variables and a response variable has J categories.
In multinomial data the most appropriate approach is to consider one of the response categories as a
baseline or reference value.

The logit transformation of 7;; is applied [13]. This transformation corresponds to consider the loga-
rithm of the odds of category j, taking category J as the reference. The importance of this transformation
is that the function has the desirable proprieties of a linear regression model. It is linear in its variables
which may be continuous and may range from —oo to +oco, depending on the range of the independent
variables. So, in terms of 7;;, the [ogit transformation is defined as:

logit(m;j) = log( Mij ) = log(%) = Boj +P1Xi1 +B2jXi2+ ...+ BpiXip, (3.4)
g 1- Zi=1 i
where (Bo;,B1;,....Bp;) are the regression coeflicients, with j =1, ...,J and p corresponds to the number
of independent variables. Each regression coefficient refers to the effect of the associated variable on the
log(odds). The unknown parameters (So;,1;,...,p;) are estimated through maximum likelihood.
Summing up, the logistic regression analyses for categorical outcomes attempts to model the odds of
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event’s occurrence and to estimate the effects of independent variables on these odds. These measures
are a ratio comparing the probability that an event occurs (referred as "success") with the probability that
it does not occur (referred as "failure"). When the probability of success is greater than the probability
of failure, the odds is greater than 1. However, if the two outcomes are equal, the odds are 1. When the
probability of success is lower than the probability of failure, the odds is less than 1.

To evaluate the impact on the odds of an independent variable, OR are calculated, which compares
the odds for different values of the explanatory variable. OR are bounded below by 0 but have no upper
bound. So, OR is a measure of association between the binary outcome and an independent variable that
provides "a clear indication of how the risk of the outcome being present changes with the variable in
question" [13].

3.2 Ordinal Logistic Regression

When the possible responses for an outcome variable consist in more than two ordered categories,
the most suitable model is the ordinal logistic regression model [4].

The complexity in fitting the ordinal regression models arises in part because there are many different
possibilities for how "success" might be modeled. Generally, success corresponds to an event of interest,
but as there are more than two possibilities success becomes a relative term. This analysis is referred to
as cumulative odds. It is one way to conceptualize how the data might be sequentially partitioned into
dichotomous groups, while still taking advantage of the order of the response categories. The cumulative
logit model was proposed by Walker and Duncan [38] and later called the proportional odds model by
McCullagh [19].

3.2.1 The model

Consider a multinomial response variable Y with categorical outcomes, denoted by 1,2,...,J and
X;, i =1,...,n denote a p — dimensional vector of explanatory variables. The dependence of Y on X for
the proportional odds model is the following:

zogit<nij>:zn( ),(M)

1 —m;; 1-PY; < jlx:)

_J (P(Yl- sjlxi)) (3.5)
=in|—————mm—-
P(Y; > jIx;)

=aj+B1x1+...+Bpxp,

where 7r;; = P(Y; < j|x;), where j = 1,...,J — 1 represents the probability that a response falls in a category
less or equal to the j —th category for the since i —th patient, that is, ¥; < j. J is the total number of
categories, the cumulative probability of J categories is 1, P(¥; < J) = 1. So, the information about this
category is redundant. The parameters a;, with j =1,...,J — 1, are the unknown intercept parameters,
satisfying the condition 1 < a» < ... < ay_;. The a; terms, called threshold values, correspond to the
intercept in a linear regression, but the difference is that, in the ordinal logistic regression model, the
number of thresholds correspond to the number of categories of the response variable. 8= (B1,52,....8p)’
is the vector of unknown regression coefficients.

23



3.2. ORDINAL LOGISTIC REGRESSION

The ordinal logistic regression model is parameterized as

logit(m;j) = a;— (B1xi1+...+BpXip), i=1,.,n j=1,..,J-1 (3.6)

The cumulative logits associated with being at or below a particular category j can be exponentiated to
obtain estimated cumulative odds and then used to find the estimated cumulative probabilities associated
with being at or below category j.

In the model expression (3.7) there is a minus sign before the coefficients for the predictor variables,
instead of the customary plus sign. That is done so that larger coefficients reveal an association with
larger scores. Usually, a positive coefficient for a dichotomous factor is associated to higher scores and
these ones are more likely for the first category. A negative coefficient means that lower scores are more
likely. For a continuous variable, a positive coefficient means that with the increase of the variable,
the likelihood of larger scores increases. An association with higher scores means smaller cumulative
probabilities for lower scores, since they are less likely to occur.

P(Y; < jlxi)

PY; < Jjl|x;
( ( JIXi) m:exp(aj—(ﬁlxi1+...+ﬁp)€ip)) (3.7)

P(Y; >j|xl-)) =aj— (Br1xi1+...+BpXip) ©

The regression coefficients, B, do not depend on j, implying that the model assumes that the
relationship between x;, [ =1, ..., p, and Y is independent of j. That is, it implies that the explanatory
variables have the same effect on the odds, regardless the different consecutive ’splits’ to the data for
each category of the model. So, each logit has its own «a term but the same coefficients 8. McCullagh
[19] calls this assumption of identical log-odds ratios across the (J — 1) cut points the proportional odds
assumption, and hence the name proportional odds model. This assumption can be checked based on a
chi-square score test [27].

A model that relaxes the proportional odds assumption can be represented as logit(m;;) where the
regression parameter vector is allowed to vary with j. Likelihood ratio test or Wald Chi-Square test are
used to test this hypothesis (Long,1997; Agresti, 2002). In ordinal logit regression, this test examines
the equality of the different categories, Hy : B1; = B2 =... = Bpj;, j =1,...,J. The rejection of the
assumption of parallelism for the particular ordinal model being investigated implies that, at least, one
of the explanatory variables may have a different effect across the outcome levels, that is, there is an
interaction between one or more independent variables and the splits.

When the assumption is not verified, the proportional odds model is not valid. Alternatively, there is
a flexible model that accommodates variables whose effect is different depending on the category of the
response variable. Suggested by Peterson and Harrell [27], partial proportional odds model can be used
when parallel lines assumption is not valid. This model is known as partial proportional odds model due
to the fact that only a few variables respect the proportional odds assumption. Hence, this model contains
variables whose effect varies with the category of the response variable - violate the assumption - and
variables whose effect remain despite the category of the response variable.

The expression is the following:
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IH(M) =a;+B1Xi1+ oo+ BmjXim — Bims)Xi(m+1) — - — BpXip
P(Y; > jIx;)
(3.8)
M=CXP(OI'+,31 iXi1+ oot BmjXim = Bma1Xi(ma1) = --- — PpXip)
P(Y; > jIx;) o ! pp

wherei=1,...,n, j=1,...,J —1. There are m variables for which the proportional odds assumption is not
verified and there are p —m variables for which this assumption is verified. Thus, m X (j — 1) coefficients
are estimated for vector (x,...,X,,) and p — (m+1) are estimated for vector (x;,41,...,X,), meaning that
the model are includes m X (j — 1) + p — (m+ 1) coeflicients.

The estimates of the coefficients in logistic regression are found via maximum-likelihood estimation.
To test whether a regression coefficient is significant, the hypothesis that this parameter differs from zero
is evaluated. From the asymptotic theory of maximum-likelihood estimation, the parameters’ estimators
will be approximately normally distributed with null mean, assuming that the hypothesis null is true. The
standard error of a statistic is the approximate standard deviation of a statistical sample population. It
provides the absolute measure of the distance that the data points (sample) fall from the regression line
(predicted values). So, the hypotheses to be tested are

Hy:Br=0 VSs. Hy:Br #0, k=1,...,p
and the Wald statistic is defined as

W= (/ka— /3:1<|H0)
se(Br)
Under the null hypothesis, that is, if S |g, = 0, the Wald statistics simplifies to:

~N(0,1) (3.9)

A~

w=—P N1 (3.10)

~ se(Br)

3.2.2 (Odds Ratio

The OR is a measure of association between an exposure variable and the outcome. It represents
the odds that an outcome will occur given a particular exposure, compared to the odds of the outcome
occurring in the absence of that exposure.

