
2021

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

A state consistency framework for programmable network data

planes

Hugo Alexandre Mendes Garcia

Mestrado em Engenharia Informática

Especialização em Arquitetura, Sistemas e Redes de Computadores

Dissertação orientada por:

Prof. Doutor Naercio David Pedro Magaia

1

Resumo

A tecnologia de Rede Definida por Software (SDN – Software-Defined Networking) é

um método de gestão de rede que permite um planeamento dinâmico e

programaticamente eficiente da mesma, a fim de melhorar o seu desempenho e

monitorização. SDN tenta centralizar o cérebro da rede num único dispositivo,

desassociando o processo de encaminhamento de pacotes (Data Plane), do processo de

roteamento (Control Plane). A constituição do control plane consiste em um ou mais

controladores, nomeadamente, aplicações que atuem de forma estratégica, que são

referenciadas como sendo o cérebro da rede SDN, onde toda a inteligência é agregada.

Esta dissertação foca-se em redes programáveis, o que significa que o programador da

rede, pode controlar a forma como um dado dispositivo controla o fluxo de pacotes, por

meio de software, sendo executado de forma independentemente do hardware da rede.

Dado que a cada dia que passa as SDNs tornam-se cada vez mais importantes, permitindo

aos programadores optar por diferentes métodos e formas para desenhar, implementar, e

operacionalizar as redes com que diariamente se deparam. Assim, uma ferramenta que

permita garantir uma comunicação fidedigna entre os dispositivos de rede, assume um

papel cada vez mais relevante. Existe também o objetivo desejável de manter um estado

global partilhado entre os dispositivos que constituem a rede. A crescente necessidade de

garantir a segurança das redes, que cada vez mais são o veículo de transmissão da

informação neste mundo globalizado e por conseguinte a proteção dos dados que nelas

circulam, provocam de uma forma global um crescente interesse na atividade dos

atacantes. Cada vez mais utilizam ferramentas e conceitos mais sofisticados tentando

quebrar ou contornar as regras de segurança na tentativa de obter gratificação pessoal, ou

porque, ao existirem melhorias numa nova área, é provável que com a sua introdução,

estas insiram novas vulnerabilidades que possam ser exploradas por esses atacantes. Além

disso, existe o fato que, no campo das SDNs, muitos propuseram mecanismos de

comunicação entre os dispositivos do plano de dados, ou seja, switches, e mesmo entre

estes.

No entanto, dada a inexistência de uma maneira globalizada para realizar esta

comunicação, este trabalho visa propor uma estrutura de consistência de estado que

aproveite a abstração de uma máquina de estados, usando atualizações de rede

2

consistentes, entre switches adjacentes, por meio da clonagem de pacotes, oferecida pela

linguagem de programação P4 e por piggybacking de pacotes que já se encontravam a

circulação na rede. Também é usada uma média movel exponencial ponderada, onde

determinada condição é alcançada, e de seguida acionamos o recurso P4, anteriormente

mencionado, i.e., acionamos a clonagem de pacotes, garantindo assim que todos os

pacotes chegam ao seu destino. Além disso, usamos ferramentas para realizar as

verificações bit a bit, considerando que a linguagem P4, ainda carece de uma forma para

aceder a partes específicas do pacote que circulam na rede.

Também utilizamos uma estrutura capaz de armazenar qualquer tipo de informação, i.e.,

os registos, nos quais decidimos armazenar todos os dados por nós considerados

relevantes e a serem utilizados durante a execução. Concretamente, guardamos toda a

informação relativa, tanto aos endereços de origem e ao endereço de destino do pacote,

bem como os portos de entrada e os portos de saída do switch.

Foi também ponderado o uso de outra linguagem de programação em vez do P4, porém

esta outra linguagem, o Domino, não nos oferece a característica principal que é

possibilitar a criação novos cabeçalhos, pois este era o objetivo inicial quando a

linguagem foi procurada, acabando por ser posto de parte o Domino e a escolha recaiu

sobre o P4, como a linguagem de programação para a implementação da ferramenta.

Tendo em conta as ferramentas de simulação e de emulação dos casos de teste, á frente

apresentados, foram estudadas outras ferramentas, como o NS-3 e o Estinet.

Pelo conhecimento prévio e experiência na utilização do Mininet, para simular redes de

casos-tipo e atendendo que uma das características chave do Mininet é similar á do NS-3

e ambas têm um mecanismo de virtualização leve, optamos pelo Mininet, pois o Mininet

possibilita-nos o uso direto do OpenFlow, sem a necessidade de adicionar extras, ao

contrário das outras duas ferramentas atrás referidas, que necessitam de adicionar esses

extras, para suportar o uso do OpenFlow.

Para a implementação da ferramenta inicialmente, consideramos a utilização um método

de pacotes de tipo probe, e depois atentamos uma metodologia baseada em um novo

cabeçalho, para implementar a ferramenta ao invés da utilizada, i.e., o piggybacking.

Primeiramente, atentamos utilizar pacotes do tipo probe que seriam gerados pelos

switches, e conforme acontecessem alterações na rede, e.g., aumentar ou diminuir a

quantidade de dispositivos de rede, envisionamos que os pacotes seriam enviados pelo

3

switch e eles continham informação de modo aos switches restantes, poderem ter

conhecimento dos eventos.

A outra metodologia que atentamos consistia em criar um novo cabeçalho no qual

colocaríamos toda a informação que iria ser necessária para o correto funcionamento da

ferramenta proposta. Contudo, e após exaustivas tentativas de testes para concretizar a

sua implementação, esta apresentou demasiados problemas. Deparamo-nos com o

problema fulcral que era saber onde colocar nova informação dentro dos componentes

que formam a pilha de cabeçalhos da internet, uma vez que esta, é de uso globalizado e

quebrar ou tentar alterar a sua estrutura, significaria que o pacote seria puramente

descartado sem a possibilidade de atentar qualquer intervenção nele.

Para avaliar a solução proposta, coletamos uma ampla quantidade de informações através

de um programa corrido nos emissores e bem como nos recetores dos pacotes e para isso

usamos dois cenários de teste distintos.

No primeiro cenário, usando uma rede com um pequeno número de dispositivos, mais

concretamente, 4 switches e 3 hosts, coletamos o número de pacotes recebidos no destino

e o número de pacotes retransmitidos na origem.

No segundo cenário, usamos uma rede com um número maior de dispositivos em

comparação com o primeiro cenário, ou seja, desta vez a rede seria composta por 8

switches e 4 hosts, e nela coletamos o mesmo tipo de dados, isto é, a quantidade de pacotes

recebidos no destino, após o host ter sido reajustado de modo a fazer uso desta nova rede.

Também coletamos o número de pacotes retransmitidos na origem.

Após uma análise extensa dos resultados obtidos, foi possível verificar que apesar de

falhas nos links superiores a 70%, ainda assim conseguimos garantir que mais de 95%

dos pacotes chegam com sucesso ao seu destino.

Apresentando os resultados com mais detalhe, no primeiro cenário, relativamente ao

número de pacotes recebidos no destino, em 75% das execuções realizadas, a nossa

solução, assegurou que perto de 100 pacotes chegassem ao seu destino em cada execução.

Em referência ao segundo cenário, em 79% das execuções, a nossa solução conseguiu

entregar perto de 99 pacotes por execução e que estes alcançaram o seu destino.

No que diz respeito ao número de pacotes retransmitidos, nestes encontramos três tipos

de retransmissões. As retransmissões normais, que como o nome sugere, são aquelas em

que nada de extraordinário acontece, ou seja, os pacotes são simplesmente clonados e são

novamente enviados por uma rota alternativa para seu destino.

4

Identificamos também, retransmissões com pacotes espúrios, estas retransmissões são

verdadeiramente aleatórias e repetem-se em 1 ou 2 pacotes em todos os enviados.

Por último, existem as retransmissões que ocorreram e que foram afetadas pelo problema

de congestionamento de pacotes ou ciclos de CPU do PC quando este se encontrava mais

congestionado ou ocupado. Nestas circunstâncias os pacotes foram simplesmente

marcados, para existir a possibilidade de distingui-los dos restantes.

Em referência ao número de pacotes retransmitidos, no primeiro cenário a nossa solução

obteve em 75% das execuções, perto de 98 pacotes retransmitidos por cada uma dessas

execuções.

No segundo cenário, houve uma consistência nos tipos de retransmissões, pois podemos

constatar que se mantiveram os mesmos tipos, todavia foi-nos também possível verificar

uma diminuição considerável dos tipos de retransmissão com pacotes espúrios e nas

retransmissões afetadas pelo problema de congestionamento de pacotes ou ciclos de CPU

do PC quando este se encontrava mais congestionado ou ocupado. Pelo que neste segundo

senário foi notável um aumento do número de pacotes retransmitidos.

Para concluir, este trabalho procurou resolver o problema de inconsistência de informação

presente nos dispositivos de rede ou mesmo entre eles, i.e, switches, para isso propomos

uma ferramenta que garanta consistência de estado para data planes programáveis e que

aproveite a clonagem de pacotes através da aplicação de uma condição ligada á média

movel exponencial ponderada e piggybacking usando P4.

É notável que mesmo com falhas nos links superiores a 70%, a nossa solução mesmo

assim, consegue garantir que 95% dos pacotes que foram enviados, chegam aos seus

destinos.

Focando-nos no trabalho futuro, poderia ser utilizado o conceito de tuplos para tornar o

código mais simples e tornar o acesso a certas partes do pacote ainda mais simples.

Para finalizar esta dissertação, contribui uma nova ferramenta que garante consistência

de estado para data planes programáveis que nos garante que os pacotes que circulam

dentro de uma rede não são perdidos utilizando a clonagem de pacotes através da

utilização de uma média movel, também possibilita a utilização de piggybacking através

da criação de espaço no pacote que circulam na rede.

Por fim, baseado nesta dissertação foi submetido um artigo para uma conferência

internacional.

Palavras-chave: SDN, Consistência de estado, Framework, Redes Programáveis

5

6

Abstract

The Software-Defined Networking (SDN) technology is a method of network

management that allows dynamic, programmatically efficient network planning to

improve its performance and monitoring. This dissertation focuses on programmable

networks, which means that the network programmer can control how the network

devices control packet flows via software that runs independently from network

hardware.

Given that SDN at each passing day becomes more and more prominent, a framework

that can ensure reliable communication and a global state among devices become more

and more important. There is also the desirable goal of being able to maintain a global

shared state among all network devices. Also, there is the fact that in the field of SDNs,

many have proposed communication mechanisms among data plane devices, i.e.,

switches, and between the latter and the controller. However, given the inexistence of a

widespread manner to do so, this work aims at proposing a state consistency framework

that leverages on a state machine abstraction using consistent network updates among

adjacent switches through packet cloning offered by the P4 programming language and

packet piggybacking. We also use a moving average that when a condition is met, such

P4 feature is triggered, hence ensuring that all packets arrive at their destination. Also,

we use tools to perform bitwise checks, considering that the P4 language lacks ways to

access specific parts of a packet.

We also use a structure that is capable of storing any type of information, i.e., registers,

in which we decide to store the data to be used.

To evaluate the proposed solution, we collected a broad amount of information using two

scenarios.

In the first scenario using a network with a small number of devices, we collect the

number of packets received at the destination and the number of packets retransmitted at

the sender.

In the second scenario this time, using a network with a higher number of devices

compared to the first scenario, we collect the same type of data, that is, the number of

packets received at the destination after it has been readjusted to mirror this new network

structure. We also collect the number of packets retransmitted at the sender.

7

After an extensive analysis of the results obtained, it was possible to verify that despite

link failures higher than 70%, we still managed to have more than 95% of packets arriving

successfully.

