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• Few Urban heat island (UHI) empirical
studies include weather-related vari-
ability.

• UHI results from the interaction be-
tween urban compactness, topography
and weather

• Temporal-resolved model can predict
the urban thermal signal (UTS) during
heatwaves.

• Urban planning and climate change sce-
narios show which areas are most criti-
cal.

• The model is an efficient tool that can be
replicated for urban planning adaptation.
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Air temperature is a key aspect of urban environmental health, especially considering population and climate
change prospects. While the urban heat island (UHI) effect may aggravate thermal exposure, city-level UHI re-
gression studies are generally restricted to temporal-aggregated intensities (e.g., seasonal), as a function of
time-fixed factors (e.g., urban density). Hence, such approaches do not disclose daily urban-rural air temperature
changes, such as during heatwaves (HW). Here, summer data fromLisbon's air temperature urbannetwork (June
to September 2005–2014), is used to develop a linear mixed-effects model (LMM) to predict the daily median
and maximum Urban Thermal Signal (UTS) intensities, as a response to the interactions between the time-
varying background weather variables (i.e., the regional/non-urban air temperature, 2-hours air temperature
change, andwind speed), and time-fixed urban and geographic factors (local climate zones and directional topo-
graphic exposure). Results show that, in Lisbon, greatest temperatures and UTS intensities are found in ‘Compact’
areas of the city are proportional to the background air temperature change. In leeward locations, the UTS can be
enhanced by the topographic shelter effect, depending onwind speed – i.e., as wind speed augments, the UTS in-
tensity increases in leeward sites, evenwhere sparsely built. TheUTS response to a future urban densification sce-
nario, considering climate change HW conditions (RCP8.5, 2081–2100 period), was also assessed, its results
showing an UTS increase of circa 1.0 °C, in critical areas of the city, despite their upwind location. This LMM em-
pirical approach provides a straightforward tool for local authorities to: (i) identify the short-term critical areas of
the city, to prioritise public health measures, especially during HW events; and (ii) test the urban thermal
echnology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
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performance, in response to climate change and urban planning scenarios.While themodel coefficient estimates
are case-specific, the approach can be efficiently replicated in other locations with similar biogeographic
conditions.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lisbon is the central city of the Portuguese largestmetropolitan area,
a dense urban continuum located in the Northern margin of the Tagus
river, within the limits of Mediterranean Hot-summer climatic region
(Köppen Csa class) (Köppen, 1931; Peel et al., 2007). Its urban climate
is strongly affected by the regional climate conditions; in particular, dur-
ing the summer, the urban heat island (UHI) has been shown to greatly
depend on the prevailing near-surface regional wind direction, as well
as breezes from the river or from the Atlantic (Alcoforado and
Andrade, 2006; Alcoforado, 1992; Oliveira et al., 2021). In Lisbon, map-
ping the local urban thermal response is of utmost importance, consid-
ering recent observed trends and regional climate change prospect,
which indicate that extreme heatwave events (HW) are becoming in-
creasingly frequent, more intense, and longer (Beniston et al., 2007;
EEA, 2012; Espírito Santo et al., 2014; Giorgi, 2005; Lopes et al., 2018;
Mihalakakou et al., 2004; Tolika, 2019). Within cities, such conditions
may potentially be aggravated, by the UHI effect (Oke, 1988; Oke
et al., 2017), a local air temperature anomaly that results from the
urban energy budget characteristics: in artificial and built-up contexts,
a large fraction of heat from solar radiation is converted into energy
storage and emitted as sensible heat during the night. In addition, latent
heat fluxes are reduced, due to fewer vegetation (Chrysoulakis et al.,
2018; Feigenwinter et al., 2018; Oke, 1987, 1988; Wang et al., 2010).
This potentially aggravates heat exposure, with corresponding conse-
quences, such as the increase in heat-related health problems, outdoor
thermal comfort, or energy demand for indoor cooling (Founda and
Santamouris, 2017; Geletič et al., 2018, 2021; Heaviside et al., 2016;
Levermore and Parkinson, 2017, 2019; Levermore et al., 2015; Li and
Bou-Zeid, 2013; Ramamurthy et al., 2017; Tan et al., 2010; Zhou and
Shepherd, 2010).

From 2005 to 2014, near-surface air temperature measurements
were acquired throughout the city of Lisbon, by the Centre of Geograph-
ical Studies - Institute of Geography and Spatial Planning (CEG/IGOT).
Since the network's deployment, several follow up studies have been
conducted (Alcoforado and Andrade, 2006; Alcoforado et al., 2014;
Lopes et al., 2013, 2020b; Oliveira et al., 2021), including statistical
models based on linear multivariate regressions to predicting the typi-
cal spatial patterns of the UHI intensities, as a response to time-fixed
predictors, mostly related with urban morphology, topography and
proximity with the Tagus estuary. Therefore, their results were trans-
lated into seasonal average/median UHI intensity maps of the city.
While these maps have already supported local authorities in address-
ing urban climate adaptation strategies (Alcoforado and Andrade,
2006; Alcoforado et al., 2009, 2014; CML, 2012; Lopes, 2003; Lopes
et al., 2011, 2013, 2018), they did not disclose how the UHI is affected
by varying weather conditions, particularly its response to extreme
temperatures and wind speed (Reis et al., 2020).

Predictions of the typical/seasonal UHI intensities, based solely on
time-fixed or time-averaged predictors, is indeed a frequent methodol-
ogy in urban climate empirical studies, examples including both the at-
mospheric canopy layer UHI and the surface UHI (Alcoforado et al.,
2014; Ivajnšič et al., 2014; Jiang et al., 2019; Szymanowski and Kryza,
2012; Wicki et al., 2018; Wicki and Parlow, 2017). Some examples
also employ individual regression estimates per time step,which results
in independent equations (i.e. not related to each other), a strategy that
has been mostly adopted in remote sensing studies regarding the sur-
face UHI (sUHI) (Shi et al., 2018; Wicki et al., 2018; Wicki and Parlow,
2017). Less common is the introduction of background (i.e., rural)
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weather parameters in these statistical models, for the purpose of dis-
closing the possible interactions between the time-fixed and the time-
varying candidate predictors.

Linear mixed-effects models (LMM), also known as hierarchical
models or random effects models, become an advantageous statistical
method in this instance, as they allow to simultaneous control for the
various data limitations when modelling limited spatial samples, with
incomplete but repeated observations, per individual (here, per site)
(Bates, 2007; Verbeke and Molenberghs, 2000; Zuur et al., 2009a,
2009b). Lisbon's CEG/IGOT data limitations are due to the unbalanced
sampling structure of the data, i.e. few sites with repeated temporal ob-
servations, but each one covering different time periods. Such datasets
have been described as hierarchical or multilevel data structures,
where the repeated measures per unit of observation (here, each site)
are expected to be more related to each other, then with those belong-
ing to other units. These limitations imply strong autocorrelation in
each site's timeseries, due to its specific urban setting characteristics
(e.g. topographic position, urban compactness context). Hence, each
urban station's air temperature data has site-specific variances, tempo-
ral autocorrelation, and average relation with the candidate predictors
(i.e., different slopes and/or intercepts, in a linear model) (Bates, 2007;
Zuur et al., 2009a, 2009b). To address these limitations, here, a LMM
has been used, allowing to estimate the thermal response of the urban
areas, in unsampled space and time. It allows to use all the time series
of observations available, while controlling for the difficulties arising
from the data structure.

In addition to the above-mentioned methodological constraints to
the UHI statisticalmodelling, a recent study has shown that the summer
and HWurban thermal anomaly, in Lisbon, has three case-specific char-
acteristics (Oliveira et al., 2021): firstly, the terrain is a determinant fac-
tor, as the city centre (nested in the southernmost and lower altitude
riverside area) is topographically sheltered from the prevailing near-
surface regional wind, which mostly comes from the north (called
‘Nortada’); secondly, these summer northern wind days (‘N' days) are
not only the most frequent ones (64% cases, in the 2005–2014 time pe-
riod), but also more likely to be associated with greater air tempera-
tures, including the occurrence of HW events (76% cases, out of 49
HW days, in the same period); and thirdly, the Lisbon's urban-rural air
temperature contrasts are characterized by a distinguishable daily
cycle, including the existence of a late afternoon peak difference,
which increases significantly when northern wind prevails, suggesting
strong contributions from local geographical factors, as previously de-
scribed by (Oliveira et al., 2021).