In logistic regression, the regression coeflicients correspond to the estimated increase in the log odds
of the outcome (dependent variable) per unit increase in the value of the exposure (independent variable),
if the independent variable is quantitative. That is, the exponential function of the regression coefficient
is the OR associated increasing one unit in the exposure. When the independent variable is binary, the
exponential function of its regression coefficient is the OR associated to the presence of the variable in
the outcome against to its absence. In the proportional odds model, the OR are calculated in the same
way, but only if the event of interestis Y < j. If Y > j is the intended, some transformations are required.
A commonly used link function is the logit, which leads to

P(Y; <))

logit(P(Y; <j))=In|———= =1,...n, j=1,..,J-1 A1
ogit(P(¥; < ) n(l—P(Yisj)) =1, =1 3.1
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Consider the binary variable x where x = 1 represents exposure and x = O represents the absence of
exposure. In this scenario, zero corresponds to the baseline or reference class. Thus, the OR of the event
Y < j at x =0 relative to the same event at x = 1 is given by

( P(Y <jlx=1) )

_\I-P¥<jlx=1)) exp(Bo-B1) _

~ [ P(Y<jlx=0) )— exp(Bo) =exp(-p1) (3.12)
1-P(Y < jlx=0)

OR = (oddsle )

odds x—o

However, sometimes in this type of model it could be interesting to assess this value for the opposite
event, Y > j. In this case, the solution is to reverse expression (3.12), that is,

1-P(Y<jlx=1)
( PY <jlx=1) )
1-P(Y <jlx=0)
( P(Y <jlx=0) )

OR = (oddsle )

Oddsx:()

(3.13)

1
_ (exp(ﬁo—ﬁl)) — exp(B1)

[wm0)
exp(Bo)

As seen in equations (3.12) and (3.13), OR does not depends on j. Thus, cumulative OR is
proportional to the distance between the x values. In equation (3.8), the value of OR changes according
to each category j for the variables whose assumption of parallel lines is not verified.

Table 3.1: Impact of independent variables through the OR value

OR =1 | Exposure does not affect odds of outcome

OR >1 | Exposure associated with higher odds of outcome

OR <1 | Exposure associated with lower odds of outcome

In the appendix section, a practical example of the proportional odds model and a practical example of
the partial proportional odds model are presented. From these, the interpretation of regression parameters
is made as well as the OR.

3.3 Ordinal Generalized Linear Mixed Models

The generalized linear mixed model (GLMM) is an extension of the generalized linear model that
includes random effects as well as fixed effects in the linear predictor. It is important to note that GLMMs
for ordinal responses assume multinomial distribution at each particular value of the fixed and random
effects.

The random effect provides the correlation expected between observations in the same cluster and
allows inference to be made to the population from which the groups were sampled.

Let Y;, i=1,...,n, denote i —th observation, consider j = 1,2,...,J are the outcome categories and
there are p independent variables. The cumulative logit model of proportional odds including a random
intercept is the following:
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logit(P(Y; < J)) = aj+pixi1 +Boxin+...+ BpXip + Ui, (3.14)
i=l,un, j=1,.,J—1

The difference between this expression and (3.7) is the addition of the random effect, u;, to the
intercept term «;. The same random effect for each cumulative probability is assumed, in which the
original thresholds ay,...,ay_; are simultaneously shifted yielding the thresholds a| +u;,...,a -1 +u;.
Thus, the effective thresholds vary across clusters.

A subject with arelatively large positive/negative u; has relatively large/small cumulative probabilities,
hence a relatively high/low chance of occurring at the low end of the ordinal scale. Thus, the expression

of the model can be written alternatively as:

logit(P(Y; < j)) = aj — (u; +B1xi1 + Paxiz+... + BpXip) (3.15)

Considering this parameterization, high values of random and fixed effects means higher probability
of i —th observation coincides with the highest level of the ordinal scale. As in the previous model (3.8),
the intercept parameters satisfy | < @y < ... < @j_i, to reflect the ordering of cumulative probabilities
and unlike the explanatory variables parameters, the values of u; are unknown.

This last model (3.15) displays a cumulative probability of the i — ¢/ falling in the j —th category or
below where i represents the observations and j = 1,...,J corresponds to the categories of the response
variable. Similarly to the previous models, a; corresponds to the threshold parameters or cut-points. u;
is a random variable corresponding to the random effects. These random effects are characterized as
independent and identically distributed (ITD) normal: u; ~ N(0,02). The estimate of the variance, (52),
describes the variability among clusters, indicating the heterogeneity caused by not including certain
explanatory variables that are associated with the response variable.

The practical application of this type of model is displayed in appendix section in order to better

understand its interpretation.

27



28



Chapter 4
Application

This chapter contains the exploratory analysis, including a characterisation of each variable analysed.
Disease mapping of the socioeconomic conditions and the healthcare indicators using the counties of
Portugal are presented. The main purpose of this exploratory analysis is to compare the patterns displayed
in the maps mentioned above with maps displaying the proportion of individuals in each diagnosis stage.
Finally, the cumulative link model and cumulative link mixed model were applied, and the OR was
analysed to assess how each variable is related to the severity of non-small lung cancer.

4.1 Exploratory Analysis

The absolute and relative frequencies by cancer stage and overall are used to characterize the qual-
itative variables. Minimum, median, maximum, mean and standard deviation are the measures used to
characterize the quantitative variables by stage and overall.

The association between the qualitative variables and the stage at diagnosis is analyzed through
independence tests. Usually, the y? independence test is used to determine if there is a significant
association between two categorical variables. According to the literature, the y test is appropriate when
20% of the expected values is less than 5 at most.

Table 4.1: Summary of the qualitative variables by stage and overall.

Variables Stage I Stage 11 Stage IIIA Stage I1IB Stage IV Total p-value
Gender <0.0012
Female 100 (34.7%) 22 (15.1%) 54 (19.9%) 42 (19.2%) 366 (27.3%) 584 (25.8%)
Male 188 (65.3%) 124 (84.9%) 217 (80.1%) 177 (80.8%) 976 (72.7%) 1,682 (74.2%)
District <0.001%
Beja 3 (1.0%) 1 (0.7%) 9 (3.3%) 18 (8.2%) 42 (3.1%) 73 (3.2%)
Evora 6 (2.1%) 3 (2.1%) 8 (3.0%) 5(2.3%) 34 (2.5%) 56 (2.5%)
Faro 24 (8.3%) 12 (8.2%) 23 (8.5%) 31 (14.2%) 167 (12.4%) 257 (11.3%)
Tlha da Madeira 5 (1.7%) 10 (6.8%) 10 (3.7%) 2 (0.9%) 53 (3.9%) 80 (3.5%)
Leiria 7 (2.4%) 3(2.1%) 5 (1.8%) 3 (1.4%) 31 (2.3%) 49 (2.2%)
Lisboa 188 (65.3%) 77 (52.7%) 144 (53.1%) 104 (47.5%) 658 (49.0%) 1,171 (51.7%)
Portalegre 4 (1.4%) 6 (4.1%) 6 (2.2%) 9 (4.1%) 17 (1.3%) 42 (1.9%)
Santarém 14 (4.9%) 11 (7.5%) 19 (7.0%) 18 (8.2%) 117 (8.7%) 179 (7.9%)
Setiibal 37 (12.8%) 23 (15.8%) 47 (17.3%) 29 (13.2%) 223 (16.6%) 359 (15.8%)
Laterality 0.8212
Left 127 (44.1%) 64 (43.8%) 119 (43.9%) 102 (46.6%) 569 (42.4%) 981 (43.3%)
Right 161 (55.9%) 82 (56.2%) 152 (56.1%) 117 (53.4%) 773 (57.6%) 1,285 (56.7%)
Status <0.0012
Dead 87 (30.2%) 87 (59.6%) 209 (77.1%) 196 (89.5%) 1,282 (95.5%) 1,861 (82.1%)
Alive 201 (69.8%) 59 (40.4%) 62 (22.9%) 23 (10.5%) 60 (4.5%) 405 (17.9%)

4 Chi-Square independence test
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Table 4.1 provides the descriptive statistics for the qualitative variables by stage at diagnosis and
overall. Of the 2266 individuals diagnosed with non-small lung cancer, 1682 (74.2%) are male. More
than half of the patients (59.2%) were diagnosed at stage IV, and most women were diagnosed at the
most severe stage (63%). More than half of the patients diagnosed with lung cancer are from Lisbon
(51.7%), which is expected since Lisbon is the largest district represented in ROR-Sul. Portalegre is the
district with a lower number of diagnosed individuals. No significant differences were found regarding
the laterality of the tumour. During the follow-up, 82.1% of the patients died. However, the cause of
death was absent, hence no inference can be made regarding deaths caused by lung cancer. Within stage
I, the proportion of deaths is lower than the proportion of survivors. The situation reverses as the stage
at diagnosis increases, with 96% of patients dying in stage IV. More than half of the patients died during
the first year after diagnosis (53%).

