UNIVERSIDADE DE LISBOA
FACULDADE DE CIENCIAS

DEPARTAMENTO DE INFORMATICA

FC Ciencias
ULisboa

Towards the Conceptualization of Refinement Typed Genetic
Programming

Paulo Alexandre Canelas dos Santos

Mestrado em Engenharia Informatica
Especializagédo em Engenharia de Software

Dissertagéo orientada por:
Professor Doutor Alcides Miguel Cachulo Aguiar Fonseca

2020

Agradecimentos

O final de uma disserta¢do ndo ¢ o culminar de um ano de trabalho, mas sim o acumular de toda
uma experiéncia de vida. Por isso, gostaria de comegar por agradecer a todos, aqueles que por bem ou
mesmo por mal, me trouxeram onde estou hoje, orgulhoso e agradecido, pela presenca que tiveram no
meu Passado.

O primeiro agradecimento pessoal ¢ & minha familia, especialmente a minha mée. Tem sido desde
sempre um grande apoio, e, ssmpre com os grandes sacrificios que tivemos, tentou a0 maximo permitir
que eu alcangasse as minhas ambigdes. Gostaria também de agradecer ao Henrique pela presenga dele
nestes ultimos anos, que como meu pai fosse, me ensinou varias ligdes de vida. Finalmente um grande
obrigado pelo vosso apoio, a minha avd, e aos meus irmaos, José, Tiago, Soraia, Gabriel e Bruno.

Para alguns, era este o paragrafo que estavam a espera. Falo de vocés, que durante muitas horas
de trabalho, grande esforco (e ansiedade) permitiram-me ter, ainda assim, uns dos melhores anos da
minha vida. Gostaria de deixar uma mensagem de agradecimento a cada um de vos: Duarte, nunca me
esquecerei daquela noite, nem de uma unica palavra que me disseste, irmao; Guilherme, foste uma das
primeiras pessoas que conheci, ¢ uma daquelas que sempre acreditou em mim e no meu potencial; Jodo
Lobo, a pessoa que mais mudou nestes ultimos anos, ¢ me mostrou que todos conseguimos alcangar os
nossos objetivos com determinacdo, tens sido o meu modelo a seguir; Jodo Gil, agradego-te todas as
experiéncias que passei contigo, e, mesmo quando saltei de um precipicio para a morte certa, estiveste la
para me ajudar; Miguel, normalmente o melhor fica para o fim, neste caso ndo, ficas s6 tu, que mesmo
sendo como és, nunca perdeste aquilo que eu mais valorizo, confianga, obrigado.

Finalmente, gostaria de agradecer ao meu orientador, Professor Alcides. Foi o Professor que me
incentivou a sair da zona de conforto, a confiar nas minhas capacidades, candidatar-me a varios projetos,
e, apesar de rejeitado em varios deles, continuar em frente. Mesmo quando a meio, perdi a motivagao,
o Professor fez os possiveis para me ajudar e orientar até ao final deste trabalho. Gostaria também de
agradecer ao Professor Vasco, a Professora Andreia e & Sara, pela paciéncia que tiveram comigo no
inicio do projeto e durante todo o seu prosseguimento, e, apesar de ndo ter tido oportunidade, espero vos

conseguir surpreender no futuro!

il

Dedico-te a ti pai, pela presenga que pudeste ter

Resumo

Turing apresentou pela primeira vez a evolu¢do de programas através da descricdo de operadores
evolutivos bastante basicos, como a mutagdo, selecdo, e material genético. Forsyth foi o pioneiro que
desenvolveu o primeiro passo em direcdo a computagdo evolutiva através da criagdo de uma abordagem
evolutiva para induzir regras de decisao.

A Programagdo Genética (PG) é um método de resolugdo de problemas através da geragao e evo-
lugdo de programas. A PG tem sido bastante usada em diferentes areas, desde reparacdo automatica de
programas até a optimizacao de hyper-features. O seu objetivo € explorar o espaco de procura, avaliando
os individuos de uma populagéo, em busca daquele que melhor se adequa a um determinado problema.

A programagdo genética, aplicada a sintese de programas, apresenta alguns desafios a serem resol-
vidos. O primeiro desafio € a pesquisa num largo espago de procura. Como estamos a procura de um
programa que resolva um determinado problema, encontrar esse programa, ou outro computacionalmente
equivalente, no infinito espago de programas que podem ser gerados, ¢ uma tarefa quase impossivel sem
qualquer tipo de auxilio. A Programacdo Genética Fortemente Tipada (PGFT) d4 um primeiro passo para
a resolucdo deste problema. Esta abordagem considera o sistema de tipos da linguagem para limitar a
quantidade de programas gerados, descartando os programas que sao invalidos. A utilizagdo do sistema
de tipos permite guiar com melhor precisdo o processo evolutivo, mas continua a ser insuficiente. A in-
troducao de tipos refinados, tipos que apresentam um predicado que restringem o seu dominio, permitem
reduzir mais ainda o espago de procura de programas validos. Quando existe a geragdo de um programa,
tipicamente é necessario avaliar a correcdo desse mesmo programa, de onde podem ser utilizadas uma
das seguintes abordagens: verificacdo através de um conjunto de pares input/output, ou um conjunto de
restrigdes logicas indicativas do comportamento do programa.

O segundo obstaculo para a geragdo automatico de codigo € a fraca capacidade de generalizagdo. Ge-
neralizar um determinado tipo de problema para qualquer argumento e devolvendo um resultado valido é
até hoje um problema em aberto. Por exemplo, a programagao guiada por exemplos pega nos argumentos
de entrada e tenta gerar codigo de modo a cumprir com o valor de retorno esperado. Um problema desta
abordagem encontrasse na dependéncia dos inputs para gerar o co6digo, ou seja, considerando os valo-
res de entrada e saida input=1, output=2 e input=2, output=3, um codigo gerado e valido para o input
dado seria if input == 1 then 2 else 3, o que claramente ndo seria generalizado para outro conjunto
de testes. A sintese de programas recorrendo a uma especificacao retira este tipo de limitagdo. A utiliza-
¢do dos tipos refinados e dependentes define o comportamento que o codigo sintetizado tem de cumprir
permitindo que o codigo sintetizado mais facilmente generalize para qualquer tipo de parametro.

O tltimo problema na sintese de programas é conseguir especificar convenientemente a intengao do

programador. O programador necessita de apresentar uma especificagao parcial ou completa do problema

vii

de modo a que o codigo possa ser gerado automaticamente. A especificacdo permite que o programa seja
gerado de acordo com a intenc¢do do utilizador. Todavia, varios fatores como a experiéncia de progra-
macdo do utilizador e a sua capacidade de expressar especifica¢des representam um entrave. Varias
abordagens tém sido apresentadas para facilitar ao programador comum expressar a sua intengao de pro-
gramacao. A sintese de programas guiada por exemplos facilita ao desenvolvedor de software indicar a
sua intengdo, visto que necessita apenas de indicar os inputs/outputs. Abordagens recorrendo a especifi-
cacdes tentam utilizar, por exemplo, contratos para definir a especificacdo ou esbogos dos programas a
serem gerados. Porém, este tipo de abordagens basead em contratos ou esbogos dos programas podem
comprometer a usabilidade do proprio sistema de sintese.

Para resolver estes desafios, propomos a linguagem de programagdo AON que permite a sintese to-
tal ou parcial de programas. Tal como outras linguagens de programacao funcionais, como o Haskell e
Scheme, o £0N tem fungdes nativamente implementadas, abstragdes, criacdo de tipos e criagdo de abs-
tragdes de tipos, polimorfismo. A criagdo de novos tipos e o polimorfismo enriquecem a expressividade
da linguagem ZAo0N, permitindo que esta ataque diferente areas da sintese de programas.

O ZoN oferece aos programadores a capacidade de criar especificagdes em fungdes a partir do pro-
prio sistema de tipos. Estas especificagdes sdo usadas ndo s6 para garantir a correcdo de uma fungdo,
mas também para sintetizar fungdes completas ou parciais. A sintese de programas generalizada € o que
diferencia a linguagem de programag¢ao A 0N das restantes abordagens no estado da arte. O programador
comum consegue rapidamente gerar a sua fun¢do ao introduzir a especificacao necessaria, através do tipo
de retorno esperado, e o operador buraco, B, que indica ao sistema que pretende sintetizar codigo que
substitua o local sem implementagdo. A linguagem identifica que existe um buraco e inicia o procedi-
mento de sintese de programas. Neste procedimento, uma populagdo inicial é gerada recorrendo aos tipos
refinados e a um sintetizador de tipos polimorficos que garante a correg¢do dos programas. Os programas
sdo avaliados de acordo do quao proximos se encontram do programa pretendido pelo programador, e
aqueles com melhor desempenho sdo entdo escolhidos para a préxima etapa evolucionaria através da sua
reproducdo e mutagdo. Este processo repete-se iterativamente até se chegar a uma solu¢ao compilavel e
que respeita a especificacdo. No final, a solucdo encontrada ¢ injetada no codigo original, substituindo
todos os buracos na implementagdo pela expressdo sintetizada respetiva. A linguagem de programacao
ZoN foi desenvolvida em Python e encontra-se interpretada.

A primeira contribui¢do deste trabalho ¢ a sintese ndo deterministica de tipos refinados estaticamente
verificaveis. O sintetizador que foi criado permite a geragdo de expressoes aleatorias com uma determi-
nada profundidade maxima para um determinado tipo. O £ONCORE é uma linguagem de programacao
sobre o qual o £0N age como uma fagada sintética, e que faz uso de tipos refinados verificaveis esta-
ticamente para sintetizar programas validos através de combina¢des dos componentes de sintese que se
encontram disponiveis no contexto do problema.

A segunda contribuigdo € a linguagem de programagdo 0N como uma linguagem de sintese de pro-
gramas num contexto geral da programacao. A sintaxe simples da linguagem AON permite ao programa-
dor facilmente especificar predicados que restringem o comportamento de uma fungdo. Estas restrigdes
sdo utilizadas para ndo s6 verificar a corre¢ao do programa mas também realizar a geragdo automatica de

programas aquando na presen¢a de um buraco.

A terceira e quarta contribui¢des sdo, respetivamente, a utilizagdo de Programagdo Genética (PG)

viii

para gerar de forma generalizada e valida programas e a utilizagdo de uma forma mais expressiva os
predicados logicos como fungdes de avaliagdo no procedimento evolucionario.

A ultima contribui¢do é a prova de versatilidade da Programacdo Genética com Tipos Refinados
(RTGP) através da criagao de uma ferramenta de testes baseada em propriedades em Python, o pyCheck.
Esta ferramenta permite ao utilizador criar com maior expressividade restricdes sobre os pardmetros de
entrada de uma funcdo gerando assim testes aleatorios que permitam verificar a corre¢do do programa.
A execucdo da ferramenta produz um relatério com a indica¢do dos testes passados e falhados e uma

pequena analise do quio proximo o programa esta de se encontrar correto.

Palavras-chave: Programacao Genética, Tipos Refinados, Sintese de Programas, Programagao

Genética com Tipos Refinados

X

Abstract

The Genetic Programming (GP) approaches typically have difficulties dealing with the large search
space as the number of language components grows. The increasing number of components leads to a
more extensive search space and lengthens the time required to find a fitting solution. Strongly Typed
Genetic Programming (STGP) tries to reduce the search space using the programming language type sys-
tem, only allowing type-safe programs to be generated. Grammar Guided Genetic Programming (GGGP)
allows the user to specify the program’s structure through grammar, reducing the number of combinations
between the language components. However, the STGP restriction of the search space is still not capable
of holding the increasing number of synthesis components, and the GGGP approach is arguably usable
since it requires the user to create not only a parser and interpreter for the generated expressions from the
grammar, but also all the functions existing in the grammar.

This work proposes Refinement Typed Genetic Programming (RTGP), a hybrid approach between
STGP and RTGP, which uses refinement types to reduce the search space while maintaining the language
usability properties. This work introduces the 0N programming language, which allows the partial
or total synthesis of refinement typed programs using genetic programming. The potential of RTGP is
presented with the usability arguments on two use cases against GGGP and the creation of a prototype

property-based verification tool, pyCheck, proof of RTGPs components versatility.

Keywords: Genetic Programming, Refined Types, Program Synthesis, Refined Typed Genetic

Programming

X1

Xii

Contents

ist of Tables

ACronyms

|

[|

Introduction|
L1 Motivation]. o o o e e
[1.2 Objectives and Contributiong o v v v v e

...

[1.4 Structure of the document o o v v o

J

Background

D.1 Genetic Programming v v e e,
R.2 Type TREOIV . . « o o o o e e e e e e e e e e e
2.3 Program SYNtheSiS o v v o e e e e e e e

Q9]

Related Work

B.1 Deductive Synthesig.
B.2 Inductive Synthesiy o e
B.3 Synthesis from Sketches

£y

The A0ON Programming Languagé
Bl Main Concepl . . . v v v o o e e e e

..

U3 Implementation DetailS

O]

Translation to ZEONCORE

xvi

xvii

XX

xxi

10

13
13
15
16

19
19
19
23

6 Non-deterministic Synthesis From Liquid Types
6.1 Synthesistuled
6.2 Weights over synthesis rules o

6.3 Ranges over refinements e e e e

[7__Evolutionary Program Synthesis
...
[7.2 The Evolutionary Synthesis System]
[7.3 Code optimizell o i it e

B.1 RTGP vs GGGP: An Usability Perspective o o v v i e e .
8.2 Application of RTGP for Propert-Based Testing in Pythonn
8.3 Limitations and Challenges

D Future Work

A Type System

References

X1V

35
36
38
39

43
43
44
48

51
51
56
58

61

65

67

75

List of Figures

R.1 Simple Evolutionary procedure diagramJ 5
P.2 Parse tree of the hypotenuse function using the Pythagorean theorem| 6
R2.3 One point crossover between two Abstract Syntax Trees| 7
2.4 One point mutation over the Abstract Syntax Tree] 8
D.5 One point partial mutation with reused genetic material| 8
B.1 CEGIS counterexample and candidate programs synthesis flow] 16
#.1 Flow of the compiler in EON| o o v 24
5.1 The syntax of ZONCORE PrOSrams) o v v v v it 28
5.2 Holedeductionrules| 30
5.3 Derivation of Listing 5.10 using the D-Ifrulel] 32
5.4 Derivation of Listing 5.12 using the D-LApprule| 32
5.5 Derivation of Listing 5.14 using multiple deducerules| 33
5.6 Continuation: Right side derivation of the D-App rule for Listing 5.14] 33
6.1 Synthesis diagram of kinds, types and expressions] 35
6.2 Kind synthesis, | ~gkll. 36
6.3 Typesynthesis, | L' F k~ Tl 36
6.4 Expression synthesis, | I' = T~sgell. 37
6.5 Example of bounds from a liquid refinement predicate] 41
[.1 Recombination diagram in the evolutionary computation) 47
[7.2 Mutation diagram in the evolutionary computation| 48
B.1 Original and conceptual synthesis of Mona Lisal 52
B.2 Santa Fe Trail path with gaps] 53
8.3 Maximum depth issue in expression synthesis| 59
B.4 Application expression synthesisrule] 59
D.1 Automatic repair tool from non-liquid refinements! 63

IA.1

Context formation, | - I" context H 67

XV

IA.2 Type formation, |[' - T=-k ||
|A.3 Subtyping, |I' - T<:U : k||

XVvi

List of Tables

6.1 Weights on the expression synthesis rules]

[7.1 Conversion function f between boolean expressions and continuous values|

XVvil

Listings

R.1 Pythagorean theoremin EON| 6
R.2 Pseudo-code of genetic algorithm| 8
2.3 Slightly safer hypotenuse using Pythagorean theoremin ZON| 9
2.4 Example of uninterpreted functions (pseudocode)) 10
2.5 Dependent refinement type example in AZON] 10
2.6 Dependent refinement type of the append functioninIdris| 10
B.1 _Minimum of two variables in SYGUS] 14
#.1 _Type Aliases and Type Declarations in AON] 19
#.2 Native function declaration in ZEONJ 20
#.3 Inverting the colours of the Guernica painting in ZONJ 21
#.4 Gallery of pictures in BBONJ 22
5.1 Factorial in ZZONCORE] oo e 25
5.2 Factorial in BBONJ 25
5.3 Typealias in ZONI 26
5.4 Typedeclarations in ZEON) 26
5.5 Uninterpreted functions of the Cartype] 26
5.6 Update of vehicle ownership in a database in ZEON| o v v i i i 27
5.7 Vehicle ownership in a database converted to ZONCORE! 27
5.8 Power with two dependent variables in ZONCORE] 28
5.9 Deducing the hole type of a car listupdate in ZZONJ 31
5.10 If expression deductionin BBONJ 31
5.11 Deducing the hole type of a car listupdate in ZZONJ 32
5.12 Target deduction of function application in ABONJo o v ... 32
5.13 Argument deduction of function applicationin £ZON] 32
5.14 Full function deduction in ZEONJ 33
[7.1 __Synthesis of the cipher functionin ABON), 43
[7.2 Partial synthesis of the cipher functionin ZBON) 44
[7.3 Lexicase selection algorithm pseudocode 45

XiX

[7.4 _Algebraic and Boolean expression optimizations of the synthesized code] 48
[7.5 Type abstractions removal and reduction of the synthesizedcode 49
[7.6 If expressions optimization of the synthesizedcode! 49
B.1 MonaLisain ZBON] 51
B2 MonaLisain GGGP! 52
B.3 Santa Fe Trail in BON) 53
8.4 Santa Fe Trail grammar [551in GGGP| 55
8.5 Function verification of the special sum with Hypothesis). 56
8.6 Function verification of the special sum with pyCheck] 56
8.7 Finalreport of the pyCheck) 57
0.1 Energy consumption optimization in ZBON) 62

XX

Acronyms

AST Abstract Syntax Tree.

CEGIS Counterexample Guided Synthesis.

GGGP Grammar-Guided Genetic Programming.

GP Genetic Programming.

PBT Property Based Testing.

PS Program Synthesis.

RTGP Refined Typed Genetic Programming.

STGP Strongly Typed Genetic Programming.

XxX1

Chapter

Introduction

1.1 Motivation

Turing introduced the first evidence on program evolution with a glance to basic evolutionary opera-
tors [54] (mutation, natural selection, and hereditary material). Forsyth pioneered the first step towards
evolutionary computation by presenting an evolutionary approach for decision-rules by induction [21]
using a population, classifying it, eliminating unfit individuals and mating and mutating fit individuals.
However, it was only in 1992 that Holland defined the foundations of Genetic Programming [29].

Genetic Programming (GP) is a problem-solving heuristic method that works by generating and
evolving programs. GP has been widely used in different areas, from automatic program repair [22] to
hyper-feature optimization [5], whose objective is to explore the space of possible programs by searching
for the individual in a population which might be capable of solving a given problem.

One of the main challenges in GP is being able to find a solution in a large search space. The amount of
operation combinations makes it hard for simple GP approaches to converge and find a solution quickly.
In order to restrict the search space to programs that are type safe, Strongly Typed Genetic Programming
(STGP) [B9] was created to consider the type system of the programming language, allowing the process
of type-checking inside the GP language.