While the urban cool/heat island (UCI/UHI) effect, by definition and
etymology, implies a negative/positive temperature anomaly arising
from the urban land use occupation, itsmagnitudes are often quantified
on a daily basis, referring to either the UCI or UHI periods of the day.
Typically, the UHI is shown to be a nocturnal effect, which magnitude
peaks shortly before sunrise, and can be attributed to the urban occupa-
tion. However, following the analytic framework from Lowry (1977),
also adopted by Oke et al. (2017), a given weather variable (VM) results
from sumof three components: (i) the ‘background’macroclimate of re-
gion (VB), (ii) the contribution from geographic/landscape factors (e.g.
relief, water bodies) (VL), and (iii) the contribution from human activi-
ties and occupation (VH) (e.g. urban land cover). According to Oke et al.
(2017), the UHI corresponds to the VH component, i.e., the contribution
attributable to the human activities/occupation; accordingly, the au-
thors suggest avoiding the usage of the UHI terminology when consid-
ering settings where complex local geographical/landscape control

http://creativecommons.org/licenses/by-nc-nd/4.0/
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factors exist, such as topography or coastal proximity, as these are likely
to determine the existence of a ‘spurious’ positive urban-rural air tem-
perature difference that cannot be attributable solely to the urban occu-
pation itself. In fact, in Lisbon, the hourly quantification of the urban-
rural air temperature differences shows a different infra-daily cycle
that strongly suggest the local existence of such complex contrasts be-
tween the VL component in the upwind rural plateau area, and the
downwind riverside urban setting. Accordingly, Lisbon's hourly urban-
rural air temperature, referred in that study (Oliveira et al., 2021) as
the Urban Thermal Signal (UTS), is equivalent to the cumulative contri-
bution of both VL and VH components, due to the absence of alternative
reference non-urban stations where the landscape/topographic contri-
bution would be the same as within the city. Hence, the UTS is different
from the UHI intensity, which should only account for the human-
induced VH component (Lowry, 1977; Oke et al., 2017). The quantifica-
tion of the UTS hourly intensities and rate of change has allowed to:
(i) classify whichmoments of the day show significant negative or pos-
itive UTS peaks (phase change), andwhich periods can be characterized
as either phase transition or stable periods; and (ii) quantify the UTS in-
tensity (and corresponding statistical spread) during those stages. From
this rationale, Lisbon's UTS daily cycle becomes apparent, characterized
by six daily stages, as depicted in Fig. 1 (Oliveira et al., 2021): (i) Stage 1,
the nocturnal stable UTS period during which positive thermal anoma-
lies have minimal hourly changes; (ii) Stage 2, a morning transition pe-
riod, during which the UTS reduces by more than 0.2 °C per hour,
becoming negative at the city centre; (iii) Stage 3, when the minimum
daily UTS intensity is reached; (iv) Stage 4, the afternoon transition pe-
riod, when the UTS increases by more than 0.2 °C per hour; (v) Stage 5,
when the late afternoon peak UTS intensity is reached; and (vi) Stage 6,
the evening stabilizing UTS period, transitioning to Stage1.

The UTS stages 1 (nocturnal stable UTS) and 5 (late afternoon peak
UTS) are the most relevant for intra-urban heat exposure, i.e., they cor-
respond to periods/moments of the day during which an UHI effect has
previously been reported, at the city centre.

Accordingly, the LMM developed in this study aims to estimate the
UTS spatial patterns during these positive UTS stages. The median UTS
is considered the representative daily statistical summary of Stage 1,
quantifying the stable UTS intensity from 11 p.m. to 6 a.m.; and the
daily maximum UTS, from 6 p.m. to 8 p.m., becomes the appropriate
Fig. 1. UTS daily cycle in Lisbon, adapted from (Oliveira et al., 2021): line plot displays the me
UTS10p, respectively) at the Lisbon's city centre (Restauradores), together with the correspo
daily cycle stages. In this study, two stages are considered: the daily median nocturnal UTS in
intensity, from 6 p.m. to 8 p.m. (Stage 5).

3

statistic criteria to depict the momentaneous nature of the daily Stage
5 UTS peak. Thesemedian andmaximumUTS are modelled in response
to the interactions between the regional weather predictors and the
built-up and geographical factors. Themodel focuses on the ‘N’ summer
days, when regional northern winds predominate (as registered at the
Airport station), during which HW are more likely to occur, and an
urban air temperature positive anomaly is potentially more harmful,
aiming to disentangle the contributions from weather variables as
they interact with the local terrain and built-up urban fabric (Oliveira
et al., 2021).

2. Data and methods

2.1. Single-level model (LM) versus linear-mixed model (LMM)

In urban climate-related studies, LM models have been widely im-
plemented, granting straightforward interpretations of the correspond-
ing coefficient estimates (Alcoforado and Andrade, 2006; Alcoforado,
2013; Ivajnšič et al., 2014; Lopes et al., 2013; Shi et al., 2018;
Szymanowski and Kryza, 2012; Wicki et al., 2018; Wicki and Parlow,
2017). However, a LM requires a set of conditions to be met: firstly,
the response variable (here, theUTS intensity),must be a linear function
of the explanatory variables used; secondly, residuals must be indepen-
dent, i.e. without autocorrelation; and thirdly, residuals variance must
be constant, across observations (Zuur et al., 2009a, 2009b).

Here, the number of sites where urban air temperature (Tu) has
been measured is very small: there are only 9 sites available from the
CEG/IGOT network, but from those, only 6 ensure a consistent and par-
tially overlapping time series. This poses serious constraints in that the
sampling is limited: from the usable sites, each one represents a differ-
ent class of land cover (with the exception of Restauradores and
Saldanha sites, both LCZ 2) (see Table A.1 and Figs. A.1 and A.2 in the
SupplementaryMaterials, Appendix A), but also unique geographic set-
tings, and these characteristics affect each site's time series data struc-
ture, namely its variability, independence of observations, and
temporal autocorrelation, violating the previously mentioned LM as-
sumptions (Zuur et al., 2009a, 2009b).

LMM, also known asmultilevel models, random coefficients models,
or hierarchical models, solve some of the above-mentioned issues, by
dian, the 90th and the 10th percentiles of the hourly UTS intensity (UTS50p, UTS90p and
nding heatmap, per year; bellow, the schematic diagram depicts the corresponding UTS
tensity, from 11 p.m. to 6 a.m. (Stage 1); and (iii) the daily late afternoon maximum UTS
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simultaneously modelling the overall model coefficients (city level, or
level 0) and the grouping structure of the observation sites (Gelman
andHill, 2006; Zuur et al., 2009a, 2009b) (temporal and spatial); this al-
lows to introduce the hierarchical structure of the acquired data, such as
grouping each CEG/IGOT station time series, at the inner level of the
LMM structure, which is appropriate given the repeated observations
(Gelman and Hill, 2006; Zuur et al., 2009a, 2009b). Here, each site's
time series has a varying number of observations and time spans.
These conditions affect the possibility of using simpler models, such as
repeated measures ANOVA, as the overlapping time series would be
quite short (less than 50% of observations), and with many gaps.

Due to the above-mentioned limitations, previous studies on
Lisbon's UHI have only produced models of the temporal aggregated
UHI intensity, as a function of temporal invariant explanatory variables,
such as built-up geometry indices and geographic factors (Alcoforado
et al., 2014; Lopes et al., 2013), explaining their average effect on the
median UHI intensity. However, this approach does not reveal how
these factors interact with daily varying weather conditions, to
explain the great spread of variance detected, at each of the urban
sites. Eq. (1) represents the linear regression model (Gelman and Hill,
2006):

yi ¼ β0 þ β1xi1 þ . . .ð Þ þ βkxik þ εi, for observations i ¼ 1, . . . :,n ð1Þ

where yi is the response variable, β0 is the intercept, xi1 to xik are the
predictors (or explanatory variables of interest), β1 to βk are the effects
each predictor on the response variable, and εi is the error term, with
normal distribution. By comparison, a LMM can have either different in-
tercepts or different intercepts and slopes, per each of the groups from
the nesting structure. As a result, there is an observation-level regres-
sion and a group-level regression (here, a regression for the city, and a
regression per site, computed simultaneously). Eq. (2) shows a LMM
model with random intercept and slope (response variable as yi), as
used in this study, and Eqs. (3) and (4) show the corresponding equa-
tions predicting the intercept (β0j) and slope (β1 j):

yi ¼ β0j i½ � þ β1j i½ � xi1 þ . . .ð Þ þ βkj i½ � xik þ εi, for observations i
¼ 1, . . . :,n ð2Þ

β1j ¼ a1 þ b1uj þ ηj1, for observation groups j ¼ 1, . . . :, k ð3Þ

β2 j ¼ a2 þ b2uj þ ηj2, for observation groups j ¼ 1, . . . :, t ð4Þ

where the j subscript corresponds to each different group - here, each
CEG/IGOT site. The varying intercept (β0j) and slopes (β1j to βkj) are
modelled at the first and second ‘inner’ levels (Eqs. (3) and (4)), where
β1j and β2j depict the group-specific estimated coefficients a1/2 and b1/2,
with corresponding predictor(s) (uj) and second level errors (ηj1 and
ηj2), for group-level observations k and t. Both the a and b (per site) pa-
rameters are controlled by the hyperparameters of the upper-levelfixed
structure of themodel, characterizing each site's distinct variance, auto-
correlation and/or random effect over the predictor (Gelman and Hill,
2006; Zuur et al., 2009a, 2009b).

