
 

 

UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE FÍSICA 

 

 

 

 

 

Automatic selection of multiple response functions for 

Generalized Richardson-Lucy spherical deconvolution of 

diffusion MRI data 

 

 

 

João Carlos Holbeche Fino da Costa Gabriel 
 

 

 

Mestrado Integrado em Engenharia Biomédica e Biofísica 
Perfil em Sinais e Imagens Médicas 

 

 

 

 

 

 

Dissertação orientada por: 

Alexandre Andrade, PhD, Faculdade de Ciências da Universidade de Lisboa, Portugal 

Alexander Leemans, PhD, University Medical Center, Utrecht, Netherlands 
 

 

 

 

2021



 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“You become strong by defying defeat and by turning loss and failure into success.” 

- Napoleon Bonaparte  



 

 

 

  



i 

 

Acknowledgements 
 

Over the 6 months of this traineeship, I could not be more thankful to Prof. Alexander Leemans for 

hosting me at the University Medical Center, Image Sciences Institute in Utrecht, Netherlands, allowing me 

to have this fantastic opportunity. 

 A very special thank you to Alberto De Luca for his constant guidance and support throughout this 

project, his academic knowledge and attention were an inspiration for me. 

To everyone at the University Medical Center, especially from the Image Sciences Institute, from whom 

I learned constantly and created such a welcoming and pleasant work environment, I will always be grateful 

for the time spent there. 

A special thanks to the Erasmus + fund which was crucial for funding my stay in the Netherlands and 

made this internship possible.  

I would like to thank my internal supervisor Prof. Alexandre Andrade, for all the guidance during the 

traineeship as well as throughout the last six years of the integrated BSc/MSc in Biomedical Engineering 

and Biophysics in Faculdade de Ciências da Universidade de Lisboa. 

Thanks to all my friends and colleagues, who in different ways have helped this journey. A special thank 

you to Sousa and Neto for all the moments shared over the past 6 years, from studying together to going to 

the Netherlands, and more importantly for the strong relationship we have built over both happy and (very) 

stressful moments. To Beatriz and Bia, for also going to the Netherlands and making the stay even more 

fun, you, together with Sousa and Neto, made me feel at home even though we were away. I am sure we 

will nourish our friendship from wherever we are. I would also like to thank Inês, for giving me her precious 

notes that helped me a lot while studying this course. Thank you to one of my oldest friends, Plamen, for 

his advice and for being the best friend and housemate over the past six years. Beatriz, thank you for being 

my best friend, I am grateful for having such an amazing and caring person like you in my life. Thank you 

for being my partner in crime, for our endless laughs, inspiring conversations, and for always supporting 

and encouraging me. 

Lastly, I would not forget my family, the most important people in my life. I cannot thank enough my 

parents who provided the means to make this traineeship possible, for always being by my side and for all 

the patience and encouragement along the years.  

These six months in the Netherlands were not always easy, but in the end, it was one of the best 

experiences I could have asked for both academically and personally, and it would not have been possible 

without the support of all the people mentioned above. 

  



ii 

 

Abstract 
 

To understand the development of the human brain, more detailed information is required regarding 

the structural and functional cerebral organization and maturation. This development is the product of a 

complex series of dynamic and adaptive processes, and one of the best ways to understand it is through the 

study of the neonatal brain. The neonatal brain is not fully developed as it would be expected, so it goes 

through many changes regarding brain size, vasculature, and cognition. 

Constrained spherical deconvolution (CSD) is a widely used approach to quantify the fiber orientation 

distribution (FOD) from diffusion magnetic resonance imaging (dMRI) data of the brain, which allows the 

reconstruction of more complex white matter (WM) bundles in vivo, including in neonates. However, this 

method estimates the response function (RF) based on the model of a single fiber population and uses it to 

try to reconstruct the local WM orientations. 

Since the brain has a complex tissue organization, multiple tissues must be considered. It is not 

appropriate to use a WM RF throughout the whole brain because this can lead to spurious fiber orientation 

reconstructions and bad performance during fiber tractography. By accounting for multiple tissues, 

properties of grey matter (GM) and cerebrospinal fluid (CSF) can be captured, and partial volume effects 

(PVE) reduced. The acquisition of more comprehensive high-resolution multi-shell dMRI data offers 

opportunities to take into account multiple tissue types. Ultimately, these improve fiber tractography and 

consequently lead to a better understanding of the human brain and its development. 

The generalized Richardson-Lucy (GRL) method can overcome these challenges by performing robust 

spherical deconvolution (SD) and suppress spurious FOD peaks on multi-shell dMRI data due to PVE. 

However, in the GRL method, three tissue classes are typically pre-defined to represent WM, GM, and CSF, 

using fractional anisotropy (FA) and mean diffusivity (MD) values taken from literature. These two metrics 

are derived from the diffusion tensor model (DTI), with FA measuring how anisotropic is the tensor in each 

voxel and MD measuring the average of the diffusion rate at each voxel. 

This study aims to develop a method that automatically determines the number of tissue types (classes) 

that are needed to properly perform GRL in each analyzed brain dataset. The dataset used in this work 

consists of ten neonates and ten adults from the Developing Human Connectome Project (dHCP) and the 

Human Connectome Project (HCP), respectively. 

The first part of this study consisted of developing a method for the automatic detection of the number 

of tissue types in the brain, by applying a gaussian mixture model (GMM) and the Bayesian information 

criterion (BIC) to automatically extract the number of tissue classes from the histogram of dMRI properties. 

In the second part, the GRL method was applied to the data to estimate the RF of each tissue that was 

automatically chosen in the first part, and therefore calculate the FOD and perform fiber tractography. This 

approach was designated by “GRL-auto”. Lastly, a comparison between the basic GRL formulation and 

GRL-auto was done. Since GRL uses predefined values calibrated on HCP data, it becomes clear that small 

differences were expected on such dataset, whereas on dHCP larger differences were expected. 

Our analysis showed that our method automatically identified three classes in the FA histogram and 

two classes in the MD histogram when using HCP and dHCP data. Therefore, these results demonstrated 

consistency regarding the FA and MD values and their respective number of selected classes, for both 

datasets. Furthermore, different stages of WM maturation were detected in the dHCP data, but also some 

imperfections around the ventricles and crossing fibers areas. All FA and MD spatial maps were in line with 

anatomical correspondence and were consistent across all neonatal and adult subjects, demonstrating the 

efficiency of this method. The values of the WM, GM, and CSF fraction maps were plausible, in line with 



iii 

 

the expected anatomy, and looked consistent on both HCP and dHCP datasets. The signal fraction maps 

determined with the HCP data showed almost no difference between GRL and GRL-auto. However, in the 

dHCP data, we observed notable differences, particularly in the GM and CSF maps. Regarding the FOD 

estimation, our results showed no difference in the HCP data. Nevertheless, for the dHCP data, GRL-auto 

estimated high-quality FODs in WM, and detected more peaks in crossing fiber regions and a bigger angular 

difference between the main FOD peaks, as compared to GRL. Lastly, we showed that GRL-auto led to 

improvements in fiber tractography, which will likely support gaining a better understanding of the human 

brain and its development. 

Therefore, we can conclude that the method developed in this study is efficient and consistent in the 

automatic selection of the number of tissues needed to properly perform GRL in a brain, given multi-shell 

data, which was the main goal. 

 

Key-words: neonatal, diffusion magnetic resonance imaging, generalized Richardson-Lucy, fiber 

tractography, brain development.   
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Resumo 
 

O processo de desenvolvimento do cérebro humano tem sido objeto de estudo desde há vários anos, 

levando a avanços significativos no que diz respeito à compreensão das suas diferentes fases e mecanismos.  

Visto que este desenvolvimento resulta de uma série de complexos processos dinâmicos e adaptativos, existe 

uma busca contínua de informação sobre a sua organização estrutural e funcional, bem como o seu processo 

de maturação. 

A ressonância magnética de difusão (dMRI) é uma técnica bastante completa no que diz respeito à 

análise do cérebro in vivo. Esta técnica é utilizada para realizar um mapeamento quantitativo, através da 

aplicação de modelos como o modelo de difusão tensorial (DTI). Estes modelos fornecem medidas que 

caracterizam o cérebro, tais como a anisotropia fraccional (FA) e difusividade média (MD), permitindo 

assim a quantificação de microestruturas e consequentemente a reconstrução de feixes de substância branca 

(WM) que ligam diferentes regiões cerebrais. Dadas as suas propriedades de difusão anisotrópica e a sua 

constituição fibrosa, as fibras de WM têm sido amplamente estudadas através da dMRI. Além disso, a 

tractografia tornou-se a abordagem padrão no que diz respeito à avaliação da conectividade cerebral usando 

dados de dMRI. 

Os métodos de desconvolução esférica (SD) estão entre os mais utilizados para quantificar a 

distribuição da orientação das fibras (FOD) a partir de dados dMRI do cérebro, sendo que a forma mais 

comum de o fazer é com desconvolução esférica limitada (CSD). A ideia original da CSD baseia-se no facto 

de podermos escolher uma função de resposta (RF) representativa de um determinado tecido presente no 

cérebro e aplicar a SD para resolver o problema de cruzamento de fibras que o modelo de DTI não consegue 

resolver. 

Uma vez que o cérebro possui uma complexa organização de tecidos, múltiplos tecidos devem ser 

considerados. Não é apropriado usar uma RF de WM em todo o cérebro, pois isso pode levar a reconstruções 

imprecisas da orientação das fibras e a um mau desempenho durante o processo de tractografia. Ao ter em 

conta múltiplos tecidos, as propriedades da substância cinzenta (GM) e do líquido céfalo-raquidiano (CSF) 

podem ser quantificadas, e os efeitos de volume parcial (PVE) podem ser reduzidos. Nos últimos anos, tem 

sido possível adquirir dados “multi-camada” mais complexos e de elevada resolução, mesmo em recém-

nascidos, o que permitiu melhorar a técnica de CSD. Consequentemente, esta aquisição também vai 

melhorar a reconstrução da FOD no cérebro adulto, pois considera os PVE entre diferentes tipos de tecidos. 

No cérebro neonatal existem algumas diferenças, pois este é constituído por WM em diferentes fases 

de maturação, e a GM possui características diferentes em comparação com um cérebro adulto. A 

possibilidade de distinguir diferentes tipos de fibras apenas com base nas suas características 

microestruturais deve-se às diferenças presentes no cérebro enquanto este se encontra numa fase de 

desenvolvimento. Em cérebros adultos, é menos provável conseguir observar tais diferenças. 

Uma das melhores formas de compreender e estudar estes processos de desenvolvimento cerebral é 

através do estudo do cérebro de neonatais. Como seria de esperar, o cérebro de um recém-nascido não se 

encontra completamente maturado, sofrendo por isso diversas alterações até estar totalmente desenvolvido. 

Estas mudanças vão desde o aumento do tamanho do cérebro a alterações ao nível vascular, levando 

consequentemente a uma alteração dos processos de cognitivos. Em última análise, a aplicação de CSD a 

dados de “multi-camada” leva a uma extração mais precisa da FOD que por sua vez irá melhorar o processo 

de tractografia e levará, consequentemente, a uma melhor compreensão do cérebro humano e do seu 

desenvolvimento, particularmente se aplicada em recém-nascidos e comparada com adultos. 
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O método Generalized Richardson-Lucy (GRL) pode superar os problemas encontrados pela CSD 

através da realização de SD robusta, suprimindo picos imprecisos na FOD em dados “multi-camada” de 

dMRI. Este método pode definir múltiplos tecidos que irão aumentar a precisão da estimativa da FOD. No 

entanto, no método GRL, as três classes de tecidos representadas (WM, GM e CSF) são pré-definidas com 

valores FA e MD retirados da literatura. 