Table 4.1 displays the associated p-values to x? tests and from these it is possible to conclude that the
null hypothesis is rejected for gender, district and status indicating that there is statistical evidence that
the categories of gender (p —value < 0.001), district (p —value < 0.001) and status (p —value < 0.001)
are associated with the stage at diagnosis. The result for variable laterality indicates that there is no
association between the stage at diagnosis and the location of the main tumor.
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Figure 4.1: Proportion of each stage at diagnosis by gen- Figure 4.2: Proportion of each stage at diagnosis by dis-
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Figure 4.3: Proportion of each stage at diagnosis by later-

ality of the tumour. Figure 4.4: Proportion of each stage at diagnosis by status.

The number of male patients is three times higher than the number of female patients (Figure 4.1).
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The width of the horizontal bars represents the proportion of female:male indicating that the ratio is about
1:3. The heights of the boxes correspond to the proportion of each stage for females and males. The
proportion of female patients in stage I is almost two times higher when compared with the proportion of
male patients in stage 1. The proportions of females is smaller, compared to males, in stage II, IIIA and
IIIB, but higher in stage I'V.

Most cases of NSCLC were diagnosed in Lisbon. In Leiria and Portalegre, the proportion of patients
diagnosed with NSCLC was lower than the remaining districts. Madeira has a higher proportion of
patients diagnosed in stage IV, followed by the districts of Faro and Santarém. The proportion of stage
II cancers in Portalegre was the highest and, on the other hand, this proportion was the lowest in Beja.
However, when the proportion of stage IIIB cancers was assessed, Beja was the district with the highest
value and Madeira presents the lowest proportion of patients diagnosed at stage IIIB cancers. The width
of Figure 4.3 indicates that the proportion of patients diagnosed with NSCLC whose primary tumour was
located on the right side was slightly higher than cases with a primary tumour on the left side. The height
was very similar regardless of the stage at diagnosis.

Figure 4.4 shows that the proportion of patients diagnosed with NSCLC who died during the
follow-up period was about four times higher than those who survived. The proportion of patients
diagnosed in stage I who survived is much higher when compared with the proportion of patients
diagnosed in stage I who died. On the other hand, the proportion of patients diagnosed at stage IV who
survived is much lower than those diagnosed at stage IV who died.

The socieconomic as well as the access to healthcare indicators, selected based on the literature
review and by the availability of information in PORDATA and INE, were also analyzed. The variable
age appeared together with these indicators because all of these were quantitative variables.

As seen previously, education, income, and occupation have been regarded as major potential in-
fluencers of health conditions. Hence, as a proxy for healthcare access, the chosen variables were the
number of doctors per 1000 inhabitants and the number of attendances per 1000 inhabitants. As a proxy
for the socioeconomic conditions of each patient, the chosen variables were the estimated income and the
number of social security pensioners per 1000 inhabitants.
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Table 4.2: Summary of the quantitative variables by stage at diagnosis and overall.

Variables Stage I Stage 11 Stage IITA Stage I11IB Stage IV Total
Age (age)
min 35 33 31 38 28 28
median 66 67 66 66 65 66
max 88 87 89 88 92 92
mean (sd) 66.27 (9.82) 66.19 (10.74) 65.29 (10.68) 65.37 (10.77) 65.33 (11.37) 65.50 (11.00)
Income (income.index)
min 1.628853 1.882413 1.492712 1.288244 1.407299 1.288244
median 7.068000 7.424500 7.092353 7.092353 6.710027 6.852066
max 16.655 16.655 16.655 16.655 16.655 16.655
mean (sd) 7.54 (4.02) 8.24 (3.96) 7.81 (3.97) 7.81 (3.78) 7.19 (3.70) 7.44 (3.81)
Welfare recipients (benef)
min 9.51 9.51 9.71 9.75 8.95 8.95
median 34.86 34.57 31.79 32.92 31.79 32.18
max 120.86 120.86 111.51 122.40 202.89 202.89
mean (sd) 37.56 (15.77) 37.45 (18.60) 36.43 (16.65) 36.83 (18.07) 35.62 (16.08) 36.20 (16.49)
Number of medical doctors (doc1000)
min 0.4 0.5 0.4 0.4 0.2 0.2
median 3.1 29 2.8 29 2.8 29
max 17.3 17.3 17.3 17.3 17.3 17.3
mean (sd) 6.68 (6.11) 5.88 (5.74) 5.53 (5.54) 5.94 (5.84) 5.21(5.29) 5.55 (5.53)
Number of attendances (att1000)
min 1299.9 475.5 1299.9 1299.9 0.0 0
median 2266.92 2266.92 2271.61 2300.00 2300.00 2300
max 6433.77 6433.77 8246.73 6433.77 8307.46 8307.46
mean (sd) 2403.67 (584.73) | 2502.30 (962.35) | 2495.25 (833.33) | 2612.27 (818.85) | 2523.94 (879.71) | 2512.37 (843.03)
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Figure 4.5: Distribution of age by stage at diagnosis.
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Figure 4.6: Distribution of income by stage at diagnosis.
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Figure 4.7: Distribution of welfare recipients of integra-
tion income of social security per 1000 inhabitants in
active age by stage at diagnosis.

Figure 4.8: Distribution of numbers of doctors per 1000
inhabitants by stage at diagnosis.
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Figure 4.9: Distribution of number of attendances in
health centers per 1000 inhabitants by stage at diagno-
sis.

In Table 4.2, the quantitative variables by stage at diagnosis and overall were summarized with
the mean, median, standard deviation, minimum and maximum. The youngest patient diagnosed with
NSCLC had 28 years old, and was diagnosed at stage IV. The oldest patient had 92 years old and was also
diagnosed at stage IV. The median and the mean age are practically the same between the stages. Figure
4.5 displays the distribution of age between stages. The presence of outliers was the main difference
between stages I, IITA and IV and stages II and IIIB. These observations correspond to the patients under
40 years.

As seen previously, the income indicator is an approximation to real annual income. However, it still
provides information about the socioeconomic context of each patient. The maximum income was the
same for each stage, because there were people with the same characteristics - age, gender and residence
location - diagnosed in each stage. But, on average, the estimated annual income was lower for patients
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diagnosed at stage IV. The minimum estimated income was observed in people diagnosed at stage I1IB.
The highest values corresponded to the outliers as shown in Figure 4.6, where the estimated annual
income is displayed. Figure 4.7 presents the number of welfare recipients of integration income of social
security per 1000 inhabitants. On average, the lowest value was observed in patients diagnosed at stage
IV, and the highest value in patients diagnosed at stage I. However, one patient whose residence county
has the maximum value of this indicator was diagnosed at the most severe stage, at least.