In this study, the LMM has set of fixed effects that correspond to the
explanatory variables fromwhich to predict the UTS intensity in the city
of Lisbon, and a three-levels grouping structure, as follows:

1. At the ‘city-level’, or upper level (level = 0), the LMM estimates the
UTS intensity response to the fixed-effects (predictors), and their in-
dividual contributions. This model can be used to predict the gridded
results across the city, irrespective of the time of the day.

2. At the ‘city and UTS stage-level’, or mid-level (level = 1), the LMM
estimates two different UTS intensity response functions, one per
each period of the day (the UTS Stage 1, nocturnal stable UTS, and
the UTS Stage 5, late afternoon peak UTS). In result, this model can
be used also to predict the gridded results across the city, at specific
UTS daily cycle stages.
4

3. Finally, at the ‘site-level’, or lower level (level = 2), the LMM esti-
mates each site-specific UTS intensity response function, accounting
for its site-specific time-series data structure (variance, auto-
correlation). Hence, while this inner level equations provide the
greatest agreement, its results can only be used to predict the UTS
in each site location.

2.1.1. Response variable
As previouslymentioned, the response variable, UTS, has positive in-

tensities during two specific periods of the day: the stable nocturnal pe-
riod, UTS Stage 1, and the late afternoon maximum, UTS Stage 5. These
daily statistics are calculated from the hourly UTS dataset from a previ-
ous study (Oliveira et al., 2021), focusing on the UTS daily cycle during
the summer and HW days, considering the extended summer period,
spanning from June to September (JJAS), from2005 to 2014. TheUTS in-
tensity corresponds to the hourly urban-rural air temperature differ-
ences and is calculated per each site of the CEG/IGOT mesoscale
weather observation network, as per (Oliveira et al., 2021) and shown
in Eq. (5). The urban mesoscale observation network included 9 tem-
perature/relative humidity probes, with Tiny Tag Plus (Gemini) data
loggers, installed on public lighting poles, at 3.5 m height, inside radia-
tion protection shields, following previous advice by T.R. Oke, during
an ongoing urban climatology project, and testing routines were
established to ensure data quality (see Alcoforado and Andrade, 2006;
Alcoforado et al., 2014 for further details).

UTS ¼ Tu−Tr ð5Þ

where Tu refers to the air temperature observed in each urban site of
CEG/IGOTnetwork, and Tr is air temperature observed at the Lisbon Air-
port meteorological station, both at a specific hour of the day. The need
for a UTS designation comes from the fact that, in Lisbon, these hourly
urban-rural differences reflect both the contributions from the local
geographical/landscape controlling factors (VL, per Lowry (1977)) and
the urban occupation/human activities (VH, per Lowry (1977)), as de-
tailed in Section 1.

The input datawas acquired between2005 and 2014, at 3.5mheight
(Alcoforado et al., 2014), and followed strict installation procedures. A
detailed description of the sensors, data acquisition and quality control
can be found in (Alcoforado et al., 2007, 2014; Lopes et al., 2013; Oliveira
et al., 2021). The reference backgroundweather station considered was
the Lisbon's Airport (AIR), from the Integrated Surface Database –
Global Hourly observations (ISD/GH), available at the National Centers
for Environmental Information of the National Oceanic and Atmo-
spheric Administration (NOAA) (Lott, 2004), to ensure results compara-
bility with previous studies. Two additional sites from the ISD/GH
database, the Geophysics Institute (GEO) and the Lisbon / Gago
Coutinho (LGC), were used to validate predictions, out of the temporal
scope of the input data. Data from the ISD/GH sites was retrieved for
the 2020 summer, from June to August (September data was unavail-
able at the time). All the measurement sites are described in Table A.1,
in the Supplementary Materials, Appendix A. Additional information
on the UTS calculation and definition is available in (Oliveira et al.,
2021).

In a previous study, it was shown that northernwind days (‘N’ days)
had statistically significant contrasting UTS profiles, characterized by
greatest late afternoon and nocturnal UTS intensities, at the city centre
(Restauradores site), as well as greater daily maximum air temperature
(Tx) values, at the Airport site. In addition, prevailing regional north
wind conditions were shown to be associated with more than half of
the HW days (Oliveira et al., 2021).

As such, here, only the northern wind days (‘N’ and ‘N var’ days)
from the previous study were considered. Within this group of days,
the previous study also highlighted the existence of a consistent UTS
daily cycle, especially at the city centre, comprising 6 stages, as de-
scribed in Section 1. From those stages, the UTS is consistently positive
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in two cases: (i) in Stage 1, stable nocturnal UTS, characterized by very
low hourly changes of intensity; and (ii) in Stage 5, late afternoon peak
UTS, the momentaneous daily maximum intensity. Hence, the hourly
UTS intensities were aggregated into two daily values, accordingly:
(i) the daily median UTS intensity, from 11 p.m. to 6 a.m. (Stage 1);
and (iii) the daily maximum UTS intensities, from 6 to 8 p.m. (Stage
5). These stages are depicted in Fig. 1, Section 1.

2.1.2. Weather variables as temporal predictors
Hourly meteorological observations at the reference Airport site

were used as time-varying predictors. This data is available at the ISD/
GH database (Lott, 2004), and includes the 2 m air temperature (Tr)
and wind speed (Ws) observations. Both were also aggregated per
each of the two main UTS stages, using the same statistical criteria:
(i) Stage 1, the nocturnal stable UTS (daily median Tr and Ws, from 11
p.m. to 6 a.m., per site); and (iii) Stage 5, the late afternoon peak UTS
(daily maximum Tr and Ws, from 6 p.m. to 8 p.m., per site).

Finally, in the study from (Oliveira et al., 2021) a 2-hour lag was de-
tected, between the air temperature curves of the urban and rural sites.
Accordingly, a positive and significant correlation was detected, be-
tween the urban station's air temperatures, and the air temperature at
the airport, 2 h earlier, as the former lags 2 h behind (R2 = 0.94, p-
value< 0.001). Hence, the air temperature change in 2-hours, at the air-
port (Tr_d2h), was calculated as per Eq. (6), and used in the model as
predictor.

Tr_d2h h ¼ 0ð Þ ¼ Tr h ¼ −2ð Þ – Tr h ¼ 0ð Þ ð6Þ

where h is time difference between Tr observations (here, 2 h).

2.1.3. Geographic variables as spatial predictors
The geospatial information was gathered from several open-data

sources. These included: (i) urban built-up properties, as per the Local
Climate Zones classification (LCZ) (Oliveira et al., 2020a, 2020b); and
(ii) natural geographical factors, such as altitude, from a digital eleva-
tion model (DEM) (Team, 2009). The LCZ classification was converted
into LCZ-equivalent Bowen Ratio (LCZBR) values, as per (Oke et al.,
2017; Stewart and Oke, 2012) reference values – these are shown in
Table A.2, in the Supplementary Materials, Appendix A.

In addition, the DEM dataset was transformed into the topographic
exposure index, considering the north-northwest wind direction
(TopexNNW), as it is the most frequent within the ‘N'/’N var’ days
group (Oliveira et al., 2021). The TopexNNW algorithm was imple-
mented in ArcGIS PRO software, version 2.3, through the raster calcula-
tor tool, following the formulation by Chapman, 2000. To calculate the
maximum angle of occultation/exposure, for each point, the angle of
the elevation of the topography is calculated in sequential distances
(each 100m) until a 2 km radius is reached, in a given cardinal compass
direction; the maximum occulation angle is than chosen as the Topex
index, with positive (negative) values corresponding to the average
shelter (exposure) levels, per pixel. These values correspond to the
maximum terrain obstruction angle (in radians), in a 2.0 km distance,
per a given cardinal direction. In Lisbon, the TopexNNW is strongly cor-
relatedwithDEM itself (Pearson's coefficient greater than 0.8, p-value<
0.001), and thus the latter was excluded from the model.

