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RESUMO 

 

    O fator de transformação do crescimento beta ou TGF-β é uma citocina que consta nos 33 membros 

da superfamília do TGF-β, envolvida em processos fundamentais da célula, nomeadamente na prolife-

ração, migração, diferenciação das células e apoptose celular, assim como na homeostasia dos tecidos. 

Consequentemente, o mau funcionamento da via de sinalização do TGF-β está associado a diferentes 

patologias. Tendo em conta este facto e a grande diversidade de respostas biológicas por si originadas, 

esta cascata de sinalização é um grande alvo de pesquisas, da parte de diversos autores, através da im-

plementação de diversos modelos computacionais.  

    A morfologia da célula não é tida em conta na implementação da maioria dos modelos correntes da 

via de sinalização canónica do TGF-β. Porém, esta característica celular é normalmente vista como uma 

medida de grande relevância para ditar o modo como a célula responde a estímulos mecânicos externos. 

A resposta das células ao ambiente extracelular, caracterizada pela conversão de estímulos mecânicos 

em sinas bioquímicos, tem a designação de mecanotrasdução. As integrinas, que são uma família de 

receptores de sinais e de adesão células, convertem estímulos mecânicos em sinais bioquímicos, consti-

tuindo um meio de comunição entre as células e o ambiente extracelular. Deste modo, as interacções 

entre a via de sinalização do TGF-β e as integrinas constituem uma forma de mecanotransdução. Um 

entendimento mais profundo da dinâmica da via de sinalização do TGF-β através de um modo depen-

dente da morfologia da célula e um entendimento do papel que o crosstalk entre as integrinas e a via de 

sinalização canónica do TGF-β tem sobre a expressão genética permitem, consequentemente, perceber 

melhor a conexão entre esta via e o comportamento celular perante estímulos mecânicos. Tal conheci-

mento detém o potencial para prever interações entre as células e biomateriais e poderá, possivelmente, 

ser aplicado a diferentes terapias, tais como terapias associadas ao controlo do desenvolvimento de tu-

mores.  

    Devido às razões previamente referidas, neste trabalho é apresentado um novo modelo computacional 

para a via de sinalização canónica do TGF-β, contendo um módulo de crosstalk com as integrinas. O 

modelo construído é espacial, sendo implementado através de equações diferenciais parciais. As equa-

ções utilizadas são do tipo reação-difusão. 

    Os principais objectivos do presente trabalho são avaliar o impacto que a morfologia da célula detém 

sobre a sinalização downstream e perceber qual é a influência da crosstalk entre a via de sinalização 

canónica do TGF-β e as integrinas sobre a expressão genética. Deste modo, o modelo implementado 

neste trabalho divide-se em dois módulos – Módulo I e Módulo II. O modelo standard, que consiste no 

modelo da via de sinalização canónica do TGF-β, corresponde ao Módulo I. O Módulo I do modelo foi 

construído com base em dois artigos: Claus et al., 2013 e Nicklas & Saiz, 2013. As equações que envol-

vem as diferentes espécies da via de sinalização canónica do TGF-β, assim como as condições de fron-

teira aplicáveis às membranas citoplasmática e nuclear, foram adaptadas de Claus et al., 2013, e a secção 

do modelo respeitante ao trafficking de receptores foi adaptado de Nicklas e & Saiz, 2013. As equações 

de reação-difusão implementadas no Módulo I traduzem os passos gerais da cascata de sinalização do 

TGF-β referidos por diversos autores: os recetores do TGF-β são ativados pelo ligando TGF-β, recru-

tando e fosforilando o Smad2/3 junto à membrana citoplasmática. O Smad2/3 fosforilado, pSmad2/3, 

pode associar-se ao Smad mediador, o Smad4, formando um complexo, o pSmad2/3 + Smad4. Este 

complexo migra para o núcleo, onde se associa ao DNA, induzindo expressão genética. Quando o 

pSmad2/3 não se associa ao Smad4, pode migrar diretamente para o núcleo, tal como moléculas de 

Smad2/3 e moléculas de Smad4 podem deslocar-se até ao núcleo sem estarem associadas a outras espé-

cies. O processo de formação do complexo pSmad2/3 + Smad4 também pode ocorrer no núcleo da 
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célula. O Módulo II do modelo diz respeito à implementação de diferentes interações de crosstalk entre 

as integrinas e a via de sinalização do TGF-β. As interações de crosstalk incluídas neste módulo são: 1) 

A upregulation dos recetores do TGF-β despoletada pelas integrinas; 2) O aumento da constante catalí-

tica da reacção de fosforilação do Smad2/3 mediada pelo complexo formado pelo TGF-β e os seus 

recetores, complexo C, sendo este aumento despoletado pelas integrinas; 3) A estabilização dos receto-

res do TGF-β despoletada pelas integrinas, resultando na diminuição da taxa de degradação do complexo 

C; 4) A formação de um complexo composto pelas integrinas e pelo complexo C, complexo IC, que se 

liga ao Smad2/3, provocando um aumento da constante catalítica da reação de fosforilação do Smad2/3.   

    Foram realizadas diferentes experiências in silico para atingir os objetivos previamente referidos. Re-

lativamente ao Módulo I, de modo a avaliar o impacto da morfologia celular sobre a expressão genética 

induzida pelo TGF-β, foram feitas simulações para diferentes geometrias da célula, nomeadamente para 

elipses e rectângulos com diferentes rácios de largura e altura. Foram ainda realizadas simulações para 

diferentes áreas da célula, num intervalo de valores que se estende desde a área estabelecida no modelo 

standard até 10 vezes a área do modelo standard. A avaliação do impacto da área da célula a nível 

downstream é realizada para as geometrias acima referidas. Adicionalmente, os parâmetros do modelo 

foram submetidos a uma análise de sensibilidade. No que diz respeito ao Módulo II, realizaram-se dife-

rentes simulações para diferentes tipos de crosstalk que se estabelecem entre as integrinas e a via de 

sinalização do TGF-β para perceber a influência que um aumento dos parâmetros associados a cada tipo 

de crosstalk possui sobre a concentração do complexo pSmad2/3 + Smad4 no núcleo. Esta incrementa-

ção dos valores atribuídos a cada parâmetro é feita de modo independente ou para dois ou três parâme-

tros em simultâneo.  

    A análise das diferentes simulações realizadas, com o intuito de avaliar apenas o impacto da geometria 

da célula, indica que a espécie participante desta via de sinalização que mais sofre discrepâncias na sua 

concentração nuclear por rácio largura/altura, devido a mudanças na geometria da célula, é o Smad2/3. 

As restantes espécies, nomeadamente o pSmad2/3, o complexo pSmad2/3 + Smad4 e o Smad4, sofrem 

discrepâncias idênticas por unidade de rácio largura/altura. Constatou-se que existe uma tendência de 

decréscimo na concentração nuclear do Smad2, pSmad2/3 e complexo pSmad2/3 + Smad4 com o au-

mento do rácio largura/altura da célula. Por outro lado, constatou-se um aumento da concentração nu-

clear do Smad4 por unidade de rácio largura/altura. As simulações efectuadas para avaliar o efeito que 

as dimensões da célula possuem sobre a cascata do TGF-β, a nível downstream, indicam que com o 

aumento do tamanho da célula, existe diminuição da concentração do complexo pSmad2/3 + Smad4 no 

núcleo da célula, havendo um declínio na expressão genética. Esta conclusão é aplicável a todas as 

geometrias da célula consideradas. Concretamente, considerando a passagem da área standard da célula 

para uma área 10 vezes superior, constata-se uma diminuição de cerca de 50% na concentração nuclear 

do complexo pSmad2/3 + Smad4 para todos os formatos da célula. Ainda relativamente a resultados do 

Módulo I, os diversos parâmetros do modelo foram submetidos a uma análise de sensibilidade que re-

velou que a concentração do complexo pSmad2/3 + Smad4 no núcleo é mais sensível às reacções do 

modelo do que a processos de difusão. No entanto, um decréscimo de 100% do valor dos parâmetros de 

difusão revela uma sensibilidade considerável a nível downstream da via de sinalização, o que sugere 

que ainda assim os parâmetros de difusão devem ser incluídos em modelos que visem estudar a dinâmica 

da cascata do TGF-β.  

    As simulações realizadas para estudar o efeito da crosstalk entre as integrinas e a via de sinalização 

do TGF-β sugerem que de todos os tipos de interação implementados no modelo construído, o tipo de 

interação que causa maior upregulation da concentração nuclear do complexo pSmad2/3 + Smad4 é o 

decréscimo da taxa de degradação dos receptores devido à estabilização dos receptores do TGF-β por 

parte das integrinas. Por outro lado, o tipo de interacção de crosstalk que menos contribui para a expres-

são genética é o aumento da constante catalítica de fosforilação do Smad2/3 mediada pelo complexo IC. 

Em adição, a expressão genética sofreu mais upregulation, em geral, quando houve uma intensificação 
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simultânea dos efeitos de dois tipos de crosstalk com as integrinas, comparativamente com uma forma 

de crosstalk ou três tipos de interação em conjunto.  

    Os próximos passos associados ao trabalho apresentado neste documento são o estabelecimento de 

um conjunto de experiência in vitro para analisar o efeito da morfologia da célula e da mecanotransdu-

ção, com o intuito de validar os resultados e conclusões obtidos através do conjunto de experiências in 

silico. Adicionalmente, outras formas de crosstalk entre as integrinas e a cascata do TGF-β deverão ser 

incluídas no modelo, tais como a interação da via de sinalização com proteínas reguladas pela actina-G 

e actina-F do citoesqueleto da célula. Estas proteínas são libertadas quando existe remodelação do cito-

esqueleto e um desequilíbrio nos seus níveis resulta na expressão de receptores de ligandos da família 

TGF-β.  

 

 

Palavras-chave: Sinalização do TGF-β; Morfologia da Célula; Integrinas; Mecanotransdução; Cros-

stalk 
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ABSTRACT 

 

    The TGF-β is a cytokine involved in fundamental cell processes, such as cell migration, proliferation 

and apoptosis. A deeper insight into the dynamics of the TGF-β pathway through a cell morphology-

dependent manner and into the role that the crosstalk with the integrins has upon downstream signaling 

of this pathway allows a better understanding of the link between the TGF-β pathway and 

mechanotransduction cues, therefore holding the potential to uncover interactions between biomaterials 

and cells and apply this knowledge to different therapies.  

    In this document, a spatial computational model for the canonical TGF-β pathway is presented, in-

cluding a module for the crosstalk with the integrins. The equations used to model this system are partial 

differential equations of the reaction-diffusion type. The model was created to evaluate the impact of 

cell shape and size, as well as crosstalk with the integrins, on genetic expression.  

    The results of the experiments suggest that a bigger width/height ratio of the cell induces less con-

centration of the nuclear Smad2/3, nuclear phosphorylated Smad2/3 and nuclear phosphorylated 

Smad2/3 + Smad4 complex, for elliptical and rectangular cell shapes. Conversely, the concentration of 

the nuclear Smad4 increases as the width/height ratio of the cell increases, for elliptical and rectangular 

cell shapes. The nuclear species of the TGF-β pathway that suffers more variation in its nuclear concen-

tration across cell shapes is the Smad2/3. Considering a range of values that go up to 10 times the original 

area of the cell for different cell shapes, as the area of the cell increases, the concentration of the nuclear 

phosphorylated Smad2/3 + Smad4 complex decreases by approximately 50%. Sensitivity analysis of the 

model parameters indicate that genetic expression elicited by the TGF-β when considering diffusive 

processes differs considerably from results without considering this phenomenon. It is suggested that 

the way of crosstalk which more heavily increases genetic expression is the decrease of the degradation 

rate of the receptors due to stabilization from the integrins. Experimental procedures also suggest that 

the concentration of the nuclear phosphorylated Smad2/3 + Smad4 complex undergoes more upregula-

tion, in general, by the joint behavior of two ways of crosstalk interaction than by the effects of one way 

of crosstalk independently or the combination of three ways of crosstalk out of the considered interac-

tions. 
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Figure 3.4 – Schematic of the TGF-𝜷 signaling pathway crosstalk with the integrins. The thick 

dashed arrows denote the influence of the integrins, I, upon the synthesis of the receptors, the lighter 

shade of black arrows represent acts of translocation, the thin dashed arrows stand for the influence of 

the integrins upon the degradation of the C complex and the regular arrows translate reactions. The 

domain and the subdomains are the same from the standard model. There are four different ways of 

crosstalk with the integrins: (A) the integrins elicit the production of TGF-𝛽 receptors – the vesicle 

which contains the newly synthesized receptors is circled in green, standing next to a green arrow which 

represents the increase of the synthesis of the receptors; (B) the integrins prompt the synthesis of 

receptors which take part in the C complex and this complex binds to the SMAD2, eliciting more 

phosphorylation of the SMAD2, denoted by the green ellipse and the green arrow; (C) the integrins elicit 

the stabilization of the TGF-𝛽 receptors, which results in less degradation of the TGF-𝛽 receptors – the 

vesicle which contains the receptors about to be degraded is circled in red, near a red arrow which 

indicates the decrease of the degradation rate of the receptors; (D) the integrins form a complex with the 

TGF-𝛽 receptors, the IC complex, which binds to the SMAD2, eliciting an increase in the 

phosphorylation of the SMAD2, represented  by the green ellipse and the green arrow. All the processes 

for the TGF-𝛽 signaling pathway which take place in the standard model – formation and dissociation 

of the TRIMER complex in the cytoplasm and in the nucleus, migration of every species into the 

nucleus, dephosphorylation of  the SMAD2 in the nucleus, migration of the SMAD2 and SMAD4 into 

the cytoplasm- remain valid for this module. ........................................................................................ 20 

Figure 3.5 – Subdomains of the model and activation ring. A – Geometry of the subdomains; each 

subdomain is identified by its name in the corresponding region and by its dimensions; B – Activation 

area for the signaling pathway; the region in red corresponds to the site of the cell in which the SMAD2 

can be phosphorylated. .......................................................................................................................... 30 

Figure 4.1 – Outcomes of the first stage of parameter fitting – intracompartmental ratios. The 

legend label “Results” stands for the determined ratios for each species based on simulations performed 

during the course of this project – ratio between the steady-concentration and the initial concentration 

for the SMAD2, SMAD2n, SMAD4 and SMAD4n and ratio between the steady-state concentration and 

the peak concentration for the pSMAD2, pSMAD2n, the TRIMER and the TRIMER_n. The legend 

designations Nicklas” and “Claus” are attributed to the color plots which translate the value of these 

same ratios for the results presented in literature – Nicklas & Saiz, 2013 [2], and Claus et al, 2013 [11], 

respectively. The bar plots for “Results” are presented in blue, the bar plots for “Claus” are presented in 

orange and the bar plots for “Nicklas” are presented in grey. For some species, there is not a grey bar – 

ratios for the results in Nicklas & Saiz, 2013 [2] – because there is no available data to determine those 

values in this reference. ......................................................................................................................... 32 

Figure 4.2 – Outcomes of the second stage of parameter fitting – intercompartmental ratios. The 

legend label “Results” stands for the determined intercompartmental ratios for the SMAD2, pSMAD2, 

SMAD4 and TRIMER. The legend designations “Nicklas” and “Claus” are attributed to the color plots 

which translate the value of these same ratios for the results presented in literature – Nicklas & Saiz, 

2013 [2], and Claus et al, 2013 [11], respectively. The bar plots for “Results” are presented in blue, the 

bar plots for “Claus” are presented in orange and the bar plots for “Nicklas” are presented in grey. For 

some species, there is not a grey bar – ratios for the results in Nicklas & Saiz, 2013 [2] – because there 

is no available data to determine those values in this reference. ........................................................... 33 

Figure 4.3 – Geometries of the cell used in the experiments to assess the influence of cell shape on 

the nuclear concentration of the species. The area in which the SMAD2 is phosphorylated, activation 

area, is highlighted in color. A – Circle geometry; this is the standard geometry of the cell; radius 𝑟𝐴1 

is the cell radius and 𝑟𝐴2 is the radius of the circumference which delimits the area without activation 

of SMAD2. B – Ellipse 1 geometry; 𝑟𝐵1and 𝑟𝐵2are the half-width and half-height of the cell, while 
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𝑟𝐵3and 𝑟𝐵4 are their analogous for the ellipse which delimits the non-activation area; when comparing 

the two ellipses established as cell shape, aside from the circle, this is the ellipse with a lower 

width/height ratio.  C – Ellipse 2 geometry; 𝑟𝐶1 and  𝑟𝐶2 are the half-width and half-height of the cell, 

while  𝑟𝐶3 and 𝑟𝐶4 are their analogous for the ellipse which delimits the non-activation area; when 

comparing the two ellipses established as cell shape, aside from the circle, this is the ellipse with a higher 

width/height ratio.  D – Rectangle geometry; 𝑟𝐷1 and  𝑟𝐷2 are the width and height of the cell, while  

𝑟𝐷3 and  𝑟𝐷4 are their analogous for the rectangle which delimits the non-activation area. E – Square 

geometry; 𝑟𝐸1is the width of each side of the cell, while 𝑟𝐸2 is its analogous for the non-activation 

area. ....................................................................................................................................................... 36 

Figure 4.4 – Relative concentration of species in the nucleus, for each cell geometry. The bar plots 

correspond to the ratio between the concentration of a species in a given shape and its concentration in 

the circle – SC ratio – for different cell geometries: Circle, represented in blue; Ellipse 1, represented in 

red; Ellipse 2, represented in grey; Rectangle, represented in green; Square, represented in yellow. The 

different species, namely the SMAD2n, pSMAD2n, TRIMER_n and SMAD4n, are presented in the 

vertical axis. .......................................................................................................................................... 37 

Figure 4.5 – Influence of the width/height ratio on the concentration of the SMAD2n measured by 

the SC ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented by 

red dots, and for the rectangle, represented by green dots. The respective scatter plot regression lines are 

displayed by dashed lines of the same color. The trend line equations and respective adjusted R-squared 

values are also shown. ........................................................................................................................... 40 

Figure 4.6 – Influence of the width/height ratio on the concentration of the pSMAD2n measured 

by the SC ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented 

by red dots, and for the rectangle, represented by green dots. The respective scatter plot regression lines 

are displayed by dashed lines of the same color. The trend line equations and respective adjusted R-

squared values are also shown. .............................................................................................................. 41 

Figure 4.7 – Influence of the width/height ratio on the concentration of the TRIMER_n measured 

by the SC ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented 

by red dots, and for the rectangle, represented by green dots. The respective scatter plot regression lines 

are displayed by dashed lines of the same color. The trend line equations and respective adjusted R-

squared values are also shown. .............................................................................................................. 42 

Figure 4.8 – Influence of the width/height ratio on the concentration of the SMAD4n measured by 

the SC ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented by 

red dots, and for the rectangle, represented by green dots. The respective scatter plot regression lines are 

displayed by dashed lines of the same color. The trend line equations and respective adjusted R-squared 

values are also shown. ........................................................................................................................... 43 

Figure 4.9 – Influence of the cell size on the concentration of the TRIMER_n measured by the SC 

ratio. The cell size range extends from the standard cell area up to 10 times the standard area. The figure 

displays a scatter plot for different cell shapes, power trend line equations and respective adjusted R-

squared values. A –Circle geometry; the scatter plot is represented by blue dots and the trend line is 

represented by a blue dashed curve; B –Ellipse 1 geometry; the scatter plot is represented by red dots 

and the trend line is represented by a red dashed curve; C –Ellipse 2 geometry; the scatter plot is 

represented by grey dots and the trend line is represented by a grey dashed curve; D –Rectangle 

geometry; the scatter plot is represented by green dots and the trend line is represented by a green dashed 

curve; E –Square geometry; the scatter plot is represented by yellow dots and the trend line is represented 

by a yellow dashed curve. ..................................................................................................................... 47 
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Figure 4.10 – Parameter sensitivity for 10% fold change of the parameters. The bars in blue 

represent the parameter sensitivity due to a decrease of 10% of the value of the parameter, while the 

bars in orange represent an increase of 10% of the value of the parameter. ......................................... 51 

Figure 4.11 – Parameter sensitivity for 50% fold change of the parameters. The bars in blue 

represent the parameter sensitivity due to a decrease of 50% of the value of the parameter, while the 

bars in orange represent an increase of 50% of the value of the parameter. ......................................... 52 

Figure 4.12 – Parameter sensitivity for 100% fold change of the parameters. The bars in blue 

represent the parameter sensitivity due to a decrease of 100% of the value of the parameter, while the 

bars in orange represent an increase of 100% of the value of the parameter. ....................................... 53 

Figure 4.13 – Assessment of one way of crosstalk of the TGF-β pathway with the integrins. The 

bar plots display the relative concentration of the TRIMER_n due to one way of crosstalk with the 

integrins, except for the first bar plot, which is the control bar for the rest of the results. Each 

 𝑘𝑒𝑥𝑡𝑟𝑎𝑖, 𝑖 = 1,2,3,4,   is associated to a specific  type of crosstalk between the integrins and the TGF-

β pathway represented by i: 1 – Upregulation of the TGF-β  receptors elicited by the integrins; 2 – 

Increase of the catalytic constant of the phosphorylation of the SMAD2 through binding to the C 

complex; 3 – Decrease of the degradation rate of the receptors; 4 – Increase of the catalytic constant of 

the phosphorylation of the SMAD2 through binding to the IC complex. When the “+” symbol is spotted 

in the line i, that  means that the parameter  𝑘𝑒𝑥𝑡𝑟𝑎𝑖 suffers a modification and the new value assumed 
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CHAPTER 1 – Introduction 

 

1.1 – Contextualization and Motivation 

 

    The transforming growth factor beta (TGF-β) is a cytokine involved in fundamental cell processes, 

such as cell migration, proliferation, differentiation and tissue homeostasis, development and apoptosis 

[1], [2]. Consequently, the ill-functioning of this cytokine is associated with different pathologies [1]–

[8]. This fact, along with the wide diversity of biological responses which comes from the TGF-β path-

way, makes this pathway a target of research through different computational models, presented by 

different authors [2], [9]–[21]. Nevertheless, the majority of current models of the canonical TGF-β 

pathway do not take into account cell morphology, which is typically considered to be a very relevant 

measure of how cells respond to external mechanical cues [22]. This response to the extracellular envi-

ronment, followed by the conversion of the mechanical cues into biochemical signals is called mecha-

notransduction [23]. The integrins, which is a family of signaling and cell adhesion receptors, transduce 

mechanical cues into biochemical signals, constituting a means of communication between the cells and 

the extracellular environment [24], [25]. Therefore, the interactions between the TGF-β pathway and 

the integrins constitute a form of mechanotransduction. 