Keywords: SDN, State consistency, Programmable networks, Framework

8

9

List of Figures

Figure 1: An OpenFlow Architecture Example (Extracted From:[32].) 19

Figure 2: Implementation Example Using TCP in FAST Data Plane (Extracted

From: [6]) ... 25

Figure 3: A P4 Pipeline Example (Extracted from: [23].) 28

Figure 4: A Topology Example Using a GUI for Mininet (MiniEdit) (Extracted

From: [24].) ... 33

Figure 5 - State Machine Example Using our Parser .. 36

Figure 6 - A Timestamp Example (Extracted From: [27]) 37

Figure 7 - A SACK Example (Extracted From: [27]). .. 38

Figure 8 - V1 Metadata that is Used ... 39

Figure 9 – Example of a Cloned Packet .. 39

Figure 10 – Example of a Normal Packet ... 40

Figure 11 - An alternative path for packets to go from H1 to H2 41

Figure 12 - An example scenario .. 43

Figure 13 - Example of TCP from a pcap file in Wireshark 45

Figure 14 - Flow from H1 to H2 – F1 ... 46

Figure 15 - Flow from H3 to H1 – F2 ... 46

Figure 16 - Distribution of received packets for the first scenario. 57

Figure 17- Average number of received packets to H2 for the first scenario 58

Figure 18 - Distribution of retransmitted packets for the first scenario. 60

Figure 19 - Average number of retransmitted packets to H2 for the first scenario

 .. 61

Figure 20 - Second Test Scenario Network .. 62

Figure 21 - Second Scenario Network with Flows ... 63

Figure 22 - Distribution of received packets for the second scenario. 64

Figure 23 - Average number of received packets at H4 for the second scenario.. 65

Figure 24 - Distribution of Type of Retransmissions in the Second Scenario 66

Figure 25 - Average number of received packets at H4 for the second scenario.. 67

file:///C:/Users/hugog/Desktop/HGarcia_Dissertacao_25_02_2021.docx%23_Toc65500694
file:///C:/Users/hugog/Desktop/HGarcia_Dissertacao_25_02_2021.docx%23_Toc65500695
file:///C:/Users/hugog/Desktop/HGarcia_Dissertacao_25_02_2021.docx%23_Toc65500695
file:///C:/Users/hugog/Desktop/HGarcia_Dissertacao_25_02_2021.docx%23_Toc65500696
file:///C:/Users/hugog/Desktop/HGarcia_Dissertacao_25_02_2021.docx%23_Toc65500697
file:///C:/Users/hugog/Desktop/HGarcia_Dissertacao_25_02_2021.docx%23_Toc65500697

10

List of Tables

Table 1 - Table for the Number of Retransmitted packets from the Switch S1 during

the first set of results ... 70

Table 2 - Totals for Retransmitted Packets during the first set of results 71

Table 3 – Table for the Number of Received Packets at the end host H2 72

Table 4 - Totals for Received Packets during the first set of results..................... 73

Table 5 . Table for the Number of Retransmitted packets from the Switch S1 during

the second set of results .. 74

Table 6 - Totals for Rertransmitted Packets during the second set of results 75

Table 7 - Table for the Number of Received Packets at the end host H4 76

Table 8 - Totals for Received Packets during the second set of results 77

11

Content

 Introduction 13

1.1 Motivation 13

1.2 Problem 14

1.3 Objectives 15

1.4 Contributions 15

1.5 Document structure 16

 Background and Related Work 17

2.1 OpenFlow 18

2.2 Consistency 20

2.3 State Machine Abstraction 23

2.3.1 Flow-level State Transitions (FAST) 23

2.3.2 OpenState 25

2.3.3 FlowBlaze 26

2.3.4 Discussion 27

2.4 Programming Languages 27

2.4.1 P4 27

2.4.2 Domino 29

2.4.1 Discussion 30

2.5 Simulation and Emulation Tools 31

2.5.1 NS-3 31

2.5.2 Mininet 32

2.5.3 EstiNet 33

2.5.4 Discussion 34

 The proposed solution 35

3.1 Solution overview 35

12

3.2 Implementation 42

3.2.1 Network Configuration 42

3.2.2 Registers and Metadata 46

3.2.3 Actions 48

3.2.4 Tables 49

3.2.5 The workflow of the program 51

3.2.6 Difficulties 55

 Evaluation of the Proposed Solution 56

4.1 First Test Scenario 56

4.1.1 The number of received packets 57

4.1.2 The number of retransmitted packets 59

4.2 Second Test Scenario 61

4.2.1 The number of received packets 64

4.2.2 The number of retransmitted packets 66

 Conclusion and Future Work 68

5.1 Conclusion 68

5.2 Future Work 68

5.2.1 Registers 68

5.2.2 Offloading and Separation 68

Appendix 70

Bibliography 78

13

Introduction

1.1 Motivation

When the Internet was still in development, hence, closed from the general public,

the only ones that had access to it were its developers. In these restricted networks,

researchers would conduct experiments on new protocols and if they were considered

interesting by the scientific community, they would get funding and present them to the

Internet Engineering Task Force (IETF) to be standardized. However, this process

ultimately frustrated many researchers since it was very slow.

In response to this problem, some researchers tried a different approach and

proposed a new paradigm called Active Networking [1]. This, at the time, was a very

radical approach as it went against many principles behind networking that advocated the

simplicity of networking. At its core, Active Networking envisioned a network API where

the network resources would be exposed on very simple entities and support new custom

functionalities for packet processing. There were two programming models: (i) the

capsule model, where they envisioned new data-plane functionalities in which packets

carried the code to be executed and they also used caching to improve the efficiency of

code distribution, and (ii) the programmable switch/router model, where it was planned

to give decisions to the network operator.

As this was in the primordial phases of the Internet, the foundations for future work

had to be done and they were the following: (i) the introduction of programmable

functions in the network, (ii) enabling the virtualization of the network, and (iii) the ability

to demultiplex, and last but not least, (iv) the idea to unify the architecture for

middleboxes.

All of these would eventually lead to the separation of the planes, i.e., the control

and data planes, which enabled the idea of Software Defined Networking (SDN) [2] to

appear. The control plane relates to all the functions and processes that determine which

path to use. These are more known as routing protocols, some of them are spanning tree

protocol [3], Consensus routing [4], which will be covered later on in this document

14

meanwhile, the data plane denotes all the functions and processes that forward

packets/frames from one interface to another. These can be numerous devices such as

switches, routers, firewalls amongst others. Concretely, it would be the increase of the

Internet traffic given that the latter was now open to the general public, and the fact that

anyone having access to it could use it. As a result, the volume of data increased and

there was a need to guarantee performance and reliability. However, conventional

switches and routers were conceived with both planes together in mind, and, therefore,

unnecessarily complicating several tasks such as debugging problems or controlling

routing behavior.

Consequently, there was a need to improve and innovate to tackle new trends

whether they were in usage or in demand. This was also the rationale underneath the

appearance of SDN. That is, the existence of an open interface between the control and

data planes would allow logically centralized control of the network.

1.2 Problem

The problem we are mainly trying to address here is the fact that there can be

inconsistencies in the existing information in the data plane network devices, i.e.,

switches, or even among themselves. Specifically, the real challenge is: (i) when and how

to update the switches?, (ii) with what messages, that is, by simply creating more

overhead in the packets, or by sending more packets to the switches? By taking into

consideration that the time it takes to process a packet in hardware is negligible [5], the

addition of more packets into the network might be a good option. However, there is still

the issue of questions (i) and (ii).

Let us take a concrete example to give a better understanding of the problem at

hand. Let us say that there is an attacker that can both inject new packets into the network

and take original packets that were sent by trustworthy sources and alter them for their

gain. And what could be the gain? In this case, it could be to perform a Denial of Service

(DoS) attack, hence making an operational switch seem to the network that it is not [6].

There are several ways to do this, but one way would be to send a packet that was

malformed to the point that when it reached the switch, any action that would be taken,

would cause the device to crash.

Another exacerbating factor of this type of attack is the fact that between adjacent

switches there is no form of authentication. Thus, leading back to the original problem,

15

that is, “how to avoid the original problems?”, and when trying to prevent it, “which

information to send to the switches?”, “who should have a consistent view of the

network?”, so that the switches can make appropriate choices.

1.3 Objectives

The main objective of this dissertation is to develop a software-based state

consistency framework for data plane networking. Specifically, we aim at porting novel

state machine abstraction to P4 programming language and using key features such as

packet cloning to ensure that all packets arrive at their destination and packet

piggybacking to guarantee a consistent network view.

1.4 Contributions

In this report, a state consistency framework leveraging packet cloning and

piggybacking for programmable network data planes is proposed. It was implemented

using the novel Programming Protocol independent Packet Processor (P4) [7]

programming language that runs on switches. We use a moving average that triggers

packet cloning, and every packet that passes through the switch gets added necessary

information for the framework to work. The proposed framework ensures that packets

arrive at their destination and guarantees that a consistent state is achieved via packet

piggybacking. To the best of our knowledge, this is the first work implementing a network

state consistency framework that ensures a high packet delivery rate in the presence of

high link error rates in P4.

The contributions of this report are summarized as follows:

• A state consistency framework for programmable network data planes;

• Packets are salvaged through packet cloning. A full copy of the packet is

done, except for the metadata that is inerrant to that specific execution.

The clones are sent via another route;

• Packet piggybacking utilizing the Transport Control Protocol (TCP)

headers. It is mainly used to store the information exchanged between

switches.

o A state machine abstraction for P4;

An article based upon this work was submitted to an international conference.

16

1.5 Document structure

The organization of the documentation is as follows:

Firstly, in chapter 2, the SDN topic is approached in depth. We begin by defining

the term Consistency which is commonly used in areas such as Distributed Systems

and/or Computer Networking. Afterward, we present the types of programming

languages used in this field. Lastly, we present simulation and/or emulation tools. Please

notice that at the end of each section we present a small discussion, hence motivating our

choices.

In chapter 3, we present the design and implementation of the proposed solution.

To do so, here we begin by explaining why we choose which model to use, the V1 model

[8], and only then do we a deep explanation of the structure of the solution itself. Here

we approach the most important parts of the solution such as actions, tables, registers, and

metadata.

In chapter 4, the topic of evaluating our proposed solution is handled. For that, we

give two different scenarios and thoroughly analyze them. In each scenario, we use

different network topologies to simulate different environments for the solution to work

on.

To check how well it performs, we gather several types of data, the two that could

better show the solution’s performance and that were used are:

• The number of retransmitted packets;

• The number of received packets at the receiving host.

In chapter 5, we give our conclusion for this report, based upon the results that were

shown in chapter 4, and then present some future work that needs to be done to make sure

the solution can adapt to new situations.

17

Background and Related Work

In the beginning, the major focus of SDN was: (i) the open interface linking the

data and control planes, and (ii) distributed state management.

Regarding the first, at the time there were some proposals among researchers, and

the most notorious one was ForCES [9], which proposed an open interface to the data

plane that enabled innovation in the control plane. Some routers used this new protocol

(e.g., ForCES) to let a separate controller establish new forwarding-table entries in the

data plane and thus enabling the removal of control from routers.

Regarding the second, and more importantly, the focus of this dissertation, it was

logically centralized on controllers and had lots of problems maintaining the distributed

state. Among the many challenges was the fact that the controller had to be replicated to

handle its failures. However, the replication itself could introduce inconsistencies

throughout the replicas [1].

In particular, the authors of FAST [10] found three tools that helped the controller

by reducing its involvement with dynamic applications, concretely DevoFlow [11], which

is a variation of the OpenFlow model that severs the coupling between control and global

visibility and maintains a useful amount of visibility without imposing unnecessary costs.

Regarding what it introduces to help the controller, it reduces the controller overhead by

introducing rule cloning and measurement triggers. They also investigated OpenFlow

version 1.3 and found that it supported rate-limiting by allowing switches to track flow

rates and tag/drop excess traffic without the controller's involvement.

Finally, they investigated Open vSwitch [12], a multilayer virtual switch. It was

designed to allow massive network automation, while still encouraging standard

management interfaces and protocols. In concrete, what they added towards helping the

controller was the fact that it adopts the learn action for software switches that can install

new rules when traffic matches an old rule.

18

2.1 OpenFlow

The OpenFlow protocol was the first attempt to unify a network and how they

operate. At the time of the release of OpenFlow version 1.0 [11], there were a lot of

different types of switches and routers with their specific language, and as such inter-

network communication was very difficult, and this was where OpenFlow came in and

contributed in a big way.

First of all, OpenFlow is a protocol that could be used in any switch or router and

the OpenFlow developers also released their switches and OpenFlow gave an API where

the network devices could be remotely controlled through it. OpenFlow exploited the fact

that at the time most OpenFlow-enabled switches contained flow tables that were built at

line rate and were used for various situations, such as Network Address Translation

(NAT), Firewalls, Quality of Service (QoS), etc. [11].

