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Abstract

Procedural generation is a method of algorithmically generating data instead of man-
ually doing so. There is an increasing opportunity for the use of procedural generation
techniques, mainly in the ever growing video-game and movie industries, due to the ne-
cessity of creating virtual content. Even though the manual creation of such content offers
an higher level of control, it is also usually a long process with the necessity of one or
more technical experts, making the possibility of automation for these processes some-
thing desirable.

When it comes to the video-game industry, replayability is a term used to assess a
video-game’s potential for continued play value after its first completion. Using proce-
dural generation it is possible for a game to offer very different experiences each time it
is played, potentially increasing the game time, which is something commonly wanted in
the industry. An example where this is implemented successfully is in the game Minecraft
[12]. The possibility to generate different worlds each time offers unique experiences to
each player, not only turning it into a more personal experience but also increasing the
level of replayability as well.

In the case of procedurally generating terrain in a virtual world we must take into
account not only its shape and height points but also the type of terrain being created.
Whether it be a beach or a mountain, the decision of what type of terrain to generate
depending on the context can be as important as its shape.

The intent of this dissertation is to develop a procedural generator of virtual worlds,
so the results of the application of a decision tree evolved through genetic programming
can be visualized. The decision to be done by the decision tree will be regarding the type
of terrain to be generated. To perform the genetic evolution a small set of decision trees
will be generated to be evolved simultaneously, with each generation the terrains resultant
being shown to the user, allowing them to perform a choice according to their own criteria
of which trees they wish to crossover for future generations.

Keywords: Procedural Generation, Virtual Worlds, Genetic Programming, Decision
Trees, Artificial Intelligence
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Resumo alargado

Geracdo procedimental é uma forma de gerar dados algoriticamente ao invés de o
fazer manualmente. Cada vez mais se verifica uma maior oportunidade para utilizacao de
técnicas de geracdo procedimental, principalmente nas industrias crescentes dos video-
jogos e dos filmes, devido a necessidade de criar conteddo virtual. Embora a criagdo
manual deste tipo de conteudo ofereca um maior nivel de controlo, é também um processo
geralmente demorado com a necessidade de um ou mais especialistas técnicos, tornando
a possibilidade de automatizacdo destes processos algo desejavel.

Para a industria dos video-jogos existe o conceito de “replayability”, isto €, o valor
que se pode obter em jogar um jogo mais do que uma vez. Utilizando geracdo proce-
dimental € possivel fazer com que alguns jogos oferecam experi€éncias muito diferentes
de cada vez que € iniciado o jogo, aumentando potencialmente o tempo de jogo, algo
muito procurado na indudstria. Um exemplo onde isto € implementado com sucesso € no
jogo Minecraft [12]], onde a possibilidade de gerar mundos diferentes permite oferecer
experiéncias unicas a cada utilizador, ndo s6 tornando a experiéncia mais pessoal como
aumentando o nivel de "replayability”.

No caso da geragdo procedimental dos terrenos de um mundo devemos ter em conta
nao apenas a sua forma e pontos de elevacdo, mas também o tipo de terreno a ser criado.
Quer seja uma praia ou uma montanha, dependendo do contexto a decisdo do tipo de
terreno a gerar pode ser tdo ou mais importante que o formato do terreno gerado em si.

Com esta dissertacdo pretende-se desenvolver um gerador procedimental para a criagdo
de mundos virtuais, de modo a observar os resultados da aplicacdo de uma drvore de de-
cisdo evoluida com programacao genética. A decisdo a ser feita pela arvore de decisdao
serd no que toca ao tipo de terreno a ser gerado. Para realizar a evolugdo genética serd
gerado um pequeno conjunto de arvores de decisdo a serem evoluidas em simultaneo,
sendo que em cada geracdo os terrenos resultantes serdo exibidos ao utilizador, permi-
tindo o mesmo efetuar uma escolha segundo os seus proprios critérios de quais as arvores
pretende que sejam cruzadas para as geracoes seguintes.

A abordagem escolhida nesta dissertacdo consiste de diferentes etapas. Numa pri-
meira etapa foi desenvolvido um gerador de terreno procedimental, com a representacao
de terreno escolhida sendo a de uma grelha de voxeis. De modo a poder representar al-
guma variedade em termos de caracteristicas de terreno foi escolhido um pequeno nimero



de diferentes tipos de blocos para os voxeis, optando por blocos que representam: terra,
relva, areia, neve, pedra e dgua. A geragao procedimental foi feita através de uma fungao
de ruido, sendo optada a fun¢do de ruido melhorada de Ken Perlin [24] devido aos seus
resultados atraentes e bom desempenho. Nesta altura do desenvolvimento os tipos de
blocos de cada voxel eram simplesmente atribuidos de forma aleatoria.

De seguida, foi criada uma Interface do Utilizador de modo a permitir uma melhor
visualizagdo de multiplas instancias de terrenos. A fun¢do de ruido foi também alterada
de forma a permitir a utilizacio de sementes fixas, para que as multiplas instancias sejam
todas geradas com estruturas de terreno idénticas, facilitando a comparacao entre resulta-
dos. Foi também durante esta etapa que foram implementadas arvores de decisdo com o
proposito de determinarem os tipos de bloco a serem escolhidos, com dois tipos de nos
de decisido diferentes, um realizando decisoes de acordo com a altura de um certo voxel e
o outro de acordo com o nimero de voxéis vizinhos adjacentes de um certo tipo de bloco,
bem como nés folha que ditam o tipo de bloco a ser atribuido.

Finalmente a Interface de Usudrio previamente criada foi expandida, permitindo utili-
zadores escolherem um ou dois terrenos para evoluir. A evolucao genética entre as arvores
de decisao escolhidas foi entdo implementada. Quando dois terrenos sao selecionados a
geragdo seguinte consiste dos descendentes resultantes da recombinacao dos terrenos em
questdo, sendo depois aplicadas as fun¢des de mutagdo a cada um. Caso contrério, e
apenas um terreno seja selecionado, a geracao seguinte consistird de clones da arvore de
decisdo respetiva ao terreno, sendo apenas aplicadas depois as fun¢des de mutacdo a cada
um dos clones. Foram implementadas trés funcdes de mutagdo: a primeira, “mutacao
de valor”, tem uma chance de alterar os diferentes valores dentro de um nd na arvore;
a segunda, “mutac¢do de funcdo”, tem uma chance de alterar o tipo de fun¢do de um né
de decisdao, bem como os seus valores, e nao pode ser aplicada a um né folha; e, por
ultimo, a “muta¢do de nova fun¢@o”tem uma chance de mutar um né folha num né de
decisdo aleatdrio, gerando também dois novos nds folha descendentes dele proprio. Foi
também adicionada uma interface que permite a visualizacdo das drvores de decisdo, na
esperanga de que a mesma pudesse ser de uso para utilizadores possuirem uma melhor
compreensao de como cada instancia de terreno foi gerada, no entanto a falta de poda das
arvores de decisdo fez com que esta adicao nao fosse tao util como inicialmente planeado
visto a legibilidade reduzir rdpidamente a medida que as arvores de decisdo evoluem para
tamanhos significativos.

Apo6s a ferramenta ser terminada, potenciais utilizadores foram solicitados a ajudar
testar a mesma devido a elevada subjetividade possivel quando se evolui e avalia um
terreno. Foi pedido aos utilizadores para tentarem alcangar quatro terrenos objetivos utili-
zando o programa, sem especificar um resultado final de modo a permitir que 0s mesmos
evoluam os terrenos de uma forma tao imparcial quanto possivel. Apds a realizagdo das
quatro tarefas os utilizadores preencheram um questiondrio acerca das suas experiéncias
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com a ferramenta. Os resultados obtidos destas sessdes de teste permitiram-nos chegar
a um melhor entendimento tanto dos pontos fortes do trabalho como dos fracos. Para
comegar, quando tentamos evoluir um terreno através das decisdes de um utilizador, € im-
portante que o utilizador em questdo possua uma imagem clara do seu objetivo ao longo
das geragdes de evolucdo, de modo a permitir que as arvores de decisao convergem ade-
quadamente. Se o utilizador fizer frequentemente escolhas inconsistentes ao seu objetivo
pode acabar por abrandar ou até mesmo tornando impossivel para o algoritmo alcancar o
objetivo de terreno inicial.

Foi também possivel recolher que alguns utilizadores sentiram-se limitados pela fer-
ramenta e que provavelmente seria mais facil criar um terreno de raiz. Os utilizadores
também sentiram, no entanto, que as suas escolhas tiveram impacto nas alteracdes a serem
feitas no terreno, € que ndo era um processo demorado até algum progresso ser aparente.
Estes resultados levaram-nos a crer que, embora exista espago para melhorias, utilizar
algoritmos evoluciondrios para evoluir arvores de decisdo consegue ser uma forma vidvel
de gerar mundos virtuais de forma procedimental.

Existem alguns aspetos deste trabalho que poderiam ser de interesse aprofundar no
futuro. Para comecar, o visualizador de arvores de decisdo de momento ndo possui muita
utilidade devido ao qudo rapido se torna ilegivel para arvores de maiores proporgoes.
Poderiam ser implementadas diferentes técnicas de poda de arvores de decisdo de forma a
amenizar o problema, limpando muita da redundancia atualmente presente em arvores de
decis@o maiores e, por consequéncia, melhorando o desempenho. Com isto seria também
mais prética a implementacdo de funcionalidades mais complexas no visualizador, tal
como, por exemplo, a possibilidade de os utilizadores interagirem com a estrutura de uma
arvore de decisdo e fazerem ajustos manuais diretamente conforme acharem adequado.

Devido a natureza subjetiva da implementac¢do escolhida foi dificil de comparar dife-
rentes taxas de mutacdo e algoritmos de recombinagdo em termos de resultados objetivos.
Isto € uma area que também poderia ser aprofundada, utilizando por exemplo uma funcdo
de aptidao que permita avaliar os diferentes terrenos de forma algoritmica e portanto au-
tomatica, o que permitiria uma melhor comparacao entre os resultados. As configuragdes
encontradas que fornecam os melhores resultados poderiam depois entdo ser utilizadas

com o algoritmo original.

