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Sumário 
 

Os organismos vivos interagem naturalmente no seu habitat de formas que se estendem 
sobre uma vasta panóplia de interações bióticas, e de entre as quais o parasitismo parece ser a 
mais comum e bem-sucedida. O seu sucesso deve-se maioritariamente a um delicado e 
dinâmico equilíbrio entre a transmissão do parasita e a sua virulência, propriedades que são 
usualmente atribuídas exclusivamente ao patogénio. Contudo, estas características podem 
variar quer natural quer experimentalmente, dependendo de condições ambientais, da genética 
do hospedeiro e das comunidades microbianas que constituem a microbiota. Naturalmente, 
para sobreviver a uma infeção parasítica o hospedeiro tem de ser apto para montar uma resposta 
imune competente e eficaz. Em traços gerais, a resposta imune é constituída por mecanismos 
de resistência, que visam limitar a infeção bloqueando ou eliminado o patogénio e reduzindo a 
carga parasitária, e por mecanismos de tolerância à doença, que resultam numa melhoria no 
vigor ou estado de saúde do hospedeiro sem implicar uma redução da carga parasitária. 
 A mosca da fruta, Drosophila melanogaster, passa grande parte do seu ciclo de vida 
em matéria orgânica em decomposição contactando intimamente com microrganismos, muitos 
deles patogénicos. Como tal, este organismo possui um vasto conjunto de respostas imunes 
que o protegem de bactérias, fungos, parasitas e vírus. Embora não possua sistema imunitário 
adaptativo, presente em vertebrados, a Drosophila tem sido amplamente usada como 
organismo modelo para estudar imunidade inata, devido a conservação evolutiva destes 
mecanismos. As defesas imunes da mosca da fruta consistem em: 1) Imunidade 
comportamental, que tem como propósito evitar contacto com microrganismos patogénicos 
para prevenir uma possível infeção; 2) Imunidade epitelial, que consiste em barreiras físicas 
que protegem contra o estabelecimento de microrganismos no interior do corpo; 3) Imunidade 
celular que depende da ação de células móveis e sésseis (hemócitos) presentes na cavidade 
corporal; 4) Imunidade humoral que tem por base a produção e secreção de péptidos 
antimicrobianos para a hemolinfa. 

Um dos múltiplos patogénios naturais capazes de infetar Drosophila é Pseudomonas 
entomophila, cujo genoma se encontra totalmente sequenciado e muitos dos seus fatores de 
virulência identificados, tornando este microrganismo num modelo ideal para estudos de 
imunidade em D. melanogaster. P. entomophila causa ativação da imunidade sistémica mesmo 
quando ingerida, e a sua patogenicidade neste cenário deve-se à capacidade que esta bactéria 
tem de persistir no sistema digestivo da mosca, excretando múltiplas substâncias tóxicas que 
causam danos no intestino. Muitos dos seus genes associados à sua entomopatogenicidade 
foram identificados como, por exemplo, genes que codificam toxinas, explicando o efeito 
altamente nefasto que esta bactéria tem quando ingerida pela mosca da fruta. 

Dada a importância do background genético do hospedeiro em face de uma infeção a 
que responde através de mecanismos de resistência e tolerância à doença, este trabalho tem 
como ambição compreender qual o contributo relativo de cada um destes mecanismos neste 
processo. Para este fim, infetámos um conjunto de 75 linhas do Drosophila Genetic Reference 
Panel (DGRP) com P. entomophila. O DGRP é um painel que consiste de cerca de 200 linhas 
isogénicas, sequenciadas na sua totalidade, que permite decompor a variabilidade genética 
presente numa população natural de Drosophila, constituindo uma poderosa ferramenta para 
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análises de associação genética. Usando este sistema previamente estabelecido no laboratório 
o nosso objetivo é caracterizar dinâmicas de infeção em linhas do DGRP por P. entomophila. 
 Com a recolha de dados relativos à sobrevivência após infeção, caracterizámos 
diferentes dinâmicas de sobrevivência dependentes no background genético do hospedeiro. 
Através da análise combinada de sobrevivência e dados referentes a carga parasitária 
recolhidos, inferimos fenótipos relativos a resistência e tolerância à doença neste conjunto de 
linhas do DGRP. No futuro, a extensão dos protocolos à totalidade do DGRP, juntamente com 
alguns ajustes que visam melhorar a qualidade dos dados recolhidos, poderá levar à 
identificação através de análises de associação genética (GWAS) de genes envolvidos em 
mecanismos quer de resistência quer de tolerância à doença. 

 
 

Palavras-chave: Imunidade; Drosophila melanogaster; Pseudomonas entomophila; 
Resistência; Tolerância à doença. 
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Abstract 
 

Organisms coexist naturally in their environment, interacting through a vast array of 
biotic interactions of which parasitism seems to be the most common and successful. This 
success comes from a balance between parasite transmission and virulence, traits which are 
often seen as properties of the pathogen. However, these traits can vary both experimentally or 
spontaneously, depending on environment, host genetics and the microbial communities 
forming the microbiota. Therefore, to survive infection it is particularly important that hosts 
are able to mount strong and competent immune responses that comprise resistance and 
tolerance mechanisms. The first is responsible for limiting infection by blocking or eliminating 
the pathogen, decreasing the parasitic load, while the second reveals itself in the increase in 
health status or fitness of the host without decreasing the parasitic load.  

The fruit fly, Drosophila melanogaster spends its whole life cycle in decaying organic 
matter in close contact with pathogenic microorganisms. Therefore, it possesses an array of 
immune mechanisms to protect itself against infecting bacteria, fungi, parasites or viruses. 
Although lacking the presence of an adaptive immune system, present in vertebrates, 
Drosophila has been widely used as model system for the study of innate immune defences, 
due to their evolutionary conservation. Fruit fly immune defences consist of: 1) Behavioural 
immunity, which involves avoiding the pathogen in order to prevent infection or reduce 
pathogen exposure; 2) Physical or epithelial immunity, which is composed by physical barriers 
against the establishment of microorganisms in the body; 3) Cellular component, which 
consists in the action of free-floating and sessile blood cells (haemocytes), that circulate 
through the body cavity; 4) Humoral immunity, that relies on the production and secretion of 
antimicrobial peptides (AMPs) to the haemolymph. 

 One of the several natural Drosophila pathogens is Pseudomonas entomophila which 
has its genome fully sequenced and its virulence factors identified, making it a prime bacterial 
model for infection in D. melanogaster. P. entomophila is able to activate a systemic immune 
response in the fruit fly even through ingestion. Under oral infection, pathogenicity is strictly 
dependent on its ability to persist in the gut and the excretion of toxic substances that disrupt 
host physiology. A lot of its genes have also been associated with its entomopathogenicity. For 
example, genes that encode toxins explain why infection with this bacterium is so deleterious 
to the gut, causing irreversible damage to flies. 

Given that the host genetic background influences infection outcome through defence 
mechanisms of resistance and disease tolerance, this work aimed at shedding light on the 
contributions of each mechanism upon oral infection with a pathogen. As such, we infected a 
subset of 75 Drosophila Genetic Reference Panel (DGRP) lines with a natural pathogen of D. 
melanogaster, P. entomophila. The DGRP is a panel that consists of around 200 fully 
sequenced isogenic lines that allows for the breakdown and analysis of the genetic variability 
of a natural population, constituting a powerful tool for Genome Wide Association Studies 
(GWAS). Using this lab established system our objective was to characterize infection 
dynamics of oral infection by P. entomophila in DGRP lines.  
 By gathering survival data upon infection, we were able to characterize the differences 
in infection outcome caused by differences in host genetic background. We also created several 
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categories of survival profile based on mortality dynamics over the course of infection. We 
also measured bacterial loads such as initial inoculum, bacterial loads upon death and set point 
bacterial loads, in order to characterize how the host influences pathogen dynamics during 
infection. By combining all the data, we were able to infer phenotypes of resistance and disease 
tolerance on a set of DGRP lines. In the future, amplification of the dataset to the full DGRP, 
together with the identified necessary adjustments to improve data quality, may lead to Genome 
Wide Association Studies (GWAS) and the identification of genes that are involved in the 
mechanisms of resistance and disease tolerance. 
 

 
Keywords: Immunity; Drosophila melanogaster; Pseudomonas entomophila; Resistance; 
Disease Tolerance. 
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1 Introduction 
 
1.1  Infection, resistance and tolerance  
 

Organisms coexist naturally in their environment and interact, both intra- and 
interspecifically, in ways that are sometimes necessary for survival, establishing biotic 
interactions. Among these, a subset comprises symbiotic relations, characterized by long-term 
interactions between two organisms1. Symbiotic interactions can be: 1) mutualistic, a 
cooperative relationship that is mutually beneficial to both organisms; 2) commensal, when 
one organism benefits, while the other is generally unaffected; or 3) parasitic, an antagonistic 
relationship, and seemingly the most common biological interaction in the animal kingdom, in 
which one organism benefits at the expense of the other (Fig. 1.1)2,3. 
 

 
Fig. 1.1 – Continuum of symbiotic relationships. Symbiosis exists in continuum between antagonistic 
relationships (between host and parasite) and cooperative relationships (between two mutualists). 
Commensalism is represented as a mixed interaction, in which either of the organisms may benefit. 
Figure from G. Dimijian, 20001. 

The success of the parasitic interaction is associated with a higher transmission rate, 
which is usually the result of increased parasite reproduction, consequently leading to higher 
virulence. Virulence can be defined as the harm done to the host by the parasite or, from an  
evolutionary perspective, a quantitative trait that measures the decrease in host fitness due to 
an infection4,5. As such, it is usually seen as a property of pathogens. However, it is known that 
virulence is not a constant property of the disease-causing pathogen, but that it can vary both 
experimentally or spontaneously, and it can be enhanced, lost and restored4. Work on virulence 
evolution often uses pathogen-induced mortality rates as a proxy for virulence, since it 
represents the extent to which the parasite induces damage on its host6. Yet, virulence proxies 
do not represent virulence as it is defined in theoretical literature, making it hard to compare 
data with virulence theory in order to take conclusions7. To go around this issue and understand 
the concept of virulence, one must always take into account under what ecological 
circumstances a microorganism is capable of causing disease in a host4,8,9, considering that 
pathogenicity itself is highly dependent on the ecological context, the infection route, inoculum 
size and the genetic background of the host4. For example, the fungus Candida albicans, that 
is commonly found in humans, can be both a commensal saprophyte or a pathogen at different 
times depending on context10. Even genetically identical microorganisms (i.e. clones), like the 
uropathogenic Escherichia coli, can either be highly pathogenic or not depending on the 
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environment11. The immunocompetence of the host also plays a role in determining if an 
infection is pathogenic or not, as several species of microorganisms are only able to cause 
disease in immunocompromised organisms12. These examples reinforce that idea that virulence 
is not a fixed property of either pathogen or host, but rather a dynamical trait determined by 
specific host-parasite interactions in a given ecological context and by the genetic background 
of both pathogen and host. 

The host genome is particularly relevant, as it directly impacts resistance and tolerance, 
the two mechanisms an organism can invoke to recover its health and increase its fitness when 
challenged with an infection. Resistance refers to a battery of mechanisms that directly attack 
the pathogen, expelling, containing or killing it, in order to block invasion or eliminate the 
invading microorganism, decreasing parasitic load13 (resistance mechanisms will be further 
explored in the next section). On the other hand, tolerance consists of (still poorly understood) 
mechanisms that seem to rely on several stress and damage responses to limit the impact caused 
by the pathogen, decreasing the virulence of an infection, without affecting parasite load4,14,15. 
It is then important to note that, although both mechanisms contribute to promote host health, 
they differ in their effect on pathogen fitness: while resistance mechanisms have a negative 
effect on pathogen fitness, tolerance mechanisms have a neutral to positive effect. Therefore, 
contribution of resistance and tolerance to host’s health recovery after infection could 
potentially be assessed experimentally by measuring a parameter of host health (e.g., survival, 
tissue damage) and examining its relationship with pathogen burden in the relevant tissues16.  

Ultimately, host defence is the combination and balance of these two mechanisms that 
are not totally independent. The best example of this dependence is immunopathology, the self-
induced damage that happens when the immune response contributes to a decrease in host 
fitness14. In humans, there is evidence that immunopathology is significant for the etiology of 
various diseases ranked high priority by WHO, including tuberculosis, malaria, Chagas disease 
and leprosy17,18. Experiments using Plasmodium infection in rodents allowed the quantification 
of the amount of damage caused by immunopathology19. However, immunopathology is 
generally considered as having a single causative agent: either the resistance mechanisms that 
generate the pathology, the organisms responsible for the diseases or the organs that are 
affected. This mindset fails to capture how and to what extent resistance and tolerance are 
dependent of one another. In a review article, Janelle S. Ayres and David S. Schneider14 
stressed this issue and tackled the problem by defining classes of immune mechanisms in a 
spectrum of effects, spanning from those in which resistance and tolerance are absolutely 
linked to those where they are completely independent. The mechanisms in which there is a 
complete dependence between tolerance and resistance are usually associated to molecules 
(effectors or regulators) that take part in both resistance and tolerance pathways. Because of 
this, it is predicted that there is a trade-off between resistance and tolerance14. For example, in 
the Drosophila melanogaster’s immune response, reactive oxygen species (ROS) are a key 
component when fighting infections, but the oxidative activity of these molecules can also 
induce self-damage and even death (in extreme cases), resulting in a decrease in tolerance20,21.  

In the context of an infection, when considering only interactions between host and 
pathogen, one risks missing other important host-microbe interactions. In recent years it has 
become clear that the microbiota influences every aspect of host physiology, including 
outcome of infection22. Host-microbiota interactions are the object of constant change as some 
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resident microorganisms can have a role in protecting the host from invaders, while others may 
be the cause of some disease, depending on the context23. It has even been shown that changes 
in the genetic composition of the microbiome can severely affect disease risk24,25 and some 
diseases have also been proven to be associated to changes in host microbiota (for example, 
bacterial vaginosis and the increased risk of acquiring HIV22). 

