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émanant des établissements d’enseignement et de
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Time in discrete agent-based models of socio-economic systems

N. Botta∗,1, A. Mandel,2, and C. Ionescu1

1PIK, Potsdam Institute for Climate Impact Research
2Centre d’Economie de la Sorbonne, Université Paris 1 Panthéon-Sorbonne

Abstract

We formulate the problem of computing time in discrete dynamical agent-based models in the
context of socio-economic modeling.

For such formulation, we outline a simple solution. This requires minimal extensions of the original
untimed model. The proposed solution relies on the notion of agent-specific schedules of action and
on two modeling assumptions. These are fulfilled by most models of practical interest.

For models for which stronger assumptions can be made, we discuss alternative formulations.

1 Introduction

Agent-based models, discrete dynamic models. In modeling socio-economic systems, the term
agent has long been used informally to address, collectively, different socio-economic entities like for
instance households, firms, shareholders.

More recently, the term agent-based model (multi-agent system, agent-based system) has been used
– also informally – to describe computational models of a heterogeneous population of agents and their
interactions http://www.openabm.org/faq.

In agent-based models, different types of agents are usually characterized by different state variables.
A household, for instance, could be represented – in an oversimplified model – by a single positive real
number giving the amount of “available labor” of that household.

In discrete dynamical models, the state variables of the agents – the agents states – evolve in discrete
steps from some given initial values. Agents might be able to influence their evolution – the evolution
of their state (variables) – by means of controls. A firm, for instance, might be able to increase its
production by investing part of its resources in new equipment.

At any step, the set of admissible controls depends upon the agent’s actual state. The agent observes
its actual state and selects an admissible control on the basis of a policy. This is a function that maps
the agent’s state into admissible controls. Once the control is selected, the agent’s state is updated.

The update rules can be deterministic, non-deterministic or stochastic. They model idealized economic
actions like trading, exchange of goods, production, consumption. Update rules for a given agent might
depend on its state, on its control, on the states and controls of other agents and on model parameters.
Update rules which model interactions between agents – for instance trading or exchange rules – usually
imply simultaneous updates of the states of the interacting agents.

∗botta@pik-potsdam.de
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Discrete dynamic models, time. In discrete dynamic agent-based models, time plays a central role.
Certain actions, for instance paying dividends or reporting profits or losses, take place at or between well
defined temporal deadlines. Contracts, for instance to sell or buy a certain amount of a good at a certain
price, explicitly contain or implicitly assume some shared notion of time. For instance, the time at which
the contract expires.

Currently, there is no socio-economic theory which provides general, model-independent notions for
the agents states, actions and update rules and which relates such notions to empirical observations1:
households, firms, shareholders and trading, goods exchange, production, consumption are, to the best
of our knowledge, model-specific abstractions.

In particular, there is no general way of relating updates of the agents states to well defined time
intervals or durations: the notion of time is model-specific.

Time in globally scheduled models. In certain models, a global schedule of actions is imposed on
the agents from the outset [9], [10], [6]. For instance, consider a system of agents consisting of just firms
and households. One can represent the agents by two lists: one of firms and one of households.

type Agents = ([Firm],[Household])

Throughout this paper, we introduce computational notions for agents, states, transition functions, etc.
in Haskell. The syntax of Haskell is similar to standard mathematical notation [1], [7] and quite intuitive.
Readers which are not familiar with functional programming languages might find appendix A useful.

Let trade, produce and consume be functions of type Agents -> Agents. Then the global schedule
obtained by applying first trade then produce and, at last, consume

gs :: Agents -> Agents
gs = consume . produce . trade

can be used to evolve an initial system of agents ags step-by-step:

ags’ = gs ags
ags’’ = gs ags’
ags’’’ = gs ags’’
...

Provided that trade, produce and consume satisfy suitable conditions, a shared time can be introduced
by simply counting the number of trade-produce-consume steps. Informally, the conditions require that
trade, produce and consume model the effects of trading, producing and consuming on the same time
scale: a day, a month or a year, for instance. Of course, this time scale has also to be consistent with
whatever (implicit or explicit) time scale appears in agents state “rate” parameters: investment rates,
discount rates, etc.