However, these flow tables need to be managed somehow, and because most of

them used different protocols, OpenFlow gave an open protocol that could program the

different network devices (e.g., switches and routers). At the time the flow table had three

primary fields: (i) the packet header that defined the flow, (ii) an action that defined how

the packets should be processed, and finally (iii) the statistics field, keeping a record of

the number of packets and bytes for each flow, as well as the time since the last packet,

arrive from the flow.

When OpenFlow was released to the public, their dedicated switches had three basic

actions when a packet was received, namely, the switch need to be able to: (i) forward the

packet to a given port and hence allowing packets to be rerouted throughout the network;

(ii) to encapsulate and forward the packet to the controller, this was mostly used for the

first packet of a new flow, so the controller can decide whether or not to add a new entry

to the flow table; (iii) to drop the packet but the most prominent one being to drop packets

that are being sent to cause a Denial of Service (DoS); and finally, (iv) to forward packets

through the switch’s normal processing pipeline [11].

Initially, OpenFlow version 1.0 only supported a total of four protocols that were

Virtual Local Area Network (VLAN), Ethernet, Internet Protocol (IP), and Transmission

Control Protocol (TCP) [11]. To better illustrate the structure of OpenFlow version 1.0

we introduce figure 1.

19

OpenFlow is the basis of SDN as a whole and therefore it is necessary to properly

introduce it as a whole. However, here we mainly cover some of the major contributions

the newer versions gave, and get even more in-depth with the newer version of OpenFlow

1.5.0 [13].

In OpenFlow 1.0, the option for groups and multiple tables was added. In version

1.1, support for an extensible match and for the controller to be able to change the roles

was added.

Later on, in version 1.2, support to enable refactoring capabilities in a negotiation

that allowed for more flexible table miss support was increased, and it was also included

per-flow meters, auxiliary connections, and tunnel-ID metadata, among many others.

Further, in version 1.3, support for more extensible wire protocols was added,

similarly, to flow monitoring, synchronized tables, a vacancy of events and bundles.

Lastly, in version 1.5.0, lots of new features such as egress tables, packet-aware

pipelines, extensible flow entry statistics, and meter actions were added [13].

In version 1.5.0, the addition of tables for both ingress and egress enabled the

possibility for match action to occur on both of the ends of the pipeline allowing more

complex functions to be done. The packet pipelines are simply a pipeline that knows what

Figure 1: An OpenFlow Architecture Example (Extracted From:[32].)

20

type of packets are in it and any other type of packet will not be able to go through it. This

is done via header, specifically the ns type. Flow duration, flow count, packet count, and

byte count statistics were added to the flow statistics. And, the possibility for the

programmer to use them in action (if packet count = a number, do an action) was added

[13].

2.2 Consistency

With consistency being the main goal of this dissertation, as expected it could not

go without being approached. With that in mind, a brief explanation of what consistency

is, whether it is in distributed systems or the SDN paradigm is given. Firstly, regarding

the former, consistency means that when a system, let us call it A, sets a parameter, let us

call it X, to the desired value, and later on another system, let us call it B, gets the value,

and if no other changes are made to it in the meantime, it will return the value set by A.

If a distributed system can ensure that value is still X under most circumstances it can be

said that the system is consistent and that it offers a consistent service.

However, regarding the SDN paradigm, consistency is similar in the sense that a

system must offer a consistent service but at their core, they must ensure very different

things, such as when a switch requests information related to a flow or where a specific

packet must go, the controller must always know where to send it. The main focus is

precisely this, the controller must maintain the state of all the flows, rather than

maintaining track of the most important flow, or even the heavy hitter flows. The latter is

rather difficult because there can be inconsistencies between the information present in

the controller and the real situation on the network.

Regarding those inconsistencies, in the past, there have been attempts to standardize

the way to handle them. More specifically, the authors of [14] presented a notion of

correctness, that has to do with the idea mentioned in the above paragraphs. And, to do

so, while they were trying to demonstrate possible database models, they found potential

studies related to the subject at hand.

However as is intrinsic to distributed systems regardless of their type, they all have

to have into account the CAP (Consistency, Availability, and Network Partitioning)

theorem [15]. Such theorem refers to the impossibility of being able to offer all three

properties if the system is under some form of stress. Specifically, let us consider that

there is a switch that goes down, “what should be done?” “stop everything in the system

21

and guarantee consistency?”, or should the system continue running, and when the switch

reboots it tries to update itself. Fortunately, the second approach is the favored one and

has had a lot of work put into it. There is also the case when the network is split (i.e.,

partitioning happens) into two parts, let us say they are uneven to facilitate the decision

(because if they were to be even there would be no right decision, meaning that since both

parts contain the same number of nodes, both contain a majority of the nodes, hence both

can commit their results and overlap the other one's results and they would be stuck here

forever).

“What should be done?” Stop responding or continue handling requests? The

answer is not straightforward and might diverge from system to system. For instance,

there is the possibility of stopping the half that has the least amount of request handlers

and when the partition ends, they simply redo the requests done by the other half that had

been running. Or the other less used (only used in critical systems, such as banks and

government-related systems), to stop the system altogether and when the partition ends,

recommence regular operations.

Also in [14] they also proposed many ways to handle consistency such as logging

the transactions, or utilizing consensus to decide which operation to do, so that every part

of the system would have the same state. But above all, atomic commitment is nowadays

one of the most important properties. Specifically, if a transaction starts, it either finishes

and every part of the system agrees that it finished, or in case of a single failure to agree,

the transaction is aborted and tried again at a later date, also known as the all or nothing.

Moving from a more general consistency to a particular approach, the authors of

[16] talk a bit about how to guarantee consistency inside a network and provide some

ways to do so, such as per packet and per-flow consistency.

One reason that network updates are difficult to get right is that they are a form of

concurrent programming. And therefore, doing them as per-packet consistent updates

reduces the number of settings a programmer must consider to just two. For every packet,

the programmer either considers the packet to have passed through the whole network

before the update occurs or not. And consequently, it is easy to think that per-packet

consistent updates as “atomic updates”, but they are not the same. In other words, per-

packet consistency points out that for a given packet, the traces generated during an

update come from the old or the new configuration, but not a mixture of the two [16].

22

More formally, the authors introduce a new definition called the relation of packets.

They state that every trace generated during the update has to be equivalent to a trace

made by either the initial or final configuration. A per-packet mechanism may perform

internal accounting by stamping version tags without violating our technical requirements

on the correctness of the mechanism.

While the above might be simple and effective, is not always nearly enough because

some applications have special needs, and to handle those needs per-flow consistency is

necessary. In other words, per-flow consistency can be utilized as an abstraction called

per-flow abstraction. To see its real need, we can consider a network that has several

servers and only has a single switch. The issue here lies with the IP addresses. Initially,

let us first consider only two servers A and B and their IP addresses would start with 0

and 1, respectively. However, if other servers are added a rebalance would be needed,

and as such new IP addresses would also be needed.

Putting more simply, all packets in existing flows must go to the same server, where

a flow is a series of packets with related header fields, entering the network at the same

port, and not separated by more than n seconds, where n depends on the application at

hand [16].

It guarantees that all packets in the same flow are treated all the same. Formally,

the per-flow abstraction preserves all path properties, as well as all properties that can be

expressed in terms of the paths traversed by sets of packets belonging to the same flow

[16]. While the above speak mostly of how to handle consistency in a network, consensus

routing [4] is a consistency-first approach that separates safety and liveness using two

logically distinct modes of packet delivery. The stable mode where a route is adopted

only after all dependent routers have agreed upon it. And the transient mode that

heuristically forwards the small fraction of packets that encounter failed links.

In more detail, the stable mode does so by giving each router/switch a log that will

update each epoch, for the entire system a distributed snapshot exists. Since the network

is not static, this means that new routers/switches can join the network, not only that but

they can also leave it. That is, the mode also has to view change [17], which is very

important, to be able to maintain a consistent view of the system at any given epoch.

The transient mode is more focused on handling the failures of the network itself.

It does so by simply deflecting the packet to a neighbor router/switch, so that it may try a

new route to its destination. This neighbor is selected using a pre-computed backup route

23

that can be done by Resilient Border Gateway Protocol (R-BGP) [18], which will allow

them to announce their backup routes to each other.

To finish, in practice this is how the protocol works. First, a distributed coordination

algorithm runs to ensure that a route is accepted by every part of the system only after all

dependent routers have agreed upon a globally consistent view of the global state.

Afterward, packets are forwarded using one of two logically distinct modes. The

stable mode is only used if the computed routes using the coordination algorithm are

consistent, and or the transient mode when a stable route is not available. Note for a route

to be considered consistent, if router A accepts a route to a destination via another router

B, then B adopts the corresponding suffix as its route to the destination.

2.3 State Machine Abstraction

In this section, we survey papers about state machine abstractions. A state machine

abstraction is a state machine that runs on a set of states that can be arbitrary data

structures. These structures must have at least one member in them.

2.3.1 Flow-level State Transitions (FAST)

In FAST [10], there are two types of flow rules: the proactive and reactive

approaches. The former being linked to the controller where it populates the rules in the

switches ahead of time. However, it requires a priori knowledge of the events in the

switches. And the latter being an approach that supports dynamic applications. However,

it offers poor performance and as such, it was not used in the FAST primitive.

Nevertheless, the authors state that this approach should be used as it supports a far bigger

number of applications [10].

FAST is divided into three parts: (i) the abstraction that allows programmers to

program the state machines; (ii) the FAST controller; (iii) the data plane. Regarding the

abstraction, FAST implements a regular state machine that features the regular states with

storing counters that represent the many states. If needed, the controller can store the state

names and their variables to a bit string for easier representation of the values. The

transitions and actions can only be triggered if their guard condition is verified. The latter

is equal to OpenFlow version 1.3. Though in FAST, it is not allowed for a packet to be

processed through more than one state machine. It also features a filter for the

programmer to search through the state machine more easily. Finally, the instance

24

mapping is done via task definition, where it must be specified by mapping each packet

to an instance to its current state.

Regarding the control plane, FAST is divided into 3 parts: (i) the FAST compiler;

(ii) the Switch agent; and (iii) the state machine [10]. The compiler simply translates the

state machine to regular code so that it can run on switches. Although to do so, it requires

information to make them switch specific.

The switch agents are agents that can communicate with the state machine during

its execution. It has three responsibilities: (i) must know the features of the switch, how

to support the FAST abstraction in the data plane; (ii) perform part of the state machine

implementation in the switch, i.e., it can fall back to a reactive approach; (iii) must be

able to report local events to the global tasks at the controller. Nevertheless, the switch

can still detect heavy hitters and it should be able to configure the switch to send those

events to the controller.

To finish, FAST’s data plane contains four tables and a state machine filter. An

example extracted directly from the original paper is presented in figure 2. As the name

suggests the state machine filter filters where the flows come from and are identical to

the OpenFlow Tables, besides being implemented using Ternary content-addressable

memory (TCAMs).

Next, is the state table, where are stored the n pairs (Index, State). When a packet

has passed through the state machine filter, it was hashed and matched on the state table.

If this was successful, and an index for it does not exist, then it is created. Afterward, a

new pair is created (Packet, State).

When a match occurs, and the conditions are valid, the state will be updated, and

the pair will be sent to the next and final table, i.e., the action table. Once again in the

action table, if a match happens and the arriving packet matches the flow rules, the action

will be executed. And the packet is sent to the network [10].

25

2.3.2 OpenState

OpenState [19] is a tool that is based on the extended finite state machine (XFSM).

XFSM is a Finite State Machine (FSM) that can do a few more actions. In particular,

those can be, when a state transition is triggered (i.e., a match) a packet can be forwarded

to a given port (i.e., an action), this is no less and no more than a match-action pair. It is

also worth pointing out that the match which specifies an event not only depends on

packet header information but also depends on the state that the state machine is on at the

given moment.

The state machine can be modeled in an abstract form called the mealy machine.

This machine uses a 4-tuple (S, I, O, T) where: S is a finite set of states; I is a finite set of

input symbols, these can be events; O is a finite set of output symbols, these can be

actions; and, 𝑇 ∶ 𝑆 ∗ 𝐼 → 𝑆 ∗ 𝑂 is a transition function which maps <state, event> pairs

into <state, action> pairs [19].