    A deeper insight into the dynamics of the TGF-β pathway through a morphology-dependent manner 

and into the role that the crosstalk with the integrins has upon downstream signaling of this pathway 

allows a better understanding of the link between the TGF-β pathway and mechanotransduction cues, 

therefore holding the potential to uncover the interactions between biomaterials and cells and apply this 

knowledge to different therapies. 

    For these reasons, a new spatial computational model for the canonical TGF-β pathway is presented 

in this document. The model is implemented in the Virtual Cell modeling software and is modeled 

through partial differential equations, namely reaction-diffusion equations. The final model contains a 

module which translates the crosstalk between the TGF-𝛽 signaling pathway and the integrins. It is 

worth noting that the present work was developed under the scope of a PhD project called “Image-based 

computational modelling of cell-topography induced cell behaviour”, developed in the Institute for 

Technology-Inspired Regenerative Medicine, MERLN, by the PhD student Kerbaï Saïd Eroumé. One 

aspect of this PhD project concerns the implementation of the YAP/TAZ or Hippo signaling pathway 

model, which is a signaling pathway related to cell density sensing and arrangement of tissues. The 

relevance of linking the TGF-β signaling pathway with the Hippo signaling pathway lies in the fact that 

there is evidence of formation of YAP/TAZ–Smad2/3 complexes in immortalized human keratinocytes 

[26], known as HaCaT cell line, which suggests that there is crosstalk between both signaling cascades 

[27]. 
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1.2 – Objectives 

 

    The main objectives of this project were: I) to build a spatial, computational model for the canonical 

TGF-β pathway, built on previous models, in order to assess the effect of cell morphology, particularly 

of the shape and size of the cell, on downstream signaling; II) to evaluate the influence of the crosstalk 

between the integrins and the TGF-β canonical pathway on genetic expression. Due to these two main 

goals, the process of building a new model comprised the implementation of two modules: Module I- 

The canonical TGF-𝛽 signaling pathway computational model; Module II- Crosstalk of the canonical 

TGF-𝛽 signaling pathway with the integrins. 

    The achievement of these goals required following the plan below: 

a) Become acquainted with the Biology concerning the canonical TGF-β pathway; 

b) Understand the different topics or sections included in the preexisting computational models 

of the canonical TGF-β pathway and realize in what manner they can be improved - contri-

bution of this work; 

c) Implement the model of the TGF-β canonical pathway – implementation of Module I; 

d) Perform experiments to evaluate the effect of the shape and size of the cell on downstream 

signaling, followed by the analysis of the results; 

e) Add, to the previously implemented model, a module representative of the crosstalk be-

tween the integrins and the TGF-β pathway – implementation of Module II; 

f) Perform experiments to assess the influence of the crosstalk between the integrins and the 

TGF-β canonical pathway on genetic expression, followed by analysis of results. 

 

 

1.3 – Dissertation Outline 

 

    This section describes the scope of each chapter of this dissertation.  

    The present chapter provides an overview of the work performed in order to understand the motiva-

tion, problems and proposed resolution associated with it. In addition, it discloses the organization of 

this document.  

    CHAPTER 2 consists in a literature review of different aspects pertinent to the developed work, in-

cluding background on: the concept of Tissue Engineering along with applications of this area, the com-

ponents of the TGF-β family, Biology aspects behind the canonical TGF-β pathway and the existing 

computational models for the canonical TGF-β pathway, and also on the integrins and their crosstalk 

with the TGF-β signaling cascade.  

    CHAPTER 3 displays the materials and methods used in this project, referencing the importance of 

computational models, identifying the software in which both modules of the model (see Section 1.2 – 

Objectives) were implemented, the diagrams which visually display the reactions associated with both 

modules of the model, the components and parameters which take part of both modules, the geometry 

of the cell, domain and subdomains of the TGF-β pathway model. 
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    CHAPTER 4 describes parameter fitting procedures of the model, “sanity checks” performed for val-

idation purposes and exhibits the results and discussion concerning the different in silico experiments 

performed to Module I and Module II of the TGF-β model. 

    CHAPTER 5 features the conclusions drawn from the different in silico experiments, suggestions 

regarding potential improvements of the model here presented and pertinent steps to take following this 

work.  
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CHAPTER 2 – Literature Review 

 

2.1 – Tissue Engineering 

 

    Tissue engineering results from the association between engineering principles and life science prin-

ciples [28]. In particular, fields such as material science, nanotechnology, developmental biology, cell 

biology and rapid prototyping have been pivotal contributors to the advance of tissue engineering [29], 

which consists of controlling cell behavior with the intent of improving, regenerating or preserving tis-

sues and organs to treat certain clinical conditions. Simultaneously, it promises technological advances 

that will potentially lead to treatment and cure of illnesses simply by recurring to drugs, hence eradicat-

ing the need for organ transplantation [30]. In addition, it focuses on manipulating the environment 

surrounding the healing region [28]. There are three main divisions in tissue engineering: cells, materials 

and architecture, as seen in Figure 2.1. These different components can overlap, performing comple-

mentary work with one another, or be engineered individually [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Main sectors in tissue engineering – cells, materials and architecture. 

Adapted from Lanza et al., 2020 [29]. 
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    The employment of tissue engineering techniques usually comprises the placement of stem cells 

within a porous scaffold (a carrier structure) [31], represented in Figure 2.2, which does or does not 

release growth factors. Both the scaffold and the growth factors provide physical and chemical signals. 

These cues prompt the differentiation of stem cells and the secretion of tissue-specific extracellular ma-

trix [30], [32]. However, tissue engineering procedures do not always include scaffolds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Currently, three main strategies are explored to treat patients with damaged tissues: 

– Implantation of recently isolated or cultured cells, which comprises the injection of cells into the in-

jured tissues, which may have been previously placed in a degradable scaffold in vitro; 

– Implantation of tissues created in vitro, which implies total development of 3D tissues in in vitro 

environment prior to implantation; 

– In situ tissue regeneration, which consists of promoting tissue restoration by placing a scaffold inside 

the damaged tissue [30]. 

    There is evidence of different positive outcomes from tissue engineering techniques. 3D tissue has 

been pivotal to create models for illnesses and to develop drugs [29]. People who suffer from diabetes, 

skin ulcers and liver conditions have been successfully treated with allogeneic cells, which are cells that 

originally belong to a genetically similar – but different – individual [33]. There currently is an autolo-

gous cell product approved by the FDA used to restore articular cartilage, which consists of a fragment 

of cartilage taken from a healthy region of a patient’s injured knee. Chondrocytes from this section of 

cartilage are placed in the injured region after being subjected to isolation and expansion in culture. 

Moreover, adult bone marrow stem cells have the ability to treat various blood disorders. It is known 

that a bone marrow transplant has cured at least one model of animal liver illness [30]. 

    Even though tissue engineering benefits from major technological advances made recently, namely 

gene editing, advanced cell screening and cell reprogramming, there are still numerous questions to be 

Figure 2.2 – Common tissue engineering procedure. Stem cells are placed on a scaffold made of a 

biodegradable polymer, which is implemented in the target tissue of the patient. Adapted from Lan-

ger & Vacanti, 2015 [31].  
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answered and gaps in knowledge to fill. A substantial part of current tissue engineering protocols are 

equilibrium systems deprived from anisotropy, structural and directional arrangement and heterogene-

ity, which do not match the reality of natural systems [34]. Furthermore, a source of healthy cells is 

mandatory for the successful employment of engineered tissues, as well as the development of bioreac-

tors and enhancement of scaffolds [30]. Moreover, there is a lack of fundamental understanding between 

the crosstalk of the physical and chemical cues. 

 

 

2.2 – Transforming Growth Factor-β Signaling Pathway 

 

    The TGF-β pathway is a signaling process known to have a fundamental role upon various cellular 

processes, namely proliferation, differentiation, maintenance of tissue homeostasis, development and 

apoptosis [2]. The ill-functioning of this signaling pathway and modification of any of its components 

have been linked to different medical conditions, namely cardiovascular diseases, cancer, developmental 

disorders and cancer [35]. 

    The superfamily of TGF-β is composed of 33 members, including the bone morphogenic protein 

(BMP), the TGF-β, the nodal growth differentiation factor and the activin [2].  

    There has been evidence supporting the importance of the TGF-β pathway in tissue engineering and 

clinical applications in general [36]–[41]. The BMPs have extensively been mentioned as key biological 

species to promote bone repair and morphogenesis [35]. BMP-7 treatment, along with type I collagen 

as a carrier, has induced genesis of new bone, via stem cell differentiation, and, consequently, prompted 

the healing of non-unions in patients [42].  

    There are two types of TGF-β pathways: the canonical pathway and the non-canonical pathway. The 

canonical pathway concerns the traditional pathway, hence the pathway in which the effector cytosolic 

proteins are called Smads [43]. The former designation comes from the combination between the gene 

Mothers Against Decapentaplegic (MAD) discovered in Drosophila and the Sma genes found in Cae-

norhabditis elegans, which were later shown to participate in the TGF-β signaling pathway as funda-

mental mediators [44], [45]. The non-canonical pathways do not have Smads involved in the signaling 

cascade. Examples of non-canonical pathways are the mitogenactivated protein kinase pathway 

(MAPK) [46], the Wnt pathway , the Notch pathway and the phosphoinositide 3-kinase-Akt pathway 

(PI3K) [43], [46]. 

    The following section will discuss the canonical pathway in more detail.  

 

 

2.2.1 – Dynamics of the TGF-β Signaling Pathway 

 

    The signaling cascade of the TGF-β is triggered when a ligand of the TGF-β superfamily binds to two 

types of transmembrane serine-threonine kinase receptors lying on the plasma membrane, type I and 

type II [2], [11], [12]. Following ligand binding, a complex is formed with these two types of receptors 

and the type I receptor is submitted to transphosphorylation by the type II receptor, which is constitu-

tively active. This sequence of events prompts activation of the kinase of the type I receptor [21] and 

internalization of this complex [2]. The activated type I receptor phosphorylates and regulates effector 
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cytosolic proteins Smads or R-Smads, whose subspecification depends on the subfamily of ligands con-

sidered – while the  type I receptors of anaplastic lymphoma kinase (ALK) 4/5/7 [47] phosphorylate the 

Smad2/3 and are related to TGF-β, activin and nodal ligands, the type I receptors ALK1/2/3/6 phos-

phorylate the Smad1, Smad5 and Smad8 and are connected to BMP ligands [2], [21]. Activated R-

Smads bind amongst each other and to the Smad4, designated as common mediator Smad or Co-Smad, 

constituting homomeric complexes and hetero-oligomers, respectively [10], [21]. Consequently, accu-

mulation of Smads in the nucleus is promoted, as opposed to their tendency to accumulate in the cyto-

plasm in the absence of a ligand [13]. In this process of translocation into the nucleus, these complexes 

undergo constant nucleocytoplasmic shuttling [2], [18]. The nuclear translocation of the Smad com-

plexes transmits information regarding receptor activity [2]. Having reached the nucleus, these mole-

cules behave as regulators for gene expression, binding to specific promoters and to the deoxyribonu-

cleic acid (DNA) [48], and interacting with transcriptional coactivators, corepressors and transcription 

factors [14], [15], [18]. This sequence of events can lead to more than 500 different gene responses [18]. 

Receptors are sensitive to the integral levels of ligands, ratios of several ligands and evolution of ligand 

concentration across time. Ligands are disassociated from receptors and submitted to degradation in the 

lysosomes [9]. Dissociation and dephosphorylation of Smad complexes occur in the nucleus by a nuclear 

phosphatase, such as metal-dependent protein phosphatase 1A (PPM1A) [49], constituting a method for 

negative regulation of TGF-β signaling in the nucleus [13], [50]. A depiction of the TGF-β signaling 

pathway can be observed in Figure 2.3. It is worth noting that in this figure, the phosphorylated Smad2/3 

molecules are identified by pSmad2/3 and the complexes constituted by the phosphorylated Smad2/3 

molecules and the Smad4 is denoted by pSmad2/3 + Smad4. In succeeding sections of this work, par-

ticularly from Section 3.2.1 – Diagrams and Components onwards, the pSmad2/3 + Smad4 complex 

is referred to as the TRIMER. 
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    The activity of receptors is also regulated by different internalization routes – namely clathrin-de-

pendent endocytosis and caveolar lipid-raft mediated endocytosis- and by receptor turnover [2], [15], 

[21]. If the receptors actively took part in the signaling process, they have different possible fates after 

internalization: they face degradation, are used for ligand-binding or used for further internalization 

processes. Receptors which did not form a ligand-receptor complex go back to the plasma membrane. 

Regarding internalization routes, the clathrin pathway is considered to be the usual pathway. Internali-

zation through caveolar lipid-raft mediated endocytosis – which implies dissociation within caveolar 

lipid-raft – occurs when Smad7 and Smurf2 are recruited by ligand-receptor complexes, targeting the 

latter for degradation purposes [9]. 

 

 

2.2.2 – Computational Models of the TGF-β Pathway  

 

    In order to better understand which models have been used to represent the TGF-β signaling pathway, 

as well as their outcomes and modules used in their implementation, Table A (divided into Table A. 1, 

Table A. 2, Table A. 3 and Table A. 4), depicted in APPENDIX A, was created to compile the most 

relevant information and compare the models among each other. It is worth mentioning that these tables 

solely include information regarding models of the canonical TGF-β signaling pathway. Following the 

Figure 2.3 – Sequence of events of the TGF-β signaling pathway. Step (i) displays the formation of a complex 

composed by a ligand bound to type I TGF- β and type II TGF- β receptors, eliciting transphosphorylation of 

the type I TGF- β receptor and activation of its kinase. Step (ii) concerns the recruitment of Smad2/3 molecules 

by the type I TGF- β receptor, which phosphorylates them, followed by the formation of a pSmad2/3 + Smad4 

complex. Step (iii) displays the translocation of the pSmad2/3 + Smad4 complex towards the nucleus. Step 

(iv) demonstrates the association of the pSmad2/3 + Smad4 complex with chromatin, where it regulates tran-

scription of various genes. Adapted from Worthington et al., 2011 [43]. 
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identification of the authors and the year of publication of each article, some criteria to classify the 

models are mentioned, including: model type, aims and conclusion, topics which are approached in the 

article, the dimension of the model and length scale in which were implemented.  

    The category model type concerns the kind of equations which describe the model. The equations are 

classified as either partial differential equations (PDEs) or ordinary differential equations (ODEs). ODEs 

have popularly been used to represent reactions of biological systems [51], [52]. By looking at 

APPENDIX A, we can conclude that all the referenced studies created for the TGF-β pathway use 

ODEs to depict the reactions included in the signaling process. Models built with a high precision degree 

typically consist in a sequence of elementary reactions represented by ODEs, based on mass action 

kinetics [53]. ODEs are used to implement systems in time, independently of space. Molecules are 

considered to be homogeneously mixed in cellular compartments. These equations ease the simulation 

process and have small computational costs. Conversely, representation of chemical processes with 

PDEs requires a more rigorous previous mathematical knowledge [52]. Evidence of implementation of 

PDEs to describe dynamics of the TGF-β pathway is only found in [11] and [20]. In [11], outcomes 

stemming from two variants of a proposed model – with and deprived of spatial aspects – are compared 

to conclude if cell geometry has a relevant effect upon signaling from the TGF-β. It is inferred in this 

study that there is a substantial difference in signaling outcomes between the model with spatial aspects 

– when PDEs are used to represent cell reactions – and the model described without spatial aspects – 

reactions are represented by ODEs – considering dendritic cells or cells with several extensions. In the 

referred work, for the model made up of PDEs, the effect of cell shape was shown to be relevant to the 

TGF-β signaling pathway as cells with extensions displayed different gene expression patterns than the 

regularly shaped cells. This finding draws attention for the need to study more extensively the effect of 

cell morphology upon TGF-β signaling. In [20], PDEs were used to add a trafficking coordinate to the 

TGF-β signaling pathway. This section of the model aimed to describe the movement of the molecular 

species across compartments in order to keep track of their location. This study suggests that the 

insertion of a trafficking coordinate into the TGF-β pathway model allows to accurately replicate the 

physical properties of trafficking for different cells, while simultaneously describing chemical reactions. 

    The aims and conclusion section presents the scope of the work described in the article and its most 

important outcomes. A deeper understanding of tumor growth and proliferation, Smad 

nucleocytoplasmic shuttling, receptor trafficking and switch-like signaling are recognized as the most 

common aims of the research performed and presented in APPENDIX A. The assessment of the effects 

of cell shape has solely been done in [11]. Out of the models referenced in APPENDIX A, crosstalk 

between different pathways, which is regarded as a possible explanation for the large diversity of 

biological responses of the TGF-β signaling pathway, is only studied in [2]. With this study, it can be 

inferred that there is a large gap in knowledge concerning both the influence of spatial aspects upon the 

TGF-β signaling pathway and the crosstalk with other signaling pathways. 

    The topics section displays the different modules of the signaling pathway considered in the imple-

mentation of the model. The main topics found across the models are: formation of ligand-receptor 

complexes; formation, phosphorylation, dephosphorylation and dissociation of Smad complexes and 

Smad nucleocytoplasmic shuttling. In addition, a receptor trafficking module is used in a big part of the 

computational models proposed for the TGF-β signaling pathway, particularly in [2], [9], [15], [18], 

[20], [50]. Once again, the absence of a module of crosstalk between pathways is assessed in almost all 

the models. The exception consists of [2], where crosstalk between different pathways has been shown 

to be an important factor for the regulation of signal outcome. Taking into account that the results in [2] 

suggest that the crosstalk between Smad 1/5/8 and Smad 2/3 channels prompts specific signaling pat-

terns, efforts should be made to include this type of dynamic in TGF-β models. Additionally, and as 

mentioned before, spatial description should be incorporated into the model. 
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    There is evidence of one-dimensional (1D), two-dimensional (2D) and four-dimensional (4D) models 

for the TGF-β pathway in APPENDIX A. It is pertinent to mention that 1D models depict systems 

whose response varies solely as a function of time (discarding spatial coordinates), while 2D and 4D 

models include one or three spatial coordinates, respectively, in addition to the time factor. The only 

spatial models for the TGF-β pathway displayed in APPENDIX A are found in [11] and [20]. Consid-

ering the important outcomes of [11], which were mentioned in the previous paragraph, concerning 

topics of the models, more focus should be directed towards building a spatial model for this pathway. 

    Most of the work mentioned in APPENDIX A is implemented at cell level, meaning that the different 

locations involved in the signaling process are: the plasma membrane, the cytoplasm and the nucleus. 

However, one should bear in mind that cells are neighbours to other cells and the cell-neighbours dy-

namics might potentially affect outcomes from the TGF-β signaling pathway. 

    It is worth mentioning that APPENDIX A only includes information regarding articles which specif-

ically focus on gathering deeper knowledge on the mechanisms behind the TGF-β signaling pathway. 

However, the TGF-β has been incorporated into mathematical models as a key player for different bio-

logical systems. In numerous articles [3]–[8], the important role of the TGF-β upon various physiolog-

ical processes is highlighted, especially as a suppressive cytokine in tumor growth and proliferation, 

along with the potential that a deeper understanding of its signaling pathway or way of functioning carry 

to improve therapies for different pathologies.  

    After analysis of APPENDIX A, we can conclude the vast majority of the work performed to further 

understand the TGF-β pathway does not take into account spatial aspects of the cell and crosstalk be-

tween different pathways (e.g. mechanotransduction pathways), which is thought to contribute heavily 

for the wide diversity of outcomes of the signaling process [2], [54].  

 

 

2.3 – Integrins 

 

    The integrins consist of a family of heterodimeric transmembrane cell surface adhesion receptors [24], 

[25], [55] which mediate the attachment of cells to the extracellular matrix, thus guaranteeing a 

mechanical connection between both and, sometimes, the adhesion between adjacent cells [24], [25], 

[55]–[58]. Considering that the integrins link the extracellular medium to the intracellular cytoskeleton 

and to different signaling pathways, they are regarded as a bidirectional route to transduce biochemical 

and mechanical signals [24], [25].  

    The importance of the integrins resides in their participation in numerous cell processes, such as 

migration, motility, proliferation, survival, and numerous cell fate transitions [55], [56]. In particular, 

integrin activation controls cell adhesion in mechanisms such as leukocyte migration when an immune 

response is elicited and adhesion among cells and between cells and the extracellular matrix in wound 

healing [25]. Other examples of cell behaviors which largely depend on integrin signaling are the rise 

in the intracellular pH, concentration of calcium (𝐶𝑎2+) [59] and the transduction of immediate-early 

genes [57]. The integrins constitute an important point of response to inputs from proteins such as 

growth factors or heterotrimeric guanine nucleotide-binding protein-coupled receptors, also known as 

G-protein-coupled receptors (G-proteins act as signal transducers for hormones, neurotransmitters and 

others) [56], [60]. 

    In what concerns their structure, the integrins are composed by 𝛼 and β subunits [24], [25], [55]–[58]. 

The β subunit of the integrins comprises between 40 to 70 amino acids, except for the case of the β4 
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integrin, which possesses 1000 amino acids. The 𝛼 subunits are generally shorter than the β subunits 

and tend to have more variety in their isoforms [25]. Currently, there have been found 18 𝛼 subunits, 8 

β subunits and a total of different 24 𝛼β heterodimer combinations have been identified. The 

intracellular connection of these receptors to the actin cytoskeleton is done via adaptor proteins, such as 

talin and vinculin [24]. The possible combinations for the heterodimers makes them display overlapping 

functions, although without redundancy [25].       