The STGP approach presented a first step towards search space optimization using the types. How-
ever, this approach was not expressive enough and was later enhanced with type inheritance [24]] and
polymorphism [59]. Such improvements allowed STGP to tackle a different kind of problems but did not
necessarily reduce the search space.

McKay et al) later introduced Grammar-Guided Genetic Programming (GGGP) [37] as a way to
further reduce the number of available programs by providing a grammar, and explicitly declaring the
combination of the synthesis components. This approach, however, requires the user not only to learn the
concepts behind grammars, namely the Backus Normal Form (BNF), but also to create all the components

for the synthesis and the genetic programming algorithm in a familiar language.

1.2 Objectives and Contributions

The objective of this thesis is to explore the viability of using a type system based techniques for pro-

gram synthesis within the nature-inspired non-deterministic search-based techniques. This work aims to

Chapter 1. Introduction

evaluate how we can improve the low response time of the evolutionary algorithm, widely known for
their long running times, with the nimbleness of algorithms techniques based on SMT/SAT Solvers. In
the end, we plan to have the ability to work with the code provided by the evolutionary procedure at a
faster speed because of the SAT solver.

This objective was accomplished with the following contributions:

* The first contribution is the AON user-facing programming language as a programming language
that allows program synthesis through the use of refined and dependent types. A£ON type system
lets the regular programmer to easily specify predicates within the type system that restrict the

behaviour of the expressions.

* The second contribution is the non-deterministic synthesis of polymorphic refined types. The syn-
thesizer allows the creation of random expressions with a set depth from a given type and typing

context.

* The third contribution is the implementation of a Genetic Programming (GP) algorithm for the
hole synthesis in A£ON. The programmer can provide holes in the implementation of a function,
informing the compiler to automatically evolve and create expressions that may be filled in the

holes.

* The fourth contribution is a more expressive conversion of logical predicates into continuous fitness

functions used to evaluate individual programs in the genetic programming procedure.

» The fifth and final contribution is the application of Refinement Typed Genetic Programming
(RTGP) for property-based testing in Python. We prove the versatility of the concepts described
in RTGP, with the creation of pyCheck, a property-based prototype testing tool, which not only
allows the user to provide more expressive restrictions over the functions but also produces extra

information on program correctness, like the test accuracy.

This work has been recognized in the publication of a poster and a full paper in peer-reviewed venues,
respectively:

Paulo Santos, Sara Silva, and Alcides Fonseca. 2020. Refined typed genetic programming as a user
interface for genetic programming. In Proceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion (GECCO ’20) [48];

Alcides Fonseca, Paulo Santos, and Sara Silva. 2020. The Usability Argument for Refinement Typed
Genetic Programming. In: Béck T. et al. (eds) Parallel Problem Solving from Nature — PPSN XVI. PPSN
2020 [20].

1.3 Context

This work was carried at the line of excellence of Reliable Software Systems at the Laboratory of Large-
Scale Systems (LASIGE). This work could not have been done without the help of the research team
composed by Alcides Fonseca, Andreia Mordido, Sara Silva, and Vasco Vasconcelos. The work was also
partially developed under the guidance of Chris Timperley of Carnegie Mellon University (who help |
genuinely thank for).

Chapter 1. Introduction

Fundagdo para a Ciéncia e Tecnologia (FCT) partially funded this project through the CONFIDENT
project (PTDC/EEI-CTP/4503/2014) and with the CMU-Portugal project CAMELOT (POCI-01-0247-
FEDER-045915). This work was carried at LASIGE (UIDB/00408/2020), Faculty of Sciences, Univer-
sity of Lisbon.

1.4 Structure of the document

The document is organized as follows:

Chapter [briefly describes the main topics essential for the understanding of this thesis, related to
genetic programming, type theory, and program synthesis.

Chapter [presents the different approaches of program synthesis, namely on the deductive and in-
ductive synthesis, and their correlation to the state of the art approaches.

Chapter 4 introduces the Z£ON programming language concept and examples. Formally details the
language syntax and displays an explanation of the 0N compiler.

Chapter § contains the ZZ0NCORE programming language. It motivates the conversion from ZoON to
AoNCORE, the language syntax, the type system and formation, and the deduction of the hole types.

Chapter [§ describes the non-deterministic synthesis rules required to automatically generate expres-
sions well-formed and type safe, and the synthesizer optimizations to improve its performance.

Chapter [] presents the genetic programming algorithm for the program synthesis procedure. It de-
scribes the different aspects of the genetic programming components and implementation details, and the
code optimization after synthesis.

Chapter § evaluates the proposed approach in terms of usability and versatility of the concepts. It
also provides a brief description of the limitations of the current approach.

Chapter 9 describes the intended future work of the refinement typed program synthesis.

Chapter [10 concludes the current work by extolling its contributions.

Chapter 1. Introduction

Chapter

Background

This chapter presents the main concepts needed for better understanding this work: genetic programming,

type theory and program synthesis.

2.1 Genetic Programming

As previously mentioned, Genetic Programming (GP) is a problem-solving method which search for a
solution by generating and evolving programs. It generates a random population of programs and evolves
them throughout generations, searching for one that is able to achieve the provided goal. The essential
components of a genetic algorithm, and typically used in genetic programming [[1 1, 39] are representation,
initialization procedure, evaluation function, genetic operators (mutation and crossover), and parameters.
Figure 2.1|is a simple example of the evolutionary procedure, with each component explained posteriorly.
The genetic programming procedure starts by generating and evaluating a population of individuals. For
each generation, a new offspring population is created from the selection, recombination, and mutation
from the previous one. The new population is evaluated according to a fitness function, and the genetic

programming algorithm terminates if an individual is found to solve a specific problem.

3. Evaluation

| SN

i : Solution
> > | 4.c. Mutation EY:?LTQZE?? 4.a. Selection > @

Population .+ Population /\ /
1 -

4.b. Recombination

Figure 2.1: Simple Evolutionary procedure diagram.

1. Representation: In genetic programming, individuals correspond to programs and are typically
represented as abstract syntax trees. Abstract syntax tree (AST) is a tree-structure composed by the

combination of two kinds of nodes: functions and terminals. Procedures and functions (non-terminal

Chapter 2. Background

nodes) receive arguments for their computation while terminal nodes, such as variables and constants
values, do not receive any arguments, being leaves of the tree.

The execution of an abstract syntax tree starts on its root. It delegates the execution to the subtrees,
following a post-order transversal, until each subtree returns the value of its computation.

Consider as an example the following code (.1]) of a function written in ZE0N, which computes the
hypotenuse of a right-angled triangle using the Pythagorean theorem. This function receives two param-

eters, a and b, and returns an Integer, result of the computation.

Listing 2.1: Pythagorean theorem in Z£o0ON.

hypotenuse(a:Integer, b:Integer) -> c:Integer {
¢ = sqrt(pow(a, 2) + pow(b, 2));
}

Figure 2.2 shows an example of representation of the AST generated by the given program. The tree
is read as follows: assign to the variable c the result of computing the square root of the sum of a to the

power of two, and b to the power of two.

Figure 2.2: Parse tree of the hypotenuse function using the Pythagorean theorem.

2. Initialization procedure: The first step towards our genetic programming algorithm is to generate
a random initial population. Koza [33] describes three techniques, grow, full, and ramped half-and-half,

to create random individuals of a population.

(a) Grow: A random node (function or terminal) is selected as the root of the tree. When generating
a function, the same procedure is applied for each n-arity son of the current node. Once the tree

reaches a maximum depth m, only terminals are generated.

(b) Full: The full approach takes into consideration a final depth m. Starting on the root and for all
its sons until depth m — 1, it generates function nodes. Once it reaches depth m, it only generates

terminals.

Chapter 2. Background

(c) Ramped half-and-half: Combination of both grow and full approaches. The population is evenly
splitinto m—1 (maximum depth) parts. Half of each part uses the growing approach with maximum
depth m. The remaining half uses the full approach with an increasing final depth of 1,2, ..., m —1

for each m — 1 parts.

3. Evaluation function: An evaluation function is used to assess how close the execution of a given
parse tree is to a solution. This evaluation function, or fitness function, is used to guide the evolution of
individuals in a population towards optimal solutions.

For instance, since the program is correct, the execution of the parse tree 2.2 with the input a = 1
and b = 2 will assign to c the hypotenuse of the triangle.

4. Genetic operators: The genetic operators are essential in the evolutionary procedure. By select-
ing, combining and mutating individuals, it is possible to maintain, exclude or create individuals in the

population. There are three leading genetic operators: selection, crossover, and mutation.

(a) Selection: The selection process chooses the best individuals from a population to propagate their
genes. By selecting the best individuals, we try to ensure that throughout the generations, the
overall fitness of the population keeps improving. A selection strategy typically used to ensure
that the evolution converges quickly towards a solution is elitism [|1], where, by the end of each

generation, the best individuals transition, without changes, to the following one.

(b) Crossover: Crossover is the process of crossing two or more individuals in one point or multiple
points [[16] of their genetic information. In genetic programming, two random nodes from each tree
are chosen and swapped, generating two new offspring. Figure 2.3 demonstrates a simple crossover
where the left subtree of the first function is exchanged with the right subtree of the second function

generating one of the two possible offspring on the combination of these two individuals.

@ O + * () ()
ONO JMONBONONONO

Figure 2.3: One point crossover between two Abstract Syntax Trees.

(c) Mutation: Mutation is an operation where a gene from an individual is chosen and replaced with
another one, keeping the tree valid. In genetic programming, a random node from the tree is chosen,
and a random subtree is generated. Figure R.4 presents a simple mutation where the yellow subtree

was selected to be replaced by a randomly generated subtree (the tree in green).

12

13

14

Chapter 2. Background

_— > Mutation Algorithm _—>

Z Zs

Figure 2.4: One point mutation over the Abstract Syntax Tree.

Figure .3, on the other hand, presents a partial mutation where part of the genetic information is
reused when generating the replacement for the yellow nodes. The variable zo was kept, while its

operation was replaced with a sum.

Partial Mutation
Algorithm

Z Z

Figure 2.5: One point partial mutation with reused genetic material.

5. Parameters: A wide range of decisions made by the user are essential for the execution of
the genetic algorithm. The choice of the control parameters has a massive impact on algorithm per-
formance [[17, 12]. The most used control parameters are the following: Population size: Amount of
individuals in the population; Amount of generations: Maximum amount of iterations the genetic algo-
rithm runs in the search for an optimal solution; Maximum Depth: Maximum depth allowed for a tree to
grow during initialization, crossover, and mutation; Mutation rate: Probability of an individual to suffer
a mutation; and Ofsspring size: Represents the size of the offspring population, which can be equal to
the population size.

Listing 2.2 presents the pseudo-code for the evolutionary procedure previously showed.

Listing 2.2: Pseudo-code of genetic algorithm.
1. generate the initial population with size MAX_POPULATION
2. evaluate each individual
REPEAT
3.1. create an empty offspring population
3.2. apply selection from population to offspring

REPEAT
3.3.1. apply crossover to the population
3.3.2. apply mutations to the offspring
3.3.3. evaluate the offspring

3.3.4. add offspring to the offspring population
WHILE offspring is not complete
3.4. replace the population with the new offspring population
WHILE current generation < MAX_GENERATIONS
4. return the fittest individual

Chapter 2. Background

2.2 Type Theory

Strongly typed programming languages force the regular programmer to define the type of variables or
functions explicitly. Explicitly declaring the type improves legibility and software quality in overall [47]].
It also allows type errors to be caught earlier during the type checking process.

The type of a type is called a Kind. Kinds are used to specify the arity of a type. For instance, the
type Integer has the kind *, and the type List has the kind * — %, List [Integer] is the type List
applied to Integer, which has the kind *. Kinds are useful in several languages, like Haskell and Scala,
that allow type constructors with parametric polymorphism. The parametric polymorphism increases the
expressiveness of the programming language, allowing it to tackle a different kind of problems.

Parametric polymorphism allows variables, functions and data types to be written with generics so
they can handle different types the same way independently on their type. Sometimes, types by them-
selves may not be expressive enough to restrict other behaviours [6], and so, as a way to tackle this
problem, the refined types were introduced.

Refined types allow the introduction of logical predicates which restrict the values accepted by the
type of a variable. Different kinds of programming languages, like Haskell [56], TypeScript [57] and
SafeRestScript [8], have already studied the importance of refined types.

There are two classes of refinements: liquid types and non-liquid types. Liquid refinement types are
those that can be statically verified with the help of a Satisfiability Modulo Theories (SMT) solver [[13],
a tool capable of verifying the truth value of logical predicates. The non-liquid refinement types cannot
be statically verifiable but can be used for runtime correctness verification. When programming in ZAON,
the regular programmer does not need to worry about this distinction. Other than ZAoN, the language
presented in this work, these concepts exist in other languages such as LiquidHaskell [56], Lean [[14],
and Coq [|10].

For better understanding, let us take as an example a slightly safer version of the previous function

written in ZAON.

Listing 2.3: Slightly safer hypotenuse using Pythagorean theorem in ZoN.

hypotenuse({a:Integer | a > @}, {b:Integer | is_nat(b)}) -> c:Integer {
¢ = sgrt(pow(a, 2) + pow(b, 2));
}

Listing P.3 presents a binary function that computes the hypotenuse of a triangle using the Pythagorean
theorem. The function receives two arguments, a and b that correspond to the sides of a triangle and,
therefore, should not be negative. The type of argument a, a liquid refinement type, states that it must be
an Integer with a value greater than 0. The invocation of the function with a value that does not comply
with the condition, for instance, hypotenuse(-1, 10) raises a compile-time error. The argument b
expresses the same condition of a, but with a non-liquid refinement. The is_nat function, defined
elsewhere in the program or the standard library, can only be verified at runtime, when the hypotenuse
function is called with a negative b value, for example, hypotenuse (1, -10).

Although function calls may provide a hint on how to distinguish between liquid and non-liquid re-

finement types, this may not be entirely true. Uninterpreted functions, available in EoN, allow the user

Chapter 2. Background

to freely describe the composition of values, which are, a posteriori verifiable with the SMT-Solver. For
instance, if we create an empty list, [, we can state its size is 0. By appending an element to the list, its size
is (0 + 1), by appending a second element, the size of [is ((0 + 1) + 1). By providing this expression to
an SMT-Solver, it is possible to deduce that the size of the list is 2. Listing 2.4 presents the previous ex-
ample in pseudocode by creating an uninterpreted function, size, and the two functions, possibly imple-
mented in a foreign language: empty and append. Since the list type has no attributes in this pseudocode
language, obtaining the size value of the previous example, append (x2, append(x1, empty())),de-

pends on calling the SMT-Solver to reduce the expressions refinement.

Listing 2.4: Example of uninterpreted functions (pseudocode).

size(l:1list) -> int = uninterpreted;

empty() -> {l:1list where size(l) == 0} {...}
append(e, 1) -> {12:1ist where size(1l2) == size(l) + 1} {...}

Dependent types are types whose truth value depend on its arguments. Similarly to refinement types,
dependent types help programmers improve the quality of their code by specifying its behaviour. Existing
functional programming languages, like Agda, have implemented this kind of types. Listing 2.3 presents
an example of a dependent type, where the return type is refined to ensure it is greater than any of the

function arguments.

Listing 2.5: Dependent refinement type example in ZA£ON.

hypotenuse(a : Integer, b : Integer) -> {c:Integer | c > a & c > b} {
c = sqrt(pow(a, 2) + pow(b, 2));
}

Another example of dependent types can be found in Idris. Idris allows the user to create a specifi-
cation where the output can be refined to consider the input parameters. Listing 2.6 presents a typical
example of the Idris language where we try to concatenate two vectors [23]. By providing two vectors,
each with size n and m, respectively, the function outputs a new vector whose size is the sum of its inputs

vectors sizes.

Listing 2.6: Dependent refinement type of the append function in Idris.

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys
append (x :: Xs) ys = X :: append Xs ys

2.3 Program Synthesis

Program synthesis consists in automatically generating code compliant with a given set of input-output
examples, or a given specification. Currently, there are two main strategies on program synthesis: De-
ductive synthesis, based on a formal specification; and Inductive synthesis, which makes use of pairs

of input/output as user intention (further explained in Chapter [3)).

10

Chapter 2. Background

The first challenge on program synthesis is the large search space. The available functions and termi-
nals allow the generation of an infinite amount of combinations. In program synthesis by specification,
the first step to reduce the search space is by considering the type system. Synthesizing only correct
programs, programs whose types are properly type checked lessens the search space. For instance, the
synthesizer does not generate programs like (true + 1). Refinement types, introducing a predicate that
refines a specific type, also provide a further restriction to the space of valid generated programs. Valid
Programs correctness is checked by using distinct approaches: by using examples of input/output pairs,
or by providing restrictions using non-liquid refined types and testing these with random tests.

The second obstacle on program synthesis is the poor generalization performance. The ability to gen-
eralize the problem for any input and return the valid output presents a current open issue. For example,
synthesis by example takes inputs and tries to generate code that respects the output. As seen previously,
the overfit to introduced arguments and returned results does not generalize well to foreign arguments
from the dataset. Synthesis by specification using refined and dependent types allow an easy way to
generalize the behaviour of a program.

The final problem on program synthesis is the intention of the user specification. The regular pro-
grammer must provide a complete or partial specification of the problem in order to generate the code
automatically. Specifications allow the program to be synthesized according to user intentions. However,
the user programming experiences and its ability to express specifications represent a bottleneck to these

approaches.

11

Chapter 2. Background

12

Chapter

Related Work

This chapter presents two different types of program synthesis: deductive synthesis and inductive syn-
thesis. We present a more detailed introduction to deductive synthesis due to similarities to the current
presented approach. This section also presents other types of approaches based on partial synthesis using

sketches and approaches using neural networks and evolutionary computation.

3.1 Deductive Synthesis

Deductive synthesis or specification based synthesis requires the introduction of a formal specification
to declare user intention. From contracts [2, 42, A43] to specification languages [34] and even using
types [39], different ways have been introduced to ensure the program correctness from the specification.

The study of the current main approaches is described below.

SyNQuID [45] is a framework developed by Polikarpova et al| which allows a specification based syn-
thesis of functions. The framework primarily uses refined polymorphic types to restrict the search space
of valid programs. Its unique synthesis approach allows incomplete programs to be type-checked during
synthesis, and, if an incomplete program fails, then all following subprograms generated from the current
program are not synthesized. However, the tool requires complete and correct refinements and the re-
striction of components, functions and variables that the function is allowed to use, in order to synthesize
full programs. This kind of restrictions does not scale in the general-purpose programming paradigm,
as it might be harder to catalogue every single required component that can be used to generate a pro-
gram. This framework was later extended by Knoth et al| with the new framework Resyn [32], allowing
user-provided resources to guide the search. Synthesized programs that do not comply with the resource

bounds are rejected during synthesis.