Further land cover/land use layers were tested, including building
height information (European Environment Agency (EEA), 2018a),
Tree Cover Density (TCD) (European Environment Agency (EEA),
2018b), and imperviousness density (IMD) (European Environment
Agency (EEA), 2018c); however, all were found to be strongly corre-
lated with the LCZBR variable (Pearson's coefficients greater than 0.8,
p-value < 0.001, on every case). Finally, land cover classification and
urban development regulatory constrains were retrieved from
Lisbon's Municipal Master Plan (LMP) (CML, 2012). Original categories
from the LMP were reclassified according to the future land-use/land-
cover (LULC) regulation: (i) ‘existing built-up areas’ and ‘existing
5

green areas’, where urban development/green areas are already ‘consol-
idated’, and not allowed to change; and (ii) ‘future built-up areas’ and
‘future green areas’, where new or denser urban development/green
areas are permitted/ expected. Fig. A.2 in the Supplementary Materials,
Appendix A, depicts these geographic variables, together with the loca-
tion of CEG/IGOT (training and testing) and ISD/GH (validation) sites.

2.1.4. Modelling protocol
For quality control assessment (QA) of the input data, two proce-

dures were implemented in the original hourly dataset: firstly, theMin-
imum Covariant Determinant method, at the 50 level (MCD50), was
used to identify observationswith abnormal air temperature differences
between the urban (Tu) the Lisbon Airport site (i.e. Tr); the method
aims to identify outliers in multivariate time series, based on their co-
variances, and was implemented in R (R Development Core Team,
2011), version 4.0.2, following (Leys et al., 2018) available code; sec-
ondly, the interquartilic range (IQR) was applied to the hourly UTS in-
tensities, identifying additional UTS outliers from the series
(i.e., values outside the ±1.5 x IQR range). The latter method was also
implemented in R (R Development Core Team, 2011), version 4.0.2,
and followed the method used in the Climpact2 tool (Alexander and
Herold, 2016; L. and N., 2015). Out of 74,587 hourly observations, 9%
were classified as outliers and excluded from the time series (summary
available in Table A.3, Supplementary Materials, Appendix A).

After QA, the complete daily time series of ‘N’/‘N var’ days was split
into training and testing datasets, ensuring that (i) both had equivalent
data distributions, and (ii) temporal continuity was kept (i.e., no ran-
dom sampling was used). Thus, the summer (JJAS) observations of
2005, 2008 and 2014 were withheld from the training dataset, and
used for testing only. For validation purposes, the 2020 summer data
available from the ISD/GH stations was used. Only days with prevailing
northern wind were used, from the 2020 validation dataset, using the
same classification criteria as in (Oliveira et al., 2021), i.e., an 80% of
the day (hourly observations) threshold to discard non-northern wind
days.

Both the Akaike's information Criterion (AIC) and Bayesian informa-
tion criterion (BIC) are used to evaluate the performance throughout
the modelling protocol, instead of the coefficient of determination
(R2), due to the limitations in using the latter to appropriately evaluate
LMM (Bates et al., 2015; Zuur et al., 2009a, 2009b). The smaller the AIC
value, the better the model's performance.

The daily UTS intensity (median, in Stage 1, and maximum, in Stage
5) was modelled as the response to the interactions between the back-
groundweather conditions andnon-timevarying geographical/built-up
characteristics previously mentioned. The hierarchical structured of the
LMM included the UTS stages 1 (nocturnal median) and 5 (late after-
noon maximum), in level 1, and each site, in level 2. The model was
ran in R (R Development Core Team, 2011), version 4.0.2, using the
lme4 packages (Bates et al., 2007, 2015). The model specification is
shown in Eq. (7), as follows:

UTS ¼ β0 j;k þ β1 j;k i½ � � Tr d2hþ β2 i½ � � LCZBR þ β3 i½ � � Tr d2h� LCZBR

þβ4 j;k i½ �Wsþ β5 i½ � � TopexNNW þ β6 i½ � �Ws� TopexNNW þ β7 i½ �
�Tr þ η j;k þ εi; for observations i ¼ 1;…:;n ð7Þ

where β0j,k represents the intercept, which varies per j site and k UTS
Stage, β1j[i] and β4j[i] are the varying slopes (per j site and k UTS Stage,
as well) of the corresponding weather variables Tr_d2h and Ws, and
β2, β3, β5, β6, and β7 are the predictors with fixed slopes. The error terms
are the overall error εi, and the varying UTS Stage/site errors ηj,k. A de-
tailed description of the sequential steps of the protocol, as well as the
list and corresponding R syntax of the models, estimators used, and
AIC results are presented in Section 4 of the Supplementary Materials,
Appendix A. An autocorrelation structure was added, per site and UTS
stage, considering a 1-day lag, (i.e., a 1st order autoregression, that re-
lates the predictions for a given daywith the previous day's prediction).
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In addition to following with the protocol to assess the fixed effects
significance, the intercept's significance was also tested. To test this hy-
pothesis the Regression Through the Origin (RTO) LMM (LMMf0) was
compared to the final/best performing non-RTO LMM (LMMf), and the
intercept tested for significance and confidence intervals. The level 0 in-
tercept was shown to be non-significant, and numerically notmeaning-
ful (i.e., small values and varying from positive to negative values, per
nesting level). Finally, spatial patterns in the residuals were also tested
for spatial autocorrelation, but no significant results were detected,
which was expected given the very small number of sites. The results
comparison, and assumptions inspection plots are available in
Section 5 of the Supplementary Materials, Appendix A.

3. Results

3.1. Model estimates and performance

Table 1 reports the final LMMf0 results: the Fixed Effect, refer to the
coefficient estimates for each predictor term introduced in the model
(including the interaction terms), considering no intercept, at the
‘city-level’ (level = 0), together with the corresponding confidence in-
tervals (CI, at the 95% level) and significance levels, as per the LMM
modelling protocol (Zuur et al., 2009a, 2009b). The Random Effect re-
port the characteristics of each grouping level, namely its variance,
number of observations per group, and interclass correlation level (ICC).

All the fixed effects are shown to be significant, at the 99% level. Es-
timates and confidence intervals show that, on average, at the city and
UTS Stage level, the greatest positive contribution to the UTS intensity
comes from the Tr change in the last 2 h (Tr_d2h), given the 0.271 coef-
ficient [95% CI: 1.55–0.38] as well as from the LCZBR urban compactness
indicator, with a 0.283 estimate [95% CI: 0.160–0.406] The interaction
term between these predictors also enhances the UTS intensity, in
most compact locations [0.043, 95% CI:0.014–0.072].

Conversely, the wind speed influence (Ws predictor) only becomes
meaningful through the interaction with the topography. The interac-
tion between the TopexNNW and Ws variables is thus shown to con-
tribute to the UTS, with an estimated effect of 0.135 [95%
CI:0.065–0.20], also positive at the City and UTS Stage levels (see level
0 estimates in Table 1, and level 1 estimates in Eqs. (8), and (9)).
Thus, the positive or negative contribution of the Ws to UTS is deter-
mined by the value of NNW wind shelter at each site: in locations that
are exposed to NNW winds, TopexNNW assumes a negative value
which is then multiplied by wind speed. In such cases, there is
Table 1
Linear Mixed-Effects Model LMMf0 estimates (level = 0).

Predictors Estimates CI (95%) Significance1

Lower Upper

Fixed effects
Tr_d2h 0.271 0.155 0.388 **
LCZBR 0.283 0.160 0.406 **
Ws −0.030 −0.066 0.005 **
TopexNNW 0.376 −0.271 1.022 **
Tr −0.036 −0.044 −0.028 ***
Tr_d2h × LCZBR 0.043 0.014 0.072 ***
Ws × TopexNNW 0.135 0.065 0.205 ***

Random effects
σ2 5.0
τ00site/UTS Stage 0.09
τ11site/UTS Stage Tr_d2h 0.01
τ11site/UTS Stage Ws 0.04
Nr. UTS Stage 2
Nr. site/UTS Stage 14
ICC site/UTS Stage 0.91
Observations 3831
Marginal R2 / Conditional R2 0.11 / 0.92

1 Significance: * p-value<0.05; **p-value <0.01; ***p-value<0.005.
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multiplicative effect ofWs determining theUTS reduction. Contrariwise,
topographically sheltered areas (positive TopexNNW) have a positive
UTS contribution fromwind speed. However, at the site level, the confi-
dence intervals of these predictors are wider, thus one cannot exclude
that their contribution to the UTS is more site-specific than fixed,
throughout the city. Finally, the overall air temperature level was previ-
ously noted for not having a significant positive impact in theUTS inten-
sity in Lisbon, with similar statistical UTS percentile curves during both
HW and non-HW conditions (Oliveira et al., 2021). Here, the model re-
veals a significant, albeit weak, negative contribution to the UTS, by a
factor of 3.6. In other words, a 10 °C increase in the nocturnal median
or late afternoon maximum air temperature, at the Lisbon Airport, im-
plies a 0.36 °C UTS reduction (all other variables remaining equal).