The maximum number of doctors per 1000 inhabitants was similar across each stage. On average,
patients diagnosed in stage I live in counties with a higher number of doctors, 6.68 doctors per 1000
inhabitants. Overall, each county has on average 5.55 doctors per 1000 inhabitants. The distribution
of the number of doctors per 1000 inhabitants by stage at diagnosis is displayed in Figure 4.8. The
stages I, II and IIIB were equally distributed and the stages IIIA and IV are equally distributed too. Ir is
enough that people diagnosed in one of these two groups live in the same county, sharing the value of
this indicator. The most important feature for the number of attendances is that the minimum was zero
for diagnosed patients at stage IV. However, the maximum value is registered, also, for stage IV. This
variable is characterized by having too many outliers as seen from the Figure 4.9. Among the patients
diagnosed in stage IV, there is one who lives in a context without health care. The lowest number of
attendances was registered in a patient who was diagnosed in stage IV and lives in Mourao.

The main purpose of exploratory analysis was to know the data behaviour before making any as-
sumptions. It can help to identify obvious errors, as well as better understand patterns within the data, to
detect outliers or anomalous events, and to find interesting relations between the variables.

4.2 Disease Mapping

All selected indicators in the section 2 were mapped as well as the proportion of people diagnosed in
each stage by residence county. The main purpose of this approach was to visually assess the possibility
of associations between these indicators and the severity of lung cancer.

pm m
0.75 075
0.50 0.50
0.25 0.25
= 000 = 000
Figure 4.10: Proportion of diagnosed people a stage Figure 4.11: Proportion of diagnosed people a stage
I for each county of the ROR-Sul area. II for each county of the ROR-Sul area.
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Figure 4.12: Proportion of diagnosed people a stage
IIIA for each county of the ROR-Sul area.
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Figure 4.14: Proportion of diagnosed people a stage
IV for each county of the ROR-Sul area.

Figure 4.13: Proportion of diagnosed people a stage
IIIB for each county of the ROR-Sul area.

Figure 4.15: Number of doctors per 1000 inhabi-
tants for each county of the ROR-Sul area.
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Figure 4.16: Number of attendances per 1000 in-
habitants for each county of the ROR-Sul area.
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Figure 4.17: Number of welfare recipients per 1000 Figure 4.18: Estimated annual income for each
inhabitants for each county of the ROR-Sul area. county of the ROR-Sul area.

Several counties (Castelo de Vide, Monforte, Sousel, Cuba, Barrancos and Alcoutim) are displayed
in grey, corresponding to counties without data. No patients were diagnosed with NSCLC living in those
regions. Red counties correspond to higher indicator values, and blue counties correspond to counties
with lower indicator values.

According to Figure 4.14, Rio Maior, Constancia, Redondo, Borba, Mourdo, Viana do Alentejo,
Almodovar, Vila do Bispo and Monchique correspond to the regions with higher proportion of people
diagnosed at stage I'V. Of this set of counties, Vila do Bispo, Mourao and Viana do Alentejo were included
in those with the lowest number of doctors available per 1000 inhabitants. Also, Mourao and Redondo
were the counties with the lowest of estimated annual income. Additionally, Mourdo was the county with
the highest number of welfare recipients per 1000 inhabitants.

Nevertheless, there was no clear pattern between the stage at diagnosis and the socioeconomic and
healthcare conditions. The mortality rate associated with lung cancer for each NUTS II was calculated
based on INE data. The mortality rate was available for 2013 and 2014, the years of diagnosis considered,
until 2019.
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Figure 4.19: Mortality rate per 100000 inhabitants for each NUTS II region.

The mortality rate per 100000 inhabitants in Portugal had some variations in the different NUTS 11
regions over time. Algarve was the region where the mortality rate was higher since 2014 when compared
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with the remaining NUTS II regions. Additionally, in 2018 the region with the highest mortality rate
was Lisbon Metropolitan Area. In 2019, with 31 deaths per 100000 inhabitants, the Autonomous Region
of Madeira was the region with the lowest mortality associated lung cancer. In the same year, with 50
deaths per 100000 inhabitants, the highest mortality rate was registered in Algarve.

Based on Figure 4.19, 2013 and 2018 have lower variability between the NUTS II regions. In the
remaining years, there was greater variability in the mortality rate between these regions.

4.3 Ordinal Logistic Regression

This analysis was made considering all variables previously discussed, that is, stage as dependent
variable and gender, age, doc1000, benef, att1000 and income.index as independent variables. Univariate
regressions for each variable are also presented.

Unlike the usual models, this type of model was characterized by more than one equation. As seen in
section 3.2, there were as many equations as there were categories of the dependent variable, minus one.
To simplify the notation, the categories of the response variable I, II, IIIA and IIIB were represented in
the scale 1, 2, 3 and 4, respectively. So, in this case, in order to evaluate the model the following four

equations were interpreted:
Equation 1: logit(P(Y; < 1)) = a; — BX — comparison [ vs. II, IITA, IIIB, IV
Equation 2: logit(P(Y; < 2)) = ay — BX — comparison I, I vs. TIIA, IIIB, IV
Equation 3: logit(P(Y; < 3)) = a3 — X — comparison I, II, ITIA vs. IIIB, IV
Equation 4: logit(P(Y; <4)) = aq — BX — comparison I, II, ITIIA, TIIB vs. IV

Firstly, the simplest models were fitted, in which only one independent variable was used to model the
dependent variable. The purpose of a simple model was to provide a simple low-dimensional summary
of a dataset, in which the individual relation between independent and dependent variables was assessed.
As seen in the chapter 2, the variables used in statistical inference were age, gender, doc1000, att1000,
benef and income.index. Only age and gender corresponded to unique characteristics that define the
individual. A little more individualized, but still built based on information whose aggregating element
was also the residence county, there was income.index. The remaining variables were doc1000, att1000
and benef and these did not characterize the patient individually, since those who lived in the same county
had the same value in these indicators. Thus, the simplest model applied to individual information was
cumulative link model whereas the area-based information, including the income.index, was modeled by
cumulative link mixed model, where the random effect was added. This random effect represented the
residence county and this was the major difference between these two models.

The main results are displayed Table 4.3. The cumulative link model expression is given by:

( P(Y; <J) ) (P(YiSJ')
In| ——=L | = | —L=2L

1-P(Y; <)) P(Y; > j)) =a;—BXx; 4.1)

where i = 1,...,2266, j = 1,2,3,4 and x corresponds to the set of individual independent variables used
to explain the severity of NSCLC. The cumulative link mixed model expression is given by:

PYi<j) \_, (PXi<))

n| ——— | =iln|————=

1 —P(Yi < ]) P(Yl N ])) = aj _ﬁx-xi —M(COMm‘yi) (42)
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where i =1,...,2266, j = 1,2,3,4 and x corresponds to the set of area-based indicators mentioned above.

Table 4.3: Summarized information of each univariate model.

@ @ @3 ay B o2 p—-value 95% CI(S3)
genderMale.  -1.985  -1499  -0.853  -0431  -0.076 - 0.427 (-0.266 ,0.111)
age” 2219 -1732  -1.087 0665  -0.004 - 0.233 (-0.012 , 0.003)
doc1000” 2099  -1.610  -0.962  -0.538  -0.029  0.006 <0.01 (-0.046 ,-0.011)
benef™ 2110 -1.621  -0971  -0.545  -0.003  0.033 0.293 (-0.009 , 0.003)
att1000™"  -1.744 1257 -0.611  -0.189  0.0001 1 0.286 (-0.00009 , 0.0002)
income.index” " -2.190  -1.701  -1.050  -0.625  -0.029  0.023 0.029 (-0.055 , -0.003)

* Cumulative link model
** Cumulative link mixed model

Since the regression coefficient is positive the possibility of the stage increasing to a higher stage
increases with the increase of the independent variable. Otherwise, the possibility ofa diagnosis at higher
stages decreases with the increase of the independent variable. Both 95% confidence interval and the
p —value were indicators to assess the significance of each independent variable.

Taking into consideration the sign of the regression coefficients (3), considering one variable at a time,
it was possible to observe that gender and age of the patient, the number of doctors, the welfare recipients
and the estimated annual income favor lower stages. On the other hand, the number of attendances favor
later stages. Based on p —values, the number of doctors and the estimated annual income are significant
variables, without any effect caused by other independent variables.