In summary, although pathogens can seriously disable the host using a wide range of 
virulence factors (e.g., adhesins, invasins, toxins), pathogenesis is the result of an interplay 
between pathogen, environment, host genetics and the microbial communities forming the 
microbiota. In this interplay, the mounting of a strong and competent immune response is of 
utmost importance for survival, but can also have a significant negative impact on host fitness 
(through immunopathology), which could explain why these responses are often suboptimal 
regarding resistance mechanisms26. In the next section, the mechanistic activation of the 
immune system of the model organism D. melanogaster will be introduced. This is a widely 
used model organism in biological research, that due to widespread use across multiple 
research areas, is ideal to address questions related to immunology27. In fact, D. melanogaster 
stands out as a model system for invertebrate (innate) immunity, and has been used in studies 
in the field for decades28–32.  

 
 
 
1.2 The immune system of Drosophila melanogaster 
 

The cellular immune response involves the action of free-floating and sessile blood 
cells (haemocytes), that circulate through the body cavity. These cells can be separated in three 
different types, based on their structure and function: plasmatocytes, crystal cells and 
lamellocytes. Plasmatocytes make up most circulating cells and are responsible for the removal 
of dead cells and microorganisms; crystal cells are present in small relative numbers among all 
haemocytes and are nonphagocytic cells involved in the melanization process (wound healing 
and hypoxic response); finally, lamellocytes are a large, flat and adherent cell type that 
performs encapsulation and neutralization of any object that is too large to be phagocytosed. 
This type of cells is exclusive of larval stages and rarely observed in healthy larvae, due to its 
differentiation being induced, almost solely upon infection by parasitoid wasp eggs (Fig. 1.2, 
top panel)27–30.  

The humoral immune response, relies on the production and secretion of antimicrobial 
peptides (AMPs), both systemically in the fat body, the functional equivalent of the mammalian 
liver and adipose tissue, and locally in the gut, trachea and reproductive tract, for 
example27,35,37,38. Studies on insect's immunity allowed for the identification of 20 immune-
inducible AMPs, which have been described and classified in seven groups27,39,40, based on 
their activities against different types of microbes, which will be explained in more detail next. 
The fact that D. melanogaster is such a powerful genetic tool facilitated the discovery and 
dissection of the mechanisms regulating AMPs production27. The current model states that the 
production of each AMP is regulated at the transcriptional level through binding of the nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors of the Rel 
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family (Fig. 1.2, bottom panel)27,41. Different AMPs are regulated by a balanced activity of two 
distinct signalling pathways, Toll and Imd (for immune deficiency). The Toll pathway is 
mainly triggered by sensing of Lys-type peptidoglycan (characteristic of cell walls of most 
Gram-positive bacteria) and β-1,3-glucan (structural cell wall components of most fungi), 
resulting, for example, in the activation of Defensin (which is mainly active against Gram-
positive bacteria) and Drosomycin (a potent antifungal AMP). On the other hand, the Imd 
pathway is activated by sensing of meso-diaminopimelic acid DAP-type peptidoglycan 
(present in Gram-negative bacteria and some Gram-positive bacteria like Bacillus and 
Clostridium), and results in the transcription of AMPs such as Diptericin and Drosocin 
(effective against Gram-negative bacteria) (Fig. 1.2, bottom panel)27,41.  

Although there is an apparent specificity associated to each pathway, the relationship 
between them is not fully known, with some immune-induced genes being solely dependent 
on one pathway (for example Diptericin for Imd, DIM1 for Toll), while others can apparently 
be induced by both cascades (for example Drosomycin)27,42. Finally, besides Toll and Imd, 
other pathways are also relevant for the immune response, even if not directly activated by 
recognition of microbial ligands. The c-Jun N-terminal kinase (JNK) and the Janus 
kinase/signal transducers and activator of transcription (JAK/STAT) pathways, which are 
responsive to tissue damage and generally associated with stress response in D. melanogaster27, 
were also shown to be involved in the regulation of the humoral response43. Interestingly, the 
JAK/STAT pathway seems to be particularly important for defence against viruses, as deficient 
flies are more susceptible to infection with Drosophila C virus (DCV), without difference in 
resistance to bacterial infection44. Although the production of AMPs comprises most of the 
humoral response, the fat body also produces other immune-induced humoral factors 
(e.g., opsonins, drosophila immune molecules, Turandot proteins, and ROS). Altogether, the 
systemic antimicrobial response is a complex process that results in dramatic changes in gene 
expression, leading to the production of AMPs and other immune-induced factors that make 
up humoral immunity27,35. 
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Fig. 1.2 – Cellular and humoral immunity of D. melanogaster. The top panel represents the three 
different types of haemocyte: plasmatocytes, lamellocytes and crystal cells. The bottom panel shows a 
simplified representation of the two canonical pathways activated by microorganisms that trigger AMP 
expression: the Toll pathway is triggered by sensing of Lys-type peptidoglycan (characteristic for cell 
walls in the majority of Gram-positive bacteria) and β-1,3-glucan (structural cell wall components of 
most fungi); the Imd pathway is mainly activated by sensing of meso-diaminopimelic acid DAP-type 
peptidoglycan (present in Gram-negative bacteria and some Gram-positive bacteria like Bacillus and 
Clostridium). Figure from Nunes et al., 202041. 

 
As mentioned previously, the systemic induction of AMP production in the fat body is 

a rapid and potent process. However, in fact, the first line of humoral defence relies on the 
barrier epithelia, that besides working as physical barriers also provide chemical protection 
with the local production of AMPs and ROS. This AMP production has been demonstrated 
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(using GFP reporter transgenes) in multiple epithelia that contact the external environment, 
such as the epidermis, reproductive system, and the respiratory and digestive tracts38,42,45. This 
production of AMPs is referred to as local immune response (as opposed to the systemic 
response) and, surprisingly, is exclusively dependent on the Imd pathway for both Gram-
negative and Gram-positive bacteria38. Until date, there is no evidence for the induction of local 
AMP production via the Toll pathway in response to Gram-positive bacteria or fungi27. 
Infections with bacteria also induce the rapid production of ROS in the gut, and the dynamic 
cycle of synthesis and elimination of ROS seems to be essential for survival. Furthermore, the 
ROS-dependent immunity is not dependent on the Imd pathway, providing an additional barrier 
against ingested microorganisms46. The immunity of the gut will be revisited in the next section 
of this work. 
 
 
 
1.3 D. melanogaster gut morphology and immunity 
 

The digestive tract plays an obvious and central role in nutrient absorption and, like 
previously mentioned, functions as one of the first lines of defence against invading 
microorganisms, and provides home to the microbiota. It also performs a key role in neural and 
endocrine regulation and signalling (modulating the activity of other organs), and maintaining 
energy homeostasis37. The gut of D. melanogaster consists of an epithelial layer, surrounded 
by visceral muscles, nerves and tracheae. Lengthwise it is divided into foregut, midgut and 
hindgut, and the arrangement of the different types of cells (epithelial, muscle and nervous) is 
different in each part. Each compartment of the gut is subdivided into even more specialized 
anatomical regions, each with its own distinct metabolic and digestive functions47. For 
example, the foregut contains an anatomical region, the crop, found only in adults, that 
functions as a storage organ and that allows them to feed on solid food much less frequently 
than larvae, ingesting only liquid through their proboscis most of the time. Although some 
digestion may occur in this region, both digestion and absorption are predominantly 
accomplished in the midgut48. Regarding physical barriers, the foregut and hindgut are lined 
by an impermeable cuticle, while the midgut it is covered by a peritrophic matrix37. Hence, the 
digestive tract functions as a selective barrier that protects the fly against damaging agents, 
such as toxins and pathogens (Fig. 1.3). 

Upon ingestion, the gut content is first broken down by digestive enzymes before it is 
absorbed by the intestinal epithelium. D. melanogaster possesses a vast enzymatic repertoire, 
that is thought to be optimized to digest decaying fruits37, among which are lysozymes, that are 
capable of hydrolysing peptidoglycan, a major component of bacterial cell walls. Although it 
was thought that these molecules did not play a role in immunity30, today it has been shown 
that lysozymes are also produced in the fat body and tracheal system in response to infection, 
and have an impact in decreasing the bacterial load49–51. The digestion is also affected by 
physicochemical conditions of the gut (for example the pH)37. In D. melanogaster, different 
anatomical regions of the gut have different pH, which helps controlling the growth of 
microorganisms that are ingested with the food and facilitate the gut local immune 
response37,47. Furthermore, the enzymatic activity of the microbiota also influences 
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digestion37,52. Although fruit fly microbiota shows relatively low bacterial diversity it is known 
that this microbial community can be beneficial to D. melanogaster under poor dietary 
conditions, because it is often necessary to convert decaying matter into the dietary factors on 
which the fly depends52. Moreover, it is also known that gut microbial communities play an 
important role in infection susceptibility and outcomes, with experiments showing that some 
microorganisms can be beneficial upon infection by parasites, while others may be 
detrimental22.  

 
 

 
Fig. 1.3 – The D. melanogaster digestive tract. (a) Reconstruction of the digestive tract within the 
body cavity. (b) The digestive tract is divided into three domains: foregut, midgut, and hindgut, each 
further subdivided into genetically distinct compartments (illustrated by different colours in the case of 
the midgut). (c) The midgut is composed of an epithelium surrounded by two layers of visceral muscles. 
The midgut epithelium consists of enterocytes, enteroendocrine cells (EEC) and progenitor cells. Figure 
adapted from Lemaitre, B & Miguel-Aliaga, I, 201337. 
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As mentioned before, the foregut and hindgut are coated by an impermeable cuticle, 
while the midgut is protected by a peritrophic matrix. In terms of composition, organization 
and exact role of these barriers not much is known. Nevertheless, these physical barriers have 
an obvious role in protecting the epithelium and body cavity from potentially harmful 
compounds (like toxins) and pathogenic bacteria53,54. It is known that the peritrophic matrix is 
essential to survival since none of the mutant flies devoid of it are viable53,54. A mutant fly for 
the drosocrystallin gene (a structural element of the peritrophic matrix) shows higher 
susceptibility to ingested entomopathogenic bacteria due to reduced matrix thickness and 
higher permeability54. Besides these physical protective barriers, the gut is also armed with 
potent immune responses. Experiments show that ingestion of Gram-negative bacteria triggers 
the expression of AMPs in specific anatomical regions along the digestive tract38. Stress 
response programs and increased epithelial renewal are also important mechanisms in dealing 
with infection (usually associated with disease tolerance), that can be deployed to repair the 
epithelium and secure the integrity of the gut barrier55.  

Another previously mentioned line of defence is the production of ROS, most notably 
in the foregut and hindgut regions. Here too, there is a mechanism of negative regulation to 
reduce the severity of the immune response, and consequently damage caused by 
autoimmunity37. Although there are multiple evidences for the existence of a local humoral 
response in the gut, there is no indication of the existence of cellular immunity associated with 
this organ56. It becomes obvious that the gut is well-protected against parasitic invasion, with 
physical and chemical barriers and strong immune responses that result in bacterial clearance. 
Even the crop produces detoxifying enzymes (like glutathione S-transferase) that function as a 
first chemical barrier to bacteria before the passage of food to the midgut37. 
 To conclude, one needs to note the importance of excretion, not only from a nutritional 
perspective, but also as a clearance mechanism upon ingestion of pathogenic bacteria. 
Experiments using food dyes revealed that in D. melanogaster a digestion cycle has a duration 
of less than one hour. However, this duration is affected by nutrient availability and even 
infection status, with some pathogens increasing the time it takes for food to travel the entire 
length of the digestive tract, and others reducing it57. The implications of these processes on 
survival are still understudied. It is also important to note that intestinal transit, defecation rate, 
and the contents of the excreta are subject of complex homeostatic regulation, and that 
alterations to this homeostatic equilibrium might impact other aspects of intestinal homeostasis, 
such as stem cell renewal, immunity, and senescence37. Since 2005, when it was first identified, 
Pseudomonas entomophila has been largely used to study D. melanogaster’s gut immunity, 
mainly due to its high pathogenicity when ingested (causing massive destruction of the gut 
epithelium58). 
 