Globally scheduled systems are straightforward to implement but have obvious drawbacks. For many
socio-economic systems, imposing a global schedule could be a severe overspecification. It could force the
system to behave in implementation specific ways and prevent the study of interesting phenomena, in
particular self-organization and synchronization.

1The lack of general notions and empirical references has a number of implications. One is that agent-based models
of socio-economic systems cannot be “applied” in the sense in which computational models in engineering, e.g., models
for numerical weather prediction or material stress analysis, are routinely applied. In particular, agent-based models of
socio-economic systems cannot be used for predicting the evolution of a given social-system in the sense in which numerical
weather prediction models are used. At the present state, it is probably fair to view agent-based models as frameworks in
which different hypotheses (for instance about the mechanisms of interaction between agents) can be formulated and by
which questions like “What are the impacts of a more aggressive investment policy ?” can be studied under different such
hypotheses.
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One can of course weaken the effects of overspecification by introducing some randomness in the
system. This can be done at different levels. For instance, one could apply, at different steps, the same
basic action in different random orders. Often, actions like trade are expressed by folding some bilateral
trade primitive on a random list of agent pairs [3]. Such lists can be randomly drawn every new step.

A more relaxed approach, however, is to simply avoid imposing any (deterministic, non-deterministic,
stochastic) global step schedule from the outset and allow agents to act according to their own internal
rules.

Time in models with internal transition functions. In models with internal transition functions,
every agent is equipped with its own individual step function. This is part of the agent’s state. To
distinguish between the step function of the whole system and that of an individual agent, we call the
latter the agent’s transition function.

In models with internal transition functions, there is no model-specific global schedule. A step of
the whole system is simply done by executing the transition function of each agent. This updates the
agent’s state and, therefore, its transition function. Thus, next step, the same agent2 might get updated
according to a different rule: agents can learn.

For agents to be capable of interactions, the internal transition functions have to depend on some
environment or input, e.g., to represent the state of other agents. A canonical approach is to represent
an agent’s environment through a set of messages [14], [4], [11], [5]. Agents interact only by exchanging
messages and the transition function of each agent only depends on the agent’s state and on a set of
incoming messages. Each transition updates the agent’s state and generates a set of outgoing messages.
The global schedule is model-independent and simply consists of iterating message exchange and internal
update steps.

The notion of fully encapsulated agents interacting only through message exchange is a very popular
one in computing science. It is at the core of the notion of process in models of parallel computation [2],
multitasking [13] and distributed computing [12].

In agent-based modeling, the notion of fully encapsulated agents allows a clear distinction between
model-specific aspects – the syntax of messages, the agent-specific transition functions – and model-
independent problems, e.g., message parsing and exchanging. This allows developers to better understand,
communicate, maintain, extend and refactor agent-based models. Model validation and comparison can
be done in a more systematic and disciplined fashion.

Introducing a shared notion of time in models with internal transition functions, however, is not
straightforward. Since there is no model-specific global schedule, there is no canonical way of associating
a “duration” to a single step.

During an update step, for instance, different agents might be performing actions as different as ac-
counting for the integral effects of “almost time-continuous” processes (for instance, accounting for one
year’s consumption or production), or computing offers or demands in response to incoming messages.
Depending on the specific application domain, the latter can be considered “almost instantaneous” ac-
tions. Attempts at introducing a global step duration by means of simple minded rules – e.g., by taking
the duration of the transition of the “slowest” agent – can easily lead to inconsistent results, see section
4.

Similarly, in a message exchange step, different agents might be involved in message exchanges which
can be thought of as of requiring a sizable duration (for instance message exchanges used to model
goods transportation) and in exchanges of information which can be thought as of taking place almost
instantaneously.

Thus, there seems to be no obvious way of computing time in agent-based models with internal
transition functions.

2Of course, the agent’s state has changed in a step. Here we use the notion of same agent in the understanding that
every agent has a state variable, e.g., an identity number or name, which is invariant under its transition function.
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Outline. In the next section we present a simple approach for building models with internal transition
functions. In section 3, we formulate the problem of introducing a shared notion of time in such models
and present a simple solution. Two alternative formulations of the problem are outlined in section 4.

2 Models with internal transition functions

Agents in models with internal transition functions are defined in terms of a few general notions. These
can be introduced from different viewpoints.