The next step consisted in estimating a multivariable proportional odds model and the results are
displayed in Table 4.4. In this first phase, the area-based information was treated as individual, thus
making unnecessary the inclusion of a random effect. The main purpose of this modeling approach was
to compare the results with the model in which the aggregator element as a random term was included.

Table 4.4: Summarized information of multivariable proportional odds model.

ay @ as ay B p-value 95% CI(8)
genderMale -0.143 0.419 (-0.502, 0.209)
age -0.004 0.335 (-0.011, 0.004)
doc1000 -0.029 0.089 (-0.063 , 0.004)
benef 23T 1828 LTS 055 n 0.577 (-0.007 , 0.004)
att1000 0.0001 0.312 (-0.00005 , 0.0002)
income.index 0.008 0.773 (-0.048 , 0.064)

At this point, the proportional odds assumption should be evaluated. One of the assumptions
underlying ordinal logistic regression was that the relationship between each pair of outcome groups
would be the same. That is, the ordinal logistic regression assumes that the coefficients that describe
the relationship between the lowest versus all higher categories of the response variable are the same as
those that describe the relationship between the next lowest category and all higher categories, etc. Since
the relationship between all pairs of groups was the same, only one set of coefficients is presented in
Table 4.4. This assumption was tested applying a series of Wald tests to verify whether the regression
coefficients differ across equations. With a p —value lower than 0.01, gender was the only variable for
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which this assumption was rejected. Thus, gender will have different effects in comparison between the
stages at diagnosis.

Proceeding with the analysis, the partial proportional odds model with logit function was fitted
with gender coefficients changing across the stages while for the other variables assume parallel lines
assumption was kept. The general equation of the model is

logit(P(Y; < j)) = aj—p1(age;) — B2(doc1000;) — B3 (bene f;) — B4(att1000;)—

N (4.3)
Bs(income.index;) + fej(gender;), i=1,...,2266,j=1,2,3,4

In this model, thirteen coefficients were to be estimated: four thresholds, four coefficients associated
to the gender variable, which varied across the stage at diagnosis, and one for each of the remaining
variables. The obtained results are as follows:

Table 4.5: Summarized information of multivariable partial proportional odds model.

& [ @3 [ B p—value 95% CI(S3)
genderMale (1: -0.457,2: -0.108, 3: 0.102,4: 0.235)  (1: 0.027, 2: 0.580, 3: 0.582, 4: 0.195) -
age -0.004 0315 (-0.011,0.004)
doc1000 -0.026 0.131 (-0.059 , 0.008)
benef 1925 ) -L6TT | L1841 -0.859 -0.002 0.519 (-0.007 , 0.004)
att1000 0.0001 0.306 (-0.00005 , 0.0002)
income.index 0.003 0.917 (-0.053 , 0.059)

The coeflicients for age, doc1000 and benef are negative, while the coefficients for income.index and
att1000 are positive. Taking into account the coeflicient sign of each variable, the results indicate that:

- the odds of a patient being diagnosed at higher stages decreases with the increase of the patients’
age, the number of doctors and the number of welfare recipients in the patients’ county of residence

- the odds of a patient being diagnosed at higher stages increases with the increase of the patients’

income and the number of attendances in the patients’ county of residence

The interpretation for gender varies depending on the category of the response variable, stage at
diagnosis. Gender was a categorical variable with two categories — Female and Male — where female was
the reference class. For the lowest stages (Y < 2), the possibility of a male patient being diagnosed at a
higher stage was higher than that of a female patient. For higher stages (Y > 3), the conclusion was the
opposite, the odds of a female patient being diagnosed at a higher stage was higher than that of a male
patient.

In order to understand the effect of gender in the model it could be interesting analyse the P(Y > j)
with j =1,2,3,4 for each value that the variable can takes - Female or Male.
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P(Y < j|gender)
— . . d
P(Y > jlgender) exp(a;+ B, X gender)

© P(Y < jlgender) = exp(a;+pBx gender)P(Y > j|gender)

© P(Y < jlgender) =exp(a;+ B xgender)(1-P(Y < jlgender)) )
© P(Y < jlgender) =exp(a;+ B x gender) —exp(a;+ ;X gender)(P(Y < j|gender)

& P(Y < j|gender)(1+exp(a;+fB; X gender)) = exp(a; + ;X gender)

exp(a;+B; X gender
& P(Y < j|gender) = pla; +h;x8 )

1 +exp(a;+pB; X gender)

Note that when j was the first level, P(Y < j) = P(Y = j). However, to calculate P(Y = j+1), the

following expression was used:

P(Y < j+1|gender) = P(Y = j|gender)+ P(Y = j + 1l|gender)
& P(Y =j+1|gender)=P(Y < j+1|gender)—P(Y = j|gender)

exp(a;s1 +Bj+1 X gender)
1 +exp(a 1+ 41 X gender)

(4.5)

< P(Y =j+1|gender) = —P(Y = j|gender)

Stage evolution according to gender
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Figure 4.20: Effect of gender in the cumulative link model.

Figure 4.20 displays the probability of a patient being diagnosed at higher stages for each considered
cut-point according to the gender:

P(Y > 1) =1vs. II, lIIA, IIIB, IV
P(Y >2) =1, Il vs. llIA, IIIB, IV
P(Y >3) = L 11, IlTIA vs. IIIB, IV

P(Y >4) = L I, IlIA, IIIB vs. IV
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As previously mentioned, for lower stages - I and I, the probability of a male patient being diangosed
at higher stages is higher when compared with a female patient. However, the conclusion was opposite
when the severity of disease increases.

Odds Ratio

Calculating the OR, as presented in section 3, for each variable, the results are the following:

0ddsage+1

Age: OR =
£e odds ge

=exp(f1) = exp(—0.004) = 0.996

dd A
Number of doctors: OR = —oeodociont! exp(f8>) = exp(—0.026) = 0.974

Oddsd()clooo

odds - A
Welfare of recipients: OR = T beneyHl exp(B3) = exp(—0.002) = 0.998

oddspene f

0ddsatt1000+100

Number of attendances: OR =
0dds art

= exp(100 x 1) = exp(100 x 0.00005) = 1.005

dds; A
Income: OR = 2220ncometl _ ,h(Bs) = exp(0.003) = 1.003
oddsincome
Gender:
dd A
— Stage I: OR = ——=Male _ oxn(—fo;) = exp(0.45) = 1.568
oddsFemale
dd N
_ Stage Il: OR = 2523Male _ oyi(—fes) = exp(0.11) = 1.116
0ddsFemale
dd N
— Stage IIIA: OR = 00 Male exp(—PB¢3) = exp(—0.10) = 0.905
0ddsFemale
dd .
— Stage IIIB: OR = 00 Male exp(—Le4) = exp(—0.24) = 0.787
0ddsFemale

The above values correspond to the OR of the event Y > j, with j = I, II, IITA, IIIB, IV.

According to the result for age (OR 0.996, 95% CI: 0.989 - 1.004) the odds of an older patient being
diagnosed at higher stages was 0.996 times the odds of an younger patient being diagnosed at higher
stages.

Regarding the number of doctors per 1000 inhabitants (OR 0.974, 95% CI: 0.942 - 1.008), the result
indicated that the odds of being diagnosed at higher stages was 2.6% lower for patients who live in a
county where the number of doctors per 1000 inhabitants was one unit higher.

The value for the number of welfare recipients per 1000 inhabitants (OR 0.998, 95% CI: 0.993 -
1.004) indicated that the odds of being diagnosed at higher stages decreases by 0.2% for patients who live
in a county where the number of welfare recipients per 1000 inhabitants was one unit higher.The odds
of a patient to be diagnosed at higher stages, if lived in a county in which the number of attendances per
1000 inhabitants was higher, was 0.5% higher than a patient who lives in a county where the number of
attendances per 1000 inhabitants was lower (OR 1.005, 95% CI: 0.995 - 1.016).