 
 
1.4 Pseudomonas entomophila, a natural pathogen of D. melanogaster 
 

P. entomophila was first isolated from a single D. melanogaster female collected in 
Calvaire (Guadeloupe), and since then its genome has been fully sequenced and its virulence 
factors identified, making it a pristine model bacterium for infection in D. melanogaster59. This 
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bacterium has the unique ability to activate a systemic immune response in the fruit fly, even 
through ingestion58. The pathogenicity of this bacterium when ingested is strictly dependent on 
its ability to persist in the gut and the excretion of toxic substances that disrupt D. melanogaster 
physiology. Several genes in the genome of P. entomophila have been associated with its 
entomopathogenicity. For example, genes that encode for toxins, other insecticidal proteins 
and proteases are directly responsible for its virulence, and cell surface associated proteins are 
also direct contributors to pathogenicity by allowing adhesion to the surface of gut epithelial 
cells and consequently effective gut colonization59.  
 Furthermore, in a model of septic injury (i.e., direct pricking of a culture pellet into the 
body cavity), P. entomophila kills flies in less than 24 hours. However, the outcome of oral 
infection is highly dependent on the bacterial concentration and can range from killing flies 
within 2-3 days (for OD600 between 50 and 100), to being non-lethal (for OD600 = 1)58, which 
suggests that only high dosages of P. entomophila are pathogenic for D. melanogaster in an 
oral infection setting60. Interestingly, although behavioural avoidance plays an important role 
in immunity in insects, it has been shown that D, melanogaster does not particularly avoid the 
ingestion of P. entomophila when the bacterium is mixed in a sucrose solution45,58,60, and it is 
hypothesised that the same happens in nature since this bacterium occurs in high concentrations 
in decaying fruit61. One of the most common observed phenotypes after ingestion of high doses 
of P. entomophila is the cessation of food uptake, resulting in a visible accumulation of  
bacteria in the fly crop45,58. It is still unknown if this food uptake blockage is directly induced 
by P. entomophila through the use of virulence factors or if it is a host response to intestinal 
damage inherent to the infection process.  
 Even though the gut of D. melanogaster is considered a hostile environment for 
ingested bacteria, P. entomophila has been shown surprisingly to remain in the digestive tract 
for at least 16 hours post infection (hpi), due to its ability to grow even in pH as low as 3 and 
its high resistance to lysozymes activity61. However, for P. entomophila to endure the adverse 
conditions found in the fly gut, it must survive not only to its adverse physicochemical 
conditions, but also the local immune defences of this organ, namely the production of AMPs, 
such as Diptericin, Attacin and Drosocin. Experiments show that infection with P. entomophila 
leads to the expression of AMP-encoding genes in the gut, meaning that this bacterium is 
specifically recognized by the local immune system62. There are also studies showing that 
preventive localized expression of AMPs in the gut confers a degree of resistance to this 
bacterium, indicating that P. entomophila is sensitive to the activity of AMPs45. The ability of 
this bacterium to resist the innate immune response is closely linked with the damage it does 
to the gut epithelium, since by damaging epithelial cells the bacterium is able to decrease the 
gut’s local immune response. However, it is generally accepted that the damage P. entomophila 
causes in the gut epithelium is not driven through its direct contact with the epithelial layer58,62, 
but rather through a strong activation of pathways responsible for repair and stress response in 
D. melanogaster, which are responsible for reducing the production of AMPs by gut epithelial 
cells, consequently increasing the survival of the bacteria present in the digestive tract62. This 
reduction of AMPs production results in the inhibition of the repair mechanisms necessary to 
face the damage caused by infection60,63. The cellular damage sustained by the epithelium is 
caused by two main factors: toxins produced by the bacterium and ROS produced by the host 
itself (which are actually the main gut damage source during the infection). This is because, 
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although ROS have been shown to have an important role in surviving oral infections, the 
production of such molecules is exacerbated during infection by P. entomophila62,64. Studies 
have seen epithelial damage from enterocytes displaying abnormal microvilli to cell death and 
noted that after 6 hpi, the mucus that protects the digestive epithelium was missing, suggesting 
that there might be passage of bacteria from the gut into the body cavity. However, the 
peritrophic matrix that lines the midgut is still present after 12 hpi, and after 6 hpi there is no 
bacteria in the haemolymph of infected flies58, although bacteria could potentially cross the gut 
barrier at later stages. 

In summary, during the interaction between P. entomophila and D. melanogaster, not 
only the immune system fails to eliminate the bacteria, but its activation is also immensely 
deleterious to the gut, causing irreversible damage to the host. 
 
 
 
1.5 Objectives 
 

We may be led to think that illness due to infection is somehow a straightforward 
process: when infected by a pathogen, an individual reacts using its immune system. This 
immune response either clears the pathogen and health is restored or the organism dies. 
However, the relationship between infection and health is extremely complex. The interaction 
between host resistance and disease tolerance is a dynamic process that, together with pathogen 
virulence, is responsible for infection outcome65. Greater tolerance means that individuals can 
be infected with larger numbers of pathogens before suffering from severe illness and death15. 
Resistance consists of the host’s ability to reduce parasite load. However, the relative 
contribution of these two mechanisms remains clouded due to the difficulty in studying them 
individually. Knowing that the host genetic background plays a decisive role in infection 
outcome, we pretend to shed light on the individual contributions of host’s resistance and 
tolerance upon infection. 

In this work, we will infect isogenic lines of the Drosophila Genetic Reference Panel 
(DGRP) with the natural pathogen of D. melanogaster, P. entomophila. The DGRP allows 
breakdown and analysis of the genetic variability of a natural population with relation to a 
phenotype of choice. It is a panel that consists of around 200 fully sequenced isogenic lines 
constituting a powerful tool for Genome Wide Association Studies (GWAS)66. Using this lab 
established system, the main goals of this project are: 

I. To explore the infection dynamics of oral infection by P. entomophila in DGRP lines; 
II. To determine relative contributions of resistance and disease tolerance upon oral 

infection of DGRP lines with P. entomophila. 
We will follow mortality of infected flies from each line over the course of three days. 

During this period, multiple live flies will be collected to measure bacterial loads (BL) in 
specific timepoints. In addition, bacterial load upon death (BLUD) will be determined. This 
opens the possibility for conducting Genome Wide Association Studies (GWAS) that can 
present candidate genes that can influence the phenotypes of resistance and disease tolerance. 
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2 Materials and Methods 
 
2.1 Fly Stocks and Husbandry 
 

For all experiments Drosophila melanogaster was reared under constant temperature 
of 25oC (±1 ̊C), 60–70% humidity, light-dark cycle of 12:12 hours, and fed with a standard 
cornmeal-agar medium. At days two or three after eclosion females were isolated in groups of 
80, and remained as such until the end of the experiments. The experiments were conducted 
using only three to four days-old fertilized females. We used a wild-type outbred strain (Mel1) 
as reference67. The population was kept in laboratory cages for over 50 non-overlapping 
generations (generation time: three weeks) with high census (over 1500 individuals). 

The Drosophila Genetic Reference Panel (DGRP) lines were established from a natural 
population collected from Raleigh, North Carolina, USA, and inbred for 20 generations of full-
sib mating, followed by random mating. This is a collection composed by approximately 200 
isogenic and fully sequenced lines66. A subset of 75 lines from the DGRP were chosen to 
encompass the 72 different lineages identified according to the genetic distance between them 
(http://dgrp2.gnets.ncsu.edu/data.html and Lafuente et al, 2018 68). For the families comprising 
more than one line we based our choice on survival to P. entomophila infection data from M. 
Bou Sleiman et al., (2015)69 (giving priority to lines with survival data), lifetime fecundity and 
lifespan data from Durham et al., (2014)70 (again giving priority to lines with fecundity and 
lifespan data), and the presence (or absence) of Wolbachia. At the end we created a subset of 
DGRP encompassing as much as possible the full panel´s variation in survival, lifetime 
fecundity and lifespan and mostly infected with Wolbachia. This is because the majority of the 
DGRP stocks in our fly facility are infected with Wolbachia and we wanted to have a dataset 
as homogeneous as possible. It has been described that Wolbachia infection affects fitness 
traits, for example boosting fecundity and longevity71, and confers resistance to infection with 
viruses72. Although that is true, Bou Sleiman et al. found that the presence of Wolbachia does 
not have an effect on D. melanogaster susceptibility to oral infection with P. entomophila69. In 
the laboratory these lines were kept with a small census, between 10 and 30 flies. A month 
before each line was tested, its individuals were transferred to bottles and were amplified to 
between 200 and 250 individuals and kept under the same conditions. 
 
 
 
2.2 Bacterial infection  
 

The Gram-negative bacterium Pseudomonas entomophila used contains a resistance 
marker to rifampicin (kind gift from Bruno Lemaitre). This is a wide spectrum antibiotic that 
inhibits transcription by blocking the bacterial RNA polymerase. The rifampicin resistance 
greatly reduces the risk of contamination and is essential when plating whole flies to count 
colony forming units (CFU) (see below). The bacterium was kept in 35% glycerol stocks 
(prepared from a single bacterial clone) at -80oC. For each round of infection, the stocks were 
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used to streak a LB agar petri dish, supplemented with rifampicin (0.5 mg/mL). The plate was 
then kept at 30oC for one or two days, allowing for the colonies to form and grow, and after 
that at 4oC to be used at any time during the following week. From the petri dish, a single 
colony was inoculated in 5 mL of LB liquid medium and grown between 8 and 12 hours at 
28oC in an orbital shaker incubator. The 5 mL of the starter culture were poured into 500 mL 
of LB liquid medium and grown to saturation overnight in the same conditions. This P. 
entomophila suspension was centrifuged for 15 min at 15000 rpm and 4oC, and its 
concentration adjusted to OD600 = 100 by diluting the pellet in LB liquid medium (to reach 
approx. 50% mortality, accordingly to previous unpublished work by Nuno Martins). The 
suspension was then mixed, in a ratio of 1:1, with a 5% sucrose solution, and food colouring 
was added to a concentration of 2%. A control solution was prepared by mixing equal parts of 
LB liquid medium with a 5% sucrose solution (see Appendix). 
 To infect flies, we used bottles containing a filter paper disk soaked in bacterial solution 
and humidified cotton covering the plug (in order to maintain the humidity during the infection 
period). In each bottle, approximately 80 previously separated female flies belonging to a 
single DGRP line (or the outbred population) were kept for 3 hours to feed on the P. 
entomophila suspension present in the filter paper (see Appendix). For each infection bottle, a 
control bottle was prepared in the same way, only replacing the bacterial solution for the control 
solution. After the infection period the flies were anesthetized with CO2 for no more than five 
minutes, pooled in groups of 10, transferred to small vials under the same food and 
environmental conditions. The flies remained in the same vial for three days, until the end of 
the experiment. From each line, 8 individual flies were collected and kept on ice to measure 
the initial inoculum (see Appendix). Each round of experiments comprised 19 DGRP lines and 
the outbred population to a total of 140 vials (6 infection plus 1 control per line/population) 
containing 10 flies. The outbred population was tested at every experimental round while each 
DGRP line was tested in three replicates. While the majority of lines were tested in the same 
group for every replicate, between 2 and 3 lines per group were randomly selected from the 
pool, in order to control for random block effects. 
 
 
 
2.3 Survival and Bacterial Loads 
 

In this work, we observed and collected flies in order to characterize survival and 
bacterial load dynamics. The bacterial loads measured in this experiment were the initial 
inoculum, the bacterial load upon death (BLUD), and the set-point bacterial load (SPBL)73. 
Flies collected alive were anesthetized with light CO2 as briefly as possible and kept on ice 
until plating. Every fly collected for bacterial load measurements was passed through one-
minute serial washes in 70% ethanol, 50% bleach, and 70% ethanol and finally with Mili-Q 
water, in order to limit contamination by bacteria present on the outside of the fly. After the 
washing, individual flies were homogenized in 50 μL of sterile PBS with a Tissuelyser. The 
homogenate was then diluted to 1:10, 1:100, 1:1,000, 1:10,000 and 1:100,000 in PBS, ensuring 
that the number of bacterial colonies was within resolution limits. We then plated droplets of 
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4 μL from every dilution of each homogenate onto petri dishes with LB agar and rifampicin 
(0,05g/mL), so that each plate contained 40 droplets. The plates were incubated overnight at 
30ºC and then kept at 4ºC until CFU counting, to estimate the number of live bacteria per fly 
(see Appendix). 
 To determine the size of the initial bacteria inoculum, 8 flies were collected 
immediately after the 3-hour period of infection and kept on ice for approximately 2 hours 
(average time necessary to prepare the rest of the experiment), until plating. Since each line 
was tested in three replicates, this makes a total of 24 individual flies measured for each 
inoculum per line (with exception of the outbred population, which was repeated every round 
of experiments). To estimate BLUD, infected hosts were checked every 30 min between 21 
and 30 hours post infection (hpi) and dead flies collected and plated. We collected a maximum 
number of 8 flies per line each infection round, for a total of 24 individuals per line (again with 
exception of the outbred population, which was repeated every round of experiments). 
However, that number of flies could not be collected for every DGRP line used since mortality 
differs from line to line. For SPBL, 8 flies were collected at 72 hpi (at the end of the experiment) 
and immediately plated. For each line, a total of 24 flies was plated, except for the lines in 
which all individuals died before 72 hpi (and again the outbred population, for the reasons 
above). 

Survival was measured by observing each vial and counting dead individuals every 24 
hours from the start of infection for three days. Because flies were checked every half hour 
between 21 and 30 hpi for the BLUD, survival data was also gathered in these timepoints, 
creating an interval with higher resolution in the trajectory. As mentioned before, every round 
of experiments contained 60 infected individuals plus 10 controls per DGRP line, for a total of 
180 infected flies plus 30 controls across all replicates (with exception of the outbred 
population, which was repeated every round of experiments). 
 
 
 
2.4 Statistical Analysis  
 

To compare survival across DGRP lines, the proportion of individuals surviving at day 
10 after infection in each vial was first estimated using the Kaplan-Meier method. In each time 
point, individuals that either died from causes unrelated to bacterial infection (for example, that 
got stuck in the food) or escaped from vials were counted as censored observations. The same 
applied to individuals that were alive at the end of the experiment. If in any replicate abnormal 
mortality was observed in the control flies, the data would be censored from the final dataset 
(although this never happened). Subsequently, differences in survival between DGRP lines 
were tested using Cox regression models in order estimate hazard ratios. The hazard ratio is a 
comparison between the probability of events in a treatment group, compared to the probability 
of events in a control group. In this case, the hazard ratio can be defined as the relative risk of 
death. The models included the DGRP Line as a fixed factor, and Vial Replicate nested in 
Experimental Block and as random effects. To test for differences in pathogen loads, Linear 
models on the natural logarithm of bacterial counts were applied with the DGRP Line as a fixed 
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factor, and Vial Replicate nested in Experimental Block as random effects. These tests were 
done using the R libraries lme4, coxme and survival. We used Spearman correlations to assess 
the relationship between our measured traits (survival, initial inoculum, BLUD and SPBL). To 
assess differences between different survival categories (regarding initial inoculum, BLUD and 
SPBL) we used the non-parametric Kruskal Wallis test. All statistical analyses were done using 
R (v 3.6.2)74.  
 