Este estudo consistiu em desenvolver um método que determina automaticamente o número de classes 

(tecidos) necessárias para aplicar corretamente GRL no cérebro com dados “multi-camada”, utilizando para 

isso os seus valores de FA e MD. O objetivo é aplicar corretamente o método de GRL no cérebro com as 

classes obtidas, de forma avaliar se existe uma melhoria no processo de estimação das FOD e por sua vez 

no processo de tractografia. Os dados utilizados neste trabalho consistem em dados de dMRI de dez 

neonatais e dez adultos, fornecidos pelo Developing Human Connectome Project (dHCP) e pelo Human 

Connectome Project (HCP), respetivamente. Estes dados já se encontravam num formato pré-processado, 

pelo que não foi necessário realizar qualquer etapa adicional neste sentido. 

A primeira parte do estudo consistiu no desenvolvimento do método de deteção automática do número 

de tipos de tecidos no cérebro. Para isso, todos os dados foram processados no ExploreDTI, um programa 

de interface gráfica para dados de dMRI e que permite, por exemplo, a realização de tractografia. Este 

programa foi também usado para extrair os valores de FA e MD dos dados de dMRI dos cérebros dos 

neonatais e dos adultos, de modo a analisar a sua distribuição de valores por todo o cérebro através de 

histogramas. De seguida foi aplicado um gaussian mixture model (GMM) aos histogramas de FA e MD, 

utilizando o MATLAB R2018a, de forma a decompor os dados em classes. Depois de aplicar o GMM aos 

dados, foi determinado o número ideal de Gaussianas para os mapas de FA e MD. Para isso foi calculado o 

Bayesian information criterion (BIC) de cada modelo, em que cada um destes se caracteriza por um certo 

número de Gaussianas. De seguida, foi calculada a probabilidade do valor de cada voxel pertencer a uma 

das classes escolhidas de FA e MD, atribuiu-se assim uma classe a cada voxel. Posteriormente selecionaram-

se as três melhores combinações de FA e MD de cada classe com base na frequência de ocorrência de cada 

combinação, sendo que cada classe foi definida pela média e desvio padrão das respetivas Gaussianas. Por 

fim, foram criados mapas espaciais do cérebro com as classes finais, utilizando o MATLAB R2018a. 

Na segunda parte do estudo aplicou-se o método GRL aos dados, de forma a estimar a RF de cada um 

dos tecidos que foram selecionados na primeira parte. Estas duas partes do trabalho integram a nossa 

abordagem, sendo esta designada por "GRL-auto". No método GRL, a RF da GM e do CSF é baseada em 

valores de FA e MD retirados da literatura, enquanto que o método GRL-auto desenvolvido neste estudo 

estima esses valores através da seleção automática dos valores de FA e MD que são característicos de cada 

um destes tecidos. Obtiveram-se os mapas das frações de sinal da WM, GM, e CSF e foram feitas 

comparações entre o método GRL e GRL-auto. As FOD da WM obtidas com ambos os métodos foram 

comparadas entre si em regiões de cruzamento de fibras, tanto para neonatais como para os adultos. Por fim, 

para ambos os métodos, procedeu-se à tractografia em neonatais. 

Os resultados indicam que, tanto para recém-nascidos como para adultos, existe consistência em 

relação aos valores de FA e MD e ao seu respetivo número de classes selecionadas. Além disso, conseguem 

ser observadas diferentes fases de maturação de WM nos neonatais, mas também algumas imperfeições à 

volta dos ventrículos e regiões onde ocorre cruzamento de fibras. Todos os mapas espaciais de FA e MD 

fizeram sentido anatomicamente, sendo consistentes quer nos neonatais quer nos adultos, demonstrando 

assim a eficácia deste método. Os mapas de sinal das frações de WM, GM, e CSF apresentaram valores 

plausíveis e concordância com a anatomia esperada, para além de consistência tanto nos recém-nascidos 

como nos adultos. Os mapas de frações de sinal dos adultos praticamente não apresentaram diferenças entre 
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os dois métodos. No entanto, os neonatais mostraram algumas diferenças notáveis, particularmente nos 

mapas de GM e CSF. Os resultados relativos às FODs não mostraram diferenças significativas no que diz 

respeito aos adultos. No entanto, para os neonatais, o método GRL-auto estimou FODs de elevada qualidade 

na WM, em comparação com o método GRL. Além disso, o método GRL-auto detetou mais picos plausíveis 

em regiões de cruzamento de fibras par além de uma diferença angular maior entre os principais picos das 

FOD, em comparação com o método GRL. Por fim, este método demonstrou uma melhoria no processo de 

tractografia, o que por sua vez levará a uma melhor compreensão do cérebro humano e do seu 

desenvolvimento. 

Conclui-se assim que o método desenvolvido neste estudo é eficiente e mostra consistência no que diz 

respeito ao processo de seleção automática do número de tecidos necessários para efetuar CSD no cérebro. 

Observou-se uma melhoria na tractografia das fibras, o que permitirá uma melhor compreensão da 

maturação do cérebro bem como das conexões entre as diversas regiões, tendo-se, assim, cumprido o 

objetivo principal deste trabalho. 

 

Palavras-chave: neonatais, ressonância magnética de difusão, Richardson-Lucy generalizado, 

tractografia, desenvolvimento cerebral.  
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1. Introduction 
 

Magnetic Resonance Imaging (MRI) is a non-invasive technique that allows imaging of the human 

body without the need for ionizing radiation which is instead used in x-rays and computed tomography 

(CT). MRI is based on the interaction of spins with electromagnetic fields and has become one of the 

standard non-invasive non-ionizing imaging modalities. 

Structural and functional imaging have benefited from MRI applications such as diffusion-weighted 

imaging (DWI). This technique relies on the random microscopic motion of water molecules to study the 

underlying microstructure of tissues [1]. Diffusion Magnetic Resonance Imaging (dMRI) is a very 

comprehensive technique to analyze the brain in vivo. It can be used for quantitative mapping, through the 

application of models such as diffusion tensor imaging (DTI), which provide metrics that characterize the 

brain [2]–[5]. It can also be used to reconstruct the white matter (WM) bundles that connect different brain 

regions. 

Given its anisotropic diffusion properties and its fibrous constitution, WM tracts have been widely 

studied with DWI [6], providing good contrast to images. Numerous metrics can be extracted from DWI 

data to quantify these microstructures. Moreover, tractography has become the standard approach to assess 

brain connectivity using diffusion data [7]. 

Making use of dMRI data, spherical deconvolution (SD) methods are the preferred way to model the 

fiber orientation distribution (FOD). The most common way to do this is with constrained spherical 

deconvolution (CSD), a method that was introduced in 2004 [8]–[10]. The original CSD idea is based on 

the fact that we can take a response function (RF) that is representative of a single fiber population and 

apply spherical deconvolution to solve the crossing fibers problem of DTI. 

The problem is that CSD can only estimate high-quality FODs in voxels containing WM. By having 

other tissue types present, such as grey matter (GM) and and cerebrospinal fluid (CSF), the RF will no 

longer be appropriate and therefore CSD will estimate unreliable FODs [11]. However, in recent years, it 

has been possible to acquire more complex high-resolution multi-shell data, even in neonates, to make the 

CSD technique better. 

This makes it possible to investigate the validity of classic dogmas in SD. In the adult brain, it has been 

shown that acquiring multi-shell dMRI data allows improving the FOD reconstruction by considering partial 

volume effects (PVE) between different tissue types. This is more challenging in the neonatal brain because 

it consists of WM at different maturation stages, and GM tissue is different than in adults. 

To overcome these challenges, the generalized Richardson-Lucy (GRL) method was introduced [12]. 

This method can perform robust SD and suppress spurious FOD peaks on multi-shell dMRI data. This 

alongside the definition of several tissue classes can increase the accuracy of the FOD estimation. The 

problem is that these tissue types are defined arbitrarily. One way to solve this is by assuming that we have 

three tissues in the brain, WM, GM, and CSF. Although the existing methods have been optimized for adults 

to account for these three tissues, their functioning will likely be suboptimal in neonates and infants, since 

the brain structure is still in maturation. This also does not work if there is a disease affecting the brain 

because that pathology “class” is not represented in the tissue types. 

With this work we aim to devise a method that automatically determines the number of tissue types 

(classes) that are needed to properly perform GRL in a brain, based on their fractional anisotropy (FA) and 

mean diffusivity (MD) values, given multi-shell data. This method has been designated as “GRL-auto”. The 
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data used in this project was provided by the Developing Human Connectome Project (dHCP) and the 

Human Connectome Project (HCP) [13]. 

This project is part of the integrated BSc/MSc in Biomedical and Biophysics Engineering of Faculdade 

de Ciências da Universidade de Lisboa in Portugal and took place at the University Medical Center in 

Utrecht, the Netherlands, from September 2019 to February 2020. 

This thesis is divided into six chapters. Theoretical background on dMRI principles is described in 

Section 2.1. DTI fundamentals are explained in Section 2.2 and RF are briefly reported in Section 2.3. 

spherical harmonics (SH) basics are mentioned in Section 2.4 and SD principles and applications are 

reported in section 2.5. A description of CSD is shown in Section 2.5.1 and ‘multi-shell, multi-tissue 

constrained spherical deconvolution’ is presented in Section 2.5.2, as well as a comparison with ‘single-

shell, single-tissue constrained spherical deconvolution’. Furthermore, the GRL method is introduced in 

Section 2.5.3. Section 2.6 describes the tractography technique and its relationship with the above-

mentioned sections. Sections 2.7 and 2.8 explain the clinical relevance of this project and the type of 

information neonatal data can provide in dMRI and its limitations, respectively. Section 2.9 explains the 

limitations of the above-mentioned methods. 

The study dataset is described in Section 3.1, including a description of the dMRI data acquisition. 

Section 3.2 explains the process of automatic detection of the number of tissue types present in the brain. 

This includes how FA and MD were obtained as well as the implementation of the gaussian mixture model 

and the Bayesian information criterion. The application of GRL to the selected classes is fully described in 

Section 3.3. This includes the resampling of the data and the implementation of the GRL method. Section 

3.4 describes the analysis made to compare the GRL and GRL-auto. 

The results regarding the tissue type selection are reported in Section 4.1, including FA and MD 

histograms in Section 4.1.1, class selection in Section 4.1.2. and spatial maps with the chosen classes in 

Section 4.1.3. The results of the application of GRL with the optimized classes (GRL-auto) are presented in 

Section 4.2, with signal fraction maps displayed in Section 4.2.1, FODs in Section 4.2.2, and tractography 

results in Section 4.2.3. The discussion of these results is in Section 5 and the final remarks are shown in 

Section 6. 
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2. Theoretical Background 
 

2.1. Diffusion Magnetic Resonance Imaging 

 

2.1.1. Principles of Diffusion 

 

Diffusion MRI is a type of MRI technique that is sensitive to the random microscopic motion of water 

molecules. A detailed explanation of MRI is beyond the scope of this work but it can be found in reference 

[14]. In physics, this random microscopic motion of water molecules is called Brownian Motion, or simply 

Diffusion. Einstein described this diffusion with the well-known equation, 

 

〈𝑥2〉 = 2𝐷𝑡𝑑                                                                       (2.1) 

 

where 〈𝑥2〉 (𝑚2) is the mean-squared displacement of the particle during a diffusion time 𝑡𝑑  (𝑠) and 𝐷 (𝑚2 ∙

 𝑠−1) is the diffusion coefficient [15]. 

The human body consists mostly of water, and water molecules are always interacting with various 

tissues and exchanging between the intracellular and extracellular environments. Therefore, Eq. 2.1 cannot 

be applied since diffusion is not considered to be free. In neuronal tissues, the water in the extracellular 

space is characterized by hindered diffusion [16]. This type of diffusion has a Gaussian displacement pattern, 

where the diffusion coefficient is reduced. This leads to a replacement of the D term in Eq. 2.1 by the 

apparent diffusion coefficient (ADC) for each measured direction. On the other hand, the water in the 

intracellular space is described by restricted diffusion. The displacement in this type of diffusion is 

characterized by a non-Gaussian distribution, which does not obey Eq. 2.1. 

 

2.1.2. Imaging 

 

The spin-echo (SE) sequence is an MRI sequence with a 90-degree radiofrequency pulse, followed by 

a 180-degree pulse, allowing to cancel the effects of local inhomogeneities. Diffusion encoding is based on 

the pulsed-gradient spin-echo (PGSE) sequence, which consists of applying two identical diffusion-

weighted (DW) gradient pulses inserted before and after the refocusing pulse of a conventional SE sequence 

[17] (Figure 2.1). 