At the “city and UTS Stage-level” (level= 1), Eq. (8) (nocturnal daily
median UTS) and Eq. (9) (late afternoon daily maximumUTS) show the
equivalent coefficient estimates, as a LMM output function, at the UTS
Stage level; these equations are the ones used in predicting the UTS in-
tensity throughout the city, during each UTS Stage (see Sections 3.1.
From the comparison between the level 0 and level 1 estimates, the in-
tercept and the nested weather predictors are shown to change only
very slightly. This shows that the fixed effects estimates, subjected to
the hierarchical structure (i.e., the weather variables) are not greatly af-
fected by the time of the day. The site-level (i.e., level 2) estimatesmain-
tain the same positive values, on every case (see supplementary
Materials, Appendix A).

UTSLisbon,UTS stage 1 nocturnal medianð Þ
¼ −0:045þ 0:237 � Tr_d2hþ 0:283� LCZBR þ 0:043� Tr_d2h

� LCZBR þ −0:025ð Þ �Wsþ 0:376� TopexNNW þ 0:135�Ws
� TopexNNW þ −0:036ð Þ � Tr ð8Þ

UTSLisbon,UTS stage 5 late afternoon maximumð Þ
¼ 0:066þ 0:322� Tr_d2hþ 0:283� LCZBR þ 0:043� Tr_d2h

� LCZBR þ −0:039ð Þ �Wsþ 0:376� TopexNNW þ 0:135�Ws
� TopexNNW þ −0:036ð Þ � Tr ð9Þ

Regarding the model's performance, the estimates reveal a very
strong inter-class correlation (ICC), at the site level (see Table 1): statis-
tically, this indicates that there is a lack of spatial sampling, throughout
the city, i.e., that a great proportion of the temporal variability is site-
specific, and not explainable solely by the city-level model. This finding
was expected as the number of sites available is quite limited, and
therefore each one is representative of specific characteristics that are
notmeasured elsewhere. Nonetheless, at the inner level, the coefficients
have similar signs and magnitudes on almost every case (see Table A.7
in the Supplementary Materials, Appendix A). In addition, the residual
results, shown in Table 2, indicate that the level-1 model has an ade-
quate performance to estimate the city-level variance of the UTS inten-
sities, during each UTS Stage, in the testing and validation datasets.

The median nocturnal UTS intensity predictions have the best per-
formance - its Mean Absolute Error (MAE) is lower than 0.5 °C, on
every case (training, testing and validation subsets). On the other
hand, the late afternoon daily maximum UTS has larger residuals, with
an average MAE of 0.8 °C. Results from the validation dataset (‘N' days,
in the summer 2020) have equivalent accuracies. Despite the strong
ICC, there is only a slight residuals reduction, when using the site-
specific coefficients (level = 2). The expanded version of Table 2,
depicting the residuals, by site and LMMf0 levels is available in
Tables S8 and S9, in the Supplementary Materials, Appendix A.

3.2. Model predictions and spatial patterns of the UTS

3.2.1. Historical time-series
To assess the spatial patterns of the LMMf0model, a grid of regularly

spaced points, set apart by 100 × 100 m, was used to sample the time-
fixed predictors, LCZBR and TopexNNW, throughout the city of Lisbon.



Table 2
Comparison of the LMMf0 model residuals, in the training, testing and validation subsets.

LMMf0

Model Level
Training Subset
(JJAS, 2006–2014a)
N = 3831

Testing Subset
(JJAS, 2005,2008 and 2011)
N = 2451

Validation Dataset
(JJA, 2020)
N = 98

UTS Stage 1,
Nocturnal Stable
UTS

UTS Stage 5, Late
Afternoon Peak
UTS

UTS Stage 1,
Nocturnal Stable
UTS

UTS Stage 5, Late
Afternoon Peak
UTS

UTS Stage 1,
Nocturnal Stable
UTS

UTS Stage 5, Late
Afternoon Peak
UTS

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

City, UTS Stage level
(level = 1)

0.47 0.60 0.80 0.94 0.47 0.61 0.93 1.10 0.26 0.37 0.84 1.10

Site Level
(level = 2)

0.43 0.55 0.65 0.79 0.45 0.59 0.94 1.14 n.a. n.a. n.a. n.a.

a Except testing years (JJAS, 2005, 2008 and 2011).
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Two time-series of gridded LMMf0 predictions (at level=1)were com-
puted, in result: (i) the complete 2005–2014 time series of summer ‘N’
days; and (ii) the summer 2020 ‘N’ days. These gridded predictions are
available upon request to the authors. Fig. 2 shows themaps of the 50th
UTS intensity percentile (UTS50p), from the 2005–2014 period, corre-
sponding to the daily nocturnal median (1), and late afternoon maxi-
mum (5) UTS Stages. The spatial pattern overall agrees with previous
studies (Alcoforado and Andrade, 2006; Alcoforado et al., 2014; Lopes
et al., 2020b), albeit with much greater detail (see zoom details in
Fig. 2).

Lisbon's greater positive UTS intensities are shown to follow a ten-
tacular spatial pattern that accompanies themain valleys (due to the to-
pographic shelter contribution), and the urban development axis (due
to addition of the built-up occupation contribution). While previous
studies have already indicated the ‘finger-like’ pattern along the two
structuring avenues of the city (‘Liberdade’ and ‘Almirante Reis’), in
the LMMf0 model predictions the UTS intensity is enhanced by the to-
pographic shelter contribution, mostly noticeable in downwind loca-
tions, and even in the absence of significant urban density. In most
developed areas (LCZ classes 1–3), such as the city centre
(Restauradores site), the local UTS intensities are further increased by
the contribution of urban compactness (LCZBR predictor). Hence,
under northern wind conditions (median: 5.0 m/s), a positive UTS is
present during the night, with a median 1.3 °C intensity, similar to the
1.5 °C stated in previous studies (Alcoforado et al., 2014; Lopes et al.,
2020b).

Positive UTS intensities of at least 1.0 °C are found along the river-
side, from the city centre (Restauradores site) up to the western limit
of the city (Belém site), as the result from the overlapping contributions
of wind shelter and built-up density. In the westernmost area, the pos-
itive UTS intensities enter further inland, accompanying the terrain's
gentler slopes. Urban parks are easily noticed as cool spots in city, as
shown in Fig. 2 zoom details. While the forest area of the Monsanto is
easily noticed, due to its size, the LMMf0 is also able to depict, for the
first time, the cooling effect of the several smaller urban green areas
such as the Eduardo XVII Park, the Botanical Garden, Lisbon's Zoo and
even Cemeteries such as Prazeres. Fig. 2 also shows the model results
corresponding to the daily late afternoon peak UTS predictions, a daily
UTS Stage which has not been address in previous regression-based
modelling attempts (Alcoforado and Andrade, 2006; Alcoforado et al.,
2014). Its results show a similar pattern to the nocturnal UTS map, al-
though with significantly greater intensities, reaching up to 3.5 °C, at
the city centre and western riverside areas. The contrast between up-
wind and downwind locations is also accentuated, which was expected
as wind speed is the greatest during this period of the day (median: 7.9
m/s) (Oliveira et al., 2021).

The LMMf0model is also able to predict, for the first time, daily pat-
terns of the UTS, in response to weather conditions. To better illustrate
this application, predictions corresponding to the warmest day during
and HW event, (16 of July 2020), is shown in Fig. 2. During this HW
event, air temperatures surpassed the 90th percentile of the
7

1981–2010 30-years period, during 3 consecutive days, at the Lisbon
Airport. In the warmest HW day, the 16th of July, absolute air tempera-
tureswere 36.3 °C (late afternoonmaximum, from 6 to 8 p.m.) and 28.4
°C (nocturnal median, from 11 p.m. to 6 a.m.).

During the warmest day of the HW event, the nocturnal UTS inten-
sity becomes weaker (up to 1.0 °C), and the positive intensities cover
a smaller area of the city. However, the spatial pattern is similar to
that of UTS50p maps. Conversely, during the late afternoon peak UTS
Stage, the UTS intensity is similar, in response to the greater air temper-
ature rate of change (Tr_d2h) interaction with the LCZBR predictor, en-
hancing the contrast between built and non-built-up areas. During
this specific HW day, the weaker nocturnal UTS intensities should not
be disregarded as it translates into an overall air temperature that sur-
passes the 38.5 °C, during the late afternoon period, and remains 29.5
°C, during the night, at the city centre. Hence, themodel provides a use-
ful local-level decision-supporting tool to evaluate the daily relative
heat exposure differences, across areas of the city, one that can be
mergedwith economic and social data to provide daily vulnerability as-
sessments, from a meso-scale perspective.