 
 

3 Results and Discussion 
 
3.1 Survival 
 

Infection of different isogenic D. melanogaster lines with the bacterium P. entomophila 
generates a wide scope of outcomes, with survival at the population level ranging from 94% to 
0% depending on the genetic background (Fig. 3.1 A, B). This amount of variation in infection 
susceptibility, observed in about 40% of the whole DGRP set, evidences how extremely diverse 
this phenotype is in natural populations. This strikingly high and reproducible variation in 
infection outcome of DGRP lines upon infection with P. entomophila had been previously 
described in the literature, with survival varying between 0% and 100%69. This means that with 
our subset we were able to capture almost all the variation previously described for this 
phenotype in the DGRP.  

Vodovar et al., (2005)58 found that P. entomophila infection causes severe damage to 
the gut of D. melanogaster larvae. They described that after 6 hours post infection (hpi) the 
mucus that protects the digestive epithelium was missing, and after 12 hpi the epithelial cells 
were either absent or abnormal. These findings suggest that there might be passage of bacteria 
from the gut to the body cavity, however they showed that the semipermeable peritrophic 
matrix that lines the gut was intact throughout the infection, and after 6 hpi they did not detect 
bacteria in the haemolymph of the infected flies. Therefore, the current model is that this 
bacterium is unable to cross to the body cavity and death occurs due to gut damage (caused by 
secreted virulence factors), that ultimately leads to shrinking and rupture – Gut Damage model. 
However, the evidence for the impossibility of P. entomophila crossing the gut are 
circumstantial and time restricted, and even the authors that described the process did not 
discard the possibility of bacteria reaching the haemolymph in earlier stages (and being unable 
to persist there) nor collected data for later stages of infection. Moreover, there is a technical 
constraint in trying to segregate both infections (oral and systemic) spatially without 
contaminating the samples. As such there is the possibility that death after oral infection with 
P. entomophila is the result of gut damage combined with a secondary systemic infection 
caused by a percentage of bacteria that are able to cross the gut epithelial barrier into the 
haemolymph. This hypothesis predicts that gut damage is a necessary condition for virulence, 
influencing the number of bacteria and timing of infection, and therefore the extent of damage 
and acuteness of the “secondary” systemic infection which will additively contribute to death 
– Systemic model. When a host is infected by a pathogen, survival as an outcome can only 
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happen by activating mechanisms that directly attack the pathogen, resistance, or mechanisms 
that limit the damage caused by infection, tolerance. Therefore, the variation in susceptibility 
between DGRP lines is a direct result of differences in these two traits. However, it is 
impossible to know the relative contribution of tolerance and resistance to the differences in 
susceptibility to infection taking into account only survival.  
 
 

 
Fig. 3.1 – Oral infection of Drosophila Genetic Reference Panel lines with P. entomophila induces 
a wide spectrum of mortalities. (A) Survival curves for 75 selected DGRP lines and the outbred line, 
Mel1. The Y-axis represents the proportion of survivors and the X-axis the time post infection. Each 
grey curve represents a different line and each dot a timepoint in which survival was measured. The red 
curve corresponds to the average population (hypothetical line with the average survival of the 75 
DGRP lines), and the blue curve corresponds to the outbred population, Mel1 (B) Hazard ratios of 75 
selected DGRP lines, and the outbred population, Mel1. The Y-axis represents the hazard ratio 
(exponent of the coefficient in the Cox regression model) and the X-axis the line. The black dots 
represent the value of the hazard ratio and the bars represent the standard error. The dotted horizontal 
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line represents the baseline, the hypothetical average population. The sample size is represented above 
the error bars. 

 
Mortality induced by P. entomophila infection starts before 21 hpi and increases in the 

vast majority of DGRP lines until 48 hpi. – with exception of DGRP-508 (in which 90% of the 
individuals die before 21 hpi). Because the complete DGRP contains the variation of a natural 
outbred population, the baseline used for calculating the hazard ratio in this work was a 
hypothetical average population comprising the empirical survival data of the 75 tested DGRP 
lines (Fig. 3.1 B). It can be noted that 59% of the tested DGRP have a lower hazard ratio than 
the average population (44 lines), while only 35% of the DGRP plus the outbred population, 
Mel1, have higher hazard ratio (26 DGRP and Mel1). Outlier analysis found DGRP-508, the 
line which has the highest probability of death, to be a conventional outlier (Fig. 3.2). 
 
 

 
Fig. 3.2 – DGRP-508 is a conventional outlier, being extremely susceptible to infection. Boxplot 
showing the hazard ratio of the 75 selected DGRP lines, plus the outbred population, Mel1. Each 
coloured dot represents the hazard ratio of a single DGRP line. The box represents the interquartile 
range (the values between the upper and lower quartiles), the vertical black line the upper and lower 
whiskers and the horizontal black line the median. Conventional outliers are found to be above or below 
the whiskers. Y-axis represents hazard ratio and the X-axis the hypothetical average population (which 
contains all DGRP lines). The dotted horizontal line represents the baseline for the hazard ratio, the 
hypothetical average population. 

 
Based on the mortality profile of the 75 DGRP lines we categorized them in different 

groups. The first step in doing this was comparing every DGRP line to a null model of constant 
mortality between 0 and 72 hpi (simplest model for mortality). Since the categorization is based 
on the survival dynamics, the first step was to consider all lines with survival above 85% to 
represent a separate category, consisting of lines with high survival (HS). For the categorization 
of the remaining DGRP lines, we divided the infection time in three different periods: 0-21.5 
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hpi, 21.5-48 hpi, and 48-72 hpi. For each of these periods we estimated the expected mortality 
of each line according to the null model of constant mortality. Then we compared the expected 
mortality with the absolute observed mortality in each timepoint. With this we assessed, for 
each line, if there were deviations from the model, creating three categories for each interval: 
L – lower observed mortality; E – equal observed mortality; H – higher observed mortality. 
We considered that only mortality values lower than half the expected or two times higher than 
the expected deviate from the model. The final category of each DGRP line is given by the 
combination of the three time intervals. The first letter of the category represents the time 
interval between 0-21.5 hpi, the second letter of the category represents the time interval 
between 21.5-48 hpi and the third letter of the category represents the time interval between 
48-72 hpi. 
 The characterization of individual periods (Tables 1, 2) showed that 25% of the lines 
were categorized has having high survival (HS), in the time interval between 0 and 21.5 hpi 
51% of the DGRP lines died as predicted in the model, in the time interval between 30-48 hpi 
45% also died as predicted in the model, and in the time interval between 48-72 hpi 45% of the 
lines died less than predicted by the model. This means that, unlike what is predicted, in the 
data shows that mortality is lower the end of the experimental period. If we consider the 
Systemic model for mortality, this could be easily interpreted in the light of a typical bacterial 
growth curve: the first time period corresponds to the initial lag phase and exponential growth, 
the second period corresponds to the stationary phase where the number of bacteria is 
maximum, and the final period corresponds to the death phase of the bacterial growth curve. 
However, in an infection scenario the bacterial growth is constrained by the host internal 
environment and host mortality is not only dependent on bacterial load, meaning that the 
observed results could not be solely explained based on that. This becomes more evident if we 
consider the Gut Damage model where the bacterial load starts at the level of the stationary 
phase of the bacterial growth curve and decreases from that point onward. With this in mind, 
we need to consider that in the first interval the bacteria are establishing the infection and the 
virulence factors are still present in low concentrations. At the same time, the host only starts 
producing AMPs some hours after the beginning of the infection (lag varies depending on the 
AMP, with Toll-dependent AMPs expression peaking around 24 hpi and Imd-dependent AMPs 
expression peaking around 8 hpi27). The second time interval is where both virulence factors 
and host defence molecules reach their peak concentrations which is the point at which the host 
either controls the infection and starts clearing the pathogen or dies. Finally, the last interval is 
where the surviving hosts (given that only the ones who were able to previously control the 
infection reach this stage) clear the remaining bacteria, and the virulence factors are at its 
minimum. This over-simplification of a process as complex as infection, together with the 
bacterial growth dynamics, offer a possible explanation for the predominant observed pattern 
of lower mortality by the end of infection. 
 By putting together the information of all time periods, we characterized all DGRP lines 
according to their whole mortality profile (Tables 3.1 and 3.3). Looking at this characterization 
we can see that the two most predominant groups of lines correspond to the ones with high 
survival (HS), which represent 25% of all lines, and to the ones that follow the model of 
constant mortality in the first two periods of time and show lower mortality after that (EEL), 
which represent 21% of all lines (in accordance with the analysis of each time point separately). 
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These two categories (HS and EEL) together make up for 46% of the analysed lines and the 
remaining 54% fall into other six different categories. From these six categories it is 
worthwhile noting that 17% of the lines follow the model for constant mortality, and that 
DGRP-508 (which was identified as being a conventional outlier) fits in a category of its own 
(HEL). This is the only line in the whole dataset that shows higher mortality than predicted 
between 0-21.5 hpi which could be explained by having extremely low resistance and/or 
tolerance to this bacterium. 
 
Table 3.1 – Categorization of the 75 DGRP lines according to their survival dynamics. In each 
time point, and for each individual DGRP, we compared the expected mortality (given by the null model 
of constant mortality) with the absolute observed mortality, considering that only values lower than half 
the expected or two times higher than the expected deviate from the model. Based on this deviation we 
created three categories for each interval: L – lower observed mortality (in green); E – equal observed 
mortality (in white); H – higher observed mortality (in red). The final category represents the 
combination of all three time intervals. The first letter of the category represents the time interval 
between 0-21.5 hpi, the second letter of the category represents the time interval between 21.5-48 hpi 
and the third letter of the category represents the time interval between 48-72 hpi. We considered lines 
with more than 85% survival to represent a separate category – high survival (HS, in blue). 

DGRP 
Expected  

mortality per 
period 

Absolute mortality 
0-21.5 hpi 

Absolute mortality 
21.5-48 hpi 

Absolute mortality 
48-72 hpi Category 

32 46 19 108 11 LHL 

41 7 9 9 4 HS 

91 45 16 62 57 LEE 

93 10 14 11 4 EEL 

101 7 5 14 2 HS 

129 10 10 17 3 EEL 

138 17 15 28 9 EEE 

158 23 23 35 12 EEE 

161 7 3 13 5 HS 

195 11 14 18 1 EEL 

208 26 11 46 22 LEE 

217 3 1 7 1 HS 

228 19 12 37 7 EEL 

280 28 11 55 18 EEE 

301 52 31 119 5 EHL 

304 13 8 28 4 EHL 

306 7 11 10 1 HS 

318 12 17 17 3 EEL 

319 30 20 65 6 EHL 

320 10 4 20 5 LHE 

338 53 40 92 26 EEE 

348 48 18 96 29 LHE 

350 65 37 127 30 EEL 
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352 9 1 24 1 HS 

355 5 7 9 0 HS 

359 34 21 74 7 EHL 

360 6 9 5 4 HS 

365 34 8 77 16 LHL 

370 20 12 43 5 EHL 

379 26 17 39 22 EEE 

386 16 13 30 5 EEL 

390 16 11 35 3 EHL 

391 9 6 19 1 HS 

392 48 11 117 15 LHL 

395 37 47 49 14 EEL 

399 21 28 31 4 EEL 

406 11 10 14 8 EEE 

426 15 9 26 9 EEE 

427 20 8 42 9 LHL 

437 6 6 12 0 HS 

440 17 12 23 16 EEE 

441 35 26 73 6 EHL 

491 49 59 75 13 EEL 

492 70 22 174 14 LHL 

502 35 22 63 20 EEE 

508 59 154 24 0 HEL 

555 21 5 42 16 LEE 

584 21 10 38 14 EEE 

589 10 9 15 5 EEE 

630 41 19 84 21 LHE 

642 10 12 18 0 EEL 

707 25 29 38 7 EEL 

737 4 2 9 2 HS 

738 109 51 164 111 LEE 

761 11 18 8 8 EEE 

774 37 50 48 12 EEL 

776 8 5 16 2 HS 

783 8 5 13 6 HS 

786 10 10 16 4 EEL 

802 5 1 12 3 HS 

804 29 25 53 10 EEL 

805 10 0 22 7 LHE 

808 29 12 67 7 LHL 

818 129 98 275 15 EHL 

819 4 2 10 0 HS 

821 3 0 10 0 HS 
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822 27 12 60 9 LHL 

837 13 5 29 4 LHL 

850 70 29 170 10 EHL 

855 6 4 12 3 HS 

859 83 12 174 63 LHE 

861 2 2 3 2 HS 

882 15 10 19 15 EEE 

884 5 5 9 2 HS 

908 14 11 27 3 EEL 

Mel1 218 190 400 63  

 
 
 
 
Table 3.2 – Absolute number and frequency of DGRP line categories according the mortality 
profile for all time intervals. The category of each DGRP is given by the combination of three capital 
letters that represent the comparison between the expected and the observed mortality for each time 
interval: L – lower observed mortality; E – equal observed mortality; H – higher observed mortality. 
The first letter of the category represents the time interval between 0-21.5 hpi, the second letter of the 
category represents the time interval between 21.5-48 hpi and the third letter of the category represents 
the time interval between 48-72 hpi. We considered lines with more than 85% survival to represent a 
separate category – high survival (HS). 

Category N Frequency (%) 

HS 19 26 

LEE 4 5 

LHL 8 11 

LHE 5 7 

EEL 16 21 

EEE 13 17 

EHL 9 12 

HEL 1 1 

TOTAL 75 100 
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Table 3.3 – Absolute number and frequency of DGRP lines according their mortality profile for 
each time interval. For time interval (0-21.5 hpi, 21.5-30 hpi, and 30-48 hpi) “lower” comprises all 
lines with lower mortality than predicted, “equal” comprises all lines with no deviation from the null 
model, and “higher” comprises all lines with higher morality than predicted. “HS” represents all the 
lines categorized as having high survival (throughout the whole infection period). 