Palavras-chave: Geracao Procedimental, Mundos Virtuais, Programacdo Genética,
Arvores de Decisao, Inteligéncia Artificial
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Chapter 1

Introduction

1.1 Motivation

Both the video-game and movie industries have been ever growing the last couple of
years. According to data gathered by analyst Pelham Smithers [14], the video game in-
dustry’s global revenue reached $138.5 billion in 2018, roughly $100 billion more than
20 years before in 1998 ($36 billion). As for the movie industry, according to a research
done by the Motion Picture Association of America (MPAA) [23] the global entertain-
ment market reached $96.8 billion in 2018, which is still a very noticeable amount. Rev-
enue numbers alone don’t allow us to determine the profits of these industries, but it is
easy to see the impact they have left in the economy and how companies might want to
try and cash in, and with the increasing level of quality standards for both films and video
games, producers as well as developers could benefit from reducing costs wherever they
can.

One such way of reducing cost is through the use of procedurally generated content.
Procedural generation is a method of algorithmically generating data instead of manually
doing so, which can help relieve the burden of some tasks in both film and video game
development. Usually long processes with the necessity of one or more technical experts,
such as generating a large virtual world, can have a hefty reduction of development times
with the aid of procedural generation, be it real-time or otherwise. While procedural gen-
eration is undoubtedly more predominant in video games, it is not unheard of being used
in other mediums. MASSIVE [10] is a procedural generation software originally devel-
oped for use in Peter Jackson’s The Lord Of The Rings film trilogy [16], later bringing this
technology to both films and television, becoming the leading software for crowd related
visual effects and autonomous character animation. Allowing a team to procedurally gen-
erate several hundreds of animated characters to a scene instead of manually doing so,
MASSIVE is a great example of how procedural generation can save a developer both
time and money. When it comes to video games, however, there have been records of
almost every aspect of a game being procedurally generated, even before graphically ori-
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Chapter 1. Introduction 2

ented video games, such as the genre-defining Rogue [15], a dungeon crawler taking place
on a square grid represented in ASCII characters. Rogue procedurally generates the dun-
geon levels, monster encounters and treasure on every playthrough, greatly increasing its
replayability as each playthrough offers a unique experience each time the player decides
to tackle it. The more recent indie video game Dwarf Fortress [4] takes it a step further
and procedurally generates a whole ASCII world, dungeons, characters, back stories, civ-
ilizations, even legends and artifacts, simulating 250 years of the world’s history before
allowing the player to play. And while the Roguelike genre is definitely not to be under-
mined, and is clearly one of the biggest inspirations for procedural content generation in
games, it would be remiss not to mention the single best-selling video game of all time,
Minecraft [12]. Minecraft was officially released in 2011 and quickly became one of the
most influential video games in the industry, with its fully procedurally generated and vir-
tually infinite 3D world, as well as the ability to “mine” blocks and place them wherever
the player so desires, the game offers a unique experience for everyone, and even multiple
unique experiences for each person every time they choose to create a new world.
Besides being useful for reducing costs, replayability is also a big factor when it comes
to choosing whether or not to use procedurally generated content. Replayability is a term
used to assess a video-game’s potential for continued play value after its first completion.
While by definition procedurally generated content isn’t a necessity for a game to have
high replayability, having content such as the world, the enemies or even the treasure
be procedurally generated each time you play inherently increases the replay value as it
makes each run feel more unique to the player. Replayability increases a game’s longevity,
and having procedurally generated levels is also a good way for a game to have virtually
infinite content, as having a large number of set levels is not only time and resource
consuming to the game developers, but the player will most likely eventually defeat the
levels and be left with no new content to play, whilst with procedurally generated levels
one can theoretically play a virtually infinite amount of levels, though how repetitive they
feel depends on how complex the various degrees of procedurally generated content are

implemented.

1.2 Goals

While there seems to be a lot of focus on the generation of the terrain per se, there
isn’t as much attention given to the decision of what type of terrain is generated. The main
goal of this dissertation is to explore the possibility of using evolutionary algorithms to
evolve a decision tree in order to procedurally generate virtual worlds without the need of
a technical expert. For that purpose, the following steps were taken:

e First a procedural generator of voxel worlds (similar to those of the Minecraft video
game) was developed in Unity[17]. These worlds were to be pseudorandom, each
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1.3

one always returning the same seed, and subdivided by chunks, in order for the
generator to be more efficient and prevent constantly loading and unloading singular
blocks when they get in or out of range. This first iteration of the world generator
would not include a decision tree for deciding the type of terrain to be generated;

Afterwards, a User Interface was be created to allow an easier visualization of mul-
tiple procedurally generated worlds simultaneously. These generated worlds all had
random decision trees assigned for determining the type of terrain to be generated,
but they would all be generated from the same seed, for better comparison between
the different results;

The third and final step was to apply genetic evolution to the previously generated
decision trees. For this purpose, the previously developed User Interface was then
to be made interactable, allowing a user to select their preferred decision trees as
the ones who should crossover for the next evolutionary generation.

Structure of the document

Aside from this introductory chapter, this document is organised as follows:

Chapter 2 - detailed overview on the state of the art regarding procedural generation,
decision trees and evolutionary algorithms.

Chapter 3 - description of the problem and methodologies used, as well as hurdles

found and how they were overcome.
Chapter 4 - discussion and analysis of the results found.

Chapter 5 - final thoughts on the work, as well as future work that could be done in

order to improve it.






Chapter 2

State of the art

2.1 Procedural Landscape Generation

Procedural generation has been a topic in the field for four decades now [26], with
new procedural methods being regularly introduced ranging from offline procedural gen-
eration being used as a form of compression in games such as Elite [/] and Exile [8]], to
procedurally generating thousands of planets on the fly as can be seen in No Man’s Sky
[13]. While this project’s main focus is that of the usage of procedural generation for
virtual world development, it was thought relevant to elaborate on some of the common
problems found in the field, and relevant methods introduced to surpass them.

2.1.1 Pseudorandom Numbers

Randomness is a key factor in procedural generation as it is what allows content to
have some degree of variety each time it is generated. Ian Millington dedicates a section
on this subject in their book Al for Games [22]. Generating true random numbers would
require specialized hardware that can sample stochastic physical phenomena, so instead

most of the time the following two random categories are used:

e Cryptographic random numbers - while not truly random, are unrepeatable and un-
predictable enough to serve the purpose and can be used as the basis of crypto-
graphic software;

e Pseudorandom numbers - these are the ones usually returned by the random func-
tions provided. They are pseudorandom because they are based on a seed, and as
such for a given seed they will always return the same value.

While most times randomness is something desirable, while working with procedural
content generation it might be preferable to be able to repeat the generated values. If
testing between different terrain generation algorithms, for example, utilizing the same
seed for both testing scenarios will provide with a much more insightful observation on

5
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the differences between the algorithms. A seed based random number generator also
allows users to save their favorite seeds for later usage, which might be beneficial in some
cases.

Randomly generated values are very commonly calculated from the seconds in a com-
puter system’s clock. This makes it so that every time one generates a random value the
seed is different, and as such the value returned should be different most of the time.
However, there exist cases in which being able to generate the same result more than once
would be advantageous. If random seed is generated instead, and then that seed is used
from then onwards the generated content will be the same every time.

A single random value is not usually enough, however, and calling the number gen-
erator more than once is desirable. Each time a new random value is called, the seed is
updated in a deterministic way, so the sequences of numbers generated beginning from a
particular seed will always be the same. The tricky part to producing the repeatability, is
making sure that the same number of calls are made each time. If using the same seed
for procedurally generating content is desirable, the content is expected to be exactly the
same every time, regardless of the actions taken in between. This can be accomplished
by using several random number generators, with only a master generator being given the
game seed, and all others being created in a specific order. This way actions that require
calling a random number from a generator will not interfere with the other generators,
maintaining the sequence for each one.

2.1.2 Terrain Representation

Before exploring the options of how to procedurally generate landscape one must first
make the fundamental decision of how to represent the terrains themselves. The choice
of data representation will determine not only the types of landscape that are possible
to represent, it will also impact the tools available to generate said landscape. When
deciding on what representation to choose one must take into account different factors
such as how precise does the terrain need to be or if it is relevant to be able to represent
terrain structures in which multiple surfaces can have the same horizontal coordinates
such as overhangs and caves.

Ryan Saunders identifies some of the most relevant alternatives in their article Ter-
rainosaurus: realistic terrain synthesis using genetic algorithms [19]]:

Height-Maps

The most common terrain representation seems to be the height-maps, also sometimes
known as height fields. Height-maps are two dimensional grids of surface features, typ-
ically associated with elevation, although they may contain other layers of data, such as
surface texture and water flow.
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One major advantage of height-maps is that their regular structure makes it easier to
optimize operations such as rendering, collision-detection and path-finding. Even col-
lision detection, which is usually a computationally expensive operation, can be done
cheaply on height-maps seeing how given an (X, y) position only a few surrounding trian-
gles need to be checked for collision.

Another advantage is the significant quantity of real-world terrain data available in
height-map form, allowing an easier time working with real-world terrain and usage of
simulation based approaches.

The greatest disadvantage of height-maps is that they fail the vertical line test, that is,
due to how the elevation is a function of an (X, y) pair there must be exactly one elevation
value per pair of coordinates, denying the possibility of more complex terrain structures
such as overhangs and caves, in which multiple surfaces can have the same horizontal
coordinates. How much of a disadvantage this proves to be depends on the use case,
seeing how such structures are uncommon in a realistic environment and the exceptions
can be treated separately (assuming an offline procedural generation).

A second disadvantage would be their finite, uniform resolutions. Because it is finite
this means that there is an upper limit to how detailed the height map representation
can be, which might result in an unnatural feel when the terrain is viewed from a too
close proximity. Not only that, but since the resolutions are also uniform, height maps
cannot smoothly handle areas of finer detail. If the resolution is chosen to match the
average scale of features in the terrain, that means finer detailed areas will be simplified
or removed. Alternatively, if the resolution is chosen to be high enough to capture those
finer details, areas of the terrain which aren’t as complex will be captured at the same
resolution, resulting in an undesirable waste of both space and computational time.