Here, we take the viewpoint of an agent’s observer. We look at the agent from the outside and make
no specific assumption about what the agent represents – a firm, a household or maybe a component of
the climate system. We focus on how we can interact with the agent generically. Minimal interactions
are:

• Query the agent for its identity. This is a value of a type Id suitable to unambiguously identify the
agent in a possibly large set, typically Id is a synonym of Int.

• Query the agent for its list of outgoing messages.

• Call the agent’s transition function with a list of incoming messages.

We assume that all outgoing messages come paired with the identity of the agent to which they are
addressed. Similarly, incoming messages are paired with the identity of the agent that sent that message.

As we shall see shortly, the above interactions are enough to specify a function that collects the
outgoing messages, dispatches the messages to the proper addresses and calls the internal transition
function of all agents. This is a generic stepping function for models with internal transition functions.
It can be used to iterate a set of agents independently of the number of agents, of their types, of the
specific model, etc.

Agent data type. In order to define a generic stepping function for agent-based models with internal
transition functions, we need to make the above notions operational.

As in the example given in the introduction, we are going to represent sets by lists3. In contrast to the
example, however, we do not make any assumption about the types of the agents involved in the model.
Thus, we cannot say that our agents are tuples of lists of whatever concrete types. In other words, we
need a way to build collections of agents of different types and to treat agents of different types uniformly.

There are different ways to do so. Here, we follow the approach originally proposed in [8]. The data
type Agent4 is polymorphic in the type of the messages m:

data Agent m = forall s . Agent (s -> Id)
(s -> [(m, Id)])
(s -> [(m, Id)] -> s)
s

Independently of the type s, an agent is constructed, by the data constructor Agent on the right-hand
side of the equality, in terms of four data:

• A function of type s -> Id, the agent’s identity.

• A function of type s -> [(m, Id)], the agent’s outgoing messages.
3We do so to keep the notation as simple as possible. In “real” applications, of course, lists have to be replaced by

run-time efficient data structures, e.g., by arrays.
4We slightly abuse our notation and use the same type name of the example in the introduction.

4

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.76



• A function of type s -> [(m, Id)] -> s, the agent’s transition function.

• A variable of type s.

This definition of agent is enough for agents to be able to update their internal transition function: this
can be written in terms of s – a totally arbitrary type – which, in turns is updated by the agent’s transition
function. Of course, the same is true for the function that defines the agent’s outgoing messages.

In fact, the agent’s transition function and the agent’s outgoing messages functions could be collapsed
into a single function of type (s,[(m, Id)]) -> (s,[(m, Id)]). This would compute a new agent’s
internal state and its corresponding outgoing messages. This formulation of the data type Agent would
be both simpler and more symmetrical but make the definition of the step function for a collection of
agents more cumbersome.

The data type Agent is parametrized on the type of messages m. In most applications, messages can
be thought of as sentences of domain specific languages. They represent application-specific modes of
interaction between agents. In an oversimplified model of barter economies, for instance, a data type for
messages could look like:

data Msg = Offer Trade | Accept Trade

and Trade could be a pair ((Good, Quantity),(Good, Quantity)) representing the terms of a bilateral
trade. In such context, the message

Offer ((water, 1.2),(wine, 0.3))

could be interpreted as a binding offer of 1.2 units of water for 0.3 units of wine.

Step function. With Agent defined as above, a generic stepping function for a list of agents can be
defined in three steps. First, we introduce three helper functions

ident :: Agent m -> Id
ident (Agent i o t s) = i s

outs :: Agent m -> [(m, Id)]
outs (Agent i o t s) = o s

step :: Agent m -> [(m, Id)] -> Agent m
step (Agent i o t s) ins = (Agent i o t s’)

where s’ = t s ins

to compute the identity (ident), the outgoing messages (outs) and to apply the transition function
(step) of a generic agent. Second, we define helper functions inMsgs and outMsgs which collect and
dispatch outgoing messages. Consider

inMsgs :: [Agent m] -> (Id -> [(m, Id)])
inMsgs ags = \i -> outs (fromJust (find ((i ==) . ident) ags))

inMsgs takes a list of agents and computes a function. This function returns, for any given agent identity
i, the outgoing message of the agent in the list whose identity is i (if no such agent exists, the function
fails).