3.2.2. Weather and urban planning scenarios: Present and future
To disclose the model's sensitivity to each of the time-varying

weather predictors, i.e. the UTS response to changes in wind speed, air
temperature or air temperature changes, separately, as well as identify-
ing potential impacts of increasing the built-up compactness in the city,
predictions from the LMMf0model (level= 1)were calculated, consid-
ering a group of 50 scenarios - 25, per UTS Stage. These are based on the
same 100 × 100 m regular grid of geographical inputs, but the weather
predictors correspond to predetermined values depicting the time se-
ries median and lower/upper extremes (5th and 95th percentiles, con-
sidering the Airport site 1981–2010, 30-years period, retrieved from
the ISD/GH. Two additional ‘worst-case-scenarios’ of climate change
were considered, for 2081–2100 period, using the percentile values of
both air temperature and HW intensity, as per (Parente et al., 2018),
keeping the Airport site as the regional reference. According to regional
climate change prospects, HW days are very likely to becomemore fre-
quent and intense, whichmay pose local communities at risk of thermal
stress (EEA, 2012; Espírito Santo et al., 2014; Lopes et al., 2018). While
the UTS intensity has previously been shown not to be significantly
changed during recent cases of HW days, in Lisbon, (refer to Oliveira
et al., 2021) its presence is still detected, potentially enhancing human
thermal exposure by more than 2.5 °C, during the late afternoon peak
period of the day, in the most compact areas of the city. In addition, re-
gional climate change prospects have pointed out that air temperature
is the weather variable more likely to affect local human thermal dis-
comfort, as the summer relative humidity is typically lower (dry sum-
mer climate), and no significant changes were suggested (Lopes et al.,
2018). Accordingly, two future scenarios are considered, depict climate
change HW conditions together with two alternative levels of urban
density: in one scenario, the current built-up occupation was consid-
ered, while in the other the UTS response to an urban ‘densification'



Fig. 2.Model predictions for the (a-b) nocturnal daily median UTS intensity (UTS Stage 1, from 11 p.m. to 6 a.m.), and (c-d) late afternoon daily maximumUTS intensity (UTS Stage 5, from 6 to 8 p.m.). In the upper row, city maps correspond to: (a1)
and (c1) the pixel-wise 50th percentile (summer 2005–2014 time series); and (b1) and (c1) the warmest day of the 2020 heatwave (16th July). Bellow, corresponding zoom details are shown.
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Table 3
Inputs to predict UTS intensity, based on scenarios.

UTS
Stage

Predictors

Tr (°C) Tr_d2h (°C) Ws (m/s) LCZBR

1 16 20 24 28 0.8 1.2 0.5 5.0 10.0 No change 3.5
5 20 24 28 32 1.7 2.5 3.6 7.9 13.5 No change 3.5
Description Coola Typicala Present HW day1 Future HW dayb Typicalc Elevatedc Weaka Typicala Stronga Current Cityd Denser Citye

Acronymf A B C D 1 2 a b c – f

a Considering 1981–2010, 5th, 50th, and 95th percentiles of Tr and Ws, for the reference Lisbon Airport site time series (Lott, 2004).
b Considering 2081–2100, 95th percentile, with RCP8.5 scenario, as per (Parente et al., 2018), 6.9 °C above the 90th percentile of the Lisbon Airport site time series reference period

1981–2010 (Lott, 2004).
c Considering 1981–2010, 50th, and 90th percentiles of Tr_d2h, for the reference Lisbon Airport site time series (Lott, 2004).
d Present-day LCZ classes.
e Areas ‘to-be-developed’ turned into LCZ 2 (dense, midrise) class.
f Scenarios acronyms correspond to the concatenation of theUTS Stage predictors (e.g., a ‘FutureHWday’, with ‘Elevated’ Tr_d2h, ‘Typical’Wsand ‘Current City’ is named as ‘UTS1_D2b’;

the equivalent with ‘Denser City’ is ‘UTS1_D2bf’).
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alternativewas calculated. All the inputs of these scenarios are shown in
Table 3. The aim of these scenarios is to show the relative contributions
of each predictor to the UTS intensity and how these affect the UTS spa-
tial pattern.

Figs. 3 and 4, and corresponding onlinemedia files, represent the se-
quence of maps of these alternative weather-based scenarios (the
‘Denser City’ scenario is shown later), together with the UTS intensity
predictions, in key locations. The complete list of scenarios, correspond-
ing inputs is available in Tables S10 and S11, in Supplementary Mate-
rials Appendix A, and still frames of the resulting maps are available in
Supplementary Materials, Appendix B.

Firstly, model results indicate that the overall air temperature level,
as per the Tr input, affects the maximum UTS intensity inversely, as it
decreases by approximately 0.4 °C, per each 10.0 °C of Tr increase. How-
ever, the combination ofwind speed (Ws) and Tr_d2h have the greatest
influence over the Lisbon's UTS spatial pattern. Accordingly, in the
Fig. 3.Weather scenarios of current urban development status: model predictions of the noctur
combinations of input weather-related predictors. Still image shows the climate change scenari
strong HW (percentile 95th), per RCP8.5 predictions in (Parente et al., 2018), as indicated on
through the still image link.
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absence of significative wind speeds (i.e., ‘Weak’ Ws scenarios), the
‘Compact’ areas become responsible for the positive UTS predictions,
as multiplied by the Tr_d2h variable. As a result, the greater the 2-
hour temperature change (Tr_d2h), the starker become the positive
UTS intensities, in the most compact areas of the city. The topography
contribution, under these ‘Weak’ Ws scenarios is only very slightly
noticeable.

Contrariwise, as the regional wind speed augments, the UTS contrast
between the leeward and windward locations accentuates - in the
northernmost areas of the city, the UTS intensity is reduced due to the
exposure to the regional northern winds; conversely, in the southern-
most areas, the positive UTS becomes enhanced, resulting from the
added contributions of both the topographic shelter and the urban com-
pactness effects. Hence, during ‘Strong’ Ws conditions, northern
neighbourhoods of the city tend to be cooler, compared to the city cen-
tre, and the positive UTS spatial pattern recedes to the southern/
nal dailymedian UTS intensity (UTS Stage 1, from 11 p.m. to 6 a.m.) response to alternative
o identified as UTS1_D2c (as per the concatenation of the Table 3 acronyms), considering a
the top of the right hand-side plots. The media file of the full sequence is available online,



Fig. 4. Weather scenarios of current urban development status: model predictions of the daily late afternoon maximum UTS intensity (UTS Stage 5, from 6 p.m. to 8 p.m.) response to
alternative combinations of input weather-related predictors. Still image shows the climate change scenario identified as UTS5_D2c (as per the concatenation of the Table 3
acronyms), considering a strong HW (percentile 95th), per RCP8.5 predictions in (Parente et al., 2018), as indicated on the top of the right hand-side plots. The media file of the full
sequence is available online, through the still image link.
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western riverside areas of the city. Maximum UTS values are predicted
where: (i) topographic shelter is greater; and (ii) built-up compactness
(LCZBR) is also greater. According to the model, under equal Tr and
Tr_d2h scenarios, an increase of circa 4 m/s in the background/regional
wind speed alone accounts for a 0.5 °C UTS intensity increase, at the city
centre (Restauradores), during both UTS Stages.

Regarding the ‘Present HWday’ and ‘Future HWday’ scenarios, pos-
itive UTS intensities are predicter over fewer areas of the city, especially
under calm conditions, when its intensity is lower than 1.7 °C, during
the night (median), and lower than 3.0 °C, during the late afternoon
(maximum), on every case. However, these are still significative anom-
alies given the background extreme temperatures during the night
(median: 24 and 28 °C, respectively), and in the late afternoon peak
(maximum: 28 and 32 °C, respectively).