    The transduction of signals along the plasma membrane performed via integrins implies interactions 

with the extracellular ligands through the extracellular domains of the integrins and, intracellularly, with 

signaling and cytoskeletal proteins through the cytoplasmic tails of the integrins. The extracellular 

domains of the integrins are regarded as large, while the intracellular tails are considered to be short 

[24]. In more detail, the intracellular domain of the integrins, also known as cytoplasmic tails, is where 

interactions between the integrins and intracellular proteins take place. Both subunits, 𝛼 and β, are 

capable of linking to different adaptors. However, there currently is more insight into the species which 

engage with the β subunit. The extracellular domains of the integrins, also known as ectodomains, are 

distinct for their capacity to assume different configurations, translating different levels of affinity for 

ligands. The three principal conformations that the integrins can display are: the bent-closed 

configuration, which corresponds to a low-affinity arrangement, the extended-closed configuration, for 

intermediate affinity cases, and extended-open configuration, which is displayed when there is high 

affinity for ligands. The transition from low affinity configuration to high affinity configuration 

corresponds to a process of integrin activation. In addition, the integrins have a transmembrane (TM) 

domain. The TM domains of the integrins are linked to the plasma membrane through non-covalent 

bonds and serve as a bridge of communication between the ectodomains and the intracellular 

cytoplasmic tails of the integrins, playing a pivotal role in the transference of configurational 

modifications which occur in the process of integrin activation [25]. The mechanisms behind integrin 

activation and signaling comprise different steps, presented in Figure 2.4. Firstly, the cytoplasmic tails 

of the integrins engage with intracellular adaptors such as talin, in a mechanism called inside-out 

signaling, which elicits modifications in the configuration of the integrins in order to regulate affinity to 

extracellular ligands [24], [25], as stated previously in this section. Consequently, the heterodimer 

interacts with extracellular ligands and links to the force-transducing actin cytoskeleton, leading to 

complete activation of the integrins and clustering of the integrins – outside-in signaling [24]. These 

arrangements of the integrins in clusters are denoted as focal adhesions [25]. As a result of the focal 

adhesions disposition and of the tension caused by internal and external forces, other intracellular 

binding species are captured, leading to downstream signaling. The inactivation of the integrins happens 

when endocytic promoters and inhibitory species are engaged [25]. In conclusion, the integrins undergo 

allosteric conformational modifications in conformity with their functional status [24]. The specific 

binding proteins with whom the integrins interact with, along with the way that the interactions are 

controlled mechanical wise, set how integrin signaling is processed and the link to the actin cytoskeleton 

[25].   
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2.3.1 – Crosstalk between the Integrins and the TGF-β Pathway 

 

    Mechanotransduction is the concept concerning how cells process mechanical information (from the 

moment they suffer modifications in the cellular cytoskeleton) due to input sensing, into a specific re-

sponse [23]. When cells undergo mechanotransductive processes, these changes will most likely reflect 

in the nucleus, consequently altering how gene expression occurs [61]. 
          There currently are different possibilities that describe the mechanotransductive signaling events 

which translate the biochemical interaction between the growth factors and the cytoskeleton. Taking 

into account that numerous signaling molecules take part in both integrin and growth factors signaling 

[62], the first possibility of interaction consists in the concomitant activation of the same signaling 

molecules by independent signals, elicited by growth factors and by the integrins. In [46], it is stated 

that some pathways, such as the MAPK and the PI3K pathway, and the control of the Rho family of 

guanosine triphosphate-binding (GTP-binding) proteins, the GTPases (which intervene in the 

Ectodomain 

Cytoplasmic 
Tail 

 

TM Domain 

Figure 2.4 – Integrin activation and inactivation process. In the beginning of the activation process, the cytoplasmic 

tails of the integrins engage with intracellular adaptors, prompting modifications in the configuration of the integrins 

in order to regulate affinity to extracellular ligand. There is an alteration from bent closed configuration into extended 

closed configuration. Next, the heterodimer interacts with extracellular ligands and links to the force-transducing actin 

cytoskeleton, conducting to complete activation of the integrins and to an arrangement of integrin clusters – focal 

adhesions. The complete activation of the integrins is displayed by a modification in their configuration, particularly 

from extended closed into extended open configuration. The focal adhesion arrangements are disassociated during the 

inactivation process of the integrins, which is elicited by the engagement of endocytic promoters and inhibitory spe-

cies. Adapted from Kadry & Calderwood, 2020 [25]. 
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transduction of extracellular signals to the actin cytoskeleton, influencing cell motility [63]–[65]), can 

be performed through this mechanism. Another possibility of interaction between growth factors and 

the integrins is the synergistic activation of growth factor-signaling receptors at the focal adhesions. In 

[46], it is reported that the integrins might gather signaling molecules which build a favorable 

environment to aid some growth factor receptors, such as the epidermal growth factor receptor (EGFR), 

the insulin receptor or the vascular endothelial growth factor receptor (VEGFR), in their engagement 

with downstream signaling species. Another example of a possible synergistic interaction of the 

integrins with growth factors is the potential physical engagement of the heterodimers with the TGF-β 

receptors. It is reported that the TGF-β ligand elicits the association of the αvβ3 integrin with the type 

II TGF-β receptor in pathologies such as lung fibroblasts and breast cancer, which initiates a 

collaborative type of signaling with the proto-oncogene tyrosine-protein kinase Src (c-Src) [66], and 

MAPKs [67], [68]. The ability of growth factor stimulation to activate synergistically growth factor-

signaling receptors might be a consequence of an arrangement of the receptors as coclusters, at the focal 

adhesions sites, or it can derive from their association with the actin cytoskeleton [57]. Another form of 

interaction between the integrins and the growth factor receptors is the activation of the receptors 

independently of the growth factor ligand. The Epidermal Growth Factor Receptors (EGFR) 

phosphorylation is a concrete example of this type of interaction since it can be elicited by the integrins 

without the presence of the Epidermal Growth Factor (EFG) ligand. The influence on the activation of 

the receptors triggered by the growth factor differs from the impact due to the integrins [46]. Another 

example of a similar type of interaction is found in [67], where it is stated that the integrins are able to 

regulate TGF-β signaling indirectly and that the αvβ3 integrin, particularly, modulates the expression of 

TGF-β receptors, type I TGF-β receptors and type II TGF-β receptors, without dependency of the       

TGF-β. A different way of interaction between the cytoskeleton and growth factor signaling is the 

formation of complexes involving common signaling components. Examples of this type of interactions 

are found in [69], where it is reported that the calponin 1, which is a thin actin-binding protein [70], is 

able to associate with the Smad or the phosphorylated Smad. Similarly, in [71] it is reported that the 

cytoskeletal actin-binding protein filamin has the capability of associating with the Smads, thus 

modulating TGF-β signaling. Other example of this same type of engagement is found in [67], where it 

is reported that the αvβ3 integrin physically associates with the type II TGF-β receptor and, therefore, 

controls TGF-β signaling. Also in [67], it is stated that the αvβ5 integrin amplifies TGF-β signaling by 

also engaging with the type II TGF-β receptor. An additional possibility of interaction between the 

integrins and growth factors consists in the downstream transcription of the TGF-β and the BMP 

receptors following the release of some cytoskeletal binding proteins, namely of the globular actin-

binding proteins (G-actin-binding proteins) and filamentous actin-binding proteins (F-actin-binding 

proteins) [72], due to a disturbance in the balance between these proteins associated to cell motility [73]. 

    The importance of having further insight into the crosstalk between the integrins and ligands such as 

growth factors lies in the potential to lead the development of different therapies or treatment protocols 

to treat numerous pathologies [67]. In the case of the TGF-β ligand, understanding these interactions 

promises a new approach to control the growth of tumors and angiogenesis, which concerns the 

development of new blood vessels from preexisting ones [57], [74]. Previous work performed to assess 

the crosstalk between pivotal participants of the angiogenesis, including the integrins, encompasses the 

implementation of one model to map environmental cues to cell phenotypes in [75]. However, in the 

proposed model from [75], the translation of the different reactions between the participant molecules 

is not done through ODEs or PDEs but rather by a Boolean signaling network.  

 

 

https://www.sciencedirect.com/topics/neuroscience/actin-cytoskeleton
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CHAPTER 3 – Materials and Methods 

 

3.1 – Computational Modeling 

 

    The crosstalk between the physical and chemical cues, delivered by the tissue engineering construct, 

is difficult to unravel with in vitro tools alone, as both pathways always affect each other. Computational 

models provide an interesting tool to help unravel this crosstalk and improve the design of tissue engi-

neering constructs. A computational model is created to mimic the functioning of a system using previ-

ous knowledge regarding the most important components of that system. The process of modeling con-

sists of describing the interaction between state variables through computational algorithms and mathe-

matical relationships [76]. 

    Throughout time, computational models have been proven to be a valuable tool for research and eval-

uation of molecular mechanisms of biological systems as a whole, as opposed to individual entities. The 

most specific ones usually consist of in-depth descriptions of reaction mechanisms, through mass action 

kinetics, and reaction stages are typically represented by ODEs [53]. Values available for state variables 

constitute input values for the model. 

    The relevance of computational models lies in their ability to provide outcomes for different values 

of features or parameters, thus allowing the assessment of input/output relationship to perform virtual 

experiments and to check hypotheses. In addition, numerous experiments can be carried with the same 

initial setting, in silico observations can be sampled at any time point and any location in respect to in 

vitro experiments, an almost immediate visual depiction and analysis of observations is allowed, and 

physiological and non-physiological modifications of parameter values within desired extent – from 

smallest to largest changes – are permitted [76]. 

 

 

3.1.1 – Virtual Cell Software 

 

    The Virtual Cell or VCell [77] is a free software for modeling and analysis of cell biological systems. 

It is available throughout the internet, aimed at scientists from different fields, such as Physics and 

Biology. 

    Models with different levels of complexity, ranging from plain models to test one hypothesis to multi-

layered models, can be implemented in VCell.  

    There are two main types of models which can be implemented in VCell: biological and mathematical 

models. Biological models are called BioModels. When a BioModel is created, the user implements a 

model using a graphical, web-based Java interface in which the physiology (kinetics, molecular and 

structural characteristics) and an application (morphology, initial conditions) or more than one applica-

tion are attributed. An application can be compartmental or spatial (using a 1D, 2D, 3D or analytical 

defined geometry or a digital image as a reference for the geometry), and it specifies the BioModel as a 

rule-based, continuous or stochastic model. Once a BioModel is created, depicted in Figure 3.1, its cor-

responding mathematical description is automatically generated, depicting partial differential equations 

or ordinary differential equations. In this modality, the user cannot edit the model code. 
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    On the other hand, a MathModel, shown in Figure 3.2, allows the user to perform any necessary 

modifications to the mathematical description of the BioModel or build a model from scratch solely 

using mathematical knowledge. 

    The advantages of VCell in comparison to other software for implementation of biological systems 

are mainly the fact that it automatically generates mathematical encoding for the biological model cre-

ated by the user via visual interface, as well as for the desired simulations, and the structured presentation 

and clear separation between the different layers of the model, such as kinetics, geometry, etc. This 

organization facilitates the process of implementation and promotes the construction of highly rigorous 

models [78]. 

    The work explained in this document was performed recurring to different MathModels in VCell, 

version 7.2.0, since numerous simulations were run along the whole process, with few discrepancies 

from one another. The MathModel modality allows a faster and more direct editing of any part of the 

system, as opposed to a BioModel, which requires the edition of different characteristics of the system 

to be completed in different sections of this modality’s environment. However, it is worth noting that in 

the beginning of the implementation of the main model, in order to have a foundational script and build 

A 

Figure 3.1 – BioModel created on the Virtual Cell software. A – The diagram which translates the system is established by 

the user through different arrows, geometric shape, symbols and compartments; this environment requires the selection of 

a physiology and one or more applications. B – A subdomain has to be attributed to each compartment or membrane in the 

geometry section for each application.    

B 
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a more intricate model from there, the chosen modality was the BioModel, since the advantage of auto-

matically generating a mathematical description from a visual representation of the system created by 

the user is very helpful for individuals who do not yet possess a good level of acquaintance with the 

software 

 

 

 

3.2 – Model Description 

 

3.2.1 – Diagrams and Components 

 

    The computational model implemented in this work, consists out of two modules: Module I) The 

TGF-𝛽 signaling pathway computational model and Module II) crosstalk of the TGF-𝛽 signaling path-

way with the integrins. 

    Figure 3.3 depicts the reactions and translocations occurring in the implemented computational model 

of the canonical TGF-𝛽 signaling pathway, that is, concerning Module I. In this module, the ligand is 

assumed to already be bound to its receptor, resulting in a complex – the C complex. The C complex 

binds to the SMAD2 in the cytoplasm, in a region near the plasma membrane (it is worth noting that the 

SMAD2 represents both the Smad2 and Smad3 molecules mentioned in Section 2.2.1 – Dynamics of 

the TGF-β Signaling Pathway; these molecules have the same role in the canonical TGF-𝛽 signaling 

pathway). Two molecules of the phosphorylated SMAD2 – pSMAD2- then bind to the co-mediator 

Figure 3.2 – MathModel created on the Virtual Cell software. This modality allows to edit the mathematical description 

of the system directly in the script, which encompasses constants, variables, functions, boundary conditions and the defi-

nition of all of these within the considered compartments. 
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SMAD – SMAD4- constituting a complex – the TRIMER. The TRIMER can disassociate into its com-

ponents – pSMAD2 and SMAD4 – in the cytoplasm, or it can undergo translocation into the nucleus, 

where it can also be disassociated or it can bind to DNA and prompt genetic expression of certain genes. 

Besides the TRIMER, every species, except for the C complex, are imported into the nucleus at a certain 

rate. Only SMAD2 and SMAD4 are able to be exported out of the nucleus. The receptors are continu-

ously produced and degraded. In the nucleus, pSMAD2 can also get dephosphorylated. The decision 

concerning which species should be established in this model as able to move from the cytoplasm into 

the nucleus and vice-versa was made based on data from literature, compiled in Table B, divided into 

Table B. 1 and Table B. 2, in APPENDIX B. These tables identify which species migrate from one 

compartment to another according to preexisting models by different authors.   

    In the created model for Module I, the reactions involving the SMAD2, the pSMAD2, the TRIMER 

and the SMAD4 are inspired by Claus et al., 2013 [11], while the receptor trafficking section of the 

model is adapted from Nicklas & Saiz, 2013 [2]. 
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    Figure 3.4 presents the crosstalk between the integrins and the TGF-𝛽 signaling pathway, concerning 

Module II. This module establishes four different possible ways in which the integrins and the TGF-β 

signaling pathway are able to interact. The first way, depicted in Figure 3.4.A, consists in the upregula-

tion of the TGF-β receptors elicited by the integrins; another way of interaction, represented in Figure 

3.4.B, consists in the increase of the catalytic constant of the phosphorylation of the SMAD2 mediated 

by the C complex, whose synthesis is regulated by the integrins; the third way, depicted in Figure 3.4.C, 

consists in the stabilization of the TGF-β receptors due to the integrins, causing a decrease in the degra-

dation of the receptors; finally, the fourth interaction, seen in Figure 3.4.D, concerns the formation of a 

complex made up by the integrins, I, and the TGF-β receptors, the IC complex, which mediates the 

phosphorylation of the SMAD2, resulting in an increase of the catalytic constant of the phosphorylation 

Figure 3.3 –  Scheme of the TGF-𝛽 signaling pathway. In this model, the cell is surrounded by the extracellular matrix, 

denoted by EC. The integrins, I, are able to interact with the extracellular matrix. A complex made up by the TGF-𝛽 

ligand and the TGF-𝛽 receptors, C complex, is synthesized near the cytoplasmic membrane and binds to the SMAD2 

in the cytoplasm, CYT, prompting its phosphorylation, forming the pSMAD2, which can remain in the cytoplasm or 

migrate into the nucleus,  NUC. When the pSMAD2 remains in the nucleus, it takes part in the formation of a complex, 

the TRIMER, made up by two pSMAD2 molecules and one SMAD4 molecule. Similarly, the TRIMER can remain in 

the nucleus or undergo translocation into the nucleus. When remaining in the nucleus, it can dissociate into its compo-

nents pSMAD2 and SMAD4. The SMAD4 can also migrate into the nucleus or stay in the cytoplasm. The SMAD2 

and the SMAD4 are able to leave the nucleus and undergo translocation into the cytoplasm, while the TRIMER and 

the pSMAD2 have to dissociate and dephosphorylate, respectively, in order to be possible for these species to leave 

the nucleus. 

_ 

_ 
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of the SMAD2 complex. In this model, the integrins are considered to be synthesized and degraded in 

the cytoplasm. While the production of the C complex is dependent on the integrins, the formation and 

dissociation of the IC complex, which occur in the cytoplasm (near the plasma membrane), depend on 

its components – the integrins and the C complex. Since the IC complex elicits the phosphorylation of 

the SMAD2, two species in Module II mediate the phosphorylation of the SMAD2: the IC complex and 

the C complex. Just like in the standard model, the C complex binds to the SMAD2 in the cytoplasm, 

near the plasma membrane, eliciting the phosphorylation of the SMAD2. Two molecules of the 

pSMAD2 bind to the co-mediator SMAD, the SMAD4, constituting a complex – the TRIMER. The 

TRIMER can disassociate into its components, pSMAD2 and SMAD4, in the cytoplasm, or it can un-

dergo translocation into the nucleus, where it can also be disassociated, or it can bind to DNA and 

prompt genetic expression of certain genes. Besides the TRIMER, every species, except for the C com-

plex, are able to move into the nucleus at a certain rate. Only SMAD2 and SMAD4 are able to be ex-

ported out of the nucleus. The receptors are continuously produced and degraded. In the nucleus, 

pSMAD2 also can be dephosphorylated.  
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A               B 

C 

 

 

 

 

D 

 

Figure 3.4 – Schematic of the TGF-𝛽 signaling pathway crosstalk with the integrins. The thick dashed arrows denote 

the influence of the integrins, I, upon the synthesis of the receptors, the lighter shade of black arrows represent acts 

of translocation, the thin dashed arrows stand for the influence of the integrins upon the degradation of the C complex 

and the regular arrows translate reactions. The domain and the subdomains are the same from the standard model. 

There are four different ways of crosstalk with the integrins: (A) the integrins elicit the production of TGF-𝛽 receptors 

– the vesicle which contains the newly synthesized receptors is circled in green, standing next to a green arrow which 

represents the increase of the synthesis of the receptors; (B) the integrins prompt the synthesis of receptors which 

take part in the C complex and this complex binds to the SMAD2, eliciting more phosphorylation of the SMAD2, 

denoted by the green ellipse and the green arrow; (C) the integrins elicit the stabilization of the TGF-𝛽 receptors, 

which results in less degradation of the TGF-𝛽 receptors – the vesicle which contains the receptors about to be de-

graded is circled in red, near a red arrow which indicates the decrease of the degradation rate of the receptors; (D) the 

integrins form a complex with the TGF-𝛽 receptors, the IC complex, which binds to the SMAD2, eliciting an increase 

in the phosphorylation of the SMAD2, represented  by the green ellipse and the green arrow. All the processes for 

the TGF-𝛽 signaling pathway which take place in the standard model – formation and dissociation of the TRIMER 

complex in the cytoplasm and in the nucleus, migration of every species into the nucleus, dephosphorylation of  the 

SMAD2 in the nucleus, migration of the SMAD2 and SMAD4 into the cytoplasm- remain valid for this module. 
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    In Table 3.1, all species taken into account during the implementation of the computational model, 

for Module I and Module II of the work, are presented. Molecules of the SMAD2, pSMAD2, TRIMER 

complex and SMAD4 in two different compartments, in the cytoplasm and the nucleus, are listed as 

components in Table 3.1. We assume that, initially, the molecules are uniformly distributed throughout 

the cytoplasm and the nucleus. Additionally, molecules of the complex made up by the ligand TGF-𝛽 

and its receptors, the C complex, molecules of the integrins, denoted by I and, the complex made up by 

the integrins and the receptors, the IC complex, are also presented. The initial concentration of each 

species, which is also stated in Table 3.1, is mentioned after the designation of the component, followed 

by its units and literature reference where the value was found.  

    It is worth noting that even though the initial concentration of the C complex in this model is 0.0 𝜇𝑀, 

there is an activation of the signaling cascade since there is synthesis of this complex right after initial 

instance set for the model. This same principle is applied in the model for the crosstalk with the integrins, 

in which the activation of the signaling cascade is only possible because in the first instance there is 

solely synthesis of I, instead of synthesis and degradation.  
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Table 3.1 – Components which take part in the TGF-𝛽 signaling pathway, along with their initial concentration in the cell, 

respective unit and literature reference, when applicable. 

Component Initial value (𝝁𝑴) 
 

SMAD2 

Cytoplasmic Smad2 

 

0.08 [11] 

pSMAD2 

Cytoplasmic Phosphorylated Smad2 

 

0.0 [11] 

TRIMER 

Cytoplasmic Phosphorylated Smad2 + 

Smad4 

Complex 

0.0 [11] 

SMAD4 

Cytoplasmic Smad4 

 

0.08 [11] 

SMAD2n 

Nuclear Smad2 

 

0.093   [11] 

pSMAD2n 

Nuclear Phosphorylated Smad2 

 

0.0 [11] 

TRIMER_n 

Nuclear Phosphorylated Smad2 + Smad4 

Complex 

0.0 [11] 

SMAD4n 

Nuclear Smad4 

 

0.016   [11] 

C 

TGF-β Receptors + TGF-β  

Complex  

0.0   [2] 

I 

Integrins 

 

0.0  

IC 

Integrins + TGF-β Receptors +TGF-β 

Complex  

0.0  

 

 

3.2.2 – Parameters 

 

    All the parameters used in the equations which translate the reactions depicted in the diagrams of 

Module I and Module II (see Sections  3.2.1 – Diagrams and Components and 3.2.3 – Equations and 

Boundary Conditions to observe the diagrams of both stages of the work and the equations, respec-

tively) are presented in Table 3.2 and Table 3.3. Following the name of the parameter, its description, 



 

23 

 

value and corresponding unit are mentioned, as well as literature source, when applicable. The value of 

the parameter 𝑘𝑟 equals 0.0 s−1 since in the model, the dephosphorylation of the pSMAD2 is only con-

sidered to occur within the nucleus. 

    The reason behind the selection of the diffusion coefficient of the species C and I resides in the fact 

that their value was found to be close to 0.0 𝜇m2s−1 in literature and did not hold an influence upon the 

results in simulations. A value of 0.049 𝜇m2s−1 for the diffusion coefficient of C was used in [79] and 

for I, a diffusion coefficient of 0.01 𝜇m2s−1 was found in [80]. Lastly, the diffusion coefficient of the 

IC complex is set to 0.0 𝜇𝑀. Since there were not found literature sources stating a value for the diffusion 

coefficient of this complex, by default, it was selected an identical diffusion coefficient to those of I and 

C. 
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Table 3.2 – Parameters used in Modules I and II of the model of the TGF-𝛽 signaling pathway – part 1. 
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Table 3.3 – Parameters used in Modules I and II of the model of the TGF-𝛽 signaling pathway – part 2. 
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3.2.3 – Equations and Boundary Conditions 

 

    Equations (3.1) – (3.18) concern the reactions and boundary conditions applicable in the cytoplasm. 