The name inMsgs underlines the “observer’s viewpoint” taken above. From the point of view of
an external observer, the messages sent by the agents – their outgoing messages – are incoming. The
observer’s outgoing messages are those dispatched to the agents. These are computed by outMsgs:

5

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.76



outMsgs :: [Agent m] -> (Id -> [(m, Id)])
outMsgs ags = \i -> [(msg, i’) | i’ <- map ident ags,

(msg, i’’) <- (inMsgs ags) i’,
i’’ == i]

Here the computation is slightly more complicated: for a given agent’s identity i, the function outMsgs ags
has to compute the list of messages sent to i and the identity of the sender. This is done as follows: for
a given i, outMsgs ags goes through the list of all agents ags. For each agent in ags, it computes its
identity i’. Of the outgoing messages of i’ (computed by (inMsgs ags) i’), it selects those which are
addressed to i (the condition i’’ == i) and pairs them with the identity of the sender i’.

Let’s pause for a moment. The two functions inMsgs and outMsgs are simple but not trivial. They
are designed to easily define a message exchanger. This is a function that takes the agents outgoing
messages – each paired with the identity of the agent the message is sent to – and computes the agents
incoming messages. For a given agent, each incoming message is paired with the identity of the agent
that sent that message. This is essential for an agent to be able to reply to incoming messages. In fact,
inMsgs and outMsgs fulfill the following specification:

(msg,j) elem (outMsgs ags i)⇔ (msg,i) elem (inMsgs ags j) (1)

We read the specification as follows: (msg,j) is an incoming message for agent i if and only if (msg,i) is
an outgoing message of agent j. Notice that incoming and outgoing messages are computed by outMsgs
and inMsgs, respectively. Again, the names given to these functions reflect the point of view of an
observer. Notice also that the specification is a mathematical expression: ⇔ is not part of the Haskell
language. With inMsgs and outMsgs fulfilling equation (1), a message exchanger can be defined straight-
forwardly:

exchMsgs :: [Agent m] -> [[(m, Id)]]
exchMsgs ags = [outMsgs ags i | i <- map ident ags]

The function takes a list of agents ags and computes a list of lists (of pairs (m, Id)). The latter contains,
for each agent in ags, the list of all messages (message-identity pairs) sent to the agent.

With exchMsgs in place, a generic function for iterating a list of agents an arbitrary number of steps
can be defined as follows:

iterateAgents :: [Agent m] -> Nat -> [Agent m]
iterateAgents ags 0 = ags
iterateAgents ags (n + 1) = iterateAgents ags’ n
where ags’ = [step ag msgs | (ag, msgs) <- zip ags msgss]

msgss = exchMsgs ags

The function is defined, as one would expect, recursively. When asked to compute zero iterations from
an initial list of agents ags, iterateAgents simply returns the initial list. Otherwise, if the number
of iterations is n + 1, iterateAgents calls itself for n further steps starting from a new list of agents
ags’. This is obtained from ags as follows: first, the list msgss of lists of messages sent to the agents is
constructed with exchMsgs. msgss has as many elements (lists) as ags. Thus, ags can be zipped with
msgss to form a list of pairs of type (Agent m,[(m, Id)]). For each element of such list, the helper
function step is called with the correspondent agent and message list. This computes a new agent, one
for each agent in ags.

Models with internal transition functions. The stepping function iterateAgents gives computa-
tional meaning to the notion of agent-based models with internal transition functions informally discussed
in the introduction.
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It is a generic, application independent component which plays an important role in building frame-
works for agent-based modeling. For instance, iterateAgents could be applied for implementing a
function which advances an initial list of agents an arbitrary number of steps and reports about the
internal states of the agents at fixed or variable number of steps. This requires that Agent is extended
with functionalities for querying the internal state of the agent. We do not discuss these functionalities
here.

The stepping function iterateAgents forms the basis for formulating the problem of introducing a
shared notion of time in agent-based models with internal transition functions. This is the subject of the
next section.

3 Time in models with internal transition functions

With the stepping function iterateAgents of section 2, we are ready to formulate the problem of
computing time in agent-based models with internal transition functions. In this section, we present one
such formulations together with a solution. In section 4 we discuss alternative formulations.

