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“You do not rise to the level of your goals. You fall to the level of your systems.”

― James Clear, Atomic Habits
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Resumo

Os grafos de conhecimento são estruturas que se tornaram fundamentais para a organização dos dados

biomédicos que têm sido produzidos a um ritmo exponencial nos últimos anos. A abrangente adoção desta

forma de estruturar e descrever dados levou ao desenvolvimento de abordagens de prospeção de dados

que tirassem partido desta informação com o intuito de auxiliar o progresso do conhecimento científico.

Porém, devido à impossibilidade de isolamento de domínios de conhecimento e à idiossincrasia humana,

grafos de conhecimento construídos por diferentes indivíduos contêm muitas vezes conceitos equiva-

lentes descritos de forma diferente, dificultando uma análise integrada de dados de diferentes grafos de

conhecimento. Vários sistemas de alinhamento de grafos de conhecimento têm focado a resolução deste

desafio. Contudo, o desempenho destes sistemas no alinhamento de grafos de conhecimento biomédicos

estagnou nos últimos quatro anos com algoritmos e recursos externos bastante trabalhados para aprimorar

os resultados.

Nesta dissertação, apresentamos duas novas abordagens de alinhamento de grafos de conhecimento

empregandoNeural Embeddings: uma utilizando semelhança simples entre embeddings à base de palavras

e de entidades de grafos; outra treinando um modelo mais complexo que refinasse a informação prove-

niente de embeddings baseados em palavras. A metodologia proposta visa integrar estas abordagens no

processo regular de alinhamento, utilizando como infraestrutura o sistema AgreementMakerLight. Estas

novas componentes permitem extender os algoritmos de alinhamento do sistema, descobrindo novos ma-

peamentos, e criar uma abordagem de alinhamento mais generalizável e menos dependente de ontologias

biomédicas externas.

Esta nova metodologia foi avaliada em três casos de teste de alinhamento de ontologias biomédi-

cas, provenientes da Ontology Alignment Evaluation Initiative. Os resultados demonstraram que apesar

de ambas as abordagens não excederem o estado da arte, estas obtiveram um desempenho benéfico nas

tarefas de alinhamento, superando a performance de todos os sistemas que não usam ontologias exter-

nas e inclusive alguns que tiram proveito das mesmas, o que demonstra o valor das técnicas de Neural

Embeddings na tarefa de alinhamento de grafos do conhecimento biomédicos.

Palavras Chave: alinhamento de grafos de conhecimento, representações vetoriais neuronais, on-

tologias biomédicas.
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Abstract

Knowledge graphs are data structures which became essential to organize biomedical data produced at

an exponential rate in the last few years. The broad adoption of this method of structuring and describing

data resulted in the increased interest to develop data mining approaches which took advantage of these

information structures in order to improve scientific knowledge. However, due to human idiosyncrasy

and also the impossibility to isolate knowledge domains in separate pieces, knowledge graphs constructed

by different individuals often contain equivalent concepts described differently. This obstructs the path

to an integrated analysis of data described by multiple knowledge graphs. Multiple knowledge graph

matching systems have been developed to address this challenge. Nevertheless, the performance of these

systems has stagnated in the last four years, despite the fact that they were provided with highly tailored

algorithms and external resources to tackle this task.

In this dissertation, we present two novel knowledge graph matching approaches employing neural

embeddings: one using plain embedding similarity based on word and graph models; the other one using

a more complex word-based model which requires training data to refine embeddings. The proposed

methodology aims to integrate these approaches in the regular matching process, using the Agreement-

MakerLight system as a foundation. These new components enable the extension of the system’s current

matching algorithms, discovering new mappings, and developing a more generalizable and less depen-

dent on external biomedical ontologies matching procedure.

This new methodology was evaluated on three biomedical ontology matching test cases provided

by the Ontology Alignment Evaluation Initiative. The results showed that despite both embedding ap-

proaches don’t exceed state of the art results, they still produce better results than any other matching

systems which do not make use of external ontologies and also surpass some that do benefit from them.

This shows that Neural Embeddings are a valuable technique to tackle the challenge of biomedical knowl-

edge graph matching.

Keywords: knowledge graph matching, neural embeddings, biomedical ontologies.
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Resumo Alargado

Nas últimas décadas, a produção de dados biomédicos tem expandido a um ritmo exponencial. Para além

do aumento significativo do volume de dados, estes evoluíram em termos de complexidade e hetero-

geneidade, devido ao desenvolvimento científico e tecnológico. Esta transformação levou à concepção

de novas estruturas que permitissem armazenar esta informação de forma interligada, padronizada, de-

scritiva e acessível, de modo a ser interpretável tanto por humanos como por máquinas, os grafos de

conhecimento.

Os grafos de conhecimento são estruturas em formato de grafo que descrevem características de en-

tidades reais e relações entre si, através de ligações a conceitos descritos em ontologias. Uma ontologia

é um documento formal que representa detalhadamente conceitos e respetivas inter-relações, referentes

a um determinado domínio. Estes documentos permitem ter uma descrição semântica pormenorizada e

padronizada, e delinear restrições lógicas relacionadas com os conceitos descritos. Esta abordagem de

representação de conhecimento foi largamente adotada em vários domínios, tendo uma notável importân-

cia no ramo das Ciências da Vida e no domínio biomédico.

Contudo, esta representação de conhecimento expõe um desafio à análise integrada de dados descritos

em múltiplos grafos, a existência de conceitos repetidos em diferentes grafos sem quaisquer ligações

entre si. Devido ao obstáculo da idiossincrasia humana, grafos concebidos por diferentes indivíduos

certamente terão perspetivas e vocabulários distintos. Para além disso, a natureza interligada do mundo

que nos rodeia impossibilita a separação de conceitos por domínios isolados. Por outro lado, a procura

e utilização de técnicas de prospeção de dados combinadas com grafos de conhecimento tem crescido

pela sua capacidade de encontrar padrões profundos nos dados e auxiliar a evolução do conhecimento

científico.

Por todos esses motivos, a fim de possibilitar a integração de dados de diferentes grafos de conheci-

mento, é necessário identificar as interseções entre eles, mapeando ligações entre entidades equivalentes.

Este processo tem o nome de alinhamento de grafos de conhecimento e pode ser subdivido em duas

tarefas: alinhamento de ontologias e alinhamento de instâncias. Como a denominação indica, o alin-

hamento de ontologias passa por descobrir conceitos equivalentes entre duas ontologias, e o alinhamento

de instâncias passa por encontrar instâncias/entidades que sejam iguais.
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É impraticável executar este processo manualmente. O alinhamento de duas ontologias com menos

de 60,000 conceitos cada demorou cerca de sete person-years. Algumas ontologias biomédicas con-

têm mais de 300,000 conceitos. Para além da complexidade colossal de avaliar biliões de combinações

de conceitos, apenas peritos do próprio domínio estão aptos para discernir as relações entre diferentes

conceitos.

Dada esta adversidade, têm sido desenvolvidos programas computacionais com a finalidade de au-

tomatizar a tarefa de alinhamento de ontologias. Desde 2004, o projeto Ontology Alignment Evaluation

Initiative (OAEI) tem avaliado anualmente a performance destes sistemas em ontologias de teste que

incluem em parte ontologias biomédicas de tamanho considerável. Apesar de a maioria dos sistemas par-

ticipantes ter progredido gradualmente ao longo do tempo, nos últimos quatro anos verificou-se uma es-

tagnação de performance dos sistemas commelhores classificações nas ontologias do domínio biomédico.

Isto ocorre pelo facto de o desenvolvimento de estratégias de alinhamento para ontologias biomédicas ser

uma tarefa complexa, devido à abundância de classes que aumentam a complexidade de combinações,

vocabulário refinado e heterogéneo, e diversos sinónimos por conceito que dificultam a percepção de que

nomes sãomais relevantes na representação de um conceito. Por outro lado, os algoritmos de alinhamento

de ontologias são bastante trabalhados e adaptados para obterem uma boa performance nas ontologias de

teste, usando recursos como ontologias externas com informação relacionada com as ontologias a alin-

har como conhecimento complementar, o que não permite uma utilização geral destes sistemas. Assim

sendo, nesta dissertação apresentamos uma nova abordagem de alinhamento de ontologias empregando

Neural Embeddings.

Neural Embeddings é uma técnica de aprendizagem automática que transforma variáveis categóricas

em vetores multidimensionais de valores reais. Esta técnica treina um modelo através de uma rede neu-

ronal e produz um espaço vetorial de baixa dimensão, onde estão representadas as variáveis apresentadas

na fase de treino. O que torna este modelo significante é o facto de variáveis semelhantes serem represen-

tadas por vetores próximos entre si. Esta técnica tem sido aplicada em várias tarefas de processamento de

linguagem natural, através demodelos de representação de palavras, e para representação de entidades em

grafos. A hipótese que orientou esta dissertação foi que a técnica neural embeddings poderia ser benéfica

para a tarefa de alinhamento de ontologias através de duas componentes: modelos de palavras, providen-

ciando informação semântica que poderia estar em falta nas ontologias; modelos de entidades de grafos,

interpretando a estrutura dos grafos das ontologias que poderiam não ser tão facilmente compreendidas

através técnicas de alinhamento convencionais.

A metodologia proposta visa criar uma abordagem de alinhamento mais generalizável e passa por in-

tegrar uma fase de cálculo de semelhança de embeddings no processo de alinhamento de ontologias. Para

tal, tirámos proveito do sistema de alinhamento de ontologias AgreementMakerLight como infraestrutura

para incluir as nossas estratégias de alinhamento à base de embeddings. As estratégias implementadas

baseiam-se em dois tipos de abordagens: a primeira, utilizando simples semelhanças entre vetores, prove-

nientes de modelos palavras e de modelos de grafos, permitindo uma aplicação mais generalizável; a

segunda, utilizando um modelo mais complexo que refina a informação existente nos modelos de em-
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beddings para focar a tarefa de alinhamento, para analisar quão divergente é o desempenho entre uma

alternativa mais simples contra outra mais complexa e direcionada. Na primeira abordagem foram testa-

dos modelos de palavras e modelos de grafos isolados e posteriormente combinados entre si e também

com um algoritmo de semelhança entre sequências de caracteres. Na segunda abordagem foi experimen-

tado um modelo de palavras aprimorado para representar frases em vez de palavras únicas e com uma

ferramenta para excluir falsos positivos cuja semelhança de embeddings não representasse semelhança

semântica.

Esta metodologia foi implementada de forma exploratória e iterativa, e avaliada em três casos de teste

disponibilizados na edição de 2019 da OAEI, referentes a ontologias biomédicas de pequena e média

dimensão, e comparada com os sistemas participantes daquele ano. O desempenho das abordagens foi

avaliado de acordo com os alinhamentos de referência fornecidos pela iniciativa, utilizando as métricas

precisão, recall e F-Measure.