Concerning how the state management is done in OpenState, two tables are used

for this purpose: the State and XFSM tables. Specifically, OpenState features three main

actions: (a) the state lookup, which consists of a query to the State Table using as key the

packet’s header field(s) which should be enough to identify the flow; (b) the XFSM

Figure 2: Implementation Example Using TCP in FAST Data Plane (Extracted From: [6])

26

transition, where the state label is retrieved and added as metadata to the packet to perform

a match on an XFSM table, which returns the associated action(s), and the label of the

next state. Last but not least, (c) the State update, which consists of rewriting, or adding

a new entry to the state table using the provided state label [19].

However, there is still the issue of flow identification, which was not solved. The

authors state that the root cause of this issue was that, so far, they have not yet

conceptually separated the identity of the flow to which a state is associated, from the

actual position in the header field from which such an identity is retrieved.

Finally, the authors state that there is room for improvement by adding timeouts as

in OpenFlow to a state table entry that is straightforward, and the API could be extended

to permit the programmer to specify a different timeout for each state transition.

2.3.3 FlowBlaze

The authors of [20] proposed an open abstraction for building stateful packet

processing functions in hardware, which is based on an Extended Finite State Machine

(EFSM), which was previous introduced in [19]. They also added the concept of flow

state, which is a sequence of packets from a certain source to a certain destination. ESFM

is an extension of the FSM model by introducing several points, variables to describe the

state, enabling functions on such variables to trigger transitions and update functions for

the variable values.

The machine model simply extends the match-action table (MAT), which is a

pipeline with a parser and a variable number of match-action blocks. The packet headers

are handled in the pipeline and processed over the pipeline. In the pipeline, it is decided

what are the forwarding actions for each of them.

FlowBlaze is based on the MAT abstraction and extends Reconfigurable Match

Action Tables (RMT [21]) to perform stateful packet processing. Nevertheless, there a

few protocols that are very similar to FlowBlaze, namely FAST and OpenState. Both of

them define the FSM abstraction in their ways. However, they do not define the state

access model, also do not deal with issues related to the integration of FSMs in an RMT

machine model [20].

27

2.3.4 Discussion

This work aims at looking for solutions that can be efficient and simple so that they

can be widespread. Therefore, the extended state machine is not worthy, despite being

able to perform more complex actions. On the other hand, FAST might be a very good

tool. Since this field is evolving at a very high rate of speed, some of its contents may be

outdated, however, their novelty is still substantial and that is why we use FAST.

OpenState and FlowBlaze handle the same subject, that is, the extended state machine.

FAST introduces and tries to formalize the subject while OpenState and FlowBlaze try to

improve and enhance it.

2.4 Programming Languages

In this section, it is provided a bit of background information regarding the state-

of-the-art programming language that can be used in programmable networks. Afterward,

a brief analysis of them is done to conclude this section, as well as explaining the reason

for picking the specific language.

2.4.1 P4

Programming Protocol independent Packet Processor (P4) [7] is a programming

language directed towards switches. The two most important factors that contributed to

its success are: (i) similarly to OpenFlow, P4 uses the paradigm that there should be

protocol independence, and (ii) switches should not be bound to specific protocols, and

the controller should tell switches what to do, i.e., switches should receive information

from the controller regarding what kind of parser should be used and which match-actions

should be used in those specific packets.

Moreover, in other programming languages, the programmer does not need to know

the underlying mechanics of the switch. Rather, in this case, it should be the compiler that

does the most work.

It is rather simple how the forwarding model works in P4. Given an input (i.e., a

packet), it is parsed, in contrast with OpenFlow where this parser is static or fixed. In P4,

this can be programmed to support new headers that the programmer might add.

28

Afterward, the parsed packet is sent to the match-action tables also called the

ingress phase (see Figure 3). These can be populated at runtime with pairs that are given

by the programmer or are statically done a priori. Next is the egress phase, which is very

similar to the previous one. However, here are only done changes to the packet that are

related to where it must go. Finally, the packet is deparsed and sent to its destination [7].

An important aspect of P4 is the fact that between the different stages or phases

there is a structure called the metadata that can carry additional data. The metadata is

handled the same way as the headers.

Since in the text above we explain how P4 works theoretically, in practice, P4 is

rather straightforward to work with. First, we must know what kind of protocols the target

will be handling because those respective headers must be defined a priori. After the

headers are defined, it must be established the way the packet headers are parsed and what

happens with their content, e.g., where they are stored. Given that P4 is a C-like language,

it allows for registers, arrays, and variables with a size that is fixed and defined by the

programmer or if they are altered in some way [7].

After the tables are defined, it must be explicit what is read and what action these

tables are capable of doing. One can argue that the actions can be done before the tables.

However, defining tables before their actions makes it clearer what each action must do.

To finish the P4 program, the actions must also be defined. Here is where the packet

changes happen, whether it is in the ingress or egress because both of them have their

tables and actions. This does not mean that both the tables and action are obligatory to be

unique.

Figure 3: A P4 Pipeline Example (Extracted from: [23].)

29

2.4.2 Domino

Domino is a programming language that introduces a new abstraction for the data

plane, i.e., a packet transaction, that is like the distributed systems property, but it is made

for the SDN model, to the data plane in particular. Specifically, packets become a

sequential code block that is atomic and isolated from other such code blocks [22].

It also contributes with a machine model called banzai, a new domain-specific

language, and because it introduces a new language it also offers a new compiler for it.

In the machine model, the computation is modeled within a stage. An important note is

that this machine model assumes that the packets that already arrive at it are parsed a

priori. Concretely, it is a feed-forward pipeline, where each stage processes one packet

every clock cycle and forwards it to the next stage in the pipeline. Domino features the

fact that it never stalls. Thus, it means that it is deterministic and always sustains line rate

[22].

To offer atomicity, the Banzai machine model can use multiple atoms within each

stage. An atom is an atomic unit of packet processing. Concerning these atoms, seeing as

they are modeled after their distributed counterpart, they also can only offer simple

actions as well. And like their distributed part, they also do not share state within stages

and neither with other stages. However, for the latter, there is a way to allow for it to be

possible and that is using headers. By simply writing to the header and then later on the

pipeline reading it, it is possible to share state [22]. Another important aspect about them

is that since there is a need to guarantee atomicity, any state changes must be done before

any other packet can be handled.

Regarding its language, the syntax is very similar to C. However, it presents several

constraints because we are handling a language that needs to guarantee deterministic

performance, and unbounded iteration counts. For restraints to be possible, it removes

iterators, unstructured control flow, and does not provide heap access. It also constraints

array access in a peculiar way, such that, the array can only be accessed using a single

packet field and if that field is altered such access will be denied.

Finally, its compiler has three phases: (i) the first one receives the Domino code

and preprocesses it, removes extra branches that would complicate the analysis later on.

It also rewrites state variable operations as well as converting complex actions on packets

to simpler ones, and finally, it flattens those operations to a three-address code, which is

30

a representation where all instructions are either reads/writes into state variables or

operations on packet fields [22].

The second part is simpler. It turns the sequential code block created for the earlier

stage into a pipeline of codelets. Codelet is a sequential block of three-address code

statements. Because this part simply makes the codelets, it has no respect for

computational or resource limits, and as such, another stage is needed.

The third and final part of the compiler is the code generation. Here is where the

compiler will analyze the codelets and determine whether or not they can be compiled in

the banzai machine. When the codelets are made, they do not take into consideration the

limits of the banzai machine. After these are made the compiler simply analyses the

codelets for violations on the pipeline width. If there is such a violation, new stages can

be inserted as to cover for this mistake. However, if the number of codelets per stage is

bigger than the depth, they are rejected. What was described above is called the resource

analysis, concerning the computational analysis, this one is way more difficult and is as

follows. The codelets most of the time have multiple three-address code statements that

need to be executed atomically. And to try and resolve this issue, each codelet can be

viewed as a functional specification of the atom they are representing. Since this task was

shown to be rather difficult, they used an external software called SKETCH to express

the atom templates [22].

2.4.1 Discussion

While P4 is a new language, the other ones have already made their debut for quite

some time, which would make them more appealing than P4. However, if we go into

more detail, and as stated above, P4 is a C-like programming language directed to

programable networks, similarly others, hence not presenting any kind of gain here.

Nonetheless, P4 offers a major advantage as it can support a dynamic parser

allowing programmers to define their headers and the packet parser will know how to

handle them. Despite the extra work, there is also a lot more freedom to choose with what

to work with. Moreover, there is also the fact that with P4 it is possible to dictate what

forwarding rules we want.

Next, the rationale underneath the selection of P4 is presented. First, there is much

more support from the community regarding any kind of question in P4. Unfortunately,

the same cannot be said for the other ones. Second, P4 is a rising star in the scientific

31

community and thus more appealing to work with. Third, there is the support that the

language itself provides to its programmers. Since it is a C-like programming language,

its learning curve is much smaller, and, therefore, more enticing for programmers to use.

2.5 Simulation and Emulation Tools

In this section, it is provided a bit of background information regarding the state-

of-the-art tools that can be used in programmable networks to either emulate or simulate

them. Afterward, a brief analysis of them is given, and to conclude this section, we will

explain the reason for selecting the tool utilized in the implementation and evaluation

sections.

2.5.1 NS-3

Regarding this software, it is a ladder software, with this, it means that it was built

on top of previous software, the NS-2 simulator, and made lots of improvements that

made it independent from its predecessor. The most important and prominent one is the

improvement in the core with major regards to scalability: it was written in C++ with an

optional Python scripting interface [23]. It also leverages a lot of C++ design patterns to

improve the scalability of the core, such as smart pointers, callbacks, and many others

[23].

With the increasing need for realism and faithfulness of the tests, NS-3’s nodes

were designed to include sockets and IP addresses. And, with the previous in mind, they

also included both software integration and a testbed with their release. With this, they

aimed to support more open-source software that could use kernel protocol stacks or even

routing daemons. When they said they wanted to support more open-source software,

they meant to enable the testbed-based researchers to experiment with the protocol itself

[23].

Finally, they also added support for virtualization. Here, they offer lightweight

virtual machines that could be run over a simulation network. This network can be

wireless.

32

2.5.2 Mininet

Mininet [24] is a software that allows for rapidly prototyping large networks on a

single computer. This network is scalable, however, according to [25], it is not very much

so. Nonetheless, it uses a feature that NS-3 also uses, a lightweight virtualization

mechanism.

Other very important characteristics of Mininet are: (i) it tries to be flexible, that is,

to support new topologies and features using programming languages and common

operating systems; (ii) it is applicable in many case-type, that is, if the implementations

are done properly, then the prototypes based on its implementations can also be used in

real networks, without any changes whatsoever; and lastly, (iii) it tries to be realistic, in

the sense that, the behavior present in the simulations should represent real-time behavior

with a high degree of confidence [24].

Mininet’s network elements are hosts, switches, controllers, and links. A host on

Mininet is a simple process with its virtual network interface, ports, addresses, and routing

tables (such as Address Resolution Protocol (ARP) and IP). The OpenFlow switches

created by Mininet provide the same packet delivery semantic that would be provided by

a hardware switch. In the simulation, the controllers can be run on the real or simulated

network. The Mininet emulator implements a connection between switches and different

controllers. Figure 4 illustrates a Mininet topology example with the help of a GUI

developed by Mininet developers (MiniEdit).

33

As stated before, in Mininet, the hosts should be isolated. Switches use either the

default Linux bridge or the Open vSwitch [12] running in kernel mode. Switches and

routers can run in both the kernel space and in the userspace. Lastly, the links use the

Linux Traffic control (TC) to ensure the data rate of each link is what the programmer

wanted it to be. However, Mininet as with every other software has its drawbacks, such

as Mininet-based networks cannot exceed the CPU or bandwidth available on a single

server. Also, Mininet cannot run non-Linux-compatible OpenFlow switches or

applications [24].

2.5.3 EstiNet

Similar to the previously presented tools, EstiNet [25] is also an OpenFlow network

simulator and emulator. However, it uses a unique approach with regards to checking the

OpenFlow controllers and analyzing the functions. This approach is named kernel re-

entering in which simulation and emulation are merged. What this means is that each host

can have a real Linux system running and in this system, any application that is UNIX-

based can be run and simulated without any modifications.

