
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Hardening an Open-Source Governance Risk and Compliance
Software: Eramba

Miguel Francisco Duarte Pinheiro Ramos Chaves

MESTRADO EM SEGURANÇA INFORMÁTICA

Dissertação orientada por:
Prof. Doutor Mário João Barata Calha

2020

Acknowledgments

First of all, I would like to thank my brother Francisco, mother Deolinda, father Francisco and
grandfather Manuel for guiding me through life.

To Doctor Domingos Coiteiro, Doctor Nuno Simas and the whole team of neurosurgery of
Hospital Santa Maria for saving my life in 2015.

A huge thank you to my girlfriend Matilde for motivating me this year to reach my goals
through love, strength, patience, support, determination, and encouragement.

I would like to express my gratitude to Professor Mário Calha. More than being my counsellor,
Professor guided and inspired this project by giving relevant advice, observations and always being
available to help and contribute to this project’s success.

Thank you to all my friends from Faculdade de Ciências da Universidade de Lisboa especially
Rui Pereira, Francisco Castel-Branco, Gonçalo Miranda and Daniel Pires.

Thank you to André, Sebastião, Rafael and Little Tooth.
Thanks to André Ginja and Paulo Rugeiro.
Thank you to all my friends from Saint Cross. Thank you to Tomás Bastos, my dude and my

sidekick. Thank you to all my friends from Colégio Manuel Bernardes.
From EY, huge thanks to everyone from the Cybersecurity team, especially to Ricardo Dionísio

for guiding me on this project and giving me the liberty to follow the path of the project as I wanted;
thank you to Rita Cunha; Sérgio Sá; Manuel Oliveira; José Rafael Monteiro and Pedro Monzelo
for giving me the motivation and time to work on this project despite everything being on fire
every day.

Resumo

Lições históricas como Chernobyl, Fukushima ou o colapso da ponte de Mississípi revelam a

vital importância da gestão de risco. Para além de saber gerir o risco, as empresas têm de desenvol-

ver planos para se precaverem e oferecerem resiliência a qualquer ameaça que possam enfrentar,

desde desastres naturais e terrorismo a ciberataques e propagação de vírus. Estes planos são de-

nominados de planos de continuidade de negócio. A crucialidade destes planos e a introdução de

novas leis como Lei Sarbanes-Oxley, Diretiva Europeia 2006/43/EC VIII e recentemente do Re-

gulamento de Protecção de Dados geraram uma maior preocupação e sensibilidade nas empresas

em aglomerar todos estes processos de governança, risco e conformidade (GRC). GRC integra a

implementação da gestão de risco, planos de continuidade de negócio, conformidade com as leis

e boas práticas de auditoria externa e interna. As empresas necessitam de uma ferramenta que

ofereça uma visão global da Governança, Risco e Conformidade. No entanto, estas ferramentas

são por norma dispendiosas, o que faz com que pequenas e médias empresas não tenham meios

para suportar o custo. Consequentemente, estas empresas tendem a adoptar ferramentas de có-

digo aberto, como SimpleRisk, Envelop ou Eramba. Apesar de suportarem o GRC, existem vários

problemas com as aplicações deste tipo, como a falta de manutenção, problemas de migração,

dificuldade de escalabilidade, a necessidade constante de fazer atualizações e a grande curva de

aprendizagem associada.

A Ernst & Young agora conhecida como EY oferece serviços de Consulting, Assurance, Tax

e de Strategy and Transaction para ajudar a resolver desafios mais difíceis dos seus clientes e

criar valor. Para se preparar para uma futura auditoria, um cliente da EY pertencente ao sector

bancário procura ser certificado em ISO/IEC 27001 e ISO/IEC 22301, referentes a Sistema de

Gestão de Segurança de Informação (SGSI) e Sistema de Gestão de Continuidade de Negócio

(SGCN), respectivamente. Adicionalmente, o cliente visa migrar a sua infraestrutura no local para

uma infraestrutura na cloud. Com todos estes fatores em conta, a EY recomendou uma ferramenta

de código aberto de GRC chamada Eramba.