Os resultados demonstraram que tanto a abordagem de semelhanças simples como do modelo com-

plexo conseguem acrescentar valor a um algoritmo de alinhamento simples, sendo o ganho geralmente

superior na abordagem mais complexa. Contudo, num dos casos de teste a abordagem mais simples

superou a mais complexa, o que indica que nem sempre é a alternativa mais desejada. Nas tabelas de

classificação dos sistemas participantes da OAEI, ambas as abordagens alcançaram sempre lugares na

primeira metade das tabelas, superando todos os sistemas que não beneficiam de informação de ontolo-

gias externas e inclusive alguns dos sistemas que tiram proveito da mesma. Não obstante, nenhuma das

abordagens conseguiu melhorar o estado da arte. Os modelos de palavras apresentam uma semelhança

pouco profunda entre palavras, em vez de fortemente focada na semântica. Por outro lado, os mode-

los de grafos escolhidos são bastante dispendiosos em termos computacionais e de memória, tanto no

período de treino como na fase de alinhamento, impossibilitando a sua aplicação em casos de teste de

maior dimensão.

Dados estes desafios, como trabalho futuro tencionamos desenvolver algoritmos que calculem em-

beddings baseados em grafos de forma mais eficiente. Pretendemos também refinar os modelos baseados

em palavras e treinar outros tipos de modelos como modelos baseados em frases que possam represen-

tar as entidades biomédicas com maior profundidade. Para além disso, tencionamos também estender a

avaliação das abordagens desenvolvidas para grafos de conhecimento noutros domínios.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, biological data experienced considerable complexity, heterogeneity, and volume growth.

This development was even more significant in the latest years. A data-driven era emerged due to scien-

tific research advancements, technological development and employment in several science and business

sectors, and reduced digital storage costs. Despite the interconnected nature of the data generating do-

mains and similarity of the respective concepts, this produced information usually contains a strict, non-

transferable, probably evolving vocabulary, which hinders a possible integrated analytical process. Data

mining, which is the process of extracting useful patterns from collections of data resorting to algorithms

and techniques from fields such as statistics, machine learning and data warehousing, can take advantage

of integrated data to boost knowledge discovery [22]. In order to facilitate analysis and still maintain the

detail of the information to posteriorly transform it into useful knowledge, it was needful to structure and

connect this growing information.

In 2001, Tim Berners-Lee envisioned an extension of the World Wide Web, which would supply its

content with well-defined meaning. The so-called Semantic Web, had the objective to enhance computer

and human cooperation, by defining information in an accessible and comprehensible format for both

ends, taking advantage of ontologies [2]. In Semantic Web terms, an Ontology is a file which describes

concepts inside a determined domain and relations between them in a formal and standardized scheme.

Ontologies would solve the ambiguity of natural language where humans used the same term to refer

to different things and vice-versa, allow to conduct automated reasoning upon its content, and make

it accessible to everyone by defining each term using URIs. This set of rules to publish and connect

structured data around the web would be called Linked Data [3].

This practice is being increasingly embraced. The Linked Open Data (LOD) Project1 is the result of a

1https://lod-cloud.net/
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considerable effort in building a web of information based on the adoption of the Linked Data principles.

Its illustration in Figure 1.1 displays the significance of the Life Sciences domain inside this representation

of knowledge, which constitutes data related to biological, biochemical, drugs, and species and their

habitats concepts [53].

Figure 1.1: The LOD Cloud, 2017.

Real-world entities and relations between them can be described (annotated) by concepts from mul-

tiple ontologies in a directed graph structure denominated Knowledge Graph (KG) [16, 27]. Naturally,

distinct domains are interconnected and contain intersections. This originates a setback for ontologies

because although they represent a standard inside a particular domain, the description of similar concepts

in different terms inside distinct ontologies dissolves the intended semantic standard, and the human id-
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iosyncrasy obstacle to semantic data structuring emerges once again. The approach to circumvent this

issue is the process of discovering correspondences between those concepts and establishing links be-

tween them, known as KG Matching.

There are over 800 distinct biomedical KGs in BioPortal [45], many with overlapping domains but

practically no established links between them, preventing the integrated analysis of heterogeneously an-

notated data. Creating alignments between them manually requires domain specialized human resources

and is a very demanding and impractical task. Consider as an example, the manual alignment of the

Chinese Agricultural Thesaurus (CAT) ontology of around 60,000 concepts with the Food and Agri-

culture Organization (FAO) of the United Nations Thesaurus, AGROVOC ontology, of around 25,000

concepts took seven person-years of unwearying work [35, 59]. This process is even more unfeasible

for large biomedical ontologies like Systematized Nomenclature of Medicine Clinical Terms (SNOMED

CT) [15], which contains a rich and complex vocabulary, heterogeneous data, and more than 300,000

concepts at the time of writing this dissertation.

At this point, it should be comprehensible that the KG matching task must be automated. Since

2004, a competition named Ontology Alignment Evaluation Initiative (OAEI)2 is organized yearly to

assess the performance of state of the art matching systems on specific matching tasks, including sizeable

biomedical KGs. Although most of the systems steadily improved over the last years, their performance

on the biomedical tasks has generally stagnated. As we can see in Table 1.1, the best F-measure values

over the last four years are nearly identical.

Test Case 2016 2017 2018 2019

Human Anatomy -> Mouse Anatomy 0.943 0.943 0.936 0.943

FMA -> NCI small fragments 0.931 0.930 0.933 0.933

FMA -> SNOMED small fragments 0.825 0.835 0.835 0.835

NCI -> SNOMED small fragments 0.797 0.804 0.801 0.818

Table 1.1: OAEI Biomedical Ontologies test cases best F-measure results per year since 2016.

Developing KGmatching strategies for such a complex area like biomedicine is a challenging task for

various reasons. While the high quantity of entities poses a computational and visualization difficulty, its

sophisticated vocabulary with many labels and synonyms creates a challenge for algorithms like lexical

matchers, which need to distinguish and select labels with different degrees of relevance [20]. In addition,

because “even science isn’t an exact science”, the same biomedical domainsmay be definedwith different

points of view, causing logical incoherences when trying to match two ontologies (e.g. in FMA ontology,

Fibrilar Actin becomes a subclass of both Anatomic Structure System and Substance and Gene Product in

NCI ontology, which are disjoint classes [47]). Lastly, biomedical ontologies have evolved in semantic

richness, inheriting complex axioms. For instance, “human patient and (has Age some float [>= 8])

2http://oaei.ontologymatching.org/
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participant inWHO standard treatment for human brucellosis in adults and children eight years of age and

older”. Usually, ontology matching systems focus mainly on taxonomic relations or do not discriminate

types of relations [10].

In the last few years, KGmatching systems have developed increasingly complex strategies to handle

the challenges in matching biomedical KGs [20]. These strategies include highly complex combinations

of algorithms to explore the lexical and structural components of the ontologies, and the use of external

knowledge in the form of other biomedical ontologies and thesauri. These efforts have been in large

part driven by the OAEI biomedical tasks, where benchmarks are made available (both ontologies and

reference alignments). The difficulties in producing a generalizable KG matching approach were made

clear with the introduction of blind tasks (for which no reference alignment exists). Although systems

were able to find many of the most straightforward mappings, they failed to find mappings belonging to

a curated set generated by experts [24].

1.2 Goals

Even though traditional matching techniques are engineered to withstand most entanglements of biomed-

ical KGs, they are stagnating. With that in mind, the main objective of this dissertation was to improve

state of the art in Biomedical KG Matching by developing a novel and more generalizable methodol-

ogy, based on Neural Embeddings techniques to develop new similarity measures for comparing entities

between two distinct KGs. Embeddings provide a way to compare entities without the need to produce

complex algorithms, but both entities need to be represented in a common semantic space. This is the

case when two entities are a part of the same text corpora [42], or part of the same KG [5]. Both unsu-

pervised and supervised strategies can be used to compare entities, the former typically based on vector

similarity and the latter based on more sophisticated machine learning approaches.

The hypothesis guiding this workwas that neural embeddings could be beneficial on thematching pro-

cess in two relevant fronts: first, by providing semantic information which may be lacking in ontologies,

using appropriate contextual text corpora; second, by interpreting the graph structures and information

inside the ontologies, which is not easily comprehended by traditional matching approaches. This work

tackles a number of challenges:

1. In the first challenge, we face the obstacle of linking the KG entities to the text corpus entities,

and then how to employ word embeddings trained on external corpora to compare ontology classes

that may have multiple multi-word labels. Corpus-based embeddings are typically employed to

compare words or documents, not entities that can be described by different multi-word terms.

2. In the second challenge, we have two distinct semantic spaces, i.e., each of the KGs to match, so

to enable graph embeddings computation, we must first solve the difficulty of creating a unified

semantic space.
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3. Finally, several state-of-the-art embeddings based KG matching approaches employ supervised

learning, which limits their applicability to domains where a reference alignment is not available.

Therefore, we tackle the challenge of circumventing the need for a reference alignment in super-

vised strategies.

The main focus of the work is on the ontology matching component of KG matching, first because

this is the first challenge in KG matching, but also because many of the developed approaches can be

in principle extensible to instance matching. The methods and approaches were evaluated using the

benchmarks provided by the OAEI biomedical test cases.

1.3 Document Structure

The current chapter provides introductory exposure to the research challenges to be tackled with the

proposed hypothesis and the objectives of this dissertation. Chapter 2 explores the field’s state of the

art concepts, techniques and relevant work developed until this date. Chapter 3 describes the overall

methodology’s steps and architecture. Chapter 4 presents the data utilized to assess the methodology’s

performance. Chapter 5 describes more in detail the implementation of the constructed approaches and

exposes and debates the obtained results. Chapter 6 gives a rundown over the main conclusions of this

work and indicates a set of directions for future work.
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Chapter 2

State of the Art

This chapter introduces the essential concepts and techniques to comprehend the presented work, and

developed state of art procedures in these research fields.

2.1 Knowledge Graphs

Tim Berners-Lee introduced the concept of Semantic Web as “an extension of the current web, in which

information is givenwell-definedmeaning, better-enabling computers and people to work in cooperation”

[2]. For this idea to be materialized, it required the existence of structured collections of information,

and sets of inference rules that they can use to conduct automated reasoning. This web of data needed

to be accessible to everyone, standardized in a meaningful way to both humans and computers, and

decentralized for the sake of scalability and not being a single point of failure.