Specifically, for EstiNet to be able to do kernel re-entering, it uses some tunnel

network interfaces to automatically catch the packets sent by two real applications and

Figure 4: A Topology Example Using a GUI for Mininet (MiniEdit) (Extracted From: [24].)

34

transmit them into the EstiNet simulation engine [25]. With this technique, it can

guarantee that the results achieved by simulation are reliable and accurate as those that

are obtained by emulation. Another good feature that this software offers is the fact that

the simulations can be run at different speeds, i.e., faster, or slower than real-time. This

trait can be very important since it enables the correct simulation of an OpenFlow network

with a very large number of switches and hosts.

EstiNet works as follows. First, the packets are sent out, by let us say Host 1. These

are put into an output queue of the tunnel interface, from which the simulation at a later

part of the protocol will fetch them. After the fetch is done, the processing is simulated

over the protocol stack for Host 1, i.e., to simulate PHY/MAC and many other protocols

that the host can have. Afterward, the packet is reprocessed in the reverse order. Then, it

is delivered to the queue and finally delivered to the final application of Host 2 [25].

2.5.4 Discussion

First and foremost, when comparing Mininet with the other tools, one could say

that Mininet would have more drawbacks. Nevertheless, and with that in mind, Mininet

would still be selected over the others, mainly because of previous experience with the

tool. There is the fact that Mininet directly supports the use of OpenFlow, meanwhile, in

other approaches, there is a need to use add-ons to even make it possible to support

OpenFlow.

Overall, even though others could be better in some respects, Mininet has broad

community support and presents a more welcoming environment, whether for a more

experienced programmer with background knowledge or for new programmers that are

trying to learn from scratch.

35

The proposed solution

In this section, we will cover every aspect of the design and implementation of the

proposed solution. First, we start with the design choices, and then we will explain the

evaluation scenarios and their implications. Later, we will go into detail regarding the

specifics of the proposed solution.

3.1 Solution overview

First, we started by investigating both P4 [7] and, more importantly, its models (i.e.,

PSA and V1), that we would employ in practice. In particular, this model was the V1

model [8], as it was the basis for the whole implementation. But even more important

than that model was the whole specification of P4 [26]. The use of the V1 model over the

PSA model was due to its simplicity in implementation compared to the PSA one.

Referring to the state machine, the state machine's implementation took place using

the various match-action tables, sometimes changing their contents depending on the

purpose of the table.

The starting point of our implementation was FAST. However, and considering the

difference between Open vSwitch and P4, we needed to add tables to ensure that actions

related to keeping the information in the packet and/or switch itself were properly

implemented.

The most efficient way to explain how we took care of a state machine in P4 is to

present the following figure.

36

Figure 5 - State Machine Example Using our Parser

With Figure 5, we can see that when a packet arrives at a switch it will first try to

match the contents of the ethernet header to know where to proceed next. Afterward, it

will match the contents of the IPv4/IPv6 header to again know where to advance, only

after that will it accept and will only finish when it is done with the contents of the

ICMP/TCP/UDP header.

And to further augment the previously shown picture, we will also provide the

following piece of code that shows how we implement a table in P4.

1. table ipv4{
2. actions = {
3. setNextHopIPv4;
4. drop;
5. NoAction;
6. }
7. key = {
8. hdr.ipv4.dstAddr: lpm;
9. }
10. size = 1024;

11. default_action = NoAction;

12. }

The design of our solution is rather straightforward. Given that P4 requires data

structures, such as the headers and the metadatas, they were created to enable access to

the content of the packet. To give a better understanding, we present the following lines

of code to better illustrate.

1. header ethernet_t {
2. macAddr_t dst_addr;
3. macAddr_t src_addr;
4. bit<16> eth_type;

37

5. }

Above we present a header type, i.e., the ethernet header, while below we show all

the header types we utilize in our solution.

1. struct headers {
2. ethernet_t ethernet;
3. ipv6_t ipv6;
4. ipv4_t ipv4;
5. infoKeeper_t infoKeeper;
6. tcp_t tcp;
7. udp_t udp;
8. icmp_t icmp;
9. }

We now show an example of how to access information inside the packet.

1. hdr.ethernet.dst_addr = dstAdd;

Figure 6 - A Timestamp Example (Extracted From: [27])

Therefore, when packets arrive, they are parsed, i.e., run through the ingress

pipeline where the maintenance of the state would occur via special tags that would be

added in the TCP options, i.e., the Timestamp option [27], as is shown in figure 6 above.

We decided to use this option because it provides a very easy and straightforward way to

send timestamps across switches. Also, in case we do not need to send them, this option

provides space for two 4 byte sized timestamp fields that could be filled with information

[27].

1. bit<32> indexCounter = 0;
2. indexForPackets.read(indexCounter, 0);
3. networkPortsEgress.write((bit<32>)indexCounter,

meta.ingressMetadata.egress_port);

4. networkPortsIngress.write((bit<32>)indexCounter,
meta.ingressMetadata.ingress_port);

38

In the code shown above, we show how state maintenance occurs in our solution

First, we initialize a variable where we will store our index to access the registers.

Afterward, we read from the register where the indexes are stored and place the value in

the indexCounter variable.

Then, we write in the registers the values of the ports to create a fictional knowledge

of the state of the network.

Figure 7 - A SACK Example (Extracted From: [27]).

Please note that we used the SACK option, however, as is shown in figure 7 the

SACK option [28], but not in its intended way. Instead of containing the planned blocks

of data, i.e., two 32-bit unsigned integers, we used this space to put the egress and ingress

ports in the packet. We use these specific ports so that when switches have a few pairs of

them, they can be aware that traffic flows from these ports. Consequently, they can have

a fictional knowledge that it is safe to send packets through them. We use the term

fictional knowledge here because it is not the switches themselves that have this

knowledge, but the program that is running inside them, that is, the program receives

information from the switch, but the reverse does not apply. Finally, we use the idea of

piggybacking because the switches themselves do not allow for packet creation and also

to avoid creating new packets and, and, as such, we get better performance from the

overall network.

39

Figure 8 - V1 Metadata that is Used

Conversely, the Timestamp option is used normally. In its TS Value, we put the

timestamp of the packet so that after the first switch, every other can make the necessary

interactions with it. Other switches can compare their timestamp values to the one present

in the packet, and depending on the value of the difference, they will then take the actions

needed when certain conditions are met. These conditions and actions are rather simple.

If the difference between the timestamp that is stored on the TCP Timestamp option and

V1 model metadata is greater than an average, it is assumed that the link can be having

connectivity issues, and as such, we start making clones.

In both figures 9 and 10, it is possible to observe that there is no difference between

a cloned packet and a regular packet.

Figure 9 – Example of a Cloned Packet

40

Figure 10 – Example of a Normal Packet

This is the only to ensure that a packet is going through a given egress port that is

defined a priori without having ways to change it. There is no other way to modify the

value later in runtime besides stopping the network, this is because P4 itself does not

allow any interaction to be done with the tables during the execution of the programs.

A clone is merely a complete copy of the packet, and it is sent through a different

egress port that is defined as a priori. The figure below further illustrates this.

41

Figure 11 - An alternative path for packets to go from H1 to H2

As was stated before we utilize an exponential weighted moving average (EWMA)

as shown in the equation (1). When the EWMA reaches a value that greater than the

current timestamp present in the packet, then packet cloning starts, and they are sent

through an alternative route.

mv = mv ∗ 875 + (𝑐𝑡 − 𝑙𝑡) ∗ 125; (1)
Equation 1 - EWMA Calculation

where mv is the value of the moving average, ct is the timestamp present in the metadata,

and lt is the timestamp that is kept in the switch.

Afterward, we do not do anything in the egress pipeline, and every change is made

during the ingress phase of the implementation. This will be fully explained in Section

3.2.5. Finally, we remake the hash of the packet as we insert new data to it because if we

42

did not and another switch was to verify the hash of the packet with its contents, it would

not match and the packet would be discarded,

Next, we deparse the headers in the correct order, otherwise, this would mean that

the packet would be poorly formed and would be discarded by the switches.

Please note that before achieving this particular design, we first thought of several

ways to concretize this implementation.

First, we tried to use probe-type packets that would be generated by the switches,

and as the network changes, e.g., increase or decrease the number of network devices, we

envisioned that the packets would be sent by the switch and they contained information

so that remaining switches, could be aware of the events at had happened.

We also came with the idea of potentially using a new header. Specifically, instead

of using the piggybacking method, our information that would be held within the TCP

options [27] would be instead kept in a brand new header. The header would be the

simplest possible and its position in the header stack would be after the TCP header. At

first, this idea was the main focus but after implementing and testing it extensively, we

had to come to terms with it and put it away as there were too many problems with it.

3.2 Implementation

In this section, we will be covering most of the aspects necessary to understand the

implementation of the proposed solution. However, we first introduce the system model.

3.2.1 Network Configuration

For this experiment, we used a simulated network through Mininet that would set

up for both switches and hosts. There were four switches (Switch 1 – S1, S2, S3, and S4),

each switch would be directly connected to a host. There is one exception that is the

switch S4, which would be an intermediate switch between S1 and S2. This is better

shown in figure 12. There are three hosts (Host 1 – H1, H2, and H3), where each one is

connected to their match number switch. For example, H1 is connected to S1. There are

two main flows in this network: Flow 1 – F1 that is from H1 to H2 passing from S1 to

S4, and finally from S2. And F2 from H3 to H1. F2 is what we call a secondary flow since

its packets are mainly used to ensure that packets that arrive at S1 can have multiple ways

to check whether or not there is something wrong with the network or not (see Figure 8

for more information).

43

Figure 12 - An example scenario

To simulate the host sending the packet, we use a simple set of commands in Python

version 2.7, that would send a number of packets that the user would insert in a command

line or that could be inserted when launching the Python file. We show the following line

of code to help better understand the inputs that need to be done for the Python script to

work correctly.

$./send.py IPAddress SendingMode NumberOfPackets

There are two ways of sending the packets: (i) a burst way, where the packets are

sent as fast as possible, which means as fast as the link permits it, or (ii) periodical way,

where the user must also input the amount of time that must wait between sends, to

simulate a more congested network. Please note that the user must input the IP address of

the receiving host.

After we run the file, we start by creating the packet one layer at a time, starting

from the link layer, where we make a simple ethernet header, and specify both the source

and destination MAC addresses. Afterward, we add the internet layer, where we add the

44

IP header, and simply add the destination address. And, finally, we add the transportation

layer, where we put both the ports, destination, and source, as well as TCP options used

in the program. However, here we simply make space for where the information will be

placed when the packet arrives at the switch.

Regarding the receiving side, another Python script (receive.py) is used that is

run when receiving a packet arrives. In it, we do a few checks to know if it has the correct

fields, such as the timestamp, which is the main one. If it has that one it will do a few

checks and calculate an average to make sure everything is running smoothly. Lastly, it

prints to the command line the whole packet alongside its fields. We keep the file running

while it is waiting for more packets to arrive. Like with the sending script we will also

provide how it needs to be run for it to work correctly with the following line of code.

$./receive.py

 First and foremost, we used the idea of piggybacking of other packets that are

circulating in the network because the switches themselves do not allow for packet

creation to do done. To do so, we needed to make space in the packet to use, this is because

we need to be able to send from one switch to another all-needed information and that

would take some space. In our case, it would take the size of a timestamp and four ports.

And as such, we used the TCP options [29], in particular both the SACK and Timestamp

options among others like the No Operation Option [30] or the Window Scale Option

[27].

We use the SACK and the Timestamp Option, simply because they provide the

most amount of free space to the packet and more importantly, we use the Timestamp

Option because it provides an already made way to send the timestamp without any issues.

The latter is used in the following way. Since the TCP Options uses a fixed size for its

timestamps of 32 bits [27] and the size of the timestamp that is provided by the model we

use, the V1 model, are 48 bits, we must change its size. The code below shows how we

take care of formatting the timestamp.

1. bit<224> newTimestamp = ((bit<224>)((bit<32>)
standard_metadata.ingress_global_timestamp)<<32);

Please note that the other alternative provided by the same model after thoroughly

experimenting with it, was done by simply changing the value of the variable that was

45

being cast to the one enq_timestamp from the V1 model [8], but since the value was

always 0 we discarded this option. So, we simply cast the 48 bits into 32 bits and shifted

them into the right position, to be more precise the 12 most left bits would be discarded

for it to fit in the premade space.