A problem formulation. Consider a list of agents ags :: [Agent m] and assume that the transition
functions of ags are driven by agent-specific, internal schedules. Think of an agent’s schedule as of a
sequence of pending economic actions. Specifically, assume that:

1. All agents in ags can distinguish between internal states with pending actions (unaccomplished
schedules) and internals states without pending actions (corresponding to accomplished schedules).

2. The internal schedules of ags are consistent. Informally, schedules are consistent if they represent
sequences of economic actions on the same time scale: a day, a month or a year, for instance5.

For instance, a household agent could be driven, at some point of a simulation, by an internal schedule
representing actions like “trade labor for wage”, “consume”, “save”. The head of the sequence – its first
element – could represent the household’s active action: the action the household is actually trying to
accomplish. While trading labor for wage, the household could react to a wage offer by accepting the
offer and removing the schedule head from its schedule. This would make “consume” the new active
action of the household.

Let’s call the time scale of the internal schedules of ags a time period. Assumptions 1) and 2) are too
weak to associate a monotonically increasing number of periods to the agents states iterateAgents ags 0,
iterateAgents ags 1, etc. They do not allow to meaningfully compute the duration of a step as a frac-
tion of the time period.

However, 1) and 2) allow one to query iterateAgents ags n for pending actions at arbitrary n. This
suggests that a shared notion of time can be introduced as an emerging synchronization condition: we
start with ags at an arbitrary number of time periods. We advance ags step-by-step until we reach a
state in which all agents are idle i.e., they have no pending actions. At this point, we say that a time
period has elapsed and that the agents are synchronized. We can increment the number of time periods
by one and start a new period.

Thus, the problem of computing a shared time can be formulated as the problem of detecting when the
agents are synchronized. For agents to have their behavior depending on time, we also need a mechanism
to keep track of the number of periods and communicate synchronization events to the agents.

5We have already introduced this notion of consistency in section 1 for models with a global schedule.
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A solution. The problem of computing a shared time can be solved with minimal extensions of the
set of messages and with the introduction of a “timekeeper” agent. Specifically, we extend the set of
messages with a AreYouIdle rule for querying agents for absence of pending actions. Idleness queries are
answered with IdlePositive or IdleNegative messages. Similarly, we introduce a AreAllIdle message
for timekeeper queries. Such queries are replied by AllIdlePositive or AllIdleNegative messages.
For instance, the data type Msg of section 2 would be extended in the following way6:

data Msg = Offer Trade
| Accept Trade
| AreYouIdle
| IdlePositive
| IdleNegative
| AreAllIdle
| AllIdlePositive
| AllIdleNegative

With these new messages, we are ready to define a timekeeper agent. We are going to skip the details
of the implementation and focus on the timekeeper’s internal state and transition function. The state of
the timekeeper consists of six state variables:

type State = (Id, [Id], Time, Bool, Bool, [(Msg,Id)])

Thus, the timekeeper’s transition function, say tf, is a function of type State -> [(Msg,Id)] -> State.
Let (i, is, t, aif, tif, outs) :: State. The first variable, i :: Id, is the timekeeper’s identity.
As mentioned earlier, the internal transition functions of the agents preserve the agents identities. This
means that tf fulfills the specification:

s’ = tf s msgs⇒ ident s’ = ident s (2)

The second state variable, is :: [Id], represents the set of agents timed by the timekeeper. For each
timed agent, is stores the agent’s identity.

The third state variable, t :: Time, represent the number of time periods measured by the time-
keeper. Typically, Time is a type synonym for Nat, the type of natural numbers. The state variables
aif, tif :: Bool are flags. As we will see in short, aif is true at the beginning of a step if all agents
timed by the timekeeper have been found to be idle in the previous step. Similarly, the “time incremented”
flag tif is set to true whenever time is incremented. The sixth state variable, outs :: [(Msg,Id)], is
used to store the outgoing messages of the timekeeper.