For those reasons, the published knowledge would need to comply with a set of best practices to pub-

lish and connect structured data around theweb, known as LinkedData [3]. These practices would include

defining a concept using an Uniform Resource Identifier (URI) and structuring information related to it in

a format called Resource Description Framework (RDF). RDF is a standard model for defining relation-

ships between any two pieces of data around the Linked Data. The RDF format was posteriorly extended

to Resource Description Framework Schema (RDFS), which included a type system. This enlarged the

language with semantic capabilities, allowing the definition of classes, groups which concepts could be-

long to, subclasses and subproperties, enabling the definition of hierarchies of classes and properties

[38].

A RDFS statement, also known as a triple, expresses a relation between two resources in a subject-

predicate-object format. As shown in Figure 2.1, those two resources can be two concepts, so both subject

and object are both URIs, or a concept and an inherent property, hence represented by a subject URI and

a literal string object. The predicate is also an URI and indicates how the subject relates to the object.

Later on, a more robust representation, which addressed a set of RDFS’s limitations, was proposed.
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Figure 2.1: Example of RDFS statements. URI prefixes are ommited for the sake of plainness.

Web Ontology Language (OWL) is the current standard language for representing ontologies, which

are formal documents that define the schema of knowledge for various domains, describing concepts

and relations between them. OWL contains a more substantial expressibility than RDFS and therefore

allows to phrase more complex semantic relations like cardinality (e.g. any person has one and only one

biological mother), disjointness (e.g. a person is either a smoker or non-smoker) and transitivity (e.g. if

B is bigger than A and C is bigger than B, then C is bigger than A) [39]. This added logic and semantic

richness created the possibility of having software agents inferring content inside ontologies, making

another significant step in the process of making machines “understand” the content inside the Semantic

Web [2].

The Semantic Web encouraged a graph-oriented representation to model such complex and intercon-

nected knowledge, KGs. These structures allow to describe real-world entities and their interrelations,

define classes and relations of entities in a schema and cover various topical domains [46]. That being

so, a KG can be understood as the composition of the standardized structure of the domain, and the indi-

viduals/instances annotated by that schema. Figure 2.2 represents an example of a KG, constituted by a

portion of the Gene Ontology [11] which annotates an instance, the P69905 hemoglobin.

2.2 Knowledge Graph Matching

KG matching is the process of finding relations between two distinct KGs and can be decomposed in

two parts, ontology matching and instance matching. While ontology matching focuses on aligning the

schema of the knowledge graphs that are used to describe their domain, instance matching searches for

related individuals based on their properties.
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Figure 2.2: Knowledge Graph representation of part of the Gene Ontology.

2.2.1 Ontology Matching

Ideally, ontologies would be built in such a manner that no ontology should contain overlapping content

with others. This way, one term was guaranteed to contain only one specification. However, in several

cases, domains are represented by multiple ontologies. Thus, the Tower of Babel effect which ontologies

were trying to solve arises once again.

Ontology Matching can be defined as “the process of finding relationships or correspondences be-

tween entities of different ontologies” [17]. The following ontology matching formalization is based on

the work in [55]. Let O1, O2 represent a pair of distinct ontologies. Let e1, e2 be entities of O1 and O2,

respectively. Let also r be a relation (e.g. equivalence (=), more general (w), disjoint (⊥)) between e1

and e2 and c a real number which indicates the degree of confidence that a certain relation r exists, such

that 0 ≤ c ≤ 1. A matching task determines an alignment A′, which is composed of correspondences

between O1 and O2. An alignment is a set of correspondences (or mappings) between entities from

matched ontologies. A correspondence between two ontologies can be described as tuple:

< e1, e2, c, r >

Alignments contain a cardinality, which indicates how many entities are related to each side. Cardi-

nalities can be of: 1:1 (one-to-one), 1:m (one-to-many), n:1 (many-to-one) or n:m (many-to-many). In

this work, only 1:1 equivalence correspondences will be sought after, since equivalent mappings already
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pose a complex task for large ontologies. An alignment example can be seen in Figure 2.3.

Figure 2.3: Correspondences between the NCI Thesaurus and theMouse AnatomyOntology. The dashed

horizontal lines correspond to equivalence mappings between both ontologies. Extracted from Kolyvakis

et al. [31].

The matching task does not necessarily start from scratch. An input alignment A can be used as a

starting point to find new correspondences, analysing entities related to the already matched ones, which

is called alignment extension. This procedure can reduce computational costs significantly since it does

not perform a brute force search for correspondences. That is, attempting to match all pairs of entities.

Additionally, external parameters (e.g. weights, thresholds) and external resources (e.g. domain-specific

thesauri or knowledge) can provide some guidance in the matching process.

There are multiple techniques which can be used to perform the matching task. These techniques

can be separated into two major categories according to the granularity of interpretation of ontologies,

element-level and structure-level [17]. Element-level matching techniques analyse entities in isolation,

meaning, ignoring the relations to other entities they are connected to. Most common element-level

techniques are:

• String-Based Techniques: these take advantage of the structure of names and descriptions of

ontology entities as sequences of letters and calculate a distance between those sequences, applying

string similarity functions. The more similar the strings are, the more likely they describe the same

entity.

• Language-BasedTechniques: they interpret entity names aswords in a particular natural language

(e.g. English, Latin), enabling the usage of NLP strategies to extract meaningful terms and relations

from text. Language-based methods can be divided into algorithms which only use the input texts

from the ontologies to match, and strategies which employ external resources such as lexicons,

thesauri and corpora.
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• Constraint-Based Techniques: methods that study the internal structure and respective con-

straints of ontology entities, that is, the details of their properties such as data type and cardinality

of attributes. This information can be used aside or complementing their names and identifiers.

• Informal Resource-Based Techniques: when entities from two distinct ontologies annotate the

same informal resources such as pictures, these connections can be used to deduce relations be-

tween those ontologies using data analysis and statistical procedures.

• Formal Resource-Based Techniques: external ontologies can also be exploited to assist in the

matching process by establishing bridges between the ontologies to match. Domain-specific on-

tologies are the most used in this type of technique since they are the most effective in establishing

common ground between matching ontologies.

Structure-level techniques discover correspondences according to the analysis of how entities relate

to each other in a structure. Some examples of structure-level techniques are:

• Graph-Based Techniques: algorithms which perceive the ontologies to match as labelled graph

structures. The premise of these techniques is that the similarity between a pair of nodes from two

ontologies is associated with the positions and neighbourhoods of those entities.

• Taxonomy-Based Techniques: similar to graph-based techniques, except they only consider spe-

cialisation relations. The intuition behind this variant is that specialization relations like part_of or

is_a connect similar terms. Therefore, neighbours of equivalent terms which are connected through

specialisation relations might also be similar as previously shown in Figure 2.3.

• Logic-Based Techniques: logic-based or semantically grounded techniques are methods based

on reasoning. These methods find new correspondences by inference and evaluating propositional

satisfiability. Being a deductive type of technique performing an inductive task such as ontology

matching, they are only reasonably successful when extending an initial alignment.

• Instance-Based Techniques: thesemethods compare sets of instances of ontology classes to deter-

mine if the concerned classes are a match or not. They employ similar data analysis and statistical

procedures to informal resource-based techniques.

2.2.2 Instance Matching

Similarly to ontology matching, instance matching is the process of discovering correspondences be-

tween two real-world entities of two different knowledge sources through the calculation of a similarity

value between them [8]. Instances (or individuals) can appear heterogeneously represented in different

documents and annotated with terms from multiple ontologies, depending on the necessary concepts to
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describe them. Therefore, establishing links between ontologies on the schema level is crucial for instance

matching, since those relations will refine the final similarity value between two instances.

2.3 Neural Embeddings

An embedding, in essence, is a mapping of a discrete categorical variable in a vector of real values. Neural

network embeddings or neural embeddings are learned distributed vector models of categorical variables

in a low dimensional vector space. In other terms, it is a predictive learning-based model which takes

advantage of a neural network to embed variables in n-dimensional vectors. Although the learning step is

based on prediction, the model can be interpreted as unsupervised in the sense that humans do not need to

create labels to feed the learning process. The main advantages of this kind of technique are reducing the

dimensionality of highly complex data, being a compact format and enclosing similarity between related

data entries [9].

Calculating a value between two terms that represents how similar they are is a core process for the

matching task and many NLP applications. Along the years, many similarity metrics were proposed,

such as Cosine, Dice, Euclidean, and Jaccard. In vector space models, Cosine Similarity is one of the

most popular methods. It measures the angle between two vectors, which can be efficiently calculated as

a dot-product of two normalized vectors [34]. Formally, given two vectors ~v and ~w of dimension N the

cosine similarity between them can be expressed as:

cosine(~v, ~w) =
~v • ~w

|~v||~w|
=

∑n
i=1 vi × wi√∑n

i=1 v
2
i

√∑n
i=1w

2
i

(2.1)

Cosine Similarity is also often referenced as Cosine Distance, which is simply 1− Cosine Similarity.

2.3.1 Word Embeddings

Mikolov et al. presented [40] two bi-layered neural network model architectures for learning distributed

representations, the Continuous Bag of Words (CBOW) and the Skip-Gram (SG), which can be shown

in Figure 2.4. The difference between these two models is that given a word in the corpus, a window of

its predecessors and successors, while CBOW tries to predict the current word based on the previous and

the following words, SG uses the current word to predict the others.

These models are effective to explore relations between single words. For instance, a certain word

corpus containing countries names and capitals can be mapped to vectors of continuous numbers using

neural embeddings. This type of technique is refered as word2vec. A peculiar condition of the resultant

vector space, is that vectors can be added and subtracted effortlessly. With that in mind, being v[w] the

vector of a word w we can observe that the closest vector obtained by making the calculation v[Paris] -
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Figure 2.4: The two neural network proposed model architectures, CBOW and SG. Extracted from

Mikolov et al. [40]

v[France] + v[Italy] is v[Rome]. Figure 2.5 shows the model capacity to group terms and learn connec-

tions between them without additional supervised learning.

Because of this abilities, this type of model has been sough-after for several Natural Language Pro-

cessing (NLP) tasks, machine translation and automatic speech recognition [36, 41, 54, 56].

However, many terms in the biomedical domain are expressed by multiple words, such as Ulnar

Carpal Bone or Bone of the Upper Extremity. Two main alternatives are available to enable comparison

between these terms. The first one is representing a term by the average of its word vectors.

v[Ulnar Carpal Bone] =
v[Ulnar] + v[Carpal] + v[Bone]

3
(2.2)

That way, the term is represented by a single vector which can be compared to another term. An

improved version of this strategy would be multiplying weights to the words vectors according to Term

Frequency-Inverse Document Frequency (TF-IDF), a statistical measure of the frequency of a term’s

use in a corpus [57]. Although this is a popular workaround, word embeddings are not optimized to

represent sentences. For instance, the word order in the terms is lost when averaging its vectors. The

other possibility, a later proposed more robust model, which could represent segments of text, from

sentences to documents named Paragraph Vector, also denoted as doc2vec [33].