Only afterward would we cast the timestamp into the size of the TCP Options

(which is 224 bits). This is only possible since P4 when we cast something from a smaller

size to a bigger one it fills the remaining space with zeros.

After investigating the Timestamp option, it was clear that the left-most 32 bits were

relative to the answer timestamp, so it would be needed to skip these and put our

timestamp in the correct place. To further aid in understanding this part we present figure

13.

Figure 13 - Example of TCP from a pcap file in Wireshark

In it, we can see that the last bits present in the packet are for the timestamp echo

reply and need to be skipped.

46

With this done the timestamp would be in place and the part left would be putting

the egress ports. Since these are 9 bits long, we used shifts of size 12 to put them in their

correct place. This is regarding the former part of the options. This allowed for four

multiple size 32 bits where we can put our egress port ID in to share with the other

switches.

Some information checkers are related to verifying whether the switch has the same

values as the egress port ID. This was only done since a way to directly interact with these

values was not provided by P4, and as such, we had to use such methods.

3.2.2 Registers and Metadata

Considering the use of registers in P4 [7], also the way they are used in this

implementation is very peculiar because since we consider those two main flows, we

employ the first possible index of them for the first flow (index number 0) and the next

one (index number 1) for the second flow. The flows are respectively, F1 and F2 as was

described in chapter 3.2.1.

Figure 14 - Flow from H1 to H2 – F1

Figure 15 - Flow from H3 to H1 – F2

1. register<bit<size>>(size) variableName;

 Before moving the main object that is the match action tables, first, we need to

include everything that they could make use of, in particular, there are the actions, that

are all mostly, made by us, except for the drop action, which, tells the switch to drop the

47

packet, and the metadata the is provided by the V1 model [8] and the metadata that we

make to, yet again help with the program.

For the metadata related to the V1 model, we make use of the variables related to

the ports of both the egress and ingress, lastly we also make use of the ingress global

timestamp variable as this is where the timestamp is stored in this metadata. For our

metadata, we could work with two structs, but since the need to interact with the egress

part of the program was not raised, it is not utilized.

Also, we work with two, simply because if there is a need to expand this metadata

to be used in both ingress and egress arises, it is much easier to proceed than at that time

try to offload and make the needed structs. By doing so, the possibility for variables to be

misplaced would also arise.

1. struct metadata {
2. ingress_metadata_t ingressMetadata;
3. //egress_metadata_t egressMetadata; this can added for egress

support

4. }

More concretely, our ingress metadata has 8 variables:

1. one that marks if the packet is to be dropped;

2. one marks if the packet is from the host H3;

3. one that marks if the packet is the first packet that has passed through

the switch so far;

4. one that marks which type of packet it is, basically this is used to

simplify the identification of the internet layer in later operations;

5. the egress port, this one simply stores the egress port from which the

packet will leave after all the processing is done;

6. the ingress port, similarly, to the one before, this one also stores a port.

however, this one stores the ingress port, which is the port from where

the packet came from. both this and the last one will be very important

later on as they will be part of the way we use to make sure the

consistency in the network is kept;

7. A variable that simply stores the last timestamp.

1. struct ingress_metadata_t {
2. bit<size> drop;

48

3. bit<size> fromH3;
4. bit<size> firstPacket;
5. bit<size> packet_type;
6. bit<size> egress_port;
7. bit<size> ingress_port;
8. bit<size> lastTimer;
9. }

3.2.3 Actions

Now, we cover the actions of the program.

They are many and vary a lot themselves, from simply setting the few bits in a

variable to a value to read from registers and writing in the TCP options the timestamp,

and many other factors.

1. action actionName(actionParameter1, … ,actionParameterN) {
2. //events to do in the action;
3. }

As was stated before, there are:

(i) drop action, which tells the switch to drop the packet, for whatever reason,

whether it is malformed or there is an error, the switch simply drops the packet.

(ii) there is the action of identifying the type of internet packet, which again only

sets a value in our metadata to a simple value. This action is used in a switch case that

when this action is to be triggered, allows for others to be done as well.

(iii) the regular IPv4 action, since our testbed employs only IPv4 packets there is

the need to make sure that everything is done correctly, so we subtract one from the Time

to leave (TTL). More importantly, we set the egress port, without this particular line in

the code even if everything else was done properly, without it, the switch would not know

where to forward the packet. Also, this egress port as was mentioned before needs to be

set a priori in another file. Lastly, here we set the destination MAC address, like before

this also needs to be set a priori.

(iv) the keepStatus action, which as the name suggests is used to keep track of the

status of the network. Here, we read from a register that keeps the data of where to write

the information that needs to be preserved.

We keep both the address of the source and destination of the packet and both the

ingress and egress ports where the packet is headed and came from, as to create a sub

information network inside the switch. Since this can be heavy on the switch, we employ

a FIFO queue (First In, First Out), of sorts. This is done by the number that is kept in the

49

register when it gets to a certain value, it is reset to its initial value (that would be 0), and

all the information contained in both the address and ports is overwritten, for the sake of

space efficiency.

(v) Last of all, there is the keepData action, where the information is stored inside

the packet.

As was described before, this is done in a somewhat hardcoded way, via shifts.

Firstly, we read from the register where the egress and ingress port are stored away and

then we make a new variable that needs to be the same size as the TCP options, this is

where all the information that needs to go on the packet is put in storage.

Before explaining how we proceed to put the information (the egress ports and

ingress ports that have been stored previously), the easiest part is the storing of the

timestamp where we simply diminish its size and put it in the correct location inside the

previous variable.

1. bit<224> newTimestamp = ((bit<224>)((bit<32>)
standard_metadata.ingress_global_timestamp)<<32);

After That, we just put the information in temporary variables. These variables in

turn will be put together into a bigger variable.

1. bit<224> firstEgressPort = ((bit<224>)egress)<<176;
2. bit<224> firstIngressPort = ((bit<224>)ingress)<<188;
3. bit<224> firstPorts = firstEgressPort + firstIngressPort;

 After all the information is collected into the bigger variables together with the

timestamp they are put inside the packet.

4. hdr.tcp.options = newTime + firstPorts + secondPorts +
thirdPorts + forthPorts + newTimestamp;

3.2.4 Tables

Now, we explain the idea behind the many match-action tables and the way they

are separated.

1. table tableName {
2. actions = {
3. actionName1;
4. actionNameN;
5. }
6. key = {

50

7. headerName: typeOfMatching;
8. }
9. size = number;
10. default_action = actionName;

11. }

Firstly, we do the regular tables that are in charge of dealing with the normal parts

of the packet, such as, IPv4, IPv6, TCP, and UDP. These are done in the normal and

regular manner, that is, for the IPv4 and IPv6 protocols, we use the destination address as

a match with the longest prefix matching of 32 bits, which is only used in this specific

test case. For the TCP protocol, we utilize the destination port for the matching with the

need for it to be exact to the one inserted in the table beforehand. However, this is not a

problem since the main focus of this mainly lies in the Internet layer. If necessary, this

can be done easily. The same can be applied to UDP. We also use the destination as a

match and employ an exact match for it.

Last but not least, there are many tables we introduce for the sake of simplification.

These are mainly used to help break the code into parts so that is it easier to both read and

separate what each part does.

First, there is a table that simply does, the separation of the type of Internet packet

(whether is it IPv4 or IPv6, so to enable support to IPv6), even though the standard

metadata present in the V1 model, already contained this information. We thought it

would be beneficial to use a separate table and for it to use the action related to the

identification of the packet. In this table, the type of packet present in the data layer (MAC

address) is used as a match, we needed for it to be exact.

Two more tables are very important to the overall program which are the

updateStatus and the updateData tables. The updateStatus uses as a match the same as the

IP for ease of use. However, what happens when the trigger is done is very much so

different. In this case, the keepStatus action is prompt with all its related effects. In the

updateData table, it is very similar to the updateStatus in the sense it also utilizes the

same match as the IP table. However, like the previously explained table, it activates its

action that is called keepData, and all the associated effects.

It is also worth noting that all the tables have a capacity of 1024 entries. And all the

tables in case of failing to have a match they all do not do anything.

51

3.2.5 The workflow of the program

After the packet is properly parsed and ready to be handled by the switch, this is

where we run our code. Although packet parsing rarely fails, and since that possibility

exists, we must make appropriate verifications. To do so, we run the table that determines

which kind of internet layer we are dealing with. Again, since we only use IPv4, we only

refer to this type. We check to see if the IPv4 header has any errors. If it does, we do not

do anything and we skip any execution. But if it does not, we run all the important tables

that handle both the consistency and the information kept in the switch.

However, since we only want switches that are directly speaking with hosts to keep

track of the network, and for the others to simply work as forwarding switches, we add a

check for the execution of the table keepInfo. Then, we continue to check the packet and

examine its headers. Since we are done with the internet layer, we proceed to the transport

layer, where we consider the TCP and UDP protocols.

For this purpose, we yet again make verifications to see if the header contains any

errors. If it does, we skip any actions that would be taken in it. But, if there are not any

errors in this part of the packet, we apply the TCP table which does not do much. The

main portion of the program comes after where we verify the TCP options and make a

moving average of the timestamps. We will now explain in further detail how this part is

done.

Firstly, we make sure that we are not working directly with the timestamp present

in the packet, and as such, we make a temporary copy of it. That is what we will work

with extensively. Next, we access the registers that contain the information where to get

both the current packet number, which is the number of packets that have passed through

the switch so far, since the switch was turned on and an index to access the other registers

where the information relative to the port is stored. As was stated before this index is used

to access those registers and to try to optimize the memory of the switch. We utilize the

FIFO queue and make sure that if the index reaches a certain value it is reset to its base

value.

1. registerName.read(variableName, index);

Then, a few verifications are performed, because in this test case, we only want to

store the value of the main flow (F1), which is from H1 to H2. The other flows’ values

will not be stored in our case. Here, we set the value of the current timestamp to the value

52

present in the variable from our metadata and the V1 model metadata as well. Next, we

update the values in the registers and set the value of the variable present in our metadata

to the appropriate value.

After That, we make a crucial check that ensures that the current packet is the first

packet passing through the switch. Then, we need to set the value of the moving average

to its value, i.e., it is the value of the current time present either in the metadata or the

register. Lastly, we set a variable that serves as a Boolean. This is done because when we

used a Boolean, here the program simply would not compile. This value will be used later

on in the calculation of the moving average.

1. bit<size> nameOfTheChecker =
hexadecimalRepresentationOfTheTCPoptions;

2. bit<size> timestamp = hdr.tcp.options & nameOfTheChecker;

Following, via a bitwise checker that negates all the bits present in the TCP options

except the ones that should represent the timestamp, and with that, we get the timestamp

present in the packet. Before making any changes with this value, we make a check if the

packet was cloned by another switch, and if it was we do not do anything. We also check

if the packet was sent directly by a host, again if it did not pass this check, we do not do

anything. Lastly, we check the timestamp to see if there is literally a value.

If it managed to pass through these checks, then we extract the ports from the

packet, once again via bitwise checkers that first negate every part of the TCP options

besides the area where the port should be and place the value in a variable, only after it

was shifted and cast into an appropriate size. We make this for every port that should be

present in the packet.

1. bit<size> nameOfTheChecker =
hexadecimalRepresentationOfTheTCPoptions;

2. bit<size> firstEgressPort = (bit<size>)(hdr.tcp.options &
checker>>numberOfWhereToPutThePort);

When this is done, we carry on with the needed check for the storage of the ports

within the switch. For this, we simply read the value that would be kept inside the proper

register and compare it with the one that was previously extracted from the packet.If they

are different, we assume that the ones contained in the packet would more recent and

simply write their value in the register. This is done once again for every port that is

retrieved from the packet.

53

We arrive at the part where we take care of the moving average. We must say that

it is done peculiarly since P4 does not allow for some actions to be done on values that

are input at runtime such as the timestamp that we are dealing with and per se. We needed

to work around this limitation. The way we found was instead of using decimal values,

we simply multiplied the values by a constant and that solved the problem.