 

Figure 2.1: Schematic representation of a PGSE sequence. G is the amplitude of the magnetic field gradients. The time between the 

onset of the two gradient pulses is represented by ∆ and the gradient pulse duration by δ. Picture from [23]. 
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After the 90-degree radiofrequency pulse, a magnetic field gradient pulse is applied to the sample for 

a short time, which will cause the spins to acquire a phase based on their position at the time of the pulse 

application. The 180-degree pulse is then applied to reverse the phase of the spins, followed by another 

identical gradient pulse which changes the phase of the spins based on their position at the time of the second 

pulse. If no diffusion has occurred, the phase acquired from the second pulse will be equal and opposite to 

the phase of the spin just before the pulse, resulting in a net phase of zero. However, if diffusion occurs, the 

mean squared phase of all spins will not be zero leading to a loss in the MR signal, which can be measured 

and used to calculate the ADC. 

The degree of diffusion weighting is characterized by the strength and timing of the gradients used to 

generate the diffusion images and is usually called b-value (𝑠/𝑚𝑚2). This can be given by the expression 

below, 

 

𝑏 = 𝛾2𝛿2|𝐺|2 (∆ −
𝛿

3
)     (2.2) 

 

where 𝛾 (𝑠−1 ∙ 𝑇−1) is the gyromagnetic ratio of the nucleus, 𝐺(𝑇 ∙ 𝑚−1) is the amplitude of the magnetic 

field gradients, δ (s) their duration, and ∆(𝑠) the time interval between them [18]. According to Eq. 2.1, the 

attenuation of the MR signal due to diffusion can be expressed as, 

 
𝑆

𝑆0
= 𝑒𝑥𝑝(−𝑏𝐷)      (2.3) 

 

where S and 𝑆0 are the signal intensities measured in the presence and absence of the diffusion gradients, 

respectively. 

When the water diffuses equally in all directions, the ADC is the same regardless of direction, which 

suggests an isotropic diffusion. On the contrary, anisotropic diffusion is the process when the water 

molecules preferentially diffuse according to certain directions, leading to alterations in the ADC. In WM 

the diffusion is anisotropic, whereas in GM and CSF the diffusion is isotropic [19]. In WM there are axons 

and water diffuses preferentially along the main axis. In GM, despite the existing cell bodies being 

considered as “barriers” to the diffusion process, water still diffuses isotropically. However, this occurs at a 

lower rate when compared to CSF, since in CSF there is almost free diffusion. 

 

 

2.2. Diffusion Tensor Imaging 

 

Reconstruction algorithms model the water molecules rearrangement distribution, thus allowing to 

determine the principal direction of WM fibers. They also provide information about the microstructure of 

the biological tissues and are used in fiber tracking. 

DTI is an MRI-based neuroimaging technique that can estimate some properties of diffusion in large 

WM tracts [20]. From this model, we can extract helpful parameters, such as the FA, MD, and the orientation 

of the major eigenvector of the diffusion tensor, which indicates the fibers’ direction [21]. This tensor 

defines the magnitude, the degree of anisotropy, and orientation of the water diffusion, and can be 

mathematically represented by a 3x3 symmetric matrix like the one below. 
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𝐷 = [

𝐷𝑥𝑥 𝐷𝑦𝑥 𝐷𝑧𝑥

𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑧𝑦

𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

]      (2.4) 

 

This diffusion tensor can be represented by an ellipsoid (Figure 2.2) that shows the probability of the 

molecules disposition due to the diffusion. The main axes are given by the eigenvectors of the ellipsoid, and 

their diffusion displacements by the square root of the eigenvalues. 

 

This vector can be color-coded, yielding cartography of the tracts’ position, direction (red for right-

left, blue for foot-head, green for anterior-posterior), and anisotropy (as indicated by the tract's brightness) 

[22]. 

Due to the symmetry in the diffusion process, the DT only requires a minimum of six DW images to 

estimate the elements of the tensor and one non-DW image [23]. The higher the number of images the better 

is the precision of this technique, and usually the optimal number is 30 [24]. However, it is not easy to 

interpret the DT data. The two main properties that can be inferred from DTI analysis are the FA and the 

MD. The FA measures how anisotropic is the tensor in each voxel, estimating the main direction of the 

diffusion [25]. 

 

𝐹𝐴 = √
3

2

√(𝜆1−𝑀𝐷)2+(𝜆2−𝑀𝐷)2+(𝜆3−𝑀𝐷)2

√𝜆1
2+𝜆2

2+𝜆3
2

    (2.5) 

 

FA values vary from 0 to 1, with higher values reflecting increased directionality of diffusion, whereas 

lower values indicate that diffusion is nearly the same in all directions, regardless of the magnitude of 

diffusion. 

The MD is defined by the average of the eigenvalues, measuring the average of the diffusion rate at 

each voxel, making assumptions about the diffusion type and the geometry of the tissue microstructure. The 

MD can be given by Eq. 2.6. 

𝑀𝐷 =
𝜆1+ 𝜆2+ 𝜆3

3
     (2.6) 

Figure 2.2: Abstract visualization of the diffusion tensor. The principal axes of diffusion are given by the eigenvectors, 휀1̂, 휀2̂ and 

휀3̂, and their respective diffusion displacements over a given diffusion time given by the square root of the eigenvalues 𝜆1, 𝜆2 and 

𝜆3. Picture from [23]. 
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Making assumptions based on these DTI parameters requires some precaution since the measured 

diffusion effects are averaged over a voxel (millimetric scale) in comparison to the size of individual axons 

(micrometric scale). Although FA is usually associated with WM integrity, we must take into account the 

fact that changes in myelination, increase in extracellular/intracellular water, cell death and fiber orientation 

will change the FA values [15]. 

The extent to which the image is weighted by diffusion is controlled by the b-value. Therefore, when 

the b-value equals zero, the images are not weighted by diffusion, and when the b-value is greater than zero 

(e.g. b=1000 s/mm2), the images are DW. 

In voxels where there is no diffusion, the spins acquire random phases, leading to a signal loss. This 

explains the black appearance of the ventricles on DW images. When the diffusion is hindered, the signal 

is higher, leading to the gray appearance of the brain parenchyma on DW images. 

In the brain, WM includes tightly packed bundles of neuronal axons [20]. With dMRI it is possible to 

gather specific information about these WM fiber pathways, noninvasively. 

Nonetheless, this model has some limitations [2], mostly because it lies on the presumption of 

unhindered diffusion, thus is only an approximation for in vivo cases. Also, the DT has a single main 

orientation [3], so it cannot describe properly a system that has more than a single oriented fiber population 

in a certain region (Figure 2.3) [4]. It is known that one-third of white matter voxels contain more than one 

fiber population [5], thus being affected by this problem [26]. 

The current dMRI feasible resolutions lead to a large number of voxels that will not be well described 

by this model [4]. Furthermore, the orientation of the fibers cannot be accurately estimated, which will lead 

to unreliable results when performing tractography techniques that rely on the diffusion tensor model [27].  

 

 

 

 

 

Figure 2.3: The problem with crossing fibers in DTI. With a single fiber population, the diffusion tensor is an ellipsoid and FA 

is high. With two fibers crossing, the diffusion tensor becomes more spherical resulting in a reduced FA. Picture from [15]. 
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2.3. Response Function 

 

The DW signal attenuation measured from one fiber population can be represented by an axially 

symmetric RF, R(θ), where θ is the elevation angle in spherical coordinates. 

For more than one fiber, the signal S(θ, ф) (ф is the azimuthal angle in spherical coordinates) can be 

given by the convolution over the unit sphere of the RF R(θ) with a fiber orientation density function F(θ, 

ф), as given in Eq. 2.7. 

 

𝑆(θ, ϕ) = 𝐹(θ, ϕ) ⊗ 𝑅(θ)      (2.7) 

 

The FOD gives the portion of fibers within the sample that are aligned along the direction (θ, ф), 

therefore containing all the volume fraction information. In the case of having N fibers, the FOD is just the 

sum of N Dirac delta functions along the direction of each fiber population and weighted by their respective 

volume fractions. 

F(θ, ф) can be obtained by performing the spherical deconvolution of R(θ) from S(θ, ф) if R(θ) is 

already known (Figure 2.4). When estimating the volume fractions, the number of fiber populations must 

be known and each of these fiber populations must have a single orientation. Therefore, this technique 

cannot be applied to in vivo cases. 

 

Figure 2.4: Illustration of the SD approach. Picture from [28]. 

In the study of F. Dell’Acqua et al. [28], simulations showed that using inaccurate RFs only affects the 

estimated volume fractions of the different fiber populations, and not their respective orientations. It can 

also be seen from the results of this work [28] that the effect of low SNR on the DW signals does not appear 

to have a significant impact on the reliability of SD. 
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2.4. Spherical Harmonics 

 

SH are basis functions to represent signals lying on the unit sphere that can be described by two 

numbers: the harmonic degree L (L ≥ 0) and order M (-L ≤ M ≤ L) (Figure 2.5). The angular frequency is 

directly proportional to L. 

 

The SD operation can be formulated as the action of an ensemble of rotations on a function defined 

over a sphere [29]. The representation of S(θ, ф) regarding the nth order is given by Eq. 2.8: 

 

 𝑆𝑛 = 𝑅 𝐹𝑛       (2.8) 

 

The SD operation can therefore be reduced to a simple set of matrix multiplications and can be achieved 

by inverting each Rn matrix to recover Fn. Since R(θ) has axial symmetry, the Rn collapses down to a single 

real scalar constant. The SH representation of S(θ, ф) can be obtained by using a simple linear least squares 

fit [4]. The FOD can then be estimated using SD as described above, assuming that Rn can be estimated. 

The angular resolution will increase with higher diffusion weightings (b-values), however, the signal 

attenuation is so large that the noise begins to dominate, leading to a decrease in the signal-to-noise ratio 

(SNR). Intermediate b-values produce better results because they introduce the strong angular dependence 

necessary to resolve the fiber orientations, without attenuating the signal down to the noise level [30]. 

The use of high order harmonics makes the SD technique increasingly sensitive to noise, but able to 

resolve smaller angular resolution. Optimal results would be obtained using a high SNR, high spatial 

resolution, high angular resolution data acquisition, using a fairly high b-value dependent on the actual SNR 

of the images [30]. 

As stated above, the main assumption inherent in SD is that the RF measured for a typical coherently 

oriented fiber population is constant throughout the brain. However, this may not be true in regions where 

the WM fibers have significantly different diffusion characteristics, such as myelination levels and axonal 

diameters or densities [31]. 

Where there is a regional variation in these parameters, the RF used to perform SD may not accurately 

reflect the diffusion properties of the fiber tracts. However, it is important to note that using an inaccurate 

Figure 2.5: SH representation regarding the degree L and order M. Image courtesy by Alexander Leemans. 
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RF only affects the estimated volume fractions of the various fiber populations, not their respective 

orientations [30]. 

 

2.5. Spherical Deconvolution 
 

SD is a fast computational method that only uses linear operations, thus its noise propagation 

characteristics can be inferred very easily. The assumption that the diffusion characteristics of all fiber 

populations found in the brain are identical is made. Therefore, all variations in diffusion anisotropy are 

assumed to be associated with PVE [30]. 

The DW signal arising from different regions is assumed to add independently to generate the total 

measured signal, therefore, the DW signal can be approximated as the sum of signals with distinct 

orientations on the unit sphere. 

There are a few models that can provide information about WM fiber pathways, such as multiple tensor 

fitting and Q-ball imaging. However, each of these has inherent limitations. Previous work [30] showed that 

SD can reconstruct the original FOD adequately from a dataset acquired on a standard clinical scanner, 

without imposing any a priori information about the number of fiber populations present in a voxel. Optimal 

results can be obtained by using a high b-value, high SNR, high spatial resolution, and high angular 

resolution, as it has been shown [30]. It was showed that SD failed to resolve fiber populations whose 

orientations were too close [30]. Moreover, the SD technique is limited by a number of harmonic orders, 

which will influence the maximum angular resolution that can be achieved.  