2.3.2 Graph Embeddings

Neural embeddings can also be used to represent graph structures. There are several graph embedding

approaches which can be organized in groups according to the type of used techniques [6]. These em-
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Figure 2.5: Example of Country and Capital Neural Embeddings trained model. Presented in a two-

dimensional PCA projection of a 1000-dimensional vector space. Extracted from Mikolov et al. [42].

bedding categories are:

• Matrix Factorization: approaches which represent graph properties like node pairwise similarity

in a matrix and factorize it to extract the nodes embeddings.

• Deep Learning: deep learning based embeddings apply deep neural network models to embed the

graph information. This type of technique contains models who receive random walks as input,

that is, sequences of visited nodes in a graph walk, or the whole graph structure.

• Edge reconstruction: methods that optimize objective functions to predict the edge embedding

based on the embeddings of the two nodes linked by the prior. Translating embeddings (TransE),

[5] one of the most popular graph embedding strategies, is based on edge reconstruction.

• Graph Kernel: approaches that represent whole graphs as vectors where each vector dimension

contains information of extracted graph substructures like subgraphs, subtrees or random walks.

Two graphs can be compared by computing the inner product of the two correspondent vectors.

• Generative model: procedures which embed similar graph nodes next to each other based on their

distance in the graph structure or their semantic properties.

Some of the techniques described above are employed in the link prediction problem, which corre-

sponds to estimating the likelihood of a certain unobserved link between two nodes, based on observed
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attributes and links of the respective nodes inside a certain graph [23]. In a way, the KGmatching task can

be expressed as a cross-KG link prediction challenge where we are predicting the equivalence between

two nodes of distinct graphs.

Ristoski et al. proposed an approach to represent RDF graphs in an embedding space, RDF2Vec [50].

This procedure generates paths in a graph, using methods like Random Walks and Weisfeiler-Lehman

Subtree RDF Graph Kernels [14], to create sequences of entities which are used as sentences to train

a language model similar to word2vec, like CBOW or SG. After the train is finished, every entity is

represented as a vector of latent numerical features.

2.4 Related Work

In this section, we survey the literature on related work to ontology matching, focusing on the search of

neural embeddings applications which could assist in tackling the challenges mentioned in section 1.2.

The examined work includes systems evaluated in OAEI biomedical KGs and state-of-the-art KG neural

embeddings variants.

Kolyvakis et al. [31] proposed an ontology matching framework named Deep Align1, based on an

extension of the CBOW model named Siamese Continuous Bag of Words (SCBOW) [30]. This exten-

sion uses supervised learning to predict sentences occurring next to each other and optimizes pre-trained

word embeddings to be averaged and construct high-quality sentence embeddings. This framework also

includes a Denoising Autoencoder (DAE) as an outlier detection system to discover misalignments [61].

The reason for this is because word embeddings models tend to learn embeddings that retain both se-

mantic similarity (horse, stallion) and relatedness (horse, harness). Since in the alignment task we are

interested in equality matches, only semantic similarity is desired. The DAE learns the inherent properties

of the distribution of semantically similar terms to exclude related ones.

This supervised approach surpassed many of the OAEI competing systems, but a direct comparison

cannot be made since OAEI competitors are not allowed to employ reference alignments to train models.

Moreover, using supervised learning in the biomedical KGs is an issue because there is a substantial lack

of training data, in this case, correct alignments. The very purpose of automating the matching task is

because it is unrealistic to align KGs manually. Therefore, this kind of system is unscalable in real-word

knowledge discovery. Besides, it only takes into account the primary names of entities, which can be

throwing away potential synonyms and labels, valuable in the matching process. Additionally, this type

of approach struggles with larger ontologies since it represents a quadratic complexity matching compu-

tational problem, added to layers of machine learning training time for each task.

1https://github.com/prokolyvakis/deep-align
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ALOD2Vec Matcher is an ontology matching tool built by Portisch et al. [48] using a RDF2Vec

model trained over a web-scale RDF dataset, rich in hypernymy relations, the WebIsALOD [26]. For the

alignment process, first and foremost, the tool filters entities with equivalent textual labels. After that, it

establishes a link between the remaining entities of the ontologies to match and the entities in the vector

space using the textual label and calculates the similarity between pairs of entities using cosine similarity.

This model participated in the OAEI 2018 competition producing average results on small biomedical

matching tasks in terms of F-measure, discovering mostly mappings already found using string equiv-

alence between entity labels. Nevertheless, the most concerning aspect of this matcher is the run time.

The system is amongst the top three slowest matchers in the respective tasks, which becomes apparent

given the dimension of the dataset used to train the model.

Jimenez et al. [29] constructed a mechanism to split the ontologymatching task into smaller matching

tasks for any matching system, cutting out some of the computational complexity and required memory.

The strategy consists of creating a hash dictionary where the key is a set of words, and the value is a set

of entity identifiers. Entities of both ontologies to match with words in common are indexed on the same

entry. Posteriorly, the entries are divided into k clusters, creating k smaller searching spaces to match.

One of the splitting techniques takes advantage of neural embeddings to make more intelligent splits, by

computing the average vector of all words inside an entry of the dictionary and using K-Means clustering

algorithm to group entities according to the features of the vectors.

While this procedure reduces the complexity of the matching task, it is not helpful in performance on

benchmarks. In fact, it reduces the performance slightly due to the reduction of coverage in the matching

space, that is, some of the relevant ontology mappings in the original matching task are lost when dividing

it into subtasks.

Cai et al. [7] developed a model to perform link prediction across distinct cross-lingual KGs having

no connections between them, by training an embedding model using a refined version of translation

models such as TransE joint with Jaro-Winkler string metric [62]. A similarity score between entities

is calculated using a linear combination of cosine and string similarities. The proposed model attempts

to surpass the limitations of translation representation models which attain a low performance on sparse

KGs, and of independent representation learning of different KGs that result in no correlation between

embedding models, making it impossible to use them in cross-KG tasks such as KG matching.

In this work, the larger and denser KG is given the name of source KG and the smaller and sparser one

is named target KG. With that in mind, the target entity labels are translated using Google translate API

to the source KG language and if they are semantically equivalent, their embeddings are trained based

upon the entities of both KGs. As a result, embeddings from two distinct KGs are learned in a unified

vector space, and semantically similar entities are represented close to each other, which increased link

prediction performance.
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Examining the presented relatedwork, we identify two significant limitationswhich hinder the progress

of KG matching using embedding-based approaches. The first one is the necessity for reference align-

ments as training data. As previously mentioned, there is a severe lack of reference alignments in biomed-

ical KG matching which makes it unfeasible to use supervised learning approaches on the task. The sec-

ond limitation is the inability of graph embedding based matching to improve results compared to a string

equivalence algorithm, especially when using a large embedding model. Any matching approach should

at least improve on string equivalence results, considering it is the simplest approach and often used as a

baseline in some benchmarks.
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Methodology

This chapter will present the overall ontology matching methodology based on Neural Embeddings tech-

niques. Given that current KGmatching algorithms are highly tailored for present challenges and reached

a plateau, we intended to develop more generic approaches, focusing on the hypothesis that neural em-

beddings could provide auxiliary insight to interpret information better inside KGs. To integrate our

embedding methods straightforwardly into the matching process, we benefited from an existing ontology

matching system, AML.

3.1 AgreementMakerLight

AgreementMakerLight (AML)1 is an ontology matching system written in Java, derived from one of the

first leading ontology matching systems, AgreementMaker[12]. Most first-generation ontology matching

systems were not built with scalability in mind, since the initial matching tasks were relatively small.

Therefore, the main goal of building AML was to create a scalable, automated system to tackle the large

biomedical ontologies, while maintaining the flexibility and extensibility of the original AgreementMaker

[18].

The system is composed of three principal modules, each one responsible for a particular task in the

ontology matching pipeline presented in Figure 3.1. The first one is the ontology loading module. This

component loads the ontologies stored in OWL files into memory objects which contain hash-based data

structures, the Lexicon and RelationshipMap, to occupy less memory space and be efficiently fetched

when needed. While the Lexicon keeps the names, labels and synonyms of each term inside an ontology,

the RelationshipMap stores the described relations between the terms kept in the Lexicon. This module

is used to load the two ontologies to match, called source ontology and target ontology. Optionally, an

external ontology can also be loaded as background knowledge to establish bridges between the input

ontologies, or an Alignment in RDF format which may have the role of reference alignment to evaluate

1https://github.com/AgreementMakerLight/AML-Project
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produced alignments or may be a previously produced alignment to be extended or evaluated by itself.

The second and most important unit is the matching module. This element covers all the matching

algorithms and strategies stored in classes called Matchers. A matcher produces an alignment object,

a collection of mappings (correspondences) between entities of the source and target ontologies with a

similarity value above a certain threshold. Since the matching problem has a O(n2) complexity, us-

ing elaborate matching algorithms in all pairs of entities would be very inefficient. Thereby, matching

algorithms are divided into two major types of matchers, primary and secondary matchers.

Primarymatchers are lightweight algorithms, mostly based onHashMap cross-searches, which achieve

a O(n) complexity exploring all matching possibilities. An example of a primary matcher is the Lexical

Matcher, which finds entities with the same name. Secondary matchers make non-literal comparisons

between terms, thus requiring to compare each entity of the source ontology with all of the entities in

the target ontology, taking O(n2) time. This type of matcher cannot be used to match large ontologies

from the ground. With that in mind, secondary matchers extend a previous alignment by exploring the

neighbourhood of already mapped entities, creating all the possible pairs of entities from the source and

target ontologies which do not conflict with the base alignment, and applying the matching algorithm

to calculate a similarity between those pairs. This process of extension is repeated a certain number of

iterations or until no more new mappings are found. An example of a secondary matcher is the String

Matcher, that creates matches based on a string similarity between the Lexicon entries of both entities.

AML also has another type of matcher called Rematcher which simply recomputes similarities of a given

alignment according to its own algorithm. The system has the ability to choose different matchers de-

pending on the properties of the ontologies to match. Furthermore, AML has multicore implementations

for every matcher that could profit from running mapping tasks in parallel, taking advantage of modern

CPUs with several cores [20].