The odds of a patient being diagnosed at higher stages increased by 0.3% by each income one thousand
euro increasing (OR 1.003, 95% CI: 0.949 - 1.060).

Since the proportional odds assumption was not verified for gender, its coefficients were different
across the cut-points/thresholds. Hence, the OR were different too. For stage I the OR indicated that the
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odds of being diagnosed at higher stages (II, IIIA, IIIB or IV) was 56.8% higher for male patients. For
stage II, the odds of being diagnosed at higher stages (IIIA, IIIB or IV) for a male patient was 11.6%
higher comparing with the odds of this event for a female patient. The result for stage IIIA indicated that
the odds of a male patient being diagnosed at higher stages (IIIB or IV) was 9.5% lower than a female
patient. Considering the stage IIIB or below, the odds of a male patient being diagnosed at higher stages
(IV) was 21.3% lower when compared to a female patient.

Excluding gender, the OR were very close to one, meaning that there is no evidence that exposure
(independent variable) significantly affects the odds of outcome (response variable).

Cumulative link mixed models

In equation (4.2), x corresponds to the set of variables used as independent variables. As in the
equation (4.1), age, doc1000, benef, att1000 and income.index are the variables used for univariate
analysis.

As in the previous simplest models (see Table 4.3), the number of attendances was the only variable
whose regression coefficient was positive. There was a slight difference about the significance of each
these variables. The p —value associated to the number of attendances and income increases when the
random effect was added. The complete model was fitted and its expression is given by:

logit(P(Y; < j)) = aj — Bi(agei) — B2(doc1000;) — B3(bene f;) — B4(att1000;)
— Bs(income.index;) — Bs(gender;) —u(county;) 4.6)
i=1,...,2266;j=1,2,3,4

The R function nominal_test() used to test available to test the proportional odds assumption is not
available for mixed models. Hence, the mixed model (4.6) and the mixed model with a nominal effect
were compared. To compare two nested models, or a sequence of more than two nested models, the R
function anova() was used. This comparison was made considering model (4.6) and the models with each
of the independent variables varying according to the stage of diagnosis, for each variable separately.
Hence, six comparisons were made, as many as existing independent variables. The likelihood ratio
was computed, allowing to choose the best model between each combination of two nested models. The
results are displayed in Table 4.6.

Table 4.6: Analysis of the proportional odds assumption for the cumulative link mixed model.

Variable whose proportional odds assumption is tested LR p-value
age 0.899 0.343
doc1000 1.796 0.180
benef -0.309 1
att1000 -71.601 1
income.index -0.003 1
gender 0.293 0.588

Table 4.6 presents the p-values for each variable of the test for the addition of a nominal effect. Larger
p-values indicates that the difference between the two models is not statistically significant, and the
simplest model was chosen. Smaller p-values, indicates that the difference was statistically significant,
and the model with nominal effect was chosen. There were no p-values lower than 0.1, maximum
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significance level used. Hence, the proportional odds assumption was verified for all the independent
variables.
Table 4.7 displays the summarized information about the multivariable mixed model.

Table 4.7: Summarized information of each multivariable model including the effect of random term.

@ @ a3 Qy B 6% | p-value 95% CI()
genderMale -0.143 0.499 (-0.559 , 0.272)
age -0.004 0.360 (-0.012, 0.004)
doc1000 -0.029 0.566 (-0.128 , 0.070)
benef 2317 | 1828 ) -LIT9 0755 -0.002 ! 0.777 (-0.012, 0.009)
att1000 0.00007 0.487 (-0.0001 , 0.0003)
income.index 0.008 0.825 (-0.06, 0.075)

The interpretation of the mixed model was made based on the sign of coefficients, in which the larger
coeflicients reveals an association with larger scores.

- the odds of an older patient to be diagnosed at higher stages was lower than a younger patient
- higher income was associated to the increase of the odds of being diagnosed at higher stages

- patients who live in counties with a high number of welfare recipients had a lower odds of being
diagnosed at higher stages than patients who live in counties with a smaller number of welfare
recipients

- the odds of a patient to be diagnosed at higher stages was higher if his residence county had a
higher number of attendances

- the odds of a male patient to be diagnosed at higher stages was lower than a female patient

- patients who live in counties with a high number of doctors had a lower odds of being diagnosed

at higher stages than patients who live in counties with a smaller number of doctors

Unlike the model without random effect, the model with random effects had no variables whose
proportional odds assumption was not verified, including gender. This variable did not have the same
effect at different stages as the Figure 4.20 suggested. Adding the county as random effect, the effect
of gender between the stages was different. In Figure 4.21 one can observe that the distance between
the lines is shorter and, more importantly, do not intercept, compared to the Figure 4.20, suggesting
parallelism between the two lines. Indeed, as seen in chapter 3, the proportional odds assumption was
also known as parallel lines assumption.
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4.3. ORDINAL LOGISTIC REGRESSION

Stage evolution according to gender
0.95
0.9
0.85
0.8
. 075

P(Y >j)

0.7

0.65

0.6

0.55
| Il A g

Female —@—Male
Figure 4.21: Effect of gender in the cumulative link mixed model.

The dark blue line indicates the probability of a male patient to be diagnosed at higher stages is lower

than lower stages, as shown in Table 4.7.

Odds Ratio

0ddsage+l

=exp(B1) = exp(—0.004) = 0.996
oddsge

Age: OR =

0ddsd0C1000+1

Number of doctors: OR = =exp(f) = exp(—0.029) = 0.971
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0ddsbenef+l

= exp(B3) = exp(—0.002) = 0.998
oddspene f

Welfare of recipients: OR =

Oddsatt1000+100

=exp(100 Xﬁ4) = exp(100x0.00007) = 1.007
odds att,000

Number of attendances: OR =
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Income: OR = 288%ncomerl _ i (Bs) = exp(0.008) = 1.008
0ddsincome

dd )
Gender: OR = 228Male 1y (Bs) = exp(~0.143) = 0.866
oddsFemale

The OR associated with the age indicated that the chance of being diagnosed in higher stages decreased
0.4% for older patients. The chance of a patient being diagnosed at higher stages decreased by 2.9%
if his residence county had a larger number of doctors per 1000 inhabitants. Patients living in counties
with a high number of welfare recipients had a 0.2% lower chance of being diagnosed at higher stahes
than patients living in counties with a smaller number of welfare recipients. The OR for att1000 was
greater than 1, indicating that the chance of a patient being diagnosed at higher stages was higher for
those who live in counties with the number of attendances per 1000 inhabitants higher. The estimated
annual income had also a OR greater than one, indicating that patients with higher estimated annual
income had a 0.8% increase in the chance of being diagnosed in higher stages. Finally, the OR for gender
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CHAPTER 4. APPLICATION

was 0.866, indicating that the chance of a male patient being diagnosed at higher stages decreased 13.4%
when compared to a female patient.

The inclusion of county as a random effect allowed to account for the variability that the independent
variables cannot explain, to incorporate county-to-county variability of NSCLC, and improve the ability
to describe how fixed effects relate to outcomes.

The estimated standard deviation (6, = 1) of the random effect indicates the existence of variability
caused by the residence of the patient.

The conditional modes and the conditional variance, which provides an uncertainty measure of the
conditional modes, were used to assess the effect of random term. The conditional modes are an available
component of the cumulative link mixed model (ranef()). These values correspond to the difference
between the average predicted response for a given set of fixed-effect values and the response predicted
for a particular individual.

Figure 4.22 characterizes the county as a random effect through the conditional modes as well their
95% confidence intervals. Figure 4.22 displays 116 lines, corresponding to each county that cover the
ROR-Sul area. Each colour corresponds to the NUTS II region of the county.

Table 4.8: NUTS II cataloged by colored considered.

Center red
Alentejo blue
Lisbon Metropolitan Area orange
Algarve yellow
Autonomous Region of Madeira | green

Table 4.9: Correspondence of indexes to the respective counties.