These equations are reaction-diffusion equations, 𝑥 𝜖  Ω𝑐𝑦𝑡, 𝑡 𝜖 (0, 𝑇], translating the time and space 

dependent variation of the concentration of all the species mentioned in Section 3.2.1 – Diagrams and 

Components, Table 3.1. Equations (3.1) and (3.2) were inspired by [11] but were adapted to this model 

by introducing a catalytic reaction term, 𝑘𝑐𝑎𝑡2 ⋅ 𝑆𝑀𝐴𝐷2 ⋅ 𝐶, and a dephosphorylation term, 𝑘𝑟 ⋅

𝑝𝑆𝑀𝐴𝐷2. Equations (3.5) and (3.6) were also inspired by [11]. Equation (3.8) is based on the diagram 

for the TGF-β signaling pathway presented in [2] and was introduced to this model in order to include 

a receptor trafficking section, which is absent in [11]. In Equation (3.1), which describes the variation 

of the concentration of SMAD2, a term was introduced in order to integrate the phosphorylation of the 

SMAD2 elicited by the IC complex, meaning that the phosphorylation of this species is now under the 

influence of both the C complex, through function 𝑘𝑐𝑎𝑡2, and the IC complex, through function 𝑘𝑐𝑎𝑡4. 

It is worth noting that 𝑘𝑐𝑎𝑡2 is defined from 𝑘𝑐𝑎𝑡 (see Section 3.2.2 – Parameters, Table 3.2), which 

stands for the catalytic constant of the phosphorylation of the SMAD2, and is restricted to an area de-

limited by a circumference of radius 12 𝜇𝑚, in its inner part, and a circumference of radius 15 𝜇𝑚 on 

its outer part; 𝑘𝑐𝑎𝑡4 is also established using 𝑘𝑐𝑎𝑡, being defined within the previously mentioned area. 

The parameters 𝑘𝑐𝑎𝑡2 and 𝑘𝑐𝑎𝑡4 were both created instead of just using one variable for the equations, 

reflecting two types of phosphorylation- mediated by the C complex and mediated by the IC complex – 

in order to facilitate the comprehension of the script (to different equations are attributed different vari-

ables) and allow the eventual interplay, during simulations, with different values for each 𝑘𝑐𝑎𝑡. The 

variation of the concentration of the pSMAD2, which is represented by Equation (3.2), also reflects the 

phosphorylation of the SMAD2 by the two previously mentioned complexes. The equation which trans-

lates the change in concentration of the C complex, Equation (3.8), takes into account the influence of 

the integrins on the synthesis and degradation of this complex, through functions 𝑘𝑠𝑦𝑛2 and 𝑘𝑑𝑒𝑔2, as 

well as the influence of the formation and dissociation of the IC complex. Equations (3.7) and (3.11) 

translate the variation of the concentration of I and of the IC complex, respectively. In Equation (3.7), 

it can be seen that the concentration of the integrins, besides depending on its own synthesis and degra-

dation, is also influenced by the formation and dissociation of the IC complex. By its turn, the change 

in concentration of the IC, Equation (3.11), varies according to its formation rate and dissociation rate, 

taking into account that this complex is made up by the integrins and the C complex.  

    It is worth noting that in the present section, the Laplacian,  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 , is represented by △. 

 

 

 𝜕𝑡𝑆𝑀𝐴𝐷2 = 𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑆𝑀𝐴𝐷2 − 𝑘𝑐𝑎𝑡2 ⋅ 𝑆𝑀𝐴𝐷2 ⋅ 𝐶

+ 𝑘𝑟 ⋅ 𝑝𝑆𝑀𝐴𝐷2 − 𝑘𝑐𝑎𝑡4 ⋅ 𝑆𝑀𝐴𝐷2 ⋅ 𝐼𝐶 

(3.1) 

 𝜕𝑡𝑝𝑆𝑀𝐴𝐷2 = 𝑝𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑝𝑆𝑀𝐴𝐷2

− 2𝑘𝑡𝑟𝑖𝑚 ⋅ 𝑝𝑆𝑀𝐴𝐷22 ⋅ 𝑆𝑀𝐴𝐷4 + 2𝑘𝑑𝑖𝑠𝑠 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅 + 𝑘𝑐𝑎𝑡2 ⋅ 𝑆𝑀𝐴𝐷2 ⋅ 𝐶

− 𝑘𝑟 ⋅ 𝑝𝑆𝑀𝐴𝐷2 + 𝑘𝑐𝑎𝑡4 ⋅ 𝑆𝑀𝐴𝐷2 ⋅ 𝐼𝐶 

 

(3.2) 
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 In which 𝑘𝑐𝑎𝑡2 and 𝑘𝑐𝑎𝑡4 are functions: 

 

 

 
𝜕𝑡𝑘𝑐𝑎𝑡2 = 𝑘𝑐𝑎𝑡 ⋅ (1.0 +

𝑘_𝑒𝑥𝑡𝑟𝑎2 ⋅ 𝐼

𝐼𝑚𝑎𝑥
) 

(3.3) 

 
𝜕𝑡𝑘𝑐𝑎𝑡4 = 𝑘𝑐𝑎𝑡 ⋅ (1.0 +

𝑘_𝑒𝑥𝑡𝑟𝑎4 ⋅ 𝐼

𝐼𝑚𝑎𝑥
) 

(3.4) 

 

 

 𝜕𝑡𝑇𝑅𝐼𝑀𝐸𝑅 = 𝑇𝑅𝐼𝑀𝐸𝑅_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑇𝑅𝐼𝑀𝐸𝑅

+ 𝑘𝑡𝑟𝑖𝑚 ⋅ 𝑝𝑆𝑀𝐴𝐷22 ⋅ 𝑆𝑀𝐴𝐷4 − 𝑘𝑑𝑖𝑠𝑠 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅 

(3.5) 

 𝜕𝑡𝑆𝑀𝐴𝐷4 = 𝑆𝑀𝐴𝐷4_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑆𝑀𝐴𝐷4 − 𝑘𝑡𝑟𝑖𝑚 ⋅ 𝑝𝑆𝑀𝐴𝐷22 ⋅ 𝑆𝑀𝐴𝐷4

+ 𝑘𝑑𝑖𝑠𝑠 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅 

(3.6) 

 𝜕𝑡𝐼 = 𝐼_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝐼 + 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔 − 𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔 ⋅ 𝐼 + 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 ⋅ 𝐼𝐶

− 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 ⋅ 𝐼 ⋅ 𝐶 

(3.7) 

 𝜕𝑡𝐶 = 𝐶_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝐶 + 𝑘𝑠𝑦𝑛2 − 𝑘𝑑𝑒𝑔2 ⋅ 𝐶 + 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 ⋅ 𝐼𝐶

− 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 ⋅ 𝐼 ⋅ 𝐶 

(3.8) 

 

 

In which 𝑘𝑠𝑦𝑛2 and 𝑘𝑑𝑒𝑔2 are functions: 

 

 

 
𝜕𝑡𝑘𝑠𝑦𝑛2 = 𝑘𝑠𝑦𝑛 ⋅ (1.0 +

𝑘_𝑒𝑥𝑡𝑟𝑎1 ⋅ 𝐼

𝐼𝑚𝑎𝑥
) 

(3.9) 

 
𝜕𝑡𝑘𝑑𝑒𝑔2 = 𝑘𝑑𝑒𝑔 ⋅ (1.0 −

𝑘_𝑒𝑥𝑡𝑟𝑎3 ⋅ 𝐼

𝐼𝑚𝑎𝑥
) 

(3.10) 

 

 

 𝜕𝑡𝐼𝐶 = 𝐼𝐶_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝐼𝐶 + 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 ⋅ 𝐼 ⋅ 𝐶 − 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 ⋅ 𝐼𝐶 

 

(3.11) 
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    The boundary conditions applicable to the cell membrane, 𝑥 𝜖  Ω𝑐𝑦𝑡, are represented by Equations 

(3.12) – (3.18). 

 

 

 𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑆𝑀𝐴𝐷2 = 0 (3.12) 

 𝑝𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑝𝑆𝑀𝐴𝐷2 = 0 (3.13) 

 𝑇𝑅𝐼𝑀𝐸𝑅_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑇𝑅𝐼𝑀𝐸𝑅 = 0 (3.14) 

 𝑆𝑀𝐴𝐷4_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑆𝑀𝐴𝐷4 = 0 (3.15) 

 𝐶_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝐶 = 0 (3.16) 

 𝐼_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝐼 = 0 (3.17) 

 𝐼𝐶_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝐼𝐶 = 0 (3.18) 

 

 

    In what concerns the reactions which take place in the nucleus and boundary conditions at the nuclear 

membrane, Equations (3.19) – (3.26) are applicable, 𝑥 𝜖  Ω𝑛𝑢𝑐, 𝑡 𝜖 (0, 𝑇]. The majority of Equations 

(3.19) – (3.22) are identical to Equations (3.1), (3.2), (3.5) and (3.6), respectively. Equations (3.1) and 

(3.19) and Equations (3.2) and (3.20) differ among each other since the phosphorylation of the SMAD2 

only occurs in the cytoplasm and its dephosphorylation only occurs in the nucleus (the dephosphoryla-

tion constant for the pSMAD2 in the cytoplasm, 𝑘𝑟, assumes value 0.0 s−1, see Section 3.2.2 – Param-

eters, Table 3.3) being this difference represented by the term 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ⋅ 𝑝𝑆𝑀𝐴𝐷2𝑛 in Equations (3.19) 

and (3.20).  

 

 

 𝜕𝑡𝑆𝑀𝐴𝐷2𝑛 = 𝑆𝑀𝐴𝐷2𝑛_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑆𝑀𝐴𝐷2𝑛 + 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ⋅ 𝑝𝑆𝑀𝐴𝐷2𝑛 

 

(3.19) 

 𝜕𝑡𝑝𝑆𝑀𝐴𝐷2𝑛 = 𝑝𝑆𝑀𝐴𝐷2𝑛_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑝𝑆𝑀𝐴𝐷2𝑛

− 2𝑘𝑡𝑟𝑖𝑚 ⋅ 𝑝𝑆𝑀𝐴𝐷2𝑛2 ⋅ 𝑆𝑀𝐴𝐷4𝑛 + 2𝑘𝑑𝑖𝑠𝑠 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛

− 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 ⋅ 𝑝𝑆𝑀𝐴𝐷2𝑛 

(3.20) 
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 𝜕𝑡𝑇𝑅𝐼𝑀𝐸𝑅_𝑛 = 𝑇𝑅𝐼𝑀𝐸𝑅𝑛_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛

+ 𝑘𝑡𝑟𝑖𝑚 ⋅ 𝑝𝑆𝑀𝐴𝐷2𝑛2 ⋅ 𝑆𝑀𝐴𝐷4𝑛 − 𝑘𝑑𝑖𝑠𝑠 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛 

 

(3.21) 

 𝜕𝑡𝑆𝑀𝐴𝐷4𝑛 = 𝑆𝑀𝐴𝐷4𝑛_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅△ 𝑆𝑀𝐴𝐷4𝑛

− 𝑘𝑡𝑟𝑖𝑚 ⋅ 𝑝𝑆𝑀𝐴𝐷2𝑛2 ⋅ 𝑆𝑀𝐴𝐷4 + 𝑘𝑑𝑖𝑠𝑠 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛 

(3.22) 

 

 

    The boundary conditions for the nuclear membrane 𝑥 𝜖  Ω𝑛𝑢𝑐 are represented by                                   

Equations (3.23) – (3.26). These are also the boundary conditions used in [11]. 

 

 

 𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑆𝑀𝐴𝐷2 = −𝑘𝑐𝑛_𝑆𝑀𝐴𝐷2 ⋅ 𝑆𝑀𝐴𝐷2

+ 𝑘𝑛𝑐_𝑆𝑀𝐴𝐷2 ⋅ 𝑆𝑀𝐴𝐷2𝑛 

(3.23) 

 𝑝𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑝𝑆𝑀𝐴𝐷2 = −𝑘𝑐𝑛_𝑝𝑆𝑀𝐴𝐷2 ⋅ 𝑝𝑆𝑀𝐴𝐷2 (3.24) 

 𝑇𝑅𝐼𝑀𝐸𝑅_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑇𝑅𝐼𝑀𝐸𝑅 = −𝑘𝑐𝑛_𝑇𝑅𝐼𝑀𝐸𝑅 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅 

 

(3.25) 

 𝑆𝑀𝐴𝐷4_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 ⋅ 𝜕𝑛𝑆𝑀𝐴𝐷4 = −𝑘𝑐𝑛_𝑆𝑀𝐴𝐷4 ⋅ 𝑆𝑀𝐴𝐷4

+ 𝑘𝑛𝑐_𝑆𝑀𝐴𝐷4 ⋅ 𝑆𝑀𝐴𝐷4𝑛 

(3.26) 

 

 

3.2.4 – Geometry 

 

    The model presented in this work is constructed in a 2D domain and there are three implemented 

subdomains: EC, CYT and NUC (Figure 3.5).  

    The domain of the model has dimensions 40 𝜇m x 40 𝜇m. 

    The cell used in our standard model (subdomains CYT + NUC) has a circular geometry, with an area 

of 707.36 𝜇𝑚2 (Standard Size) and a radius of approximately 15 𝜇m. The previous dimensions are of 

the same magnitude order found in  [2], [11] and [18]. 

    The nucleus (subdomain NUC) is represented by a circle concentric with the circle which delimits the 

cell, has an area of 78.24 𝜇𝑚2 and has a radius of approximately 5 𝜇m. The selected value for the area 

of the nucleus matches the magnitude order of its analogous in [2], [11] and [18]. 
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    The activation area, which is the site of the cell in which the SMAD2 can be phosphorylated, is 

254.469 𝜇𝑚2. This area is delimited, on its inner part, by a circle of radius 12 𝜇m, and on its outer part 

by the cytoplasmic membrane. 

    The subdomain EC represents the extracellular matrix.  

    The subdomain CYT represents the cytoplasm in this model. 

 

 

 

 

 

 

 

 

 

 

 

40 𝜇m 

EC 

CYT 

NUC 

40 𝜇m 

A B 

24 𝜇m 

15  𝜇m 

Figure 3.5 – Subdomains of the model and activation ring. A – Geometry of the subdomains; each subdomain is identified 

by its name in the corresponding region and by its dimensions; B – Activation area for the signaling pathway; the region in 

red corresponds to the site of the cell in which the SMAD2 can be phosphorylated. 



 

31 

 

CHAPTER 4 – Results and Discussion 

 

4.1 – Parameter Fitting 

 

    In order to obtain the curves for the average concentration of the SMAD2, pSMAD2, TRIMER and 

SMAD4 (in the nucleus and in the cytoplasm), matching the information presented in the literature, 

certain parameters were fitted to the available data, obtained via simulations. These parameters are: 

𝑘𝑐𝑛_𝑆𝑀𝐴𝐷2, 𝑘𝑛𝑐_𝑆𝑀𝐴𝐷2, 𝑘𝑐𝑛_𝑝𝑆𝑀𝐴𝐷2, 𝑘𝑐𝑛_𝑇𝑅𝐼𝑀𝐸𝑅, 𝑘𝑐𝑛_𝑆𝑀𝐴𝐷4,  𝑘𝑛𝑐_𝑆𝑀𝐴𝐷4, 𝑘𝑐𝑎𝑡 and 

𝑘𝑑𝑒𝑝ℎ𝑜𝑠 (see Table 3.2 and Table 3.3 in Section 3.2.2 – Parameters, for their final, fitted value). It is 

important to mention that all the parameters which were introduced for Module II, crosstalk with mech-

anotransduction, such as 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔, 𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔, 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 , 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 and 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4, were 

all considered to assume value 0.0 at this stage of the project.  

    In order to perform this process, intracompartmental ratios were determined, depending on the con-

sidered species. For the SMAD2, SMAD2n, SMAD4 and SMAD4n, the ratio between the steady-con-

centration and the initial concentration was calculated, while for the pSMAD2, pSMAD2n, the TRIMER 

and the TRIMER_n, the ratio between the steady-state concentration and the peak concentration was 

determined (since the initial value for these species is 0.0 𝜇𝑀). The ratios previously mentioned were 

compared to their analogous ratios in Claus et al., 2013 [11] and Nicklas & Saiz, 2013 [2]. The results 

are presented in Figure 4.1. The grey color plot is not represented for the TRIMER, SMAD4, SMAD2n 

and TRIMER_n because there is not data in Nicklas & Saiz, 2013 [2] which allows to determine the 

value of the intracompartmental ratios. 

    In a second stage of the fitting process, the intercompartmental ratios between the steady-state con-

centrations for each species (e.g.: 𝑇𝑅𝐼𝑀𝐸𝑅/𝑇𝑅𝐼𝑀𝐸𝑅_𝑛) were determined for the implemented model 

and for the results presented in Claus et al., 2013 [11] and Nicklas & Saiz, 2013 [2]. The bar plots for 

these ratios are presented in Figure 4.2. The grey color plot is only represented for the SMAD2 because 

there is not data in Nicklas & Saiz, 2013 [2] which allows to determine the intercompartmental ratio 

values for the pSMAD2, the SMAD4 and the TRIMER. 

    As it can be inferred by analyzing Figure 4.1 and Figure 4.2, the ratios determined for each species, 

for the literature and the simulations, remain within the same order of magnitude, which reveals that the 

estimated values for the parameters are acceptable approximations. However, the bar plots in Figure 4.1 

and Figure 4.2 indicate that there is a greater discrepancy between the ratios obtained via simulations 

and the ratios calculated for the results in Nicklas & Saiz,  2013 [2] than between the ratios for the results 

of this model and the values determined for Claus et al., 2013 [11]. This finding is most likely due to 

the fact that the model in Nicklas & Saiz, 2013 [2] is more intricate than the one presented in Claus et 

al., 2013 [11], since it includes various mechanisms of the pathway which are absent in the proposed 

computational model (e.g. negative feedback loop).  

    It is worth noting that besides comparing the model ratios with data from Claus et al., 2013 [11] and 

Nicklas & Saiz, 2013 [2], which are the articles that inspired the basis of the model presented in this 

document, data from other sources of literature were consulted in order to make sure that these ratios 

are indeed acceptable approximations, namely [18] and [82].  
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Figure 4.1 – Outcomes of the first stage of parameter fitting – intracompartmental ratios. The legend label “Results” stands 

for the determined ratios for each species based on simulations performed during the course of this project – ratio between 

the steady-concentration and the initial concentration for the SMAD2, SMAD2n, SMAD4 and SMAD4n and ratio between 

the steady-state concentration and the peak concentration for the pSMAD2, pSMAD2n, the TRIMER and the TRIMER_n. 

The legend designations Nicklas” and “Claus” are attributed to the color plots which translate the value of these same ratios 

for the results presented in literature – Nicklas & Saiz, 2013 [2], and Claus et al, 2013 [11], respectively. The bar plots for 

“Results” are presented in blue, the bar plots for “Claus” are presented in orange and the bar plots for “Nicklas” are presented 

in grey. For some species, there is not a grey bar – ratios for the results in Nicklas & Saiz, 2013 [2] – because there is no 

available data to determine those values in this reference. 
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    For Module II of this work, the parameters 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔, 𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔, 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶, 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 and  

𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4, were fitted to the data provided by simulations. Their final values are included in 

Section 3.2.2 – Parameters, Table 3.2 and Table 3.3. It is worth mentioning that most of these param-

eters do not have value attributed to them in literature. Therefore, the parameters 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔, 

𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔, 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 and 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 initially assumed similar values to other parameters pre-included 
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Figure 4.2 – Outcomes of the second stage of parameter fitting – intercompartmental ratios. The legend label “Results” stands 

for the determined intercompartmental ratios for the SMAD2, pSMAD2, SMAD4 and TRIMER. The legend designations 

“Nicklas” and “Claus” are attributed to the color plots which translate the value of these same ratios for the results presented 

in literature – Nicklas & Saiz, 2013 [2], and Claus et al, 2013 [11], respectively. The bar plots for “Results” are presented 

in blue, the bar plots for “Claus” are presented in orange and the bar plots for “Nicklas” are presented in grey. For some 

species, there is not a grey bar – ratios for the results in Nicklas & Saiz, 2013 [2] – because there is no available data to 

determine those values in this reference. 
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in the model, namely in Module I: 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔 assumed a similar value to 𝑘𝑠𝑦𝑛, 𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔 assumed an 

identical value to 𝑘𝑑𝑒𝑔, 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 assumed a similar value to 𝑘𝑡𝑟𝑖𝑚 and 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 assumed an iden-

tical value to 𝑘𝑑𝑖𝑠𝑠. From there, the value of these parameters was adapted via different simulations 

based on restrictions placed by the remaining parameters: 𝐼𝑚𝑎𝑥 and 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4. The value of 

𝐼𝑚𝑎𝑥 was selected based on the maximum value of I for different simulations, with different values of  

𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4. This value had to be high enough to always top the highest reached concentrations 

of I (see Section 3.2.3 – Equations and Boundary Conditions, Equations (3.3), (3.4), (3.9) and (3.10)). 

Lastly, for all 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4, different simulations ran in order to obtain a relatively different 

outcome for the TRIMER_n in relation to the model results concerning Module I alone. These parame-

ters had to necessarily assume a value between 0 and 1 (see Section 3.2.3 – Equations and Boundary 

Conditions, Equations (3.3), (3.4), (3.9) and (3.10) ). 

 

 

4.2 – “Sanity Checks” 

 

    In order to check the model for mass conservation and consistency, some simulations were run. These 

sanity checks act as tool to understand if each parameter is acting according to what is known in literature 

and serves its purpose in the model, therefore displaying if the model is well constructed or not.  

    In order to assess the validity of the implemented model for the TGF-β signaling pathway, Equations 

(4.1) and (4.2) had to be satisfied. Equations (4.1) and (4.2) are mass-conservation equations based on 

the scheme of the TGF-β signaling pathway (see Section 3.2.1 – Diagrams and Components, Figure 

3.3).  

 

 

 𝑆𝑀𝐴𝐷2 + 𝑆𝑀𝐴𝐷2𝑛 + 𝑝𝑆𝑀𝐴𝐷2 + 𝑝𝑆𝑀𝐴𝐷2𝑛 + 2 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅

+ 2 ⋅ 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1 

(4.1) 

 

 𝑆𝑀𝐴𝐷4 + 𝑆𝑀𝐴𝐷4𝑛 + 𝑇𝑅𝐼𝑀𝐸𝑅 + 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 2 

 

(4.2) 

 

 

    When substituting each species in Equations (4.1) and (4.2) by their respective number of molecules 

in each time point of the simulation, the value in the right member of the equations should remain the 

same. This requirement was verified with the implemented model. The value for 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 1 remained 

equal to 7410.19 throughout all the time points, while the value for 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 2 remained equal to 

3783.45. Therefore, it can be concluded that the model respects mass-conservation. 
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4.3 – Module I Results 

 

    The results of the different set of experiments performed to assess the influence of cell morphology 

upon the TGF-β signaling pathway. The generated basis script for this module of the project is displayed 

in Section Module I Script from APPENDIX C. It is noteworthy that according to the objective of the 

experiment, pertinent adaptations had to be made to the basis code for each simulation, such as setting 

a different geometry for the cell or different cell dimensions from the default values stated in Section 

3.2.4 – Geometry.  