There is also another factor that needs to be taken into consideration in this part and

this is the fact that P4 supports neither doubles nor division over non-integer variables.

Besides, there is also the fact that P4 does not check for under or overflows, and due to

that fact we need to work with bigger variables. To that effect, we decided to work with

variables related to the average having double the needed size and that seemed to solve

the problem.

Now, we clarify in detail how we do the EWMA. Like before, we try to optimize

this part of the program, since it would be intensive on the switches. We only consider

the packet that comes from the main flow (e.g., F1 between H1-H2) and the ones that do

not match this condition we merely utilize the average calculated beforehand and check

to see if the difference between the timestamp present in the packet is bigger or equal to

the average. If it is, we continue to check if the packet was directly sent by a host.

If none of these conditions are met no action is taken. Although, if both are, we

know that there is a problem within the network since the delay between the packet in

question and the previous one is large enough to trigger the condition mentioned above

and we need to utilize another route. This is done by cloning the packet and when that is

done we tell it to go on another egress port that needs to be different from the original

one. We employ a register that simply exists for this sole reason if the value present in it

is 1 then there a problem in the network, otherwise, that statement is false.

If the packet comes from the main flow, first we need to check the packet if the first

one or not. If it is, we need to change the value of the auxiliary variable present in the

metadata made by us, and nothing else should be done in the ingress pipeline. However,

if that is not the case, we need to calculate the moving average. To do so, we calculate

the difference between the timestamp extracted from the packet and the one that is in the

switch. Once this is done it is stored in a variable.

Subsequently, we calculate the average via multiplication of the difference

calculated beforehand by 125 and the current average amount by 875 and store it in the

same variable - EWMA Calculation- EWMA Calculation). When this is concluded, we

54

make the same verification as when the packet is not from the main flow and check to see

if the difference between timestamps is greater or equal to the average. If it is, we check

to see if it is directly from a host and if it is, we, like last time, know that there is a problem

in the main flow, and we need to utilize another way of communication.

Additionally, we activate a variable present in the standard metadata to know that

even if the previous condition is not met, this is to know that we need to make clones.

This latter part is done after we check the UDP header. Here, we verify it for errors, and

if none are present, we run the UDP tables. If there are, we do not do anything. Only after

all this, we make sure that if the previously set flag is triggered, we need to make clones

of the packet. We read from our metadata and check the appropriate variable for it and if

it passes it, we check the packet itself to see if it already is a clone. If it is, it will only

create an infinite cycle of creating clones that would not only crash the switches but also

the hosts and the whole network.

1. clone3(CloneType.I2E, I2E_CLONE_SESSION_ID, standard_metadata);

We now cover the egress part of the program and justify why we barely utilize it.

But, for the sake of ease of counting packets at the destination, we make a check in

the egress and set a part of the packet to a certain value that will be checked in the Python

script (receive.py) at the receiver. To make all the above changes to the packet, we

need to remake the checksums present in it, which is done in the control block that is

responsible for it. It is called MyComputeChecksum and merely calls the method

update_checksum, upon both the IPv4 and TCP protocols. It receives as an argument

whether or not the header is valid, and then, the fields that need to be taken into

consideration, where to put the result into, and finally, which type of algorithm to use.

This is done for both protocols sequentially.

1. update_checksum(methodThatValidatesTheHeader(),
2. { field1,
3. field2,
4. … ,
5. fieldN },
6. headerSpaceToPutTheChecksum,
7. TypeOfAlgorithmToUse);

55

To finish, we deparse the packet. This an essential part of the program that needs to

be done properly. By this, we meant that if the headers are deparsed in an incorrect order

the packet would ultimately malformed and would be discarded at the next arrival.

1. packet.emit(headerName);

The order we use is data link layer followed by the internet layer, and lastly the

transport layer.

3.2.6 Difficulties

Moving Average

First and foremost, we would like to approach the moving average part since it is

one of the most important parts present in the code and it is not being done the most

regular way.

As was stated before, instead of decimal numbers, we were forced to do matters in

reverse, by this we mean that since decimals are not supported, the values that need to be

multiplied were also multiplied themselves. Because of that, we also had to multiply the

value that would, later on, be compared to it, otherwise, it would be wrong and that whole

part of the program would not be working as intended. We feel that this was one of the

most lacking parts of the languages we were working with.

Bitwise Checks

Multiple instances of our proposed solution use some form of bitwise checks. We

had to check which values to enter directly in a pcap file on Wireshark and as such if

anything were to change in the packets themselves, some parts of the proposed solution

would not work. There is no other way because the language does not provide any form

of access to the inside of TCP options. We know that this is not a good procedure.

However, it was needed.

Another aspect that needs improvement is the fact that the EWMA calculation can

be too heavy on the switch if it is under stress. However, this is not something that can

only be tested in a more specific setup.

56

Evaluation of the Proposed Solution

The following sections describe the network scenarios considered. For both

scenarios, we varied the packet loss percentage from 10% to 100% at intervals of 10%,

and for each of these values, we performed the 10 runs for statistical confidence, making

130 runs.

4.1 First Test Scenario

In this first test scenario, as was indicated in chapter 3.2.1, we employed four

switches with three hosts each, connected to a singular switch. All the switches would be

connected to each other.

In this scenario, H1 is connected to S1, H2 to S2, and H3 to S3. From H1 to H2,

there are two possible flows: H1 - S1 - S4 - S2 - H2 and H1 - S1 - S3 - S2 - H2. Before

we start analyzing the results, we must first tell what they are and why we choose them

and how they represent the performance of the proposed solution.

We obtained information on how many packets were received at the end host (i.e.,

H2) to compare it with the number of packets retransmitted using our method. This

enabled us to know how many packets arrived through the regular and alternative (i.e.,

retransmissions) paths.

With that in mind, we also needed to collect information on the number of

retransmitted packets. These two go hand in hand with each other.

We will start with the number of packets, that were received at the end host H2.

57

4.1.1 The number of received packets

Figure 16 - Distribution of received packets for the first scenario.

First, we start analyzing the number of packets received at H2.

Over the 130 runs, 75% correspond to 97 runs with near 100 received packets (99

to be exact); 13% correspond to 17 runs of received packets with great deviation (i.e., <

95 packets and > 105 packets); and 12% correspond 16 runs of received packets with

small deviation (i.e., between >= 95 and < 97 packets and between > 103 and <= 105

packets). This is shown in Fig. 16.

58

Figure 17- Average number of received packets to H2 for the first scenario

Figure 17 shows the average number of received packets per percentage of link

packet loss for the first scenario with 95% confidence intervals. One can conclude that

most of the time we are receiving the same number of packets that are sent from the

source, that is, 100 packets.

From figure 17, it is possible to see that when the link has a 100% packet loss rate,

the number of packets received is expected to be equal to the number of packets

retransmitted, since based on our implementation, the first packet is never retransmitted.

Also, due to the moving average, it unclear how to handle this packet, i.e., whether it

arrives or not at its destination.

For the other cases, this does not apply. As we lower the link loss rate, the number

of received packets varies, especially when dealing with the case where there is only a

90% packet loss rate.

For instance, when a cloned packet is received from the alternative route, the packet

counter on the main route should stop. If not, more packets than the ones that are

originally sent will be received. Link delay can also trigger packet cloning aiming to

prevent packet loss.

59

From link losses between 30% and 90%, one may see that the proposed solution

had a rough time dealing with them. Nonetheless, our solution still provides high packet

delivery rates.

Throughout the different runs, the lost packet is not always the same. This can deter

the moving average hence making the switch not to activate packet cloning, and

consequently leading to some packet loss.

Last but not least, from 30% to 10%, the link has a very low packet loss rate. Since

the packets are not lost, and as such, their time difference will be rather small, and with

that, the switch will not trigger packet cloning. However, there are always some

exceptions to the rule, happening most of the time a (one) packet is retransmitted.

Why not two? Because if almost no packets are lost, probabilistically speaking,

almost every time 100 ± 1 packets will arrive at the end host, thus justifying our results.

4.1.2 The number of retransmitted packets

Now that we have covered all the information about the received packets we will

transition to the information regarding the retransmitted packets.

In that sense, we present figure 18 which shows what types of retransmissions have

happened during the first test scenario.

60

Figure 18 - Distribution of retransmitted packets for the first scenario.

In this scenario and regarding the types of retransmitted packets, we identified the

following types: (i) retransmissions with spurious retransmissions in them, (ii)

retransmissions that were affected by the problem of packet congestion, or busy CPU

cycles, and (iii) the normal retransmissions.

The latter retransmissions, as the name suggests, are those where nothing out of

the ordinary happens, i.e., simply cloned packets are sent via the alternative route to

their original destination.

We noticed that in the retransmissions with spurious packet retransmissions in

them are truly random and either repeat 1 or 2 packets throughout all those sent.

Lastly, there are the retransmissions that have happen when the problem might

have occurred. They were simply marked to distinguish them from others.

61

Figure 19 - Average number of retransmitted packets to H2 for the first scenario

Following up the previous graph we present figure 19, which shows even more

clearly the values, that have a greater deviation from the expected value.

Here we can see that that in most cases (i.e., 75% of the time) 98 packets were

retransmitted. It is also possible to see a higher deviation from the expected value.

4.2 Second Test Scenario

The second scenario consisted of 8 switches (S1 to S8) and 4 hosts (H1 to H4)

aiming to represent a more complex network with many more flows (see Figure 17). Here,

there are three main flows.

62

Figure 20 - Second Test Scenario Network

With that in mind, we will also give figure 21 to help illustrate the new flows and

how they work in this new network.

Most of them are the same as before however, to test this new network structure we

need to provide this new flow that is from H1, going through S4, then to S2, to S6,

followed by S7, and finally arriving at H4.

63

Figure 21 - Second Scenario Network with Flows

Now that we have described the new network we will proceed to show the results

that were gotten with it.

Starting with the received packets at H4 they go as the graph shows.

64

4.2.1 The number of received packets

Figure 22 - Distribution of received packets for the second scenario.

Concerning the distribution of received packets at H4 in the second scenario, we

noticed an overwhelming lower number of packets with great deviation. 79% of the time,

99 packets were received.

By using a similar approach to the previous scenario, the expected value was

between >= 97 and <=103. If between >= 95 and < 97 and between > 103 and <= 105

packets, we considered having a small deviation. Finally, there are the values that fit into

the category of < 95 packets and > 105 packets are considered values with great deviation

(see Figure 22).

Now covering the number of received packets, with more detail, we will use a bar

chart to help us with that in mind we will present the following figure to help illustrate

the results.

65

Figure 23 - Average number of received packets at H4 for the second scenario

Figure 23 shows the average number of received packets at H4 for the second

scenario with different percentages of packet link loss. Please note that some packet loss

within the network can also be attributed to either the switch being congested with other

packets or the PC's CPU being under heavy load at the transmission moment.

Nevertheless, we still managed to maintain more than 85% packet successful

delivery rate at H4, even in the worse cases.

Similarly, to the first scenario, the moving average issue here is also present.

Besides, more packets than those sent are received as we are also counting every

retransmitted packet. However, we discarded every packet that comes from the original

flow, which arrives after the first retransmitted packet.

Now that we are done with the data regarding the received packet we will move to

the retransmitted packets. In that sense, we will provide the next figure that shows the

distribution of types of retransmissions in this set of results.

66

4.2.2 The number of retransmitted packets

Figure 24 - Distribution of Type of Retransmissions in the Second Scenario

For this scenario, spurious TCP retransmissions represented 20% of all results.

Retransmissions, where there may have been problems in the network or the PC's

CPU, may have been under heavy load represented 4% of all results.

Normal retransmissions, in which the switch simply triggers packet cloning,

represented 76% of all results.

67

Figure 25 - Average number of received packets at H4 for the second scenario

Figure 25 contains information related to the number of retransmitted packets at the

sending host. One can see that the number of retransmitted packets varies between 96 to

100. This was mainly influenced by the fact that we counted every retransmitted packet,

but we are only counting regular packets. Specifically, packets that came through the

main path are counted if and only if they arrive before the first retransmitted packet.

Lastly, there is also the possibility that the normal packets arrive all after the first

retransmitted packet. This can happen because of the way the simulator handles the

randomness of loss packets.

68

Conclusion and Future Work

In this chapter, we will present the conclusion of our report. Afterward, we will

cover the main aspects that can be improved as future work.