Esta tese propõe um estudo profundo das vulnerabilidades que o Eramba pode oferecer assim

como uma solução para as resolver através de armazenamento em nuvem. Seguindo uma meto-

dologia de pentesting chamada PTES para o estudo de vulnerabilidades foi possível identificar

dez vulnerabilidades sendo quase todas de baixo nível. A metodologia PTES recomenda o uso de

adoção de modelo de ameaças de modo a perceber como os processos estão correlacionados, onde

estão armazenados dados importantes, quais são os principais ativos e como é processado um pe-

dido na aplicação. Para fazer esta modelação foi seguido uma metodologia proposta pela Microsoft

nomeada de STRIDE, esta metodologia é uma mnemónica para Spoofing, Tampering, Repudia-

tion, Information Disclosure, Denial of Service e Elevation of Privilege. A Microsoft propõe um

modelo de ameaças em quatro passos: modelação do sistema através de Data Flow Diagrams;

encontrar ameaças e consequentemente classificá-las através da nomenclatura STRIDE; endereçar

ameaças mitigando e eliminando-as e validar se cada uma foi realmente endereçada com sucesso.

De modo a endereçar estes dois últimos passos e para conjugar com os requisitos da empresa de

migração para armazenamento na nuvem foi desenvolvido uma solução de tornar o Eramba num

container para então usufruir da orquestração de containers que é o Kubernetes. Como resultado,

a partir do trabalho desenvolvido é possível que qualquer organização adapte esta solução de GRC

e consiga hospedar na nuvem sem enfrentar dificuldades. Este trabalho proporcionou analisar a

viabilidade da ferramenta Eramba a longo prazo por qualquer organização e perceber se este é

escalável.

Palavras-chave: Governança, Risco e Conformidade, Continuidade de Negócio

Abstract

Historical lessons such as Chernobyl, Fukushima or the collapse of the Mississippi bridge

showcase the vital importance of risk management. In addition to managing risk, companies must

develop plans to safeguard against and offer resilience to any threat they may face, from natural

disasters and terrorism to cyber-attacks and the spread of viruses. These plans are called busi-

ness continuity plans. The cruciality of these plans and the introduction of new laws such as the

Sarbanes-Oxley Act, European Directive 2006/43/EC VIII and recently the Data Protection Reg-

ulation have generated greater concern and sensitivity in companies, leading them to agglomerate

all these governance, risk and compliance processes (GRC). GRC integrates the implementation

of risk management, business continuity plans, law compliance and good external and internal

auditory practices. Companies need a tool that provides an overall view of Governance, Risk and

Compliance. However, such tools are usually expensive, which means that small and medium-

sized companies cannot afford the cost. Consequently, these companies tend to adopt open source

tools such as SimpleRisk, Envelop or Eramba. Despite being compliant with GRC, there are sev-

eral problems with applications of this type, such as lack of maintenance, migration problems,

difficulty in scalability, the constant need to make updates and the large learning curve associated.

Ernst & Young now known as EY offers Consulting, Assurance, Tax and Strategy and Trans-

action services to help solve more difficult challenges for its clients and create value. To prepare

for a future audit, an EY client within the banking sector seeks to be certified in Business Conti-

nuity and Information Security. Additionally, the client aims to migrate its onsite infrastructure to

a cloud infrastructure. With all these factors in mind, EY has recommended an open source tool

called Eramba.

This thesis proposes an in-depth study of the vulnerabilities that Eramba can face as well as a

solution to solve them through cloud storage. Following a pentesting methodology called PTES

for the study of vulnerabilities it was possible to identify ten vulnerabilities, almost all of which are

low level. The PTES methodology recommends the use of a threat model in order to understand

how processes are correlated, where important data are stored, what are the main assets and how

a request is processed in the application. To make this modeling was followed a methodology

proposed by Microsoft named STRIDE, this methodology is a mnemonic for Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service and Elevation of Privilege. Microsoft

proposes a four-step threat model: modeling the system through Data Flow Diagrams; finding

threats and consequently classifying them through STRIDE nomenclature; addressing threats by

mitigating and reducing them and validating whether each one has actually been successfully

addressed. In order to address these last two steps and to combine them with the company’s

requirements for migration to cloud storage, a solution has been developed to turn Eramba into

a container to then make use of orchestration that is the Kubernetes. As a result, from the work

done it is possible for any organization that is an EY customer to adapt this solution and be able

to host in the cloud without facing difficulties. This project also provided an overview to analyze

if Eramba is secure and scalable.