Mortality          
0-21.5 hpi N Frequency (%) 

HS 19 25 

Lower 17 23 

Equal 38 51 

Higher 1 1 

TOTAL 75 100 

Mortality          
21.5-48 hpi N Frequency (%) 

HS 19 25 

Lower 0 0 

Equal 34 45 

Higher 22 29 

TOTAL 75 100 

Mortality           
48-72 hpi N Frequency (%) 

HS 19 25 

Lower 34 45 

Equal 22 29 

Higher 0 0 

TOTAL 75 100 

 
 
 
3.2 Initial Inoculum 
 

The initial inoculum is the number of bacteria that infects a fly. In a systemic infection, 
it is known that the size of the inoculum contributes to the infection dynamics and outcome: 
higher initial pathogen loads increase the probability of dying75. When infecting flies orally, 
although we cannot control for the inoculum as in a systemic infection (by injecting a fixed 
pathogen amount), we can control the food availability (in this case ad libitum) and ensure that 
the bacterial density in the food source is the same for all tested individuals. However, it 
remains impossible to account for variation in food intake between different DGRP lines. In 
fact, Garlapow et al. (2015)76 quantified this variation among a set of DGRP lines, finding 
significant genetic variation for food consumption (in this work, ranging approximately from 
0.5μl/Fly to 2.0μl/Fly depending on the DGRP-line). Because of this, we had to measure the 
initial inoculum immediately after infection to check for effects of this parameter in our 
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survival data. We could, however, get data for only 50 of the selected 75 DGRP lines. This was 
mainly due to some lines showing very small reproductive outputs, and, although we still 
measured the survival of those lines, we could not get enough individuals to collect for initial 
inoculum measurements (at least not without compromising other data that we prioritize, like 
survival and BLUD). Still, in those 50 DGRP lines, we found a high variation, with inoculum 
values ranging from 103 to 2,5x109 bacteria (Fig. 3.3).  
 
 

 
Fig. 3.3 – Feeding P. entomophila to Drosophila Genetic Reference Panel lines leads to a wide 
range of initial inoculums, with high variation within line. (A) Mean and Standard error of the Log2 
of the initial inoculum of 50 DGRP lines and the outbred line (Mel1). The Y-axis represents Log2 of 
the initial inoculum and the X-axis the line. The black dots represent the value of the Log2 of the initial 
inoculum and the bars represent the standard error. The horizontal dashed line represents the initial 
inoculum of the hypothetical average population created from the data for all DGRP lines. (B) Boxplot 
showing the initial inoculum of 47 DGRP lines and the outbred line, Mel1 (in red). Each dot represents 
a measure of Initial Inoculum taken from a single fly. The box represents the interquartile range (the 
values between the upper and lower quartiles), the vertical black lines the upper and lower whiskers 
and the horizontal black full line the median. The horizontal dashed line represents the minimum 
systemic bacterial load necessary for lethality. Y-axis represents Log2 of the Initial Inoculum and the 
X-axis the Line. 

 
Statistical analysis shows that, as expected, most of the variation found in this trait can 

be explained by differences between lines (p-value = 2.2x10-16). The number of bacteria found 
in flies after the infection is a significantly large amount of bacteria and indicates that even 
without starving the flies prior to infection, they don’t seem to show aversion to the food 
containing P. entomophila (if that was the case, we would expect much less bacteria, or none 
at all, in the infected flies since they could have gone without eating for the 3-hour period of 
infection). However, to make such claim we would need to measure food intake in controlled 
conditions (without bacteria) and compare both. On the other hand the opposite can be argued, 
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as our data shows variation of six orders of magnitude while Garlapow et al. (2015)76, 
measuring food intake without bacteria, found a four fold difference between the lines with 
lowest and highest food intake. Although the two sets of data are not directly comparable, this 
might indicate that there is a degree of avoidance to food containing P. entomophila.  

In Fig. 3.3 we can observe that only 25% (13 lines) of the lines show values below the 
ones from the hypothetical average population while 61% (31 lines) of the lines show values 
above. We also did not find any correlation between initial inoculum and survival (Spearman’s 
S = 0.024; p-value = 0.4979), which means that the differences shown in survival across the 
different DGRP lines are not, on average, a consequence of the variation in food intake (and 
consequently initial inoculum). Even if we account for eventual behavioural avoidance, it is 
not the mechanism that explains the majority of variation in our survival results. We also did 
not find any differences in initial inoculum between survival categories (Kruskal-Wallis chi-
squared = 1.2828; df = 2; p-value = 0.5266), suggesting that initial inoculum does not explain 
the different survival trajectories found (Table 3.1).  

To better interpret the data, we plotted the hazard ratio against the initial inoculum, 
dividing lines into four groups (Fig. 3.4). To do this we first separated lines according to the 
inoculum – those with higher inoculum than the average hypothetical population and those 
with lower inoculum than the average hypothetical population. Then we divided the lines 
according to the hazard ratio – lines with mortality above or below a reference mortality defined 
as the average of all 75 DGRP lines used. This way we can better visualize how the initial 
inoculum correlates with survival by comparing the four quadrants and consider the lines as 
divided between 4 categories. The lines on the top-left quadrant are lines with relatively low 
initial inoculum and survival. The ones on the top right show higher values for inoculum and 
lower survival. The bottom-left quadrant comprises lines with lower inoculum and higher 
survival. Finally, the bottom-right quadrant contains lines with higher inoculum and survival. 
As it can be observed in Fig. 3.4, there are lines on all four quadrants with the majority showing 
higher values for initial inoculum. This is likely to be a sampling artefact, since there is a group 
of four lines clearly showing a lower inoculum (DGRP-707, DGRP-32, DGRP-786 and DGRP-
502), with one of them being an outlier (DGRP-707) (Fig. 3.5). However this might also be 
associated with avoidance behaviour, which was mentioned previously. 
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Fig. 3.4 – Initial Inoculum and Hazard Ratios for 50 lines of the Drosophila Genetic Reference 
Panel lines infected with P. entomophila. Mean and Standard error of the Log2 of the Initial Inoculum 
of 50 DGRP lines and the outbred line (Mel1) plotted against the Hazard Ratio. The Y-axis represents 
the Hazard Ratio (exponent of the coefficient in the Cox regression model) and the X-axis Log2 of the 
Initial Inoculum. The vertical and horizontal bars represent the Standard Error for the Log2 of the Initial 
Inoculum and the Hazard Ratio, respectively. The horizontal and vertical dotted lines represent the 
baseline hazard ratio (given by the hypothetical average population), and the Initial Inoculum of the 
average hypothetical population, respectively. 

 
Considering the Gut Damage model, the absence of correlation between the inoculum 

and survival suggests there is a threshold above which the initial bacterial load does not 
influence infection outcome. That is, below the threshold an increase in initial inoculum 
contributes to the overall damage sustained during infection, whereas above it any amount of 
bacteria already results in the maximum damage that can be dealt upon infection. An 
explanation might be that although the number of bacteria increases, there is a limit to how 
much bacteria can be in close contact with the epithelium (or the epithelial matrix), and 
therefore only that percentage of pathogen is contributing to the damage dealt. However, it 
does not seem like that is the case since P. entomophila has been described to damage the gut 
epithelium without contacting it by segregating toxins and other virulence factors that diffuse 
through the epithelial matrix54. In that perspective, a possible explanation for the existence of 
the inoculum threshold might be that although increasing the number of bacteria increases the 
amount of toxins they secrete, the epithelial membrane cannot diffuse at a faster rate. These 
two theories could potentially explain the existence of the initial inoculum threshold above 
which there is no correlation with survival, in the light of the Gut Damage model. 

Considering the Systemic model, where mortality is the result of a secondary systemic 
infection caused by a fraction of bacteria that are able to cross the gut epithelial barrier into the 
haemolymph, the initial inoculum should play a major role in defining the timing and intensity 
of the secondary infection. That is, it should strongly correlate with the secondary systemic 
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initial inoculum that, in turn, determines infection outcome75. Although there are no data 
specifically supporting this scenario, we would expect that the inoculum would still correlate 
negatively with survival. This is because a higher number of bacteria inside the gut would 
logically translate into more bacteria crossing the gut-epithelial barrier (not taking into 
consideration differences in resistance and tolerance). However, this does not happen in our 
dataset, and, here again, it suggests there is a threshold above which the initial bacterial load 
does not influence infection outcome. One explanation would be again that an increase in the 
number of bacteria does not translate to an increase of the percentage of bacteria in close 
contact with the gut, and therefore an increase in overall epithelial damage. 
 
 

 
Fig. 3.5 – DGRP-707 is a conventional outlier, showing the lowest value for initial inoculum. 
Boxplot showing the average Initial Inoculum of 50 DGRP lines, plus the outbred population, Mel1. 
Each dot represents the average initial inoculum of a single DGRP line. The box represents the 
interquartile range (the values between the upper and lower quartiles), the vertical black line the upper 
and lower whiskers and the horizontal black line the median. Conventional outliers are found to be 
above or below the whiskers. Y-axis represents initial inoculum and the X-axis the hypothetical average 
population. The dotted horizontal line represents the baseline for the hazard ratio, the hypothetical 
average population. 

 
 
 
3.3 Bacterial Load Upon Death 
 

BLUD is the amount of bacteria a fly carries at the time of death. It is measured in the 
first 30 min upon death (before bacteria proliferate). Duneau et al. (2017)73 described it as a 
measure of tolerance and not resistance that corresponds to the maximal bacterial load that the 
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host can sustain before dying from the infection. They also found that BLUD is constant over 
time and does not depend on initial infection dose nor eventual time to death. This tolerance 
measure was theorized in a context of systemic infection, which presents reversed bacterial 
load dynamics when compared to oral infection. In the first, the initial inoculum is low and 
increases over time, depending on the balance between bacterial growth and resistance 
mechanisms, whereas in the latter the initial inoculum is high and decreases over time, 
depending on resistance and defecation rate. It is likely that up until 21 hpi (time at which 
collection of flies for BLUD measurements begins), resistance mechanisms only play a small 
role in the reduction of bacterial load, with the majority of the decrease being due to defecation. 
The reason for this is that there is a delay until maximum AMP expression, with, for example, 
diptericin (very effective against Gram-negative bacteria) peaking systemically after 6 hpi27 
(Lemaitre and Hoffman, 2007), while experiments using food dyes revealed that food can 
travel the entire digestive tract in less than an hour76. Although there is no literature on the 
natural variation in defecation rate in D. melanogaster, Edgecomb et al. (1994)77 developed a 
protocol to measure defecation in the fruit fly and found food nutritional value affected 
excretion. Cognigni et al. (2011)78 corroborated previous results and found that intestinal transit 
is also affected by mating status. Looking at a set of nervous system Gal4 mutants they found 
differences in defecation dependent on a group of previously unknow epithelium-innervating 
neurons. Given this large number of variables affecting defecation rate, it is arguable that there 
is potential for high variation within this trait in natural populations of D. melanogaster and, 
therefore, in the DGRP. Another crucial difference between these two types of infection is the 
initial inoculum, which can be controlled for in a systemic but not in an oral scenario. Although 
flies were exposed to ad libitum food, and we ensured that the bacterial density in the available 
food source was equal and that the same number of flies were competing for the same amount 
of nutritional resources, we cannot control for differences in food intake between different 
DGRP lines (as mentioned before). 

Considering the dynamics of an oral infection, the host can only survive if it is able to 
bring the bacterial load below the tolerance threshold. This is to say, whilst above this 
threshold, the fly can die with any amount of bacteria so that the determined BLUD will vary 
across lines. This means that lines could present higher values of BLUD for a number of 
reasons, not mutually exclusive:  

1) because their initial inoculum was higher; 
2) because they are less efficient at purging bacteria from their gut; 
3) because they have less efficient resistance mechanisms but not (necessarily) because 

they are more tolerant. 
This presents a big problem, because not only the differences in inoculum and gut 

clearance have a confounding effect in BLUD measurements, but also because the effect is 
different across lines. When looking at the Gut Damage model, we consider only an oral 
infection dynamic like mentioned above, with death being caused by unsustainable gut damage 
and eventually its rupture. Under this model BLUD data is hardly interpretable due to the 
previously referred confounding effects of food intake and gut clearance. These effects mean 
that the BLUD under the light of this model can never be interpreted as a measure of tolerance 
alone. Furthermore, having in mind that any bacterial load that is equal or superior to the 



 27 

tolerance threshold can cause death, for each line the true BLUD value can be equal or inferior 
to the measurements, with no immediate way to remove the uncertainty.  

However, that is not totally true when considering the Systemic model, where mortality 
is the result of a secondary systemic infection caused by a percentage of bacteria that are able 
to cross the gut epithelial barrier into the haemolymph. In this model flies suffer from gut 
damage, but it only plays a role as the definer of the timing and intensity (inoculum) of the 
secondary infection. Under this hypothesis the bacterial load progression from an oral infection 
can be regarded as the sum of two opposite dynamics: a dynamic derived from the bacteria in 
the gut, and an overlapping dynamic derived from the secondary systemic infection. Therefore, 
having two distinct bacterial dynamics determining the total (and measurable) load is 
problematic: the actual lethal systemic load is “hidden” under the much higher oral load and, 
thus, the determination of the BLUD is unachievable. However, this model is not susceptible 
to the variation in food intake or excretion like the previous one. Still, as in the Gut Damage 
model, the only information that can be immediately taken from BLUD measurements is that 
the true values are equal or lower to the measured ones. 