Finally, the impacts of a ‘Denser City’, under a ‘Future HW day’ (cli-
mate change RCP8.5 scenario, 2081–2100 as per (Parente et al.,
2018)) scenario are presented in Fig. 5. ‘Elevated’ Tr_d2h was used, as
hourly temperature changes are usually greater under HW conditions
(related with greater thermal amplitudes). The predicted UTS intensity
was added to the background Tr of the corresponding UTS Stage, to ob-
tain the absolute degrees of air temperature. While the maximum UTS
value is not significantly different from the ‘Present HW day’ (in the
Fig. 3 and Fig. 4 media files and Supplementary Materials, Appendix
B), the ‘Future HW day’ with ‘Denser City’ scenario shows and expan-
sion of the positive UTS intensities to the areas of the city in which fu-
ture urban development is possible. The predictions indicate up to 1.0
°C of temperature increase, mostly in the northern, and eastern areas
of the city. Furthermore, these areas are deemed the most critical in
the city of Lisbon, not only because of the local UTS potential aggrava-
tion, but mostly because an upwind densification scenario is expected
to further block the regional wind penetration in the city, enhancing
the UTS at the city centre as well. Microscale modelling details of
these areas can be found in (Lopes et al., 2020a). The cooling effect of
10
the ‘to be consolidated’ future green spaces is also detected, although
they represent smaller areas.

4. Discussion

As described in (Oke et al., 2017), there are fourmainmethods to ob-
tain city-level air temperature data: (i)field observations; (ii) numerical
models; (iii) physical models; and (iv) empirical models. While numer-
ical and physical models have their main advantage in the fact that both
allow quasi-controlled experiments and thorough description of out-
door thermal comfort levels (e.g. Geletič et al., 2018, 2021), they are
harder to implement outside the academia, due to economic, logistic,
expertise, or computational constraints (Oke et al., 2017). As such,
thesemethods are usually not employed by the city-level public admin-
istration to compare the climate performance of future urban develop-
ment prospective scenarios. On the other hand, field observations are
easier to access and interpret, from readily available sources: they can
be divided into in-situ and remote sensing measurements (Oke et al.,
2017). The former, depicts air temperature observations as discrete
values in space (i.e., data points), and the ability to produce rigorous
high-resolution (sub-kilometric) urban air temperature maps
(i.e., with enough spatial detail to ensure distinction between LCZ ho-
mogenous neighbourhoods) with this data depends on the density
and reliability of the local weather stations network (Meier et al.,
2015; Oke et al., 2017). While examples of high-density urban canopy
layer weather networks exist (e.g. Milošević et al., 2021), they are not
very common (Meier et al., 2015), many studies are using citizen ac-
quired data to fill in this need, despite the data quality limitations,
such as systematic positive bias in the results (Droste et al., 2020;
Meier et al., 2015; Napoly et al., 2018; Nipen et al., 2020). Still, air tem-
perature observations can only be used for urban planning prospective
studies if accompanied by mensurable indicators of thermal
performance.



Fig. 5. Air temperature (Ta) model predictions for the ‘Denser City’ under a ‘Future HW day’ scenario, and Ta differences to an equivalent ‘Current City’ scenario: (a-b) nocturnal median
(UTS Stage 1, from 11 p.m. to 6 a.m.); and (c-d) late afternoon maximum (UTS Stage 5, from 6 p.m. to 8 p.m.).

A. Oliveira, A. Lopes, E. Correia et al. Science of the Total Environment 790 (2021) 147710
Empiricalmodels, such as the one developed in this study, overcome
some of this constrains, while considering the practical needs of local
authorities in deploying a urban planning assessmentmodel implemen-
tation (Oke et al., 2017). These depict the statistical relation between
the variable of interest (here, the urban air temperature anomaly) and
candidate predictor variables, andwhile they lack the decimal-level rig-
our of physics and numerical models, they provide a straightforward
means for local authorities to simulate and decide upon results, without
the need of an expert team or great computational capacity (Oke et al.,
2017).

Still, one limitation of empirical models developed so far is the lack
of integration of temporal variability, due to statistical methodology
constraints (Gelman and Hill, 2006; Zuur et al., 2009a, 2009b). This sta-
tistical limitation is partially due to the absence of dense in-situ observa-
tion networks, as mentioned above – i.e., lack spatial sampling that
leads to strong autocorrelation in the data (Gelman and Hill, 2006).
More specifically, it is much more common to have UHI studies based
on low densitymeasurements, with long time series (e.g.), than the op-
posite, and this poses inter-class correlation issues that, in turn, make it
difficult to overcome the violation of statistical modelling assumptions
(independence, homogeneity). LM models are the most frequently
used, both in UHI and surface UHI studies, and to overcome the
11
temporal-related constraints they usually focus on predicting the typi-
cal UHI magnitude, per time-fixed predictors such urban morphology,
surface materials, geographic factors (Alcoforado and Andrade, 2006;
Oke et al., 2017).While such results can be used by the local administra-
tion to establish the average effects of time-fixed predictors, they do not
allow to disclose their interactions with the background weather.

Here, to fill in this gap, a LMM approach is implemented, using 10
years of data from a quality ensured mesoscale network (Alcoforado,
2013; Alcoforado et al., 2007; Lopes et al., 2013). Through this method-
ology, the site-specific variance is controlled by the introduction of the
so-called “random effects”, i.e., by partitioning the variance that is asso-
ciated with each site's data, a technique very frequently used in other
research domains, such as ecology and health (Gelman and Hill, 2006;
Zuur et al., 2009a, 2009b), but not frequent in urban climate studies
(Du et al., 2016). Hence, it allows to produce a time continuous model,
that can be validated out of the temporal scope of the training dataset
and implemented as a daily urban temperature monitoring tool
(Gelman et al., 2010; Verbeke and Molenberghs, 2000; Zuur et al.,
2009a, 2009b). A previous experience focusing on temporal-resolved
urban air temperature models has been implemented by (Du et al.,
2016). This study has successfully provided a local algorithm to predict
surface temperature, based on satellite data and landscape composition
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pixels. Even though the subject of this work is the land surface temper-
ature (LST) (hence, the surfaceUHI), the authors describe how the LMM
approach outperforms the LM equivalentmodel, both in terms or resid-
uals and autocorrelation issues. In addition, a positive relation was
established between the diurnal LST and the percentage of buildings,
bare soil, and impervious surfaces (Du et al., 2016). A single example
of LMM air temperature prediction model was found, in the urban cli-
mate literature, at the time of this study (as per the keywords and titles
found in the google scholar and science direct databases): in (Parison
et al., 2020), the authors have employed a LMMapproach tomodel ther-
mal comfort, as a function of watering strategies, indicating a reduction
of up to 2.0 °C in the UTCI-equivalent temperature related to watered
surface areas. However, this study only comprised two urban stations
and focused in the microclimate impact.

Locally, it is possible compare results with previous empirical stud-
ies. In Lisbon, previous modelling attempts have been described in
(Alcoforado and Andrade, 2006) indicating several wind-related pat-
terns of the local so-called UHI, including a ‘Wind-sheltered thermal
pattern' related with ‘N' wind days. Its results showed the broad spatial
patterns of the Lisbon's nocturnal UHI intensity isotherms, depicting the
riverside areas as where the thermal anomaly is greater, and Monsanto
area as the coolest. The authors also suggested the impact of topography
in sheltering the city from regional background winds, although the
regression-wisemodel results indicated altitude has having the greatest
contribution, regression-wise. More recently, the CEG/IGOT group col-
laborated with Lisbon's municipality in a local project called Lisbon's
2020 project “Cartography for Thermal Vulnerability –Mapping the ef-
fects of heatwaves in Lisbon” (translation from the Portuguese original
“Cartografia de Vulnerabilidade Térmica - Mapeamento dos efeitos das
ondas de calor em Lisboa, face às projeções climáticas”) (Lopes et al.,
2020b), where the 2005–2014 time series was used to test a bayesian
regression krigging method (Krivoruchko, 2012), by the introduction
of selected predictors, such as urban morphology indices (Correia,
2019) and Copernicus Land Monitoring Service layers (European Envi-
ronment Agency (EEA), 2018c, 2018b). However, this work's usefulness
was limited due to (i) the absence of coefficients/weights for each pre-
dictor (to evaluate the UTS sensitivity to changes in each indicator), and
(ii) the inability to solve the UTS's temporal response to weather
changes.

While the results from the current study agree with the above-
mentioned findings (Alcoforado and Andrade, 2006; Lopes et al.,
2020b), both in terms of the spatial pattern and the magnitude of the
typical ‘N' days nocturnal UTS intensity, new findings arise from the
usage of weather predictors and estimating the relative weights that
both geographical and urban density factors have, as they interact
with background air temperature, wind speed or hourly air temperature
changes. The urban development is found to be the strongest contribu-
tor to the Lisbon's UTS, proportionally to the 2-hours background air
temperature change. Oke et al. (2017) has previously mentioned how
the UHI effect is a result from the difference between the cooling rates
at the rural and urban areas, which are greater in the former, and re-
duced in the latter (due to the thermal storage and thermal inertia of
the urban materials), indicating a positive relation between daily ther-
mal amplitude and the UHI intensity. While this effect is the result of
the urban occupation, the authors have suggested that attention should
be given to additional geographical/landscape control factors, such as
local terrain or coastal proximity, as these may contribute to a so-
called ‘spurious' positive urban-rural difference, not attributable to the
urban presence itself.