Voxel Grids

Voxel grids are very similar to height maps, except they are three-dimensional in-
stead. This means that instead of representing an altitude as a two pair coordinate it is
represented as the third coordinate of a point in the grid instead. This three-dimensional
grid consists of voxels, in which, in the simplest case, each voxel can individually be filled
or not.

The main clear advantage of voxel grids over height maps is that they are not con-
strained by the vertical line test, allowing multiple surfaces to have the same horizontal
coordinates and thus being able to represent more complex structures such as caves and
overhangs.

The trade-off for this, however, is that operations in voxel grids are significantly more
computationally expensive. They still suffer from the same disadvantage of height maps,
having finite and uniform resolutions, however with a whole new dimension to be taken
into account a lot more points have to be taken into account as well, specially considering
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how common it is for there to be large chunks of the grid either completely empty (in
the case of air) or buried deep underground. These wasteful calculations can be some-
what optimized through the use of spatial subdivision techniques, but to what degree of
usefulness depends on the scenario.

Meshes

It is worth mentioning non-uniform meshes as a possible terrain representation given
that it is often assumed as the default representation. While modelling such meshes is
dependant on the skills of artists who are able to do so manually, the level of control it
allows is incomparable to the other possible representations.

Unlike the previous two representations, meshes naturally support varying levels of
detail, allowing different numbers of vertices for finer details in the terrain while still
maintaining relatively few vertices in flat areas. This allows meshes to represent complex
terrain structures far more efficiently than regular grid methods, as it does not require a
globally high resolution to achieve them.

The difficulty with using meshes for terrain representation comes from the fact that,
as far as this project’s research found, there exists no clear way to generate them automat-
ically, being dependant on technical experts to manually generate said structures.

Continuous Functions

While not as commonly used in practice, according to Saunders, there can also exist
terrain presentations based on continuous functions such as analytic and fractal functions.

Both kinds of continuous functions have the advantage of not losing resolution while
being viewable at any scale, unlike grid-based representations. Fractals in particular offer
the unique advantage of continuing to produce new details at progressively finer scales,
which in turn means that a fractal terrain can have as much detail as the display system
can render.

The main problem with this kind of representation is how difficult it becomes to model
terrain with. If a single, global function is used, it is difficult to know how to modify the
function in order to achieve a certain local effect, giving a fairly low level of control in
comparison to other representations.

2.1.3 Terrain Generation Approaches

Even though there does not seem to exist a great variety of papers regarding terrain
generation, the methods that have been proposed seem to generally fall into a few broad
categories. The aforementioned Terrainosaurus: realistic terrain synthesis using genetic
algorithms [19] article sorts these methods in 4 different categories:
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GIS Based

While not necessarily a way of generating terrain, Geographical Information System
(GIS) data is a simple but effective way of getting realistic looking terrain models. A lot of
GIS data providers exist [1] for different parts of the world in different resolutions, being
ideal when realism and accurate depiction of real life locations are the main concern.

What GIS data offers in realism and ease of use however, it lacks in variety and in-
novation. Since only real-world locations exist for this kind of data, it makes finding the
ideal terrain for a project very difficult, if not impossible, being limited to what terrains
the data sets have to offer. This may make this approach unappealing to those searching
for a high degree of possible customization in their terrains.

Sculpting Based

The most common type of terrain generation is the sculpting of terrains and its features
through the use of 3D modelling software (such as Maya [11]], 3DSMax [2] or Blender
[S]) or specialized level editors for particular games (for example, Unreal Tournament
[18]). The big advantage of sculpting methods is the creative freedom that its tools offer
with the ability to shape every node in the models, the only limitations being the artist’s
imagination, their skill and their effort.

Of course this strength is also the method’s biggest disadvantage, as achieving great
results through sculpting is heavily dependant on time and effort from the artist’s part, not
to mention the need of a technical expert in the first place. In a world where both games
and films are getting bigger and bigger in scale, so are the costs for manually producing
this kind of content.

Simulation Based

Simulation based generation methods consist of simulating the effect of the physical
processes we see in the real-world, just as erosion and faults, and evolving the terrain
with its applications over time. These methods have the capability of generating highly
realistic terrain results to the extent that they accurately model the corresponding physical
processes, while also being an automated process with fairly low input from the user.

One drawback of such methods is how computationally expensive they are, requiring
a lot of processing time in order to produce realistic results; and as usual, as the resolution
of the simulation increases, so does the time required to run it. Another issue is how little
control these methods offer. The only real inputs that the user has control over are the
initial terrain conditions and which physical processes are to be applied, which can make
achieving specific terrain results complicated, if not sometimes impossible.
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Procedural Based

The term procedural generation refers to the algorithmic generation of content instead
of doing so manually. When it comes to terrain generation, simulation based generation
could be described as such as well, but besides the fact that the latter requires a start-
ing environment, there’s also a difference in methodology as most procedural generation
methods don’t attempt to simulate physical processes. Instead, methods for procedurally
generating terrain commonly rely on random number generation and the cases in which
they are found to have a desired look.

Some of the most popular procedural generation techniques such as the midpoint dis-
placement method and Perlin Noise are fractal in nature. That is, these techniques exhibit
the fractal property of self-similarity at different scales, and generally involve randomly
perturbing the height values of the terrain by increasingly smaller amounts at increasingly
finer scales.

The main advantage of procedural generation is how it can generate interesting results
with little to no human input. Terrain data can be generated from scratch, unlike in simu-
lation methods, and because of the randomness some very interesting and unique results
can be achieved that wouldn’t be normally possible simulating the physical processes of
the real world. However, this disconnection from realism can also be a big drawback in
certain cases. Procedural methods only happen to coincidentally resemble real-world ter-
rain, as achieving a desired effect of the terrain is mostly a trial and error experience, and
most methods end up having a limited range of terrain types they can generate.

Perlin noise is a nowadays common approach put forward by Ken Perlin in 1985, for
which they won an Oscar in 1997 for technical achievement. As Millington explains in
their book [22], Perlin noise begins with a grid coarser than the target terrain (if a desired
landscape has 1024 x 1024 cells, one might create Perlin noise on a 64 x 64 grid). At each
location of the smaller grid a random gradient is created, which will represent the slope
of the noise in three dimensions. For each location in the original grid, the gradient is
interpolated from the four nearest locations on the small grid. This interpolated gradient
is then used to calculate the height, which can then be remapped into a desired range.

The size of the small grid will determine how much detail is in the final noise and,
as such, it is common to combine Perlin noise at successive doublings of scale. This
approach is the one that the popular game Minecraft[[12]] uses, and the one used for pro-

cedurally generating terrain in this project as well.

2.2 Decision Making

When someone thinks of Artificial Intelligence, one of the first thoughts that may
come to mind is that of a computer making a decision between multiple choices. While
the execution of the choice itself is often taken for granted, in reality the decision making
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is more often than not a relatively simple part of the Al

Decision making can be broken down into the processing of a set of information that is
used to generate an action for carrying out. In a game this set of information can be further
broken down into external and internal knowledge, with the first being the information that
a character knows about its surrounding environment and game state, and the latter being
the information known about the character’s own state or thought processes. Millington
talks about this in more detail in their book [22].

While lately there have been more sophisticated tools for decision making, this section
will cover three of the most often considered technologies since the appearance of the
field.

2.2.1 Decision Trees

Decision trees are one of the simplest decision making techniques, which contribute
to their popularity and use. They have the advantage of being modular and easy to create,
and can be used in a wide array of situations, whether it be for developing a strategic Al,
multiple choice conversations or even animation control.

A decision tree consists of connected nodes, each node representing either a decision
to be made or an action to take, in case the node has no children (a leaf). Starting from
the root, each decision leads to either another decision or an action to take. Decisions
in the tree should be simple and check only a single value, but boolean logic can still be
performed through proper node placement in the tree. To perform an AND operation, for
example, two condition nodes should be placed in a series on the tree.

A good advantage of the decision tree is how efficient it is in narrowing the search
space when performing a search. Since the decisions are built into a tree, the number of
verifications needed for a given task are usually much smaller than the total number of
nodes. That is because the number of decisions to be made for a given action can only be
as big as the biggest branch of the tree.

While it is more common to see binary decision trees, the possibility for a given
decision to be made between more than two values exists, but ultimately it ends up being
mostly a matter of preference. The underlying code is fundamentally the same, however
some if not most of the common learning algorithms that work with decision trees require
them to be binary.

2.2.2 State Machines

It is common for characters in a game to behave a certain way, until some event causes
that behaviour to change indefinitely. We can cover this type of artificial intelligence with
decision trees, however in most cases it is simpler to use state machines, as they were
designed for this purpose and thus come with some added benefits.
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With a state machine a character is always on a given state, with specific actions and
behaviours associated with each different state. Assuming it remains in the same state,
the character’s behaviour shouldn’t change. States are connected through transitions, each
leading from a given state to another and depending on conditions. If the conditions of
a certain transition are met, and the character is currently in the state from which the
transition comes, then the character changes to the target state. This means that, unlike
most decision trees, not every action can be reached at any time, as only transitions from
the current state are considered.

Sometimes, however, there exist so called alarm behaviours™ that need to be called
regardless of which state the machine is currently in. A good example of this is that of
cleaning robots. A robot with states for cleaning, searching or going back to its power
station. Naturally, if its batteries start to run low, it should want to return "home” regard-
less of his current behaviour. Similar transactions can be included in both states for this
example, but with a more complex state machine this could quickly turn inefficient. Not
only that, but in the case of multiple alarm behaviours, the question of which one should
take priority becomes apparent. Instead of combining all the logic into a single state ma-
chine, it can be separated into several state machines on an hierarchy. For the previous
example, a state machine of the cleaning robot could be going back to recharge, while
the other is a state machine including the cleaning, searching and going back states. This
allows a better structuration of the artificial intelligence.

2.2.3 Rule-Based Systems

Rule-based systems used to be some of the most popularly used artificial intelligence
techniques before the “deep learning” era, and even to date they have been used on and
off in video games despite being known as inefficient and difficult to implement. The big
advantage of these systems is their ability to justify their reasoning, since the rules are
explicitly spelt out.