The third module of the matching pipeline is alignment filtering. As the name suggests, this com-

ponent removes some of the troubling mappings from an alignment. Problematic mappings can appear

for two primary motives. One of them is cardinality conflicts, where a class of one ontology is mapped

with multiple classes of the other ontology where it should only be mapped with one. The other is logical

conflicts, where at least two mappings cause the matching ontologies to become logically unsatisfiable

when merged using those mappings. AML contains a Selector, which is an algorithm which excludes

competing mappings from an alignment to obtain the desired one-to-one cardinality, preserving the ones

with higher similarity. There are three types of selection. Strict selection allows no conflicts in the align-

ment. Permissive selection only allows conflicts of mappings with equal similarity. Hybrid selection

allows a cardinality of two for mappings with similarity above 0.75. The system also contains a Repairer

algorithm accountable for determining logical inconsistencies for classes or properties, finding the map-

pings causing those inconsistencies, and removing or modifying those mappings according to a set of

repairing rules [52]. These tools contribute to the production of a high-quality final alignment.

The AML framework can be used in different ways. The most flexible way it to program a runnable

Java class inside the Eclipse project, using AML’s API, to benefit from available tools and features.
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Figure 3.1: AML ontology matching pipeline. Extracted from Faria et al. [19].

Another method is by executing its JAR file on a command line with arguments and a configuration file.

There is also a more intuitive and visual alternative for inexperienced users which is a GUI. Beyond the

usual loading, matching and filtering capabilities, the provided GUI allows to edit an alignment by adding

or removing mappings as desired, and also visualize the graphs of the mappings and its neighbours on

both ontologies [37].

AML has obtained the highest results in OAEI 2019 anatomy, conference (four out of five test cases),

interactive matching, large biomedical ontologies (five out of six test cases) and biodiversity and ecology

tracks [21].

3.2 Overall Methodology

Contrasting with classical methodologies, the development of procedures in this work was more ex-

ploratory and iterative. The performance of each strategy was evaluated after its design to determine the

following course of action.

Since the key goal of this dissertationwas to create a generalizablemethod and avoid overengineering,

our primary approach was to test plain cosine distances to compute a similarity value between entities

of the two KGs to align. The nature of used methods includes word embeddings, graph embeddings and

combinations between both embedding types and string similarities. On the other hand, it was also desired

to compare the results of these general strategies with a more robust model, optimized for these tasks,

to study the performance divergence between approaches, but without resorting to unscalable supervised

learning methods. For this matter, we proposed an unsupervised version of the Deep Align framework

[31].

Despite cosine similarity being efficient to compute, the large computational complexity of biomed-
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ical KG matching still prevents us from attempting all-versus-all comparisons. The AML system has

shown to be an easy to operate tool with suitable modularity. Therefore, our proposal integrates an em-

bedding matching strategy step inside AML’s regular matching pipeline, interacting with required exter-

nal resources like scripts and embeddings models. This step follows up an initial AMLmatching strategy

composed of any of its algorithms and is continued by a selective filter to produce a final alignment, as

shown in Figure 3.2.

Figure 3.2: Embedding Matching Strategy integrated in the AML Pipeline.

3.3 Evaluation

The performance of a strategy is evaluated by comparing the produced alignment with a ground truth, in

this case, the reference alignments. The metrics used to assess the performance of the procedures were

precision, recall and F-measure, which is a harmonic mean of precision and recall. These metrics can be

expressed by

Precision =
Number of correct mappings

Total number of mappings in produced alignment
(3.1)

Recall =
Number of correct mappings

Total number of mappings in reference alignment
(3.2)

F-measure = 2× Precision ×Recall
Precision + Recall

(3.3)
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Although the main objective is generally to improve F-measure, in this work we’re particularly inter-

ested in increasing recall to discover new mappings which weren’t captured with other matching strate-

gies.

3.4 Comparison with State of the Art Strategies

Since AML is the state of the art system with overall best results on OAEI large biomedical ontologies

track and contains multiple matching algorithms that can be used and combined as necessary, we used

some of its procedures to compare our work with. Three AML matching strategies with varying degrees

of sophistication were chosen to compare the performance of developed methods. The first one, Lexical

Matcher algorithm is the simplest. The second one is the Automatic Matching algorithm. The third is

Full AML which constitutes all the available AML resources combined.

3.4.1 Lexical Matcher

The Lexical Matcher algorithm finds entities with the same literal name. It is one of the most efficient and

straightforward algorithms which only requires iterating over the names of one of the ontologies once.

For two ontologies, source and target, the algorithm can be described as follows:
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Algorithm 1: Lexical Matcher Algorithm

set thresh = matcher threshold;

set A = empty alignment;

set list = names(source);

foreach name in list do

if target contains name then

set sourceList = sourceClasses(name);

set targetList = targetClasses(name);

foreach sourceClass in sourceList do

set weightSource = weight(name, sourceClass);

foreach targetClass in targetList do

set similarity = weightSource * weight(name, targetClass);

if similarity >= thresh then

add (sourceClass, targetClass, similarity) to A;

end

end

end

end

end

The weight of each name in the final similarity depends on the provenance of that name, meaning,

whether the name represents the local name, a label or a type of synonym. This algorithm serves as an

effective baseline since it finds the most basic mappings between ontologies, thus, any valuable matching

strategy should at least surpass this algorithm.

3.4.2 Automatic Matching

The Automatic Matching is the algorithm which combines AMLs capabilities into one proficient match-

ing algorithm. Given that the system contains over twenty matching algorithms and various filtering tools

such as selectors and repairers, the Automatic Matching works as a fine-tuned control unit which chooses

which matching and filtering algorithms are relevant to use, according to the nature of the ontologies to

match. Some of the relevant properties in the decision making are the number of languages, the number

of entities and graph connectivity in each ontology.

For instance, whenmatching OAEI biomedical ontologies of intermediate size, the AutomaticMatch-

ing algorithm opts for the following pipeline: first, it runs Lexical Matcher and Word Matcher and adds

discovered mappings to an empty alignment; then, it extends the alignment with the string matcher; af-

ter that, runs Spaceless Lexical Matcher and Thesaurus Matcher and adds non-conflicting mappings to
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the previous alignment; finally, it uses a Cardinality Selector with a Hybrid Selection Type to filter the

alignment and runs the Repairer algorithm.

3.4.3 Full AML

The full AML matching algorithm corresponds to a version of Automatic Matching which contains all

the features in the variant described above but also includes the ability to use external ontologies as

background knowledge. AML takes advantage of this external knowledge by using a Mediating Matcher

algorithm which establishes connections between the source and the external ontologies, and between

the target and the external ontologies, using a lexical matcher approach, meaning, by creating mappings

between entities with names in common. Then, it iterates over both mapping collections, and if a source

entity and a target entity are connected to the same external mediator entity, they are acknowledged as a

mapping.

This procedure can be very beneficial when the external ontology contains several synonyms for each

entity which are not contained in the intersection of the source and target ontologies. However, it creates a

dependency on the existence of valuable external ontologies. Not only these ontologies require numerous

synonyms, but they also need to address the domains that are beingmatched in detail. Since a large portion

of the benchmark biomedical ontologies addresses anatomy, AML employs the Uber Anatomy Ontology

(UBERON) [44], rich in synonyms, as background knowledge for these matching tasks.

The motive to distinguish both variants is partially to provide a fairer comparative strategy which

does not resort to selective external knowledge, but also compare the performance gain of this external

knowledge with our procedures which also provide outside knowledge to the matching process.

The Mediating Matcher can be more precisely described as follows:
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Algorithm 2:Mediating Matcher Algorithm

set thresh = matcher threshold;

set maps = empty alignment;

set sourceNames = names(source);

set targetNames = names(target);

set sourceMapsDict = lexicalMatchWithBackground(sourceNames);

set targetMapsDict = lexicalMatchWithBackground(targetNames);

set reverseTargetMapsDict = reverseDict(targetMapsDict);

foreach sourceClass in keys(sourceMapsDict) do
set mediatorValues = sourceMapsDict.get(sourceClass) foreach mediatorClass in

mediatorValues) do

if reverseTargetMapsDict contains mediatorClass then

set targetValues = reverseTargetMapsDict.get(mediatorClass);

foreach targetClass in targetValues do
set similarity = min(sim(sourceClass, mediatorClass), sim(mediatorClass,

targetClass));

if similarity >= thresh then

add (sourceClass, targetClass, similarity) to maps;

end

end

end

end

end
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Data

As previously mentioned, it is undoable to align biomedical KGs manually. Therefore, the amount of

alignments to evaluate KG matching systems is scarce. In this chapter, we present a data source of

benchmarks for ontology matching and the datasets used in this dissertation.

Ontology Alignment Evaluation Initiative (OAEI) is a coordinated international initiative that as-

sesses the performance of ontology matching systems on yearly evaluation events since 2004. OAEI

consists of various tracks representing groups of ontologies of particular domains and reference align-

ments between them. The participating systems are evaluated by comparing the mappings in their pro-

duced alignments with the ones on the reference alignments.

In this work, the OAEI 2019 edition test sets will be used to assess the developed methodology’s

performance. The relevant tracks for our evaluation are “anatomy” and “Large Biomedical Ontologies

(largebio)”. “Anatomy” track is composed by the Adult Mouse Anatomy [25] and a portion of the NCI

Thesaurus [13], respective to the description of the human anatomy. This small test case is the only one

manually aligned, hence the only gold standard for evaluating matching systems.

The “largebio” track reference alignments were produced based on the extraction of relations from

the Unified Medical Language System (UMLS) Metathesaurus [4]. UMLS, a set of files and software, is

the most extensive attempt to integrate independently developed ontologies and thesauri, such as Foun-

dational Model of Anatomy (FMA) [51], National Cancer Institute Thesaurus (NCI) [13], and SNOMED

CT [15] which were the chosen ontologies for this track. NCI and SNOMED CT are more broad on-

tologies but still describe anatomy like FMA, which is one of the fields that bonds them together. Even

though the connections between ontologies are accurate in lexical terms, the semantic aspects are often

disregarded, resulting in some of the mappings violating the documents’ reunion logical integrity [28].

For this reason, mappings in the reference alignments which introduce logical inconsistencies are flagged

and ignored during the evaluation phase to avoid penalizing systems that either do or not a repair pro-

cess to remove inconsistent mappings. Additionally, in this track, some of the ontologies contain large

amounts of classes and take a great computational effort to match. Some of the datasets consist of smaller

fragments of pre-existent ontologies with the most relevant matching knowledge, created to reduce the
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search space of those challenges.

Furthermore, these ontologies entirely focused on the conceptual schema and are devoid of instances.

Auxiliary aliases were given to the ontologies to address themmore easily. A description of the ontologies

and reference alignments is present on Tables 4.1 and 4.2 respectively.