    One should bear in mind that in Module I of the model, all parameters related to the crosstalk between 

the TGF-β signaling pathway and the integrins are set to 0.0, namely: 𝐼𝑚𝑎𝑥, 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔, 𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔, 

𝑘𝑓𝑜𝑟𝑚_𝐼𝐶, 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶 and 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4. 

 

4.3.1 – The Influence of Cell Shape on the Nuclear Concentration of the Species 

 

    Numerous spatial and non-spatial computational models of TGF-β signaling have been presented by 

different authors but almost all of them do not consider cell morphology, which is typically considered 

to be a very relevant measure of how cells respond to external mechanical cues. Therefore, some exper-

iments were set in order to assess the impact of cell shape on the nuclear concentration of species and 

understand the influence of this morphologic feature at a downstream level of the signaling cascade. 

The most relevant species to assess the effects of cell morphology on the TGF-β pathway is the nuclear 

TRIMER, TRIMER_n, since this species is able to bind to DNA and, thus, induce genetic expression. 

However, the other species are also included in this experiment to constitute a term of comparison and 

aid in the comprehension of the results. 

    Simulations ran for different cell geometries, maintaining the same area for the cell, nucleus and area 

of activation of the standard cell (see Section 3.2.4 – Geometry) to assess the influence of cell shape 

upon the concentration of the species in the nucleus. The different geometries used in the simulations 

are presented in Figure 4.3. The standard geometry is the circle. The added geometries include two 

ellipses, ellipse 1 and ellipse 2, one rectangle and one square. The difference between ellipse 1 and 

ellipse 2 relies on the width/height ratio – the ellipse 2 has a higher value for this ratio. 
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    The concentration of each species in the nucleus was compared for the different cell geometries after 

running simulations. The outcomes are presented in Figure 4.4. 

    In order to easily compare the results for the average concentration of each species in the nucleus 

across the different cell shapes, the results are presented in the form of a ratio: (Species steady-state 
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Figure 4.3 – Geometries of the cell used in the experiments to assess the influence of cell shape on the nuclear concentration 

of the species. The area in which the SMAD2 is phosphorylated, activation area, is highlighted in color. A – Circle               

geometry; this is the standard geometry of the cell; radius 𝑟𝐴1 is the cell radius and 𝑟𝐴2 is the radius of the circumference 

which delimits the area without activation of SMAD2. B – Ellipse 1 geometry; 𝑟𝐵1and 𝑟𝐵2are the half-width and half-

height of the cell, while 𝑟𝐵3and 𝑟𝐵4 are their analogous for the ellipse which delimits the non-activation area; when 

comparing the two ellipses established as cell shape, aside from the circle, this is the ellipse with a lower width/height 

ratio.  C – Ellipse 2 geometry; 𝑟𝐶1 and  𝑟𝐶2 are the half-width and half-height of the cell, while  𝑟𝐶3 and 𝑟𝐶4 are their 

analogous for the ellipse which delimits the non-activation area; when comparing the two ellipses established as cell shape, 

aside from the circle, this is the ellipse with a higher width/height ratio.  D – Rectangle geometry; 𝑟𝐷1 and  𝑟𝐷2 are the 

width and height of the cell, while  𝑟𝐷3 and  𝑟𝐷4 are their analogous for the rectangle which delimits the non-activation 

area. E – Square geometry; 𝑟𝐸1is the width of each side of the cell, while 𝑟𝐸2 is its analogous for the non-activation area. 
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concentration in a given Shape)/(Species steady-state concentration in the Circle) – SC ratio. As we can 

see in Figure 4.4, the differences between the values of the SC ratio for each species, across cell shapes, 

are smaller for the SMAD2n and SMAD4n than for the pSMAD2n and TRIMER_n. It is worth noting 

that the fact that each of the bar plots presented in Figure 4.4 corresponds to a simulation belonging to 

a different MathModel (see Section 3.1.1 – Virtual Cell Software) might have contributed to a certain 

extent to these differences. The establishment of a new geometry for the cell in each MathModel resulted 

in slight variations for the area of the nucleus due to resolution limitations of the software. In what 

concerns the pSMAD2n, the bigger differences in the value of the SC ratio of this species throughout 

the different cell shapes, in comparison to the SMAD2n and the SMAD4n, can possibly be related with 

the fact that the equation which translates the variation of concentration of the pSMAD2n, Equation 

(3.20), is the equation that includes more terms. Therefore, any slight variation in the value of the con-

centration for the other species, contributed to the exacerbation of the variation of the pSMAD2n con-

centration across distinct geometries. 
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Figure 4.4 – Relative concentration of species in the nucleus, for each cell geometry. The bar plots correspond 

to the ratio between the concentration of a species in a given shape and its concentration in the circle – SC ratio 

– for different cell geometries: Circle, represented in blue; Ellipse 1, represented in red; Ellipse 2, represented 

in grey; Rectangle, represented in green; Square, represented in yellow. The different species, namely the 

SMAD2n, pSMAD2n, TRIMER_n and SMAD4n, are presented in the vertical axis. 



 

38 

 

4.3.2 – The Influence of the Width/Height Ratio on the Nuclear Concentration of Species 

 

    In order to study more in depth the influence of the cell shape on the concentration of the nuclear 

species of the TGF-𝛽 (briefly assessed in the previous section of results, Section 4.3.1 – The Influence 

of Cell Shape on the Nuclear Concentration of the Species) an experiment was carried for different 

width/height ratio values of the cell – within a range from 1 to 5. The experiment encompasses both 

rectangular and elliptic shapes of cells. The results are presented in Figure 4.5, Figure 4.6, Figure 4.7 

and Figure 4.8, for the SMAD2n, pSMAD2n, TRIMER_n and SMAD4n, respectively. Each figure 

shows a scatter plot for the SC ratio dependent on the width/height ratio of the cell, of both elliptical 

and rectangular cell shapes. In addition, a simple linear regression model was applied in each case; 

therefore, each figure displays the trend line of each scatter plot and the adjusted coefficient of determi-

nation, denoted by 𝑅𝑎𝑑𝑗
2 . The 𝑅𝑎𝑑𝑗

2  was selected to measure the quality of each linear regression and aid 

in the evaluation of the results. The coefficient of determination 𝑅2 is sometimes used to assess if the 

model in question is of good quality, defined as the percentage of the variation that can be explained by 

the regression equation. However, the value of the variable 𝑅2 always increases as new variables are 

added to the model, which does not happen with 𝑅𝑎𝑑𝑗
2 . The value of  𝑅𝑎𝑑𝑗

2  only increases if the new 

variable provides, in fact, a better fit to data. Bearing in mind that additional experiments can be per-

formed following the work presented in this document, it is pertinent to use the 𝑅𝑎𝑑𝑗
2  instead of the 𝑅2 

to evaluate the quality of the linear regressions since it supplies information concerning the new variable 

to add to the model, indicating if it provides a better fit to the data. The value of the 𝑅𝑎𝑑𝑗
2  is comprised 

between 0 and 1 and if it is close to 1, that means that the independent variable is a good linear predictor 

of the dependent variable [83].  

    𝑅𝑎𝑑𝑗
2  is obtained through Equation (4.3):  

 

 

 
𝑅𝑎𝑑𝑗

2 = 1 − [(1 − 𝑅2) (
𝑛 − 1

𝑛 − 𝑝 − 1
)] 

(4.3) 

 

 

 

In which 𝑛 denotes the sample size, 𝑝 denotes the number of independent variables excluding the con-

stant and 𝑅2 represents the coefficient of determination, which is obtained with Equation (4.4): 

 

 

 
𝑅2 =

𝑆𝑆𝑅

𝑆𝑆𝑇
 

(4.4) 
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In which SSR represents the sum of squares Σ(𝑦
�̂�

− �̅�)
2
, SST is the total sum of squares Σ(𝑦𝑖 − �̅�)2, 𝑖 

is the number of the measurement and 𝑌 is the dependent variable. In this particular case, 𝑖 is the 

width/height ratio number 𝑖, 𝑛 =8, 𝑝=1, the width/height ratio is the independent variable and the de-

pendent variable is the SC ratio, substituting variable 𝑌 in Equations (4.3) and (4.4). 

    By looking at Figure 4.5, it is noticeable that, in general, when taking into account a certain value of 

the width/height ratio, the SC ratio has a higher value for an elliptical cell shape than for a rectangular 

one. However, when the width/height ratio is approximately 5.2, the regression lines intersect and the 

SC ratio becomes higher for the rectangular cell shape. It is also immediately noticeable that the slopes 

of the regression lines for both cell shapes are negative, namely -0.0029 for the ellipse and -0.0012 for 

the rectangle. These slope values indicate that as the width/height ratio increases, the SC ratio for the 

SMAD2n decreases. In addition, since the absolute value of the regression line slope for the ellipse is 

higher than the absolute value of the regression line slope for the rectangle, that means that for each 

additional unit of the width/height ratio there is a higher decrease of the SC ratio for the ellipse, indicat-

ing that an elliptical cell shape induces less concentration of the SMAD2n as the width/height ratio 

increases. It is worth noting that the 𝑅𝑎𝑑𝑗
2  for both cases, for the ellipse and for the rectangle, is                

considerably below 1 – 0.537 and 0.102, respectively. These values show that for the SMAD2n, the 

width/height ratio is a mediocre linear predictor to the SC ratio, in the case of the elliptical cell shape, 

and not a good linear predictor to the SC ratio, in the case of the rectangle. This means that there is a 

big dispersion of the observations for the SC ratio, especially for the rectangular cell shape.  
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    When analyzing Figure 4.6 and Figure 4.7, concerning the pSMAD2 and the TRIMER_n, respec-

tively, it can be observed that for both sets of results there is a decrease in value for the SC ratio as the 

width/height ratio increases, which is corroborated by the negative slope of every regression line. In the 

case of the pSMAD2n, the slope of the regression line for the elliptical cell shape is -0.0332 and for the 

rectangular cell shape it is -0.0451, as seen in Figure 4.6. Initially, when considering the same 

width/height ratio for both cell shapes, the SC ratio is superior for the rectangular cell. However, as the 

width/height ratio approaches a value of 2.4, the regression lines of both cell shapes intersect and the 

SC ratio becomes higher for the elliptical cell shape. In the case of the TRIMER_n, the slope of the 

regression line for the elliptical cell shape is -0.0501 and for the rectangular shape it is -0.0685, as 

depicted in Figure 4.7. Similar to the results concerning the pSMAD2n, for the TRIMER_n, when con-

sidering the same width/height ratio for both cell shapes, the SC ratio is superior for the rectangular cell 

at first but around a width/height ratio of 2.6, the SC ratio becomes higher for the elliptical cell. The 

slope values for the regression lines concerning the pSMAD2n and the TRIMER_n (previously men-

tioned in this paragraph) also indicate that for the pSMAD2n and the TRIMER_n, there is a higher 

decrease of the SC ratio by additional unit of the width/height ratio for a rectangular cell shape than for 

an elliptical shape, since the absolute value of the slopes is superior when considering a rectangular cell 

shape. In what concerns the quality of the model, the values assumed by  𝑅𝑎𝑑𝑗
2  are near 1 for the 

pSMAD2n and the TRIMER_n. For the pSMAD2n, the variable assumes values of 0.896 and 0.985, 

Figure 4.5 – Influence of the width/height ratio on the concentration of the SMAD2n measured by the SC 

ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented by red dots, and 

for the rectangle, represented by green dots. The respective scatter plot regression lines are displayed by 

dashed lines of the same color. The trend line equations and respective adjusted R-squared values are also 

shown. 
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when considering an elliptical cell shape and a rectangular cell shape, respectively. For the TRIMER_n, 

𝑅𝑎𝑑𝑗
2  has values of 0.877 and 0.982 for an elliptical cell shape and a rectangular cell shape, respectively. 

Since these values of 𝑅𝑎𝑑𝑗
2  are near 1, the linear regression models are shown to be good models for the 

considered dependent and independent variables. It can be concluded that for the pSMAD2n and the 

TRIMER_n, the width/height ratio is a good linear predictor of the SC ratio. Lastly, the similar slopes 

and 𝑅𝑎𝑑𝑗
2  values of the regression lines of each cell shape for both species, pSMAD2n and TRIMER_n, 

display the similarity in the Equations which represent the variation of the concentration of the 

pSMAD2n and the TRIMER_n, Equations (3.20) and (3.21) since both of these equations have the same 

number of quadratic terms. 
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Figure 4.6 – Influence of the width/height ratio on the concentration of the pSMAD2n measured by the SC 

ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented by red dots, and 

for the rectangle, represented by green dots. The respective scatter plot regression lines are displayed by 

dashed lines of the same color. The trend line equations and respective adjusted R-squared values are also 

shown. 
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    In Figure 4.8, which concerns the SMAD4n, there is an increase in the SC ratio as the width/height 

ratio increases, for both cell shapes: elliptical and rectangular. This finding is corroborated by the posi-

tive slopes of the regression lines for each cell shape, assuming a value of 0.0014 for an elliptical cell 

shape and a value of 0.0019 for a rectangular cell shape. Initially, the SC ratio is higher for the elliptical 

cell shape. However, as the width/height ratio approaches a value of 2.6, the regression lines intersect 

and, then, the SC ratio becomes higher when considering the rectangular cell shape. Considering the 

SMAD4n, the slope values of the regression lines for each cell shape indicate that there is an increase 

by 0.0014 in the SC ratio by unit of the width/height ratio for an elliptical cell shape, while there is an 

increase by 0.0019 in the SC ratio by unit of the width/height ratio for a rectangular cell shape. This 

finding indicates that a rectangular cell shape promotes higher concentration of the SMAD4n as the 

width/height ratio increases, in comparison with an elliptical cell shape. The 𝑅𝑎𝑑𝑗
2  values obtained for 

the SMAD4 are 0.982 for the rectangle and 0.840 for the ellipse. Since these values are high values of 

𝑅𝑎𝑑𝑗
2 , the linear regression models are shown to be of good quality – the width/height ratio is a good 

linear predictor for the SC ratio, when considering the SMAD4n. It is worth noting that the determined 

values of 𝑅𝑎𝑑𝑗
2  for both cell shapes in the case of the SMAD4n, are similar to the values of 𝑅𝑎𝑑𝑗

2  for the 

pSMAD2n and the TRIMER_n (see Figure 4.6 and Figure 4.7). The similarities between these values 

are most likely due to the fact that the equation which translates the change in concentration of the 
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Figure 4.7 – Influence of the width/height ratio on the concentration of the TRIMER_n measured by the SC 

ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented by red dots, and 

for the rectangle, represented by green dots. The respective scatter plot regression lines are displayed by 

dashed lines of the same color. The trend line equations and respective adjusted R-squared values are also 

shown. 
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SMAD4n, Equation (3.22), has the same number of quadratic terms as the equations which translate the 

variation in concentration of the pSMAD2n and the TRIMER_n – Equations (3.20) and (3.21), respec-

tively. In addition, it is worth noting that the increase of the SC ratio as the width/height ratio grows in 

both cell shapes, considering the SMAD4n, was expected. This expectation resides in the fact that for 

the TRIMER_n, there is a decrease in the SC ratio as the width/height ratio increases and the Equations 

which translate the change in concentration of both of this species – Equation (3.21) for the TRIMER_n 

and Equation (3.22) for the SMAD4n – are symmetrical (apart for their first term).  

 

     

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    When comparing the presented results for every species among each other, it can be concluded that 

for an elliptical cell shape, the lowest absolute value for a regression line slope is obtained for the 

SMAD4n, which equals 0.0014, followed by the determined value when considering the SMAD2n, 

0.0029. Also for an elliptical cell shape, the highest absolute value of a regression line slope is obtained 

for the case of the TRIMER_n, in which it assumes a value of 0.0501, followed by the pSMAD2n, where 

it equals 0.0332. This means that considering the same cell size and an elliptical cell shape, there is less 

change in concentration of the SMAD2n and the SMAD4n by additional unit of the width/height ratio 

than for the concentration of the pSMAD2n and the TRIMER_n (which is corroborated by the results 

presented in Figure 4.4, Section 4.3.1 – The Influence of Cell Shape on the Nuclear Concentration 
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Figure 4.8 – Influence of the width/height ratio on the concentration of the SMAD4n measured by the SC 

ratio. The figure displays a scatter plot for different cell shapes – for the ellipse, represented by red dots, and 

for the rectangle, represented by green dots. The respective scatter plot regression lines are displayed by 

dashed lines of the same color. The trend line equations and respective adjusted R-squared values are also 

shown. 
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of the Species). For a rectangular cell shape, the lowest absolute value determined for the regression 

line slope is observed for the SMAD2n, assuming a value of 0.0012, followed by the observed value for 

the SMAD4n, which is 0.0019. On the other hand, the highest absolute value obtained for the regression 

line of the rectangular cell shape is observed for the TRIMER_n, assuming a value of 0.0685, succeeded 

by the pSMAD2n, where it equals 0.0451.  

    In summary, when considering a simple linear regression model to evaluate the influence of the 

width/height ratio on the SC ratio, it can be concluded that a bigger width/height ratio of the cell pro-

motes less concentration of the SMAD2n, the pSMAD2n and of the TRIMER_n for elliptical and rec-

tangular cell shapes. Conversely, it was found that as the width/height ratio of the cell increases, the 

concentration of the SMAD4n also increases, for elliptical and rectangular cell shapes. Still considering 

elliptical and rectangular cell shapes, the species whose concentration are less affected by a rise in the 

width/height ratio are the SMAD2n and the SMAD4n and the species which suffer more variation in 

their concentration as the width/height ratio becomes higher are the pSMAD2n and the TRIMER_n. In 

particular, for an elliptical cell shape, the highest variation in the SC ratio by width/height ratio unit is 

detected for the TRIMER_n and the lowest is observed for the SMAD4n. For a rectangular cell shape, 

the species whose concentration suffer more variation by width/height unit is the TRIMER_n and the 

species concentration less affected by the increase of the width/height ratio is the concentration of the 

SMAD2n. Out of all the presented species, the SMAD2n represents the higher discrepancy in its con-

centration value across cell shapes – the ratio between the slope of the regression line of the ellipse and 

the slope of the regression line of the rectangle equals 2.417, meaning that the concentration of the 

SMAD2n is 142% higher for an elliptical cell than for a rectangular one, by width/height ratio unit. For 

the other species, the inverse ratio was determined since the slope is higher for the rectangular shape 

(the variation of the species concentration across cell shapes is what is being considered, not the varia-

tion from one specific shape to another) and the respective percentage of increase is presented. The 

pSMAD2n, the TRIMER_n and the SMAD4n have similar variations across cell shapes. Following the 

SMAD2n, the second highest discrepancy for the concentration value across cell shapes is determined 

for the TRIMER_n, for which the concentration is 36.7% higher when the cell shape is rectangular, in 

terms of width/height ratio unit. Following the TRIMER_n, the pSMAD2n holds the third highest dis-

crepancy in its concentration value across cell shapes, for which a rectangular cell shape induces a con-

centration 35.8% superior to an elliptical cell shape by width/height ratio unit. Lastly, the lowest dis-

crepancy in the concentration of a species across shapes is determined for the SMAD4n, for which a 

concentration 35.7% superior is determined for a rectangular cell shape in relation to an elliptical cell.      

    However, it is worth noting that the linear regression model was shown to not be of good quality for 

the SMAD2n. The prominent dispersion of values of the SC ratio found for the SMAD2 might be related 

with the fact that the equation which translates the variation in the concentration of the SMAD2n – 

Equation (3.19) – has less terms than the equations which represent the variation of the concentration of 

the other species in the nucleus – Equations (3.20) – (3.22) – which would normally result in less com-

putational miscalculation, thus, less deviation from real values.  
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4.3.3 – The Influence of the Cell Size on the Concentration of the TRIMER_n 

 

    This set of experiments aims to assess the influence of the area of the cell (which is the other mor-

phological characteristic in study besides the shape of the cell) upon the concentration of the TRI-

MER_n. In this experiment, the only outcome taken into account is the average concentration of the 

TRIMER in the nucleus, the TRIMER_n, due to the fact that this is the only species capable of binding 

to the DNA, thus allowing the occurrence of genetic expression and activating the signaling pathway 

downstream.  

    Simulations ran to assess the influence of the cell size on the TRIMER_n concentration for different 

cell geometries, with different areas for the cell, while maintaining the area of the nucleus and the area 

of the activation ring (see Section 3.2.4 – Geometry). The different values of the cell size used in these 

simulations are the Standard Size (see Section 3.2.4 – Geometry), 0.6·Standard Size; 0.8·Standard Size; 

2.0·Standard Size; 6.0·Standard Size; 8.0·Standard Size; 10.0·Standard Size. The results are presented 

in Figure 4.9, in which the TRIMER_n concentration is represented by the SC ratio. This figure displays 

scatter plots, for the different cell geometries, of the SC ratio depending on the cell size. In order to 

interpret the results obtained via simulations, a trend line was fit to the data for all different cell shapes: 

circle, ellipse 1, ellipse 2, rectangle and square. The type of trend line that fitted the best the available 

data is a power trend line. The power trend lines of each scatter plot  and the respective power functions 

are also depicted in Figure 4.9, along with the 𝑅𝑎𝑑𝑗
2 , which indicates the reliability of the trend line (see 

Section 4.3.2 – The Influence of the Width/Height Ratio on the Nuclear Concentration of Species). 

    Firstly, by observing the values attributed to 𝑅𝑎𝑑𝑗
2  for the circle (Figure 4.9A), ellipse 1 (Figure 4.9B), 

ellipse 2 (Figure 4.9C), rectangle (Figure 4.9D) and square (Figure 4.9E), which are 0.983, 0.985, 0.986, 

0.978 and 0.978, respectively, it can be concluded that all  𝑅𝑎𝑑𝑗
2  are close to 1, thus indicating that the 

trend lines used to fit the data hold a high value of reliability. This suggests that the influence of the cell 

size on the TRIMER_n concentration can be modeled by a power function, regardless of the cell geom-

etry. In addition, a power function implies a decrease or increase in the value of the dependent variable, 

at a decreasing rate or increasing rate, respectively, as the independent variable increases. In the specific 

case of the results depicted in Figure 4.9, there is a decrease in the SC ratio, thus in the TRIMER_n 

concentration, as the size of the cell increases. The decrease in value of the SC ratio by area unit becomes 

less accentuated as the cell size increases. 