Rule-based systems have a common structure consisting of two parts: a database con-
taining the knowledge pertaining to the artificial intelligence and a set of if-then rules.
Rules will activate based on if the database contains information that allows the "if”” con-
dition to be met. In the case of more than one rule being activated at the same time, some
systems also have an arbiter to decide in which order they trigger, although most sim-
ply consider the first rule of the set that was activated. Following are some of the more
common rule arbitration approaches, as described by Ian Millington in their book [22]:

e First Applicable - the rules are provided in a fixed order, and the first rule in the list
to trigger gets to activate. This makes it so that earlier rules have priority over the
later;

e Least Recently Used - a linked list holds all the rules in the system in a fixed order,
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just like in First Applicable. When a rule gets to activate, however, it gets removed
from its position and attached at the end of the list, allowing the system to prioritize
rules who haven’t been activated recently. This rule prevents looping by making
sure all rules have an opportunity to activate;

e Random Rule - if multiple rules are triggered, one is randomly selected to activate.
Whereas the previous algorithms stopped at the first rule found who triggered, this
one has to go through the full list of rules to properly check which ones triggered
and choose one, being less efficient;

e Most Specific Conditions - often times the more complex the conditions of a rule
the more likely it is to be specialized for the current situation. When multiple rules
trigger, this algorithm chooses the one with the most specificity to activate. The
level of specificity of a rule depends, but usually the number of clauses is a good
measure when rules are expressed as Boolean combined clauses;

e Dynamic Priority Arbitration - identical to the First Applicable algorithm, but the
order of the rules is changed according to their current priority. Sometimes it may
make sense for some rules to lose their priority when in comparison for others, for
example, in a First Person Shooter game if the character has full health it makes
sense for his priority to use an health pack to be lower in comparison to shooting an
enemy. An alternative implementation would be for the algorithm to go through the
set of rules, returning all that trigger, and activating the one with the current highest

priority (instead of constantly updating every rule’s priority).

While rule-based systems can support fairly advanced Al, its major weakness is the dif-
ficulty of writing good rule sets. When compared to state machines and decision trees,
which are easy to expose in a graphical editor, rule-based systems tend to be less fre-
quently used, despite their power.

2.3 Evolutionary Algorithms

Evolutionary algorithms use mechanisms inspired by biological evolution to attempt
global optimization of a given problem. Between such mechanisms are examples such
as crossover, mutation, recombination and selection, with candidate solutions playing the
role of individuals in an evolving population. These individuals are evaluated by a fitness
function which determines how the evolution of the population as a whole should proceed.

There have been multiple evolutionary algorithm approaches, most differing in ge-
netic representation, with some of the most commonly researched ones being genetic
algorithms and an extension of genetic algorithms, genetic programming. Michael Affen-
zeller, Stephan Winkler, Stefan Wagner, and Andreas Beham wrote a very detailed article
[20] about these two approaches, summarized below.
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2.3.1 Genetic Algorithms

Genetic algorithms are iterative procedures which operate on a population of indi-
viduals of usually constant size. What specifically makes an individual depends on the
problem at hand, but each individual represents a solution to the problem usually in the
form of a fixed-size binary string.

At the start of the algorithm an initial population of individuals is generated either
randomly or heuristically. Each individual presents a solution to the problem, and to
evaluate how good of a solution each one is all individuals are fitted against a fitness
function particular to the problem.

During each iteration, called a generation, the fitness of the individuals of the current
population is measured. In order to form a new population for the next generation, indi-
viduals are selected according to their fitness (the better the fitness the better the chance
of being selected) and crossover genetic operations are performed between pairs of the se-
lected individuals. These pairs, called parents, generate one (or two, in some implementa-
tions) new individual from them, called the offspring. Depending on the implementation,
sometimes only the offspring individuals make it to the next generation, sometimes both
offspring and parents do and some even randomly generate new individuals to fill out the
population size. Regardless of the method chosen, what’s important is that each gener-
ation has a population of constant size for evaluation and that the genes of the better fit
individuals are carried on.

The crossover genetic operation works by combining parts from both parents, with the
results being the offspring. In its simplest form, the operator randomly selects a crossover
point in the binary string and swaps substrings between both parents.

The second genetic operator to be applied is the mutation operation. In the case of
binary string, a random mutation chance is applied to each bit which, when it succeeds,
swaps the bit at the current position (if the bit was 1 it become 0, and vice-versa). This
helps prevent premature convergence by randomly sampling new points in the search
space.

As genetic algorithms are stochaustic by nature, convergence isn’t a guarantee. There-
fore, there is usually a trigger for a termination of the algorithm, which could be a maxi-
mum number of generations, finding an acceptable solution or more sophisticated criteria
that indicates that continuing the algorithm will probably not yield better results.

2.3.2 Genetic Programming

While genetic algorithms are able to produce high quality results for a variety of prob-
lems, by themselves they are not able to handle the task of getting a computer to solve
problems without explicitly programming it to do so. Genetic programming is an exten-
sion of genetic algorithms, working similarly on populations of candidate solutions for
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a given problem and being based on the Darwinian principles of survival of the fittest.
Genetic programming provides a way to successfully conduct the search in the space of
computer programs. This is of great value, as virtually all problems in artificial intel-
ligence, machine learning, adaptive systems and automated learning can be recast as a
search for computer programs.

Just like genetic algorithm-based problem solving processes, one of the key issues in
genetic programming is the representation of problem instances and candidate solutions.
While conventional genetic algorithms can solve a huge amount of problems with the
use of fixed-length strings, the most natural representation for a solution in the context
of genetic programming is that of an hierarchical computer program of variable size,
most commonly represented by a point-labeled structure tree. In these trees, all nodes
are either functions or leaf nodes. Leaf nodes are evaluated directly, that is, their return
values can be calculated and returned immediately, while all functions have child nodes
which are evaluated before using the children’s calculated return values as inputs for the
parent’s evaluation. Evaluation of the functions is therefore executed recursively depth-
first, starting from the left side of the structure tree.

As we’ve seen with genetic algorithms, crossover and mutation exist, with crossover
taking two parent individuals and producing a new offspring by swapping parts from the
parents. One of the major advantages of hierarchical tree representations here is how
single-point crossover can be easily performed by replacing a subtree of one of the par-
ents for a subtree from the other parent, both chosen at random. Mutation on the other
hand can be applied by modifying a randomly chosen node of the respective structure
tree, performing actions on the subtrees such as deleting or replacing with a randomly ini-
tialized subtree, or even just on the nodes themselves (for example changing a function’s
type or converting a function node into a leaf one).

Genetic programming has some advantages over genetic algorithms. The fact that
evaluation is performed recursively in genetic programming allows newly generated or
manipulated programs to be evaluated immediately without any intermediate transforma-
tion step. With another major advantage being how structure trees allow the representation
of solutions whose size and shape change dynamically, unlike the usually fixed-size bit
strings of genetic algorithms.

2.4 Summary

As demonstrated in this chapter, there are not only various aspects to take into con-
sideration for the procedural generation of terrains, but also a large number of methods
in which to approach each one. Despite the viability of all the different approaches re-
searched, some were found to be more relevant to the work at hand than others.

When it comes to the different terrain representations available, voxel grids appeared
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to be the most appealing choice. As the goal was to have users evolve terrains based on
their preference, it is important for the terrain features to be easily distinguishable from
each other, which voxel grids’ structure allowed with the drastic contrast existing between
the voxels when compared to terrains generated in meshes or continuous functions. While
this could also be achieved with an height-map representation, a voxel grid allows us to
represent more complex structures due to not being constrained by the vertical line test,
making it the most favorable representation out of the two.

As one of the main goals of this work is to lessen the need of technical expertise when
generating terrain, procedural based generation was a clear choice due to its ability to
generate interesting results with little to no human input. GIS Based generation could
also be used, as it only requires access to GIS data, however its lack of both variety and
innovation were considered too big of a drawback in exchange for realism.

Decision trees were the decision making approach chosen due to its relative simplic-
ity and readability when compared to other approaches. As the results from the terrain
generation aren’t always clear regarding the decisions being made “’behind the curtain”,
it was considered important for users to have the option of viewing the process behind
the decisions being made to their terrains when choosing which ones they prefer. This
conjoined with our goal of users not requiring technical expertise in order to generate
interesting terrains, make the decision trees the most favorable choice.

Finally, genetic programming’s recursive evaluation was the deciding factor in choos-
ing it as the evolutionary approach to this work, since the chosen algorithm would require

evaluating ever growing decision trees.
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Methodologies

This chapter presents any relevant decisions, conclusions, approaches and algorithms
that define the solution design.

3.1 Terrain

An important aspect to keep in consideration when choosing how to represent the ter-
rain was the main purpose of this project. While using mesh terrains would most likely
result in more realistic looking results, there was a bigger focus on withdrawing con-
clusions from the evolution of decision trees which determine the type of terrain to be
generated, as well as verifying the feasibility of such a method. With these considerations
in mind, a voxel grid world was chosen as the type of terrain representation. Representing
the terrain with multiple individual voxel offers a more drastic contrast between features
within the terrains than a mesh representation would, with the later resulting in a smoother
terrain due to the interpolation required when procedurally generated. This contrast al-
lows a better comparison between the different terrain results as more subtle details could
go unnoticed when taking human error into account. This is especially true when using
an approach similar to the game Minecraft, in which each voxel is of a given type of
block, and each type of block has their own individual texture. This also helps distinguish
the voxels apart more easily than, for example, an approach where each voxel would be
colored in a gradient according to their elevation or surrounding voxels.

Using a voxel grid instead of height-maps also allows us to generate overhangs which,
even though is not the focus, can result in more interesting and realistic looking terrains.
This isn’t always the case, however, as there are situations where being a voxel grid can
result in odd looking features (i.e. flying mounds) and when looking for a flatter terrain
such as some plains or a beach an height-map could likely generate better looking results.