Ontology Alias OAEI Track Classes Properties

Adult Mouse Anatomy mouse anatomy anatomy 2743 3

Human Anatomy (NCI fragment) human anatomy anatomy 3304 2

FMA small overlapping nci FMA small nci largebio 3696 24

FMA small overlapping snomed FMA small snomed largebio 10157 24

FMA whole ontology FMA whole largebio 78988 54

NCI small overlapping fma NCI small fma largebio 6488 63

NCI small overlapping snomed NCI small snomed largebio 23958 82

NCI whole ontology NCI whole largebio 66724 190

SNOMED extended overlapping fma nci SNOMED extended largebio 122464 55

SNOMED small overlapping fma SNOMED small fma largebio 13412 18

SNOMED small overlapping nci SNOMED small nci largebio 51128 51

Table 4.1: OAEI test dataset ontologies.

Reference Alignment Source Ontology

(by alias)

Target Ontology

(by alias)

Number of Mappings

(logically consistent)

Human-Mouse Anatomy human anatomy mouse anatomy 1516

FMA2NCI UMLS FMA whole or FMA

small nci

NCI whole or NCI small

fma

2686

FMA2SNOMED UMLS FMA whole or FMA

small snomed

SNOMED extended or

SNOMED small fma

6026

SNOMED2NCI UMLS SNOMED extended or

SNOMED small nci

NCI whole or NCI small

snomed

17210

Table 4.2: OAEI reference alignments.
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Developing Embeddings based Matching

Strategies

This chapter elaborates on the exploratory and iterative development process of embedding strategies

for ontology matching. The performance of each strategy was evaluated on three of the small matching

tasks of the Large Biomedical Ontologies OAEI track and posteriorly compared to the state of the art

approaches, provided by AML and are presented in Table 5.1. Due to the fact that we used the same

three small fragments for all tests, the names of the test cases were simplified for the sake of readability.

Instead of “mouse anatomy -> human anatomy”, we have “Anatomy”. Instead of “FMA small nci ->

NCI small fma”, we have “FMA -> NCI”. And for “FMA small snomed -> SNOMED small fma” we

have “FMA -> SNOMED”.

Anatomy FMA -> NCI FMA -> SNOMED

Comparative Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Lexical Matcher 96.1% 69.7% 80.8% 97.0% 81.8% 88.7% 97.9% 62.2% 76.0%

Automatic Matching 96.1% 83.6% 89.4% 96.8% 86.8% 91.5% 92.8% 74.0% 82.3%

Full AML 95.0% 93.6% 94.3% 95.8% 91.0% 93.3% 92.3% 76.2% 83.5%

Table 5.1: The three AML provided comparative strategies, evaluated on three small matching tasks of

the Large Biomedical Ontologies OAEI track.

Each evaluated strategy is tested with every filter Selection Type (Strict, Permissive and Hybrid) but

only results with Strict Selection will be present in this document. A full version of the results is available

in the following google drive link.
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5.1 Embeddings Similarity

The most intuitive procedure of incorporating plain embedding similarities in AMLs matching pipeline

is by developing a secondary matcher for the system. This way, we can take advantage of its extension

mechanism and integrate the similarity values directly as the neighbourhoods of mappings are being

traversed. The extension is then filtered by a selector to resolve cardinality concerns.

5.1.1 Word Embedding Matcher

Training a neural embeddings model is expensive in terms of time and computational power. Therefore,

some pre-trained word models were used within this work. Not all models are suitable for this challenge,

for the reason that biomedical knowledge has a very particular vocabulary. Expressions likemacrothrom-

bozytopenia or paracoccidioidomycosis should be included in the models in order to allow comparisons

of the respective terms. Moen et al. [43] published sundry NLP resources1, including four word2vec

models based on large biomedical scientific literature text corpora from PubMed2 and PubMed Central3

and an English Wikipedia dump. These models apply a SG model with a window size of 5, trained with

hierarchical softmax and a frequent word subsampling threshold of 0.001 to create the 200-dimensional

vector models, represented in Table 5.2.

Pre-Trained Model Name File Size (GB)

PubMed 1.8

PMC 1.9

PMC + PubMed 3.2

PMC + PubMed + Wikipedia 4.3

Table 5.2: Word2vec pre-trained models.

A Word Embedding Secondary Matcher was built on two components, one in Java and the other

in Python. The Java constituent is responsible for extending the received alignment by exploring the

graph connections of the two ontologies, creating a list of candidate mappings to calculate similarity and

writing them to a text file, calling the python component to compute the embeddings similarity between

the required term pairs, reading the similarities from another text file, calculating the confidence of the

mappings based on the maximum similarity between terms and keeping the mappings above a certain

threshold.

The python element uses an open-source library named Gensim [49] which allows to create and ma-

nipulate embeddingmodels such as word2vec. It is responsible for loading a pre-trained word2vecmodel,

1http://bio.nlplab.org/
2https://pubmed.ncbi.nlm.nih.gov/
3https://www.ncbi.nlm.nih.gov/pmc/
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reading the pair list of terms from the text file, averaging the words vectors in each term, calculating the

cosine similarity between each pair of terms, and writing the similarities in another text file. By default,

if a word is not contained in the embeddings model vocabulary, the cosine similarity between terms is

considered zero. An overall representation of the pipeline is shown in Figure 5.1.

Figure 5.1: Word Embedding Matcher Pipeline.

An initial test was carried out to compare the performance of the four pre-trained word models. The

test consisted of extending the Lexical Matcher with the Word Embedding Matcher and filtering the

extension by applying a Selector. The threshold of the Word Embeddings Matcher and Selector was

equal and obtained by experimenting with different values and choosing one that benefited recall, with

the common sense of not sacrificing precision excessively. The produced results of the various models

with a Strict Selector, along with the Lexical Matcher baseline are presented in Table 5.3.

In two out of three test cases, there is a recall improvement compared to the Lexical Matcher. This

growth is even more meaningful in the Anatomy test case, with a minimum increase of 14.5%. Despite

that, there seems to be a large trade-off between recall and precision, bringing F-Measure lower than the

Lexical Matcher. This precision loss may occur because although the word models are trained in corpora
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Anatomy FMA -> NCI FMA -> SNOMED

Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Lexical Matcher 96.1% 69.7% 80.8% 97.0% 81.8% 88.7% 97.9% 62.2% 76.0%

LM + WEM

(PubMed)
74.8% 84.5% 79.3% 86.4% 80.9% 83.6% 70.8% 68.5% 69.7%

LM + WEM

(PMC)
69.3% 84.2% 76.0% 83.9% 80.8% 82.3% 68.1% 68.3% 68.2%

LM + WEM

(PMC + PubMed)
73.6% 84.6% 78.7% 85.3% 80.8% 83.0% 69.8% 68.4% 69.1%

LM + WEM

(PMC + PubMed

+ Wikipedia)

70.9% 84.4% 77.0% 83.9% 80.9% 82.4% 68.6% 68.6% 68.6%

Table 5.3: Pre-trained word2vec models test and Lexical Matcher baseline. Word Embedding Matcher

extends the Lexical Matcher and is filtered by a Strict Selector. All Matchers and Selector have a 0.6

threshold. The best recall in each test case is represented in bold while the best F-Measure is represented

underlined.

inside the biomedical domain, these type of models have difficulties distinguishing homonyms, especially

when using cosine similarity [1]. The recall between the different models is very similar, and there is

no definitive model with better recall than the others. Nonetheless, precision fluctuates more between

models, making the PubMedmodel the one with the highest precision in every test case, and consequently

best F-Measure. This model requires less memory and time to load, hence, being the selected model to

use in posterior evaluation.

The PubMed model was used to experiment with another approach, the extension of the Automatic

Matching algorithm. By doing so, we could assess the potential growth of the mappings discovery, when

taking into account the quality of the base alignment. This approach was tested using the same structure

as in the Lexical Matcher extension, and its results are presented in Table 5.4.

Anatomy FMA -> NCI FMA -> SNOMED

Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Automatic Matching 96.1% 83.6% 89.4% 96.8% 86.8% 91.5% 92.8% 74.0% 82.3%

AM + WEM

(PubMed)
85.6% 88.1% 86.9% 91.1% 87.3% 89.2% 78.9% 75.3% 77.0%

Table 5.4: AML comparative strategies and Word Embedding Matcher extending Lexical Matcher and

AutomaticMatchingwithout BackgroundOntologies, filtered by a Strict Selector. TheAutomaticMatch-

ing approaches use a 0.6 threshold while the Word Embedding Matcher and Selector use a 0.7 threshold.

The best recall in each test case is represented in bold while the best F-Measure is represented underlined.

In this test, there is an increase in recall for all test cases, but with less relevance than in the Lexical

Matcher extension. However, as in the previous results, there is a generalized precision reduction which
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is very significant in the FMA-SNOMED test case with a decrease of 13.9%. These losses show that

the word embedding models alone could be too general for the matching task, even when trained on the

specific domain.

5.1.2 RDF2Vec Embedding Matcher

Opposite to word models which can be trained on a more generalizable corpus, RDF2Vec models embed

graph entities and capture inherent properties only present inside that KG. Hence, the models require be-

ing trained on the very same KGs that are being tested. Also, RDF2Vec expects only one KG for training

and without any established relations between two distinct KGs, similarities between their entities are

practically non-existent. To mitigate this issue, we employed the Lexical Matcher to establish links be-

tween ontologies. Since Lexical Matcher achieves a generally high precision, we conjecture its mappings

can be used to establish base connections, which allows RDF2Vec to traverse between ontologies during

the random walk generation process over OWL equivalent class relations. To reduce training time and

memory consumption, the only entities trained in the model were classes that belonged to a neighbour-

hood of a maximum of two degrees of separation from any of the Lexical Matcher alignment classes. In

Figure 5.2 we present an example of a graph walk traversed in the described conditions.

Figure 5.2: Representation of a graph walk with a path depth of 8 (both edges and nodes count for depth)

between the FMA and NCI ontologies. The graph walk is portrayed by the largest bold arrows and the

lexical matcher links by dashed arrows.

The RDF2Vec Embedding Matcher execution pipeline presented in Figure 5.3 can be described by
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the following steps:

1. Running Lexical Matcher for the desired test case and outputting its alignment;

2. Creating a merged KG with equivalent class relations from Lexical Matcher alignment, resorting

to a library named Owlready2 [32];

3. Using AML, computing the group of classes to train with a maximum of two degrees of separation

from any of the Lexical Matcher alignment classes and writing them to a text file;

4. Training an RDF2vec model based on the merged KG and list of classes to train, using pyRDF2Vec

library [60], and writing the model to a text file;

5. Executing a Java class to load the trained model and extend a certain alignment, similarly to the

Word Embedding Matcher Java class, except that the cosine similarity is directly calculated inside

the class.

Figure 5.3: RDF2Vec Embedding Matcher Pipeline.