At each iteration, the internal transition function of the timekeeper tf is responsible for updating t,
aif, tif and outs according to the list of incoming messages. The transition function operates on an
internal state s :: State and on the incoming messages ins :: [(Msg,Id)] as follows:

tf s ins = s6
where allIdle = areAllIdle s ins

s0 = s
s1 = emptyMsgs s0
s2 = if (allIdle && not (wereAllIdle s1))

then incrementTime s1
else s1

s3 = setTimeIncremented (allIdle && not (wereAllIdle s1)) s2
s4 = foldl f s3 [(AreYouIdle, k) | k <- peers s3]
s5 = setAllIdle allIdle s4

6Again, with slight abuse of notation.

8

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.76



f s m = appendMsg m s
s6 = foldl g s5 ins
g s (AreAllIdle, k) = if allIdle

then appendMsg (AllIdlePositive, k) s
else appendMsg (AllIdleNegative, k) s

g s _ = s

First, the outgoing messages of s0 = s are emptied. The outcome is the new state s1. The function
(command) emptyMsgs is simply:

emptyMsgs :: State -> State
emptyMsgs (i, is, t, aif, tif, outs) = (i, is, t, aif, tif, [])

Second, tf checks if all agents are idle and were not idle so far. In this case the time in s1 is incremented
and the “time incremented” flag is set to True. This is done in two steps with outcomes s2 and s3,
respectively. Testing if all agents are idle is done by the function areAllIdle. This is defined as follows:

areAllIdle :: State -> [(Msg,Id)] -> Bool
areAllIdle s ins = (is == js)

where is = sort (map snd (filter isIdlePositive ins))
js = sort (peers s)

areAllIdle takes a timekeeper’s internal state s and a list of incoming messages ins and computes a
Boolean value. This is true if ins contains a positive answer to the AreYouIdle query for all the agents
in the set timed by the timekeeper. This set of “peer” agents is computed by the helper function peers:

peers :: State -> [Id]
peers (i, is, t, aif, tif, outs) = is

The implementation of areAllIdle is straightforward but requires Id to be equality comparable and
sortable. While the first requirement is natural, the second one is an overspecification only motivated by
this implementation. In “real” applications it could be easily relaxed7.

Testing whether all agent were idle (in the previous iteration) is simply done by reading the aif flag
of the timekeeper’s state:

wereAllIdle :: State -> Bool
wereAllIdle (i, is, t, aif, tif, outs) = aif

In the next step, the list of outgoing messaged is filled with AreYouIdle queries to all agents timed by
the timekeeper. The outcome of this computation is s4. With s5, we set the “all idle” flag to the value
computed by areAllIdle. The implementation of setAllIdle is again straightforward:

setAllIdle :: Bool -> State -> State
setAllIdle aif’ (i, is, t, aif, tif, outs) = (i, is, t, aif’, tif, outs)

One more computation is required to obtain the new state of the timekeeper. The incoming messages
might contain AreAllIdle queries, e.g., from agents timed by the timekeeper. For agents to be able to
adapt to synchronization events, – for instance by updating some private time period counter and starting
a new period – such queries have to be answered properly. In the last computation, with outcome s6,
all AreAllIdle queries contained in ins are answered and the answers are appended to the outgoing
messages.

7But notice that comparing lists for identity can only be done efficiently if the list elements are sortable.

9

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.76



Example. As an example, we have introduced a timekeeper in a simple model . . . TODO8 . . . . In
this model, the number of sectors is equal to the number of goods. We setup a simulation with three
sectors and 10 agents per sector. Within each sector, different agents are equipped with different trading
strategies randomly chosen from a uniform distribution. The strategies are represented by barter “prices”
– amounts of goods of the agent’s sector which are offered (to agents belonging to a “foreign” sector) for
a unit of “foreign” good. The agents are equipped with a schedule of actions. In each time period, all
agents are to trade goods and consume ten times before producing and updating their strategies according
to a simple replicator dynamics algorithm TODO9.

We do not furter discuss the basic model here. Details are available in TODO10. What is relevant for
our example is that trading is a stochastic process. The agents (of a foreign sector) a given agent attempts
to trade with, are selected randomly according to a given probability distribution. Thus, the number of
iterations required for each agent to do ten trade actions (and, finally, to go through its schedule) is a
random variable, too.