    Considering the Standard Size of the cell (707.36 𝜇𝑚2) as the reference cell size and the cell size as 

the independent variable in the functions which translate the trend lines presented for the circle, ellipse 

1 and ellipse 2 (Figure 4.9A, Figure 4.9B and Figure 4.9C, respectively), calculations were performed 

to assess the variation in the SC ratio value for the following cell sizes: 2.0·Standard Size (1414.72 

𝜇𝑚2), 5.0·Standard Size (3536.80 𝜇𝑚2) and 10.0 (7073.60 𝜇𝑚2) ·Standard Size. All three cell shapes 

display the same percentage of drop in the TRIMER_n concentration for the considered cell sizes. In 

particular, for a cell size correspondent to 2.0·Standard Size, there is a decrease of 18% in the absolute 

value of the SC ratio (in comparison to a cell of Standard Size) while for cell sizes of 5.0·Standard Size 

and 10·Standard Size, there is a decrease of 38 % and of 49%, respectively. When applying the same 

calculations to a rectangular cell, for which the results are displayed in Figure 4.9D, it can be concluded 

that there is a drop of 19% in the SC ratio value for a cell size of 2.0·Standard Size (in relation to a cell 

of Standard Size), while there is a decrease in value of the SC ratio equal to 39% and 51% for cell sizes 

of 5.0·Standard Size and 10.0·Standard Size, respectively. Lastly, when applying the same calculations 

to a square cell, for which the results are displayed in Figure 4.9E, it can be concluded that there is a 

drop of 18% in the SC ratio value for a cell size of 2.0·Standard Size, while there is a decrease in the 

SC ratio of 36% and 48% for cell sizes of 5.0·Standard Size and 10.0·Standard Size (when comparing 
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to a cell of Standard Size). However, it is noteworthy that the discrepancy between the observed per-

centages of decrease of the SC ratio across cell shapes might be related with minor alterations in the 

area of the activation ring (see 3.2.4 – Geometry) which automatically took place in VCell when mod-

ifying the cytoplasmic area of the cell from one MathModel to another. 

    In summary, when analyzing the results from Figure 4.9, it can be inferred that as the area of the cell 

increases, the SC ratio decreases for all the different shapes. For a range of cell sizes which extends from 

the Standard Size up until 10·Standard Size, there is a drop of approximately 50% in the concentration 

of the TRIMER_n for all cell sizes. In particular, the biggest drop of concentration for the considered 

cell sizes was observed for the rectangular cell, followed by the circular and two elliptical geometries, 

and lastly, the SC ratio decreases the least for the square cell. 
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Figure 4.9 – Influence of the cell size on the concentration of the TRIMER_n measured by the SC ratio. The 

cell size range extends from the standard cell area up to 10 times the standard area. The figure displays a 

scatter plot for different cell shapes, power trend line equations and respective adjusted R-squared values. A 

–Circle geometry; the scatter plot is represented by blue dots and the trend line is represented by a blue 

dashed curve; B –Ellipse 1 geometry; the scatter plot is represented by red dots and the trend line is repre-

sented by a red dashed curve; C –Ellipse 2 geometry; the scatter plot is represented by grey dots and the trend 

line is represented by a grey dashed curve; D –Rectangle geometry; the scatter plot is represented by green 

dots and the trend line is represented by a green dashed curve; E –Square geometry; the scatter plot is repre-

sented by yellow dots and the trend line is represented by a yellow dashed curve. 
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4.3.4 – Sensitivity Analysis 

 

    Every parameter of the model was subjected to a sensitivity analysis procedure in order to understand 

which parameters affect the TRIMER_n concentration the most. The sensitivity of each parameter was 

evaluated through the following equation: 

 

 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 

| 

|𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛(𝑘 + ∆𝑘) − 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛(𝑘)|
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑅𝐼𝑀𝐸𝑅_𝑛(𝑘)

(
∆𝑘
𝑘

)
⁄ | 

(4.5) 

 

 

 

Which was adapted from [84]. It is noteworthy that the concentration of the TRIMER_n mentioned in 

Equation (4.5) is the steady-state concentration. The ratio 
∆𝑘

𝑘
 assumes the following values per simula-

tion: +10%, +50%, +100%, -10%, -50% and -100%. Equation (4.5) was selected to evaluate the param-

eter sensitivity because it was also used for sensitivity analysis purposes in a different pathway, the 

YAP/TAZ pathway, included in the PhD project related to this project (see Section 1.1 – Contextual-

ization and Motivation). The achieved results from Equation (4.5) place the dependence of the TRI-

MER_n on the considered parameter in one of the three categories below: 

 

 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 1: the dependence on the parameter is linear; 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 < 1: the dependence on the parameter is small; 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 > 1: The dependence on the parameter is high.  

  

 

    The results obtained through the sensitivity analysis process are presented in Figure 4.10, Figure 4.11 

and Figure 4.12. 

    When comparing the results obtained for the 10% fold change, Figure 4.10, with the results deter-

mined for the 50% and 100% fold change, Figure 4.11 and Figure 4.12, respectively, it can be seen that 

the difference between the parameter sensitivity value for the fold increase and fold decrease, for every 

parameter, is smaller for the 10% fold change than for the latter fold changes, which is accordingly to 

what is expected since the values for the parameters remain closer to their original values when the fold 

change is smaller, resulting in a more subtle change of outcomes.  

    The results from Figure 4.10, Figure 4.11 and Figure 4.12 suggest that the parameter sensitivity is 

higher when there is a decrease in the value of each parameter than when it is increased. This finding is 

most likely due to saturation in the outcome. In the case of diffusive processes, at a given instant, the 

molecules are already well-mixed so a rise in the value of the diffusion coefficients will not change the 

outcome. In the case of reactions, by greatly increasing a reaction rate, the reaction will mostly move in 
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one direction; therefore, a high value for the reaction rate will not have a big effect on the outcome from 

a certain point. Decreasing the value of these parameters will prompt larger sensitivity. Furthermore, the 

graphs support that the reactions which take place in the cell have in general, particularly for 10% and 

50% fold change of the parameters, a stronger impact upon the outcome – concentration of the TRI-

MER_n – than the diffusion of the species. In particular, there is a high dependence of the outcome on 

the dissociation rate of the TRIMER 𝑘𝑑𝑖𝑠𝑠 and the dephosphorylation rate of the pSMAD2n  𝑘𝑑𝑒𝑝ℎ𝑜𝑠. 

    In the case of 𝑘𝑑𝑖𝑠𝑠, this dependence might be due to the fact that it directly influences the concen-

tration of the TRIMER_n, which is the outcome used for sensitivity analysis, since it is its dissociation 

rate and it takes part in every equation which states the change of concentration of species of the 

pSMAD2, the TRIMER and the SMAD4 (both in the cytoplasm and in the nucleus) – Equations (3.2), 

(3.5), (3.6) and (3.20) – (3.22). In [18], it was also concluded through sensitivity analysis that the disso-

ciation rate of the TRIMER had a strong impact upon the concentration of the TRIMER_n, even though 

this finding only applies to an intermediate to longer period of time following ligand stimulation. How-

ever, it is worth noting that in [18] the dissociation rate of the TRIMER is represented by distinctive 

variables in the cytoplasm and the nucleus and this separation was not made in this project. In [15], the 

concentration of the TRIMER_n was also shown to be very sensitive to the analogous of 𝑘𝑑𝑖𝑠𝑠 in their 

work. Regarding the sensitivity analysis for 𝑘𝑑𝑖𝑠𝑠 performed in this work, it is worth noting that the 

maximum end time for the simulations was of 1,000,000s and this limiting factor did not allow to fully 

reach the steady-state concentration of the TRIMER_n. However, the graph obtained via simulation 

suggests that the steady-state concentration is approximately 0.070 𝜇𝑀 (the value used for the sensitivity 

analysis is 0.0717 𝜇𝑀). 

    In what concerns the parameter 𝑘𝑑𝑒𝑝ℎ𝑜𝑠, its sensitivity might be explained by the fact that this rate 

only multiplies by the pSMAD2n in the term in which it is inserted in Equations (3.19) and (3.20), it 

does not multiply by the concentration of the other species. Therefore, taking into account that almost 

all the rates and concentrations have an absolute value below 1, this makes the term in which it is inserted 

to have higher magnitude than many of the other terms present in all the equations, culminating in a 

larger weight on the signaling pathway outcome. In addition, the parameter 𝑘𝑑𝑒𝑝ℎ𝑜𝑠 has a direct effect 

on the concentration of the pSMAD2n, since it consists in its dephosphorylation rate. This fact conse-

quently has a strong effect on the TRIMER_n concentration as the pSMAD2n integrates the TRIMER_n 

complex molecules. The dephosphorylation rate of the nuclear phosphorylated SMAD2 is also identified 

in literature as one of the parameters that the TRIMER_n has shown more sensitivity to, particularly in 

[18].    

    The results also show that the parameter 𝑘𝑡𝑟𝑖𝑚, which is the formation rate of the TRIMER, is also 

one of the parameters to which the outcome displays more sensitivity. This is most likely due to the fact 

that this parameter is directly connected to the TRIMER, regardless of it being located in the cytoplasm 

and in the nucleus, translating the rate at which the pSMAD2 and the SMAD4 molecules associate with 

each other in order to form the TRIMER complex. In [15], this parameter has also been identified has 

one which carries the most influence upon the nuclear TRIMER complex concentration. 

    The import and export rates of the SMAD4 molecules, 𝑘𝑐𝑛_𝑆𝑀𝐴𝐷4 and 𝑘𝑛𝑐_𝑆𝑀𝐴𝐷4, respectively, 

have also been identified through sensitivity analysis as two of the parameters to which the nuclear 

concentration of the TRIMER is the most sensitive to. This goes accordingly to what was found in [18]. 

Taking into account that the initial concentration of the species was the same across simulations, the 

most plausible explanation for the outcome sensitivity in relation to the previously stated rates is the fact 

that these rates directly influence the amount of SMAD4 available in the nucleus and these SMAD4n 

molecules associate with the SMAD2n molecules to constitute the TRIMER_n. However, it is notewor-

thy that in the case of the pSMAD2n, even though it also takes part in the composition of the TRIMER_n, 

the outcome did not reveal as much sensitivity to its import rate to the nucleus. This is probably due to 

the fact that the pSMAD2 is able to translocate from the cytoplasm into the nucleus but cannot leave the 



 

50 

 

nucleus in order to return to the cytoplasm, in opposition to the SMAD4n, which is able to undergo 

translocation both ways. This means that in the case of the pSMAD2n, a change in value of its import 

rate played a less important role on the concentration of the TRIMER_n since any of its molecules which 

migrate into the nucleus end up staying in the nucleus regardless, which means that the sole direct factor 

which plays a pivotal role in the determination of the number of pSMAD2n molecules that participate 

in the formation of the TRIMER_n is the dephosphorylation rate of the pSMAD2n, represented by 

𝑘𝑑𝑒𝑝ℎ𝑜𝑠. The latter had previously been identified as one of the parameters to which the outcome dis-

played more sensitivity.  

    Even though these results suggest that diffusion processes do not have as much effect upon the nuclear 

TRIMER concentration as the reactions, it seems that their absence in the model would have a big effect 

on the outcome, as it can be seen in Figure 4.12. When the diffusion coefficients of the species are equal 

to 0.0 𝜇m2s−1, the outcome displays approximately linear to high sensitivity to these parameters (the 

exceptions are the 𝑆𝑀𝐴𝐷4𝑛_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒, the 𝑇𝑅𝐼𝑀𝐸𝑅𝑛_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 and the 

𝑝𝑆𝑀𝐴𝐷2_𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒).  

    In summary, it can be concluded that the model shows that the dissociation and formation of the 

TRIMER (both in nucleus and in the cytoplasm), the export and import of the nuclear SMAD4 and the 

dephosphorylation of the nuclear pSMAD2 are the cell processes which have more impact on the con-

centration of the nuclear TRIMER. In addition, the diffusion coefficients do not contribute as much for 

the concentration of the nuclear TRIMER as the different rates associated to the species included in this 

model. However, these parameters should still be included in models build to mimic and study the dy-

namics of the TGF-β pathway since, in general, a decrease of 100% in their value displays that there is 

a linear to high sensitivity on the outcome. 
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Figure 4.10 – Parameter sensitivity for 10% fold change of the parameters. The bars in blue represent the parameter sensi-

tivity due to a decrease of 10% of the value of the parameter, while the bars in orange represent an increase of 10% of the 

value of the parameter. 
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Figure 4.11 – Parameter sensitivity for 50% fold change of the parameters. The bars in blue represent the parameter sensi-

tivity due to a decrease of 50% of the value of the parameter, while the bars in orange represent an increase of 50% of the 

value of the parameter. 
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4.4 – Module II Results 

 

    As previously mentioned in Section 1.2 – Objectives, one of the aims of this work is to assess the 

crosstalk between mechanotransduction, in specific between integrins, and the TGF-β signaling path-

way. The generated basis script for this module of the work is shown in Section Module II Script from 
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Figure 4.12 – Parameter sensitivity for 100% fold change of the parameters. The bars in blue represent the parameter sensi-

tivity due to a decrease of 100% of the value of the parameter, while the bars in orange represent an increase of 100% of the 

value of the parameter. 
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APPENDIX C. It is worth noting that all the applicable equations and boundary conditions for this 

module are present in Section 3.2.3 – Equations and Boundary Conditions and that every parameter 

associated to the integrin module, namely 𝑘𝑠𝑦𝑛_𝑖𝑛𝑡𝑔,  𝑘𝑑𝑒𝑔_𝑖𝑛𝑡𝑔, 𝑘𝑑𝑖𝑠𝑠_𝐼𝐶, 𝑘𝑓𝑜𝑟𝑚_𝐼𝐶 and 𝐼𝑚𝑎𝑥, 

now assume the value stated in Section 3.2.2 – Parameters, Table 3.2 and Table 3.3. For some simula-

tions, appropriate modifications were made to 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1, 2, 3, 4. Therefore, all 𝑘𝑒𝑥𝑡𝑟𝑎𝑖

, 𝑖 =

1,2, 3, 4,  assume the value stated in Table 3.3, which is 0.1, unless stated otherwise.  

 

 
4.4.1 – Assessment of the Interactions between the TGF-β Signaling Pathway and the 

Integrins 

 

    As stated in Section 1.1 – Contextualization and Motivation, a deeper understanding regarding the 

crosstalk between the TGF-β and mechanotransduction can potentially provide valuable information to 

achieve control of TGF-β expression and this knowledge can subsequently be used to uncover cell-

biomaterial interactions employed in numerous therapies, such as therapies aimed to control the pro-

gression of tumors. Therefore, a series of experiments were performed to understand the influence of 

the crosstalk interactions with the integrins upon the signaling cascade. These simulations were created 

to evaluate the influence of each type of crosstalk interaction, either in separate or together with another 

type of interaction, on the concentration of the TRIMER_n, since this species binds to the nucleus, thus 

allowing genetic expression. 

    The four types of interaction which were considered in these experiments are:  

 

1) The upregulation of the TGF-𝛽 receptors elicited by the integrins, which is translated into an increase 

of the synthesis rate of the C complex; 

2) The C complex, whose synthesis is elicited by the integrins, binds to the SMAD2, prompting an 

increment in the catalytic constant of the phosphorylation reaction of the SMAD2 mediated by the C 

complex; 

3) The stabilization of the TGF-𝛽 receptors elicited by the integrins, resulting in the decrease of the 

degradation rate of the C complex; 

4) The formation of the IC complex, a complex made up by the integrins, I, and the TGF-𝛽 receptors, 

represented by the C complex; the IC complex binds to the SMAD2, eliciting the increase of the catalytic 

constant of the phosphorylation reaction of the SMAD2 mediated by the IC complex. 

 

    The results obtained via simulation concerning the influence of one type, two types and three types 

of crosstalk interactions upon the TGF-β signaling pathway are presented in Figure 4.13, Figure 4.14 

and Figure 4.15, respectively. All these figures depict the value of the relative nuclear different bar plots. 

The relative concentration for each interaction was calculated as a ratio between the absolute value of 

the nuclear TRIMER_n concentration for the interaction or simultaneous interactions taken into account 

( 1, 2, 3 or 4) and the TRIMER_n concentration for all 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 =0.1. One should bear in mind that  

𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1,2,3,4, are parameters included in functions created to evaluate different types of crosstalk 

interactions (see Section 3.2.3 – Equations and Boundary Conditions). Each number is associated to 

each type of crosstalk in the following manner: 1) 𝑘𝑒𝑥𝑡𝑟𝑎1
 is associated to an increase of the synthesis 
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rate of the C complex; 2) 𝑘𝑒𝑥𝑡𝑟𝑎2
 is associated to an increase in the catalytic constant of the phosphor-

ylation of the SMAD2 mediated by the C complex; 3) 𝑘𝑒𝑥𝑡𝑟𝑎3
 is associated to a decrease in the degra-

dation rate of the C complex;  4) 𝑘𝑒𝑥𝑡𝑟𝑎4
 is associated to an increase of the catalytic constant of the 

phosphorylation of the SMAD2 mediated by the IC complex. The bar plot which concerns the simulation 

for all 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 =0.1 (all 𝑘𝑒𝑥𝑡𝑟𝑎𝑖

 assume their default value) is denoted as Control. In order to identify if 

a certain type of crosstalk interaction suffers any modification from the default value of 0.1, there are 

symbols associated to each bar plot: the symbol “+” is used to denote that there is a modification of 

𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 in relation to its default value; if there is a modification, 𝑘𝑒𝑥𝑡𝑟𝑎𝑖

 assumes the value identified in 

the legend of each figure, placed on their right side, as opposed to the “- “ symbol, which is used when 

the default value of these parameters are maintained. Therefore, a certain type of interaction is never 

considered to be completely “off”; the assessment of the influence of crosstalk interactions with the 

integrins is made by comparing the concentration of the TRIMER_n when there is an increase of the 

absolute value of one, two or three different  𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, to the concentration of the TRIMER_n when there 

is not an increase in the absolute value of any 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 (represented by the Control bar). It is worth noting 

that the values for the concentration of the TRIMER_n which were considered to determine the relative 

concentration displayed by the different bar plots are steady-state concentrations and were obtained via 

simulation.  

    By analyzing Figure 4.13, which portrays the influence that one way of crosstalk of the TGF-𝛽 with 

the integrins has upon the concentration of the TRIMER_n, it can be concluded that in general, when 

there is an increase in the absolute value of 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1,2,3, there is an increase in the outcome, which 

is the concentration of the TRIMER_n. This finding indicates more genetic expression. The results pre-

sented in Figure 4.13 suggest that a higher synthesis rate of the TGF-𝛽 receptors, a higher catalytic 

constant of the phosphorylation of the SMAD2 mediated by the C complex and a lower degradation rate 

of the TGF-𝛽 receptors, individually result in a higher concentration of the TRIMER_n. On the other 

hand, when 𝑘𝑒𝑥𝑡𝑟𝑎4
 is increased, the absolute value of the TRIMER_n concentration practically remains 

the same and is identical to the concentration in default conditions, which suggests that a higher catalytic 

constant of the phosphorylation of the SMAD2 due to IC binding is not relevant to increase the concen-

tration of the TRIMER_n. Another conclusion that can be drawn by looking at Figure 4.13 is that the 

crosstalk between the TGF-𝛽 pathway and the integrins via decrease of the degradation rate of the re-

ceptors promotes more concentration of the TRIMER_n than the other ways of crosstalk. When 𝑘𝑒𝑥𝑡𝑟𝑎3
 

assumes a value of 0.5, the outcome is about 1.15 times the value of TRIMER_n concentration in default 

conditions and when the value of 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 increases to 0.7 and 1.0, the outcome changes to 1.2 times and 

1.3 times the Control outcome, respectively. These values are the highest for every set of 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
𝑖 =

1,2,3,4.  
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    When analyzing Figure 4.14, which assesses the effects of two ways of crosstalk of the TGF𝛽 with 

the integrins, it can be seen that for every possible combination of two types of crosstalk, considering 

all different values assumed by 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
,  𝑖 = 1,2,3,4, there is a higher value for the outcome than the 

one determined in default conditions, which means that when the effects of two different types of cross-

talk are exacerbated simultaneously, more genetic expression is induced. When considering each possi-

ble value for 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, for almost all the combinations which include an increase in the value of 𝑘𝑒𝑥𝑡𝑟𝑎3

 

with a simultaneous increase of other 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
, 𝑖 = 1,2,4 , the outcome assumes a higher value than in 

comparison with other combinations which exclude an increase of 𝑘𝑒𝑥𝑡𝑟𝑎3
. This finding suggests that 

the crosstalk of the integrins with the TGF-𝛽 via decrease of the degradation rate of the receptors is the 

type of interaction which promotes a higher value of the outcome, similar to what is implied by the 

results presented in Figure 4.13. The only exception to this pattern in Figure 4.14 is detected in the joint 

effect of the decrease in the receptor degradation rate and the increase of the catalytic constant of the 

Assessment of One Way of Crosstalk of the TGF-β 

Pathway with the Integrins  

Figure 4.13 – Assessment of one way of crosstalk of the TGF-β pathway with the integrins. The bar plots display the relative 

concentration of the TRIMER_n due to one way of crosstalk with the integrins, except for the first bar plot, which is the 

control bar for the rest of the results. Each  𝑘𝑒𝑥𝑡𝑟𝑎𝑖, 𝑖 = 1,2,3,4,   is associated to a specific  type of crosstalk between the 

integrins and the TGF-β pathway represented by i: 1 – Upregulation of the TGF-β  receptors elicited by the integrins;                    

2 – Increase of the catalytic constant of the phosphorylation of the SMAD2 through binding to the C complex; 3 – Decrease 

of the degradation rate of the receptors; 4 – Increase of the catalytic constant of the phosphorylation of the SMAD2 through 

binding to the IC complex. When the “+” symbol is spotted in the line i, that  means that the parameter  𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 suffers a 

modification and the new value assumed is shown by the legend on the right side of the color plots. The “-” symbol means 

that changes are not made to the default value. 
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phosphorylation of the SMAD2 due to IC binding, associated to parameters 𝑘𝑒𝑥𝑡𝑟𝑎3
 and 𝑘𝑒𝑥𝑡𝑟𝑎4