When measuring BLUD in a set of DGRP lines, the immense variation in immune 
response comprises lines which did not present any mortality in the time interval in which flies 
were collected for measurements and others which did not reach enough mortality altogether 
to gather BLUD data. This means that after running a protocol through all DGRP lines, it needs 
to be optimized for different lines in order to collect the missing data. Unfortunately, that could 
not be done due to time constraints and at the end of the experiments we collected BLUD data 
for 47 DGRP lines with values ranging from 2x104 to 1.3x108 (Fig. 3.6 A, B). Statistical 
analysis show that the differences between line explain the variation with a p-value of 2.2x10-

16. Again, the results will be presented in the light of the two aforementioned models for 
mortality (the Gut Damage model and the Systemic model). In light of the Gut Damage model, 
and according to the definition of BLUD, we can see a tolerance gradient in this DGRP subset 
(Fig. 3.6 A): lines with lower pathogen burden are less tolerant because a smaller amount of 
bacteria is enough to kill them, and increasing values mean increased tolerance. However, as 
previously mentioned, the applicability of this measure as a proxy for tolerance in a context of 
oral infection makes this interpretation uncertain due to the fact that a fly can die with any 
amount of bacteria equal or superior to the tolerance threshold, which means that lines with 
higher BLUD are either more tolerant, had higher inoculum or were less efficient in clearing 
their gut. This means that, as previously mentioned, inoculum and defecation rate (and partially 
resistance) have a strong confounding effect in this tolerance measurements, which might 
explain why some lines present high variance (Fig. 3.6 B). 

The interpretation of the BLUD under the light of the Systemic model is more complex, 
since there are two opposite bacterial load dynamics and mortality is a direct cause of systemic 
damage. Another consideration is that data previously gathered in the lab by Joana Carvalho 
(unpublished work), using control backgrounds of knockout miRNA D. melanogaster lines, 
showed that the BLUD of systemically infected flies is in the order of 220 (circa one million 
bacteria). This corresponds to the average amount of bacteria necessary to kill a fly 
systemically and, therefore, the expectation would be that BLUD is equal or above 1 million 
bacteria, but never below. Surprisingly, 25% of the lines show values below the 
aforementioned systemic lethal threshold of approximately 106 bacteria (Fig. 3.6 A), 
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suggesting these 12 lines die with less bacteria and are less tolerant than this baseline. As for 
the remaining lines we cannot take any conclusion regarding tolerance because although they 
are dying with pathogen load above 1 million bacteria, we do not know how many are present 
in the gut versus the body cavity. This means that, for example, a specific fly with a BLUD of 
10 million bacteria could be more tolerant than the defined threshold if dying with 4 million 
bacteria in the system and 6 million in the gut. Reversely, this line would be less tolerant if 
dying with only 500 thousand bacteria in the system, and the remaining 9,5 million being inside 
the gut. With this example it becomes clear that the unknown relative contributions of each 
“bacterial location” to the total and measured bacterial load do not allow for conclusions to be 
drawn relative to the tolerance of lines with BLUD values above 1 million bacteria. In addition, 
even for lines with values below that threshold, we can only interpret their relative tolerance to 
a defined baseline. Finally, the confounding effect of the oral bacterial load would also explain 
the high variance present in some lines (Fig. 3.6 B). 
 
 

 
Fig. 3.6 – Feeding P. entomophila to Drosophila Genetic Reference Panel lines leads to a wide 
range of BLUD, with high variation within line. (A) Mean and standard error of the Log2 of the 
BLUD of 47 DGRP lines and the outbred line, Mel1 (in red). The Y-axis represents Log2 of the BLUD 
and the X-axis the Line. The black dots represent the value of the Log2 of the BLUD and the bars 
represent the standard error. The horizontal dotted line represents the minimum systemic bacterial load 
necessary for lethality. (B) Boxplot showing the BLUD of 47 DGRP lines and the outbred line, Mel1 
(in red). Each dot represents a measure of BLUD taken from a single fly. The box represents the 
interquartile range, the vertical black lines the upper and lower whiskers and the horizontal black full 
line the median. The horizontal dashed line represents the minimum systemic bacterial load necessary 
for lethality. Y-axis represents Log2 of the BLUD and the X-axis the Line. 

 
To better interpret the data, we plotted hazard ratio against the BLUD, clustering the 

lines in four different quadrants and categories (Fig. 3.7). To start, we separated the lines 
according to tolerance – lines with BLUD values above or below the tolerance threshold 
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(average amount of bacteria necessary to kill a fly systemically), as previously shown in Fig. 
3.6 A and 3.6 B. Subsequently, we divided the DGRP lines according to the hazard ratio: lines 
with mortality above or below a reference mortality defined as the average of all 75 DGRP 
lines used. This allows us to better understand how tolerance may affect the ability to survive 
infection and to make relative comparisons between the different groups of lines. Although the 
tolerance threshold was defined based on a scenario of systemic infection, this value of one 
million bacteria can also be useful in interpreting our results under a Gut Damage model. 
Firstly, because we expect that more bacteria are needed to cause death only through gut 
damage rather than systemic infection, and therefore we can argue that lines dying with one 
million bacteria in their gut are certainly less tolerant than expected. Secondly, due to the fact 
that the lines distribute themselves according to a tolerance gradient (Fig. 3.6), any value of 
tolerance that we choose to separate them (the one million bacteria threshold included), will 
create a group that is relatively less tolerant and one that is relatively more tolerant (left and 
right quadrants of Fig. 3.7, respectively). Hence, although the two models present completely 
different dynamics, the relative conclusions regarding tolerance that can be extracted from Fig. 
3.7 are the same for both. However, for the reasons aforementioned for the Gut Damage model 
the uncertainty around BLUD values does not allow conclusions to be drawn, and for the 
Systemic model the only conclusion is that lines with BLUD under 1 million bacteria are less 
tolerant than the reference extracted from systemic infection experiments.  
 
 

 
Fig. 3.7 – BLUD and Hazard Ratios for the 47 Drosophila Genetic Reference Panel lines infected 
with P. entomophila. Mean and standard error of the Log2 of the BLUD of 47 DGRP lines and the 
outbred line, Mel1 (in red), plotted against the hazard ratio. The Y-axis represents the hazard ratio and 
the X-axis Log2 of the BLUD. The vertical and horizontal bars represent the standard error for the Log2 
of the BLUD and the hazard ratio, respectively. The horizontal and vertical dotted lines represent the 
baseline hazard ratio (given by the hypothetical average population), and the minimum systemic 
bacterial load necessary for lethality, respectively. 
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With these limitations in mind, we will accept the premise that the BLUD values are 
representative of tolerance. In summary, DGRP lines on the left of the threshold (vertical dotted 
line) are less tolerant than the ones on the right, and lines above the baseline hazard ratio 
(horizontal dotted lines) are more susceptible to infection than the ones below. Because 
tolerance, by definition, is the mechanism through which a host limits health impact caused by 
a given pathogen burden, more tolerance will translate into lower disease susceptibility. This 
means the prediction would be for lines to be distributed between the bottom-right (higher 
tolerance and lower disease susceptibility) and the top-left quadrant (lower tolerance and higher 
disease susceptibility). Counter-intuitively, we observe that lines on the right side of the 
threshold (higher tolerance) are randomly distributed around the baseline hazard ratio (both 
higher and lower disease susceptibility), while lines on the left side of the threshold (lower 
tolerance) fall almost exclusively (with exception of DGRP-738 and DGRP-818 that fall very 
near the threshold) on the bottom quadrant (lower disease susceptibility). The absence of lines 
in the top-left quadrant may be due to sampling, since in this work we only used 75 out of 
approximately 200 DGRP lines, and from those only 47 have BLUD data. However, even if 
such phenotype exists, it should be very rare according to our data (only 4% of the lines fall in 
this category) and so it is not relevant enough to change the interpretation.  

Statistical analysis also revealed that there is no correlation between BLUD and 
survival (r=0.025; p-value=0.08), nor between BLUD and survival categories (Kruskal-Wallis 
chi-squared = 1.2828; df = 2; p-value = 0.5266) (Table. 3.1). Both results are unexpected given 
that this parameter is a proxy for tolerance (higher BLUD means higher tolerance, and higher 
probability of survival). However, the absence of correlation might be because survival also 
depends on other factors like resistance, and due to experimental problems already mentioned 
(namely the confounding effects of oral infection).  

When a fly is infected it can activate two types of mechanisms to defend itself and 
survive – tolerance and resistance. Therefore, mortality (here, the hazard ratio) is the result of 
both tolerance and resistance and cannot be predicted or interpreted considering just one of 
these mechanisms. Although it is already known that these mechanisms are not independent 
(nor totally dependent), a good (though rather simplistic) null model for the interpretation of 
our data is to treat them as fully independent mechanisms of immunity. Therefore, when we 
compare flies with similar tolerance, differences in disease susceptibility are due to different 
resistance. Going back to the 4 quadrants defined in Figure 10 under the null model of 
independence, we can conclude that lines on the bottom-left quadrant are less tolerant (Fig. 3.7 
and 3.8), because they die with a lower bacterial load, but more resistant, because they are less 
susceptible to infection (lower hazard ratio). As previously mentioned, surviving to infection 
is due to the combination of only two types of mechanisms – tolerance and resistance – that 
are independent in our null model, meaning that lines that are less tolerant can only be less 
susceptible if they are more resistant (Fig. 3.7 and 3.8). Under the same logic, the top-left 
quadrant contains lines which are both less tolerant and resistant (Fig. 3.7 and 3.8), because 
they die with a lower bacterial load, and are more susceptible to infection. The lines present on 
the top-right quadrant are more tolerant, because they die with a higher bacterial load, but less 
resistant, because they are more susceptible to infection. Finally, the bottom-right quadrant 
lines are both more tolerant and resistant (Fig. 3.7 and 3.8), because they die with a higher 
bacterial load and would be less susceptible to infection.  
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Now that we defined the relative resistance and tolerance for all the four quadrants in 
(Fig. 3.7 and 3.8), we can try to elaborate on the explanation of the patterns observed. Going 
back to the absence of lines in the top-left quadrant, an alternative explanation for this may be 
not having alive individuals by the time of data collection, because these lines have both lower 
resistance and tolerance to bacterial infections compared to lines on the other quadrants. It is 
important to keep in mind that these conclusions are comparative, and we cannot make any 
statement about resistance or tolerance outside this framework (we cannot refer to neither of 
the traits in an absolute manner). Despite this, we know that BLUD could not be measured for 
lines that have no mechanisms of tolerance and resistance, since they would die before the data 
collection time window. This fits in what is observed in the figure, and, for example, a good 
candidate to be present in this group, would be the previously mentioned DGRP-508 which 
presents the highest hazard ratio in all the dataset, but did not have any surviving individuals 
by the time of data collection in any replicate. A more general conclusion would be that lines 
with extreme phenotypes (either high resistance and tolerance or the opposite) would not be 
present in the analysis because the individuals would all survive infection, or would all die 
before the time at which BLUD data is collected. With this in mind, we would not expect to 
have any line on the bottom-right quadrant (lines with high tolerant and high resistance) (Fig. 
3.7). However, the presence of lines in that category might be due to the comparative nature of 
the interpretation. What this means is that although there are lines on the bottom-right quadrant, 
these are just more tolerant and resistant than the others, but do not represent the most extreme 
phenotypes. These arguments would explain why out of 75 DGRP lines selected for the study, 
BLUD measurements could only be taken for 47 of them (suggesting that the remaining 28 
represent the most extreme phenotypes).  

 
 

 
Fig. 3.8 – Relative resistance and tolerance phenotypes in each quadrant generated by plotting 
hazard ratio against BLUD. The Y-axis represents the hazard ratio and the X-axis Log2 of the BLUD. 
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The horizontal and vertical dashed lines divide the plot in four quadrants. When plotting DGRP data 
each quadrant contains lines with specific relative phenotypes of resistance and tolerance. Higher 
relative phenotypes are represented in red and lower relative phenotypes are represented in blue. 

 
Another explanation for the absence of lines that are both less tolerant and resistant 

could be that in the pool of natural variation there are no lines that fit in this description, since 
they would be subject of strong negative selection in the presence of pathogens (which in a 
natural environment should be the rule), due to not having an efficient mechanism to defend 
themselves. By the same reasoning, we would expect that the lines present on the bottom-right 
quadrant (both more tolerant and resistant) would take over and spread in the natural 
populations, due to being exposed to strong positive selection. The best explanation for 
maintaining variation in tolerance and resistance in natural populations, is the presence of 
trade-offs between tolerance/resistance and other fitness-related traits. If so, the increase in 
fitness that a host with high resistance and tolerance would enjoy during infection, may not 
compensate the reduction in other fitness-related traits (for example, reproduction). Moreover, 
although flies in nature are almost always in contact with pathogens, the selection for immune 
related traits depends on the virulence, hence varying over time (stronger or weaker depending 
on the infecting pathogen).  
 The interpretation of the results outside the null model of independence between 
tolerance and resistance is virtually impossible due to its comparative nature. That is, we can 
always classify lines according to being more or less tolerant/resistant than others, but 
comparisons with intermediate values of these traits are not possible. For example, we cannot 
say that a group of lines has a more intermediate level of resistance than another. With this in 
mind it is likely that our simplistic interpretation is far from the truth and that different 
combinations of resistance and tolerance levels can lead to the same infection outcome. 
Another important consideration to make is that it is known the existence of a trade-off between 
resistance and tolerance, easily seen in a phenomenon such as immunopathology. This means 
that an increase in resistance results in a reduction in tolerance, for example through the self-
detrimental action of AMPs or ROS. Because of this, we would not expect to observe lines in 
the bottom-right quadrant (lines with higher tolerance and resistance), and makes us wonder if 
the presence of lines there is anything but an artifact of the experimental design. What this 
means is that, although natural selection would still work favourably towards both high 
resistance and tolerance, from a theoretical point of view it is not biologically possible to have 
both since they are negatively correlated14. Another interpretation would be that lines in the 
said quadrant although more tolerant and resistant than the others, might not have high enough 
levels of these traits (just higher than the others) to observe the trade-off. 