There are two main families that use this technique: one is CSD alongside with multi-shell CSD, and 

the other is GRL. Both techniques are presented below, but in this work we focus on GRL. 

 

2.5.1. Constrained Spherical Deconvolution 

 

Noise introduces spurious negative lobes in the reconstructed FOD, which are not physically possible. 

Instead of filtering out the high angular frequencies, another way of decreasing the ill-conditioning of SD 

is by adding a non-negativity constraint on the presence of these negative values in the FOD [8]. 

CSD is an iterative method that preserves the angular resolution in SD while maintaining noise 

robustness. Firstly, the fiber RF is estimated directly from the DW data, then the DW signals are reoriented 

to assure that their principal axes of diffusion are aligned. At last, the RF SH coefficients are estimated from 

the single fiber DW signals and the matrix relating the coefficients of the FOD to the DW signal can be 

calculated analytically [30]. Ultimately the crossing fibers problem can be solved by extracting the 

coefficients of the FODs. 

CSD can resolve fiber orientations that are separated by small angles, which improves the accuracy of 

tracking results for tracts that pass through or close to other tracts that are similarly oriented. High b-values 

emphasize the difference in the DW signal attenuation which will generate a ‘flatter’ RF. Therefore, SD 

performs better in the presence of crossing fibers when the b-values are higher. Moreover, with CSD it is 

possible to apply SD to data that was probably intended to use in diffusion tensor analyses, and therefore 

has low b-values and/or number of DW directions. 

As stated above, this technique improves angular resolution and fiber orientation assessment [32], [33] 

which is very helpful in tractography since it relies on accurate estimates of the WM FODs [8]. Furthermore, 

the sharper the peaks in the FOD the better the spatial localization of the connectivity maps generated will 

be [9], [10]. 
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As shown in a study by J. D. Tournier et al. [8], the CSD method can significantly improve the 

robustness of SD, and consequently of the estimated fiber orientations. The precision of the estimated peak 

orientations was found to be dependent on the angle separating the two fiber populations [8], and is highest 

when the two fiber orientations are maximally separated, and drops as it becomes more difficult to resolve 

the two orientations. The data used in the mentioned study showed that higher b-values resolved better the 

crossing fibers, as stated above. However, it was also demonstrated that it is possible to use lower b-values, 

which were previously believed to be inappropriate. 

 

2.6.1.1. b-value and directions effect 

 

Besides noise, using high b‐values can lead to problems with image pre‐processing, especially 

regarding eddy‐currents and motion correction. However, there are now methods that can easily use this 

data and still get good results [34], [35]. 

The b‐value influences the angular frequency of the DW signal. The signal changes from being 

perfectly isotropic at b = 0 s/mm2 to a flatter shape as the b‐value increases (Figures 2.6 and 2.7). Therefore, 

while a minimum of 28 DW directions might be sufficient at b = 1000 s/mm2, at b = 3000 s/mm2 is required 

at least 45 DW directions [36]. The higher the number of directions the better the overall SNR of the 

reconstruction will be [21]. 

 

 

 

 

Figure 2.6: b-value effect on the average tissue response (top) and on the WM fiber response (bottom). Picture 

from [40]. 
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2.5.2. Multi-shell constrained spherical deconvolution 

 

Fiber tractography allows local fiber orientation estimation, which will help deduce the pathways 

connecting distant regions of the brain [37], [38]. Apparent fiber density (AFD) is a quantitative measure 

derived from the FOD. AFD measurements are proportional to the intra-axonal water volume fraction and 

can be linked with a single fiber population within a voxel containing multiple fiber populations [39]. 

The CSD method is mainly designed for data acquired with a single diffusion weighting, also known 

as ‘single-shell, single-tissue CSD’ (SSST-CSD) [40]. CSD can produce high-quality FOD estimates in 

voxels containing pure WM. However, in voxels containing GM and CSF, the single fiber RF is no longer 

accurate [11], [42]. 

With the ‘multi-shell, multi-tissue CSD’ (MSMT-CSD) technique, various b-values are used, allowing 

estimation of different RF for each b-value and tissue type, which will lead to better results when performing 

tractography (Figure 2.8) [40]. The MSMT-CSD method can be considered non-parametric since it only 

imposes a certain degree of spherical smoothness to the FODs and does not lean on a specific mathematical 

model for each tissue, but instead estimates a tissue RF directly from the data [40]. 

B. Jeurissen et al. [40] demonstrated that the SSST-CSD method overestimates the WM volume in 

voxels that contain CSF and GM. Since the FOD amplitude scales linearly with the WM volume fraction, 

this will distort the AFD measures. However, MSMT-CSD can eliminate almost completely this effect, 

which significantly improves AFD's accuracy. Moreover, considering GM and CSF PVE, the precision of 

the FOD fiber orientations improves significantly when changing from SSST-CSD to MSMT-CSD, since 

most-spurious peaks that might lead to angular biases are efficiently removed [40]. This benefits 

tractography since the increased precision and reduced number of spurious peaks result in less noisy 

tractograms where WM interacts with GM and CSF [40]. 

Figure 2.7: Effect of different b-values on FOD reconstruction. Picture from [28]. 
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When using SSST-CSD for fiber tracking, large FOD amplitude thresholds are needed to avoid tracking 

into CSF and isotropic GM. However, with MSMT-CSD, it is possible to use much lower FOD thresholds 

without resulting in spurious tracts. This allows MSMT- CSD's to detect very small WM structures that 

would be thresholded out if fiber tracking was performed using SSST-CSD [40].  

MSMT-CSD can perform segmentation of WM, GM, and CSF in the brain directly from the DW data 

without using any previous spatial information. Although the estimation is only voxel-wise, the 

segmentation is very similar to the anatomical [40]. Moreover, the GM and CSF volume fractions can be 

used as new quantitative metrics, just like the FOD is used for the AFD of WM fibers [39], [42]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Sagittal visualisation of a fiber tractogram obtained from WM FODs estimated with 

SSST-CSD (left) and MSMT-CSD (right). Picture from [40]. 
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2.5.3. Richardson-Lucy spherical deconvolution 

 

Richardson-Lucy SD is a method that estimates the FOD from single-shell dMRI data [43]. This 

framework can avoid artifacts that may derive from the SH representation, by extracting the FODs directly 

from the signal domain [12]. This approach also requires the definition of a deconvolution matrix H, which 

contains the RFs of each tissue, and converts the dMRI signals into SH, which leads to the FODs. The FOD 

of each voxel can be estimated by Eq. 2.9, 

 

[𝐹𝑂𝐷(𝑘+1)]
𝑖

= [𝐹𝑂𝐷(𝑘)]
𝑖

[𝐻𝑇𝑠]
𝑖

[𝐻𝑇𝐻⋅𝐹𝑂𝐷(𝑘)]
𝑖

     (2.9) 

 

where 𝐹𝑂𝐷(𝑘) is the expected FOD at the k-th iteration along the i-th direction sampled on the unit sphere 

of SH, H is the m by n matrix that maps m measured signals into n directions, and 𝐻𝑇 is the transpose of H. 

Later on, this method was adapted to increase the robustness of the FOD estimation to PVE in isotropic 

tissues by Dell’Acqua et al. [11], leading to the damped Richardson-Lucy (dRL) method. This method 

extends Eq. 2.9 by adding a term that attenuates the overestimation of the FODs to noise or isotropic classes 

[12]. 

The GRL is a method based on the dRL algorithm that was introduced by Guo et al. [12]. The GRL 

uses SD to improve the accuracy of the WM FODs by accounting for an arbitrary number of tissue classes 

defined by the user [12]. While the dRL can perform robust SD and suppress spurious FOD peaks only on 

single-shell dMRI data, GRL can use multi-shell dMRI data alongside the definition of several tissue classes 

to increase the accuracy of the FODs. Furthermore, the GRL can estimate the signal fraction maps according 

to the number of tissue classes and then use these maps to terminate the fiber tractography process, 

especially at the WM/GM interface or at the outer GM surface, which results in a more accurate tractography 

[12]. When creating the deconvolution kernel H, Guo et al. consider WM, GM, and CSF as the three 

represented tissue types, and this matrix can be given by Eq. 3.9, where p is the number of shells. 

 

 

𝐻𝐺𝑅𝐿 =  [

𝐻𝑑𝑅𝐿,1,𝑊𝑀

⋮
𝐻𝑑𝑅𝐿,𝑝,𝑊𝑀

    

𝐻𝑑𝑅𝐿,1,𝐺𝑀

⋮
𝐻𝑑𝑅𝐿,𝑝,𝐺𝑀

    

𝐻𝑑𝑅𝐿,1,𝐶𝑆𝐹

⋮
𝐻𝑑𝑅𝐿,𝑝,𝐶𝑆𝐹

]    (2.10) 
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2.6. Fiber tractography 

 

Parametric approaches produce estimates of several parameters such as the orientations and volume 

fractions, whereas the non‐parametric approaches give estimates of a continuous distribution of orientations 

such as the FOD [28]. 

The FOD can get accurate results for single and multiple fiber populations by directly modeling or 

deconvolving the angular blurring introduced by the diffusion process, recovering more information of the 

fiber orientation (Figure 2.9) [21]. To get precise results in tractography, the characterization of the FOD is 

extremely important since the estimated parameters are used for further processing [7], [12], [26], [44]–

[46]. Since there is an important interaction between microstructural parameters, such as the fiber density, 

and the FOD, the FOD must be estimated as precisely as possible [39], [42]. 

The fiber orientation information can be represented in a continuous or discrete way. The continuous 

distribution has the advantage of being more general, which leads to the opportunity of representing any 

given arrangement of fiber orientations a voxel [47], [48]. It also has the advantage of linearity with the 

signal, leading to reconstruction times of the order of seconds to minutes for typical whole‐brain dataset. 

SH are commonly used in these type of representations [4], [30], [41], [49]–[54]. 

Another way to represent the fiber orientation information is through a discrete set of fiber populations. 

This is referred to as fixels, a fiber population within a voxel [55], [56]. Each fixel is usually represented by 

some parameters such as orientation and volume fraction, and the number of fixels per voxels is generally 

assumed to be low [26], [57]–[59]. 

 

 

 

However, the relationship between fiber orientations and the signal is not linear which leads to long 

reconstruction times. Moreover, these methods will consistently favor simpler models if the data is very 

noisy, by assuming a single fiber population when more may be present. This will lead to biased results and 

the estimated orientations will not be correct, which has obvious implications in tractography.  

Tensor model-based approaches are easy to implement and have been shown to give a very close 

approximation to more complex fiber response models based [42]. If a model‐based fiber response is well-

Figure 2.9: Whole brain tractography using DTI (left) and CSD (right). Image courtesy by Alexander Leemans. 
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calibrated, not only it has a satisfactory performance [60] but also, in some SD applications, it can be used 

to adjust the balance between angular resolution and noise stability of the recovered FOD [11], [43].  

In SD methods, the RF may not be constant throughout the whole brain. For instance, it has been shown 

that WM tracts have differences in their axonal diameter distributions, which will affect the corresponding 

diffusion signal [21]. However, assuming a constant fiber RF can be relatively beneficial, since the problem 

then remains linear and can be solved solidly and effectively. Furthermore, because axial and radial 

diffusivities change, this will not have a big impact on the shape of the RF, but more in scale and amplitude 

[61]. The estimate of the fiber density will be incorrect, but the orientation estimate will be mostly unaltered 

[30], [42]. 

If a well-defined RF is used, it will lead to a reduction in the FOD amplitude, and consequently to a 

reduction in fiber density. In recent works where SD is used, it has been found that in WM, the 

microstructural anisotropy is very similar and uniform throughout the brain, thus supporting the validity of 

assuming a constant RF [62]. Furthermore, some methods can estimate an RF for each voxel, which is a 

very complex problem to solve since the FOD and the RF are strongly related [49], [63]. 