The algorithm chosen for generating the terrain was a C# implementation [9]] of Ken
Perlin’s improved noise function [24]], adjusting the function call to take custom parame-
ters of frequency and amplitude into consideration. This noise function uses a set permu-

17
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tation table in order to both boost the speed of the algorithm as well as include determin-
istic results for better comparison, as when evolving the decision trees it is important to
generate the same terrain shape to achieve better comparisons. However, using the same
permutation table every time makes it impossible to generate different terrain shapes. This
was solved by allowing the user to assign a set seed before running the program. Then
we can multiply each value from the noise function’s permutation table by a random float
value (while using the floor function to guarantee each value is an integer), as the usage of
a set seed guarantees that querying a random value will return the same order every time.
This way each different seed generates a unique permutation table, and thus an unique
terrain.

In total there are five parameters (Figure [3.1)) used for the generation of the terrain,
these are the width/length (maxDim) and height of the terrain (maxHeight), used for defin-
ing the desired size for each generated terrain, the amplitude and frequency of the noise
function, with the first referring to the range at which the results can be in and the later
the period at which data is sampled, and a minimum noise value (minNoise) which deter-
mines whether a voxel on the grid should be empty or not, depending on the noise value
assigned by the algorithm. The terrain dimensions chosen for the particular examples

shown were max Dim = 64 and max Height = 32.
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Figure 3.1: The five parameters used for the generation of the terrain.

Terrain generation is done in two main steps: first, the noise function will assign a
noise value to each voxel on the 3-dimensional grid, instancing the voxel with a random
block type if the noise value is above the set minimum. Afterwards, we traverse through
the voxel grid a second time and apply the respective decision tree to each individual
block, which will determine what block type each voxel in the terrain should be and
change them accordingly. In order to improve rendering performance, during this step
any voxel that would be enclosed by other voxels is also removed, as ultimately they
would never be visible unless the user could in some form remove the surface blocks.
This results in the generated terrains being completely hollow, improving the performance
substantially. Figure[3.2]shows an example of the terrain results from each of the two steps
side-by-side.
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Figure 3.2: Comparison between the first terrain generation step (left half) and the second
step (right half).

When choosing how many and which types of blocks to use in the terrain generation
the goal was to have a good variety without an abundant amount of them. Having a
short amount of block types would lead into little to no terrain variety, whilst too many
could make it very difficult for the decision tree to converge. Ultimately the following
six (Figure @ block types were chosen: dirt, grass, sand, snow, stone and water. While
water generation is usually considered different to normal terrain generation due to its
complex and unique features, a water block type was considered in order to better gauge
the project’s robustness, as including relatively believable water in a terrain was thought
to prove a more difficult task.

Figure 3.3: The six different chosen block types.

Chunks

When procedurally generating terrains it is possible for the world to be theoretically
infinite, however this begs the question of how to both store and load the terrain’s data.
In the case of Minecraft the approach was to separate its world in 16x16 segments, called
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chunks [6]. Because generating a theoretically infinite world at once would take more
processing time and storage than one would realistically be willing to afford, Minecraft
opts to instead generate its terrain as the players move through the world exploring new
chunks. Chunks are stored and loaded as they’re needed according to their distance to a
player, with the default being a radius of 12 chunks around each player, and if any chunks
in that radius have not been generated yet that generation is done in runtime using the
world’s predefined seed. This concept has the advantages of only storing as much terrain
data as is required by the players and being able to generate expansive worlds without a
large initial terrain generation, but it also has the disadvantage of being more dependant on
the user’s own machine, as users with lower end machines could end up with a reduced
overall experience due to the chunks not loading in time, resulting in wide gaps in the
terrain.

While the option of using a chunk-like approach to this project was considered, as
it could be useful for the user to better visualize the generated terrain, the idea was ulti-
mately scrapped as the generated portion of the terrain was thought to already give enough
of an overview of its features.

3.2 Decision Tree Structure

The chosen decision tree structure was that of a binary decision tree that would apply
on each individual voxel in the terrain, with custom functions acting as the decision nodes
and the leaf nodes dictating what type of block said voxel should be from the list of
block types chosen (Figure [3.4). Two different functions were considered relevant for this
project:

e Height - this function takes the voxel’s height position in the grid and compares it to
a given value, using a given comparison operator. The given value must belong to
the [0, max H| interval, where max H represents the maximum terrain height, while
any comparison operator from the {<, >, =, <=, >=} set is valid;

e Neighbours - this function takes the voxel’s position in the 3-dimensional grid,
counts the number of its adjacent voxels of a certain block type and then compares
that count to a given value, using a given comparison operator. As the maximum
amount of possible adjacent voxels in a 3-dimensional grid (including diagonals)
is of 26, the given value must belong to the [0, 26] interval, while any comparison
operator from the {<, >, =, <=, >=} set is valid.

These two functions were the only ones chosen in an attempt to allow the generation
of interesting terrain features while keeping the project as a proof of concept. Depending
on the end user’s goal additional functions could be modularly added, however for the
purposes of this project the results found from testing these functions were satisfactory.
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When initially generating a new decision tree a random function is generated as the
root with two leaf nodes, with the tree being traversed through in a breadth-first search
order afterwards. Each leaf node of a function has a (z=2%100)% chance of being mutated
into a random function node with two random child leaf nodes, where z represents the
number of function nodes currently present in the decision tree. This allows some initial
variety in the decision trees generated, whilst limiting them to a small number of tree
levels.

Neighbours

Height < 16 Node

Height

Node +— Height = 28 #‘.“vater == 2

SN

Figure 3.4: A visual representation of the different node types.

3.3 Genetic Evolution

3.3.1 Crossover

Since in this particular evolution problem we want a terrain to evolve according to
the user’s criteria and not a set algorithmic definition of a realistic terrain, some user
interaction would be necessary to determine which terrains were fit to crossover. There
ended up being two different approaches for the crossover algorithm.

The first approach consisted of a traditional fitness-based approach, in which the user
would assign a fitness value from an interval to each terrain, followed by the algorithm
crossing over the different decision trees with increasing chances for the better fit to be
chosen to evolve into the next generation. In genetic evolution keeping some of the lower
fit genomes might sometimes prove beneficial for innovation, as a poorly performing
individual may contain good features that haven’t been properly fleshed out yet and are
currently outweighed by the rest of its genome. Since in this case we manually decide
the fitness values, however, in theory we are free to eliminate the lower half scoring of
genomes as any such beneficial feature would be noted and properly evaluated by the user.
Then, the higher half would be crossed over, filling in the now free spots in the generation
for their children. Even though in theory this approach made sense, after some analysis
several flaws were found with this implementation. Since we are evolving the decision
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trees themselves, but the user’s judgement is based on the terrain representation generated
from those trees, the user can’t always make absolutely correct decisions based on what
they perceive, because there will always exist branches in the decision trees which are
not visually represented. Allowing the user to visualize the decision trees themselves
might help soften the problem, but considering how large the individual trees can grow
it’s not realistic as a permanent solution. The argument that any beneficial feature would
be noted by the user does not then hold true in this problem, and thus removing the lower
half of the population outright could prove more harmful than beneficial. Another flaw
found with the implementation was that even though by keeping the higher half of the
population between generations we guarantee that the progress made is not lost, it also
means that only the lower half of the population is innovating in each generation, severely
slowing the evolution. There was an iteration of the algorithm in which this problem
was addressed by removing the parent genomes from the population, and instead crossing
over each pair twice, but since the user’s goal for the terrain may be somewhat abstract,
resulting in an inaccurate fitness function which can drastically change each generation,
this makes it difficult if not outright impossible for the population to converge towards an
exact goal, and ultimately results in an overall loss of progress.

Due to the aforementioned flaws a second non fitness-based approach was attempted,
and an approach based on a research article [21] by Frade et al. (2009) was found suitable.
In this approach the user can select one or two individual terrains to create the next pop-
ulation. If a single individual is selected, the following generation will consist of clones
of said individual with only the mutation operators being applied to each decision tree,
allowing the generation to present few variations from the selected terrain and evolving
slowly. If instead the user opts to select two individuals the next generation’s population
will consist of the results from crossing over the decision trees from the selected terrains
with mutation operators applied afterwards, allowing the population to present more di-
versity. While this approach doesn’t fix the problem of the user’s judgement being based
on the terrain representation, it helps tackle the problem of their likelihood to score in-
dividuals inconsistently thanks to the continuous generation of new forms based on the
fittest from the previous generation.

The crossover algorithm (Figure [3.5)) itself starts by first taking both parent decision
trees and selecting a random node in each. Afterwards, the selected nodes and their
respective subtrees are swapped. Finally the mutation operators are applied to each tree,
and the two resulting decision trees are returned as the crossover offspring.



Chapter 3. Methodologies 23

\I
OB TO e
AN
Figure 3.5: Example of the crossover between two decision trees.

3.3.2 Mutation

There are three mutation operators that can take place in each child decision tree after
crossover. These mutation operators each have their own chance rate of being applied to
each node in the decision tree, and the tree is traversed through in a breadth-first search
order.

Value Mutation

The first and simplest mutation was dubbed the Value Mutation (Figure|3.6), as it has
a chance to change the different values present in a node: for a leaf node this means that
the corresponding block type may be changed; for a height node both the comparison
operator and the value being compared against can be changed; finally for a neighbours
node the comparison operator, the value being compared against and the block type being
checked can all be changed. The rate for this mutation is of 20%.
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Figure 3.6: Example of Value Mutation being applied to both a neighbours and a leaf
node of a decision tree.

Function Mutation

The second mutation was dubbed the Function Mutation (Figure and it cannot be
applied to leaf nodes. This mutation may change a decision node’s function from height
to neighbours or vice-versa, but it can also maintain the function type and change only
the function’s values in a fashion similar to the value mutation. The rate for this mutation
is of 1.5%.

Height < 16 Height <=5

= &

Figure 3.7: An example of Function Mutation mutation being applied both to a neighbours
and height node of a tree.