Keywords: Governance, Risk and Compliance, Business Continuity

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1

1.2 Goals . 4

1.3 Work Plan . 4

1.4 Contributions . 5

1.5 Document Structure . 5

2 Related Work 7
2.1 An overview of Pentesting . 7

2.2 Pentesting Methodologies . 8

2.2.1 Penetration Testing Execution Standard (PTES) 8

2.2.2 Federal Risk and Authorization Management Program Penetration Test

(FEDRAMP) . 10

2.2.3 Council for Registered Ethical Security Testers (CREST) Penetration Test 13

2.2.4 Payment Card Industry Data Security Standard (PCI DSS) Penetration

Testing Guide . 14

2.2.5 Chosen methodology . 16

2.3 Most common Attacks in Web Applications . 16

2.4 Laws and Regulations . 18

2.4.1 Sarbanes-Oxley-Act . 18

2.4.2 European directive 2006/43/EC VIII . 19

2.4.3 General Data Protection Regulation . 19

2.5 Governance Risk and Compliance . 20

2.6 Eramba . 22

2.7 Threat modelling . 24

2.8 Cloud Computing . 25

vii

2.8.1 Requirements for Cloud Computing Architecture 28

2.9 Containers . 29

2.9.1 Docker . 30

2.9.2 Container registries . 31

2.9.3 Container Orchestration . 32

2.10 Kubernetes . 32

3 Eramba Solution Analysis 37
3.1 Eramba threat model . 38

3.2 Vulnerabilities Analysis and Exploitation . 43

3.2.1 Brute-Force Attack . 43

3.2.2 Address Resolution Protocol (ARP) Spoofing 45

3.2.3 Session Hijacking . 47

3.2.4 Unencrypted Communication . 47

3.2.5 Cross-site Request Forgery . 48

3.2.6 Use of components with known vulnerabilities 48

3.2.7 Excessive administrator privileges . 51

3.2.8 Weak Cryptographic Algorithm . 51

3.2.9 Denial of Service . 52

3.2.10 Password Field automatic . 53

3.3 Post-exploitation . 54

4 Eramba Cloud Solution 57
4.1 Requirements Gathering . 57

4.2 Eramba Container . 58

4.3 Architecture of Eramba as Service . 59

4.3.1 Google Kubernetes Engine . 59

4.3.2 Google VPC network . 60

4.3.3 Google Load Balancer . 61

4.3.4 Google Custom Resource ManagedCertificate 61

4.3.5 Google Cloud Armor . 61

4.3.6 Container Optimized Images (COOS) 62

4.3.7 Cloud Identify Access Management (IAM) 62

4.3.8 Security Command Center . 62

4.3.9 Architecture Overview . 62

4.4 Kubernetes Solution Design . 64

4.5 Implementation . 64

4.6 Results . 65

4.7 Discussion . 66

viii

5 Conclusion and Future Work 69
5.1 Conclusion . 69

5.2 Future Work . 70

Bibliography 75

A Eramba modules and functionalities 77

B Eramba Dockerfile 81

C Eramba Kubernetes Solution 83

ix

List of Figures

1.1 Work Plan . 5

2.1 Penetration Testing Execution Standard. 10

2.2 FEDRAMP Penetration Testing. 13

2.3 CREST Penetration testing framework. 14

2.4 PCI DSS Penetration testing framework. 15

2.5 Forrester Wave chart for Enterprise Governance, Risk and Compliance Platforms. 21

2.6 Eramba Problems and Solutions [19]. 23

2.7 Data Flow Diagram Elements. 25

2.8 Cloud Models . 28

3.1 Threat Model. 39

3.2 Eramba Model View Controller. 40

3.3 Authentication Process [20]. 42

3.4 Brute force attack results using Burp Intruder. 44

3.5 HTTP header that show the requests from the client IP to the Eramba host. 45

3.6 Log in request from client to Eramba host. 46

3.7 Packet that show the login was successful. 46

3.8 SYN Flood Attack. 53

4.1 Eramba containerized. 59

4.2 Eramba Kubernetes Solution architecture. 63

4.3 Google Cloud Cost per day. 67

4.4 Google PageSpeed report results . 68

A.1 Organization Module [19]. 77

A.2 Risk Management Module [19]. 77

A.3 Asset Management Module [19]. 78