 

2.7. Clinical Relevance 

 

WM consists essentially of bundles of myelinated nerve fibers (axon). These nerve fibers are long 

extensions of nerve cells (neurons) that connect specific brain regions. These fibers are tightly packed 

together into fiber bundles, which share a common origin and destination. The full map of brain connections 

is often called the connectome [64], [65]. 

The use of fiber tractography in neuroscience is extremely important due to the ability of this technique 

to define non‐invasively the WM fiber pathways in the brain. This has become the main process to 

investigate quantitative MRI parameters in WM bundles. Fiber tractography is extremely beneficial for 

neurosurgeons, who want to have a better assessment when planning a surgery, but also very important in 

“connectomics,” a technique that studies and creates maps of the complex network of the brain [66]. 

Fiber tracking is a complicated process since it involves a lot of steps that lead to an accumulation of 

errors. These errors will lead to false positives/negatives and biased connections in the “connectomes”, due 

to the complexity of the underlying fiber bundle structure. Therefore, it is crucial to be aware of these 

underlying steps and the corresponding errors, since these will greatly influence the fiber tractograms [66]. 

However, tractography has provided remarkable results regarding large WM structures that could not 

be obtained by any other in vivo imaging technique. Applying real anatomical priors and ensuring that the 

tractograms match the data will lead to a much better biological accuracy, thus useful connectivity 

information can be obtained. Nonetheless, even when using state‐of‐the‐art techniques and high‐quality 

data, many problems that could eventually bias the “connectomes” remain unresolved, which leaves room 

for improvement [66]. 
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2.8. dMRI in the neonatal period 

 

The neonatal period corresponds to the time interval between birth and twenty-eight days of life. During 

this period, the brain goes through many changes, such as increasing its size [67] and changing in density, 

cellular composition, and water content [68]. To better understand how the brain develops, more information 

is needed regarding the proliferation, migration, and maturation of the cells. However, the acquisition, 

processing and analysis of  neonatal diffusion data is very difficult, since this modality is sensitive to patient 

motion and low SNR [69]. 

The FOD-based analysis using CSD [8] allows the definition of more complex WM bundles in neonates 

[70]. However, this analysis does not take the temporal evolution of the WM signal into account. Relaxation-

based neonatal atlases are very important because they allow high-resolution anatomical maps with contrast 

sensitivity to the changes that occur during the development of the brain [69]. DWI provides complementary 

information about microstructural tissue properties, which are very important when characterizing 

developments in neonatal brains [71]. Moreover, diffusion atlases may provide information regarding the 

orientation of the microstructures of the individual fiber populations and can assess the organization and 

microscopic properties of the fiber bundles. 

High order diffusion model-based atlases overcome some of the limitations of diffusion tensor-based 

atlases. However, there are only a few atlases of the neonatal brain using high angular resolution diffusion 

imaging (HARDI) data. Tissues such as WM and GM are more difficult to break down into biologically 

meaningful components in neonatal data, in comparison to adult HARDI data [69]. The fact that it is possible 

to resolve different types of fibers based only on their distinct microstructural signature is due to the major 

differences present in the brain while it is developing. In adult brains, such differences are improbable to be 

observed [69]. 

A study by M. Pietsch et al. was done to establish a framework to help in the group-level and 

longitudinal analysis of WM regions or tracts of interest, using dMRI in neonatal [69]. This was 

accomplished by using components that were derived from the data itself instead of being modeled after 

biological tissue properties. Although it may not provide the same level of biological specificity that other 

explicit microstructure models provide, the previously mentioned work relies on a few assumptions and 

uses tissue-specific RF’s instead of biophysical model quantities. For CSF, an isotropic RF was acquired. 

For WM, two anisotropic RF’s were acquired in two different periods to simulate the temporal evolution of 

the signal due to the changing volume fractions [69]. Furthermore, multiple fiber populations within the 

same voxel were able to be resolved. Moreover, in some crossing fiber regions, different fiber bundles are 

attributed to different anisotropic responses, potentially expressing different stages of tissue maturation [69]. 

Since the two anisotropic WM response functions used correspond to two different ages, it is crucial to 

understand that both RF’s will be naturally dependent on those ages. However, by using these two 

anisotropic RF’s, fiber populations from different components in the same voxel can be directly resolved 

[69]. 
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2.9. Limitations 
 

As stated before, the tissue RFs are assumed to be the same in all voxels and the FOD response is also 

inferred to be the same for all fiber populations. However, the brain is made up of different cells, which 

have different sizes, densities, and permeabilities, which contribute to the violation of the previous 

assumption [40]. Nonetheless, this assumption is the same for all non-parametric SD approaches [72], since 

it is usually considered appropriate [44].  

The GRL method also has limitations that should be acknowledged. This method, alongside with others 

[40], only accounts for the three main tissue types of the brain (WM, GM and CSF). Brain pathologies 

should also be taken into account, since they can change the structural MRI scan in a way that reliable tissue 

type identification is no longer feasible [40]. 

Instead of estimating the signal representation of each tissue type by using tissue masks like in other 

studies [40], in the GRL these estimations are made by using models with literature values in GRL [12]. 

The use of these predefined values has the advantage of not requiring any additional data and processing 

beyond the dMRI data. However, this choice can be inaccurate if changes in the chosen tissues occur. 

Furthermore, these literature values can only be applied to adult data where they are well known, which 

limits the application of GRL to neonatal data. 

However, no study has investigated a method that automatically determines the number of tissue types 

of the brain, based on the FA and MD values extracted from the data itself, given dMRI multi-shell data. 

This new approach introduced in this study aims to properly perform GRL by using the tissue classes 

estimated automatically from the data, to obtain more accurate tissue RFs and consequently better FOD 

estimations and better tractography results. 
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3. Methods 
 

3.1. Dataset 

 

3.1.1. Subjects 

 

The subjects of this study were ten infants that were recruited and imaged at the Evelina Newborn 

Imaging Centre, St. Thomas’ Hospital, London, UK. All neonates of this study were imaged between 24-

45 weeks of age and were also imaged in their natural sleep. If the baby woke up, scanning was halted, and 

attempts were made to resettle the subject without taking them out of the patient immobilization system. 

Even when sleeping peacefully, many babies moved and so all data were motion-corrected. In addition, ten 

healthy adults between 22-35 years of age were also included in this study to make a comparison with the 

infants. The data was provided by the dHCP and HCP, respectively [13]. 

 

3.1.2. Data acquisition 

 

The dHCP data was acquired on a 3T Philips Achieva (running modified R3.2.2 software) using a 

dedicated neonatal imaging system that included a neonatal 32 channel phased array head coil [73]. A 

spherically optimized set of directions on four shells (b = 0 s/mm2: 20; b = 400 s/mm2: 64; b = 1000 s/mm2: 

88; b = 2600 s/mm2: 128) [40] was split into four optimal subsets (one per Phase Encoding direction). These 

directions were then spread temporally taking motion and duty cycle considerations into account. If the baby 

woke up during the diffusion scan, the acquisition could be halted and restarted (after resettling the subject) 

with a user-defined overlap in acquired diffusion weightings [74]. The acquired resolution was 1.5x1.5 mm, 

3 mm slices with 1.5 mm overlap and a 3800 ms TR and 90ms TE. 

The HCP data was acquired on the Connectome Skyra, which is a customized 3T Siemens Skyra 

platform with 100 mT/m gradients for diffusion encoding. Each dMRI session led to the acquisition of DW 

data that consisted of four shells (b=0 s/mm2, b=1000 s/mm2, b=2000 s/mm2, and b=3000 s/mm2), with each 

one acquired once with right-to-left and left-to-right phase encoding polarities [75]. The diffusion directions 

were obtained using a toolbox available from INRIA [76] that returns uniformly distributed directions in 

multiple q-space shells (90 DW directions), except for the b=0 s/mm2 shell (18 DW directions). A spin-echo 

echo planar imaging sequence was used for this acquisition, with a 5520 ms TR, 89.5 ms TE, 210x180 (RO 

x PE) FOV, 1.25 mm isotropic resolution. 

The dMRI data of both dHCP and HCP was downloaded in its already pre-processed format, which 

did not require any additional step. 

 

3.2. Automatic estimation of the number of tissue types 

 

3.2.1. FA and MD extraction and distribution 

 

In this project, all the data was processed in ExploreDTI [77], a graphical toolbox for dMRI and fiber 

tractography. From the four available shells in the DW data, only two were selected (b=0 s/mm2, b=1000 

s/mm2), as well as the corresponding DW directions for both the dHCP and HCP data. 
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Since different tissue types will likely have different FA and MD, the values of these parameters for 

all the neonatal and adult brains were also extracted with ExploreDTI to analyze their distribution of values 

across the whole brain. To do this, we computed histograms for both the FA and MD maps containing all 

voxels across the brain and looked at their frequency distribution. 

The model used to obtain the FA and MD maps in ExploreDTI was the DTI model. The reason why 

only two shells were selected was due to this model requirements, since it only works with limited DW data 

and the values of the other shells were too high and would lead to restriction effects that would bias the 

estimates. Moreover, above b=1000 s/mm2 the contribution of CSF would not be visible in the histograms. 

 

3.2.2. Gaussian Mixture Model 

 

A mixture model is a probabilistic model that can distinguish different classes present in a given data, 

by representing the probability distribution of the measurements in that data. These models perform 

statistical assumptions about the properties of the different classes, based only on the information that is 

given by the data. Therefore, it is possible to identify different classes in the data without requiring prior 

information about a specific measurement. 

The gaussian mixture model (GMM) is a parametric probability density function represented as a 

weighted sum of M component Gaussian densities, where each component is defined by its mean and 

covariance [78]. It can be given by the equation, 

 

𝑝( 𝑥 ∣ λ ) = ∑ 𝑤𝑖 𝑔( 𝑥 ∣∣ μ𝑖, Σ𝑖 )𝑀
𝑖=1     (3.1) 

 

where x is a D-dimensional continuous data vector (i.e. measurements), 𝑤𝑖, i = 1, . . . , M, are the mixture 

weights, and 𝑔( 𝑥 ∣∣ μ𝑖, Σ𝑖 ), i = 1, . . . , M, are the component Gaussian densities. Each component density 

is a D-variate Gaussian function of the form, 

 

𝑔( x ∣∣ μ𝑖 , Σ𝑖 ) =
1

(2π)𝐷/2|Σ𝑖|1/2 exp {−
1

2
(x − μ𝑖)′Σ𝑖

−1(x − μ𝑖)}  (3.2) 

 

with mean vector 𝜇𝑖 and covariance matrix Σ𝑖. The mixture weights satisfy the constraint ∑ 𝑤𝑖  =  1𝑀
𝑖=1 .  

To achieve better modeling, the GMM uses a discrete set of Gaussian functions, each one with a 

specific mean and covariance. Thus, the individual component densities can model underlying classes in 

the data [78]. 

Taking these characteristics into account, the GMM was applied to the FA and MD histograms, to 

decompose the data into classes (tissue types), using MATLAB R2018a. Furthermore, it was also relevant 

to understand if these maps could give information about the selected types of tissues present in the brain, 

i.e. if that information could be specific to each of the identified tissues. 

 

3.2.3. Bayesian information criterion 

 

After applying the GMM to the data, it was important to determine the ideal number of fitted Gaussians 

for the FA and MD maps. To do this, the Bayesian information criterion (BIC) was computed for each 

model, which was characterized by a certain number of Gaussians. 
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The BIC is a commonly used tool in model selection, mainly because of its computational simplicity 

and efficient performance [79]. The computation of the BIC is based on the log-likelihood [80], which 

measures the goodness of fit of a model and does not require prior information. 

The basic principle is to describe how well the model fits a series of observations and to measure the 

difference between the observed and expected values of the model [79]. This method assigns a score to each 

model, and the best model is represented by the minimum BIC value [79]. The BIC can be given by the 

following equation: 

 

BIC = 𝑘 ln(𝑛) − 2 ln(�̂�)     (3.3) 

 

where n is the number of observations, k is the number of parameters and �̂� is maximized value of the 

likelihood function of the model. 

If the model errors are independent and uniformly distributed according to a normal distribution, the 

BIC can be given by equation (3.4), where the −2 ln(�̂�) term is substituted by 𝑛 ln(σ𝑒
2̂) and  σ𝑒

2̂ is the error 

variance. 