New Function Mutation

Lastly there’s the New Function Mutation (Figure [3.8), which can only be applied
to leaf nodes, mutating them into either an height or neighbours type decision node and
generating two random leaf nodes as its children. In theory this could be implemented
as part of the function mutation, as they both change the type of a node. Defining each
mutation individually, however, was considered a better option as it allows us to apply
differing mutation rates to each one if necessary, as the impact of both operators on the
decision tree can be vastly different. Since when applying the mutation operators the tree
is traversed in a breadth-first search order, the newly generated nodes from this mutation
can also have mutations applied to them. The rate for this mutation is of 20%.
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Figure 3.8: Example of New Function Mutation being applied to a leaf node, replacing it
with a neighbours node and two new leaf nodes.

When a new random function is chosen in either Function or New Function mutations,
there is only a 20% chance for the function generated to be an height one. This decision
was made due to how much more impactful to the terrain height functions are, when
compared to neighbour functions which might only affect a few blocks at a time.

Some tests were performed in order to try and find adequate rates for each mutation,
however concrete optimal values were difficult to find due to the high subjectivity of the
results, leading to the search for optimal mutation rates ending up as a process of trial
and error. With low rates terrains evolve more slowly which, even though it might allow
more control to the user, leads to scarcer opportunities for innovation, resulting in larger
amounts of generations taken for relevant progress to be made. If the rates are too high
on the other hand the terrains may evolve drastically, making it harder to maintain desired
features.

While for the Value Mutation different mutation rates between 1% and 50% did not
seem to affect the results much, the same cannot be said for the other two mutations. Since
both Function and New Function mutations are able to drastically change the structure of
decision trees they were also the ones found to have the most restrictions when searching
for satisfactory mutation rates. For the Function Mutation, rates above 5% were found
to be already too high to be able to maintain desired terrain features without them be-
ing drastically mutated, while for the New Function Mutation rates above 30% caused
a great number of new nodes to be generated since mutations are also applied to them,
leading to the algorithm becoming unresponsive in a matter of a few generations due to
its recursiveness.

3.4 User Interface

3.4.1 Terrain Visualization

The program’s interface was made to be as simple as possible while trying to be in-
tuitive to the users. While the plan initially was to have the multiple terrain instances
on screen simultaneously, Unity’s engine limitations made it so such an attempt would
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severely reduce the performance, with the interface becoming sometimes downright un-
responsive. This is due to the fact that each individual voxel is considered as a different
entity that needs to be rendered, the sheer amount of entities being rendered took up a
great chunk of Unity’s CPU usage. In order to circumvent this problem the approach was
changed so that only one instance should be rendered at a time (Figure [3.9), but allowing
the user to quickly swap between each instance view without losing significant perfor-
mance. This approach has the added benefit that since we’re only rendering one instance
at a time it can freely take up a bigger portion of the screen, allowing for a better terrain
visualization without the need of a zoom option.

The number of instances being evolved is configurable in the project settings between
a maximum of 30 and a minimum of 2, with the default of 11. For each instance being
generated there is a corresponding button on the top-left corner that allows the user to
easily swap views without having to cycle through every terrain. The buttons are also
color coded to help the user keep track of the terrains: a blue button indicates an instance
that has not been visualized yet; a yellow button indicates an instance that has already
been visualized; and a green button indicates an instance that has been selected for genetic
evolution. Two arrow buttons were also included left and right of the terrain visualization
to allow cycling through the instances, with each having their corresponding arrow key as
a keyboard bind.

Controlling the evolution of the terrains can be done through: the Select/Unselect
button on the middle bottom of the screen (or with the ”’S” key on the keyboard), which
allows the user to select the current terrain to be considered for evolution into the next
generation; and the Next Generation button on the bottom-right of the screen (or with
the "N” key on the keyboard), which, after having selected the desired instances, allows
the user to evolve the decision trees onto the next generation. The number of the current
generation 1s also indicated above the Next Generation button, starting with generation 0.

Generation: 0

(V)iew Decision Tree (N)ext Generation

Figure 3.9: The terrain visualization window.
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3.4.2 Decision Tree Visualization

In addition to the previously stated interface elements, a button which allows the user
to visualize a given terrain’s decision tree was also implemented in the bottom right of the
screen (or with the ”V” key on the keyboard).

This view (Figure [3.10) allows the user to drag the screen with their mouse in order to
move through the decision tree as well as zoom in and out with the mouse’s scroll wheel.
Every non-leaf node represents a decision in the tree in which the next node is either the
left child if the decision statement is found to be false or the right child if it is found to
be true, colored blue or red respectively. Each node has a text label to indicate the type
of node as well as its values, with a legend on the top right of the screen explaining the
different types to remind the user.

Initially the goal was to allow the user to be able to manually change the decision tree
by interacting with it, in hopes of being able to perfect more precise details that would
otherwise be difficult to specify during the genetic evolution, as well allowing them to
save the decision tree for later usage. However, as the main focus of this project was
on the feasibility of using evolutionary algorithms for procedural generation the virtual
worlds, this was deemed as having a low priority and thus ended up not being a topic that
was expanded upon.

The algorithm used for drawing the decision trees was an adaptation of an existing
[3]] approach to the Reingold-Tilford algorithm. In summary, the algorithm follows these
steps:

1. Start with a post-order traversal of the tree;

2. Assign an initial X value to each node of 0 if it’s the first in a set, or previousSibling
+ 1 if it’s not (in our case the tree is binary so only O or 1);

3. Find the desired X value that would center it over its children: if it is the left node its
X is set to that value; otherwise, set a Mod property on the node to (X - centeredX)
in order to shift its children so they’re centered under this node. The last traversal
of the tree will use this Mod property to determine the final X value of each node;

4. Determine if any of this node’s children would overlap any children of siblings to
the left of this node, that is, for each Y get the largest and smallest X from the two
nodes, and compare them:

e [f any collisions occur, shift the node over by however much needed. Shifting
a subtree only requires adding to the X and Mod properties of the node;

e [f a node was shifted, also shift any nodes between the two subtrees that were
overlapping so they are equally spaced out.
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5. Do a check to ensure that when the final X is calculated, there are no negative
X values. If any are found, add the largest one to the Root Node’s X and Mod
properties to shift the entire tree over;

6. Do a second traversal of the tree using pre-order traversal and add the sum of the
Mod values from each of a node’s parents to it’s X property.

While viewing the decision tree directly can be useful, it also becomes increasingly diffi-
cult each generation due to its fast growth, with even simple looking terrains generating
expansive trees that would realistically take too long for a human to analyze. The fact
that every individual node and node connection represents an individual object for Unity
to render also ends up significantly slowing the generation of the visual representation,
eventually reaching a point where the program becomes unresponsive. While these prob-
lems were not addressed, they could perhaps be toned down substantially with proper tree
pruning, of which there is currently none.
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Figure 3.10: The decision tree visualization window.

/< - /\ “ x 7\

/\. /\ AN N /\
N N /\ /\ /\ /\

/ ANVANVAN . 2\ VN /\
/N /\ /'\ /\/\ /\ AVANVA
/\ VANV AN NV AN
VANVANVAN /N /N /\ /

Figure 3.11: Showcase of a more complex decision tree visualization.
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Chapter 4

Experimental Results

In this chapter we will discuss the tests that were performed in order to evaluate the
viability of the implemented solution as well as their results. User testing was conducted
in two parts in order to attempt to achieve results in the most efficient way, with there be-
ing seven users in total. The first part of testing consisted on giving the users an hands-on
experience with the project, in hopes that the results would allow us a better understand-
ing of the intuitiveness or lack thereof that the terrain evolution possesses, regardless
of academic background, as well as whether or not desirable terrains could be generated
regardless of subjectivity. For the second part users were then asked to take part in a three-
part survey regarding the hands-on experience that they undertook, in order to be able to
grasp concrete data regarding user opinions and the project itself from these experiments.

Gender | Age | Experience |
1 F 24 No
2 F 23 No
3 M 15 No
4 M 24 Yes
5 F 27 No
6 M 23 Yes
7 M 25 Yes

Table 4.1: User statistics regarding their gender, age and whether or not they have any
experience with genetic evolution.

4.1 Hands-on

In order to be able to gather some data from the hands-on experience, users were all
given 4 different terrain goals to try and achieve, each starting off a respective set seed so
that results can be more accurately compared. A soft limit of 30 generations was given,
so as to have a reasonable time limit for the users, and they were all given the option to
either skip or retry the test in case they were not satisfied with the results they got. While

31
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trial and error is often a necessity in evolutionary algorithms, one cannot expect the user’s
patience to be limitless, and giving them this freedom of choice lets us get a better grasp of
how plausible the program could be in a more critic environment. In addition, all testing
users were given a basic explanation of the project, as well as its goals, and were allowed
to try the program before any of the test challenges to familiarize themselves with both
the interface and the methodology at work.

The 4 different terrain goals given were the following: ”Snowy Mountains”, ”Grassy
Fields”, "Beach” and "Regular Mountains”. Some of these terrain labels are vaguer than
others, but the idea was to let each user come up with their own definition instead of
limiting their choices, which is why these labels were given without any corresponding
visual representation. In these tests we measure the number of generations taken for each
user to achieve a result they find desirable, as well as their self-assessed satisfaction level
with the chosen terrain on a scale from 1 to 10.

Snowy Mountains

# Generations | Satisfaction |
9 8
15 7
24 7
8 9
22 7
9
8
.8

6
13
Avg 13.86 7

~N| N | B W =

6

Table 4.2: Results for each user when creating a ”Snowy Mountains” terrain.

In the first test there seemed to exist two main approaches on the terrain regarding
the snow that is present. Terrains from users 1, 2 and 3 appear to focus on placing heavy
layers of snow exclusively on higher altitudes with the use of Height Function nodes,
whilst the rest of the terrains have heavy snow all around, with some other block types
sprinkled in with Neighbour Function nodes. The most common block choices for this
challenge are that of snow and stone, which users considered fitting of their image of a
”Snowy Mountain”, with some cases including dirt and grass as well.