. This 

combination of interactions is not part of the three bar plots for 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
=0.5 and 𝑘𝑒𝑥𝑡𝑟𝑎𝑖

=0.7 which 

indicate higher concentration values of the TRIMER_n. Similar to findings from Figure 4.13, which 

assess the effects of one way of crosstalk on the TRIMER_n concentration, it is suggested that the phos-

phorylation of the SMAD2 mediated by the IC complex does not promote as much formation of the 

TRIMER_n in comparison with the other types of crosstalk. In Figure 4.14, for 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
=0.5, the highest 

concentration for the outcome is approximately 1.2 times the TRIMER_n concentration in default con-

ditions. When comparing it to the highest concentration presented in Figure 4.13, also for 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
=0.5, 

the highest value is detected when assessing two ways of crosstalk of the TGF-𝛽 with the integrins than 

just one. For the case in which 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
=0.7, the greater concentration achieved for the outcome when 

considering the joint effect of two types of crosstalk, seen in Figure 4.14, is approximately 1.28 times 

the concentration for the TRIMER_n in control conditions. This value is above the highest value seen 

in Figure 4.13, which concerns the assessment of one way of crosstalk; in Figure 4.13, the outcome for 

𝑘𝑒𝑥𝑡𝑟𝑎𝑖
=0.7 is around 1.2 times the outcome in default conditions. This finding is also verified for 

𝑘𝑒𝑥𝑡𝑟𝑎𝑖
=1.0, since the highest value for the outcome in this group of results, in Figure 4.14, is around 

1.38 times the Control outcome versus 1.3 times the outcome concentration in Figure 4.13, which con-

cerns the change in value of only one rate, associated to one type of crosstalk. 
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    By looking at Figure 4.15, when assessing the impact of three ways of crosstalk upon the outcome, 

there is not a general trend when 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 increases. Therefore, it is pertinent to comment on the influence 

of each type of crosstalk when 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 changes, that is, in a case-by-case manner. For the combination 

of 𝑘𝑒𝑥𝑡𝑟𝑎1
, 𝑘𝑒𝑥𝑡𝑟𝑎2

 and 𝑘𝑒𝑥𝑡𝑟𝑎3
 (which corresponds to the joint effect of an increase in the synthesis rate 

of the receptors, in the catalytic constant of the phosphorylation of the SMAD2 mediated by the C com-

plex and of a decrease in the degradation rate of the receptors), as the value of 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 is incremented, 

there is a decline in the concentration of the TRIMER_n. The combination made up by 𝑘𝑒𝑥𝑡𝑟𝑎1
, 𝑘𝑒𝑥𝑡𝑟𝑎2

 

and 𝑘𝑒𝑥𝑡𝑟𝑎4
 (which corresponds to the joint effect of an increase in the synthesis of the receptors, in the 

catalytic constant of the phosphorylation of the SMAD2 mediated by the C complex and in the catalytic 

constant of the phosphorylation of the SMAD2 mediated by the IC complex) leads to less concentration 

of the outcome with higher 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
. When considering the combination of 𝑘𝑒𝑥𝑡𝑟𝑎1

, 𝑘𝑒𝑥𝑡𝑟𝑎3
 and 𝑘𝑒𝑥𝑡𝑟𝑎4

 

Assessment of Two Ways of Crosstalk of the TGF-β 

Pathway with the Integrins  

Figure 4.14 – Assessment of two ways of crosstalk of the TGF-β pathway with the integrins. The bar plots display the relative 

concentration of the TRIMER_n due to two ways of crosstalk with the integrins, except for the first bar plot, which is the 

control bar for the rest of the results. Each  𝑘𝑒𝑥𝑡𝑟𝑎𝑖, 𝑖 = 1,2,3,4,   is associated to a specific  type of crosstalk between the 

integrins and the TGF-β pathway represented by i: 1 – Upregulation of the TGF-β  receptors elicited by the integrins;                     

2 – Increase of the catalytic constant of the phosphorylation of the SMAD2 through binding to the C complex; 3 – Decrease 

of the degradation rate of the receptors; 4 – Increase of the catalytic constant of the phosphorylation of the SMAD2 through 

binding to the IC complex. When the “+” symbol is spotted in the line i, that  means that the parameter  𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 suffers a 

modification and the new value assumed is shown by the legend on the right side of the color plots. The “-” symbol means 

that changes are not made to the default value. 
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(which corresponds to the joint effect of an increase in the synthesis of the receptors, decrease in the 

degradation rate of the receptors and increase in the catalytic constant of the phosphorylation of the 

SMAD2 mediated by the IC complex), there is a slight increase in the outcome as 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 gets higher. 

For the last combination of crosstalk interactions, associated to 𝑘𝑒𝑥𝑡𝑟𝑎2
, 𝑘𝑒𝑥𝑡𝑟𝑎3

 and 𝑘𝑒𝑥𝑡𝑟𝑎4
, (which 

corresponds to the joint effect of an increase in the phosphorylation rate of the SMAD2 mediated by the 

C complex, decrease in the degradation rate of the receptors and increase in the catalytic constant of the 

phosphorylation of the SMAD2 mediated by the IC complex), the concentration of the TRIMER_n 

practically remains the same as 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 is incremented. Still in Figure 4.15, the highest concentration 

for the TRIMER_n is found for the combination of 𝑘𝑒𝑥𝑡𝑟𝑎1
, 𝑘𝑒𝑥𝑡𝑟𝑎2

 and 𝑘𝑒𝑥𝑡𝑟𝑎3
. This value is about 

1.25 times the outcome in Control circumstances when 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
= 0.5. In addition, for the same combi-

nation of crosstalk interactions, when 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
= 0.7 and 𝑘𝑒𝑥𝑡𝑟𝑎𝑖

=1.0, the TRIMER_n concentration is 

around 1.1 times the Control outcome. Once again, these values are the highest among every combina-

tion of different interactions. In comparison with the results concerning one way and two ways of cross-

talk, the highest detected value for the outcome when assessing three ways of crosstalk is identical to its 

analogous presented for the results which assess the influence of one way of crosstalk but it is below the 

highest concentration of the TRIMER_n found for two ways of crosstalk. On the other hand, the lowest 

values of the outcome for every value of 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 , in Figure 4.15, are found for the combination 

of 𝑘𝑒𝑥𝑡𝑟𝑎1
 , 𝑘𝑒𝑥𝑡𝑟𝑎2

 and 𝑘𝑒𝑥𝑡𝑟𝑎4
. The outcome for the combination made up by 𝑘𝑒𝑥𝑡𝑟𝑎1

 , 𝑘𝑒𝑥𝑡𝑟𝑎2
 and 

𝑘𝑒𝑥𝑡𝑟𝑎4
 lies, approximately, between 0.9 and 0.95 times the Control outcome, for every 𝑘𝑒𝑥𝑡𝑟𝑎𝑖

. There-

fore, it can be concluded that the lowest values for the outcome in Figure 4.15 correspond to crosstalk 

combinations which exclude the decline of the degradation rate of the receptors as one of the interactions 

modified from the Control state (𝑘𝑒𝑥𝑡𝑟𝑎3
 is “−”) and, simultaneously, include the increase of the cata-

lytic constant of the phosphorylation of the SMAD2 mediated by the IC complex (𝑘𝑒𝑥𝑡𝑟𝑎4
 is “+”).  From 

the analysis of the results concerning the effects of three ways of crosstalk, it can be concluded that the 

crosstalk with the integrins which results in less outcome is the increase of the catalytic constant of the 

phosphorylation of the SMAD2 mediated by the IC complex and the interaction type which promotes a 

higher level of the outcome is the decrease of the degradation rate of the receptors due to stabilization 

of the integrins. These findings are also corroborated by the results from Figure 4.13 and Figure 4.14, 

concerning one and two types of interaction. 
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    In sumary, the results concerning Figure 4.13, Figure 4.14 and Figure 4.15 indicate that the type of 

crosstalk interaction of the TGF-𝛽 with the integrins which induces less genetic expression is the in-

crease of the catalytic constant of the phosphorylation of the SMAD2 mediated by the IC complex. On 

the other hand, the type of crosstalk interaction which promotes a higher level of the outcome is the 

decrease in the degradation rate of the receptors due to stabilization of the integrins. 
    Another conclusion that can be drawn from Figure 4.13, Figure 4.14 and Figure 4.15 is that in general, 

genetic expression is stimulated more strongly by the joint behavior of two ways of crosstalk than by 

the effects of one way of crosstalk independently and the combination of the influence of three types of 

crosstalk. This finding becomes more evident as the value of 𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 increases, which is associated to a 

more intense effect of each type of crosstalk. 

Assessment of Three Ways of Crosstalk of the TGF-β 

Pathway with the Integrins  

Figure 4.15 – Assessment of three ways of crosstalk of the TGF-β pathway with the integrins. The bar plots display the relative 

concentration of the TRIMER_n due to three ways of crosstalk with the integrins, except for the first bar plot, which is the 

control bar for the rest of the results. Each  𝑘𝑒𝑥𝑡𝑟𝑎𝑖, 𝑖 = 1,2,3,4, is associated to a specific  type of crosstalk between the 

integrins and the TGF-β pathway represented by i: 1 – Upregulation of the TGF-β  receptors elicited by the integrins; 2 – 

Increase of the catalytic constant of the phosphorylation of the SMAD2 through binding to the C complex; 3 – Decrease of the 

degradation rate of the receptors; 4 – Increase of the catalytic constant of the phosphorylation of the SMAD2 through binding 

to the IC complex. When the “+” symbol is spotted in the line i, that means that the parameter  𝑘𝑒𝑥𝑡𝑟𝑎𝑖
 suffers a modification 

and the new value assumed is shown by the legend on the right side of the color plots. The “-” symbol means that changes are 

not made to the default value. 
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CHAPTER 5 – Conclusions 

 

    The present work was performed with the intent of creating a new spatial model for the TGF-β path-

way, built on previously developed models, in order to reach a deeper understanding concerning the 

effect that cell morphology, particularly the shape and the size of the cell, has upon the TGF-β cascade. 

In addition, this work aimed to analyze the crosstalk between the TGF-β pathway and mechanotrans-

duction, namely with the integrins. The relevance of this computational study lies in the potential of 

having a new insight into the cell-biomaterial interactions and subsequently applying this knowledge in 

various therapies, such as cancer therapy.  

    Following the experimental procedures and analysis of the information, the results suggest that a 

bigger width/height ratio of the cell induces less concentration of the SMAD2n, pSMAD2n and TRI-

MER_n, for elliptical and rectangular cell shapes. Conversely, the concentration of the SMAD4n in-

creases as the width/height ratio of the cell increases, for elliptical and rectangular cell shapes. When 

considering different cell shapes, particularly elliptical and rectangular cell shapes, but considering the 

same cell area with increasing width/height ratio of the cell, the species in the nucleus whose concen-

tration suffers the highest percentage of variation across different cell shapes is the SMAD2n. Further 

experimental procedures also suggest that the bigger the size of the cell, the less TRIMER_n concentra-

tion will be obtained downstream – less genetic expression. Particularly, when considering a range of 

cell areas which extends from the standard cell area until 10 times the standard cell area, there is a 

decrease of approximately 50% in the concentration of the TRIMER_n, for different cell shapes. The 

results also suggest that the reactions which take place in the TGF-β pathway play a more important role 

on downstream signaling than the diffusion of species. However, sensitivity analysis of the model pa-

rameters indicate that genetic expression prompted by the TGF-β when considering diffusive processes 

differs considerably from results without considering this phenomenon. Therefore, the diffusion of spe-

cies should be included in models build to mimic and study the dynamics of the TGF-β pathway.  

    In what concerns the crosstalk of the integrins with the TGF-β signaling pathway, it seems that the 

way of crosstalk which increases more heavily genetic expression is the decrease of degradation rate of 

the receptors due to stabilization from the integrins. Conversely, out of the processes of crosstalk with 

the integrins included in this work, the increase of the catalytic constant of the phosphorylation of the 

SMAD2 mediated by the IC complex, complex made up by the receptors and the integrins, seems to 

contribute the least for the previously stated outcome. It was also suggested from the experimental pro-

cedure that in general, the TRIMER_n complex undergoes more upregulation when influenced by the 

exacerbated joint behavior of two ways of crosstalk instead of one way of crosstalk independently or 

the combination of three types of crosstalk. This finding becomes more apparent the more intense the 

effect of each type of crosstalk is (e.g. the higher the synthesis rate of the receptors elicited by the 

integrins and the smaller the degradation rate of the receptors due to stabilization of the receptors, then 

higher the final concentration of the TRIMER will be when these two types of crosstalk are working 

simultaneously). 

    It is noteworthy that this model can be subjected to some improvements, which is particularly sup-

ported by the sensitivity analysis to which the parameters were subjected to in this work, concretely in 

Module I. In order to draw more accurate conclusions regarding the parameters of the model to which 

the nuclear TRIMER complex is more sensitive to, the sensitivity analysis methodology would benefit 

from the analysis of the nuclear TRIMER average concentration at different time points until the end of 

each simulation instead of solely recurring to the steady-state concentration. In addition, the formation 

rate of the TRIMER, 𝑘𝑡𝑟𝑖𝑚, and the dissociation rate of the TRIMER, 𝑘𝑑𝑖𝑠𝑠, could both be divided into 
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two different parameters: one rate applicable in the cytoplasm and one rate applicable in the nucleus. 

These modifications would allow to assess if there is a difference between both compartments in what 

concerns the sensitivity of the outcome to the formation and dissociation of the nuclear TRIMER.  

    Following the work presented in this document, it is pertinent to take as next steps the establishment 

and performance of a set of experiments to assess the crosstalk of the TGF-β pathway with the integrins 

for different cell shapes and, therefore, analyze simultaneously the effect of cell morphology and mech-

anotransduction on the signaling cascade. In addition, since there is evidence of an imbalance in released 

G/F-actin–regulated proteins due to cytoskeletal remodeling, which results in downstream genetic ex-

pression of TGF-β and BMP receptors, the model would benefit from the insertion of a module concern-

ing the interactions with G/F-actin-regulated proteins, thus evaluating the effects of motile functions of 

the cell on the concentration of the TRIMER_n.  

    Lastly, some in vitro experiments with the TGF-β pathway should be carried in order to compare the 

in vitro results with the information obtained in silico for further validation and corroboration of this 

model. 
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APPENDIX A 

 

Table A. 1 – Proposed mathematical models for the canonical TGF-β signaling pathway- part 1. Each model is classified 

according to model type, aims and conclusion, topics, dimension and length scale of the implemented model. 
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Table A. 2 – Proposed mathematical models for the canonical TGF-β signaling pathway- part 2. Each model is classified ac-

cording to model type, aims and conclusion, topics, dimension and length scale of the implemented model. 
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Table A. 3 – Proposed mathematical models for the canonical TGF-β signaling pathway- part 3. Each model is classified ac-

cording to model type, aims and conclusion, topics, dimension and length scale of the implemented model. 
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Table A. 4 – Proposed mathematical models for the canonical TGF-β signaling pathway- part 4. Each model is classified ac-

cording to model type, aims and conclusion, topics, dimension and length scale of the implemented model. 
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APPENDIX B 

 

Table B. 1 – Assessment of which species migrate from the cytoplasm into the nucleus according with different literature.     

A cross displayed below a certain species indicates that the species translocates from the cytoplasm into the nucleus in the 

model presented on the reference on the left side of the table. 
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Chung et al. 2009 
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X X X X 

Zi et al. 2011 
[50] 

 

X X X X 

Cellière et al. 2011 
[21] 

 

X X X X 

Claus et al.  2013 
[11] 

X X X X 

Nicklas & Saiz 2013 
[2] 

X X X X 

Khatibi et al. 2017 
[12] 

 

X X X X 

Morshed et al. 2018 
[13] 
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Table B. 2 – Assessment of which species migrate from the nucleus into the cytoplasm according with different literature. A 

cross displayed below a certain species indicates that the considered species translocates from the nucleus into the cytoplasm 

in the model presented on the reference on the left side of the table. 
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APPENDIX C 

 

I) Module I Script 

 

MathDescription { 

 

 /* Automatically established by VCell ;                                                              */ 

Constant  _F_ 96485.3321; 

Constant  _F_nmol_ 9.64853321E-5; 

Constant  _K_GHK_ 1.0E-9; 

Constant  _N_pmol_ 6.02214179E11; 

Constant  _PI_ 3.141592653589793; 

Constant  _R_ 8314.46261815; 

Constant  _T_ 300.0; 

Constant  Area_cyt 514.626; 

Constant  Area_nuc 78.24; 

Constant  AreaPerUnitArea_Nuclear_membrane 1.0; 

Constant  AreaPerUnitArea_Plasma_membrane 1.0; 

Constant  AreaPerUnitVolume_m0 1.0; 

 /* Diffusion rate and initial concentration of the C complex;                                                           */ 

Constant  C_diffusionRate 0.0; 

Constant  C_init_uM 0.0; 

 /* Automatically established by VCell ;                                                              */ 

Constant  K_millivolts_per_volt 1000.0; 

 /* Catalytic constant of the phosphorylation of the SMAD2 mediated by the C complex;                                                               

*/ 

Constant  Kcat 800.0; 

 /* Nuclear import rate of the pSMAD2, SMAD2, SMAD4 and TRIMER complex, respectively;                                                        

*/ 

Constant  kcn_pSMAD2 130.0; 

Constant  kcn_SMAD2 55.0; 

Constant  kcn_SMAD4 3.5; 

Constant  kcn_Trimer 90.0; 

 /* Degradation rate of the C complex ;                                                        */ 

Constant  kdeg 4.63E-4; 
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 /* Dephosphorylation rate of the pSMAD2 in the nucleus;                                                       */ 

Constant  Kdephos 0.08; 

 /* Dissociation rate of the TRIMER ;                                                                  */ 

Constant  Kdiss_r1_DirectHalf 0.00167; 

 /* Automatically established by VCell ;                                                        */ 

Constant  Kdiss_r1_InverseHalf 0.0; 

 /* Automatically established by VCell ;                                                         */ 

Constant  Km 2.0E-5; 

Constant  KMOLE 0.001660538783162726; 

 /* Nuclear export rates of the SMAD2 and SMAD4 ;                                                */ 

Constant  knc_SMAD2 40.0; 

Constant  knc_SMAD4 2.0; 

 /* Dephosphorylation rate of the pSMAD2 in the cytoplasm;                                                 */ 

Constant  Kr 0.0; 

 /* Synthesis rate of the C complex ;                                                  */ 

Constant  ksyn 1.467E-7; 

 /* Formation rate of the TRIMER;                                                         */ 

Constant  Ktrim_r1_DirectHalf 0.167; 

Constant  Ktrim_r1_InverseHalf 0.0; 

 /* Diffusion rate and initial concentration of the pSMAD2 and pSMAD2n, respectively;                                             */ 

Constant  pSMAD2_diffusionRate 15.0; 

Constant  pSMAD2_init_uM 0.0; 

Constant  pSMAD2n_diffusionRate 15.0; 

Constant  pSMAD2n_init_uM 0.0; 

 /* Automatically established by VCell ;                                                 */ 

Constant  R_beta 0.001; 

 /* Diffusion rate and initial concentration of the SMAD2, SMAD2n, SMAD4, SMAD4n, TRIMER and TRIMER_n, respec-

tively;                                          */ 

Constant  SMAD2_diffusionRate 15.0; 

Constant  SMAD2_init_uM 0.008; 

Constant  SMAD2n_diffusionRate 15.0; 

Constant  SMAD2n_init_uM 0.093; 

Constant  SMAD4_diffusionRate 15.0; 

Constant  SMAD4_init_uM 0.008; 

Constant  SMAD4n_diffusionRate 15.0; 

Constant  SMAD4n_init_uM 0.016; 
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Constant  Trimer_diffusionRate 1.0; 

Constant  Trimer_init_uM 0.0; 

Constant  Trimern_diffusionRate 1.0; 

Constant  Trimern_init_uM 0.0; 

 /* Automatically established by VCell ;                                                */ 

Constant  V_cyt 310.56; 

Constant  Voltage_m0 0.0; 

Constant  VolumePerUnitVolume_cyt 1.0; 

Constant  VolumePerUnitVolume_Nucleus 1.0; 

 

 /* Species defined in the respective compartments: cytoplasm or nucleus ;                                            */ 

VolumeVariable   cell::C 

VolumeVariable   cell::pSMAD2 

VolumeVariable   nucleus::pSMAD2n 

VolumeVariable   cell::SMAD2 

VolumeVariable   nucleus::SMAD2n 

VolumeVariable   cell::SMAD4 

VolumeVariable   nucleus::SMAD4n 

VolumeVariable   cell::Trimer 

VolumeVariable   nucleus::Trimern 

 

 /* Restriction of the C complex to an activation ring ;                                              */ 

Function  A  (C * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Functions for the boundary conditions in the nuclear membrane for the pSMAD2, SMAD2, SMAD4 and Trimer, respec-

tively ;                                            */ 

Function  cell_nucleus_membrane::J_flux_pSMAD2  ( - (kcn_pSMAD2 / Area_nuc) * pSMAD2); 

Function  cell_nucleus_membrane::J_flux_SMAD2  ((( - kcn_SMAD2 / Area_nuc) * SMAD2) + ((knc_SMAD2 / 

Area_nuc) * SMAD2n)); 

Function  cell_nucleus_membrane::J_flux_SMAD4  ((( - kcn_SMAD4 / Area_nuc) * SMAD4) + ((knc_SMAD4 / 

Area_nuc) * SMAD4n)); 

Function  cell_nucleus_membrane::J_flux_Trimer  ( - (kcn_Trimer / Area_nuc) * Trimer); 

 /* Equations/terms of the equations which translate the variation of the concentration of the SMAD2, pSMAD2, TRIMER 

and SMAD4 in the cytoplasm, stated in the section "Rate" of "CompartmentSubDomain cell"  ;                                       */ 

Function  cell::J_r0  (( - Kcat * SMAD2 * A) + (Kr * pSMAD2)); 

Function  nucleus::J_r0_2  (Kdephos * pSMAD2n); 

Function  cell::J_r1_DirectHalf  (((Ktrim_r1_DirectHalf * SMAD4) * pow(pSMAD2,2.0)) - (Kdiss_r1_DirectHalf * Tri-

mer)); 
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Function  nucleus::J_r1_DirectHalf2  (((Ktrim_r1_DirectHalf * SMAD4n) * pow(pSMAD2n,2.0)) - (Kdiss_r1_DirectHalf * 