 

BIC = 𝑛 ln(σ𝑒
2̂) + 𝑘 ln(𝑛)     (3.4) 

 

The number of parameters k (number of fitted Gaussians) of the studied models increased gradually, 

leading to a continuous decrease of BIC. Not being possible to find a minimum value for BIC to select the 

best models, a percentage of change between the BIC of each model was determined. A threshold of 1% 

was applied to select the best models for the FA and MD maps, using MATLAB R2018a. For this case, the 

percentage change can be given by Equation (3.5), where i is the model number. 

 

 Percentage change =
Δ𝐵𝐼𝐶

𝐵𝐼𝐶𝑖
=

𝐵𝐼𝐶(𝑖+1)−𝐵𝐼𝐶𝑖

𝐵𝐼𝐶𝑖
× 100   (3.5) 

 

A number of classes based on the ideal number of gaussians were then created for the best FA and MD 

model (Figure 3.1). Each class represented a type of tissue, defined by the mean and standard deviation of 

each gaussian. 

 

 

 

Figure 3.1: Schematic representation of the iterative Gaussian fit process and selection of the best fit according to the BIC. 
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The next step was to assign one of the selected classes to every voxel. For this, the probability of a 

voxel belonging to each one of the selected Gaussians was calculated for FA and MD. 

Then, the three best combinations of the FA and MD classes were selected based on the frequency with 

which each combination occurred. The choice of three classes was conventional and not optimal, since the 

point was to represent the three main tissues of the brain (WM, GM and CSF). Every class was defined by 

the mean and standard deviation of the respective FA and MD Gaussians. Lastly, spatial maps of the brain 

with the final classes were created using MATLAB R2018a. 

 

3.3. Performing spherical deconvolution with the optimized classes 

 

3.3.1. Resampling 

 

In this second part of the project, all four available shells in the DW data were used, as well as the 

corresponding DW directions for datasets. Because of its large size, the data was resampled to speed up the 

computation process. However, this resampling does not affect the results of this work. The resampling was 

performed in ExploreDTI, changing the resolution of the data to 2 mm isotropic. 

Resampling data usually requires sampling between the centers of voxels using interpolation methods. 

The quality of the resampling result depends heavily on the quality of these interpolation methods. In 

ExploreDTI, the three available methods of interpolation for resampling are the nearest neighbor, trilinear 

and B-spline. 

The nearest neighbor  method is the simplest since it takes the value of the closest voxel to the desired 

point. Although this allows the preservation of the original voxel intensity, the final image will have much 

lower quality compared to the original. The trilinear interpolation is slower than the previous one and has 

led to the loss of high-frequency information from the image. Despite this, the final images have better 

quality than the ones acquired through the nearest neighbor method. 

Finally, the B-spline method models an image as a linear combination of basis functions, in this case, 

B-spline functions. Before resampling the data, an image composed of coefficients is formed, thus involving 

a very fast deconvolution process [81], [82]. When resampling with this interpolation method, it is crucial 

to compute the right combination of basis functions for each point (local convolution). Since the images are 

initially transformed before applying local convolution, this interpolation method will lead to a much more 

efficient resampling [83]. Therefore, the interpolation method chosen to resample the data was the B-spline. 

 

3.3.2. Application of GRL to the data 

 

The GRL method requires the definition of several classes and how to define them. Considering the 

three main tissues in the brain (WM, GM and CSF), the definition of the RF of GM and CSF in the GRL 

method is based on FA and MD values taken from literature [12], whereas the WM RF is determined from 

the data itself (Section 2.6.3). 

In this work we take GRL a step further by providing an automatic estimation of the optimal FA and 

MD values that represent each of these tissue types (Section 3.2). Therefore, the RFs present in the 

deconvolution matrix H of GRL will be defined with FA and MD values automatically estimated from the 

data itself. This approach will be addressed as “GRL-auto” (automatic class detection). 
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3.4. Analysis 
 

The dHCP and HCP data were fit with GRL and GRL-auto using the above-described H-matrix 

(Section 3.3.2) to evaluate the effect on the fractional maps. The signal fractions estimated with GRL-auto 

were compared to those derived with GRL. The WM FODs obtained with GRL-auto were compared to 

those derived with GRL in crossing fiber regions, for both datasets. The number of peaks detected with GRL 

and GRL-auto were also analyzed, as well as the angular deviation between them. After visual inspection 

of the dHCP results, 0.1 and 0.3 were chosen as the peak threshold values for GRL and GRL-auto, 

respectively, where the peak threshold is considered the minimum amplitude of a “genuine” peak. The peak 

threshold for the HCP data was set to 0.1 for both methods. Lastly, whole brain deterministic fiber 

tractography was performed in ExploreDTI with the derived FODs for both GRL and GRL-auto on the 

dHCP dataset. This procedure was performed on both methods, using angle-threshold 30º, step size equal 

to half of the voxel-size, with seed points evenly sampled in the brain volume 2 mm3 isotropic.  
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4. Results 
 

4.1. Tissue types selection 

 

This first part of the results concerns the automatic detection of the number of tissue types and is divided 

into three parts: (1) Presentation of the distribution of FA and MD values of the dHCP and HCP data through 

histograms; (2) The Gaussian fit of the FA and MD maps for both datasets, where these fits are represented 

in the histograms and their relationship with the BIC shown; (3) Spatial maps of the brain using the final 

assigned tissue types for FA and MD as well as the joint spatial map of FA and MD, where boxplots of 

these classes for both datasets are also presented. 

 

4.1.1. FA and MD histograms 

 

As described in Section 3.2.1, histograms were computed to have a visual inspection of the range and 

distribution of the FA and MD values in the brain of neonates and adults. For FA, the dHCP data showed a 

normal distribution of the values, varying approximately between 0.02 and 0.6. As can be seen in Figure 

4.1, the FA frequency distribution is quite similar among all dHCP subjects. The MD values were between 

0.0005 mm2/s and 0.004 mm2/s, and the respective histogram had a normal distribution with a long right 

tail. The MD frequency distribution was also very similar across all dHCP subjects. (Figure 4.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Distribution of FA values for one dHCP subject (left) and for all dHCP subjects (right). 
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Regarding the HCP data, FA histograms did not show a normal distribution of the values like the dHCP 

(Figure 4.3). Indeed, the values presented a wider interval, varying approximately between 0.02 and 0.9, 

and looked very similar among all subjects. The MD values of the HCP data were between 0.00045 mm2/s 

and 0.003 mm2/s, and the respective histogram had a normal distribution with a long right tail, very similar 

to the dHCP MD histogram, across all HCP subjects (Figure 4.4). 

   

(mm
2
/s) (mm

2
/s) 

Figure 4.2: Distribution of MD values for one dHCP subject (left) and for all dHCP subjects (right). 

Figure 4.3: Distribution of FA values for one HCP subject (left) and for all HCP subjects (right). 
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4.1.2. Class selection 

 

After applying the GMM to the dHCP and HCP data (Section 3.2.2), the optimal number of Gaussians 

was selected based on the BIC values of each model. The BIC of the first three models is shown in Table 

4.1. The values decrease from one model to the next due to the increasing number of parameters, as would 

be expected. 

To choose the best model for FA and MD, the percentage of change between the BIC of each model 

was calculated for a 1% threshold, as described in Section 3.2.3, and is shown in Table 4.2. Regarding the 

BIC values of the FA models, both datasets showed a higher difference from the first to the second model 

in comparison with the difference between the second to the third model. For MD, the difference between 

the BIC values of the second and third models was below the 1% threshold, therefore are not presented in 

Table 4.2. It can also be noticed that the differences between the FA and MD models were smaller for dHCP 

data than for HCP data. 

   

Table 4.1: BIC values of FA and MD for each gaussian model of all dHCP and HCP subjects. 

  

 

 

 

 
BIC FA ( Mean ± STD) BIC MD ( Mean ± STD) 

 
1st Model 2nd Model 3rd Model 1st Model 2nd Model 3rd Model 

Neonates 
-3,82E+05 ±  

4,92E+04  

-4,57E+05 ±  
5,09E+04  

-4,65E+05 ±  
5,22E+04  

-2,45E+06 ±  
2,92E+05  

-2,61E+06 ±  
3,22E+05  

-2,62E+06 ±  
3,22E+05  

Adults 
-4,34E+05 ±  

7,78E+04  

-7,15E+05 ±  
9,18E+04  

-7,68E+05 ±  
9,77E+04  

-9,02E+06  ±  
1,06E+06  

-9,99E+06 ±  
1,17E+06 

-1,00E+07 ±  
1,18E+06  

(mm
2
/s) (mm

2
/s) 

Figure 4.4: Distribution of MD values for one HCP subject (left) and for all HCP subjects (right). 
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Table 4.2: Change in percentage of the BIC values between each FA and MD model, for all dHCP and HCP subjects. 

 

 

 

 

 

Tables 4.1 and 4.2 show that, for all dHCP and HCP subjects, the ideal number of Gaussians is three 

for FA and two for MD. Therefore, Gaussian fits with the corresponding number of classes of FA and MD 

were computed over the histograms of the neonates and adults (Figures 4.5 to 4.8). 

 

  

  BIC FA change % ( Mean ± STD) BIC MD change % ( Mean ± STD) 

 1 - 2 2 - 3 1 - 2 

Neonates 19.97 ± 8.52 1.78 ± 0.41 6.47 ± 1.55 

Adults 65.97 ± 9.94 7.38 ± 0.98 10.72 ± 1.04 

Gaussian fit of FA for one dHCP subject 

Figure 4.5: Fit of the 3 selected gaussians to the FA histogram of one dHCP subject. 
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Gaussian fit of MD for one dHCP subject 

(mm
2
/s) 

Figure 4.6: Fit of the 2 selected gaussians to the MD histogram of one dHCP subject. 

Gaussian fit of FA for one HCP subject 

Figure 4.7: Fit of the 3 selected gaussians to the FA histogram of one HCP subject. 



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

  

Gaussian fit of MD for one HCP subject 
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2
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) 
Figure 4.8: Fit of the 2 selected gaussians to the MD histogram of one HCP subject. 

Figure 4.9: Boxplot of FA (left) and MD (right) mean values of each class for all dHCP subjects. 
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Figure 4.10: Boxplot of FA (left) and MD (right) mean values of each class for all HCP subjects. 
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4.1.3. Spatial maps 
 

Spatial maps of the brain with the chosen final classes can be seen below. Figures 4.11 to 4.14 show 

the spatial maps of the dHCP data and Figures 4.15 to 4.18 show the spatial maps of the HCP data, for FA 

and MD. Figure 4.12 highlights the different stages of WM maturation typical of the neonatal brain. The 

regions colored in red (Class 1) are myelinated WM that maturates first, since these regions are responsible 

for the core functions of the brain and are the first to maturate, whereas the regions colored in light blue 

(Class 2) are non-myelinated WM, which develops later. By having two stages of WM maturation in the 

dHCP data, the regions colored in dark blue will correspond to two tissue types, GM and CSF (Class 3). All 

dHCP subjects presented very similar spatial maps (Figure 4.11). 

 

 

 

 

 

 

 

   

 

 

  

Class 3 

Class 1 

Class 2 

Class 3 

Class 1 

Class 2 

Figure 4.11: Spatial maps of the classes derived from the FA histogram fit regarding all dHCP subjects. 

Figure 4.12: Spatial map of the classes derived from the FA histogram fit for one dHCP subject. 
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Class 2 

Class 1 

Class 2 

Class 1 

Figure 4.13: Spatial map of the classes derived from the MD histogram fit for one dHCP subject. 

Figure 4.14: Spatial maps of the classes derived from the MD histogram fit regarding all dHCP subjects. 
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The FA spatial map of the HCP data (Figure 4.15) shows the WM in red as one single class (Class 1) 

since this tissue is fully maturated as would be expected. Light blue islands (Class 2) can be seen in WM 

regions and around the ventricles. Class 2 is likely to also be WM, whereas the dark blue regions correspond 

to GM and CSF. All dHCP subjects presented very similar spatial maps (Figure 4.16).  