Abrantes 30 Calheta (R.A.M.) Magcio 88 Ribeira Brava

Alandroal 31 Camara De Lobos 60 Machico Rio Maior

Albufeira Campo Maior 61 Mafra Salvaterra De Magos
Alcécer Do Sal Cartaxo Marvao 91 Santa Cruz

Alcanena 34 Cascais Meértola 92 Santana

Alcobaga 35 Castro Marim 64 Moita Santarém

Alcochete Castro Verde 65 Monchique Santiago Do Cacém
Alenquer Chamusca - Montemor-O-Novo Sao Brés De Alportel
Aljezur Constancia 67 Montijo Sardoal

Aljustrel Coruche Mora 97 Seixal

Almada Crato Moura Serpa

Almeirim Elvas Mourdo 99 Sesimbra

Almodovar Entroncamento Nazaré 100 Setibal

Alpiarca Estremoz Nisa 101 Silves

Alter Do Chio Evora Obidos - Sines

Alvito 45 Faro Odemira 103 Sintra

Amadora Ferreira Do Alentejo 75 Odivelas Sobral De Monte Agraco
Arraiolos Ferreira Do Zézere 76 Oeiras Tavira

Arronches Fronteira 77 Olhdo Tomar

Arruda Dos Vinhos 49 Funchal Ourém Torres Novas

Avis Gavido Ourique Torres Vedras
Azambuja Golega m Palmela Vendas Novas

Barreiro Grandola Peniche Viana Do Alentejo

Beja 53 Lagoa Ponte De Sér Vidigueira

Benavente 54 Lagos Portalegre 112 Vila Do Bispo
Bombarral 55 Lisboa Portel 113 Vila Franca De Xira
Borba 56 Loulé 85 Portimao Vila Nova Da Barquinha
Cadaval 57 Loures Redondo 115 Vila Real De Santo Anténio
Caldas Da Rainha - Lourinha Reguengos De Monsaraz Vila Vigosa
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Figure 4.22: County effects given by conditional modes with 95% confidence intervals based on the conditional variance.
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CHAPTER 4. APPLICATION

Figure 4.22 displays the conditional modes in ascending order. According to the results, in Obidos
(index 73) smaller stages were favoured. One the other hand, in Camara dos Lobos (index 31) higher
stages were favoured. The significant county effect indicates a difference in the incidence of NSCLC
between the counties. Loures and Santarém (indexes 57 and 93, respectively) were the only counties
whose 95% confidence intervals do not contain zero.

Additionally, based on Figure 4.22, most counties have a high amplitude and, therefore, the results
should be analyzed carefully. The existence of high deviations in several counties was due to the fact that
there were few cases of cancer diagnosed in those same counties. A small size contributes to an increase
in deviation and the Figures 4.23 and 4.24 demonstrates the deviation. Figure 4.23 contains the total
patients diagnosed with NSCLC by county. Lisbon was the county with more patients being diagnosed
with NSCLC and Sintra was the second one. Indeed, Lisbon and the neighboring counties had the highest
values for diagnosed cases. These counties also have smaller deviation.

300 075

200 0.50

100 0.25

Figure 4.24: Square root of conditional variance of

Figure 4.23: Number of diagnosed patients by random effect

county of ROR-Sul.

This analysis was made using the residence county because both indicators of socioeconomic condi-
tions and access to healthcare conditions were collected at the county level.

Even with the random effect, and although there were differences in incidence by residence county,
the socioeconomic and access to healthcare conditions used in this project did not have a significant
impact in stage at diagnosis of NSCLC.
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Chapter 5

Conclusion and Discussion

The main purpose of this project was to study the association between the indicators of socioeconomic
conditions and access to healthcare and the severity of lung cancer in patients diagnosed in the Southern
region of Portugal.

The original dataset had demographic information about each patient, such as gender, age and place
of residence (county and district) and specific information about the disease, such as the stage at diagnosis
and the final status (alive or deceased).

The dependent variable considered was stage at diagnosis, which indicates the severity of the disease.
Stage at diagnosis is an ordinal variable with more than two categories, hence, two different models were
applied - the ordinal regression model and the ordinal regression mixed model. The main difference
between these two models is the inclusion of a random effect. The random effect allows to accommodate
the differences between the regions and, also, to capture what the variables cannot capture by themselves.
The random term used in this model was the residence county, since this indicator was the aggregating
element used to merge the socioeconomic and the access healthcare conditions to the original data.

From 01-01-2013 to 31-12-2014, 2266 patients living in the ROR-Sul area were diagnosed with
NSCLC. Most of these patients were male (74.2%). The distribution of the proportion of individuals
diagnosed in each stage showed differences depending on the district of residence. Regarding final status,
82.1% of patients died and, although the cause of death is not known, the proportion of patients diagnosed
at stage IV who died is about five times higher than the proportion of patients diagnosed at stage IV who
survived.

Socioeconomic and healthcare access information was not available at individual level and hence was
gathered at the county level, based on official data sources. For that reason, patients living in the same
county had the same value in these indicators, except for the income.index that was also added according
to age and gender. These aspects of the data also justify the adoption of a spatial clustering component.

The impact of the chosen explanatory variables - gender, age, doc1000, att1000, benef and in-
come.index - in stage at diagnosis was assessed through the cumulative link model. However, since
variable gender has different effects across the cut-points (the proportional odds assumption was vio-
lated), the partial proportional odds model was applied (4.3). In these models, the difference between
regions was not taken into consideration. To accommodate the dependency within regions, the county
was introduced in the model as a random effect (4.6). None of the considered variables were found to
have a statistically significant effect. When fitted the mixed effects model, the coefficients signs did not
changes, indicating that the effect of the variables was the same regardless of the random term. The
odds of a patient being diagnosed at higher stages decreased as age increased. Also, higher number of
doctors per 1000 inhabitants and higher number of welfare recipients per 1000 inhabitants appeared as
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favouring lower stages. Conversely, a higher number of attendances per 1000 inhabitants and a higher
annual income appeared as contributing to an increased odds of diagnosis at a higher stage. In the model
with no random term, the effect of patients’ gender varies according to the severity of the disease. In the
mixed model, the coefficient was negative, indicating that the odds of a male patient being diagnosed at
later stages was lower when compared to a female patient. Unfortunately, none of the above mentioned
effects was found to be statistically significant in either the models. However, when analysed in univariate
models, both annual income and the number of doctors per 1000 inhabitants were found to be statistically
associated to the severity at diagnosis. When considered in the multiple partial proportional odds model,
despite loosing significance, variable doc1000 presented exactly the same coefficient estimate as in the
univariate model.

Concerning variable income, in the univariate model, it appeared as being significantly associated to
the stage at diagnosis, with higher income associated to less severe stages at diagnosis. When incorporated
in the multiple models, not only it lost significance, but also the sign of the coefficient changed.

The lack of significance and also some contradiction that are found in our results may partially be
explained by the type and quality of our data in terms of ability to properly characterize the patients
and their socioeconomic conditions. According to several studies there is an association between access
to healthcare and the socioeconomic status, which is characterized by social environment, lifestyle,
occupation, education and income, among other factors [3, 11, 14, 15, 17, 35]. More precisely, potential
factors as education, income, health insurance coverage, marital status have been studied to assess the
association between indicators of socioeconomic and access to healthcare and lung cancer survival.
Unfortunately, in this study, there was not much information available about access to healthcare, even in
an aggregate format. The ideal would be to know each patient’s situation, like, for example, if he or she
has health insurance.

Considering the individualized or area-based studies, the results revealed that the lung cancer survival
was lower for patients whose income is lower. Income is considered an important variable in health studies
because, in general, a higher income is associated to a better access to healthcare and, consequently, better
health outcomes. When such information is not available, education is often used since it is seen as a
good proxy for income [37, 39]. In the present case, since none of the variables was available at the
individual level, it was decided to extract information related to income from the official data sources and
refine it at the finest categorization possible, accounting for location, age and gender. This was resumed
in variables mabs and dgi, which were used to create variable income.index.