5.1 Conclusion

This dissertation proposed a state consistency framework leveraging packet cloning

and piggybacking for programmable network data planes using P4.

Two scenarios were considered to evaluate the proposed solution. Performance

evaluation has shown that despite link failures higher than 70%, our solution still

managed to deliver more than 95% of packets successfully.

Discriminating the results, we can verify that when we introduce bigger networks,

our framework starts having a tougher time. Nonetheless, it can still provide 85% packet

arrival rate at the destination host. On the other hand, when we used a smaller network it

delivers a 92% packet arrival rate at the destination host.

5.2 Future Work

In this section, we will cover everything related to future work that can be done in

the proposed solution.

5.2.1 Registers

Now, we consider the registers that are used in the proposed solution. The use of

tuples again would only clean the code and make it easier to access the correct spots to

insert the data and thus limiting the space for errors.

5.2.2 Offloading and Separation

Offloading the content of the proposed solution to the egress part might become

better. However, we have no way of proving this concept. Possibly it can allow for future

work to be easier if the different parts of the program are in different areas like different

69

parts of a program in java are in different files. Here, perhaps separating them could be

beneficial as well since there is not a direct way of speaking between ingress and egress.

The only way being through the standard metadata both the one created by us and the one

provided by the V1 model could be a bottleneck that might create problems if not used

carefully and skillfully.

70

Appendix

A.1 – Retransmitted packets for first scenario

 The following table shows the results for the number of retransmitted packets

related to the first test scenario.

Table 1 - Table for the Number of Retransmitted packets from the Switch S1 during the first set of results

Legend:
* Note this one had one spurious retransmission
** Note this one had two spurious retransmissions
! Please note that some packet loss within the network can also be attributed to either the switch being
congested with other packets or the PC's CPU being under heavy load at the transmission moment.

% of
lost

packets 1 2 3 4 5 6 7 8 9 10

100 99 99 99* 99* 99 98 99* 99 99 99

99 99 99 99 99* 99 99 99 99* 99 99

97 99 99 99 99 99* 99 99** 99 99** 99

95 99 99 99 99 99 99 99 99 99* 99

90 99 99* 99 99 99 99 99 99 99 99

80 99* 93! 99! 99 93! 99 99* 99! 99 94!

70 91 99! 99 95 91 99 99! 99*! 99 89

60 99* 99 99! 99 99! 99 99 91 99 99

50 99* 99 99 99! 99 99! 95 99 95 99**

40 99 99 99 99** 99* 93 99! 99* 89 99*

30 99* 99 99* 99 99 99 99 99 99 99

20 99 99 99 99* 99 99* 99 99 99** 99

10 99 99 99** 99* 99* 99 99 99* 99 99

71

A.2 - Distribution of retransmitted packets for the first scenario

The following table shows the results for the distribution of types of retransmitted

packets related to the first test scenario

Table 2 - Totals for Retransmitted Packets during the first set of results

Number of Attempts with * Retransmission 38

Number of Attempts with ! Results 13

Number of normal retransmissions 79

Total 130

72

A.3 - Received packets for first scenario
 The following table shows the results for the number of received packets related to

the first test scenario

Table 3 – Table for the Number of Received Packets at the end host H2

 Caption:

Cells with Red Background and Letters mean that result present in them have a

great deviation from the expected result

Cells with Yellow Background and Letters mean that result present in them have a

great deviation from the expected result

Cells with White Background and Letters mean that result present in them have a

great deviation from the expected result

% of
lost

packet
s 1 2 3 4 5 6 7 8 9 10

100 99 99 99 99 99 98 99 99 99 99

99 99 100 99 99 99 100 99 99 99 99

97 100 99 99 102 100 103 101 99 99 99

95 108 103 99 99 106 99 99 108 99 100

90 104 99 113 99 99 110 111 99 99 108

80 100 93 91 99 93 100 99 97 99 94

70 92 97 100 95 92 100 93 91 99 90

60 99 99 93 99 91 101 101 92 100 100

50 99 100 100 91 100 93 96 100 95 100

40 101 99 100 100 101 93 92 101 90 102

30 100 100 101 100 101 101 101 99 101 100

20 102 100 101 101 101 101 102 101 101 100

10 101 99 100 101 101 101 101 101 101 101

73

A.4 - Distribution of received packets for the first scenario
 The following table shows the results for the distribution of types of received

packets related to the first test scenario

Table 4 - Totals for Received Packets during the first set of results

Number of Values With Great Deviation 17

Number of Values With Small Deviation 16

Number of Values Expected 97

Total 130

74

A.5 - Retransmitted packets for the second scenario
The following table shows the results for the number of retransmitted packets

related to the second test scenario.

Table 5 . Table for the Number of Retransmitted packets from the Switch S1 during the second set of results

Legend:

* Note this one had one spurious retransmission

** Note this one had two spurious retransmissions

*** Note this one had three spurious retransmissions
! Please note that some packet loss within the network can also be attributed to either
the switch being congested with other packets or the PC's CPU being under heavy load
at the transmission moment.

% of
lost

packet
s 1 2 3 4 5 6 7 8 9 10

100 99 100 85 99 88 99* 99 99* 99! 99!

99 99 99 99 99 99 99! 99! 99 99 99!

97 96 99 100 99 99* 99*! 99* 94 99 99

95 99* 99 100* 100* 100 99 99 99 100 99

90 100 99 99 100 99 99 100 99 99* 99

80 99* 99 100 99 99 100 99* 99 99* 100

70 99 99 99* 99 99 100 99 99 100 99

60 99* 100 99 99 99 99 100 100 99 99

50 99 100* 100 99 100 99*** 100 99 99 100

40 100 99 100* 99 100 100 99 100 100 100

30 100** 100* 99* 100 100 99 99 100** 100 99

20 99* 100 99 100 99* 100 99 99* 99 100

10 99 100 99 99* 100* 100 100 100 100 99

75

A.6 - Distribution of retransmitted packets for the second scenario
The following table shows the results for the distribution of types of retransmitted

packets related to the second test scenario

Table 6 - Totals for Rertransmitted Packets during the second set of results

Number of Attempts with * Retransmission 26

Number of Attempts with ! Results 5

Number of normal retransmissions 99

Total 130

76

A.7 - Received packets for second scenario
 The following table shows the results for the number of received packets related to

the second test scenario

Table 7 - Table for the Number of Received Packets at the end host H4

Caption:

 Caption:

Cells with Red Background and Letters mean that result present in them have a

great deviation from the expected result

Cells with Yellow Background and Letters mean that result present in them have a

great deviation from the expected result

Cells with White Background and Letters mean that result present in them have a

great deviation from the expected result

% of
lost

packets 1 2 3 4 5 6 7 8 9 10

100 99 100 85 99 88 99 99 99 86 93

99 100 101 99 99 100 89 88 99 99 92

97 96 101 101 100 100 88 99 97 102 101

95 100 100 101 101 101 100 100 100 101 100

90 101 100 100 101 101 100 101 100 100 100

80 100 100 101 100 100 101 100 100 100 101

70 102 100 100 100 101 101 101 100 101 100

60 100 101 100 101 100 100 102 101 100 100

50 100 101 102 100 101 101 102 101 100 102

40 102 101 102 101 101 101 100 102 101 101

30 102 102 100 101 102 100 100 101 102 101

20 101 101 101 102 101 102 101 100 101 101

10 101 102 100 100 102 101 102 102 101 102

77

A.8 - Distribution of received packets for the second scenario
The following table shows the results for the distribution of types of received

packets related to the second test scenario

Table 8 - Totals for Received Packets during the second set of results

Number of Values With Great Deviation 7

Number of Values With Small Deviation 21

Number of Values Expected 102

Total 130

78

Bibliography

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intellectual history

of programmable networks,” Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98,

2014.

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on Software-Defined

Networking,” IEEE Commun. Surv. Tutorials, 2015.

[3] P. J. Roig, S. Alcaraz, and K. Gilly, “Formal specification of spanning tree protocol

using ACP,” Elektron. ir Elektrotechnika, 2017.

[4] J. John and E. Katz-Bassett, “Consensus routing: The Internet as a distributed

system,” Proc. Symp. Networked Syst. Des. Implement., 2008.

[5] E. C. Molero, S. Vissicchio, and L. Vanbever, “Hardware-accelerated network

control planes,” HotNets 2018 - Proc. 2018 ACM Work. Hot Top. Networks, pp.

120–126, 2018.

[6] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A Survey on the

Security of Stateful SDN Data Planes,” IEEE Commun. Surv. Tutorials, vol. 19,

no. 3, pp. 1701–1725, 2017.

[7] P. Bosshart et al., “P4: Programming protocol-independent packet processors,”

Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[8] “p4c/v1model.p4 at master · p4lang/p4c · GitHub.” [Online]. Available:

https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4. [Accessed: 29-

Sep-2020].

[9] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “RFC 3746: Forwarding and

Control Element Separation (ForCES) Framework.” pp. 1–40, 2004.

[10] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-level state

transition as a new switch primitive for SDN,” Comput. Commun. Rev., vol. 44,

no. 4, pp. 377–378, 2015.

[11] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.

Banerjee, “DevoFlow: Scaling flow management for high-performance networks,”

in Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM’11, 2011,

pp. 254–265.

[12] “Open vSwitch,” 2013. [Online]. Available: https://www.openvswitch.org/.

79

[Accessed: 04-Dec-2019].

[13] ONF, “OpenFlow Switch Specification Version 1.5.1,” Current, vol. 1, p. 35,

2015.

[14] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in Partitioned

Network,” ACM Comput. Surv., 1985.

[15] S. Gilbert and N. Lynch, “Perspectives on the CAP Theorem,” Computer (Long.

Beach. Calif)., vol. 45, no. 2, pp. 30–36, 2012.

[16] C. Nate Foster Cornell Jennifer Rexford Princeton Cole Schlesinger Princeton

David Walker Princeton, “Abstractions for Network Update,” pp. 323–334, 2012.

[17] S. Landis and S. Maffeis, “Building reliable distributed systems with CORBA,”

Theory Pract. Object Syst., vol. 3, no. 1, pp. 31–43, 1997.

[18] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-BGP: Staying

Connected In a Connected World,” NSDI’07 Proc. 4th USENIX Conf. Networked

Syst. Des. Implement., p. 14, 2007.

[19] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: Programming

platform-independent stateful openflow applications inside the switch,” Computer

Communication Review, vol. 44, no. 2. pp. 44–51, 2014.

[20] S. Pontarelli et al., “FlowBlaze: Stateful Packet Processing in Hardware This paper

is included in the Proceedings of the,” Proc. NSDI, pp. 531–547, 2019.

[21] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable match-action

processing in hardware for SDN,” SIGCOMM 2013 - Proc. ACM SIGCOMM 2013

Conf. Appl. Technol. Archit. Protoc. Comput. Commun., pp. 99–110, 2013.

[22] A. Sivaraman et al., “Packet transactions: High-level programming for line-rate

switches,” SIGCOMM 2016 - Proc. 2016 ACM Conf. Spec. Interes. Gr. Data

Commun., pp. 15–28, 2016.

[23] T. R. Henderson and G. F. Riley, “Network Simulations with the ns-3 Simulator,”

Proc. Sigcomm, p. 527, 2006.

[24] Mininet, “Mininet: An Instant Virtual Network on your Laptop (or other PC) -

Mininet,” Mininet.Org, p. www.mininet.org, 2014.

[25] S. Y. Wang, C. L. Chou, and C. M. Yang, “EstiNet openflow network simulator

and emulator,” IEEE Commun. Mag., vol. 51, no. 9, pp. 110–117, 2013.

[26] The P4 Language Consortium, “P4 16 Language Specification v1.2.1,” p. 129,

2018.

80

[27] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “RFC 7323 TCP

Extensions for High Performance,” 2014.

[28] J. Mahdavi, “RFC: TCP Selective Acknowledgment Options,” 2018.

[29] “Transmission Control Protocol (TCP) Parameters.” [Online]. Available:

https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml.

[Accessed: 27-Nov-2020].

[30] “RFC 793 - Transmission Control Protocol.” [Online]. Available:

https://tools.ietf.org/html/rfc793. [Accessed: 27-Nov-2020].