A key aspect of the analysis of these data are the outliers, since these are the lines that 
differ significantly from the others, making them great candidates for further studies such as 
association analysis like GWAS, power permitting. Unfortunately, there are no conventional 
outliers for BLUD measurements (Fig. 3.9). In Fig. 3.7, even the outlier previously found in 
the survival analysis (DGRP-508) is not present due to the high mortality leading to the absence 
of individuals by the time of BLUD data collection. This is explained by the fact that BLUD 
outliers would be lines that are extremely tolerant and/or resistant (and would not show 
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mortality) or have extremely low tolerance and/or resistance (and would die before the data 
collection interval). 
 

 

 
Fig. 3.9 – There are no conventional outliers for Bacterial Load Upon Death data. Boxplot showing 
the BLUD of 47 DGRP lines. Each dot represents the average BLUD of a single DGRP line. The box 
represents the interquartile range (the values between the upper and lower quartiles), the vertical black 
lines the upper and lower whiskers and the horizontal black line the median. Conventional outliers are 
found to be above or below the whiskers. Y-axis represents BLUD and the X-axis the hypothetical 
average population. The dashed horizontal line represents the baseline for the hazard ratio, the 
hypothetical average population. 

 
 Finally, we looked at the initial inoculum and BLUD together. In this analysis we 
looked at only 40 DGRP lines, namely the ones for which we have both initial inoculum and 
BLUD data. To do this we plotted the BLUD against the initial inoculum, again dividing the 
lines in four groups (Fig. 3.10). The first step was separating the lines according to the BLUD 
– lines with BLUD values above or below the tolerance threshold (average amount of bacteria 
necessary to kill a fly systemically). After we grouped the lines according to the initial 
inoculum – those with higher inoculum than the average hypothetical population and those 
with lower inoculum than the average hypothetical population. By separating the lines this 
way, we can have an idea of how the inoculum may affect the BLUD. However, because BLUD 
is a measure of tolerance (as discussed above), we do not expect it to be dependent or 
influenced by the initial inoculum. In fact, we already mentioned that Duneau et al. (2017)73 
found that, in systemic infection, BLUD is constant over time and does not depend on initial 
infection dose nor eventual time to death. Looking at Fig. 3.10, we can see that the lines on the 
top-left quadrant are lines with relatively low initial inoculum (in the context of this dataset) 
but high BLUD. The ones on the top right show higher values for both initial inoculum and 
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BLUD. The bottom-left quadrant comprises lines with lower inoculum and BLUD. Finally, the 
bottom-right quadrant contains lines with higher inoculum but lower BLUD. It can also be seen 
that the top quadrants are mainly empty. This would mean that there are almost no lines with 
BLUD values higher than the tolerance threshold, however, we have seen in previous results 
that it not the case. This is due to the fact that we couldn’t collect data for initial inoculum for 
some of the lines we got BLUD measures for, and therefore they are not present in the figure.  

The most important information we can take from Fig. 3.10 is that there is no correlation 
between initial inoculum and BLUD as expected (Spearman’s S= -0.05; p-value = 0.65),  nor 
between BLUD and survival categories (Kruskal-Wallis chi-squared = 1.8059; df = 2; p-value 
= 0.4054) (Table. 3.1). This supports the idea that the BLUD is a measure of tolerance, even 
in our experimental design (despite all the problems aforementioned). Considering the Gut 
Damage model, we would expect to find a positive correlation between inoculum and BLUD, 
since the flies ingest an amount of bacteria superior to the lethal dose during the infection time. 
This correlation could be eliminated if the differences between lines in resistance (local 
immunity in the gut) and defecation rates were great enough. However due to the high amount 
of bacteria ingested during the infection time we do not think differences in these parameters 
would be enough to completely eliminate the correlation between initial inoculum and BLUD. 
However, under the Systemic model, this correlation would not be seen. This is because in this 
model, the “real” initial inoculum is the secondary inoculum derived from the passage of a 
small amount of bacterial through the gut epithelial barrier. This means that from this point on, 
the lethal bacterial load dynamics would behave just as in a systemic infection and BLUD 
would depend exclusively on the tolerance of the fly. Even considering the previously 
mentioned problems of our experimental design, namely the fact that the measured BLUD is 
not the actual lethal load, but a mixture of the latter with an oral load prevenient from the oral 
infection, we would not expect a correlation. Even if we cannot measure the “real” lethal 
systemic load, this is the amount of bacteria responsible for killing the flies, which is mostly 
(but not totally) independent from the initial inoculum. Like previously mentioned, the initial 
inoculum in this scenario influences the timing and intensity (initial load) of the systemic 
infection, however, the bacterial growth and death of the fly depend solely on other parameters 
(like resistance and tolerance). Because of this, these data seem to agree with our Systemic 
model for Drosophila infection with P. entomophila. 
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Fig. 3.10 – BLUD and initial inoculum for 40 Drosophila Genetic Reference Panel lines infected 
with P. entomophila. Mean and Standard error of the Log2 of the initial inoculum of 47 DGRP lines 
and the outbred line, Mel1 (in red), plotted against the BLUD. The Y-axis represents the BLUD and the 
X-axis Log2 of the initial inoculum. The vertical and horizontal bars represent the standard error for the 
Log2 of the initial inoculum and the BLUD, respectively. The vertical and horizontal dotted lines 
represent the baseline hazard ratio (given by the hypothetical average population), and the initial 
inoculum of the average hypothetical population, respectively. 

 
 
 
3.4 Set Point Bacterial Load 
 

The Set Point Bacterial Load (SPBL) is a term first used by Duneau et al. (2017) to 
describe the chronic infection bacterial load. In that work they also describe the SPBL as being 
dependent on the initial inoculum. A chronic infection is a persistent infection that lasts for 
long periods (even after survival stabilizes) and happens when the immune system does not 
effectively clear the pathogen. A chronic infection can last for a set period until its eventually 
cleared or remain for the entire life of the host. To know for sure if a given DGRP line sustains 
a chronic infection, we would have to measure the bacterial load across time and see it stabilizes 
at some point. However, due to time constraints that was not possible in this work, and we will 
try to extrapolate from the SPBL data at 72 hpi. At this timepoint, survival was stable for at 
least 24 hours for most lines. Here again we could not get data for the whole DGRP subset, but 
only for 50 lines, due to some not surviving infection or having only few individuals surviving. 
We found SPBL values between 0 and 1,4x107 (Fig. 3.11). Statistical analysis shows that the 
differences between line explain the variation with a p-value of 2.2x10-16. There is no bacterial 
threshold above which we can consider a fly to suffer from chronic infection, however we can 
see that the different DGRP lines segregate naturally into two groups: 13% above the SPBL of 
the average hypothetical population (30 lines) and 72% below (18 lines) (Fig. 3.11). 
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Fig. 3.11 – Feeding P. entomophila to Drosophila Genetic Reference Panel lines leads to chronic 
infection. (A) Mean and standard error of the Log2 of the SPBL of 52 DGRP lines and the outbred line 
(Mel1). The Y-axis represents Log2 of the SPBL and the X-axis the Line. The black dots represent the 
value of the Log2 of the SPBL and the bars represent the standard error. The horizontal dotted line 
represents the SPBL of the hypothetical average population. (B) Boxplot showing the SPBL of 52 
DGRP lines and the outbred line, Mel1 (in red). The box represents the Interquartile Range (the values 
between the upper and lower quartiles), the vertical black lines the upper and lower whiskers and the 
horizontal black full line the median. The horizontal dashed line represents the SPBL of the hypothetical 
average population. Y-axis represents Log2 of the SPBL and the X-axis the Line. 

 
Some DGRP-lines sustain bacterial loads in the order of few thousand bacteria which 

may indicate they are suffering from chronic infection. However, for all the lines, 
independently of where they stay relatively to the SPBL of the average hypothetical population, 
the bacterial load might not mean that they are sustaining a chronic infection, but that the 
clearance mechanisms are still having effect (and at later timepoints there would be no bacteria 
at all). However, one thing to keep in mind is the outlier analysis which found 8 conventional 
outliers (DGRP-492, DGRP-738, DGRP-850, DGRP-370, DGRP-859, DGRP-350, DGRP-
822 and DGRP-348) (Fig. 3.12). All these lines show high bacterial load, and we may (based 
on the outlier analysis) consider that they are under the effect of a chronic infection. Of these 
lines, 5 show higher mortality than average (DGRP- 492, DGRP-738, DGRP 850, DGRP-859 
and DGRP 350), two present lower mortality than average (DGRP-370 and DGRP-822) and 
one shows average mortality (DGRP-348).  
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Fig. 3.12 – DGRP- 492, DGRP-738, DGRP 850, DGRP-859 and DGRP 350 are conventional 
outliers for Set point Bacterial Load data. Boxplot showing the SPBL of 52 DGRP lines, plus the 
outbred population, Mel1. Each coloured dot represents the SPBL of a single DGRP line. The colours 
represent the different DGRP lines. The box represents the Interquartile Range (the values between the 
upper and lower quartiles), the vertical black lines the upper and lower whiskers and the horizontal 
black line the median Conventional outliers are found to be above or below the whiskers. Y-axis 
represents SPBL and the X-axis the hypothetical average population. 

 
For a host to sustain a persistent infection without dying, the bacterial load needs to be 

lower than its tolerance threshold (otherwise they would die). Because of this, the SPBL is 
informative about tolerance, meaning that lines with higher SPBL values show greater 
tolerance. Going back on the outlier analysis, because SPBL is representative of tolerance, and 
since higher tolerance means higher survival, the DGRP lines that show bellow average 
mortality might be the ones truly sustaining a chronic infection. Yet again, we cannot confirm 
this claim with only one measurement for SPBL. On the other hand, one line might be just as 
tolerant as another sustaining a chronic infection without having any bacteria in the body, if 
their resistance is higher and completely clears the pathogen. Hence, SPBL also gives 
information on the resistance of the host. Thus, we may extrapolate that the lines with SPBL 
values below the SPBL of the average hypothetical population are more resistant than the 
others due to clearing more bacteria by 72 hpi. However, this can only be true if there is no 
correlation between SPBL and initial inoculum, that is, if these lines possess less bacteria 
because they had less to start with. To investigate this, we plotted the SPBL against the initial 
inoculum, dividing lines into four groups (Fig. 3.13). To do this we first separated lines 
according to the inoculum – those with higher inoculum than the average hypothetical 
population and those with lower inoculum than the average hypothetical population. Then we 
divided the lines according to the SPBL – those with higher SPBL than the average hypothetical 
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population and those with lower. The lines on the top-left quadrant are lines with relatively low 
initial inoculum (in the context of this dataset) but high SPBL. The ones on the top right show 
higher values for inoculum and SPBL. The bottom-left quadrant comprises lines with lower 
inoculum and SPBL. Finally, the bottom-right quadrant contains lines with higher inoculum 
and lower SPBL.  

We can see in the figure that there are lines present on all four quadrants of the graph 
and correlation analysis showed that there is no correlation between initial inoculum and SPBL 
(r = 0.048; p-value = 0.693), unlike what was found by Duneau et al. (2017). In their work, the 
authors inferred that a fly can only enter a chronic stage of infection if it is able to control the 
bacteria before it grows above the tolerance threshold (and kills the host). This way, the 
inoculum would have an impact, since higher inoculums would be closer to the tolerance 
threshold. In a context of oral infection, however, the expectation is different. Considering the 
Gut damage model, we would not expect a correlation between inoculum and SPBL, since in 
this feeding set up the initial inoculum is already for most cases higher than the tolerance 
threshold, and thus increasing it would not have any effect. In this scenario we can make 
conclusions relatively to the resistance of lines by looking at SPBL data (the ones on the left 
of Fig. 3.11 are more resistant than the ones on the right). Looking at the systemic model we 
could never see a correlation between initial inoculum and SPBL because the “real” systemic 
inoculum cannot be measured, only the one from the oral infection. In this case we cannot take 
conclusions relatively to resistance phenotypes by looking at SPBL data (because we are not 
sure whether there is a correlation between initial inoculum and SPBL or not). 
 
 

 
Fig. 3.13 – SPBL and initial inoculum for 52 Drosophila Genetic Reference Panel lines infected 
with P. entomophila. Mean and Standard error of the Log2 of the SPBL of 52 DGRP lines and the 
outbred line, Mel1 (in red), plotted against the Initial inoculum. The Y-axis represents the SPBL (and 
the X-axis Log2 of the initial inoculum. The vertical and horizontal bars represent the Standard Error 
for the Log2 of the initial inoculum and the SPBL, respectively. The horizontal and vertical dotted lines 
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represent the SPBL of the hypothetical average population, and the initial inoculum of the hypothetical 
average population, respectively. 

 
   
 
 

 
Fig. 3.14 – SPBL and Hazard Ratios for 52 Drosophila Genetic Reference Panel lines infected with 
P. entomophila. Mean and Standard error of the Log2 of the SPBL of 52 DGRP lines and the outbred 
line (Mel1) plotted against the Hazard Ratio. The Y-axis represents the Hazard Ratio (exponent of the 
coefficient in the Cox regression model) and the X-axis Log2 of the SPLB. The vertical and horizontal 
bars represent the Standard Error for the Log2 of the SPBL and the Hazard Ratio, respectively. The 
horizontal and vertical dotted lines represent the baseline hazard ration (given by the hypothetical 
average population), and the SPBL of the hypothetical average population, respectively.  
 