The pipeline was executed, training a model of randomwalks with a path depth of 8 and extending the

Lexical Matcher. Given the obtained similarities were in general very elevated, the Matcher threshold

was tested from 0.85 to 0.95 in intervals of 0.05. The produced results were unsatisfactory. Not only

recall only increased by a maximum of 1,7% with a 0.85 threshold in one of the test cases, but precision

declined notably. As the threshold increased, results got closer and closer to the original Lexical Matcher.

This led us to a more detailed analysis of the data that was training the RDF2Vec model.

By nature, RDF2Vec explores all RDF relations solely on the directed path of the graph. It also

includes the relations in the generated walks, which means that only paths leading to class ancestors were

taken into account during embeddings training. Besides that, there is plenty of additional information

like object and data properties that could be irrelevant information in the graph structure and diminish the
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quality of the model. Therefore, diverse strategies of random walks generation were explored to attempt

enhancing results. These strategies included extending RDF2Vec to enable walks generation on both

directed or directed and reverse paths of the graph, exploring only relations of subclass of and equivalent

class, including or excluding the relations URI from the paths (leaving only sequences of classes), and

removing paths which contained the same class twice (meaning that the path was cyclic and traversed

back to the same ontology due to equivalent class relations).

Nonetheless, the produced results of this study did not show significant changes. As information in

paths decreased, precision declined considerably and recall increased slightly. Despite all the variations of

the training data, the RDF2Vec strategy still obtained numerous false positives. This lead to investigating

the possibility of filtering RDF2Vec discovered mappings before the selection process, according to a

measure aside from graph embedding similarity. One intuitive way of filtering those mappings was to

recompute the similarity of the mappings pairs with a AML Rematcher. The String Matcher, one of the

Matchers that implement the Rematching feature inside AML, computes mapping similarity based on the

ISub string metric [58] between the Lexicon names of both entities. We considered the String Matcher

to be a beneficial tool for filtering RDF2Vec mappings without inserting refined matching algorithms in

the process that call into question the reliability of the results.
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The algorithm can be described as follows:

Algorithm 3: String Rematcher Algorithm

set thresh = matcher threshold;

set maps = the alignment with mappings to rematch;

set A = empty alignment;

foreach mapping in maps do

set sourceClass = getSourceClass(mapping);

set targetClass = getTargetClass(mapping);

set sourceNames = names(sourceClass);

set targetNames = names(targetClass);

set maxSim = 0;

foreach sourceName in sourceNames do

set weight = weight(sourceName, sourceClass);

foreach targetName in targetNames do

set sim = weight * weight(targetName, targetClass);

set sim = sim * stringSimilarity(sourceName, targetName);

if sim > maxSim then

set maxSim = sim;

end

end

end

if maxSim >= thresh then

add (sourceClass, targetClass, maxSim) to A;

end

end

With that in mind, we selected the walk generation alternative which had the highest recall, the di-

rected path walks only with subclass of and equivalent class relations, filtered its extension with the

String Rematcher and posteriorly filtered the remaining mappings using the Selector. Thresholds were

obtained empirically to optimize F-measure. This approach obtained much more viable results.

In Table 5.5, we present the initial RDF2Vec test, the subclass of and equivalent class relations alter-

native (referred as REM* in this and upcoming Tables), and the final approach with the String Rematcher.

In the initial strategy, there is a general slight increase in recall but a major decline in precision, especially

in the Anatomy test case. The REM* strategy only managed to add a minimal recall boost in two of the

three test cases, while decreasing precision drastically. In the Anatomy test case, precision dropped by

42.5% when compared with the Lexical Matcher. Even though, when coupled with String Rematcher
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filter, the matcher achieved higher recall and F-Measure than in the Lexical Matcher in every test case.

The String Rematcher succeeded not only in the filtering of false positives but also on the reassessment

of mappings which RDF2Vec did not consider as important.

Anatomy FMA -> NCI FMA -> SNOMED

Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Lexical Matcher 96.1% 69.7% 80.8% 97.0% 81.8% 88.7% 97.9% 62.2% 76.0%

LM + REM 79.0% 71.4% 75.0% 93.5% 82.4% 87.6% 84.6% 63.7% 72.7%

LM + REM* 53.6% 72.0% 61.4% 84.5% 82.5% 83.5% 78.9% 63.6% 70.4%

LM + REM * + SR 94.1% 80.2% 86.6% 95.8% 85.4% 90.3% 92.5% 68.0% 78.4%

Table 5.5: The three main RDF2Vec Embedding Matcher extension strategies, along with the Lexical

Matcher Baseline. The Lexical Matcher uses a 0.6 threshold, the two first RDF2Vec strategies use a

0.85 threshold for the Matchers and Selector, and the last strategy uses a 0.7 threshold for the RDF2Vec

Embedding Matcher and a 0.55 threshold for the String Rematcher and Selector. The best recall in each

test case is represented in bold while the best F-Measure is represented underlined.

5.1.3 Embedding Mixture Matcher

This Matcher constitutes an experiment on combining graph similarities and word similarities as a single

Secondary Matcher. In the graph component we would have the RDF2Vec Embedding Matcher and

from the other, the Word Embedding Matcher and the String Matcher. To extend an alignment, after

the exploration of the neighbourhood and creation of the candidate mappings list, both graph and word

matchers are executed at the same time to calculate a linear combination of similarities from both word

and graph components. Given a scalar a, the final similarity can be expressed by:

Sim = a ∗ graphSim+ (1− a) ∗ wordSim (5.1)

Then, mappings are filtered according to a final threshold of the Embedding Mixture Matcher. This

approach was tested for the two combinations of the graph and word components, a values in the interval

[0.3, 0.8] with increments of 0.1, and final similarity values between [0.7, 0.9] with increments of 0.05.

We used the PubMedmodel to feed theWord EmbeddingMatcher and the SubClass and EquivalentClass

Paths model to supply the RDF2Vec Embedding Matcher. In Table 5.6, we present the results of the best

parameter combination for each graph and word components mixture.

Both component mixtures managed to sustain proper precision while improving recall and F-Measure

compared to the Lexical Matcher. The String Matcher with RDF2Vec Embedding Matcher combination

was the most successful in both metrics. The word similarity seems to be most relevant than the graph

similarity in the final decision, but oddly it was more significant in the less beneficial alternative. This

demonstrates once again that the String Matcher and RDF2Vec Embedding Matcher are tools that go
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Anatomy FMA -> NCI FMA -> SNOMED

Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Lexical Matcher 96.1% 69.7% 80.8% 97.0% 81.8% 88.7% 97.9% 62.2% 76.0%

LM + EMM

(SM + REM*)

(a = 0.4, finalSim = 0.7)

95.0% 76.8% 85.0% 96.4% 84.8% 90.3% 95.0% 67.3% 78.8%

LM + EMM

(WEM + REM*)

(a = 0.3, finalSim = 0.85)

94.7% 74.7% 83.5% 95.0% 84.3% 89.3% 91.2% 66.9% 77.2%

Table 5.6: Embedding Mixture Matcher extending Lexical Matcher best results for the combination of

the RDF2Vec Embedding Matcher with the String Matcher and the Word Embedding Matcher, along

with the Lexical Matcher Baseline. The Selector threshold is equivalent to the final similarity threshold

of the Embedding Mixture Matcher. The best recall in each test case is represented in bold while the best

F-Measure is represented underlined.

along nicely. Besides, this type of strategy does not require training models with data outside the scope

of the ontologies to match. Despite not achieving the best results, the union of the Word Embedding

Matcher with the RDF2Vec Embedding Matcher was still advantageous. This unity managed to combine

two tools which alone were still distant from outperforming the Lexical Matcher F-Measure, and together

managed to surpass it in all test cases.

From all the Embeddings Similarity experiments, there are two primary strategies which are tied

in terms of F-Measure, achieving the best performance in two of three test cases. One of them is the

Lexical Matcher extended with RDF2Vec Embedding Matcher* and filtered with the String Rematcher.

The other one is the Lexical Matcher extended with Embedding Mixture Matcher with String Matcher

and RDF2Vec Embedding Matcher* as word and graph components respectively. Despite being tied

in F-Measure, the first strategy achieved the best recall in all test cases, which meets our initial goal of

discovering new mappings. Therefore, we consider this aspect determines it as the best plain embedding

similarity strategy.

5.2 Embeddings Models

The previous experiments on plain embedding similarities only addressed unsupervised matching ap-

proaches. It is also possible to employ embedding based supervised matching approaches but requires

circumventing the necessity of reference alignments to train supervised models, referred to in 1.2. To

tackle this challenge, we developed a simple extension of an existing supervised matching method, Deep

Align.
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5.2.1 Unsupervised Deep Align

As previously mentioned, the Deep Align framework suffers from the lack of training data inside the

biomedical domain. The framework uses supervised learning to retrofit word vectors to inscribe semantic

similarity into sentence embeddings, and unsupervised learning to train the DAE to discover misalign-

ments caused by embedding similarity based on relatedness instead of semantics. However, the only

manner this system works is by training the framework on one of the biomedical benchmarks to apply

the model on the others. One approach to solve this scalability problem is by producing training data

which contained an acceptable small proportion of errors. Any other ontology matching system could

produce training alignments. AML’s results in OAEI biomedical benchmarks, especially in precision,

make it a suitable candidate to create the required training data to feed Deep Align. This approach would

define an unsupervised version of Deep Align in the sense that the framework does not require data la-

belled by human experts. In return, the alignment produced by Deep Align could be used to extend AML

matching strategies.

To implement this approach, the first step was to transform all the matching required data for each test

case into Deep Align’s readable format. Namely, the entities main labels of both ontologies, reference

alignments and word embeddings of the vocabulary present in the previous documents. Secondly, AML

produced an alignment with one of its matching strategies and exported it to Deep Align’s readable format

as training data. Next, Deep Align’s pipeline was executed, and the resulting alignment was exported.

Lastly, AML imported the Deep Align’s alignment, added the mappings to its own alignment, and applied

a filter Selector.

This procedure was used to extend the Automatic Matching (without background knowledge) at first.

Furthermore, we wanted to experiment with this method on the classical extension process of an align-

ment. Therefore, we also tested the procedure on extending and the Lexical Matcher alignment by one

neighbourhood degree. This test was performed by writing into files the neighbour entities names from

the alignment to extend, instead of the whole entity list inside the ontologies. Additionally, we exper-

imented the Deep Align pipeline with and without the DAE to measure its influence on the extension

process. The results of these tests are presented in Table 5.7. We also display the original Deep Align

paper results separately in this table to analyze the contrast in performance. However, these results are not

directly comparable since Deep Align uses a supervised learning model, trained over reference alignment

mappings of a large test case.