A.4 Control Catalogue Module [19]. 78

A.5 Compliance Management Module [19]. 79

A.6 Security Operation Module [19]. 79

xi

List of Tables

2.1 Penetration Testing methodologies . 16

2.2 Containers versus Virtual Machines [22]. 29

3.1 STRIDE-per-Element. 38

3.2 STRIDE securities properties violated. 43

3.3 STRIDE iteration result. 54

3.4 STRIDE Threats and Countermeasures mapped with Cloud Services. 55

4.1 Requirements Table . 58

4.2 Mapping Google Cloud features with Vulnerabilities found. 65

4.3 Mapping Google Cloud features with requirements met. 66

A.1 Eramba specifications extracted from Basic GRC relationships [19]. 80

xiii

List of Acronyms

ARP - Address Resolution Protocol

COSO - Committee of Sponsoring Organizations of the Treadway Commission

CREST - Council for Registered Ethical Security Testers

CSP - Cloud Service Provider

CSRF - Cross-site Request Forgery

CVE - Common Vulnerabilities and Exposures

DNS - Domain Name System

DoS - Denial of Service

EY - Ernst and Young

FEDRAMP - Federal Risk and Authorization Management Program Penetration Test

GDPR - General Data Protection Regulation

GKE - Google Kubernetes Engine

GRC - Governance Risk and Compliance

IAM - Identify Access Management

IDS - Intrusion Detection System

ISMS - Information Security Management Systems

ISO - International Organization for Standardization

ITIL - Information Technology Infrastructure Library

IT - Information Technology

JSON - JavaScript Object Notation

NHS - National Health Service

NIST - National Institute of Standards and Technology

OCEG - Open Compliance and Ethics Groups

OSINT - Open Source Intelligence

OS - Operating System

OWASP - Open Web Application Security Project

PCI DSS - Payment Card Industry Data Security Standard

PTES - Penetration Testing Execution Standard

RBAC - Role Based Access Control

SEC - Securities and Exchange Commission

SLA - Service Level Agreements

SOX - Sarbanes-Oxley Act

SSL - Secure Sockets Layer

TLS - Transport Layer Security

VPC - Virtual Private Cloud

WAF - Web Application Firewall

xv

Chapter 1

Introduction

1.1 Motivation

In business, every decision becomes a potential risk and making the right one is what drives

progress.

If a driver is approaching a yellow light he must choose if he goes through or not. By going

through he has to accelerate, risking an accident or a fine. Every time a farmer plants corn he

is facing the risk that the corn may not grow due to a drought or that there will not be demand

for it. Day after day, companies’ headquarters are in physical risk, as fire or gas explosions are a

common hazard that can happen to a building. However, enterprises often have prevention plans

to mitigate the occurrence of these risks such as fire-extinguishers and emergency exit plans.

Considering that risk can be described as the effect of uncertainty on objectives [34], calculat-

ing risk is not an exact science.

Consequently, to properly handle risk, managers must identify, analyse and control threats

to the organization’s capital and earnings, in order to then implement risk-reducing actions and

assess how risk changes over time. This is risk management. Taking into account this paradigm,

risk management plays a vital role in protecting an organization’s assets [53].

New regulations, cultures and values of organizational life demand for systematic risk as-

sessment and competent management, since managing liability is a challenging and continuous

process within any organization.