NEeo [18] was presented by Feng et al| on a new synthesis approach based on conflict-driven learning
and automated reasoning. Their approach can generate new lemmas to prevent mistakes made in the
previous synthesis. The synthesis algorithm was split into three components, the Decide that given a
partial program with multiple holes, decides the hole and expression to be filled in, the Deduce that
creates new knowledge based on the semantics and syntax and finally the conflict analyzer that detects

defects on a program and identifies the root cause of the failure. As proof of concept, the synthesis

13

Chapter 3. Related Work

tool NEO was created. The tool was tested against Morpheus and DeepCoder on data wrangling tasks and
outperformed the state-of-the-art synthesizers. Even though the surprising results, similarly to ZoN, NEO
is restricted to the quality of its specifications. A second limitation of NEO is the inability to synthesize
recursive functions, restraining the number of problems it can tackle. TRINITY [36] is a second-generation
framework from NEo and developed by Martins et al/ that not only performs with ease the work in data

wrangling tasks but also allows expert users to extend the behaviour of the framework.

SYGUS [3] is an approach on program synthesis developed by |Alur et al] which uses logical constraints
and syntactic templates to restrict the space of implementations. The authors studied different kinds of
inductive synthesis procedures on the search for correct programs. Active learning uses a query-based
model to control the selection of examples that it generalizes from and can query one or more oracles to
obtain both examples and labels for those examples. Counterexample-guided inductive synthesis (CEGIS)
starts by choosing a candidate from the space of valid candidate concepts. This candidate c is presented
to the verification oracle, checking for program correctness. If the candidate is correct, the synthesizer
terminates; otherwise, it generates a counterexample that is added to the learning algorithm. If, after some
iterations, the learning algorithm is not able to find a concept which respects the restrictions, the CEGIS
procedure fails. Listing presents an example, adapted from SyGuS , of a synthesized function that
computes the minimum of two variables = and y. This approach requires the user to declare the syntax
and operations in order to generate the code. The necessity of specifying every operation and terminal

may prove to be harder than programming the function itself, limiting this approach in terms of usability.

Listing 3.1: Minimum of two variables in SyGuS.

;3 the background theory is linear integer arithmetic
(set-logic LIA)

;3 name and signature of the function to be synthesized
(synth-fun min ((x Int) (y Int)) Int

53 non-terminals that would be used in the grammar
((I Int) (B Bool))

;3 define the grammar for allowed implementations of min
((IInt (xyo@1((+ITI)(-ITI) (iteB I I)))
(B Bool ((and B B) (or B B) (not B)
(=I1I) (<=I1I) (>=1T1I))))
)

(declare-var x Int)
(declare-var y Int)

;33 define the semantic constraints on the function
(constraint (<= (min x y) x))

(constraint (<= (min x y) y))

(constraint (or (= x (min x y)) (= y (min x y))))

"https://sygus.org/language/

14

23

24

Chapter 3. Related Work

(check-synth)

Genetic Programming on Deductive Synthesis Montana [39] was the first to research on the topic of
program synthesis using genetic programming. In this work, Montana presents Strongly Typed Genetic
Programming [37] (STGP) that uses types to constrain the search space of correct synthesized programs.
This method also supports generic data structures and operations. Initially, the synthesis was tested on
simple matrix operations, providing a brief insight into its potential. STGP was later capable of tack-
ling different classes of problems with extensions to support more generic program patterns with type
inheritance [24] and polymorphism [59].

On the original work, for each problem, Montang strictly follows the typical genetic programming
procedure. He defines the fitness function, manually chooses the terminals and non-terminals for the
evolutionary procedure, the genetic parameters and the provides the results, in case of linear regression.
One of the main challenges in Genetic Programming is the large search space. The amount of operators
combinations can make it difficult to to find a proper solution. So, with this insight, Grammar-Guided
Genetic Programming [37] (GGGP) was created to reduce the number of operation combinations and
allowing a faster synthesis of programs.

In GGGP, a structure of the solution is provided in the form of a grammar. Grammars are then used to
reduce the search space, but also to sub-induce what sub-functions should be used in the target function.
GGGP power on restricting the search space, make it a state of the art approach, widely used in different

areas: from generating Super Mario levels [49] to mining association rules [35].

Coevolving programs with Genetic Programming [4] The work developed by Arcuri and Yao tries
to use Genetic Programming and a specification to generate programs automatically. The user provides
the specification which is converted into a continuous fitness function to evaluate individuals better. This
type of conversion of the program specifications, allows a more expressive evaluation of the program
candidates. Arcuri and Yags’ approach coevolves tests and the program at the same time, if a test is good
at testing a specific program, then it should progress throughout generations. The proposed approach,
however, is not capable of narrowing the number of operator combinations, since it does not take into

consideration any specification restriction over the synthesis components.

3.2 Inductive Synthesis

Inductive synthesis or example-based synthesis requires the user to provide a test suite to declare its
intention. The objective is to extrapolate the program behaviour from the /O pairs. This approach is
arguably more usable than writing specification, but if the test suite is not expressive enough [46], this
approach cannot synthesize generalized programs. Different techniques [31]] have been introduced in this

particular area, in this section we present some of the main approaches.

CEGIS [51] is an acronym for Counterexample Guided Inductive Synthesis, and it is a crucial concept

in inductive synthesis. The main objective of CEGIS is to correctly choose a set of input pairs so that

15

Chapter 3. Related Work

any synthesized program is generalized for those inputs. CEGIS execution is based in two main compo-
nents: a checking system for the candidate solutions, capable of generating counterexample inputs; and
the inductive synthesizer, which generates candidate programs according to the counterexamples. Each
counterexample input represents a different behaviour of the program, which no previous counterex-
ample was able to detect. The system continuously produces new candidates according to the detected
counterexamples, until it can generate a valid candidate. Figure B.1| presents a visual description of the
procedure done by CEGIS.

Candidate Program

/ N

CSpeciﬁcation —»| Inductive Synthesizer Verify [yf Valid

Program

e Counterexample set | .
') Fails

_________ —

Figure 3.1: CEGIS counterexample and candidate programs synthesis flow.

[Generate Counterexample]

MytH [41]] MyTH is a prototype tool based on OCaml for testing the Type-and-Example-directed Pro-
gram Synthesis approach. Similarly to GGGP, this approach uses the type system as a refinement for the
combinations of the components. The user intention is provided in the programming language from use
cases. The system uses a bidirectional type checking [44] for synthesizing recursive functions.

The synthesis is divided into three main components: Type refinement, in which the outputs provided
to the function are set as goals and bounded to the proper inputs parameters and respective values; Guess-
ing, where the ill typed and non-well formed expressions and finally, it matches the example expressions

as a way to guide the synthesis.

Program Synthesis Using Natural Language [15] This approach relies on neural networks and uses
natural language as a description of the problem, and outputs a set of ranked programs. Internally, to
build the synthesis network, the synthesis programmer is required to provide two components: a domain-
specific language (DSL) with the existing operations and their combinations; and, examples of descrip-
tions in natural language with the respective programs in the DSL. Since natural language is ambiguous,
instead of presenting one final solution, it provides a ranked set with the top programs which may fit the

description.

3.3 Synthesis from Sketches

SKETCH [50] allow programmers to express their insights on a problem by providing a partial program
that encodes the structure of the solution. The programmer must also provide all the operations that the

problem requires in order to generate the code automatically.

16

Chapter 3. Related Work

The SKEeTCH framework is composed by two parts, the core SKETCH language and the SKETCH itself
constructed as syntactic sugar on top of the core. It also uses counterexample guided inductive synthesis
(CEGIS) to generate the candidates, check their correctness, learn from counterexamples until it finds the
correct program or fails if there are no programs that follow the specification.

The SKETCH approach main issue arises with the restriction of the synthesis components. The pro-
grammer is required to provide only the exact components and their combinations in order to generate the
sketch. This type of approach does not scale for general purpose synthesis problems, where the objective
is to get rid of the programmer worries on declaring the components. Not only that, but the increasing

amount of variables used exponentially increases the runtime.

EPS [7] also known as Evolutionary Program Sketching, was a work later developed by Bladek and
Krawieg where they take the original SKETCH approach and replace the human programmed sketches for
evolved sketches with holes with Genetic Programming. This approach uses an SMT solver to synthesize
the holes in the program, and test cases to evaluate the candidate programs. Unfortunately, the approach
only takes into consideration constants and input variables, since adding extra information would explode

in complexity for the SMT solver.

17

Chapter 3. Related Work

18

1

2

3

Chapter

The 0N Programming Language

4.1 Main Concept

This chapter presents the essentials of the EFON programming language, examples of its features, and the
internal implementation, distinguishing the classes of refinements and their importance towards program
synthesis.

We propose A£ON as a language for expressing the program specification using its rich type system.
AON is a general-purpose functional programming language that uses refined and dependent types to
synthesize complete or partial programs. AZON syntax similarity to Python allows new developers who
never engaged with refined and dependent types to program in it.

Like many other functional programming languages, such as Haskell and Scheme, ZON contains
native functions, lambda expressions, types creation, type abstractions and applications. The creation
of new types and type abstractions enriches ZON expressiveness allowing it to tackle different areas of
program synthesis.

A 0N provides the programmers with the ability to create specifications in functions through the type
system. These specifications not only ensure the correctness of a function but also allow the synthesis of
full or partial functions. Generalized program synthesis distinguishes Z0N from the remaining state of
the art approaches. The regular developer can quickly specify the wanted function by defining the input
and output type refinements. The language allows the introduction of holes (H) in the program body
implementation. These holes inform the compiler that it is required to synthesize an expression for each

hole defined with the help of the evolutionary procedure (Chapter).

4.2 Examples

This section presents examples of the 0N programming language by implementing types and functions
that compose an image library. The examples are ordered by ease of comprehension and demonstrate

different features of the language.

Listing 4.1: Type Aliases and Type Declarations in ZON.

import aeon/libraries/list;
type Nat as {x:Integer | x >= 0};

19

Chapter 4. The AoN Programming Language

type ColourInt {x:Nat | x <= 255};

type Colour {
red : ColourInt;
green : ColourInt;
blue : ColourlInt;

}

type Image {
width : Nat;
height : Nat;
pixels : List[Colour];

Listing @#.1| presents a small introduction to the 0N programming language. Ao0N allows the user to
import either natively implemented functions, and types or other user-defined functions.

The first feature of the language is type aliases, where the user can define new types to improve
program usability. The first type alias, Nat, is defined as an Integer whose value is greater than 0. This
type alias definition is then used to quickly help define a ColourInt, by further refining the allowed
values up to 255.

It is also possible to declare new types. These type declarations may or not have ghost variables
associated with them. In example }.1|, we can find two new declarations of types Colour and Image,
each with their variables. In the Colour type, we can find three different variables, typically associated
when defining a colour (RGB), which describes the behaviour of its type. We describe what composes
an image, its width, height, and, in this case, following a simple representation, a list of the pixels that
compose the image. In line 15, the type List [Colour] of the pixels variable presents the type applica-
tion of the imported polymorphic type List to the type Colour.

Listing 4.2: Native function declaration in Z£ON.

get_red(colour:Colour) -> {c:ColourInt | c == colour.red};
get_green(colour:Colour) -> {c:ColourInt | c == colour.green};
get_blue(colour:Colour) -> {c:ColourInt | c == colour.blue};

build _colour(red:ColourInt, green:ColourInt, blue:ColourInt) -> {c:Colour |
c.red == red && c.green == green && c.blue == blue};

load_image(path:String) -> Image;

save_image(img:Image, path:String) -> Image;
build_image(l:List[Colour]) -> {img:Image -> img.pixels == 1};
get_colours(img:Image) -> {l:List[Colour] | img.pixels == 1};

ZoN allows the programmer to define native functions without providing the function body, as seen
in Listing B.2. The functions specification is written in Z£oN and the implementation in a foreign lan-
guage, like Python. The user can then use the specified functions in their programs. Listing #.2 example
declares three new functions to obtain the colours in the Colour type, and also a function that allows
it to create a new function. When declaring native implemented functions, it is recommended to refine

the input and output types as much as possible, as these will be essential, not only to ensure program

20

Chapter 4. The AoN Programming Language

correctness but also to help the program synthesis procedure.

Listing 4.3: Inverting the colours of the Guernica painting in Z£ON.

guernica : {img:Image | img.width == 766 && img.height == 349} =
— load_image("guernica.jpg");

invert_colours(pix:List[Colour]) -> {l:List[Colour] | 1l.size == pix.size} {
if len[Colour](pix) == 0 {
pix;
} else {

colour : Colour = head[Colour](pix);

red : ColourInt = 255 - get red(colour);

green : ColourInt = 255 - get_green(colour);

blue : ColourInt = 255 - get blue(colour);

result : List[Colour] = invert_colours(tail[Colour](pix));
add_first[Colour](build colour(red, green, blue), result);

}

cool _guernica : {i:Image | i.width == guernica.width && i.height ==
< guernica.height} = build image(invert colours(get colours(guernica)));

save_image(cool guernica, "cool guernica.jpg");

Listing §.3 presents a simple example of an implementation of a function in ZoN. In this case, the
goal is to load the famous painting from Pablo Picasso, Guernica, naively invert its colours and save the
new image.

The program starts by creating a new definition of the guernica variable by loading it using the native
implemented function load_image. The result is saved on the guernica variable, and its type is refined
to ensure the proper image sizes.

The invert_colours function receives a list of colours as input and outputs a new list with the same
size as the original one, but with its colours inverted. The first statement checks whether the list is empty
or not. It is essential to notice that every method containing a refined polymorphic type must have a type
application for each type abstraction. Every function’s invocation on the list library functions also needs
to be applied to the type Colour.

The else body explanation is pretty straightforward. We obtain the colour we intend to invert from
the head of the list, invert its colours, recursively apply the function to the remaining list, and append the
inverted colour to the head of the result list.

Then we build a new image by invoking the invert_colours function we just implemented. The
definition type of the cool_guernica variable shows a dependent type, where the width and height must
be the same as those of the original image.

Finally, the image is saved by providing the previously defined cool guernica inverted image and its

location path.

21

22

23

24

25

26

27

28

29

Chapter 4. The AoN Programming Language

Listing 4.4: Gallery of pictures in Z£ON.

type Date {
day : {d:Nat | d <= 31};
month : {m:Nat | m <= 12};
year : {y:Nat | y < 2020};
}

type Picture {
image : Image;
date : Date;
author : String;

}

type Gallery[T] {
files : List[T];
creation_date : Date;
author : String;

}

get_pictures(g:Gallery[Picture]) -> List[Picture];
exists_picture(img:Picture, g:Gallery[Picture]) -> Boolean;
remove_picture(img:Picture, gl:Gallery[Picture]) -> {g2:Gallery[Picture] |
« lexists picture(img, g2)};

copy_picture(img:Picture, gl:Gallery[Picture], g2:Gallery[Picture]) ->

< {g3:Gallery[Picture] | g3.files.size == g2.files.size + 1 and

— exists_picture(img, g3)};

copy_all pictures(gl:Gallery[Picture], g2:Gallery[Picture]) -> {g3:Gallery
| (g3.files.size == gl.files.size + g2.files.size) and
forall(\p:Picture -> exists_picture(p, g3), get_pictures(g2)) and

forall(\p:Picture -> exists_picture(p, g3), get_pictures(gl))} {
27
2?3

This final example intends to present what a simple program synthesis program is like in Z£oN.
The first two type declarations do not introduce anything new and were already previously explained;
we declare two new types, the Date and Picture type, each with their proper ghost variables. The third
type declaration presents a type abstraction. Since we can have a gallery of music, images, and even
videos, the type of files that belong to a gallery should be generic, and the introduction of the T type,
denoted by a single uppercase letter, allows the introduction of the polymorphic type.
The four different native methods’ declaration allows the creation of constructors for the Gallery
type.
The crucial part of this example lies in the last declaration. The copy_all_pictures is a function
that receives two non-mutable galleries of images and copies all the pictures from the first gallery to the
second one. The body of this function is denoted with the hole, 77, operator, indicating that this function

will be synthesized. The specification is provided on the type system with three conditions.

22

Chapter 4. The AoN Programming Language

The first condition, g3.files.size == gl.files.size + g2.files.size,isaliquidtype which
ensures that the amount of files in the output gallery contains the same amount of the two input galleries
combined.

The following two conditions ensure that every image which existed in the input also exists in the
output. Combining these three conditions ensure that all the images on the input exist in the output.

Even though indistinguishable in terms of syntax, there are two classes of refinements in 0N, with
two different purposes. The first condition is a liquid type, meaning that it can be statically verified using
a Satisfiability Modulo Theories (SMT) solver. These types will be essential on the synthesis of valid
expressions on the non-deterministic synthesizer (Chapter [). The second and third conditions are non-
liquid types, meaning that they cannot be statically verified, since its verification relies on the execution
of the program. These types will be necessary for the evolutionary synthesis algorithm (Chapter [7) to
evaluate candidate programs and obtain their performance. At the end of this procedure, we obtain the

implementation of the function.

4.3 Implementation Details

This section presents the implementation structure of A0ON components essential for the synthesis of
programs. Each component is further explained in its respective section in the remaining of this work.

Two essential parts compose the AON program synthesis procedure: the non-deterministic synthe-
sizer, responsible for synthesizing valid expressions from liquid refined types (Chapter f), and the evo-
lutionary program synthesis, that evolves programs according to the non-liquid refined types, allowing
complete or partially holed programs to be generated, (Chapter 7).

Figure briefly describes the flow of the AoN programming language compiler. Firstly, the file
is parsed and an Abstract Syntax Tree is created using the type system of £ZONCORE. In £AONCORE the
language types are checked, and if a hole is found during type checking, the responsibility for synthesizing
the code is delegated to the evolutionary synthesis module. However, only programs that are valid and
type checked, proceed to the synthesis module. For instance, if the user provides a specification that is
not valid (e.g. {x : Integer | falsel), the compiler raises an exception.

The evolutionary synthesis receives a holed program, fully or partially incomplete, and using Genetic
Programming (GP) it tries to search, within the produced valid synthesized expressions, for an expres-
sion which complies with the refinements. During the synthesis’ procedure, the evolutionary program
synthesis uses the synthesizer to non-deterministically generate valid programs from the liquid types and
then uses the non-liquid types to check the program’s correctness. By the end of this procedure, the GP

produces a valid and optimized program.

23

Chapter 4. The AoN Programming Language

Translation to Z£onCore \

Y0 > Synthesis

: « Synthesis weights
ik SMT Solver
Typechecking check
e
& Deduce
synthesize expression from type
LT,d R

h

1

1

1

‘

1
Liquid refinements 1 |

1

1

1

1

1

1

1

(x int — {y:int| y ;e 0} — int Evolutionary Procedure

isnat(y)
Non-liquid
{y:il'.lt |y #0and / reﬁ.nemems Start Evolution Fitness function
isnat(y)} isnat(y) extractor
Initialize
int Population

Mutation

Fill the hole

Solution found!

OLOOO

REN=Z ==

[

O,
- :>:>. -
(®
muon]

[Interpreter]

Result

Figure 4.1: Flow of the compiler in ZON.

24

3

Chapter

Translation to Z0ONCORE

This chapter presents the type system, the essentials of AONCORE and the motivation behind the conver-

sion from AoN to £Z0NCORE, and the automatic inference of the hole type.