This study's model depicts an example of such complex interactions,
in Lisbon, and allows to estimate corresponding urban and geographi-
cal, daily. Hence, all scenarios showed a positive UTS, at the city centre,
during the summer ‘N' days.While HWevents seem to disaggregate the
UTS, by 0.3 °C per each 1.0 °C background air temperature increase,
there is, at least a circa 1.0 °C UTS intensity, during the night, under
moderate wind speed and 2-hours air temperature change. However,
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as the wind speed augments, the topographic exposure becomes in-
creasingly important to the city's UTS spatial pattern, which recedes to
the riverbank and valley areas, with peak intensities where the maxi-
mum topographic shelter and built-up compactness overlap. This
wind speed-dependence is visible both in the present day and future cli-
mate change scenarios. Finally, while the UHImaps from previous stud-
ies were able to depict the overall urban pattern, the LMMf0 UTS maps
provide an increased level of spatial detail, providing an urban thermal
response assessment toolwhich is able to quantify the distinct contribu-
tions from either the LCZ classes, such as compact city-blocks or mid-
sized urban parks, or the sheltering effect of local terrain to the prevail-
ing northern winds.

Model results show that Lisbon's case study is an example of a city
where the geographical effects have a strong contribution to the local
urban thermal anomaly, quantified through the UTS approach. These
forcing factors cannot be dissociated from urban geometry, while
predicting the urban air temperature anomaly, a circumstance that
has been discussed by (Oke et al., 2017).

Limitations from the currentmodel aremostly relatedwith available
data constraints. Firstly, due to the scarcity of urban stations and their
locations, no significant relation could be established with spatial coor-
dinates, to include a proper spatial autocorrelation structure in the
model. However, next steps of the research will include addressing
this issue through the interpolation of model residuals. In addition, the
sites are characterized by a strong agreement between the topography
and built-up occupation - e.g. terrain elevation has a Pearson's correla-
tion of 0.68 (p-value<0.01), with an urban density index (Lopes et al.,
2020b). Hence, it becomes problematic to introduce the wind speed in-
teraction with both the urban compactness and topographic exposure
predictors, simultaneously. In futureworks, the collinearity issue should
also be addressed to account for the additional wind sheltering effect of
the buildings. Two additional case-specific limitations are the absence of
data on river and coastal breezes, as stated in a previous study (Oliveira
et al., 2021), aswell as the lack of high-resolution geospatial information
readily available (e.g. building heights). Finally, while the assessment of
future climate change scenariosmight be helpful in guiding present-day
urban planning adaptationmeasures, it should be noted that such future
climate conditions might be outside of the scope of observations in-
cluded in the training data. Accordingly, present-day relations might
not hold true in the future. As such, current results should be viewed
as scenarios for urban adaptation guidance, rather than forecasts.

Finally, it should be noted that empirical models should not be gen-
eralized to other locations, especially where circumstances are very dif-
ferent, as the estimations are case-specific. However, they provide a
straightforward tool for the local regulators to contemplate potential
urban development scenarios, and their impact on the Lisbon's urban
climate. While the statistical assumptions that underline the most fre-
quently used LM limit its usefulness, here, by combining both the
time-fixed geographic/urban factors, and the time-varyingweather pre-
dictors, it becomes possible to explore scenarios and estimate the corre-
sponding sensitivity of the UTS intensity to their changes, and on a day-
to-day basis.

Such strategies become most helpful while estimating the Lisbon's
air temperature during the summer, especially under HW conditions,
when a positive UTS is deemed more concerning. Hence, the Lisbon's
summer and HW temporal-resolved empirical model provides a
straightforward and helpful tool for local authorities to: (i) monitor
daily changes in the city-level excess heat exposure; (ii) assess the cor-
responding human health vulnerability; and (iii) advise both short-
term public health actions and long-term policy strategies. To the
urban climate community at large, such results establish a precedent
for (i) implementing similar LMM empirical model approaches; and
(ii) integrating weather predictors and interaction terms whose influ-
ence over the time-fixed factors is expected to be statistically significant
and meaningful. Future work will further re-assess the model, to vali-
date its results out of the temporal scope of the input data as soon as
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new (and denser) urban air temperature measurements become avail-
able, including the assessment of the spatial correlation in the residuals,
and results comparisonwith kriging algorithms. In addition, it is the aim
of the authors to further expand its usefulness, by establishing a frame-
work to map and assess heat vulnerability, in Lisbon.

5. Conclusion

Air temperature is a key aspect of urban environmental health, espe-
cially in locations that are challenged by the prospects of enhanced HW,
due to climate change. Lisbon is such a case, and while its local UHI ef-
fect has been studied for decades, previous spatial modelling attempts
have been restricted to the typical seasonal conditions, as a response
to urban geometry indicators, and geographic factors (river/coast dis-
tance and topography). This approach is also the most frequently
used, in urban climate empirical studies. Hence, such models do not
allow to infer day-to-dayweather-related changes in the urban heat ex-
posure. Here, to fill this gap, 10-year of air temperature data from
Lisbon's mesoscale network (2005–2014), from June to September,
are used to develop a LMM empirical approach to predict the local
Urban Thermal Signal (UTS,), i.e., the sub-daily urban air temperature
difference, compared to a non-urban reference site, according to the
synchronous background/rural weather variables, as they interact
with the local urban compactness and topography. Results show that
the temporal-resolved LMM approach allows to accurately predict
daily maps of the urban heat anomaly (late afternoon peak UTS, and
nocturnal median UTS), at a 100 × 100m spatial resolution. The UTS in-
tensity is shown to have significant contributions from the interaction
terms between the time-fixed factors and the time-varying weather
predictors, ensuring mean absolute errors lower than 0.5–0.9 °C (noc-
turnal median and late afternoon daily maximum UTS, respectively),
both in the testing and validation datasets.

The interaction between the background air temperature 2-hours
changes (i.e., bi-hourly thermal amplitude) and the LCZ-based Bowen-
ration (BR) predictor (a proxy for urban compactness) is shown to
have the strongest positive effect. Hence, on average, a positive UTS ef-
fect establishes whenever: (i) the background air temperature differ-
ence is greater than 1.0 °C, in 2-hours; and (ii) the urban fabric is of
the type ‘Compact’ (i.e., LCZ 1-3, or BR ≥ 3). In leeward locations, this
positive thermal anomaly is further enhanced by the interaction be-
tween the north-to-northwest (NNW) topographic exposure index
(positive, if sheltered from NNW winds, negative, if otherwise) in pro-
portion to the synchronous background wind speed. Thus, under calm
conditions, the urban compactness contribution is strongly apparent
in the Lisbon's nocturnal/late afternoon UTS pattern, and leeward and
windward differences are small; inversely, as wind speed augments,
Lisbon's NNW topographic shelter becomes increasingly noticed in the
UTS pattern, and, in some instances, overcomes the urban fabric's con-
tribution, by establishing a positive UTS, even in areas with lower
built-up compactness. In addition, the LMM is also used to predict
Lisbon's heat anomaly, under climate change ‘worst-case-scenario’ con-
ditions (RCP8.5 and 95th percentile HW intensity, for the 2081–2100
period): maps of the future UTS are assessed, by comparing current
urban development with an urban densification alternative. Results
show the significant impact of the built-up compactness in future heat
exposure, where UTS changes can reach up to 1.0 °C, compared to the
present-day urban development situation. Conversely, urban areas con-
verted into dense tree covered parksmay become 1.0 °C cooler, indicat-
ing the important role of green areas to the city's future environmental
health.

Locally, results from the current study allow, for thefirst time, to pre-
dict the urban heat exposure patterns in Lisbon, during typical summer
days and HW events (NNWwind conditions), both present and future.
The model provides local authorities with an efficient and straightfor-
ward solution to test the UTS impacts of alternative urban planning
pathways. While empirical models are based on local conditions, their
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conclusions should not be extrapolated to different geographic contexts,
the method serves as an example of a temporal-resolved approach to
produce a readily available tool for urban-related stakeholders. To the
overall urban climate and urban public health community, the current
study provides a precedent in developing and using a LMM approach,
capable of predicting daily variations in the spatial pattern and intensity
of the urban air temperature, most useful in the assessment of present-
day and future heat vulnerability.
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