The following output shows the number of iterations, the number of periods (time) and the agents
internal prices – their trading strategies – at those iterations at which the number of periods is increased.
For readability, we only report the prices of the first two agents. For the first 10 periods, the number of
iterations needed to complete a period varies between 89 and 97.

iter: 0; time: 0; prices: [[0.64,0.37,0.19], [1.00,0.28,0.91], ...]
iter: 90; time: 1; prices: [[0.55,0.91,1.00], [0.55,0.91,1.00], ...]
iter: 179; time: 2; prices: [[0.19,0.10,0.64], [0.19,0.10,0.64], ...]
iter: 272; time: 3; prices: [[0.55,0.91,1.00], [0.55,0.91,1.00], ...]
iter: 369; time: 4; prices: [[0.19,0.10,0.64], [0.19,0.10,0.46], ...]
iter: 462; time: 5; prices: [[0.19,0.10,0.64], [0.19,0.10,0.64], ...]
iter: 558; time: 6; prices: [[0.19,0.10,0.64], [0.19,0.10,0.64], ...]
iter: 650; time: 7; prices: [[0.19,0.10,0.64], [0.19,0.10,0.64], ...]
iter: 743; time: 8; prices: [[0.19,0.10,0.64], [0.19,0.10,0.64], ...]
iter: 837; time: 9; prices: [[0.19,0.10,0.64], [0.19,0.10,0.55], ...]
iter: 931; time: 10; prices: [[0.28,0.10,0.64], [0.19,0.10,0.64], ...]

Remarks. We have outlined a solution of the problem of computing time in agent-based models with
internal transition functions. The solution requires minimal modifications of an untimed set of agents
and the introduction of a special agent, the timekeeper.

In extending the set of messages from the example given in section 2, we have introduced messages
for querying the timekeeper for synchronization events. It is straightforward to introduce messages to
ask the timekeeper to report the number of time periods or other information.

In implementing the transition function of the timekeeper, our main concern has been understand-
ability. The function can (should) certainly be implemented more efficiently.

The notion of time on which problem formulation and solution are based is relative to a set of agents.
An agent can be monitored by more than one timekeeper. However, timekeepers monitoring different
agent sets will generally report different time measures.

4 Alternative formulations

In section 3 we have presented a formulation of the problem of computing time in agent-based models
with internal transition functions.

8Antoine, can you give a short description of the model implemented in “ManySomeGoodsScarfConsumerAndOneTime-
keeper” ? One to three lines with a reference would be enough.

9Antoine, can you provide a reference here ?
10Antoine, can we provide a pointer here ? Maybe to a LAGOM version ?
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The formulation is consistent with the notion of discrete time as an emerging property of a set of
agents: the agents get started and keep on interacting – possibly according to some internal schedule
of tasks – until all of them have no pending tasks. When this synchronization condition occurs, time is
incremented and the agents are ready to start a new period.

Thus, time accounts, at an agggregate level, both for possibly very different modes of interactions
– e.g. due to different conventions in effecting certain transactions – and for possibly very different
schedules of actions of different agents.

From the modeling perspective, the formulation imposes two requirements: 1) the agents have to be
able to distinguish between states corresponding to pending actions and states with no pending actions;
and 2) the agents internal schedules have to be based on the same time scale.

The formulation does not require modelers to provide a well-defined measure for the duration of the
actions performed by the internal transition function of the agents. There might be situations in which
this information is actually available.

In these cases, the data type Agent defined in section 2 can be extended with a function of type
s -> [(m, Id)] -> Real which measures the duration of the actions performed by the agent’s transi-
tion function. This function depends, in general, both on the agent’s internal state and on the incoming
messages. Similarly, the set of helper functions ident, outs and step can be extended with a correspon-
dent dur :: Agent m -> [(m, Id)] -> Real helper.

Formulations of the problem of computing time which require modelers to provide dur are more
demanding than formulations which only assume 1) and 2). However, they do not require additional
assumptions on the time scale of the agents internal schedules11.

In the rest of this section we shortly outline two such alternatives. We do not present ready solutions
but discuss the logical consequences of the alternative formulations from a computational perspective.