Since the mid-1990s, risk management underwent a dramatic expansion [62][58]. If before it

was regarded simply as a field of management control, risk management gained momentum as it

became a tool for companies to benchmark. History lessons such as Chernobyl [77], Fukushima

[2] and the Mississippi River Bridge Collapse [52] are some of many events that could have been

mitigated if there had been proper, well-established risk management. Terrorism, cyberattacks,

power outage and network failures frequently cause more harm than expected due to the lack of a

risk management plan. For example, in 2017, National Health Service in the United Kingdom was

hit by WannaCry [26], a global ransomware attack that caused more than 19,000 appointments and

surgeries to be cancelled. The Department of Health had previously developed a plan to respond

1

Chapter 1. Introduction 2

to cyber-attacks, however, as it had never been tested before, it was not clear how to proceed and

what actions should be taken (see Investigation:WannaCry cyber attack and the NHS [26]).

On the other hand, in 2013, the offices of Cantey Technology, an IT company that hosts servers

for more than two hundred clients, were caught on fire due to a lightning strike [71]. Every cable

and piece of hardware was destroyed, yet their clients did not notice any difference in the service

provided. This is because five years before the fire, Cantey had decided to implement a business

continuity plan and move all of their clients’ servers to a remote datacenter with continuous back-

up.

These past happenings, the intensification of auditing and control processes are the blueprints

of what risk management is today.

In addition to risk management, Governance Risk and Compliance (GRC) have a substantial

role in protecting company assets [25].

The Open Compliance and Ethics Group (OCEG) defines Governance Risk and Compliance as

"a capability to reliably achieve objectives (governance) while addressing uncertainty (risk man-

agement) and acting with integrity (compliance)” [4].

Governance describes the establishment of policies and the continuous monitoring of their

implementation, setting the background for risk management. Compliance guarantees that the or-

ganization meets the requirements of the boundaries established in organizational values, policies

and legal requirements.

With the emergence of recent internal and external factors such as government reforms Sarbanes-

Oxley Act [78], European directive 2006/43/EC VIII [21] and General Data Protection Regulation

[56], GRC has become considerably relevant and continues to move up priority-wise in the indus-

try’s agenda. As a result of these legislation, society is more risk-averse than ever [65].

Therefore, decision-making skills are pivotal to thrive and improve better deployment. GRC

systems are a need for the business community, as they supply essential tools for continuous

growth, wise decision-making and better understanding of the full scope of risk [25].

According to OCEG latest GRC Maturity Survey [4], organizations that fail to fully integrate

GRC functions consequently struggle to remain aware of the full scope of embedded risk. The sur-

vey also reports that the GRC Maturity level is below the recommended, since companies overlook

the efficiency of skillfully integrated risk management, business continuity and compliance.

Due to the necessary legal requirements established by the recent government reforms, fre-

quent human intervention is required for the systems to be fully compliant and have effective

controls and policies [7]. Nevertheless, this current process is resource-consuming and fails to

accommodate new needs that may arise from market trends.

The primary intent of GRC systems is to maintain sensitive data, automate risk management

across the organization and communicate the organization’s risk posture to internal and external

groups.

The latest Forrest Waver report [49] displays a chart for enterprise governance, risk and com-

Chapter 1. Introduction 3

pliance platforms. This chart is based on who has the strongest strategy as well as the strongest

current offering, displaying market leaders and their differences.

Recently, Gartner also published a magic quadrant [6] for enterprise governance, risk and

compliance platforms. This quadrant is based on the quality of risk, audit, compliance, policy

and regulatory management. The quadrant also displays who the market leaders are and how they

distinguish from one another.

Since GRC platforms are the basis of risk management and business continuity, they are a

need of the current market.

Forrest Waver and Gartner’s leaders have tools and technology that are able to fully identify

risks across the organization while offering enhanced compliance training, strategic company lev-

els, awareness programs and highly detailed reports. However, they are costly and some companies

cannot afford them.

Small and medium-sized enterprises tend to adopt open-source software due to its lower cost

and price-value ratio. Additionally, companies with higher budgets, tend to adopt open-source

software for then do a post-analysis of their methodologies and verify which software suits them

the most. Systems such as Eramba, Simple Risk, Envelop are examples of the long-established

open-source software used by these companies. However, open-source software bears various

issues such as lack of maintenance, difficult scalability, constant need for updates and the high

learning curve associated.

These various software usually require external security vulnerability assessments also known

as pentesting. Pentest is a methodology with the purpose to circumventing the security function

of a system [16]. It aims to find security weaknesses that may be exploited or not at some extent.