The users’ satisfaction level ratings are consistent in the [7, 9] interval, with an average
of 7.86, however the number of generations taken fluctuates between a minimum of 6 and
a maximum of 24, averaging out at 13.86. This fluctuation is also present between similar-
looking terrains, as not only can different evolution steps lead to similar looking results,
but there is also the fact that decision trees can be completely different regardless of
similarities between resulting terrains. There seems to be, however, a correlation between
the number of generations taken and an user’s self-assessed satisfaction, with users 2, 3



Chapter 4. Experimental Results 33

Figure 4.1: Terrains generated by the users when attempting to create a ”Snowy Moun-
tains” terrain. Seed = 73735.

and 5 having taken the biggest amount of generations to achieve a desirable result, whilst
also having the lowest levels of satisfaction, whereas users 4 and 6 took the least amount
of generations and also assigned the highest levels of satisfaction.

Grassy Fields
# Generations | Satisfaction |

1 4 9
2 0 9
3 23 6
4 2 9
5 9 9
6 5 8
7 0 10

Avg 6.14 8.57

Table 4.3: Results for each user when creating a ”Grassy Fields” terrain.

For this test’s results not a lot of terrain variety exist, with all the terrains consisting
mostly of grass blocks, sometimes including small features such as dirt, water or even
some snow. This is most likely due to the fact that the image of ”Grassy Fields” usually
entails that of vast and green landscapes without many significant terrain features except
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perhaps some flora, which cannot be properly portrayed with our small pool of block
types.

With an average of 8.57, all of the users’ satisfaction ratings are consistent in the
[8,10] interval, with the sole exception being user 3, whilst the number of generations
taken to evolve the terrain presents similarly positive results. Only the aforementioned
user 3’s terrain ended up being an exception at 23 generations, as all other terrains took
under 10 generations for the users to achieve desirable results, with an average of 6.14.
Also worthy of note are the terrains resulting from users 2 and 7, in which they found a
desirable result without the need of any genetic evolution, as they considered a fully made
of grass terrain to represent their image of "Grassy Fields” the best with the block types
present.

Figure 4.2: Terrains generated by the users when attempting to create a "Grassy Fields”
terrain. Seed = 21312.

Beach

Similarly to ”Grassy Fields”, this test’s results do not contain a lot of terrain variety,
with almost every terrain consisting of a few water layers on the bottom and sand dunes
on top. The only two exceptions to this are user 7’s terrain, with some grass on top of the
sand, and user 5’s terrain, who chose to use dirt instead of sand, as an attempt to create
something akin to a volcanic beach with the existing block types.
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# Generations | Satisfaction |
1 10 9
2 3 10
3 10 6
4 11 10
5 30 7
6 18 9
7 14 10
Avg 13.71 8.71

Table 4.4: Results for each user when creating a "Beach” terrain.

Figure 4.3: Terrains generated by the users when attempting to create a "Beach” terrain.
Seed = 11037.

In terms of user satisfaction the results were very positive. With the exception of users
3 and 5, who claimed slightly above average satisfaction levels, all other users claimed
to have either a 9 or 10 level of satisfaction, averaging out at 8.71. This is, according
to most users, due to the fact the terrains generated were very close to, if not exactly,
what they had in mind. When it comes to the number of generations taken there seems to
be a pattern in the [10, 20] interval, with a single positive outlier taking 3 generations to
achieve their desired result, and one negative outlier taking 30 generations, averaging out
at 13.71 generations taken.
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Regular Mountains

# Generations | Satisfaction |
1 - -
5 B} i
3 1 7
4 9
5 17 8
6 18 9
7 33 6
Avg 142 7.8

Table 4.5: Results for each user when creating a "Regular Mountains™ terrain.

Figure 4.4: Terrains generated by the users when attempting to create a "Regular Moun-
tains” terrain. Seed = 912384.

Out of all the labels given, the "Regular Mountains” one was the vaguest, and the
impact on the results are noticeable. While the block types present don’t have much
variance, the resulting terrains certainly do, with no two terrains looking the same. The
most common feature is the presence of grass, intertwined with either stone, dirt or snow
blocks in different ways each time.

This test was the only one in which participants gave up on trying to evolve a terrain,
with users 1 and 2 not being able to achieve a terrain that would suit their tastes, even
after attempting multiple times in the case for user 2.
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They claimed that while they were close to their goal terrain, they weren’t able to quite
get there and the terrains ended up evolving away from the desired solution. As for the
other results, there did not seem to be any obvious patterns. The number of generations
taken fluctuates in a wide range between a minimum of 1 and a maximum of 33, with an
average of 14.2, whilst the satisfaction levels are spread in a [6, 9] interval, at an average
of 7.8. These inconsistent results can be considered a direct result of the vagueness of the
goal label for this test.

Overview

When comparing the results obtained from the tasks performed we can conclude that
users had an harder time evolving terrains in which the goal they intended to achieve
wasn’t as well defined. Both the "Grassy Fields” task, which had the lowest average
number of generations taken to achieve a result, and the "Beach” task, which had the
highest average satisfaction value, were considered well defined goals, with most users
having a clear image of what kind of terrain they intended to generate and their results
all being very similar. On the other hand, terrains resulting from the "Regular Moun-
tains” task had both the highest average number of generations taken to achieve as well as
the lowest average satisfaction values, whilst also possessing the most diversity between
different user results.

While the number of generations taken clearly has a correlation with the satisfaction
levels of users, we can also deduce from the results that it wasn’t always the most im-
pactful factor. Taking a look at the individual satisfaction levels of users for the “Regular
Mountains” task, for example, there’s the case of user 3’s terrain taking a single genera-
tion to evolve, but still attaining a satisfaction level of 7, whilst user 6’s terrain took 18
generations and had a satisfaction level of 9 assigned. Examples such as these are com-
mon throughout all tasks performed, but is ultimately a cause of the subjectiveness of
each user.

Also worthy of note is the fact that out of all the satisfaction values, the lowest as-
signed values were of 6, when the possible value interval is [1,10]. While this could
indicate that the generated terrains were on average very satisfactory to users, it is just as
likely of a possibility that there existed some sort of bias in the self-assigned values.

4.2 Survey

After trying the project hands-on each user was then asked to fill out a survey regard-
ing their experience. This survey was split into 3 sections: the first has questions focused
on their overall experience with the program; the second section asks the users how hard
they found each individual test to be; and, finally, the third section has pictures of varying
terrain types generated by the program, with users being asked to evaluate each one in
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terms of realism.

User’s Experience

In this section users were asked to answer questions regarding how they felt about
certain limitations that may have been found during their hands-on experience. Users
could reply with a rating from 1 to 10, with higher ratings indicating that they felt said
aspect too frequently.

21(28.6%)

1(14.3%) 1 (14.3%) 1 (14.3%) 1(14.3%) 1(14.3%)

0 (0%) 0 (0%) 0 (0%) 0 (0%)

Figure 4.5: User results when asked "How often did you feel that the tool was limiting
you?”.

The first question inquires the users on whether or not they found the program to be
limiting their actions. Ideally, this wouldn’t often be the case and the user would be able
to express themselves freely when generating the terrain, but unfortunately results suggest
otherwise. Out of the 7 users 4 often felt limited by the program’s constraints. The results
weren’t completely one sided however, as some users seem to have rarely felt that way.

3/(4219%)
2 (28.6%) 2 (28.6%)

0 (0%) 0(0%)  0(0%)  0(0%) 0(0%)  0(0%)  0(0%)

1 2 3 4 5 6 7 8 9 10

Figure 4.6: User results when asked "How often did you feel that your choices didn’t
matter to the changes being made in the terrain?”.

In a worst case scenario, the genetic evolution of the generated terrains would take
little to no consideration to the choices made by the user, making the whole process
pointless. The second question asks the users how often they felt that ultimately their
choices didn’t matter to the changes that were being made in the terrain. While there
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were two cases in which the users felt above average in that that was indeed the case, the
greater majority disagreed. It is worthy of mention, however, that the fact that the users
felt like their choices mattered doesn’t necessarily mean that they thought the impact felt
on the terrain to be beneficial.

21(2816%)

1 (14.3%) 1(14.3%) 1(14.3%) 1(14.3%) 1 (14.3%)

0 (0%) 0(0%)  0(0%)  0(0%)

1 2 3 4 5 6 7 8 9 10

Figure 4.7: User results when asked "How often did you feel that it took time for progress
to become apparent?”.

Another important aspect to take in consideration is how long it can take for progress
to become apparent, as the main purpose of this approach to procedurally generating
terrain is to save both time and human resources. When asked if users felt this during
their tests, the results were fairly spread out, but mostly around average. This could
indicate that while users found the program taking longer to progress than what they’d
hope for, it still managed to achieve results in reasonable amounts of time.

21(28'6%)

1(14.3%) 1 (14.3%) 1(14.3%) 1 (14.3%) 1(14.3%)
’

0 (0%) 0 (0%) 0 (0%) 0 (0%)

1 2 3 4 5 6 7 8 9 10

Figure 4.8: User results when asked "How often did you feel that it would be easier to
make a terrain from scratch?”.

The last question for this section asks if the users often felt that it would be less trouble
trying to generate a terrain through any other known means. There did not seem to be a
general consensus in regards to this, as can be seen by the fluctuation between answers.



Chapter 4. Experimental Results 40

This means that even though some users were satisfied with the results produced with the
current tool, there is definitely room for improvement.

Task Difficulty

In the second section users were asked to rate each task they performed on a scale
from 1 to 5 in terms of difficulty to achieve a desirable result, where a higher number
represents a higher difficulty. Below are the difficulty histograms of the results obtained:

Snowy Mountain

3 (42.9%)

2 (28.6%) 2 (28.6%)

Figure 4.9: User ratings regarding the difficulty of the ”Snowy Mountain” task.

The difficulty levels assigned to the first task (Figure {.9) are consistently average,
with all ratings belonging to the [2, 4] interval, leading the task to be considered as having
a medium difficulty, leaning slightly towards the easier end of the spectrum. The average
difficulty was of 2.86, with a median of 3.

Grassy Fields

3 (42.9%)

2 (28.6%)

1 (14.3%)

1 (14.3%)

Figure 4.10: User ratings regarding the difficulty of the ”Grassy Fields” task.

The ”Grassy Fields” task had consistently low difficulty values assigned to it (Figure
|.10), with 3 out of 7 users giving it the lowest difficulty score. This is most likely due to
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the low number of defining features required for users to achieve such a terrain. Both its
average difficulty and its median values were of 2.
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Beach

3 (42.9%)

2 (28.6%)

! 1 (14.3%)
0 (0%)
0 |

Figure 4.11: User ratings regarding the difficulty of the "Beach” task.