Class 3 

Class 1 

Class 2 

Class 3 

Class 1 

Class 2 

Figure 4.16: Spatial map of the classes derived from the FA histogram fit regarding all HCP subjects. 

Figure 4.15: Spatial map of the classes derived from the FA histogram fit for one HCP subject. 
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The MD spatial maps of both datasets (Figures 4.13 and 4.17) do not show a lot of information, since 

the number of defined classes for MD was two for both. The regions colored in dark blue (Class 1) 

correspond to WM and GM whereas the regions colored in light blue (Class 2) correspond to CSF. Both 

datasets showed very similar spatial maps across all subjects, as it can be seen in Figures 4.14 and 4.18. 

Furthermore, Figures 4.11, 4.14, 4.16, and 4.18 show that all maps make sense with anatomical 

correspondence.  

Class 1 

Class 2 

Class 2 

Class 1 

Figure 4.18: Spatial map of the classes derived from the MD histogram fit regarding all HCP subjects. 

Figure 4.17: Spatial map of the classes derived from the MD histogram fit for one HCP subject. 
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Figures 4.19 and 4.20 show a comparison between the spatial maps of the dHCP and HCP subjects for 

FA and MD, respectively. These two figures present a visual inspection of the differences between the tissue 

types on both datasets and how different the brain structure is in these two stages of age. The significant 

differences in WM regions between dHCP data and HCP data should be highlighted (Figure 4.19). 

Furthermore, these results demonstrate the efficiency and consistency of this automatic class selection 

method across all subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Class 3 

Class 1 

Class 2 

Figure 4.19: Spatial map of the classes derived from the FA histogram fit for five dHCP subjects (top) and five HCP 

subjects (bottom). 

Class 2 

Class 1 

Figure 4.20: Spatial map of the classes derived from the MD histogram fit for five dHCP subjects (top) and five HCP 

subjects (bottom). 
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Since the ideal number of classes for FA was three and for MD was two, and each voxel is characterized 

by a combination of FA and MD, six classes were created, where each class corresponds to a combination 

of FA and MD mean values that are shown in Table 4.3. All FA and MD classes have very low standard 

deviation values for both datasets, demonstrating the consistency of the automatic selection of classes. 

Figures 4.21 and 4.22 show the brain spatial maps of both datasets using the six classes. These maps make 

some sense with anatomical correspondence, but some of the classes do not correspond exactly to the tissues 

present in the brain. 

 

Table 4.3: FA and MD mean values of the dHCP and HCP subjects for each class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FA ( Mean ± STD) MD x 10-3 ( Mean ± STD) [mm2/s] 

 
1st Class 2nd Class 3rd Class 1st Class 2nd Class 

Neonates 
0.39 ± 0.04 

 

0.21 ± 0.008 

 

0.13 ± 0.007 

 

1.18 ± 0.02 

 

2.02 ± 0.02 

 

Adults 
0.42 ± 0.009 

 

0.18 ± 0.008 

 

0.08 ± 0.006 

 

1.00 ± 0.009 

 
1.54 ± 0.08 

Class 3 

Class 1 

Class 2 

Class 4 

Class 6 

Class 5 

Figure 4.21: Spatial map of the classes derived from the joint fit of the FA and MD 

histograms regarding all dHCP subjects. 
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Class 3 

Class 1 

Class 2 

Class 4 

Class 6 

Class 5 

Figure 4.22: Spatial map of the classes derived from the joint fit of the FA and 

MD histograms regarding all HCP subjects. 
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4.2. GRL with the optimized classes 

 

The second part of the results concerns the application of GRL using the best three combinations of 

classes from the six available (Figures 4.21 and 4.22), as well as a comparison between the standard GRL 

method and the GRL-auto method proposed in this work. As mentioned in Section 3.2.3, these classes were 

selected based on the frequency with which each combination occurred. Therefore, this section is divided 

into three parts: (1) dHCP and HCP signal fraction maps associated with the models of WM, GM, and CSF, 

using GRL and GRL-auto; (2) FOD representation in several brain regions of the dHCP and HCP subjects, 

using GRL and GRL-auto; (3) Fiber tractography maps of the neonatal and adult brains, also using GRL 

and GRL-auto. 

 

4.2.1. Signal fraction maps 

 

Figures 4.23 and 4.24 show an example of an axial slice of the signal fraction maps associated with the 

models of WM, GM and CSF estimated with GRL and with GRL-auto, for one HCP and one dHCP subject, 

respectively. The values of WM, GM, and CSF fractions were plausible and the maps were in line with the 

expected anatomy and looked consistent on both datasets (Figures 4.23 to 4.28). Regarding the signal 

fraction maps of the HCP data, it can be seen that there is almost no difference between the GRL and the 

GRL-auto since both methods provide very similar maps (Figure 4.23). 

      

Figure 4.23: Signal fraction maps of WM, GM and CSF estimated with GRL and GRL 

- auto, for one HCP subject. 
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models of WM, GM and CSF 

Difference 
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In the dHCP signal fraction map (Figure 4.24), there are some notable differences. The CSF map 

presented by the GRL method is very overestimated since in some regions the values are almost one, 

whereas the estimation of this map with GRL-auto looks more plausible anatomically. The WM map 

estimated with GRL-auto looks good and similar to the one estimated with GRL. Some primary tracts like 

the corpus callosum and the corticospinal tract have a value of one on the map, so they are highly anisotropic. 

In the GM map, the contrast between WM and GM is more visible in the GRL method. The visual inspection 

of the neonatal GM fraction map shows that the rest of the brain has another anisotropic component in the 

intermediate range. 

 

  

Figure 4.24: Signal fraction maps of WM, GM and CSF estimated with GRL and 

GRL - auto, for one dHCP subject. 
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Figures 4.25 and 4.26 show the signal fraction maps of five HCP subjects, estimated with the GRL 

and with GRL - auto, respectively. All maps were in line with the expected anatomy. 

  

f
WM

 f
GM

 f
CSF

 

Signal fraction maps of five HCP subjects associated to the models 

of WM, GM and CSF using GRL 

0 

1 

Figure 4.25: Axial slice of the signal fraction maps of WM, GM and CSF estimated with GRL, 

for five HCP subjects. 
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Signal fraction maps of five HCP subjects associated to the models 

of WM, GM and CSF using GRL – auto 

0 

1 

Figure 4.26: Axial slice of the signal fraction maps of WM, GM and CSF estimated with GRL – 

auto, for five HCP subjects. 
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Figures 4.27 and 4.28 show the signal fraction maps of five dHCP subjects, estimated with the GRL 

and with GRL – auto, respectively. All maps were in line with the expected anatomy. 
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Signal fraction maps of five dHCP subjects associated to the models 

of WM, GM and CSF using GRL 
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Figure 4.27: Axial slice of the signal fraction maps of WM, GM and CSF estimated with GRL, for 

five dHCP subjects. 



42 

 

  

f
WM

 f
GM

 f
CSF

 

Signal fraction maps of five dHCP subjects associated to the models of 

WM, GM and CSF using GRL – auto 
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1 

Figure 4.28: Axial slice of the signal fraction maps of WM, GM and CSF estimated with GRL – 

auto, for five dHCP subjects. 
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4.2.2. FOD estimation 

 

The FODs estimated with GRL and GRL – auto for the HCP and dHCP subjects in an example coronal 

slice are shown in Figure 4.29. 

    

Figure 4.29: An example coronal view of the FODs estimated with GRL and GRL - 

auto on one HCP and one dHCP subject with focus on the white matter of the centrum 

semi-ovale. Some voxels of interest where there are differences between both methods 

on the HCP subject are highlighted by white squares. The FODs are colored encoded 

according to the conventional diffusion directional color scheme. 
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Regarding the HCP data FODs, there is almost no visible difference between the two methods. 

Nonetheless, there are some voxels highlighted by white boxes where a few differences between the two 

methods can be noticed. 

Figure 4.30 shows the FODs estimated with GRL and GRL-auto in a crossing fiber region for one 

dHCP subject. In the zoomed FODs (yellow box) estimated with GRL-auto, there are some white boxes and 

circles highlighting some voxels of interest. GRL-auto performs better than GRL, providing excellent 

separation of up to three crossing fiber configurations. Furthermore, in GRL-auto it is visible that the white 

circle above represents a FOD that is part of the cingulum bundle, which does not have the same level of 

fiber separation as in the GRL method. It can also be noticed that the white circle below shows a FOD that 

is part of the corpus callosum and is aligned with its direction, which cannot be seen in the same voxel in 

the GRL. More interesting are both white boxes, where multiple voxels containing a crossing fiber 

representation are highlighted. 

 

  

Figure 4.30: FODs estimated with GRL and GRL - auto on one dHCP subject with focus on some voxels that 

show crossing fiber separation (white circles and boxes). The FODs are colored encoded according to the 

conventional diffusion directional color scheme. 

GRL GRL-auto 
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The spatial maps and the histograms regarding the number of peaks detected in the FODs for GRL and 

GRL-auto are shown in Figure 4.31 and Figure 4.32 for the HCP and dHCP data, respectively. Regarding 

the HCP data, both methods give very similar spatial maps and consequently similar histograms. We noticed 

that the most frequent angle difference detected between both methods is zero degrees. Nonetheless, the 

histogram of GRL-auto shows a slight improvement in the number of three or more peaks detected. We can 

also observe that, on both methods, the number of peaks is mostly one in GM regions and around the 

ventricles, two in WM regions, and three or more in WM regions where there are more crossing fibers. 
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Figure 4.31: Number of peaks detected in the FODs computed with GRL and GRL-auto on the HCP data. A) 

An example coronal slice showing the number of detected peaks; B) Peak frequency in the adult brain. 
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Regarding the dHCP data, the number of detected peaks increased from the GRL to the GRL-auto 

method. The GRL-auto estimated two and three or more peaks in more crossing fiber regions of WM when 

compared to GRL, while estimating fewer voxels where there was only one peak detected. 

 

 

  

Figure 4.32: Number of peaks detected in the FODs computed with GRL and GRL-auto on the dHCP data. 

A) An example coronal slice showing the number of detected peaks; B) Peak frequency in the neonatal 

brain. 
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The frequency distribution of the angle difference between the same FOD peak estimated with GRL-

auto and GRL for the HCP and dHCP data are represented in Figure 4.33 and Figure 4.34, respectively. The 

histogram regarding the HCP data showed almost no difference between both methods since the value of 

angular difference with the highest frequency of occurrence is zero degrees and most values were between 

0º and 0.5º. 
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Figure 4.33: Frequency distribution of the angle between FODs estimated with GRL and GRL-auto in the adult brain. 
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Figure 4.34 show that on the dHCP data there is a significant angular difference between the main FOD 

peak estimated with GRL and GRL-auto. We can see that the most frequent angular differences are between 

2º and 5º, even going up to 10º/15º. 
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Figure 4.34: Frequency distribution of the angle between FODs estimated with GRL and GRL-auto in the neonatal brain. 
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4.2.3. Tractography 

 

Given the fact that GRL is an already established method for fiber tractography on adult data, here we 

focused on the more challenging neonatal data from the dHCP. Thus, tractography was not performed in 

the HCP data. After the FOD estimation, fiber tractography generally requires the definition of termination 

criteria, such as a threshold on the amplitude of the FODs [26]. In this work, the FOD threshold amplitude 

was set to 0.1 on GRL and 0.3 on GRL-auto, the same as the peak threshold of the FOD. Figures 4.35 and 

4.36 show the tractography results on the dHCP data in a coronal and sagittal view, respectively. It can be 

seen that GRL-auto introduces quite some extra spurious fibers but also reconstructs much more genuine 

fibers, including the left and right projections of the corpus callosum in the pre-central gyrus mainly visible 

on the right side of Figures 4.35 and 4.36, which are not visible with GRL (left side). 

 

 

 

 

 

 

Figure 4.35: Coronal view of neonatal brain tractography estimated with GRL (left) and GRL-auto (right). The white 

arrows highlight the left and right projections only visible with GRL-auto. 