As said before, we can extract information regarding both tolerance and resistance by 
looking at SPBL. However, these parameters cannot be disentangled with only SPBL data, 
because one line might be just as tolerant as another sustaining a chronic infection without 
having any bacteria in the body, if their resistance is higher and completely clears the pathogen. 
Because of this, the resistance might in some cases “hide” the tolerance when looking at these 
data. However, one good way to try to disentangle this is to look at SPBL and survival data at 
the same time (Fig. 3.14). Here we once again separated lines first according to the hazard ratio 
– lines with mortality above or below a reference mortality defined as the average of all 75 
DGRP lines used (even if for some of them there are no SPBL data). Then we divided the lines 
according to the SPBL – those with higher SPBL than the average hypothetical population and 
those with lower. The lines on the top-left quadrant are lines with low SPBL (in the context of 
this dataset) but high hazard ratio. The ones on the top right show higher values for both SPBL 
and hazard ratio. The bottom-left quadrant comprises lines with lower SPBL and hazard ratio. 
Finally, the bottom-right quadrant contains lines with higher SPBL and lower hazard ratio. The 
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first piece of information we can extract from the quadrants is that lines on the left are more 
resistant than lines on the right, because they cleared more bacteria. Due to the limitations of 
these data, we can only make comparisons regarding tolerance between quadrants by fixing the 
SPBL: comparing the right quadrants (the ones with higher SPBL) we can say that the bottom 
one contains lines with greater tolerance; equally when comparing the left quadrants (the ones 
with lower SPBL) we can infer that the bottom one contains lines with greater tolerance. In the 
figure we can also see that there are lines present on all quadrants and analysis found no 
correlation between SPBL and hazard ratio (r = 0.036; p-value = 0.764), nor between SPBL 
and the survival categorization (Kruskal-Wallis chi-squared = 1.8059, df = 2; p-value = 0.4054) 
(Table 3.1). The absence of correlation between hazard ratio and SPBL is not surprising since 
survival is an outcome of both resistance and tolerance and these parameters are entangled in 
the SPBL measurements.   

 
 

 
Fig. 3.15 – SPBL and BLUD for 52 Drosophila Genetic Reference Panel lines infected with P. 
entomophila. Mean and Standard error of the Log2 of the BLUD of 52 DGRP lines and the outbred line 
(Mel1) plotted against the SPBL. The Y-axis represents the SPBL (exponent of the coefficient in the 
Cox regression model) and the X-axis Log2 of the BLUD. The vertical and horizontal bars represent the 
Standard Error for the Log2 of the BLUD and the SPBL, respectively. The horizontal and vertical dotted 
lines represent the SPBL of the hypothetical average population, and the minimum systemic bacterial 
load necessary for lethality, respectively. 

 
We also wanted to see how BLUD and SPBL interact, since these measurements 

represent different types of tolerance. The BLUD, as previously discussed, represents the 
amount on bacteria necessary to kill a fly. The SPBL represents the amount of bacteria that a 
fly sustains at the end of the infection, without suffering mortality. To see this interaction we 
plotted the two variables against each other (Fig. 3.15). Again, we first separated lines 
according to the BLUD – those with BLUD values above or below the tolerance threshold 
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(average amount of bacteria necessary to kill a fly systemically). Then we divided the lines 
according to the SPBL – those with higher SPBL than the average hypothetical population and 
those with lower. The lines on the top-left quadrant are lines with relatively low BLUD but 
high SPBL. The ones on the top right show higher values for BLUD and SPBL. The bottom-
left quadrant comprises lines with lower BLUD and SPBL. Finally, the bottom-right quadrant 
contains lines with higher BLUD and lower SPBL.  

Because both BLUD and SPBL serve as proxy for tolerance, we wouldn’t expect to 
find lines in the bottom-right nor top-left quadrant (higher BLUD and lower SPBL or lower 
BLUD and higher SPBL, respectively). However, this is likely because the two parameters are 
connected to different mechanisms of tolerance. This is logical given that BLUD is measured 
when host health is more affected by the infection (peak mortality) and SPBL is measured after 
survival stabilizes. Following this reasoning, we tested if there is any correlation between these 
two types of tolerance. We found no correlation (r = 0.012; p-value = 0.92) and concluded that 
the tolerance mechanisms behind these two bacterial loads are independent. However, due to 
the experimental problems around the BLUD (previously discussed) and SPBL measurements, 
conclusions cannot to be drawn under the light of any model (Gut Damage or Systemic). 
 
 
 

4 Conclusion and Future Perspectives 
 

Illness due to infection is a complex and dynamic process that depends not only on 
pathogen virulence, but also on host resistance and tolerance phenotypes. In this work we 
focused on how the host genotype can affect infection outcome by controlling the pathogen. 
The first logical step to this approach was to characterize survival to oral infection with P. 
entomophila in a diverse set of DGRP lines. With this, we were able to see that host genetic 
background alone is responsible for causing variable infection outcomes and survival dynamics 
over the course of infection. The differences observed in survival allowed us to characterize 
DGRP lines based on their mortality profile opening way for future association studies that 
may present candidate genes that intervene in the infection process. Conducting GWAS using 
hazard ratios or mortality after 3 days would identify genes that modulate both resistance and 
tolerance mechanisms. However, by using the survival categories, and comparing the results 
of both analyses, we expect to be able to further understand how resistance and tolerance can 
dictate the outcome of infection. This is because although both mechanisms affect infection 
outcome in terms of survival, they do it in very different ways, leading to a wide range of 
mortality dynamics. For example, some DGRP lines show a mortality profile that fits AMP 
expression patterns, suggesting that resistance mechanisms might be the driving force of their 
infection outcome27.  

After this, we measured bacterial loads such as initial inoculum, BLUD and SPBL in 
order to characterize how the host influences pathogen dynamics during infection, however 
these results were not clear enough to draw strong conclusions. One important misconception 
in our study design consisted in considering that BLUD would translate from systemic 
infection to oral infection in a similar and thus interpretable way. As previously discussed, this 
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is not the case and, in the future, we would need to gather more knowledge about the interaction 
between P. entomophila and D. melanogaster in an oral infection setting. Specifically, we 
would need to know if the bacteria are able to cross the flies’ gut epithelial barrier into the 
haemolymph, establishing a secondary systemic infection. To do this we could try to separate 
both oral and systemic infections, by bleeding flies and check for bacteria in the haemolymph. 
Furthermore, we would need to adapt the bacterial load protocols to each individual DGRP line 
in order to collect as much data as possible (ideally completing the full DGRP set) and include 
more collection timepoints in the original protocols (for example, at 48 hpi and after 72 hpi). 
To adapt the protocol to each DGRP line we would first need to characterize their survival 
dynamics and identify, individually, the ideal timepoints and intervals to collect bacterial load 
data. This would generate a dataset consisting of about 200 DGRP lines, with information on 
survival, BLUD, and a full characterization of the bacterial load dynamics on living individuals 
(including initial inoculum and SPBL). 

After doing this, we would be faced with one of two scenarios: 1) the Gut Damage 
model of mortality is correct; 2) the Systemic model of mortality is correct. In the first scenario, 
BLUD measurements would not be translatable to an oral infection scenario (as previously 
discussed), meaning that we would be left with a characterization of bacterial load dynamics 
on living flies. Performing GWAS using this dataset would allow us to identify candidate genes 
that modulate different resistance mechanisms, which are responsible for reducing the parasitic 
load. However, we would not be able to infer about tolerance using this dataset. In the second 
scenario, we would be able to use BLUD data to segregate resistance and tolerance by assessing 
the relative contributions to survival during infection. In this case, besides using the bacterial 
load dynamics on living flies to identify candidate genes that modulate resistance mechanisms, 
we would be able to place each DGRP in a space map using the tolerance and resistance 
phenotypes as coordinates (as we sketched in this work). However, to do this we would need 
to create a better model for the interaction between the two traits than assuming they are fully 
independent. The better we are able to generate this representative model, without 
compromising the phenotype identification, the clearer the results would be. Using this 
information to perform GWAS would allow us to identify genes that modulate resistance and 
tolerance, both dependently and independently.  

Combining survival with bacterial load analysis we would be able to identify precise 
mechanisms through which the host genome can modulate infection dynamics. In this work we 
have taken the first step in creating a framework that leads to knowing how resistance and 
tolerance mechanisms interact with each other, which can then be applied to other organisms. 
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Appendix 
 
 
Pilot Experiments 
 
Bacterial Load Upon Death has to be measured on dead hosts within the timeframe of P. 
entomophila replication (about 30 min). Because of this, pilot experiments were conducted to 
select a time interval with maximum duration of 8 hours that showed the highest mortality, in 
order to collect as much BLUD data as possible (before plating). To this end, mortality of 
infected Mel1 flies every 2 hours between 20 and 54 hpi (Appendix 1). However, the pilot 
revealed a steady rate of mortality between 20 and 54 hpi, making it impossible to determine 
such tighter time-window. This led us to wonder if by increasing the bacterial concentration 
from OD600 = 100 to OD600 = 200 the mortality would show a peak instead of a steady rate. As 
such, on the second pilot we followed the mortality of flies infected with a bacterial 
concentration of OD600 = 200 every 2 hours between 20 and 30 hpi and 46 and 50 hpi (at which 
point we realized survival was stable) (Appendix 1). The result of the experiment was a steeper 
survival curve with steady mortality rate, and only about 25% of the infected individuals 
surviving at the end. Since by increasing the bacterial concentration we did not observe a peak 
in mortality, we decided to maintain the concentration of OD600 = 100 (to account for the high 
genetic variability found between DGRP lines) and chose the interval that was more convenient 
considering the protocol (since any interval with the same duration would lead to similar 
mortality). 
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Appendix 1 – Oral infection of Mel1 outbred flies with P. entomophila in a concentration of OD600 
= 100 for 1, 2, 3 and 4 hours produces the same survival outcome. Mortality rate remained steady 
between 20 and 54 hpi. Increasing the bacterial concentration to OD600 = 200 leads to a steeper 
survival curve with steady mortality rate, and lower percentage of individuals surviving at the 
end (comparing to OD600 = 100). The Y-axis represents the proportion of survivors and the X-axis the 
time post infection. Each colour represents a different treatment: red for 1 hour of feeding with OD600 
= 100, yellow for 2 hours of feeding with OD600 = 100, blue for 3 hours of feeding with OD600 = 100, 
green for 4 hours of feeding with OD600 = 100, and black for 3 hours of feeding with OD600 = 200. 
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Protocol for preparing a suspension of Pseudomonas entomophila 
 

Beforehand: 
Under sterility conditions: 

1) Prepare a petri dish of Pseudomonas entomophila and incubate at 30oC for one or two 
days; 

2) Store the petri dish at 4ºC to be used later (up to one week). 
 
 
Day 1: 
Under sterility conditions: 

1) Select a single colony of P. entomophila from the previously prepared petri dish and a 
liquid culture: 

a. with the help of a P200 touch a colony using a disposable tip; 
b. discard the tip into a tube containing 5mL of LB medium. 

2) Incubate the starter colony at 28oC for 9h with shaking; 
3) Take the starter colony out of the shaker and pour the 5mL of LB into and 2L 

Erlenmeyer containing approx. 500 mL of LB; 
4) Incubate the culture at 28oC overnight with shaking. 

 
 
Day 2: 

1) Pellet the cells by centrifuging for 15 min at 15000 rpm and 4oC;  
2) Remove almost all the supernatant (do not remove all to avoid self-lysis) and 

resuspend the pellet in the remaining medium in a falcon tube (keep the suspension on 
ice from now on!); 

Under sterility conditions: 
3) Adjust the concentration of the bacteria suspension to OD600 = 100: 

a. prepare a dilution series of 10, 102 and 103 of the bacterial suspension; 
b. measure the optic density (OD600) of the highest dilution, several times; 
c. calculate the average of the OD and multiply by the dilution factor; ** 
d. use the formula 𝑪𝒊	𝒙	𝑽𝒊 = 𝑪𝒇	𝒙	𝑽𝒇 to adjust the OD; 
e. add LB to the suspension in order to obtain OD600 = 100; 
f. optionally add food colouring for a final concentration of 2%. 

 
**If the suspension concentration is lower than 100, it must be centrifuged again and 
resuspended with less supernatant. 
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Protocol for oral infection with Pseudomonas entomophila 
 
 
Prepare beforehand: 

1. Suspension of P. entomophila at OD=10 (Protocol 1); 
2. Solution of 5% sucrose; 
3. Filter paper disks that fit inside small food vials and/or food bottles: 
4. Separate the needed flies into fresh vials/bottles with food (use vials for less than 30 

flies and bottles for more than 30). 
 
 
Protocol: 

1) Prepare a 1:1 bacteria/sucrose suspension, using a suspension of P. entomophila at 
OD=100 and a solution of 5% sucrose; 

2) Add 2% food colouring to the suspension; 
3) For each vial/bottle of flies to infect prepare an infection vial/bottle: 

a. cover the inside of the plug with humidified cotton; 
b. immerse a filter disk in the bacteria suspension (use a small petri dish to help 

in this step); 
c. place the disk in the bottom of the vial/bottle, completely covering the surface; 
d. make sure there are no droplets of suspension in the vial/bottle wall as flies 

will get stuck. 
4) Flip the flies into the newly prepared infection vials/bottles without putting them to 

sleep and let them feed for 3h; 
5) Flip/separate the infected flies into new vials/bottles. 

 
 
Note: do not forget the control for the infection!! 
 

 
 
Protocol for plating flies 
 
Prepare beforehand: 

1. 96-well plate (under sterility conditions): 
a. Fill each well with a glass pearl; 
b. Fill each well with 50 μL of 1x PBS. 

2. 96-well plate for dilution (under sterility conditions): 
a. Fill each well with 90 μL 

 
 
Protocol: 

1) Wash the flies: 
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a. 70% ethanol for one minute; 
b. 50% bleach for one minute; 
c. 70% ethanol for one minute; 
d. Water to wash the ethanol. 

 
Under sterility conditions: 

2) Place the flies in a filter paper for absorption of the remaining liquids;  
3) Separate each fly to a single well in the 96-well plate; 
4) Mush the flies using the TissueLyser; 
5) Serially dilute the LB with bacteria in 96-well plates for dilution by adding 10 μL of 

the solution containing bacteria to the 90 μL of 1x PBS (prepared beforehand); 
6) Plate 4 μL of each dilution in petri dishes with agar + rifampicin (0,05g/mL);  

 
7) Incubate plates at 30oC overnight; 
8) Count the number of CFUs (colony forming units). 

 
 