5.1 AoN conversion to A£AONCORE

A 0oNCORE is a functional programming language with refinement types used internally in 0N whose tree
representation allows an improved interaction between the non-deterministic and evolutionary synthesis
modules. It exhibits a complex syntax that strictly follows the type system rules described in Section 5.2
The A0NCORE has an abstract syntax tree-based representation where typed nodes represent expressions
of the system. The straight representation of the type system is proof of £0ONCORE versatility, allowing
the creation and linkage of different syntactic frontends.

In order to improve usability, 0N was created with a user-friendly syntax, allowing new program-
mers to engage in the language quickly. Zon acts like a syntactic frontend by being directly parsed to
/EONCORE.

Listing B. 1| presents the factorial function written in a programming language that follows ZEONCORE
tree representation. For the sake of the reader, the type IntTolnt was created and used to simplify the
factorial function.

These two examples illustrate the syntax dissimilarities over Z0NCORE and AON.

Listing 5.1: Factorial in ZZONCORE.

type IntToInt = (a:Integer) -> Integer

factorial : IntToInt = fix[IntToInt] (\f:IntToInt -> \n:Integer -> if (n ==
— @) then 1 else (n * f(n - 1)));

Listing 5.2: Factorial in ZON.

factorial(n:Integer) -> Integer {
if (n == @) then 1 else n * f(n - 1);
}

25

Chapter 5. Translation to AAONCORE

As stated, £ONCORE representation is an abstract syntax tree with typed nodes that are expressions
from the type system. AON syntactic-sugar frontend is converted to this representation during the lex-
ing/parsing of the language.

Values that represent basic types of the language, such as integers, doubles, strings and booleans, are
transformed into Literal nodes.

Variables are converted to Var nodes with the variable name.

Holes in the program are directly converted to the Hole node and the type included. During the
conversion, if the hole type was not provided, the deducing procedure described in Section 5.3 is triggered,
and its type is automatically infered.

Import statements are temporarily converted to Import nodes with the file path. Once the conversion
is over, import nodes are evaluated, and the file paths are read and loaded.

ZEoN allows the programmer to create a new alias for certain types. Listing 5.3 presents a type dec-
laration of the Natural type by restricting the Integer domain. Type aliases are directly transformed into

TypeAlias nodes, saving the type and alias, in £ONCORE.

Listing 5.3: Type alias in ZEoN.

type Nat as {x:Integer | x > 0};

Declaring a type is strictly converted to a TypeDeclaration node in Z2ONCORE. Let us consider the
types Bus and Car declared in Listing 5.4. The type Bus is directly converted to a TypeDeclaration node.
On the other hand, the Car type not only is converted to the TypeDeclaration node, but its ghost variables
are used to generate uninterpreted functions. These functions are invoked when calling the variable
name over the type. The type alias Ford exemplifies the syntactic sugar invocation of the uninterpreted
functions, where the x.brand is converted to Car_brand(x). It is also possible to have nested uninterpreted
functions (e.g. car.owner.age is converted to Person_age(Car _owner(x))).

For each ghost variable of the type Car, the proper uninterpreted functions is generated, and the ghost

variables access are correctly converted in Listing [5.5.

Listing 5.4: Type declarations in ZON.

import person;
type Bus;

type Car {
year : Nat;
brand : String;
registration : String;
owner : {p:Person | p.age > 18};

}

type Ford as {x:Car | x.brand == "Ford"};

Listing 5.5: Uninterpreted functions of the Car type.

26

Chapter 5. Translation to AAONCORE

Car_year : (x:Car) -> year:Nat = uninterpreted;

Car_brand : (x:Car) -> brand:String = uninterpreted;
Car_registration : (x:Car) -> registration:String = uninterpreted;
Car_owner : (x:Car) -> {owner:Person | p.age > 18} = uninterpreted;

type Ford = {x:Car | Car_Brand(x) == "Ford"};

ZoN allows the user to declare functions which are converted into a Definition node. A definition
node contains the information related to the function (name, type, return type, and body). The conversion
of functions from £oN to £ONCORE present a more demanding challenge. ££0ONCORE only allows one
single expression composed by abstractions and applications. The multiple statements in £oN must be
converted into multiple nested abstraction and application for each statement. For better understanding,
consider the example B.6, a function which creates and updates the ownership of a vehicle in a database.

It is important to notice that these ghost variables do not exist at runtime, only at the type level.

Listing 5.6: Update of vehicle ownership in a database in AZON.

updateOwner(owner:String, registration:String) -> Integer {
sgql : String = "UPDATE vehicle SET owner=? where registration=?";

print(sql);

sql
sql

setParameter(sql, owner);
setParameter(sql, registration);

executeUpdate(sql);

Each statement is converted into an abstraction and the body is applied to it. For instance, the state-
ment in line 6 would be converted to _:Top = print(sql). Starting by the last statement being com-
puted, it is nested with the application of abstraction of the previous statement.

Listing 5.7 presents the tree representation of the conversion from 0N to ZZONCORE.

Listing 5.7: Vehicle ownership in a database converted to Z£ONCORE.

Application(
Abstraction("sql", String,
Application(
Abstraction(' ', Top,

)5
Application(var("print"), Var("sql"))
)
)5

Literal("Update vehicle SET owner=? where id=?")

27

1

2

Chapter 5. Translation to AAONCORE

Function invocations are traduced into multiple nested applications. For example, the sum of two
values, x + y, is converted to ((+ Xx) y)

It is possible to find two different kinds of if in Zon. If statements allow multiple expressions in the
body of the then and else. The body is converted into a single expression using the previous conversion
procedure. If expressions, (e.g. if cond then expression else expression), only allow a single expression
in the body of then and else.

Lambda functions are directly converted into Abstractions.

5.2 Syntax

Kinds k o=x| k—k

Types T := Integer | Boolean | t | 2: T —» T
| z: T wheree | Vt: kT | TT

Expressions e == true | false | n | = |77
|ifethencelsee | Ax: T.e | ee
| At: k.e | e[T]

Contexts I' v=¢ | Tya:T | Tt: k| Tye

Figure 5.1: The syntax of A0ONCORE programs.

Figure B.1| presents the syntax of £0NCORE programs which are composed by kinds, types, expressions

and contexts.

Kinds As referred in Section .2, a kind is associated to each type. Regular types, like Integer,
have the kind *, while type applications, types applied to types, recursively have the kind k£ — £ (e.g.
(List Integer) with the kind).

Types ZoN includes native basic types, like Integer, Boolean, and also custom created types, t,
through type alias or type declaration. There are also implemented two native types, Bottom and Top,
which stand for the empty type, which is the subtype for all types, and the universal base type, where all
the other types are its subtype, respectively.

The type (x: Th — T») is a dependent function that receives as input the type 7}, assigned to variable
x, and returns a type 75, where x occurs freely in 75. A type x: T" — U is abbreviated to T — U when z
does not occur in U. For better understanding, consider Listing 5.8 written in ZZ0NCORE, which computes

the power of a given value using a nested dependent function.

Listing 5.8: Power with two dependent variables in ZZONCORE.

type Nat = {x:Integer where x >= 0}
pow : Nat -> (Nat -> Nat) = \x:Nat -> y:Nat -> if y == @ then 1 else x *
=~ ((pow x) (y - 1));

28

Chapter 5. Translation to AAONCORE

Listing [5.8 recursively calculates the power of a value. In order to improve readability, the first line
aliases a new type Nat from the refined Integer type. The pow function is declared by providing its
type and the assignment body. The pow function type states it receives two natural numbers and returns
a natural value.

The rule x: T where e expresses a refinement of the type I" for which the predicate e holds; term
variable x may occur in e (but not in 7T').

Polymorphic types are introduced with V¢: k.7, for ¢ a type variable and & a kind governing the
“shape” of t. The body T of the type may contain free occurrences of t.

A type of the form (7'U) denotes application. For better understanding, let us consider the type 7'
of the type Vt: *.(x: t — Boolean) and U has kind *, then the application of the type T" to U, TU, is

convertible to x: U — Boolean.

Expressions ZAONCORE contains natively implemented expressions from the basic types (Integer,
Boolean, Double, String). It is also possible to declare new variables, x. The 77 operator denotes
a hole in the program.

Listing 5.8 presents an example of the abstractions implemented in ZZONCORE. Az : Te declares that
x is of type T and may occur in the abstraction body e. In correlation to b.§, we declare z of type Nat,
and y of type Nat, then = and y are used in the abstraction body to calculate the power.

Expressions application, ejes, in ZZONCORE is made resorting to currying, reading es is applied to
e1, where e; type is an abstraction type. For instance, in B.8, the expressions y == 0 and y - 1 are
syntactic sugar to ((== y) 0) and ((- y) 1), respectively.

The polymorphism over expressions is built using type abstraction expressions, At: k.e, and type
application expressions, e[T]. The type abstraction introduces a new type that can be used in its body.
On the other hand, the type application expression takes an expression, whose type is a type abstraction,

and substitutes all occurrences of the type abstraction declaration by the applied type.

Contexts AONCORE contexts may be empty, contain variables and the respective type, declared types
and its kind, and finally boolean expressions which correspond to the propagation of the refined type
conditions and if then else conditions.

The type system and type formation have been independently and continuously developed by the

research team at LASIGE and can be found in Appendix [A.

5.3 Hole Type Inference

ZAoN allows the introduction of holes, ??, in the program whose expressions will be synthesized and
replaced in the hole, according to the type. However, writing the type of the hole can either be tedious
and repetitive or too hard for the regular programmer. To prevent this, we automatically infer the type of
the hole, or multiples holes according to the specification in the type system.

Figure 5.2 presents a proposal of the hole type inference algorithm to infer the type of the hole accord-
ing to its context and update the holes parents types automatically. The types of the remaining nodes were
annotated during typechecking and are kept unchanged, regardless of the algorithms deductions system.

The notation is straightforward: by default we are only infering the hole and updating its parents, the

29

Chapter 5. Translation to AAONCORE

e — T infers the type T" from the expression e. Since its node is already pre-annotated with its type from

the typechecker, its type is presented in the form e : 7.

F T context F T context b = true, false F I context (t fresh)

I' - n: Integer — Integer 1+ b: Boolean — Boolean I 77 : Bottom — Vit : x.t
(D-Int, D-Bool, D-Hole)

FTlcontext z:T €Tl I'e:Tre—U
e T—T F'F(Mz:T—e):(x:T—->U)—(z:T—-0U)

(D-Var, D-Abs)

Fl—el — Boolean F,el |—€2 — T F,el |_€3 — U
T.ei b ey glb(V,T) T,—er b es glb(V,U)

D-If
I'Hif e; then ey else e3: V=V ()
It:kke—T (tfresh) TFe—Vt: kU THT:k
- (At:ke): (Vt:ET)=V >V Cke[T):U[T/t]— U[T/t]

(D-TAbs, D-TApp)

I'Fe—T (xfresh) (tfresh) T'H??— ||Vi:x(z:T —=U)|m

D-LA
TH(7e):UmU (D-LApp)
'F??—T TFe—|(z:T—V)|nm
D-RA
TFE?): VeV (D-RApp)
Fkey—T F'teg— (z:T—0U) (D-App)

I'Fees: U Uley/x]
Figure 5.2: Hole deduction rules.

The first two rules, D-Int and D-Bool, return the types from the native expressions, such as integers
and booleans. The D-Hole, returns the type of the hole, in which, if not annotated by the user it is auto-
matically deduced as a type abstraction applied to the type itself. The introduction of the type abstractions
as the type of the hole informs the evolutionary synthesis that it is required to non-deterministically syn-
thesize the type for this hole in order to generate a proper expression. This way, we are able to introduce
diversity in the synthesized expressions and create independence of the type for the same hole. The rule
that expresses the type over a variable is obtained from the D-Var rule.

The D-Abs rule defines the abstractions body deduction. The return type of the abstraction is strictly
linked with its body or any application it may be wrapped. The type inferer takes into consideration both
types and assigns the proper return type to the abstraction. The expression e type should be the return
type decided by the inferer.

The D-If deduce rule needs to deduce the type of three expressions. Firstly, the condition of the if
expression is required to be a Boolean. Then, it tries to deduce the types in both e; and e3. The type
of e; expression is the greatest lower bound (glb) between the type of the if expression and es. In the
situation where e; is a hole, the inferer will assign the if type. The same operation is executed over the
e3 expression.

The D-TAbs tries to deduce the type of e, and assigns it the type application of the type abstraction.

30

Chapter 5. Translation to AAONCORE

The D-TApp rule works quite similarly, it assigns to the expression a new type abstraction that is being
applied to T'. If e is not a hole, it keeps the previous type, otherwise, it generates the new type abstraction.

The last expression to be deduced is the Application. Deducing an application presents a stiffer chal-
lenge since there can be nested holes. The first application deduce rule, D-LApp, deduces the application
target when it is a hole. Firstly, we obtain the type of the argument expression. Then we generate a new
variable and a fresh type, « and ¢, to create the abstraction type. Since it is a hole, the abstraction type is
wrapped on a type abstraction of type ¢ and kind . This rule is wrapped with the || 7'||m notation. Since T’
can be obtained from a deduced hole, and the type abstractions inside the argument type of the abstraction
type are not allowed, this notation tells us that the type abstractions over the deduced holes are propagated
outside the abstraction type. For example, the following type Vt : x.(z : (Vta : x.t2) — U) is converted
to Vt : x.Vtg : x.(x : tg — U).

The second application rule, D-RApp, is applied when the argument of the application is a hole. Its
implementation is straightforward: first, the type of e is synthesized, and since the hole is the argument
of e, its type is required to be 7. If the whole expression is nested holes, the return type V', obtained from
the return type of the abstraction type of e, is wrapped within the appropriated type abstractions.

The last application deduction rule is the regular application of two expressions. It synthesizes the
type of e2 and the type of e;, ensuring that the argument is of type T". The returned type is the type U,
with a substitution of expression by the expression on a type.

The following practical examples and respective derivations introduce some of the main challenges

solved by this mechanism.

Listing 5.9: Deducing the hole type of a car list update in AON.

import aeon/libraries/list;

updateOwner(l:List[Car], old:Person, new:Person) ->
{12:List[Car] | 1.size == 12.size and
length(getCars(old, 12)) == @ and
length(getCars(new, 12)) == length(getCars(new, 1)) +

- length(getCars(old, 1))} {
27
2?3

Listing 5.9 shows a simple example of the deduction of the hole, where the programmer updates the
ownership of its cars. In this simple case, the output of the hole corresponds to the return type of the
function.

Most difficult cases arise from the partial synthesis of programs. As different holes type may depend
on each other, we need to calculate and propagate types between holes that may be linked.

The following pseudocode in AoN present different examples for the deduce procedure in the partial

synthesis of programs.

Listing 5.10: If expression deduction in ZAON.

deducel(l:List[Car], old:Person, new:Person) -> {12:List[Car] | cond} {
if ?? then ?? else ??;

}

31

Chapter 5. Translation to AAONCORE

I'+77) — Boolean T',77; F779 — (Vtg : x.to) I',771 F775 — (Vi3 : *.t3)
T F22 s glb(Vs s xto, V) =V T 2755 glb(Vis : kits, V) =V
I'Hif 77, then 775 else 773 :V = {i2: (List Car) | cond} — V

Figure 5.3: Derivation of Listing using the D-If rule.

Listing is an example that contains three holes. The first hole, the condition of the if expression,
requires it to be of Boolean type. The then and otherwise body types are required to be the same as the
return type. The type abstraction deduced from the holes say that it accepts any type application of kind
*, and so, the return type of the function can be type applied, correctly deducing the type of the hole.

Listing 5.11: Deducing the hole type of a car list update in A£0ON.

deduce2(1l:List[Car], old:Person, new:Person) -> {12:List[Car] | cond} {
22
??;

.
ooy

Listing presents an even simpler example. All holes in the middle of statements, which are not
let statements, must return deduced type from the D-Hole rule, which means that any expression of any

type can be synthesized.

Listing 5.12: Target deduction of function application in ZA£ON.

deduce3(l:List[Car], old:Person, new:Person) -> {l12:List[Car] | cond} {
??2(old);
}

'k old — Person (x fresh) (tfresh) I'F??+ ||Vt: *.(x: Person — V)|m
I'E (?70ld) : V ={12: (List Car) | cond} — V

Figure 5.4: Derivation of Listing using the D-LApp rule.

Listing tries to deduce the target of an application. In this case, the hole is applied to an argu-
ment; therefore its type must be an abstraction type, where its argument is the type synthesis of the old
variable and its return type the return type of the function, (x:Person -> {12:List[Car] | cond}).
The return type represents one of the exception cases caught by the auxiliary notation, ||7’||m. Typically,
the return type would be ¢, but since, a greater type than ¢ is used as return type (in this case, the functions

return type), then it is assigned to V.

Listing 5.13: Argument deduction of function application in A£ON.

32

Chapter 5. Translation to AAONCORE

append_list[T](e:T, 1l:List[T]) -> {12:List[T] | 12.size == 1l.size + 1};

deduce4(l:List[Car], old:Person, new:Person) -> {12:List[Car] | cond} {
append_list[Car](??, 1);

ooy

In Listing .13, a similar concept is applied from 5.12. The append_1ist is type applied to the Car
type, and, all the locations of the T type are replaced by Car, being an argument of the append_1list, it
means that the hole type is deduced to be Car.

Listing 5.14: Full function deduction in ZoON.
deduce5(1l:List[Car], old:Person, new:Person) -> {12:List[Car] | cond} {
??[Car](??, ?22(1));

° oy

}
(x3 fresh) (t3 fresh) I'F 1~ (List Car)
r }_??3 — ||Vt3 Z*.(.’L’g : (List Car) — tg)H-
*
TR (773 1) = Vi3 : .13 below
LE(((?70 Car) 779) (7?73 1)) : V. ={12: (List Car) | cond} — V
Figure 5.5: Derivation of Listing using multiple deduce rules.
F I' context (t1 fresh) I't+ Car:*
(to fresh) D E??7 0 ||Vt (% = %).(VEg : %Vg % (x2 it — 23 :t3 = V) Car)||m
[779 = Vig @ %t ['F (779 Car) — ||Vtg : xVtg : *.(v2 1 tg > x5 :t3 = V)||m

'+ ((771 C’a'r) ??2) — Vtg : *.(1‘3 1 i3 — V)
Figure 5.6: Continuation: Right side derivation of the D-App rule for Listing 5.14.

The last example, Listing [5.14, presents a more complex deduction of the holes. Starting with the first
argument, from the rule D-Hole, its type is t3:*.t3. The second argument of the function call is a hole
applied to the argument [, following the D-LApp rule, this second hole, which corresponds to the second
argument, is of type t2:*. (x2:List [Car] -> t2) (because of the lack of space, the x> fresh is im-
plicitly defined). Finally, the most external hole is applied to two arguments and type applied to Car. Fol-
lowing the rules, the last hole typeis t1: (*=>*) . ((t2:*.t3:*%. (x2:t2 -> (x3:t3 -> V))) Car).

By the end of this translation, we obtain a AST in EONCORE with annotated types and infered hole
types. The translation will allow the usage of the AST as part of an individual in the evolutionary proce-
dure. The infered holes are also prepared for the further steps in RTGP. The evolutionary synthesis will
provide a type for the type abstractions if necessary, and the non-deterministic synthesizer will generate

all the needed expressions or types, according with the liquid refinements, for the genetic programming.