Local time, iteration allocation, message time tagging. A straightforward way of introducing
time in models for which dur is available is to equip agents with a local, agent specific time, say τi for
agent with identity i. Initially, the internal time of all agents is set to some initial value, say t0, so that
τi = t0 for all i. The internal time is incremented after every internal transition with the duration given
by dur, and the resulting value is used to tag all outgoing messages. Thus, if agent i has internal time
τi and performs an action whose dur value is di, then at the end of this action it will have internal time
τi + di and all messages it sends will be tagged with this value. The message exchanger will then send
the messages as described at the end of section 3 only if the internal time of the receiver is ulterior to the
message tag, in order to prevent “time travel”. Undelivered messages are kept in a queue by the message
exchanger, and used at the next message exchange.

As can be seen from this brief description, this approach involves extensions to the message exchanger,
which has to have access to the internal time of each agent, going perhaps against the grain of the “fully
encapsulated agents” paradigm.

Global time (simple minded). If the duration of the actions performed by the internal transi-
tion function is known for all agents, we may well compute a global time by selecting, for each call of
iterateAgents ags 1, the longest duration. This would correspond to the intuition that exchanging
messages implies a synchronization barrier: “fast” agents have to wait for “slow” ones to be ready to
send and receive messages.

Though apparently natural, this scheme for introducing time has a number of disturbing consequences.
One is that effects of internal transitions which are tied to well defined time periods – for instance
accounting for the interests accumulated over one year by a given agent – might actually get “diluted”
over longer time intervals, depending on the duration of the internal transitions of other agents.

11Since the duration of actions is perfectly known.
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In fact, computing a global time by selecting the longest (shortest, average, etc.) duration over the
durations of the internal transition functions is a too simple minded approach. It makes sense only if, at
each call of iterateAgents ags 1, all internal transition functions of ags represent actions on the same
time scale. From the modeling perspective, this is by far more demanding than 1) and 2).

5 Conclusions

We have presented a formulation of the problem of computing time in discrete dynamical agent-based
models with internal transition functions in the context of socio-economic modeling.

Such models can be iterated generically. Each step of the iteration consists of two sub steps. In the
first step, agents exchange application specific messages. In the second step, agents are updated according
to their internal transition function and to the messages received.

Compared with models with a global schedule, models with internal transition functions depend on
weaker assumptions and are better suited for modeling systems of heterogeneous agents.

For the formulation of the problem of computing time proposed, we have outlined a simple solution.
This relies on the notion of agent-specific (internal, private) schedules of action and on two assumptions:
1) that the agents are able to distinguish states with pending actions from states with no pending actions;
and 2) that the agents internal schedules are based on the same time scale.

These assumptions are reasonably weak and seem appropriate for a wide class of models of prac-
tical interest. For models for which stronger assumptions can be done we have discussed alternative
formulations.
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A

As previously mentioned, Haskell notation differs sometimes from standard mathematical notation. To
alleviate the potential confusion caused by this, we present in this section a summary of the most im-
portant differences, and a couple of definitions of the most important standard library functions we have
used in this paper.

1. Membership. Haskell is a typed language, so in most cases the membership relation is replaced by
the “of type” relation, for example x ∈ X is written x :: X. We usually represent subsets of values
of a given type by lists, and use the standard Haskell elem function to express membership of a
value to a given list. The names of types are capitalized, thus we write a :: A for the membership
of a to the type A. Haskell allows polymorphic type assignment, for example [] :: [a] which
can be read “for any type a, [] denotes an element of type list of a, namely the empty list”. As
can be seen in this example, type variables are written in lowercase and are implicitely universally
quantified.

2. Functions. Functions f : A→ B are represented in Haskell as f :: A -> B. Function application,
f(a) is denoted by juxtaposition: f a, the brackets being omitted.

3. List comprehension. Just as sets are commonly represented by lists, so set comprehensions translate
to list comprehension. The standard notation { x | x ∈ A, P (x) } for the set of all x in A satisfying
property P is represented by [ x | x <- as, p x] if A is represented by the list as and P is
represented by the boolean valued function p.
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4. Maps and folds. Lists are the most widely used data structure in functional programming, and the
most frequent operations performed on them are maps and folds. Given a function f :: A -> B
and a list [a0, a1, ..., an] of elements of type A, we have that

map f [a0, a1, ... , an] = [f a0, f a1, ... , f an]

Given some e :: E and an operation * :: E -> A -> A, folding from the left produces

foldl * e [a0, a1, ... , an] = ((e * a0) * a1) ... * an)
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