Gender has appeared in the literature as a risk factor, in which the lung cancer survival was lower
for male patients. However, there is some evidence in the literature that suggests that for women, the
risk of all major histological types of lung cancer is getting higher than for men. This difference could
be justified with smoking habits. The prevalence of smoking has been increasing among women, while
there is the opposite trend among men. Indeed, the results of the estimated mixed model (4.6) in this
project revealed that the possibility of a male patient being diagnosed at higher stages was lower than to a
female patient. As for the impact of smoking habits in the occurrence of the disease, there is a European
study which confirms that "smoking has the same impact on lung cancer in the two sexes" [18].

In review articles, lung cancer survival has been the outcome of major interest and association was
found with several socioeconomic conditions. Patients diagnosed at a higher stage have poorer prognosis
which, in general, mean lower survival rate. Hence it is of major interest to identify the factors associated
to the stage of the disease at the time of diagnosis, so that, eventually, some measures can be implemented
with the objective of detecting the disease at earlier stages.

In the literature it was recommended the analysis combining the individual with aggregated data [11].
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CHAPTER 5. CONCLUSION AND DISCUSSION

On the one hand, there are factors that belong exclusively to the individual, such as his or her income,
age, gender, marital status, etc. On the other hand, access to healthcare factors already concerns the
environment in which the patient is inserted, such as, number of available doctors. Most data used in this
project correspond to the aggregated data.

Future research should consider patient-level characteristics such as smoking behaviours, comorbidi-
ties, socioeconomic status, education and marital status. Considering that lungs are the affected tissue,
smoking habits might lead to higher vulnerability, and a lower chance survival [35].

Since the dependent variable is ordinal, there are several alternatives that could be used. The
continuation-ratio model or adjacent-category logistic model are two examples of possible models that
could be applied [6].

The continuation-ratio model was proposed by Feinberg [10] as an alternative method to the propor-
tional odds model for the analysis of categorical data with ordered responses. The difference compared
to the proportional odds model is that the cumulative probabilities, P(Y < j), of being in one of the first
J categories is replaced by the probability of being in category j, P(Y = j).

The adjacent-category logistic model involves modelling the ratio of the two probabilities, P(Y = j)
and P(Y = j+1) [5]. Exponentiating, the regression coefficient 8;, for the [ —th covariate x; will result
in the OR comparing (Y = j) versus (¥ = j+ 1), for a unit increase in x;.
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Number of new cases in 2018, males, all ages
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Figure 1: Portuguese number of new cases in 2018, male,
all ages [24].
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Figure 3: European number of new cases in 2018, male,
all ages [23].
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Figure 5: Worldwide number of new cases in 2018, male,
all ages [25]

Proportional Odds Model

Example

Number of new cases in 2018, females, all ages
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Figure 2: Portuguese number of new cases in 2018, fe-
male, all ages [24].
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Figure 4: European number of new cases in 2018, female,
all ages [23]
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Figure 6: Worldwide number of new cases in 2018, fe-
male, all ages [25]

A common example where this type of model is used is in wine data from Randall [29]. This dataset
is available in the object wine in R package ordinal. It was used in a factorial experiment in order to
determine the bitterness of wine where the lowest value (1) corresponds to "least bitter" classification
and the highest value (5) corresponds to "most bitter". During wine production, two factors were used
to evaluate the bitterness of wine - temperature and contact. Nine judges assessed wine from each of the
total combinations (temperature - warm/could and contact - yes/no). The purpose of this project was to
evaluate the effect of each factor on the perceived bitterness of wine.

The following cumulative link model for the wine data was considered:

logit(P(Y; < j)) =6;—Bi(temp;) — B2(contact;) i=1,...n j=1,...,J-1 €))

where i represents the number of observations and j the number of categories of response variable (J =5).
The model provides the cumulative probability of the i —th observation falling in the j —th category or
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below.

The regression parameter 81 corresponds to the impact in the bitterness of wine when the temperature
is warm, keeping the contact unchanged. [, represents the impact in the bitterness of wine when the
contact is "yes", keeping the temperature unchanged.

d; = {~1.3444,1.2508,3.4669,5.0064}
81 =2.5031 f,=1.5278

The regression coeflicients are positive, indicating that increasing temperature and the existence of
contact is associated with an increase in the bitterness of wine. ¢ ;i corresponds to the thresholds when
temp; = cold and contact; = no are considered.

The three main conclusions of this model are as follows:

* The thresholds at contact; = yes conditions have been shifted a constant amount 1.5278 relative
to the thresholds contact; = no at conditions.

* The location of the latent distribution has been shifted +1.5278c " (scale units) at contact; = yes

relative to contact; = no.

* The OR of bitterness being rated in category j or above (Y > j) is exp(8>) = 4.61

Partial or Non-Proportional Odds Model: nominal effects

Example

The cumulative link model in 1 specifies a structure in which the regression parameters are not
allowed to vary with j. When the proportional odds assumption is relaxed in one variable, contact for

example, the model expression is transformed by:

logit(P(Y; < j)) =0, — B(temp;) + B;(contact;) 2)
withi=1,...,nand j =1,...,J — 1. The obtained results with this model are as follows:
d; = {-1.3230,1.2464,3.5500,4.6602}
B=2.519
B;={-1.6151,-1.5116,-1.6748,-1.0506}

The thresholds vector refers to the temp; = cold and contact; = no settings while the thresholds at
temp; = cold and contact; = no are § i+ B ;. Unlike the proportional odds model, the OR of bitterness
being rated in category j or above now depends on j.

exp(—f;) = {5.03,4.53,5.34,2.86}

To test the proportional odds assumption for all variables, the nominal_test() function is used. This
function moves all terms in formula and copies all terms in scale to nominal one by one and produces a
table with likelihood ratio tests of each term.

As seen previously, most of information is shared among patients and therefore this model can handle
with some limitations. In this case, the assumption of independence of observations is not verified. This
independence is assumed conditional on the fixed effect as well as the explanatory variable values.
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Ordinal Generalized Linear Mixed Models

Example

Consider the same data of previously example [29]. The data used before as an example of cumulative
link model was also analysed with mixed effects model by Tutz and Hennevogl [36].

The main objective was to find the factors that determines the bitterness of wine, taking into account
the judge rating. The main purpose in using the judges as random effect is to deal with the given measures
by each judge.

So, the cumulative link mixed model to the wine data is formulated as:

logit(P(Y; < j)) = a;—Bi(temp;) — B2 (contact;) —u(judge;) 3)

with i=1,...,n and j =1,...,J — 1. The results contain the maximum likelihood estimates of the

parameters:
B1=3.06,5,=1.83,62=1.29=1.13%, ¢; ={-1.62,1.51,4.23,6.09}

The regression coefficients, 8; and (,, are positive indicating that with higher temperature and
contact the bitterness of the wine increases. Analysing the temperature, the OR of the event Y > j is
exp(B(temp)) = exp(3.06) =21.37.

The estimate of random effects corresponds to the standard deviation of this parameter which is given
by V1.29 = 1.13. The nullity test of this parameter does not appear in the output. However, it can be
obtained through a likelihood ratio test. In order to assess the significance of this term a model that
includes it and another model without it. The test of o, = 0 displays a p value showing whether the judge
term is significant. Note that the u(judge;) are not model parameters and they cannot be estimated in
the conventional sense. Although, it is possible to assess its random effects. These ones are random and
normally distributed N (0, 2). In order to evaluate the impact of random effect there are two components
of cumulative link mixed model that could be used - ranef and condVar. The first one corresponds to the
random effect and the second one to the conditional variance. In this case, from these it is possible to
know the judge effects via conditional modes with 95% confidence intervals.

Judge effect

Judge

Figure 7: Judge effects given by conditional modes with 95% confidence intervals based on the conditional variance

61



Based on the figure 7 it is possible conclude the following:

* the lowest bitterness was given by seventh judge;
* the wine was classified as the most bitterness by first judge;

* based on the variation, the judges have different perceptions of bitterness.

R Code
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