33

Chapter 5. Translation to AAONCORE

34

Chapter

Non-deterministic Synthesis From Liquid
Types

This chapter presents the synthesis algorithm for the non-deterministic synthesizer for the liquid refine-
ment types. This algorithm is capable of synthesizing kinds, types and expressions. Figure p.l| presents

the simplified procedure for the synthesis of different components.

Recursively Ranges
apply rules

-+ Kind Synthesis helps ,
depth | kind

Type Synthesis W

T, kind, depth] > Synthesis » type
Expression J
i weights
T, type, depth } Synthesis > g expression
check valid/invalid
refinement
SMT-Solver (z3)

Figure 6.1: Synthesis diagram of kinds, types and expressions.

The non-deterministic synthesizer recursively applies the rules in order to generate the appropriate
expression, type or kind. Each rule contains a weight which determines the likelihood of the rule to occur
(the higher the value, the more probable it is to be used). Expressions are verified against liquid types
with the help of an SMT solver (z3 U in our implementation). Since automatically generating values
which comply with the refinement at the first try is unlikely with tight restrictions, we have developed a
small module, described in Section .3, that allows us to generate discontinuous native values instantly.

Each of the following sections presents the concepts described in Figure .1 Section describes
the synthesis rules for the components of the language. Section shows the influence of the weights

over the synthesis rules and, finally, Section .3 addresses the synthesis problem of native expressions

'Tool available in https://github.com/Z3Prover/z3

35

Chapter 6. Non-deterministic Synthesis From Liquid Types

over restricted refinements.

6.1 Synthesis rules

This section presents the synthesis rules for the program synthesis procedure.

gk g k!

» Y (SK-Star, SK-Rec)
~d ~Mrd+1

Figure 6.2: Kind synthesis, .

Figure .2 presents the first set of synthesis rules for generating kinds. The first rule, SK-Star, given
a non-negative depth d returns a kind. The second rule, SK-Rec, creates multiple type constructors via
currying. Considering a depth greater than 0, d-+ 1, the rule will generate two kinds, k£ and k', at maximum

depth d, that together create an n-ary type constructor.

I' = #~glInteger I' - x~~;Boolean ;Fkkizt (ST, 5T-Bocl, ST-Van
T TR

i (kri kﬁiiﬁ\g k) (GTTARS

vkl T (K — k)~gT T EgU (ST-TApp)

T F kg 1U

Figure 6.3: Type synthesis, | I' - k~»;T'|.

Figure 6.3 describes the synthesis rules for types. Every rule requires to be given the typing context,
the kind of the type to be synthesized and the synthesis depth.

The first two rules describe the synthesis of native types, such as the Integer, and Boolean. Al-
though not represented, the Double and String types are also synthesized. Each native type is of kind
* and can be synthesized at any depth.

The third rule, ST-Var, describes the synthesis of user-defined types. The only verification required
is that the returned type exists in the context and has the appropriate kind.

The ST-Abs rule defines the creation of an abstraction type through the synthesis of a fresh variable
and two types. The rule reads as follows: given the typing context, a kind &, and the non-negative
synthesis depth, d, generate a type 1. Then, create a fresh variable x. By providing the context the
variable x with the type 7', and depth d, generate a type U, where x can occur in U. Finally, build the
AbstractionType for the generated variable x with type T" and return type U.

36

Chapter 6. Non-deterministic Synthesis From Liquid Types

The ST-Where is responsible for generating a refined type. Given the kind &, synthesize the type T'.
Then, create a fresh variable x. Given the typing context, I', with the variable x of type T, synthesize a
Boolean expression e, where x can occur freely in e. Afterwards create the refined type with name x,
type T" and refinement expression e.

The ST-TAbs creates a new type abstraction from a new type. First, we generate a fresh ¢, with the
kind k. This new type is provided to the context in order to synthesize the type 7" from the kind &', where
t can occurin 7.

The ST-TApp rule synthesizes the type application of two types. The rule starts by describing the
synthesis of a new kind, &’. Then, we generate the type T', from the binary type constructor k&’ — k.
Lastly, synthesize the type U, which is the argument of the type application.

SE-Bool, SE-Int
I' - Boolean~~ jtrue, false I - Integer~4n (ool, nt)
Ixz: T U~yge T,e b Toges T Eeifey/x]

E-Abs, SE-Wh
Pk (z: T —=U)wgr1(Az: T.e) Tk (z: T whereej)~giieo e 55 ere)

I t: kET~ge z: T el

E-TAbs, SE-V
I (Vt: k. T)~qr1(At: k.e) [F Toogi (S s, SE-Var)

'+ BOO|eaI‘IWd61 F, €1 + deeg F, —e1 + TWdeg

E-If
'k TWd+1if e1 then e; else e3 e)
de '+ deU 'k deeg (.%' fresh)
Dx:Ubejp T~~qV TE(@:U— V)~
T et w [(SE-App)
I'ET~qgq1e1e9
~sgk T k~sqU (t fresh)
F,t: k F[U/t] TWdV ' (Vt: k.V)wde
E-TA
T - TgprelU] (SE-TApp)
I'ET - I'EU~
aU Urrae (SE-Sub)

T+ Togyre

Figure 6.4: Expression synthesis, .

The expression synthesis rules correspond to the ones that can generate valid expressions for the
program synthesis. These rules use the previously defined kind and type synthesis rules to aid expression
synthesis.

By providing the native types to the synthesizer, it is possible to generate the native values for the
native types. The first two rules, SE-Bool and SE-Int, synthesize default values for the Boolean and
Integer types by providing the context and maximum depth. Not only these types are natively generated
but also the String and Double types are too. The synthesis of these values respects the restrictions
propagated in the typing context. In order to automatically generate valid values from the restrictions,

we use the framework described in Section [.3.

37

Chapter 6. Non-deterministic Synthesis From Liquid Types

The SE-Abs rule is responsible for generating an abstraction expression from an abstraction type.
The synthesis of this expression is simple as we only need to obtain the expression, e, for the abstraction
body. To do so, we synthesize the expression e, from the return type U, with the depth d, and providing
the typing context with the variable x and its type T', allowing x to occur in the generated expression.

It is also possible to synthesize a restricted expression with a refined type from the SE-Where rule.
We propagate the refinement restriction by providing it to the typing context, I', on the synthesis of the
expression ez from the type 7', at depth d. We then check condition entailment when replacing z by es
in e;. If so, then the synthesized expression is considered valid and can be returned.

The synthesizer also generates variables, SE-Var, from a given type, T, as long as the variable is a
subtype of 7', and it belongs to the typing context.

The language also contains if expressions that can be produced from the SE-If rule. The if expression
is composed of three body expressions. The condition, e;, which is generated by providing the type
Boolean. The then body expression, es, created by providing the context with the holding condition e;
and the input type 7, and, finally, the else body which generates an expression e3 by propagating the not
holding condition —e2 on the context with the type 7.

The SE-App rule is responsible for creating the application of two expressions from a given type 7.
The procedure goes as follows: first, we generate a new kind at depth d. This kind is used to synthesize
the type U, needed for the synthesis of the argument expression es. Then, we need to generate the target
side of the final application expression. The target expression is required to be an abstraction, and so, we
create a fresh variable = and include in the typing context with the type U to synthesize the type V' from
the inverse expression on expression substitution of ez by « in the type 7T'. To generate the expression e;
we create the abstraction type, that given the variable x of type U returns the type V. We can posteriorly
build the ejes application from the synthesized expressions.

The SE-TApp rule creates the application of a type from a generated type abstraction. First, we
generate a new kind at synthesis depth d. With the new type constructor and the context, we generate the
argument of the type application, U, in which, U belongs to the typing context. Then, by providing to
the context a fresh generated type ¢ with the kind k, we generate the type V' with inverse substitution of
type in type of ¢ by U in the type 7". Finally we generate the expression that is type applied to U from
the type abstraction ¢ with kind k.

The SE-Sub rule allows this synthesis procedure to generate any expression that is a subtype of the

provided type.

6.2 Weights over synthesis rules

The refinements applied over the types help to reduce the search space for the valid program the user is
seeking. However, the combination of components may still be too broad and, the introduction of weights
will guide the synthesis towards a faster and improved solution.

Each rule is followed by a weight, which tells the synthesizer the probability of it being chosen.
This kind of optimization allows the tool to generate programs that may follow user-based programming
patterns.

For instance, the probability of generating an if expression for each nested if is smaller as we get

38

Chapter 6. Non-deterministic Synthesis From Liquid Types

deeper in the nesting, in other words, the regular programmer typically does not write many nested if
expressions (five ore more, for instance). The weights help to control these type of situations, by reducing
the weight every time the SE-If rule is chosen.

Another example is when a specific variable is chosen within the condition of the SE-If synthesis
rule. The synthesizer may deduce that if a specific variable x is used in the condition of the if-expression,
then the likelihood of it being used within the bodies of the if-expression is higher.

presents an example of initial weights provided for the expression synthesis rules.

Table 6.1: Weights on the expression synthesis rules.

Rule Weight (continued)

SE-Int 20 SE-If 15
SE-Bool 20 SE-App 30
SE-Var 40 SE-TAbs 5
SE-Where 10 SE-TApp 5
SE-Abs 10 SE-Sub 10

From the provided rules and weights, we can reason for some information. Firstly, the rule with the
most weight is the SE-Var, thus being the one with the most probability of being chosen. Then, application
rule has the second-highest weight, followed by the native value synthesis rules, SE-Int and SE-Bool. In
this particular case, it is possible to tell that the non-deterministic synthesizer tries to generate with high
probability function invocations. This weights can be customized for the particular synthesis problem
the programmer may have.

For better understanding, let us create an example: consider the type Integer and a subset of chosen
rules that can generate an expression from this type: SE-Int, SE-Var, SE-App. The probability for each
rule to be chosen is,

Z}ZZ} ” 6.1)

Since SE-Int has weight 20, the likelihood of being chosen is 22.22% from the calculation of 20/(20+
40+ 30). Similarly, the SE-Var since has weight 40, its probability is 44.44%, and finally the probability
of chosing SE-App is 33.33%.

6.3 Ranges over refinements

The synthesis rules allow the generation of native values from their proper types. When synthesizing
a value from a given refined type, this must automatically comply with the predicate of the liquid re-
finement. The unoptimized version of the synthesizer would generate any value, independent from the
refinement, according to a distribution, and have it verified by the SMT-Solver. This process, however,
introduces a challenge with the Integer and Double types: with tight restrictions, there is a high prob-
ability for the synthesizer to fail when generating native values.

The solution for this challenge was the introduction of the synthesis of some discontinuous ranges

over the tight refinements with the help of a mathematical framework in Python called SymPy B The

2Tool available in https://www.sympy.org/

39

Chapter 6. Non-deterministic Synthesis From Liquid Types

objective is to have a different interpretation from refinements to ranges and use SymPy to solve the
rational inequalities.

For instance, consider the following refinement, x >= 0 && x <= 10, which reads, generate any
integer value between 0 and 10. By providing this restriction to the SymPy Solver, it will output the
lower bounds and upper bounds (or ranges) of the refinement, 0 and 10 in this case. Using Pythons
random generator and these bounds, we can non-determinstically generate valid integer values.

The previous example does not evidence the true potential of the framework on the new interpretation
of the refinements. When new operations appear and discontinuous intervals arise, then we can verify the
tool usefulness. For example, the refinement x - 1 >= -1 && x <= 10 is equivalent to the previous
one, but this time we have an extra arithmetic operation in between, and also if the condition is further
refined by stating that x != 5, then we can conclude that, as we provide more and more information, the
bounds calculation is not trivial.

For this reason, the non-deterministic synthesizer uses the SymPy to do a best effort on calculating
values that comply with the tight restrictions. The steps below show the refinement translation from

ZAOoNCORE to SymPy and some instrumentation for generating the native values.

1. Translation to SymPy The first step is to translate the liquid refinements from A0ONCORE to
SymPy. The 0ONCORE representation allows a pretty straightforward translation since all that is
required is to create the bindings from the specific native operations (e.g. sum, minus, div, and, or,

and so on), and the SymPy representation of these expressions.

2. Bounded intervals Then, the translated refinements are converted into intervals, resulting in
a list of intervals or lists. Each interval contains a lower bound and an upper bound. A nested
list is created when an Or operation is created from the intervals conversion (e.g. when there are

discontinuations), and so, each list has its lower and upper bounds.

Each interval is translated to proper values to be used within Pythons randoms generator. Infinity
and negative infinity are respectively translated to maximum integer and a minimum integer. The
lower bounds and upper bounds are converted from SymPy values to native values. Moreover, if

the left bound is open or the right bound is open, the bounds are adjusted with an offset.

3. Generating the values By the end of this procedure, the synthesis has obtained a list of min-
imum and maximum ranges, in which, one is non-determinstically chosen. Since typically the
values closer to 0 are more likely to be used in regular programming standards, the synthesizer will
choose and generate a value between the minimum and maximum that follows a normal distribu-
tion of 4 = 0 and o = 75. In the cases where it has to choose between intervals and a specific
value obtained from the refinement (e.g. x == 5), it will give all the conditions in the disjunction
the same probability, and if an interval is chosen, then the final value is selected according to the

normal distribution.

For better understanding, consider Figure [6.§ which presents an example of this system where the

user wants to generate a value between 0 and 30, and it is not 15, or any value greater than 100.

40

Chapter 6. Non-deterministic Synthesis From Liquid Types

((x>=0 && x<=30 && x!=15) || (x>100)

[Translation to SymPy]

v

L Or(And(And(Gte(x, 0), Lte(x, 30)), Neq(x, 15)), Gt(x, 100))

[Bounded Intervals]

[[(0, ROpen(15)), (LOpen(15), 30)], (LOpen(100), Infinity)]

(conversion to min and max)

([0, 14), (16, 30), (101, maxiny)]
[

)

[Generate the value
[

probability

0 14 16 30
values

v

value

/

%"

Figure 6.5: Example of bounds from a liquid refinement predicate.

The first step is the translation from AONCORE to the SymPy notation. The translated refinement is
then delegated to SymPy inequalities solver, from where we obtain the bounded intervals for each dis-
junctions’ conditions. In the first condition, the refinement between 0 and 30 was split into two intervals,
in order to take into consideration the x # 15 restriction. Each interval is then converted into pairs of
minimum and maximum, the offsets are set according to the open intervals, and the infinity values are
converted into Pythons maximum integer size.

The following step is to calculate the probability of choosing one of the intervals. Instead of randomly
choosing one of them, or non-deterministically choosing them according to the amount of elements the
interval has, we have decided to calculate the area of the interval within the normal curve with the help
of the z-score table and obtain the probability of that certain interval to be chosen. The main motivation
behind this choice is the assumption that programmers typically use values within small ranges [3(0]. For
instance, the value 0 should have a higher probability than a random value such as 149 since it is typically
more used.

Example performs the calculations and the final likelihood for choosing the intervals.

Example 6.3.1. Intervals probability calculation
Consider the following equations essential for the calculation of the probability of each interval:

omin — _mar — p B 6.2
Zimin = — Zmaz = — Di = |z8coremin — 28COT€may| (6.2)

41

Chapter 6. Non-deterministic Synthesis From Liquid Types

Assuming 4 = 0 and ¢ = 75, and taking into consideration the previous formulas, we can
calculate the z minimum and maximum values for each interval:

14 16 30 101
Vo = 0.0 V14 = 75 =0.19 V16 = % ~ 0.21 V30 = % = 0.40 V101 = 775 ~ 1.35

Each value is then provided to the z-score table library and we obtain the adequate z value:

zZ0 — 0.5 Z14 = 0.5753 Z16 = 0.5832 zZ30 — 0.6554 Z2101 = 0.9115

The probability for each area p1, ..., py, is then calculated using the p; formula. If the restriction
does not have an upperbound or lowerbound, or if it is too high, then it is replaced by 1. The
probability of each area can be found below:

p1 =]0.5-0.5753| = 0.0753 py = [0.5832—0.6554| = 0.0722 ps = |1—0.9115| = 0.0885

Each probability is then multiplied by 10000 and used as a weight to calculate the likelihood of
choosing a certain interval, where, in this particular case: wy = 753, wy = 722 and w3 = 885. The
final probability of selecting each interval is: p; = 31.9%, p2 = 30.6%, and p3 = 37.5%.

To conclude, although the set of values of the first disjunctions restriction is smaller than the sec-
ond one, the likelihood of generating a value inbetween that range is actually greater than generating
any value greater than 100.

The usage of this framework still has some limitations. Firstly, dependent types have not been taken
into consideration for this particular case, as they present a higher challenge for the synthesizer.

Secondly, SymPy cannot create intervals for all the discontinuous functions, for example,x 7 2 == 0,
where the condition tries to obtain even values. As we progress towards second-degree inequalities, the
tool also has its limitations. So, when it is not possible to synthesize an expression from these specific
liquid types, the type is delegated to the SMT-Solver, and it will output a possible solution. Using z3 to
generate the values is the last resort since it sacrifices the diversity of the solutions for the computation

of the solution itself.

42

Chapter

Evolutionary Program Synthesis

This chapter presents the evolutionary procedure from non-liquid refined types using genetic program-
ming. AONCORE generates random valid expressions from the liquid refinement. Valid expressions

correctness is checked using the non-liquid refined types in the genetic programming process.

7.1 Concept

Automatically generating programs from a given specification is called program synthesis. In ZAZON,
introducing the hole, 77, operator and the function specification initiates the program synthesis procedure.
During type checking, it gathers all the holes and their local contexts and provides this information to
the genetic algorithm approach in order to synthesize, with the help of the liquid and non-liquid refined
types, a valid and correct solution.

Let us consider the synthesis example [7.1] that tries to generate a simple Caesar cipher.

Listing 7.1: Synthesis of the cipher function in ZEON.

type Key {
{key : Integer | key >= @ && key <= 1024};

}

decipher(i:Integer, k:Key) -> {j:Integer | j > 0} {
i - getKey(k);
}

cipher(i:Integer, k:Key) -> {j:Integer | j > @ and
i == decipher(j, getKey(k))} {
22
2?3

The 77 denotes the hole in £oN. The type of the hole to be synthesized is automatically deduced
using the algorithm described in 5.3. Detecting and gathering the holes and their local contexts trigger
the program synthesis.

The cipher definition contains refinements over the input and output types of the function. Each

predicate is separated by an and. These predicates are essential for program synthesis to work correctly.

43

Chapter 7. Evolutionary Program Synthesis

As stated in previous chapters, even though AoN does not distinguish them, there are two classes of
refinements over the types:

Liquid Refined Types: used to express the problem and restrict the search space of correct programs
in order to find a valid solution faster. The cipher definition contains one refined type, j > 0, which
indicates that the output value must be greater than 0. The evolutionary procedure will use the non-
deterministic synthesizer, described in Chapter [, to generate random expressions for each hole.

Non-liquid Refined Types: are essential to evaluate the quality of generated valid individuals. The
cipher function presents one non-liquid refined type, i == decipher(j, getKey(k)), which states
that doing the reverse process of the cipher function, we should obtain the initial value. Each predicate is
used to generate a fitness function that evaluates individuals. Each non-liquid refinement is an objective
that should be accomplished in order to synthesize a correct program.