GRL GRL – auto 
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Figure 4.36: Sagittal view of neonatal brain tractography estimated with GRL (left) and GRL-auto (right). The white 

arrows highlight some WM bundles only visible with GRL-auto. 

GRL GRL – auto 
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5. Discussion 
 

In this study, a new method is developed to adaptively account for PVE in SD, by automatically 

selecting the number of tissue types that are needed to properly perform GRL in a brain. The complex tissue 

organization of the brain has led to the consideration of multiple tissues in SD methods. Furthermore, it is 

inappropriate to assume the properties of different tissue types to be identical between subjects throughout 

the whole brain since this can lead to spurious FOD reconstructions and bad performance during fiber 

tractography. The method here presented was named “GRL-auto” and allows the modeling of multiple tissue 

types and automatically defines the RF of each tissue type based on FA and MD values. By accounting for 

multiple tissues, properties of GM and CSF can be captured, and PVE reduced. Our results demonstrated 

that the method developed in this study can efficiently determine the number of tissue types needed to 

perform GRL in a brain, based on their FA and MD values, and ultimately improve the quality of the FOD 

estimation and fiber tractography. 

Previously, J. D. Tournier et al. [8] introduced the CSD framework, a method that improves the 

estimated fiber orientations, by adding a non-negativity constraint on the presence of negative values in the 

FOD. However, this method uses the same RF for all fiber populations throughout the brain without 

accounting for PVE, which is not correct since the brain has a complex tissue organization made of multiple 

tissues. Richardson-Lucy SD was introduced by Dell’Acqua et al. [43] and is a method that avoids artifacts 

that may derive from the SH representation by extracting the FODs directly from the signal domain. Later 

on, Dell’Acqua et al. also presented the dRL framework [11] to reduce the number of spurious peaks in the 

FOD due to PVE. This work demonstrated the importance of accounting for the isotropic contributions of 

CSF in SD methods. The dRL method [11] estimates the FOD by defining a deconvolution matrix H that 

contains the RFs of each tissue and converting the dMRI signals into SH. However, this estimation can only 

be made from single-shell dMRI data, which like CSD [8] does not take into account multiple tissue classes. 

Jeurissen et al. [40] introduced the multi-shell CSD (MS-CSD) framework by applying multi-shell dMRI 

data on CSD and modeling particularly the contributions of GM and CSF. This showed that it is possible to 

improve the accuracy of the FOD estimations as compared to SD methods that only use single-shell 

diffusion MRI data [8], [11]. More recently, Guo et al. [12] used the dRL algorithm to improve the accuracy 

of the FOD estimation by using multi-shell dMRI data and considering multiple tissue types. This led to the 

GRL framework, a method that performs SD in the original signal space instead of in the SH basis [14], 

[30], and uses models with literature values to estimate the RFs rather than estimating them from the data, 

like CSD and MS-CSD [8], [40].  

The method proposed in this study, addressed as GRL-auto, has several advantages when compared to 

the previously mentioned SD approaches. 1) This method uses multi-shell dMRI data, thus allowing the 

modeling of multiple tissue classes which overcomes the limitation of CSD and dRL [8], [11]; 2) Unlike 

CSD and MS-CSD, this method does not use SH and therefore can be used with data not distributed in shells 

[8], [12], [40]; 3) This method can automatically determine the number of tissue classes directly from the 

data, based on their FA and MD values. This makes it simple, fast, and more likely to be adapted to diverse 

datasets than methods relying on user input [12]; 4) Unlike some methods that only account for the three 

main tissue types of the brain (WM, GM, and CSF) [12], [40], GRL-auto can account for multiple tissues. 

This allows overcoming the inaccurate estimations that might happen if changes in the chosen tissues occur. 

Our results estimated that the ideal number classes for FA was three and for MD was two (Tables 4.2 

and 4.3) for both HCP and dHCP data. Furthermore, the spatial maps of the dHCP and HCP data with the 

applied selected classes show that in the dHCP data different stages of WM can be observed due to the 
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typical maturation of the neonatal brain (Figure 4.12). The regions colored in red correspond to myelinated 

WM that maturates first, since these regions are responsible for the core functions of the brain, whereas the 

regions colored in light blue are non-myelinated WM, which develops later. Therefore, from the three FA 

classes that were estimated in this work, two of them correspond to WM at different maturation stages in 

the dHCP data. This is in line with the work introduced by M. Pietsch et al. [69], which suggested that at 

least two components are required to accurately model the WM signal in neonates, leading to the use of two 

anisotropic RFs. By having two stages of WM maturation in the dHCP data, the regions colored in dark 

blue will correspond to two tissue types, GM, and CSF. This is consistent with what has been found 

previously [69] in adult data, where the main feature that allows the separation of different RFs is the fact 

that different tissue types have sufficiently distinct b-value dependencies, giving clear separation of the 

signal into WM, GM, and CSF. However, this separation does not occur naturally in neonates. Nonetheless, 

the WM signal characteristics exhibit a strong age dependence, thus allowing to observe the different 

maturation stages in the WM. We also described the results of the FA spatial map regarding the HCP data 

(Figure 4.15), which show the WM in red as one single class since this tissue is fully maturated as would 

be expected. The light blue islands and regions are crossing fiber regions in the WM where DTI fails, leading 

to the attribution of a different class. Around the ventricles, there are also some imperfections due to PVE. 

These results go beyond previous reports [40], showing that WM can be decomposed in two classes in adult 

data since in crossing fiber regions the average FA value of WM will likely be different. Furthermore, if we 

sum the mean FA values of class one and two of Table 4.3 regarding HCP data, we observe that it gives a 

total of 0.6, which is slightly below the average reported literature value of FA in all WM regarding the 

adult brain (0.7) [40]. 

The signal fractions estimated with GRL-auto on the HCP data, shown in Figure 4.23, are in line with 

the expected anatomy and show high correspondence to the tissue classes included in the modeling, similarly 

to what was previously shown with MS-CSD [40]. However, these fraction maps showed no apparent 

differences when compared to the standard GRL method [12]. Nonetheless, in the dHCP data, there are 

some notable differences. The CSF map presented by the GRL method seems overestimated given that in 

some regions the values are almost one (Figure 4.24). Since such amount of free water in the brain is 

unplausible, the CSF map estimated with GRL-auto looks more likely to reflect the underlying in vivo 

physiology and is considered as the most correct in this case. Bearing in mind that we are disentangling the 

truly anisotropic components, the WM map estimated with GRL-auto is in line with the one estimated with 

GRL. Some primary tracts like the corpus callosum and the corticospinal tract have a value of one on the 

map, which means they are highly anisotropic. Nevertheless, in the GM map, the contrast between WM and 

GM is more visible in the GRL method. This is in line with the work of M. Pietsch et al., where it was 

shown that the variability in the mean signal curves between different WM structures is higher than the 

difference between WM and GM, which makes the separation of WM and GM more difficult [69]. The 

visual inspection of the neonatal GM fraction map (Figure 4.24) shows that the rest of the brain has another 

anisotropic component in the intermediate range, possibly because the development of the brain is still in 

progress. As a result, this is reflected in the GM map rather than in the CSF map. 

Regarding the results of the HCP data FODs (Figure 4.29), there are very few visible differences 

between our method and the original formulation introduced by Guo et al.. When comparing our results to 

the previously mentioned study [12], the results regarding the number of peaks detected in the FODs of 

HCP data (Figure 4.31) and the angular difference between the main FOD peak (Figure 4.33) confirmed the 

similarity between the two methods. Although the GRL-auto method estimates the number of tissue classes 

automatically and defines their RFs based on the FA and MD values of each of the selected classes, in adult 
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data this is not sufficient to show significant differences when compared to the GRL method [12]. However, 

our results in the dHCP data showed that the GRL-auto performs better than the GRL, providing excellent 

separation of up to three crossing fiber configurations (Figure 4.30). In the proximity of the ventricles, GRL-

auto visibly reduces the estimation uncertainty of the FODs and also the effect of PVE on the WM FOD, 

which is in line with what has already been reported in other studies [11], [12], [40]. These findings are 

supported by the results of the estimated number of FOD peaks (Figure 4.32) and the angular difference 

between the main FOD peak (Figure 4.34), demonstrating that GRL-auto can efficiently resolve multiple 

peaks in crossing fiber regions. However, it should be noted that after a visual inspection of the dHCP data 

spatial maps, we decided to use a different FOD peak threshold value than what is reported in the standard 

GRL method [12]. 

In this study, we focused on deterministic fiber tractography since it highlights the properties of the 

reconstructed FOD [12], [26]. GRL, alongside other studies [40], is already well established in fiber 

tractography on adult data [12], therefore our work focused on the more challenging neonatal data from the 

dHCP data. From the tractography results presented in this work (Figures 4.35 and 4.36) it is clear that, 

although the GRL-auto introduces quite some extra spurious fibers, it also reconstructs much more genuine 

fibers, such as the left and right projections of the corpus callosum in the pre-central gyrus, mainly visible 

on the right side of Figures 4.35 and 4.36, which are not visible with the standard method GRL. Overall, 

these results are in accordance with findings reported by other studies, which have shown that the 

characterization of the FOD is extremely important to get precise results in tractography [7], [12], [26], 

[44]–[46]. 

Nonetheless, this work has some limitations that should be acknowledged. Since the automatic 

detection of the number of tissues is based on the DTI model, it requires the acquisition of a DTI shell, 

which is not always done for tractography [12], [40]. Furthermore, despite being able to model and define 

multiple classes, this study has the constraint of a maximum number of three classes. The choice of three 

classes was dictated by the conventional choice in the field to represent only the three main tissues of the 

brain (WM, GM, and CSF). The definition of more classes might be useful, especially in presence of a 

disease affecting the brain non homogeneously, eventually leading to the need for a fourth "pathologic" 

tissue type. For simplicity, in this GRL extension, we have only accounted for one anisotropic class and N 

isotropic classes. Ideally, this work could eventually foster multiple anisotropic classes like the work of M. 

Pietsch et al. [69], or of De Luca et al. [84], allowing the investigation of differences in different WM 

structures. 

In summary, the presented method showed good performance and consistency on both adult and 

neonatal dMRI datasets regarding the automatic selection of the number of tissue types that are needed to 

properly perform GRL in a brain, based on their FA and MD values. Furthermore, this method improved 

the FOD estimation by better resolving crossing fiber regions and a significant angular difference between 

the main FOD peaks when compared to GRL. Finally, this method demonstrated improvement in fiber 

tracking which can ultimately lead to a better understanding of the human brain and its development, 

especially if applied in neonates.  
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6. Conclusion 
 

Over the last years, the development of the human brain has been studied, mostly through fiber 

tractography, a technique that allows the reconstruction of WM bundles that connect different brain regions, 

thus allowing the study of brain connectivity using dMRI data. In this study, we developed a method that 

automatically determines the number of tissue types that are needed to properly perform CSD in a brain, 

based on their FA and MD values, given multi-shell dMRI data. 

Our results showed efficiency regarding the automatic selection of the number of tissue types, as well 

as consistency on both dHCP and HCP data. We have shown that, in neonates, this method can disentangle 

signal fractions from multiple tissue components, such as WM, GM, and CSF. Besides the angular 

resolution, identifying the correct number of peaks is crucial when estimating the number of  FODs. When 

PVE become prominent as, for example, around the ventricles, this method estimated high-quality FODs in 

WM by reducing the number of spurious peaks and estimating more FOD peaks in crossing fiber regions, 

as compared to standard methods. All these results led to an improvement in the tractography of the neonatal 

brain, resulting in more plausible fiber orientations which can lead to a better understanding of the human 

brain and its development, which was ultimately the main goal. 

This method has the advantage of being automatic, simple, fast, and is more likely to scale better to 

diverse datasets than methods relying on user input. This seems to be the case in the dHCP data, where a 

better separation of crossing fibers is achieved. 

This study has shown that it can contribute to the improvement of tractography and potentially to a 

better study of the brain, including its maturation and connectivity. Taking into account more tissue classes, 

this method could open new possibilities to study brain disease since it has the potential to consider the 

“pathologic” class, and thus improve the analysis of data regarding patients with brain lesions.  
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