Trimern)); 

Function  cell::J_r1_InverseHalf  ((Kdiss_r1_DirectHalf * Trimer) - ((Ktrim_r1_DirectHalf * pow(pSMAD2,2.0)) * 

SMAD4)); 

Function  nucleus::J_r1_InverseHalf2  ((Kdiss_r1_DirectHalf * Trimern) - ((Ktrim_r1_DirectHalf * pow(pSMAD2n,2.0)) * 

SMAD4n)); 

 /* Automatically established by VCell ;                                                                            */ 

Function  cell::O0_SMAD2_tot  SMAD2; 

Function  cell::O0_SMAD4_tot  SMAD4; 

Function  cell::Size_cyt  (VolumePerUnitVolume_cyt * vcRegionVolume('cell')); 

Function  EC::Size_m0  (AreaPerUnitVolume_m0 * vcRegionVolume('EC')); 

Function  nucleus::Size_Nucleus  (VolumePerUnitVolume_Nucleus * vcRegionVolume('Nucleus')); 

Function  EC_cell_membrane::Size_Plasma_membrane  (AreaPerUnitArea_Plasma_membrane * vcRegion-

Area('EC_cell_membrane')); 

Function  EC_cell_membrane::sobj_cell1_EC0_size  vcRegionArea('EC_cell_membrane'); 

Function  EC_cell_membrane::sobj_Cell1_EC0_size  vcRegionArea('EC_cell_membrane'); 

 /* Function for the variation of the concentration of the C complex;                                   */ 

Function  cell::Var_complex  (ksyn - (kdeg * A)); 

 /* Automatically established by VCell ;                                                                            */ 

Function  cell::vobj_cell1_size  vcRegionVolume('cell'); 

Function  EC::vobj_EC0_size  vcRegionVolume('EC'); 

Function  nucleus::vobj_Nucleus2_size  vcRegionVolume('Nucleus'); 

 

 /* Definition of the PDE's which translate the variation of the concentration of species in the cytoplasm                                                                                                                                                                            

*/ 

CompartmentSubDomain cell { 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 PdeEquation SMAD4 { 

  Rate  ((J_r1_InverseHalf - J_r1_DirectHalf) / 2.0); 

  Diffusion  SMAD4_diffusionRate; 

  Initial  SMAD4_init_uM; 

 } 

 PdeEquation SMAD2 { 

  Rate  J_r0; 
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  Diffusion  SMAD2_diffusionRate; 

  Initial  SMAD2_init_uM; 

 } 

 PdeEquation pSMAD2 { 

  Rate  ((J_r1_InverseHalf - J_r1_DirectHalf) - J_r0); 

  Diffusion  pSMAD2_diffusionRate; 

  Initial  pSMAD2_init_uM; 

 } 

 PdeEquation Trimer { 

  Rate  (( - J_r1_InverseHalf + J_r1_DirectHalf) / 2.0); 

  Diffusion  Trimer_diffusionRate; 

  Initial  Trimer_init_uM; 

 } 

 PdeEquation C { 

  Rate  Var_complex; 

  Diffusion  C_diffusionRate; 

  Initial  C_init_uM; 

 } 

} 

 

 /*  Definition of the PDE's which translate the variation of concentration of species in the nucleus                                                                                                                                                                          

*/ 

CompartmentSubDomain nucleus { 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 PdeEquation Trimern { 

  Rate  (( - J_r1_InverseHalf2 + J_r1_DirectHalf2) / 2.0); 

  Diffusion  Trimern_diffusionRate; 

  Initial  Trimern_init_uM; 

 } 

 PdeEquation SMAD2n { 

  Rate  J_r0_2; 

  Diffusion  SMAD2n_diffusionRate; 

  Initial  SMAD2n_init_uM; 
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 } 

 PdeEquation pSMAD2n { 

  Rate  ((J_r1_InverseHalf2 - J_r1_DirectHalf2) - J_r0_2); 

  Diffusion  pSMAD2n_diffusionRate; 

  Initial  pSMAD2n_init_uM; 

 } 

 PdeEquation SMAD4n { 

  Rate  ((J_r1_InverseHalf2 - J_r1_DirectHalf2) / 2.0); 

  Diffusion  SMAD4n_diffusionRate; 

  Initial  SMAD4n_init_uM; 

 } 

} 

 

CompartmentSubDomain EC { 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

} 

 

MembraneSubDomain EC cell { 

 Name  EC_cell_membrane 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 JumpCondition SMAD4 { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition SMAD2 { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition pSMAD2 { 
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  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition Trimer { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition C { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

} 

 

 /*  Boundary conditions at the nuclear membrane                                                                                                                                                                         

*/ 

MembraneSubDomain cell nucleus { 

 Name  cell_nucleus_membrane 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 JumpCondition SMAD4 { 

  InFlux J_flux_SMAD4; 

  OutFlux 0.0; 

 } 

 JumpCondition SMAD2 { 

  InFlux J_flux_SMAD2; 

  OutFlux 0.0; 

 } 

 JumpCondition pSMAD2 { 

  InFlux J_flux_pSMAD2; 

  OutFlux 0.0; 

 } 

 JumpCondition Trimer { 

  InFlux J_flux_Trimer; 

  OutFlux 0.0; 
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 } 

 JumpCondition SMAD2n { 

  InFlux 0.0; 

  OutFlux  - J_flux_SMAD2; 

 } 

 JumpCondition pSMAD2n { 

  InFlux 0.0; 

  OutFlux  - J_flux_pSMAD2; 

 } 

 JumpCondition Trimern { 

  InFlux 0.0; 

  OutFlux  - J_flux_Trimer; 

 } 

 JumpCondition SMAD4n { 

  InFlux 0.0; 

  OutFlux  - J_flux_SMAD4; 

 } 

 JumpCondition C { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

} 

 

} 
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II) Module II Script 

 

MathDescription { 

 

 /* Automatically established by VCell ;                              */ 

Constant  _F_ 96485.3321; 

Constant  _F_nmol_ 9.64853321E-5; 

Constant  _K_GHK_ 1.0E-9; 

Constant  _N_pmol_ 6.02214179E11; 

Constant  _PI_ 3.141592653589793; 

Constant  _R_ 8314.46261815; 

Constant  _T_ 300.0; 

Constant  Area_cyt 514.626; 

Constant  Area_nuc 78.24; 

Constant  AreaPerUnitArea_Nuclear_membrane 1.0; 

Constant  AreaPerUnitArea_Plasma_membrane 1.0; 

Constant  AreaPerUnitVolume_m0 1.0; 

 /* Diffusion rate and initial concentration of the C complex, IC complex and integrins, respectively;                            */ 

Constant  C_diffusionRate 0.0; 

Constant  C_init_uM 0.0; 

Constant  I_diffusionRate 0.0; 

Constant  I_init_uM 0.0; 

Constant  IC_diffusionRate 0.0; 

Constant  IC_init_uM 0.0; 

 /*  Limit concentration of the integrins;                               */ 

Constant  Imax 0.004; 

 /* Steps included in the functions for the increase of the synthesis rate of the C complex, for the increase of the catalytic 

constant of the phosphorylation of the SMAD2 mediated by the C complex, for the decrease  of the degradation of the C 

complex and  for the increase of the catalytic constant of the phosphorylation of the SMAD2 mediated by the IC complex, 

respectively ;                                   */ 

Constant  k_extra1 0.1; 

Constant  k_extra2 0.1; 

Constant  k_extra3 0.1; 

Constant  k_extra4 0.1; 

 /* Automatically established by VCell ;                                */ 

Constant  K_millivolts_per_volt 1000.0; 
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 /* Catalytic constant of the phosphorylation of the SMAD2 mediated by the C complex;                                  */ 

Constant  Kcat 800.0; 

 /* Nuclear import rate of the pSMAD2, SMAD2, SMAD4 and TRIMER complex, respectively;                            */ 

Constant  kcn_pSMAD2 130.0; 

Constant  kcn_SMAD2 55.0; 

Constant  kcn_SMAD4 3.5; 

Constant  kcn_Trimer 90.0; 

 /* Degradation rate of the C complex ;                             */ 

Constant  kdeg 4.63E-4; 

 /* Degradation rate of the integrins ;                                    */ 

Constant  kdeg_intg 4.6E-4; 

 /* Dephosphorylation rate of the pSMAD2 in the nucleus;                             */ 

Constant  Kdephos 0.08; 

 /* Dissociation rate of the IC complex ;                                 */ 

Constant  kdiss_IC 0.016; 

 /* Dissociation rate of the TRIMER ;                                         */ 

Constant  Kdiss_r1_DirectHalf 0.00167; 

 /* Automatically established by VCell ;                                */ 

Constant  Kdiss_r1_InverseHalf 0.0; 

 /* Formation rate of the IC complex ;                                   */ 

Constant  kform_IC 0.00146; 

 /* Automatically established by VCell ;                                  */ 

Constant  Km 2.0E-5; 

Constant  KMOLE 0.001660538783162726; 

 /* Nuclear export rates of the SMAD2 and the SMAD4 ;                          */ 

Constant  knc_SMAD2 40.0; 

Constant  knc_SMAD4 2.0; 

 /* Dephosphorylation rate of the pSMAD2 in the cytoplasm;                            */ 

Constant  Kr 0.0; 

 /* Synthesis rate of the C complex ;                              */ 

Constant  ksyn 1.467E-7; 

 /* Synthesis rate of  the integrins ;                                   */ 

Constant  ksyn_intg  1.5E-6; 

 /* Formation rate of the TRIMER;                                      */ 

Constant  Ktrim_r1_DirectHalf 0.167; 
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Constant  Ktrim_r1_InverseHalf 0.0; 

 /* Diffusion rate and initial concentration of the pSMAD2 and pSMAD2n, respectively;                           */ 

Constant  pSMAD2_diffusionRate 15.0; 

Constant  pSMAD2_init_uM 0.0; 

Constant  pSMAD2n_diffusionRate 15.0; 

Constant  pSMAD2n_init_uM 0.0; 

 /* Automatically established by VCell ;                                */ 

Constant  R_beta 0.001; 

 /* Diffusion rate and initial concentration of the SMAD2, SMAD2n, SMAD4, SMAD4n, TRIMER and TRIMER_n, respectively;                          

*/ 

Constant  SMAD2_diffusionRate 15.0; 

Constant  SMAD2_init_uM 0.008; 

Constant  SMAD2n_diffusionRate 15.0; 

Constant  SMAD2n_init_uM 0.093; 

Constant  SMAD4_diffusionRate 15.0; 

Constant  SMAD4_init_uM 0.008; 

Constant  SMAD4n_diffusionRate 15.0; 

Constant  SMAD4n_init_uM 0.016; 

Constant  Trimer_diffusionRate 1.0; 

Constant  Trimer_init_uM 0.0; 

Constant  Trimern_diffusionRate 1.0; 

Constant  Trimern_init_uM 0.0; 

 /* Automatically established by VCell ;                                 */ 

Constant  V_cyt 310.56; 

Constant  Voltage_m0 0.0; 

Constant  VolumePerUnitVolume_cyt 1.0; 

Constant  VolumePerUnitVolume_Nucleus 1.0; 

 

 /* Species defined in the respective compartments: cytoplasm or nucleus ;                              */ 

VolumeVariable   cell::C 

VolumeVariable   cell::I 

VolumeVariable   cell::IC 

VolumeVariable   cell::pSMAD2 

VolumeVariable   nucleus::pSMAD2n 

VolumeVariable   cell::SMAD2 

VolumeVariable   nucleus::SMAD2n 
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VolumeVariable   cell::SMAD4 

VolumeVariable   nucleus::SMAD4n 

VolumeVariable   cell::Trimer 

VolumeVariable   nucleus::Trimern 

 

 /* Restriction of the C complex, integrins and IC complex to an activation ring ;                                 */ 

Function  A  (C * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

Function  A2  (I * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

Function  A3  (IC * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Functions for the boundary conditions in the nuclear membrane for the pSMAD2, SMAD2, SMAD4 and TRIMER, respec-

tively ;                                  */ 

Function  cell_nucleus_membrane::J_flux_pSMAD2  ( - (kcn_pSMAD2 / Area_nuc) * pSMAD2); 

Function  cell_nucleus_membrane::J_flux_SMAD2  ((( - kcn_SMAD2 / Area_nuc) * SMAD2) + ((knc_SMAD2 / 

Area_nuc) * SMAD2n)); 

Function  cell_nucleus_membrane::J_flux_SMAD4  ((( - kcn_SMAD4 / Area_nuc) * SMAD4) + ((knc_SMAD4 / 

Area_nuc) * SMAD4n)); 

Function  cell_nucleus_membrane::J_flux_Trimer  ( - (kcn_Trimer / Area_nuc) * Trimer); 

 /* Equations/terms of the equations which translate the variation of the concentration of the SMAD2, pSMAD2, TRIMER 

and the SMAD4 in the cytoplasm, stated in the section "Rate" of "CompartmentSubDomain cell"  ;                              */ 

Function  cell::J_r0  (( - kcat3 * SMAD2 * A) + (Kr * pSMAD2) + ( - kcat5 * A3 * SMAD2)); 

Function  nucleus::J_r0_2  (Kdephos * pSMAD2n); 

Function  cell::J_r1_DirectHalf  (((Ktrim_r1_DirectHalf * SMAD4) * pow(pSMAD2,2.0)) - (Kdiss_r1_DirectHalf * Tri-

mer)); 

Function  nucleus::J_r1_DirectHalf2  (((Ktrim_r1_DirectHalf * SMAD4n) * pow(pSMAD2n,2.0)) - (Kdiss_r1_DirectHalf * 

Trimern)); 

Function  cell::J_r1_InverseHalf  ((Kdiss_r1_DirectHalf * Trimer) - ((Ktrim_r1_DirectHalf * pow(pSMAD2,2.0)) * 

SMAD4)); 

Function  nucleus::J_r1_InverseHalf2  ((Kdiss_r1_DirectHalf * Trimern) - ((Ktrim_r1_DirectHalf * pow(pSMAD2n,2.0)) * 

SMAD4n)); 

 /* Function for the catalytic constant of the phosphorylation of the SMAD2 mediated by the C complex with an increase 

step of k_extra2 ;                                   */ 

Function  kcat2  (Kcat * (1.0 + ((k_extra2 * A2) / Imax))); 

 /* Restriction of the function for the catalytic constant of the phosphorylation of the SMAD2 mediated by the C complex 

to an activation ring ;                                         */ 

Function  kcat3  (kcat2 * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Function for the catalytic constant of the phosphorylation of the SMAD2 mediated by the IC complex with an increase 

step of k_extra4 ;                                   */ 

Function  kcat4  (Kcat * (1.0 + ((k_extra4 * A2) / Imax))); 

 /* Restriction of the function for the catalytic constant of the phosphorylation of the SMAD2 mediated by the IC complex 

to an activation ring ;                                        */ 
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Function  kcat5  (kcat4 * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Function for the degradation rate of the C complex with a decrease step of k_extra3 ;                                               */ 

Function  kdeg2  (kdeg * (1.0 - ((k_extra3 * A2) / Imax))); 

 /* Restriction of the function for the degradation rate of the C complex to an activation ring ;                                       */ 

Function  kdeg3  (kdeg2 * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Restriction of the degradation rate of the integrins to an activation ring ;                                                */ 

Function  kdeg_intg2  (kdeg_intg * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Restriction of the dissociation rate of the IC complex to an activation ring ;                                              */ 

Function  kdiss_IC2  (kdiss_IC * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Restriction of the formation rate of the IC complex to an activation ring ;                                                */ 

Function  kform_IC2  (kform_IC * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Function for the synthesis rate of the C complex with an increase step of k_extra1 ;                                               */ 

Function  ksyn2  (ksyn * (1.0 + ((k_extra1 * A2) / Imax))); 

 /* Restriction of the function for the synthesis rate of the C complex to an activation ring ;                                                  */ 

Function  ksyn3  (ksyn2 * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Restriction of the synthesis rate of the integrins to an activation ring ;                                               */ 

Function  ksyn_intg2  (ksyn_intg * !((((((x - 20.0) ^ 2.0) / (12.0 ^ 2.0)) + (((y - 20.0) ^ 2.0) / (12.0 ^ 2.0))) <= 1.0))); 

 /* Automatically established by VCell ;                              */ 

Function  cell::O0_SMAD2_tot  SMAD2; 

Function  cell::O0_SMAD4_tot  SMAD4; 

Function  cell::Size_cyt  (VolumePerUnitVolume_cyt * vcRegionVolume('cell')); 

Function  EC::Size_m0  (AreaPerUnitVolume_m0 * vcRegionVolume('EC')); 

Function  nucleus::Size_Nucleus  (VolumePerUnitVolume_Nucleus * vcRegionVolume('Nucleus')); 

Function  EC_cell_membrane::Size_Plasma_membrane  (AreaPerUnitArea_Plasma_membrane * vcRegion-

Area('EC_cell_membrane')); 

Function  EC_cell_membrane::sobj_cell1_EC0_size  vcRegionArea('EC_cell_membrane'); 

Function  EC_cell_membrane::sobj_Cell1_EC0_size  vcRegionArea('EC_cell_membrane'); 

 /* Functions for the variation of the concentration of the C complex, IC complex and integrins, respectively;                            */ 

Function  cell::Var_complex  (ksyn3 - (kdeg3 * A) + (kdiss_IC2 * A3) - (kform_IC2 * A2 * A)); 

Function  cell::Var_IC  ((kform_IC2 * A2 * A) - (kdiss_IC2 * A3)); 

Function  cell::Var_intg  (ksyn_intg2 - (kdeg_intg2 * A2) + (kdiss_IC2 * A3) - (kform_IC2 * A2 * A)); 

 /* Automatically established by VCell ;                                                                    */ 

Function  cell::vobj_cell1_size  vcRegionVolume('cell'); 

Function  EC::vobj_EC0_size  vcRegionVolume('EC'); 

Function  nucleus::vobj_Nucleus2_size  vcRegionVolume('Nucleus'); 
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 /*  Definition of the PDE's which translate the variation of the concentration of species in the cytoplasm                                                                                                                                                                       

*/ 

CompartmentSubDomain cell { 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 PdeEquation SMAD4 { 

  Rate  ((J_r1_InverseHalf - J_r1_DirectHalf) / 2.0); 

  Diffusion  SMAD4_diffusionRate; 

  Initial  SMAD4_init_uM; 

 } 

 PdeEquation SMAD2 { 

  Rate  J_r0; 

  Diffusion  SMAD2_diffusionRate; 

  Initial  SMAD2_init_uM; 

 } 

 PdeEquation pSMAD2 { 

  Rate  ((J_r1_InverseHalf - J_r1_DirectHalf) - J_r0); 

  Diffusion  pSMAD2_diffusionRate; 

  Initial  pSMAD2_init_uM; 

 } 

 PdeEquation Trimer { 

  Rate  (( - J_r1_InverseHalf + J_r1_DirectHalf) / 2.0); 

  Diffusion  Trimer_diffusionRate; 

  Initial  Trimer_init_uM; 

 } 

 PdeEquation C { 

  Rate  Var_complex; 

  Diffusion  C_diffusionRate; 

  Initial  C_init_uM; 

 } 

 PdeEquation I { 

  Rate  Var_intg; 

  Diffusion  I_diffusionRate; 

  Initial  I_init_uM; 



 

88 

 

 } 

 PdeEquation IC { 

  Rate  Var_IC; 

  Diffusion  IC_diffusionRate; 

  Initial  IC_init_uM; 

 } 

} 

 

 /*  Definition of the PDE's which translate the variation of the concentration of species in the nucleus                                                                                                                                                                      

*/ 

CompartmentSubDomain nucleus { 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 PdeEquation Trimern { 

  Rate  (( - J_r1_InverseHalf2 + J_r1_DirectHalf2) / 2.0); 

  Diffusion  Trimern_diffusionRate; 

  Initial  Trimern_init_uM; 

 } 

 PdeEquation SMAD2n { 

  Rate  J_r0_2; 

  Diffusion  SMAD2n_diffusionRate; 

  Initial  SMAD2n_init_uM; 

 } 

 PdeEquation pSMAD2n { 

  Rate  ((J_r1_InverseHalf2 - J_r1_DirectHalf2) - J_r0_2); 

  Diffusion  pSMAD2n_diffusionRate; 

  Initial  pSMAD2n_init_uM; 

 } 

 PdeEquation SMAD4n { 

  Rate  ((J_r1_InverseHalf2 - J_r1_DirectHalf2) / 2.0); 

  Diffusion  SMAD4n_diffusionRate; 

  Initial  SMAD4n_init_uM; 

 } 

} 
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CompartmentSubDomain EC { 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

} 

 

MembraneSubDomain EC cell { 

 Name  EC_cell_membrane 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 JumpCondition SMAD4 { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition SMAD2 { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition pSMAD2 { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition Trimer { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition C { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition I { 
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  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition IC { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

} 

 

 /*  Boundary conditions at the nuclear membrane                                                                                                                                                                      */ 

MembraneSubDomain cell nucleus { 

 Name  cell_nucleus_membrane 

 BoundaryXm  Flux 

 BoundaryXp  Flux 

 BoundaryYm  Flux 

 BoundaryYp  Flux 

 JumpCondition SMAD4 { 

  InFlux J_flux_SMAD4; 

  OutFlux 0.0; 

 } 

 JumpCondition SMAD2 { 

  InFlux J_flux_SMAD2; 

  OutFlux 0.0; 

 } 

 JumpCondition pSMAD2 { 

  InFlux J_flux_pSMAD2; 

  OutFlux 0.0; 

 } 

 JumpCondition Trimer { 

  InFlux J_flux_Trimer; 

  OutFlux 0.0; 

 } 

 JumpCondition SMAD2n { 

  InFlux 0.0; 

  OutFlux  - J_flux_SMAD2; 
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 } 

 JumpCondition pSMAD2n { 

  InFlux 0.0; 

  OutFlux  - J_flux_pSMAD2; 

 } 

 JumpCondition Trimern { 

  InFlux 0.0; 

  OutFlux  - J_flux_Trimer; 

 } 

 JumpCondition SMAD4n { 

  InFlux 0.0; 

  OutFlux  - J_flux_SMAD4; 

 } 

 JumpCondition C { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition I { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

 JumpCondition IC { 

  InFlux 0.0; 

  OutFlux 0.0; 

 } 

} 

 

} 

 

 