The extension of both Automatic Matching and Lexical Matcher (with DAE) were able to increase

recall and F-Measure in two of the three test cases. The recall improvement was even more significant

on the extension of the Lexical Matcher, even though it only contained entities of one neighbourhood

degree from the base alignment. The considerable decline of precision in the Lexical Matcher extension

without the DAE show that this tool is very relevant in the discovery of false positives deriving from

relatedness of names. The original paper results are still superior with a considerable margin, which we

consider evident given the input this model was trained with. Using a reference alignment of a large and
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Anatomy FMA -> NCI FMA -> SNOMED

Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Lexical Matcher 96.1% 69.7% 80.8% 97.0% 81.8% 88.7% 97.9% 62.2% 76.0%

Automatic Matching 96.1% 83.6% 89.4% 96.8% 86.8% 91.5% 92.8% 74.0% 82.3%

AM + DA 94.4% 86.6% 90.3% 97.4% 83.7% 90.0% 90.8% 75.8% 82.7%

LM + DA

(one neighbourhood

degree)

97.6% 77.4% 86.3% 98.6% 79.5% 88.0% 97.0% 65.5% 78.2%

LM + DA

(one neighbourhood

degree,

w/o DAE)

84.3% 81.6% 82.9% 85.6% 81.1% 83.3% 85.6% 66.8% 75.0%

Deep Align

(Supervised)
96.8% 91.3% 94.0% 94.6% 89.2% 93.2% 93.1% 85.6% 89.2%

Table 5.7: Unsupervised Deep Align extension strategies, along with the Lexical Matcher, Automatic

Matching, and the original Deep Align paper results. The best recall in each test case is represented in

bold while the best F-Measure is represented underlined.

similar ontology matching test case is far more beneficial than training on an alignment of the same test

case with potential errors. Therefore, our results are not comparable to such an ungeneralizable approach.

Nevertheless, these experiments indicate that the Deep Align framework can be trained on data with a

certain extent of errors and still provide value to other ontology matching strategies.

5.3 Comparison with State of the Art

Concluding the experiments of Embedding Similarities and EmbeddingModels, we present the best strat-

egy of each approach in terms of F-Measure in Table 5.8. In two of the three test cases, the Embedding

Model alternative obtained a considerable advantage in terms of recall and F-Measure. Nonetheless, in

the FMA-NCI test case, the Embedding Similarity actually achieved the best performance in recall and

F-Measure. Regardless, precision between the two alternatives does not differ significantly. This demon-

strates that although tools like DAEs can be valuable, sometimes simpler alternatives can achieve similar

results to more complex models.

In the following Tables 5.9, 5.10, and 5.11 we present our best strategies in Embedding Similarity and

Embedding Models included in the performance tables of OAEI 2019 test cases of Anatomy, FMA-NCI

small fragments and FMA-SNOMED small fragments respectively. Our strategies always achieve a posi-

tion in the upper half of the tables. More in detail, a second and sixth places in Anatomy, a fourth and fifth

places in FMA-NCI, and a second and fifth places in FMA-SNOMED. Our approach always achieves

better results than other systems which do not use external ontologies/metathesauri as background knowl-
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Anatomy FMA -> NCI FMA -> SNOMED

Strategy Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Lexical Matcher 96.1% 69.7% 80.8% 97.0% 81.8% 88.7% 97.9% 62.2% 76.0%

Automatic Matching 96.1% 83.6% 89.4% 96.8% 86.8% 91.5% 92.8% 74.0% 82.3%

LM + REM* + SR 94.1% 80.2% 86.6% 95.8% 85.4% 90.3% 92.5% 68.0% 78.4%

AM + DA 94.4% 86.6% 90.3% 97.4% 83.7% 90.0% 90.8% 75.8% 82.7%

Table 5.8: The best Embedding Similarity and Embedding Model strategies, along with all comparative

strategies. The best recall in each test case is represented in bold while the best F-Measure is represented

underlined.

edge but it also exceeds some of the systems which use them. This is particularly interesting for the LM

+ REM* + SR strategy because it uses no external models. Even though the approach requires time and

computational resources to train an RDF2Vec model, it is more scalable than searching for appropriate

external models or background knowledge that suit particular domains.
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Anatomy

Matching System

Uses External

Ontologies/

Metathesauri?

Precision Recall F-Measure

AML Yes 95.0% 93.6% 94.3%

AM + DA No 94.4% 86.6% 90.3%

LogMapBio Yes 87.2% 92.5% 89.8%

POMAP++ Yes 91.9% 87.7% 89.7%

LogMap Yes 91.8% 84.6% 88.0%

LM + REM* + SR No 94.1% 80.2% 86.6%

SANOM No 88.8% 84.4% 86.5%

Lily Yes 87.3% 79.6% 83.3%

Wiktitionary Yes 96.8% 73.0% 83.2%

LogMapLite No 96.2% 72.8% 82.8%

ALIN No 97.4% 69.8% 81.3%

FCAMap-KG No 99.6% 63.1% 77.2%

StringEquiv No 99.7% 62.2% 76.6%

DOME No 99.6% 61.5% 76.0%

AGM No 15.2% 19.5% 17.1%

Table 5.9: OAEI 2019 Anatomy test case participant systems performance sorted in descending order by

F-Measure, along with the best Embedding Similarity and Embedding Models strategies highlighted in

yellow.
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FMA -> NCI

Matching System

Uses External

Ontologies/

Metathesauri?

Precision Recall F-Measure

AML Yes 95.8% 91.0% 93.3%

LogMap Yes 94.4% 89.7% 92.0%

LogMapBio Yes 91.9% 91.2% 91.5%

LM + REM* + SR No 95.8% 85.4% 90.3%

AM + DA No 97.4% 83.7% 90.0%

POMAP++ Yes 97.9% 81.4% 88.9%

LogMapLite No 96.7% 81.9% 88.7%

FCAMapKG No 96.7% 81.7% 88.6%

SANOM No 97.9% 80.3% 88.2%

DOME No 98.4% 76.6% 86.1%

Wiktionary Yes 99.1% 60.8% 75.4%

AGM No 49.5% 48.1% 48.8%

Table 5.10: OAEI 2019 FMA-NCI small fragments test case participant systems performance sorted

in descending order by F-Measure, along with the best Embedding Similarity and Embedding Models

strategies highlighted in yellow.
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FMA -> SNOMED

Matching System

Uses External

Ontologies/

Metathesauri?

Precision Recall F-Measure

AML Yes 92.3% 76.2% 83.5%

AM + DA No 90.8% 75.8% 82.7%

LogMapBio Yes 93.1% 70.3% 80.1%

LogMap Yes 94.7% 69.0% 79.8%

LM + REM* + SR No 92.5% 68.0% 78.4%

AGM No 46.3% 36.5% 40.8%

POMAP++ Yes 90.6% 26.0% 40.4%

FCAMapKG No 97.3% 22.2% 36.2%

LogMapLite No 96.8% 20.8% 34.2%

DOME No 98.8% 19.8% 33.0%

Wiktionary Yes 96.5% 17.0% 28.9%

Table 5.11: OAEI 2019 FMA-SNOMED small fragments test case participant systems performance

sorted in descending order by F-Measure, along with the best Embedding Similarity and Embedding

Models strategies highlighted in yellow.
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Chapter 6

Conclusions and Future Work

In this dissertation, we developed and evaluated several embedding based ontology matching approaches

to tackle the Biomedical KG matching task. Despite the development of sophisticated strategies in this

area, systems’ performance had plateaued for some years. The guiding hypothesis was that word embed-

dings based on external corpora and graph embeddings would be able to enrich KG matching approaches

by accessing novel information (in the case of corpus-based embeddings) or difficult to process infor-

mation (in the case of graph embeddings). In addition, this would also result in more generalizable KG

matching approaches, independent of reference alignments to either train supervised models or guide the

development of increasingly sophisticated approaches.

Experimented strategies ranged from simpler embedding similarities, based on word and graph em-

beddings, to more refined embeddingmodels which required quality training data to performwith distinc-

tion. The obtained results revealed that although the developed strategies did not perform better than state

of the art systems in existing benchmarks, the best strategies achieved very good performance. Moreover,

the graph embeddings approach does not rely on external knowledge, and was able to perform better than

any of the state of the art systems that also do not use external knowledge, and even some that do. This

fulfills the goal of developing strategies that are able to generalize to tasks and domains where external

knowledge is not available.

6.1 Future work

The most evident limitation of this work is the amount of resources needed to run the methodology. First

of all, there is the training of the embedding models. The training process requires a large amount of

time and memory. This was the principal motive to use pre-trained models when possible. Some of the

RDF2Vec models took more than three hours to train only entities in the neighbourhood of two degrees

from the base alignment, consuming more than 10 GBs of RAM. Training a graph embedding model

with the union of two whole ontologies would not be possible without powerful computational resources.
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Next, there is the matching process. Large biomedical ontology objects already occupy considerable

memory space during the matching process. Loading additional embedding models to apply embed-

ding strategies increases memory overhead. One of the small fragments task in the OAEI test cases, the

SNOMED-NCI, could not run in any of the strategies due to the lack of memory. Additionally, the Deep

Align framework pipeline employs a stable marriage algorithm which is rather inefficient per se and also

requires storing a similarity matrix between every combination of entities to match, expending even more

memory. Although the matching task is ideally supposed to be executed once per pair of ontologies to

match, the matching systems should at least spend a reasonable limit of resources, according to the cur-

rent costs of computational processing and memory. Developing more efficient algorithms to compute

graph embeddings would be a relevant direction to explore.

Another limitation regards the use of word embedding models. Pre-trained word2vec models are

based on single words, and their poor performance in the experiments may be due to the fact that a linear

combination of word vectors is a too shallow representation of biomedical entities. As mentioned in

2.3.1, one of the directions to explore is to include TF-IDF weights in the calculation of word embedding

cosine similarity. Even though AML excludes stop-words from the names of entities, words like bone

or cell have a reasonable frequency in an ontology and don’t portray the entity as much as other words.

Another line to address is training textual embeddings models on more specific corpora, rather than an

extensive collection of scientific articles, especially Paragraph Vector models which represent sentences

in a more meaningful way.

This work has shown that Neural Embeddings are a valuable technique to address the challenge of

biomedical KG matching. In particular, word embeddings approaches based on sophisticated models

such as DeepAlign can be used successfully even in cases where a reference alignment is not available.

Furthermore, graph embeddings approaches, independent of any external sources of knowledge, and

combined with simple stringmatching, produce competitive results to the best state of the art systems, and

are only surpassed by systems employing external knowledge. Potential avenues of future work include

not only addressing the aforementioned limitations, but also evaluating the developed approaches in other

domains.
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