Although the examples so far have presented the synthesis of full programs only, the whole Ao~
infrastructure is also prepared to compute partial programs. In order to help the synthesis procedure, the
previous example could also be presented as in Listing 7.2. In this case, the evolutionary synthesizer
would have to discover what expressions should be generated in order to respect the return type specifi-

cation.

Listing 7.2: Partial synthesis of the cipher function in ZoN.

cipher(i:Integer, k:Key) -> {j:Integer | j > © and
i == decipher(j, getKey(k))} {
22 + 223

7.2 The Evolutionary Synthesis System
Representation

The first step is to choose the representation of the individuals for the genetic programming procedure.
Three attributes compose each individual: Types & Contexts, a list which contains the types and contexts
of the holes that are being synthesized, Expressions: each expression represents a synthesized expression
from the non-deterministic synthesizer, an AST, for each hole in the program, and Fitness: a list of fitness

values for each objective obtained from the non-liquid refined types.

Initialization Procedure

The evolutionary process starts with the initialization of a population of program candidates. By provid-
ing the context and type of each hole, and the maximum depth to the non-deterministic synthesizer, it
generates random expressions to be filled in the holes. The initialization procedure uses an attempt to
ramped-half-half initialization algorithm. The attempt raises from using the non-deterministic synthe-
sizer, and it is not possible to guarantee that the generated expression complies with the maximum depth

(not possible to enforce it as no expression may exist at required depth).

44

Chapter 7. Evolutionary Program Synthesis

Selection

Selection takes a vital role in the genetic programming algorithm. It is used to select individuals from
genetic operations (recombination and mutation) and for elitism. Although different kind of approaches
can be used for selection in multi-objective optimization problems, recent work extols the dominance
of lexicase-based variants [25, 28]. In this work, we use a combination of two techniques: e-lexicase
selection and fitness proportionate selection.

Helmuth, Spector, and Matheson introduced lexicase selection for parent selection in multi-objective
program synthesis problems. The main objective is to improve population diversity and improve con-
vergence by selecting individuals that are the best fit for randomly chosen objectives at each generation.

Listing [7.3 presents the algorithm described by Helmuth.

Listing 7.3: Lexicase selection algorithm pseudocode.

1. Start with the initial population and test cases set.

2. While there remain test cases or population size greater than 1:
2.1. Randomly choose a test case.
2.2. Obtain the best score from the individuals for the test case.
2.3. Filter the individuals without the best score.
2.4. Remove the test case from the test case set.

3. Randomly choose an individual from the remaining population.

e-lexicase selection [9] is a variant of the regular lexicase selection algorithm and the one used in the
multi-objective optimization on the evolutionary synthesis. This selection algorithm is used to choose the
individuals to recombine in the crossover. The difference with the regular lexicase selections is that this
instead of filtering the individuals without the best score, it filters the ones that do not fall within the range
of, best score + error (¢), dynamically calculated using the median absolute deviation [9] (Equation ({7.1])),
reading, obtain the median from the list of absolute errors between the fitness value for a test case and
the median errors of that test case. This strategy was chosen over the regular lexicase selection since it

allows a more diverse selection of the individuals for the population.

¢ = median(|e;; — median(ey,)|) (7.1)

If only one objective is provided to the evolutionary synthesis, and since the e-lexicase selection
always chooses the same individual if it is better than the remaining individuals, leading to a less diverse
population, the selection strategy used is the fitness proportionated. The population is sorted according

to their fitness, and an individual is randomly chosen according to a gaussian curve.

Fitness Evaluation

The evaluation plays an essential role in the evolutionary procedure. Each individual must be evaluated
according to the non-liquid refinements provided by the programmer. The evaluation for each individual

occurs as follows:

1. Fill each hole of the function with the synthesized expressions;

45

Chapter 7. Evolutionary Program Synthesis

2. Randomly generate a set of inputs;
3. Obtain the output value from evaluating each filled function with the test set;

4. Evaluate the output against the non-liquid refined types.

In order to evaluate the output against the specification, the first naive approach to consider is a step
conversor. If when checking the output value, the condition holds, then it returns 0, otherwise returns 1.
The objective is to minimize the error and ensure that every condition in the refinement is fulfilled.

This naive approach, however, is not capable of distinguishing between bad from not-so-bad solu-
tions. For instance, a given individual A may be closer to the final solution than individual B, even though
both of them do not comply with the specification. In this matter, each logical condition is converted into

a continuous fitness function [38], according to the rules in Table 7.1].

Boolean Continuous
true, false 0.0, 1.0
T=y norm(|z — y|)
T £y 1—flz==y)
alb (f(a)+ f(b)/2
aVb min(f(a), f(b))
a—b f(=a Vv b)
-a 1 — f(a)
r<y norm((z — y))
r <y norm((z — y + 9))

Table 7.1: Conversion function f between boolean expressions and continuous values.

The rules stated in Table are used to convert each non-liquid refinement into a a continuous
fitness function, an objective that candidate programs try to comply with. Each clause is first reduced to
the conjunctive normal form (CNF) and then converted from the predicate into the continuous function.

For example, the previous example in Listing [7.1] is converted into the function:

norm(|i — decipher(j, getKey(k))|) (7.2)

Since the output of f is an error, the value true is converted to 0.0, stating that condition holds,
otherwise 1.0, this being the maximum value of not complying with the condition. Variables and function
calls are also converted to 0.0 and 1.0 on whether the condition holds or not. Equalities of numeric
values are converted into the normalized absolute difference between the arguments. The normalization is
required as it allows different clauses to have the same importance on the given specification. Inequalities
are converted to equalities and its difference with 1, negating the fitness result from equality; conjunctions
are converted to the average of the sum of the fitness extraction of both operands; and, finally, disjunctions
value is obtained by extracting the minimum fitness value of both clauses. The minimum value indicates
what clause is the closest to no error. Conditional statements fitness is recursively extracted by using the
material implication rule. Similarly to inequalities, the negation of conditions denies the value returned
by the truth of the condition. Numeric value comparisons represented a laborious challenge as there are

intervals where the condition holds. We use the difference of values to represent the error. In the < and >

46

Chapter 7. Evolutionary Program Synthesis

rules, the § constant depends on the type of the numerical value, 1.0 for integers and 0.00001 for doubles,
and is essential for the extra step required for the condition to hold its truth value. A rectifier linear unit
was used to ensure that if the condition holds, it is set to the maximum between the negative number and
0, otherwise, if the value is greater than 0, the positive fitness value is normalized.

The fitness function is the result of applying each f; for each non-liquid refinement to a set of ran-
domly generated (using the liquid synthesis algorithm in Section .3)) input values. The individuals fitness
is composed by a set of values, each obtained with the sum of running the f; fitness function in all the

random input values.

Recombination

Recombination is used to combine individuals and produce offspring with characteristics of both parents.
The recombination is similar to the Strongly Typed Genetic Programming (STGP) approach but difters
on the details. Figure [7.1] presents the recombination process between two selected individuals. While in
STGP the recombination exchanges nodes of the AST that have the exact type, in RTGP, the source par-
ent node can receive any node that is a subtype of the previous source son node. This approach increases
the likelihood of successful crossovers. On the other hand, if on the second parent, no type complies
with the replacement node, the recombination algorithm works similar to the mutation. It uses the non-
deterministic synthesizer with all the genetic information gathered in the second parent and generates a

new replacement that complies with the type and maximum depth required to the AST.

’ 1 cross if subtype exists in the second parent - : ° :
’ [l L :
Selection Parent 1 1 ' otherwise, generate a E ° ° E
; ' mutation : :
Population ' NN Non—detenmmstlc _____ > ! '
U<T ! Synthesizer :
X3 H H Ys
Parent 2 L e
s Offspring

genetic information

Figure 7.1: Recombination diagram in the evolutionary computation.

In RTGP, it is possible to define multiple holes for partial synthesis. The recombination not only
non-deterministically selects individuals but also randomly chooses the synthesized expressions for the
holes, allowing a N-target-multi-objective synthesis, where distinct synthesized holes exchange genetic

material between each other.

Mutation

The mutation works similarly to the recombination. Each individual in the population has a probability

for a mutation in one of the synthesized holes. Figure 7.2 presents the mutation flow of a selected in-

47

Chapter 7. Evolutionary Program Synthesis

dividual. A random node from the AST is selected for the mutation and, by providing its local context,
its type, the calculated synthesis depth (maximum allowed depth minus node depth), and the node itself
as genetic material, the non-deterministic synthesizer generates a replacement which complies with the

type and maximum depth of the program.

Mutate
E—
Population . ° e ,

_______________ : Mutated Individual

genetic information

Non-deterministic >
Synthesizer

X10

Figure 7.2: Mutation diagram in the evolutionary computation.

7.3 Code optimizer

By the end of the evolutionary process, a final solution is found with expressions for each hole. Each ex-
pression, however, may not be the most optimized one, as it can contain dead branches, unused variables,
simples calculations, so on. Therefore, in order to improve readability, each synthesized expression runs

over a code optimizer algorithm, which improves the overall code quality.

Rule 1. Algebraic and Boolean expressions simplification The first code optimization is related to
expressions computation. Basic arithmetic expressions, such as sums, divisions, and multiplication, are
computed and replaced by the final value.

The simplification only occurs if the arguments of the application do not contain any variable nor
function invocation. There are two exceptions though: when applying the Zero Product/Sum law and the
Multiplicative Identity Property.

Similarly, the boolean expressions are optimized based on the computation of the values, if possible,
and variables are kept unchanged. In this situation, one exception applies with short circuits.

Listing [7.4 presents the different algebraic and boolean optimizations made according to the current

rule and its exceptions. For each expression e, the respective optimization, ~>, is introduced.

Listing 7.4: Algebraic and Boolean expression optimizations of the synthesized code.

-- Algebraic optimizations
+ 1 ~> 2

+ X ~> 1+ X

* £(x) ~> 0

+ f(x) ~> f(x)

* £(x) ~> F(x)

ROOR R

-- Boolean optimizations: short circuits example
true && x ~> X

48

Chapter 7. Evolutionary Program Synthesis

false &_& x ~> false
true || x ~> true

Rule 2. Variables value propagation The optimizer also tries to improve the usage of variables. If the
synthesizer decided to create a variable, x, with a constant value, and x is not redefined in the rest of the

program but used, the code optimizer replaces all instances of x with the assigned constant value.

Rule 3. Abstraction types removal Variable declarations are defined in Z0ONCORE with abstractions,
where a variable z, of type T', can occur in the abstraction body. If the synthesizer generates a particular

abstraction which is not used in its body, then the abstraction is replaced by its body.

Rule 4. Type abstractions reduction Type abstractions allow the introduction of polymorphism in the
language. The synthesis procedure may have decided to generate superfluous type abstractions, which are
not used in its body, or, a type application is immediately before applied to its abstraction, making the type
abstraction redundant. So, two mechanisms are deployed to solve this issue: unused type abstractions
are removed, and immediate type applications on type abstraction are propagated through the program.
Listing [7.3 contains two examples of removal and propagation over the type abstraction. In the first
example, the type 7" is removed as it does not occur in its body. In the second example, the Integer is

propagated in the body of the type abstraction, replacing the type 7.

Listing 7.5: Type abstractions removal and reduction of the synthesized code.

-- Type abstraction removal
T:* => f[Integer](x) ~> f[Integer](x)

-- Type abstraction propagation
(T:* => f[T](x) Integer) ~> f[Integer](x)

Rule 5. Superfluous branches optimization The final optimization takes into consideration the if
expressions. The objective is to optimize dead branches and if expressions that can be considered redun-
dant. Firstly the condition of the if expression is evaluated, if it can be evaluated to a constant value of
true or false, then the if statement is replaced with the then or else body, respectively. A second opti-
mization is done if the condition cannot be optimized: if both bodies of the if statement are equivalent,
the optimization of both body statements is equal or the computation value is the same, then the most
optimized body expression replaces the if statement. Listing [7.d presents two different examples of the

if statements optimization.

Listing 7.6: If expressions optimization of the synthesized code.

-- Dead branch removal
if true then x elsey ~> Xx

-- If expression simplification
if f(x) then @ * x else @ ~> 0

49

Chapter 7. Evolutionary Program Synthesis

In the first example, since the condition always evaluates to true, the if expression is replaced with the
then body. On the second example, since both the then and else bodies are equivalent, the expression

is replaced with the most minimal one, 0.

By the end of the evolutionary procedure, RTGP has created an individual with the optimized syn-
thesized expressions which should comply as close as possible with the user specification. Each hole in
the original function is then replaced with the respective generated expression and the full program with

no holes is provided to the interpreter to obtain the final result.

50

Chapter

Evaluation

This chapter presents the evaluation of the synthesis framework with two main challenges in GP and the
usability argument of RTGP over GGGP. We also prove the versatility of the concepts described in this

work, with the creation of a property-based prototype testing tool.

8.1 RTGP vs GGGP: An Usability Perspective

This section presents the usability perspective of RTGP over GGGP. Since RTGP and GGGP similarly
restrict the search space, we argue that RTGP has improved usability over GGGP. Fonseca et al) have
already presented the usability arguments of RTGP [20]. In this section, we revisit and strengthen those
arguments with direct comparisons between RTGP and GGGP.

Listing B.1| presents the code used for the synthesis of the Mona Lisa painting. In ZA£0N, the program-
mer is required to do three steps for the Mona Lisa generation: first, import the components required for
the synthesis (which we luckily defined in Chapter H)); then, load the image from the file; and, finally,
create the function that will generate the improved Mona Lisa. The user leaves a hole, ??, for the program

being generated.

Listing 8.1: Mona Lisa in ZoON.

import aeon/libraries/image;

monalisa : {img:Image | img.width == 732 && img.height == 1024} =
— load_image("examples/aeon/mona.jpg");

generate_mona() -> {img : Image | img.width == mona.width and
img.height == mona.height and
@minimize(image diff(monalisa, img))} {
22
??;

The goal is written as a specification on the generate_mona function, and is composed by two

liquid refinements and one non-liquid refinement: the first two liquid conditions tell the synthesizer to

51

Chapter 8. Evaluation

maintain the output image size, the last non-liquid condition is used as a fitness function in the Genetic
Programming. The final synthesized code will then be replaced and executed in the same infrastructure
where the problem was described.

One of the main objectives of Z£oON is to have a robust and expressive standard library. As seen in
this particular case, a robust library allows the users to quickly describe their problems without the need
of implementing the synthesis components.

However, in GGGP, the user needs to provide the grammar, the implementation of the problem in a
foreign language and develop the evolutionary procedure to synthesize the programs. Not only that but
creating the bindings between the context and the implementation may present a challenge. Listing 8.2

describes the grammar in GGGP of the mona lisa challenge.

Listing 8.2: Mona Lisa in GGGP.

<draw>
| <expr><expr>

<expr> ::

<draw> ::

triangle(<coord>, <coord>, <coord>, <colors>)
| rectangle(<coord>, <coord>, <coord>, <coord>, <colors>)

<coord> ::
<color> ::

coordinate(<x>, <y>)
create_color(<r>, <g>,)

<X> o8
<r> 2

[0..732] y>
[0..255] <g>

[0..1024]
[@..255] ::= [0..255]

By the end of the synthesis, both approaches should have conceptually generated a new and improved

Mona Lisa:

(a) Mona Lisa. (b) Conceptual synthesized Mona Lisa.

Figure 8.1: Original and conceptual synthesis of Mona Lisa.

The second example, presented in Listing B.3, is the Santa Fe Trail problem. The Santa Fe Trail is a

52

Chapter 8. Evaluation

typical genetic programming problem in which food pellets are displayed in a path, and artificial ants try
to consume all the available pellets. For better understanding, consider the Figure B.2 [53], in which the
black squares represent the food pellets and the grey spaces the gaps in the path.

=

L1

Figure 8.2: Santa Fe Trail path with gaps.

Differently from the previous example, where a robust standard library with all the components al-
ready was implemented, in this case, the user is required to implement all the required synthesis compo-
nents. For the sake of the reader, some implementation details were natively implemented and imported.
In terms of readability, even for the writer of this example, it may present a challenge. These limitations
will be described in Section B.3, and some solutions presented.

In this example, we plan to generate a program capable of following the food pellets incomplete
path and minimize the number of pellets in the grid. Some main synthesis components are required:
food_ahead a function to check whether a food pellet is ahead or not (if there is, the ant will hopefully
move forward to consume it), turn_left and turn_right, to allow the ant reach every cell of the grid,

and finally, move, which will move the ant and consume the food pellet if present.

Listing 8.3: Santa Fe Trail in ZoON.
import aeon/libraries/list;
import aeon/libraries/pair;
import aeon/libraries/santafe;

size : {x:Integer | x > @} = 10;

type BoolInt as {x : Integer | x == 0 || x == 1};
type SmallInt as {x : Integer | x >= -1 & x <= 1};
type BoundedInt as {x : Integer | x >= @ & x <= size};

type Grid {

grid : List[List[BoolInt]];
food : {food:Integer | food >= @};

53

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Chapter 8. Evaluation

pos : Pair[BoundedInt, BoundedInt];
dir : Pair[SmallInt, SmalllInt];

}
food_ahead({grid:Grid | @ <= grid.pos.el + grid.dir.el < grid.size &&

@ <= grid.pos.e2 + grid.dir.el < grid.size}) -»>
— Boolean {

: List[List[BoolInt]] = get_grid(grid);

oQ

X

: BoundedInt = pair_first[BoundedInt, BoundedInt](position(grid));
: BoundedInt = pair_second[BoundedInt, BoundedInt](position(grid));

<

d_x : SmallInt
d y : SmallInt

pair_first[SmallInt, SmallInt](direction(grid));
pair_second[SmallInt, SmallInt](direction(grid));

get_elem[List[List[BoolInt]]](x + d_x, y + d_y, g) == 1;

}
turn_left(grid:Grid) -> {g2:Grid | g2.dir.el == -grid.dir.e2 &&
g2.dir.e2 == grid.dir.el} {

d_x:SmallInt = pair_first[SmallInt, SmallInt](get_direction(grid));

d y:SmallInt = pair_second[SmallInt, SmallInt](get _direction(grid));

d x2:SmallInt = d_x;

dx = -d_y;

dy = d x2;

grid = set_direction(create_pair[SmallInt, SmallInt](d_x, d_y), grid);
}

move({grid:Grid | @ <= grid.pos.el + grid.dir.el < grid.size && @ <=
< grid.pos.e2 + grid.dir.el < grid.size}) -> {g2:Grid | g2.pos.el ==
— grid.pos.el + grid.dir.el && g2.pos.e2 == grid.pos.e2 + grid.dir.e2} {

X : BoundedInt
y : BoundedInt

pair_first[BoundedInt, BoundedInt](position(grid));
pair_second[BoundedInt, BoundedInt](position(grid));

d x:SmallInt
d_y:SmallInt

pair_first[SmallInt, SmallInt](get_direction(grid));
pair_second[SmallInt, SmallInt](get_direction(grid));

grid = set_position(create_pair[BoundedInt, BoundedInt](x + d_x, y +
—~ d_y), grid);

if has_pos_food(grid) then eat_food(grid) else grid;
}

santafe(trail:Grid) -> {out:Grid | @minimize(food_present(trail))} { ??; }

In RTGP, we can use liquid refinements to restrict the search space of available programs. One in-

54

Chapter 8. Evaluation

stance of an edge case arises in the food_ahead argument restriction, were we ensure that the food_ahead
function is never called with grid out of bounds values, thus excluding all these states from being synthe-

sized. However, in GGGP, with the approach presented by Urbano and Georgiou, this kind of restriction

is not possible, and so, it would still generate these states but would require some code instrumentation

in order not to allow out of bounds exceptions.