On the other hand, most users assigned between average and high difficulty values to
the “Beach” task (Figure [4.11)), with only a single user finding it to be of low difficulty.
Even though the goal terrain of the users for this task seemed to be very well defined, this
is also most likely what caused the users to have an higher difficulty achieving a desirable
result as it also means that the user will be more critical regarding what qualifies as a
desirable result. It had an average difficulty assigned of 3.29, and a median of 3.

Regular Mountain

3 (42.9%)

2 (28.6%)

1 (14.3%) 1 (14.3%)

Figure 4.12: User ratings regarding the difficulty of the "Regular Mountain” task.

The "Regular Mountain” task being the most vague one is very well represented in
the assigned difficulty levels by the users (Figure [d.12)), as they were revealed to be fairly
inconsistent. While 3 out of 7 users attributed the highest level of difficulty to this task,
the other 4 all assigned low to medium difficulty levels, resulting in a very subjective task.
Its average difficulty was of 3.43, and its median was of 3 as well.

Difficulty Overview

When comparing this section’s answers to the results obtained from the hands-on ex-
perience, it is easy to draw a correlation for most tasks between the difficulties assigned
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by the users and the average number of generations taken for them to achieve a desir-
able result in said task. The higher the average number of generations taken, the harder
the average difficulty assigned by users. The same could almost be said for the average
satisfaction levels, however the "Beach” task is an exception to this by possessing the
second highest average difficulty, whilst being the task with the highest average of user
self-assigned satisfaction. This helps drive in further the point that regardless of an higher
number of generations taken, which is indicative of an harder difficulty, a user may be

satisfied as long as a desirable terrain is met.

Terrain Evaluation

For the last section of the survey 15 terrain images were shown to the users and they
were asked to rate them, from 1 to 10, in regards to how realistic they found each terrain
to be, where a higher number represents a higher level of realism. The goal with this
evaluation was to try and find some less subjective aspects when considering what makes
a procedurally generated terrain acceptable. In order to perform some level of test control,
terrains 2 (Figure[d.16) and 13 (Figure#.27) are similar, to make sure we obtain consistent
results, while terrains 4 (Figure {.18) and 14 (Figure 4.28)) were randomly generated as
a negative test control. Other noteworthy examples are terrains 10 (Figure #.24) and 12
(Figure [4.26), which instead of generating water as any other block type, always set a
global sea level at height 2 (filling all open voxel positions with height below or equal to

water blocks).
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Figure 4.13: Mean ratings of the presented terrains.
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Median Terrain Ratings
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Figure 4.14: Median ratings of the presented terrains.

As can be seen in figures and when measuring both mean and median
values only 3 terrains had below average results. Out of these terrains the two randomly
generated ones used for negative control testing are the lowest scoring, while the other
is terrain 7 (Figure §.21)). The common link between these three is that they all use the
neighbours function to extensive amounts, resulting in a lot of scattered blocks in the
terrain, however this also happens in some other terrains such as terrains 9 (Figure
and 15 (Figure.29) while possessing good mean and median results. The main difference
between these seems to be the types of blocks being spread across in regards to the rest of
the terrain. For example, terrain 7 consists mostly of grass blocks, however, sand blocks
can be found spread all across the grass, which is not something that one would commonly
find in the real world. On the other hand if we take a look at terrain 9, we’ll again see a
terrain consisting of mostly grass blocks, but this time there are dirt blocks being spread
across, which can look much more natural next to grass when compared to sand.

Regarding the similar terrain control test, all users save for one evaluated both terrains
with the same results, indicating a good consistency for most users. There does not seem
to be any significant bias towards particular terrain shapes either, as can be seen even
between the two terrains with a set global sea level. There also weren’t any significant
disparities found between the mean and median values of the test results, which might be
an indicator of uniform results. However, since this is a rather small data set, no guarantee
can be taken away from this information.
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Figure 4.15: Terrain 1 and its results.
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Figure 4.16: Terrain 2 and its results.
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Figure 4.17: Terrain 3 and its results.
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Figure 4.19: Terrain 5 and its results.
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Figure 4.20: Terrain 6 and its results.
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Figure 4.21: Terrain 7 and its results.
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Figure 4.22: Terrain 8 and its results.
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Figure 4.23: Terrain 9 and its results.
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Figure 4.24: Terrain 10 and its results.
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Figure 4.25: Terrain 11 and its results.
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Figure 4.26: Terrain 12 and its results.
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Figure 4.27: Terrain 13 and its results.
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Figure 4.28: Terrain 14 and its results.
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Figure 4.29: Terrain 15 and its results.
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Chapter 5

Conclusions

In this chapter we briefly go over the results obtained from this work as well as the
goals that were proposed. We also discuss ideas that could be implemented in the future
to further improve the work.

5.1 Conclusions

In the first stage of this work a procedural terrain generator was developed, with the
chosen terrain representation being that of a voxel grid. A small number of different
voxel block types was chosen in order to be able to represent some variety of terrain
features, and the procedural generation algorithm was ultimately implemented using Ken
Perlin’s improved noise function [24] due to both its better looking results and faster
performance. At this time the block types of each voxel in the terrain were randomly
set. Afterwards, the User Interface was created in order to allow a better visualization
of multiple terrain instances. The algorithm was also changed to allow the use of set
seeds, so that the multiple terrain instances are all generated with equal terrain structures,
allowing for better comparison between results. It was also during this stage that decision
trees determining the block types in the terrain were implemented, with two different node
functions, making decisions according to either the height of a certain voxel or the number
of its adjacent neighbours of a certain type, and leaf nodes defining the block type to be
used. Finally the previously developed User Interface was expanded upon, allowing users
to select one or two of their preferred terrains to evolve. Genetic evolution between the
chosen decision trees was then implemented, applying crossover in the case of two terrains
being selected, and always having a chance to apply the three chosen mutation operators.
An interface for viewing the decision trees was also added, in hopes that it could aid users
in having a better grasp of how each terrain instance was generated, however the lack of
decision tree pruning resulted in the feature not being as helpful as initially thought since
readability diminished quickly with decision trees evolving to sizable amounts.

After the tool was finished, potential users were requested to help test it due to the
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high subjectivity possible when evolving and evaluating a terrain. Users were asked to
try and achieve four goal terrains using the program, without specifying an end result so
as to allow them to evolve the terrains in the most unbiased approach possible. After
the four tasks users filled in a survey regarding their experiences. The results obtained
from these testing sessions allowed us to reach a better understanding of both the work’s
shortcomings and strong points. For starters, when attempting to evolve a terrain with
user decisions, it is important for the user in question to have a clear image of their goal
throughout the evolution generations, so as to allow the decision trees to converge prop-
erly. If the user keeps making choices inconsistent to their goal it may end up severely
slowing or even ultimately making it impossible for the algorithm to reach the initial ter-
rain goal. We were also able to gather that some users felt both limited by the tool and
that it would probably be easier to make a terrain from scratch instead. The users did feel,
however, that their choices had an impact on the changes being made in the terrain, and
that it didn’t take too long until progress was made apparent. These results lead us to be-
lieve that, while there is room for improvement, using evolutionary algorithms to evolve
a decision tree can be a viable method to procedurally generate virtual worlds.

5.2 Goal Completions

As previously mentioned, the main goal of this work was to explore the possibility
of using evolutionary algorithms to evolve a decision tree as a means to procedurally
generate virtual worlds without the need of a technical expert. While we feel that this goal
was completed, some originally planned features that could perhaps impact the results
were not.

Given the engine limitations, generating terrains with bigger dimensions did not prove
feasible, which could’ve impacted a user’s opinion on the existing terrain features. Sub-
dividing the generated terrains with a chunk approach could’ve solved this problem by,
for example, allowing the users to control a moving camera that would travel across the
terrain and its features. While for the terrain generation algorithms and parameters being
used the generated portion of the terrains were thought to give enough of an overview of
their features, this could be an important addition to take into consideration when using
other terrain generation methods.

The initial plan of allowing the visualization of multiple procedurally generated ter-
rains simultaneously was also not possible to due the engine’s limitations, as the interface
proved to become unresponsive while rendering such a large amount of individual objects
on screen at the same time. This did not prove to be a major hindrance to the work’s
results, as users were still able to view each terrain individually, it most definitely slowed
down their process of evaluating the terrains, which could’ve lead to increased frustration
and/or impatience while using the tool.
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5.3 Contributions

This work’s main contributions are the following:

1. Studying the viability of evolutionary algorithms being applied to procedurally gen-
erated content based on user feedback. In particular, providing the user with in-
creased control over the generated content whilst requiring minimal user input by
shifting the burden onto the algorithm;

2. Expanding the analysis of using procedural generation as a means to reduce virtual
content development costs. In the case of video-games this can also be used to
increase replayability, providing more content to its players and possibly increasing
the video-game’s value;

3. Development of a terrain generation tool which does not require any area expertise
in order to achieve desirable results. This would also allow its use as an introductory
procedural generation tool for a broader audience.

5.4 Future Work

In the future, there are some aspects in this work that could be of interest to improve.
For starters, the tree decision viewer as it stands currently does not possess much use
due to it quickly becoming unreadable with larger trees. In order to soften this problem
different decision tree pruning techniques could be properly implemented, cleaning much
of the redundancy currently present in bigger decision trees and ultimately increasing
performance. Doing this would also allow the implementation of more complex features
in the viewer, such as the initially mentioned goal of allowing users to interact with the
decision tree structure and performing manual adjustments as they see fit (a feature often
requested by users during their hands-on experience with the tool).

Due to the subjective nature of the evolutionary algorithm chosen, different mutation
rates and crossover algorithms were difficult to compare in terms of objective results.
This is an area that could be expanded upon, perhaps by utilizing an algorithmic fitness
function to evaluate the different terrains automatically, which would allow us to better
compare results between different rates and crossover algorithms. The configurations
found to provide the best results could then be used with the original user-dependant
evolutionary algorithm.
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