The same happens in the move function, which restricts the input type values. This time, RTGP
makes use of dependent refined types to track information on the position of the ant and ensure the next
synthesized grids keep the ant within bounds. In this sense, GGGP tries to do the same thing by calling
ifalse function over the food ahead, ensuring that the ant is kept in the grid, but still synthesizing the

ill-state if no instrumentation is done.

Listing 8.4: Santa Fe Trail grammar [55] in GGGP.

<code> ::= <line> | <code> <line>
<line> ::= <condition> | <op>
<condition> ::= ifalse food ahead

[<line>] [<line>]
<op> ::= turn_left | turn_right | move

The following listings condensates not only all the previous arguments, but also described in Fonseca
et al| [20], and argues the usability of RTGP against GGGP.

Advantages of RTGP Disadvantages of GGGP
1. Ability to declaratively restrict the search 1. Feasibility Constraints Both GGGP and
space A type system is used instead of a RTGP make the design of new operators a more
grammar to express the restriction. significant challenge than in STGP, since oper-
ators should follow the system constraints. All
2. Problem Structure Problem domains that RTGP operators are shared among any problem
already follow a grammar structure can be eas- and rely solely on the type checker and expres-
ily encoded in RTGP. RTGP can more directly sion synthesis.
encode several problems than a grammar. For
instance, the Mona Lisa challenge (in Sec- 2. Limited Flexibility GGGP is flexible
tion B.1)). when the program can be directly encoded in
a context-free grammar. Some GGGP ap-
3. Flexible Extension Extensions to GP can proaches use context-sensitive grammars [#0],
be encoded both in grammars and dependent but specifying the constraints of the grammar
types. Both approaches can be used as engines increases its complexity, making it less desir-
to test other GP concepts. able by practicioners and revising.

3. Language Robustness ZoN provides all
the characteristics of a regular programming
language (e.g. recursion), and already a list of
synthesis components which can be imported.
On the other hand, in GGGP all components
must be explicitly defined by the user.

55

9

10

Chapter 8. Evaluation

8.2 Application of RTGP for Propert-Based Testing in Python

This section presents pyCheck, a property-based testing prototype tool that automatically tests annotated
Python code. This tool proves the concept versatility by reusing the refinements types, non-deterministic
synthesis and fitness extraction concept to evaluate Python code correctness.

Property-based testing [[19] (PBT) uses properties provided by the user to evaluate the system cor-
rectness. Hypothesis ¥ is a modern framework based on property-based testing to evaluate mainstream
languages, like Python and in the future, Java. This tool has been widely used in open-source projects,
like PyPy and Pyrsistent, to check the correctness of the projects. Listing 8.9 presents an example where

we try to make a special sum of two values.

Listing 8.5: Function verification of the special sum with Hypothesis.

from hypothesis import given
from hypothesis.strategies import lists, integers

def special_sum(x, y):
Bug here, this entire 1if should be removed
if x>7o0ry>7:
X =X *y
return x + vy

@given(integers(@®, 10), integers(-5, 10))
def test_is_good value(x, y):
assert special sum(x, y) == (X + y)

Listing B.3 the example presents the special sum and a unit test. The given decorator provides to the
test randomly generated values for each argument. In this example, the simple usage of the Hypothesis
tool is used to verify the special sum function. The test is run once, and a random integer between 0 and
10 is given to z, and another between -5 and 10 is provided to y. When running the tool, it outputs a
Falsifying example for the failing test.

The pyCheck tool allows the user to express more meaningful properties by using refinement types,
which improves the code behavior specification. Lets consider the Listing B.6 example, similar to the

previous example, decorated with the pyCheck framework.

Listing 8.6: Function verification of the special sum with pyCheck.

from pyCheck.pyCheck import provide, runall

Decorated function
@provide('{x:Integer | (x >= @) && (x <= 10) && (x != 5)}',
"{y:Integer | (y >= -5) && (y <= x)}',
expected="'{z:Integer | z == x + y}',
repeat=100)
def special_sum(x, y):
Bug here, this entire 1if should be removed
if x>7ory >7:

'Tool available in https://hypothesis.works/

56

Chapter 8. Evaluation

X =X *y
return x + y

Test all the annotated functions in the demo file
runall('pyCheck.demo")

Listing B.4 presents the special sum function responsible for calculating the sum of two restricted
values. The function is annotated with a provide decorator, which will tell the programmer to test this
function when running the runall command. The provide decorator receives two mandatory parameters:
the variables of the function, and the expected return, and one optional parameter, the number of tests.
In this case, the programmer has to provide two input types for the arguments x and y, and the expected
output. For this function, we wanted to demonstrate two key elements, the refinement types on the input
and output parameters and the dependent type, on the second parameter.

How does this tool work? Firstly, the arguments and expected types are parsed and type-checked.

Then, for each run test, the following procedure is done:

1. Generate the values for each argument of the function using the non-deterministic synthesizer (see
Chapter [);

2. Run the Python function with the synthesized values and retrieve the returned value;

3. Use the evolutionary synthesis fitness evaluation to compare the expected and retrieved values;

After all the test runs are completed, the framework provides a small report to the user. This small
report, presented in Listing B.7, provides the user information on the non-deterministic tests made, dis-

plays the ones that failed and determines the accuracy of the function for each objective.

Listing 8.7: Final report of the pyCheck.

ERROR: Refined test failed for input values: [9, -3]
SUCCESS: Refined test passed for input values: [6, 2]
SUCCESS: Refined test passed for input values: [4, -4]

Report:
Tests passed: 80 / 100
Function Accuracy: 94.88%

Function failed for the following random generated input tests
(x =9, y=-3)
(x =9,y =4)
(x =10, y = 6)

On Listing B.7, it is possible to verify that, although the number of tests passed was 80 out of 100, the
function accuracy is 94.88%. The difference occurs since the evaluation of the objectives does not only

check whether the test passed but also how close the program is to be correct.

57

Chapter 8. Evaluation

This example evidences the differences between Hypothesis and pyCheck. The first difference is
the random generator. Hypothesis can more easily provide random values generated between two val-
ues, using, for instance, the integers() function. However, it cannot easily randomly generate dis-
continuous values within a range. By using the non-deterministic synthesizer, pyCheck is capable of
non-deterministically generating these values on discontinuous ranges, like the one generated for the x
argument. On the second difference, Hypothesis does not allow dependent types or dependent values
based on previously generated inputs. It would require instrumentation on the test code in order to allow
this kind of features. On the other hand, pyCheck can easily use previous synthesized arguments as a
restriction to the current type. Finally, the last difference is the accuracy of each objective. The pyCheck
tool can, similarly to Hypothesis, provide the user the tests failed but also extra information on the test

accuracy and how correct the program is.

8.3 Limitations and Challenges

This section presents the limitations found in the £oN programming language and the RTGP concept.

Readability with Polymorphism An issue identified during the evaluation was the readability when
we have type applications. Currently, in order for the program to typecheck, the programmer is required
to apply the proper type to the type abstraction, which may lead to readability issues like the ones seen in
Listing B.4. Recently, programming languages with polymorphism, like Java, have been working towards

minimizing the type applications with generics, in order to improve the overall code quality.

Error handling An important feature of programming languages is to provide useful and accessible
error messages to the user. The translation from ZAoN to Z£ONCORE loses some information related to
original source code, such as line and column. Adding such information to £ONCORE would make it
dependent on the syntactic sugar frontend (which is not ideal). In order to more easily understand error
messages, we have developed a translator from £Z0NCORE to A£0ON, but still, the information lost in the

first translation creates a challenge users in the programming language.

Inconsistent refinements The crucial component for RTGP to work is tied with the quality of the re-
finement types. Writing specifications is a tedious work and sometimes requires some creativity from the
programmer (e.g., the direction change in the turn_left function in Listing 8.3). Errors in the specification
of the components or the synthesis target function will induce RTGP in error and not produce the intended

program.

Search complexity in the non-deterministic synthesis The non-deterministic synthesizer works on a
trial and error during the expression synthesis. There are currently two main problems with the synthe-
sizer, which prevents further work with the evolutionary approach.

The first issue is related to the synthesis depth. At each point, a synthesis rule is non-deterministically
chosen to generate an expression. When choosing a rule at depth d, the synthesizer in unacknowledged
if it is possible to synthesize that expression at specified depth. Figure 8.3 presents an example where the

synthesizer, at a point, chooses a rule for the synthesis. In this particular case, the context only contains

58

Chapter 8. Evaluation

a function which requires the depth d = 2 to return the type Image, but the initial chosen rule already
consumed part of the required depth for the synthesis, requiring the synthesizer to try again until it can

synthesize an expression or a maximum amount of tries is reached.

fail : Not enough depth fail : Not enough depth
I', true - Image~~1 fail T, —true - Image~-1 faul
[, f: (f : Integer — Image) - Image~~+if true then fail else fail

I' - Boolean~-true
(SE-If)

Figure 8.3: Maximum depth issue in expression synthesis.

The second issue addressed is related to the application rule. The way the rule is built is based on

trials and errors. Let us revisit the application expression synthesis rule:

de‘ '+]{:WdU '+ UWdeg (az fresh)
I'z: U l_[ez/x] T~4V T F (l’: U— V)wdel
I'FT~gq1e1e2

(SE-App)

Figure 8.4: Application expression synthesis rule.

The synthesizer starts by generating the e; expression. Firstly, the synthesis of the type U does not
ensure there is an expression in the context or one which can be synthesized, that can inhabit the type
U. Without any instrumentation, the synthesizer is forced to try different types until it is able to find one
able to synthesize eo. The similar happens when generating a new type V' from the type 7.

One of the final and main limitation is the interaction between the SE-Where rule and the remaining
synthesis rules. The SE-Where rule propagates the refinement through the context, and asks the remaining
rules to synthesize the type T'. With the exception of the SE-Bool and SE-Int because of the intrumentation
detailed in Section .3, the other rules do not consider the refinement propagated in the context, and
only try to synthesize an expression which complies with 7. After the synthesis, when checking the
synthesized expression against the refinement the likelihood of failing is high with tight refinements.

These issues currently present a bottleneck in RTGP, as it has a huge impact in the algorithms per-

formance.

Genetic information overload The evolutionary procedure uses the extra non-used genetic informa-
tion from an individual or mate to generate mutations or recombinations. However, using all the remain-
ing information from an individual may introduce unecessary genetics in the genetic pool. For instance,
there could be duplicated subtrees or subtrees with the same semantics within the set of genetic informa-
tion. In the end, the unnecessary amount of genetic information worsens the non-deterministic synthesizer

performance.

59

Chapter 8. Evaluation

60

Chapter

Future Work

This chapter presents the future work to bridge the synthesis framework and evolutionary procedure

1Ssues.

Adaptive inductive biased hyperparameter optimization The ZAZo0N programming language relies on
the non-deterministic synthesizer (Chapter [f) and its weighted rules to generate randomly biased expres-
sions from types. These rule weights are currently hardcoded for every synthesis problem. The objective
would be to adapt the weights for each synthesis rule according, not only to the problem itself, but also
the context and current depth during the synthesis.

As a simple example, let us look at the If synthesis rule. Typically, an ordinary programmer does not
compute extremely nested if expressions (e.g. 5+ nested if conditions), thus these kinds of expressions
should not be generated. A naive solution for this rule passes on decreasing its weight every time the
synthesis enters a new if-body context.

The optimization, however, is not as this trivial as it may appear. A first question is: how much should
we decrease? Not only we need to ensure this weight never reaches 0 (ensuring that all programs can still
be synthesized) but also, introducing this control parameter may influence the synthesis not to follow a
what we can consider standard program outline. Furthermore, other non-noticeable programming patterns
may arise in this simple example and not taken into consideration if the adaptive rules are not expressive
enough (e.g. if I check a variable on the if condition, the likelihood of being used in its body is higher,
but the probability of rechecking the same condition is lower).

Not only the weights of the synthesis rules are needed to be adaptively improved, but also the weights
inside the rules themselves need to be enhanced. Currently, the native values (booleans, integers, doubles
and strings) already have some improvement (Section [6.2). The same would be required to happen on the
variables and when combining expressions, for example, on the expression (x <= 77), it may not make
sense to synthesize x again.

The improvement of the synthesis rules needs to be made by studying the patterns on an expressive set
of programs. By building a model using a genetic algorithm would allow us to quickly obtain synthesis

weights based on the context, depth, and type.

Type-safe genetic operators The evolutionary synthesis depends on the genetic operators in order

to generate the correct individuals. Different strategies for each component for the genetic operators,

61

Chapter 9. Future Work

which the evolutionary procedure relies on, are continuously being developed. When creating the current
evolutionary approach, standard crossover and mutation strategies were used. The objective would be to
study and experiment with the combination of different strategies of genetic operators in order to allow

a faster convergence.

Non-functional requirements optimization Currently, the ££0ON programming language allows the
synthesizes of programs that comply with the formal specification, the functional requirements. The
objective is to allow the user to either annotate or provide on the specification the intention on opti-
mizing non-functional requirements, such as execution time, memory or energy consumption. The non-
functional optimization of programs is not novel and has been recently studied in the area of genetic
improvement and program synthesis [52, 58]; thus, its addition would only improve the language fea-
tures.

Listing D.1| presents a proposal on optimizing the energy consumption of the previous cipher function.
By providing the @minimize (energy) condition, natively implemented in the foreign language, the user
indicates to the framework that after the functional requirements are met, it should start optimizing this

non-functional requirement.

Listing 9.1: Energy consumption optimization in ZON.

cipher(i:Integer, k:Key) -> {j:Integer | j > @ and @minimize(energy) ...} {
22
2?3

Extend the standard library The current 0N standard library is currently quite limited. One of the
main objectives is to provide the user all the functions he may need for the program synthesis, reducing
the necessity of programming its components. Currently, some basic libraries have been implemented,
with lists, strings, map, and image. The main objective is to improve the library set by introducing new

libraries and extending the class of problems ZoN can tackle.

Non-liquid types verification at runtime Non-liquid refinement types are currently just used in A£0N
for extracting the fitness functions for the program synthesis. However, the real purpose of these re-
finements is to verify at runtime whether the conditions hold or not. Such verification, however, has an
impact on the execution time of the program. We aim to provide the user of the language the option to

enable the runtime verification of its program, allowing the non-liquid refinements to fulfil their purpose.
Automatic repair tool By the time the non-liquid refinement types verification is implemented it is

possible to introduce a new strategy for the framework, an automatic repair tool. Figure shows a

simplified scheme on the behaviour of this automatic repair tool.

62

Chapter 9. Future Work

. error on runtime
verification .
Buggy Paths Evolutionary
— _— > > —_—> .
Typechecker Interpreter Finder Program Synthesis
~—> output

Figure 9.1: Automatic repair tool from non-liquid refinements.

The first part of the repair tool works like a typical programming language. It uses the verifier of
the non-liquid types that we can check at runtime whether the condition on the refinement holds or not.
If the condition does not hold, then the repair process triggers, and similarly to other automatic repair
approaches [22)], the program will try to find the buggy paths on the function. It will then create a ran-
dom population with mutations on the defected target functions paths, and provide it to the evolutionary
program synthesis, to generate a program that complies with the entire specification. With barely any
changes required on the synthesis framework, the creation of this automatic repair tool would be proof

of the versatility on the concepts presented by this work.

Evaluation on an extensive benchmark suite The evolutionary program synthesis approach was tested
on a small subset of the general program synthesis benchmark suite [26] and was meaningful enough to
evaluate different kind of synthesis problems, like recursive-based problems. The evaluation, however,
is not expressive to consider more polymorphic types, other than List. The objective is to create a more

complex benchmark suite that considers more complex types and evaluate 0N on it.

63

Chapter 9. Future Work

64

e 10)

Conclusion

Program Synthesis (PS) is the task of generating programs from a specification. This specification is
typically provided through examples or a formal specification. Synthesis with examples occurs by giving
pairs of input/output to the system, and expect the generated program to fit the test suite. This kind
of approaches, however, frequently overfit to the test suite and are not able to generalize to the right
solution. Synthesis from a formal specification, on the other hand, is capable of synthesizing general
solutions according to the program behaviour from the specification. In the genetic programming area,
nevertheless, two main problems arise when trying to apply this kind of approach: the usability and the
extensive combination of the synthesis components. STGP presented a naive approach by using the type
system of the language to limit the amount of operations combination and ensure program validity, thus
reducing the search space for the correct program. However, the limitation of the search space with only
the standard types is still not enough. GGGP bridges this problem by allowing the programmer to define
the grammar and the operator combinations for the synthesis. However, not only this approach requires
the programmer to define a new grammar for each problem, as some computational paradigms such as
recursion are not supported.

This work introduces a new framework capable of restricting the search space of valid programs with
the help of the liquid refined types and generate generalized programs from random tests evaluated with
the non-liquid refined types. Refined Typed Genetic Programming (RTGP) is the new concept presented
by this work for the area of Genetic Programming, and namely the area of program synthesis. The ZoN
programming language was created on the concept of RTGP to allow the user to specify and synthesize
their programs with ease by introducing holes in the program.

The ZAon language works as a syntactic frontend from the ZZONCORE language, used on the RTGP for
the program synthesis. This frontend improves its core language usability by hiding and deducing under-
lined concepts. The overall synthesis framework contains two main components: the non-deterministic
synthesizer and the evolutionary procedure.

The non-deterministic synthesizer is responsible for synthesizing the expressions from the liquid
types. By providing the typing context, maximum depth and the liquid type, it is possible to generate
any valid expression. This is accomplished with the creation and optimization of synthesis rules for the
ZAOoNCORE type system. Since even with the refined types, the search space can be too vast, each synthe-

sis rule is given a weight to help the synthesizer. This weight introduced the probability of a particular

65

Chapter 10. Conclusion

synthesis expression to be used, thus reducing the space of programs we are searching. Furthermore,
we provided an auxiliary module capable of automatically generating values within tight restrictions and
discontinuous values.

Finally, the evolutionary procedure uses the non-liquid types to evaluate the correctness of the synthe-
sized programs. The non-liquid types are essential in this part, as they are converted to continuous fitness
function to provide information on the program correctness. This procedure uses a non-deterministic
synthesizer to generate valid expressions. Then, with the help of genetic programming, it continuously
evaluates and evolves populations of programs until we have reached a correct and valid program.

This work then proved its potential with a strict comparison with GGGP. Not only that but each
component was proven its versatility when applied to a different kind of system: a property-based testing
prototype tool. pyCheck was created using the non-deterministic synthesizer and the fitness extraction
for continuous evaluation, allowing more meaningful testing information to the user other than pass or
fail.

To conclude, although this work has its limitations and much future work is yet to be done, we be-
lieve that these components and the system overall have contributed towards the current state of the art
approaches based on genetic programming, and have improved the synthesis of programs with the un-

likely combination of refined type theory and evolutionary computation.

66

Appendix

Type System

FTcontext 'FT:k

F e context FT',z: T context
F I context F T context I'F e: Boolean
FT',t: k context F T, e context

Figure A.1: Context formation, | - I" context |.

I' F Integer=x I' - Boolean=-x

t: kel
I'Ht=k

I'-T=k TI,x:T}F e<~Boolean
' (z: T where)=k

I'T<x Tz: THU<=x
F'F(x: T —=U)=x

Ttk T=k
TF (Vt: bk T)=k — K

r-T=k—k TFU<=E
I'-TU=E

Figure A.2: Type formation, |I' - T'=F |.

67

(K-Int, K-Bool)

(K-Var)

(K-Where)

(K-Abs)

(K-TAbs)

(K-TApp)

Appendix A. Type System

FI' context T = Integer, Boolean 'Et:k
'ET<T:x FEt<t:k

'=7T'<T:x T,o:T'FU<U :x Tyx:THU:

(K-S-Int, S-Bool, S-Var)

(S-Abs)

F'F(x:T-U)<:(z: T = U") : %

F'ET<U:k T,z: Tk etrue
I'T<:(xz: U wheree) : k

I'FT<:U:k T,z: Tt e:Boolean
'k (z: T wheree)<:U : k

Dt: k=T<U: K
TF (Vi kD) <:(Vi: kU) k=

F'Ft:(k—Fk) THU<U : k
I'=tU<tU’ : K

Lt:kET:K THU:k THTU/M<V : K
TF (Vi kTYU<V : K

Lit:kbUK THV:kE THET<U[V/t K

'FT<:(Vt: KU)V - K

Figure A.3: Subtyping, |I' - T'<:U : k|

68

(S5-WhereR)

(S5-Wherel)

(S-TAbs)

(S-TApp)

(S-TAppL)

(5-TAppR)

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

Chang Wook Ahn and Rudrapatna S. Ramakrishna. Elitism-based compact genetic algorithms.
IEEFE Trans. Evol. Comput., 7(4):367-385, 2003. doi: 10.1109/TEVC.2003.814633. URL https:
//doi.org/10.1109/TEVC.2003.814633.

Bernhard K. Aichernig. Contract-Based Testing, volume 2757 of Lecture Notes in Computer
Science, pages 34-48. Springer, 2002. doi: 10.1007/978-3-540-40007-3\ 3. URL https:
//doi.org/10.1007/978-3-540-40007-3_3.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, October 20-23, 2013, pages 1-8. IEEE, 2013. URL http://ieeexplore.ieee.org/
document/6679385/.

Andrea Arcuri and Xin Yao. Coevolving programs and unit tests from their specification. In
R. E. Kurt Stirewalt, Alexander Egyed, and Bernd Fischer, editors, 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta,
Georgia, USA, pages 397-400. ACM, 2007. doi: 10.1145/1321631.1321693. URL https:
//doi.org/10.1145/1321631.1321693.

Jodo E. Batista and Sara Silva. Improving the detection of burnt areas in remote sensing using
hyper-features evolved by M3GP. In IEEE Congress on Evolutionary Computation, CEC 2020,
Glasgow, United Kingdom, July 19-24, 2020, pages 1-8. IEEE, 2020. doi: 10.1109/CEC48606.
2020.9185630. URL https://doi.org/10.1109/CEC48606.2020.9185630.

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis.
Refinement types for secure implementations. ACM Trans. Program. Lang. Syst., 33(2):8:1-8:45,
2011. doi: 10.1145/1890028.1890031. URL https://doi.org/10.1145/1890028.1890031.

Iwo Bladek and Krzysztof Krawiec. Evolutionary program sketching. In James McDermott,
Mauro Castelli, Lukas Sekanina, Evert Haasdijk, and Pablo Garcia-Sanchez, editors, Genetic Pro-
gramming - 20th European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21,
2017, Proceedings, volume 10196 of Lecture Notes in Computer Science, pages 3—18, 2017. doi:
10.1007/978-3-319-55696-3\ 1. URL https://doi.org/10.1007/978-3-319-55696-3_1.

69

Bibliography

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Nuno Miguel Pereira Burnay. Types to the rescue: verification of rest apis consumer code. Master’s
thesis, Universidade de Lisboa, Faculdade de Ciéncias, 2019. URL http://hdl.handle.net/
10451/39881.

William G. La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase selection for regression. In
Tobias Friedrich, Frank Neumann, and Andrew M. Sutton, editors, Proceedings of the 2016 on Ge-
netic and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016, pages 741—
748. ACM, 2016. doi: 10.1145/2908812.2908898. URL https://doi.org/10.1145/2908812.
2908898.

Adam Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduction to the
Coq Proof Assistant. MIT Press, 2013. ISBN 978-0-262-02665-9. URL http://mitpress.mit.
edu/books/certified-programming-dependent-types.

lain D. Craig. Genetic Algorithms and Simulated Annealing edited by lawrence davis pitman, lon-
don, 1987 (£19.95). Robotica, 6(2):170-171, 1988. doi: 10.1017/S0263574700004215. URL
https://doi.org/10.1017/30263574700004215.

Elisa Boari de Lima, Gisele L. Pappa, Jussara Marques de Almeida, Marcos André Gongalves, and
Wagner Meira Jr. Tuning genetic programming parameters with factorial designs. In Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 18-23 July 2010,

pages 1-8. IEEE, 2010. doi: 10.1109/CEC.2010.5586084. URL https://doi.org/10.1109/

CEC.2010.5586084.

Leonardo Mendonga de Moura and Nikolaj Bjerner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337—
340. Springer, 2008. doi: 10.1007/978-3-540-78800-3\ 24. URL https://doi.org/10.1007/
978-3-540-78800-3_24.

Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middel-
dorp, editors, Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in
Computer Science, pages 378-388. Springer, 2015. doi: 10.1007/978-3-319-21401-6\ 26. URL
https://doi.org/10.1007/978-3-319-21401-6_26.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, Sailesh
R, and Subhajit Roy. Program synthesis using natural language. pages 345-356, 2016. doi: 10.
1145/2884781.2884786. URL https://doi.org/10.1145/2884781.2884786.

Susana C. Esquivel, A. J. Leiva, and Ratl H. Gallard. Multiple crossover per couple in genetic
algorithms. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC ’97), pages 103-106, 1997.

70

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Robert Feldt and Peter Nordin. Using factorial experiments to evaluate the effect of genetic
programming parameters. In Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian F.
Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic Programming, European Confer-
ence, Edinburgh, Scotland, UK, April 15-16, 2000, Proceedings, volume 1802 of Lecture Notes in
Computer Science, pages 271-282. Springer, 2000. doi: 10.1007/978-3-540-46239-2\ 20. URL
https://doi.org/10.1007/978-3-540-46239-2_20.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven
learning. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 420-435. ACM, 2018. doi: 10.1145/3192366.3192382. URL
https://doi.org/10.1145/3192366.3192382.

George Fink and Matt Bishop. Property-based testing: A new approach to testing for assurance.
SIGSOFT Sofitw. Eng. Notes, 22(4):74-80, July 1997. ISSN 0163-5948. doi: 10.1145/263244.
263267. URL https://doi.org/10.1145/263244.263267.

Alcides Fonseca, Paulo Santos, and Sara Silva. The usability argument for refinement typed ge-
netic programming. In Thomas Béck, Mike Preuss, André H. Deutz, Hao Wang, Carola Doerr,
Michael T. M. Emmerich, and Heike Trautmann, editors, Parallel Problem Solving from Nature
- PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September
5-9, 2020, Proceedings, Part I, volume 12270 of Lecture Notes in Computer Science, pages 18—
32. Springer, 2020. doi: 10.1007/978-3-030-58115-2\ 2. URL https://doi.org/10.1007/
978-3-030-58115-2_2.

R. Forsyth. Beagle: A darwinian approach to pattern recognition. Kybernetes, 10:159-166, 03
1981. doi: 10.1108/eb005587.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog: A generic
method for automatic software repair. [EEE Trans. Software Eng., 38(1):54-72, 2012. doi: 10.
1109/TSE.2011.104. URL https://doi.org/10.1109/TSE.2011.104.

Nabil Hassein. Notes on idris. URL https://nabilhassein.github.io/blog/

notes—on-idris/.

Thomas D. Haynes, Dale A. Schoenefeld, and Roger L. Wainwright. Type inheritance in strongly
typed genetic programming. Advances in genetic programming, 2(2):359-376, 1996.

Thomas Helmuth and Amr M. Abdelhady. Benchmarking parent selection for program synthe-
sis by genetic programming. In Carlos Artemio Coello Coello, editor, GECCO ’20: Genetic and
Evolutionary Computation Conference, Companion Volume, Cancun, Mexico, July 8-12, 2020,
pages 237-238. ACM, 2020. doi: 10.1145/3377929.3389987. URL https://doi.org/10.1145/
3377929.3389987.

Thomas Helmuth and Lee Spector. General program synthesis benchmark suite. In Sara Silva and

Anna Isabel Esparcia-Alcézar, editors, Proceedings of the Genetic and Evolutionary Computation

71

Bibliography

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, pages 1039-1046. ACM, 2015. doi:
10.1145/2739480.2754769. URL https://doi.org/10.1145/2739480.2754769.

Thomas Helmuth, Lee Spector, and James Matheson. Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput., 19(5):630—643, 2015. doi: 10.1109/TEVC.2014.
2362729. URL https://doi.org/10.1109/TEVC.2014.2362729.

Thomas Helmuth, Nicholas Mcphee, and Lee Spector. Lexicase Selection for Program Synthesis: A
Diversity Analysis, pages 151-167. Springer International Publishing, 12 2016. ISBN 978-3-319-
34221-4. doi: 10.1007/978-3-319-34223-8 9.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Ap-
plications to Biology, Control, and Artificial Intelligence. MIT Press, 1992. ISBN 9780262275552.
doi: 10.7551/mitpress/1090.001.0001. URL https://doi.org/10.7551/mitpress/1090.
001.0001,.

Joe. Java integer cache, Mar 2020. URL https://javapapers.com/java/

java-integer-cache/.

Emanuel Kitzelmann. Inductive programming: A survey of program synthesis techniques. In
Ute Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer, editors, Approaches and Applications
of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh, UK, Septem-
ber 4, 2009. Revised Papers, volume 5812 of Lecture Notes in Computer Science, pages 50—
73. Springer, 2009. doi: 10.1007/978-3-642-11931-6\ 3. URL https://doi.org/10.1007/
978-3-642-11931-6_3.

Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. Resource-guided program synthe-
sis. pages 253-268, 2019. doi: 10.1145/3314221.3314602. URL https://doi.org/10.1145/
3314221.3314602.

John R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87-112, Jun 1994. ISSN 1573-1375. doi: 10.1007/BF00175355.
URL https://doi.org/10.1007/BF00175355.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Ed-
mund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,
Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages 348-370.
Springer, 2010. doi: 10.1007/978-3-642-17511-4\ 20. URL https://doi.org/10.1007/
978-3-642-17511-4_20.

José Maria Luna, José Raul Romero, and Sebastian Ventura. G3PARM: A grammar guided genetic
programming algorithm for mining association rules. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2010, Barcelona, Spain, 18-23 July 2010, pages 1-8. IEEE, 2010.
doi: 10.1109/CEC.2010.5586504. URL https://doi.org/10.1109/CEC.2010.5586504.

72

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. Trinity: An extensible synthe-
sis framework for data science. Proc. VLDB Endow., 12(12):1914-1917, 2019. doi: 10.14778/
3352063.3352098. URL http://www.vldb.org/pvldb/voll12/p1914-martins.pdf.

Robert 1. McKay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and Michael
O’Neill. Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach.,
11(3-4):365-396, 2010. doi: 10.1007/s10710-010-9109-y. URL https://doi.org/10.1007/
s10710-010-9109-y.

Phil McMinn. Search-based software test data generation: a survey. Sofiw. Test. Verification Reliab.,
14(2):105-156, 2004. doi: 10.1002/stvr.294. URL https://doi.org/10.1002/stvr.294.

David J. Montana. Strongly typed genetic programming. Evol. Comput., 3(2):199-230, 1995. doi:
10.1162/evc0.1995.3.2.199. URL https://doi.org/10.1162/evco.1995.3.2.199.

Alfonso Ortega, Marina de la Cruz, and Manuel Alfonseca. Christiansen grammar evolution:
Grammatical evolution with semantics. [EEE Trans. Evol. Comput., 11(1):77-90, 2007. doi:
10.1109/TEVC.2006.880327. URL https://doi.org/10.1109/TEVC.2006.880327.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
David Grove and Steve Blackburn, editors, Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015,
pages 619-630. ACM, 2015. doi: 10.1145/2737924.2738007. URL https://doi.org/10.1145/
2737924 .2738007.

Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller. Automated fixing of programs
with contracts. [EEE Transactions on Software Engineering, 40(5):427-449, May 2014. ISSN
2326-3881. doi: 10.1109/TSE.2014.2312918.

Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller. Automated
fixing of programs with contracts. volume 40, pages 427-449, 2014. doi: 10.1109/TSE.2014.
2312918. URL https://doi.org/10.1109/TSE.2014.2312918.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang. Syst.,
22(1):1-44, 2000. doi: 10.1145/345099.345100. URL https://doi.org/10.1145/345099.
345100.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from polymorphic
refinement types. In Chandra Krintz and Emery Berger, editors, Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, June 13-17, 2016, pages 522-538. ACM, 2016. doi: 10.1145/2908080.2908093.
URL https://doi.org/10.1145/2908080.2908093.

Yewen Pu, Zachery Miranda, Armando Solar-Lezama, and Leslie Pack Kaelbling. Learning to
select examples for program synthesis. CoRR, abs/1711.03243,2017. URL http://arxiv.org/
abs/1711.03243.

73

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Baishakhi Ray, Daryl Posnett, Premkumar T. Devanbu, and Vladimir Filkov. A large-scale study
of programming languages and code quality in github. Commun. ACM, 60(10):91-100, 2017. doi:
10.1145/3126905. URL https://doi.org/10.1145/3126905.

Paulo Santos, Sara Silva, and Alcides Fonseca. Refined typed genetic programming as a user in-
terface for genetic programming. In Carlos Artemio Coello Coello, editor, GECCO °20: Genetic
and Evolutionary Computation Conference, Companion Volume, Cancun, Mexico, July 8-12, 2020,
pages 251-252. ACM, 2020. doi: 10.1145/3377929.3390042. URL https://doi.org/10.1145/
3377929.3390042.

Noor Shaker, Miguel Nicolau, Georgios N. Yannakakis, Julian Togelius, and Michael O’Neill.
Evolving levels for super mario bros using grammatical evolution. In 2072 IEEE Conference on
Computational Intelligence and Games, CIG 2012, Granada, Spain, September 11-14, 2012, pages
304-311.1EEE, 2012. doi: 10.1109/C1G.2012.6374170. URL https://doi.org/10.1109/CIG.
2012.6374170.

Armando Solar-Lezama. The sketching approach to program synthesis. In Zhenjiang Hu, ed-
itor, Programming Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea,
December 14-16, 2009. Proceedings, volume 5904 of Lecture Notes in Computer Science, pages
4-13. Springer, 2009. doi: 10.1007/978-3-642-10672-9\ 3. URL https://doi.org/10.1007/
978-3-642-10672-9_3.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit A. Seshia, and Vijay A. Saraswat.
Combinatorial sketching for finite programs. pages 404—415, 2006. doi: 10.1145/1168857.
1168907. URL https://doi.org/10.1145/1168857.1168907.

Ashish Tiwari, Adria Gascon, and Bruno Dutertre. Program synthesis using dual interpretation.
In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, vol-
ume 9195 of Lecture Notes in Computer Science, pages 482—497. Springer, 2015. doi: 10.1007/
978-3-319-21401-6\ 33. URL https://doi.org/10.1007/978-3-319-21401-6_33.

Leonardo Trujillo, Luis Mufioz, Edgar Galvan Lopez, and Sara Silva. neat genetic programming:
Controlling bloat naturally. Inf. Sci., 333:21-43, 2016. doi: 10.1016/j.ins.2015.11.010. URL
https://doi.org/10.1016/j.ins.2015.11.010.

A. M. Turing. Computers & thought. In Edward A. Feigenbaum and Julian Feldman, editors,
Mind, chapter Computing Machinery and Intelligence, pages 11-35. MIT Press, Cambridge, MA,
USA, 1995. ISBN 0-262-56092-5. URL http://dl.acm.org/citation.cfm?id=216408.
216410.

Paulo Urbano and Loukas Georgiou. Improving grammatical evolution in santa fe trail using nov-
elty search. In Pietro Lio, Orazio Miglino, Giuseppe Nicosia, Stefano Nolfi, and Mario Pavone,

editors, Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living

74

Bibliography

[56]

[57]

[58]

[59]

Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, September 2-6, 2013, pages 917—
924. MIT Press, 2013. doi: 10.7551/978-0-262-31709-2-ch137. URL https://doi.org/10.
7551/978-0-262-31709-2-ch137.

Niki Vazou, Eric L. Seidel, and Ranjit Jhala. Liquidhaskell: experience with refinement types in
the real world. pages 3951, 2014. doi: 10.1145/2633357.2633366. URL https://doi.org/10.
1145/2633357.2633366.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for typescript. pages
310-325, 2016. doi: 10.1145/2908080.2908110. URL https://doi.org/10.1145/2908080.
2908110.

David Robert White, Andrea Arcuri, and John A. Clark. Evolutionary improvement of programs.
IEEFE Trans. Evol. Comput., 15(4):515-538, 2011. doi: 10.1109/TEVC.2010.2083669. URL
https://doi.org/10.1109/TEVC.2010.2083669.

Tina Yu. Polymorphism and genetic programming. In Julian F. Miller, Marco Tomassini, Pier Luca
Lanzi, Conor Ryan, Andrea Tettamanzi, and William B. Langdon, editors, Genetic Program-
ming, 4th European Conference, EuroGP 2001, Lake Como, Italy, April 18-20, 2001, Proceed-
ings, volume 2038 of Lecture Notes in Computer Science, pages 218-233. Springer, 2001. doi:
10.1007/3-540-45355-5_17. URL https://doi.org/10.1007/3-540-45355-5_17.

75

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Motivation
	Objectives and Contributions
	Context
	Structure of the document

	Background
	Genetic Programming
	Type Theory
	Program Synthesis

	Related Work
	Deductive Synthesis
	Inductive Synthesis
	Synthesis from Sketches

	The Æon Programming Language
	Main Concept
	Examples
	Implementation Details

	Translation to ÆonCore
	Æon conversion to ÆonCore
	Syntax
	Hole Type Inference

	Non-deterministic Synthesis From Liquid Types
	Synthesis rules
	Weights over synthesis rules
	Ranges over refinements

	Evolutionary Program Synthesis
	Concept
	The Evolutionary Synthesis System
	Code optimizer

	Evaluation
	RTGP vs GGGP: An Usability Perspective
	Application of RTGP for Propert-Based Testing in Python
	Limitations and Challenges

	Future Work
	Conclusion
	Type System
	References