Additionally, these pieces software consume plenty of resources and does not tend to offer any

portability or scalability as their normal setup is done via a virtual machine.

EY (Ernst & Young) is one of the largest professional services networks in the world. It

offers the expertise to capitalize and grow clients’ business through four services lines - assurance,

consulting, tax and transaction advisory services. EY Portugal also assists clients in providing a

methodology along with recommended technologies.

To prepare for a forthcoming audit, a client requested EY advisory services. Due to privacy

reasons its name will remain confidential and will be treated as “organization”. The organization

belongs to the banking sector and handles millions of dollars per day. This organization plays a

crucial role in the economy, so it is important that its operations are resilient and that the effects of

any disruptions in its services are minimised, to maintain confidence in the financial system and the

satisfaction of customers, shareholders and other stakeholders. As a bank, there are innumerable

critical processes for the business. These processes host numerous applications used by millions

of people daily across the globe. Some of these applications use legacy technologies which handle

sensitive and personal data. Therefore, it is necessary to administer these technologies in a subtle

approach. Currently, the organization seeks to be certified in Information Security and Business

Continuity for a specific bank process. Additionally, this organization also aims to migrate its

Chapter 1. Introduction 4

infrastructure from on-premises to cloud computing and wants to start with a minor application.

Besides EY being a Big4 (alongside with KPMG, PwC and Deloitte) and having an extensive

client portfolio, EY aims to provide a GRC solution accessible to everyone so that this solution

can be tested, and improve EY’s GRC processes with external support.

EY Portugal for this particular client, endorsed an open-source software, Eramba, as their main

GRC solution, since it accommodates all sorts of client’s needs for a fraction of the leaders’ cost.

However, given the limitation of open source software of these sort, the questions arose: How

secure is Eramba? How could Eramba be scalable in the future in case needed? These questions

will make the scope of this project.

1.2 Goals

The role of governance risk and compliance is not truly achieved without having a proper and

secure software to manage it. This project’s main goals are to perform a penetration test to further

asses the security of said software and then provide solutions to increase it.

Overall, the goals of the proposed solution are:

• Assess vulnerabilities of Eramba.

• Exploit those vulnerabilities in a controlled environment.

• Supply patches/fixes for those vulnerabilities.

• Analyse feasible solutions for those vulnerabilities, including for on-premises and cloud

environments.

Additionally, there is also a need for Information Security of the tool itself, as Eramba contains

plenty confidential information of an organization. This information may range from critical as-

sets, vulnerabilities, and implemented controls.

1.3 Work Plan

The purpose of this section is to outline what the work plan for this dissertation is and is

described on Figure 1.1.

Chapter 1. Introduction 5

Figure 1.1: Work Plan

The work done was divergent of the work planned. The work planned was related to the devel-

opment and programming of new features in Eramba. In contrast, the scope of work elaborated on

security components of Eramba created a solution to fix vulnerabilities found. Additionally, due

to the COVID-19 pandemic, the thesis’s delivery and its deadline were postponed for two months.

1.4 Contributions

The contributions of the developed work are:

• Vulnerabilities were mitigated in line with the client’s requests.

• A new Eramba setup was developed.

• An automated Eramba deployment was provided in the cloud environment.

• The foundation for a future Eramba-as-a-Service was established.

1.5 Document Structure

The remainder of the document is structured in the following sections:

• Chapter 2 - Related Work - all the work studied that led the solution proposed.

• Chapter 3 - Vulnerability Analysis of Eramba - the vulnerabilities found on Eramba and

their exploitation.

• Chapter 4 - Eramba-as-a-Service - the establishment of an Eramba-as-a-Service solution.

• Chapter 5 - Conclusion and Future Work.

Chapter 2

Related Work

The purpose of this chapter is to outline: what are the methodologies of pentesting; what are

the main motivations and regulations for the need of Governance Risk and Compliance (GRC);

what is GRC; what are the good practices of risk management; how risk management comple-

ments GRC, how to handle it, and finally what makes a GRC software valuable and desirable.

Additionally, it is presented a brief study of what cloud computing, containers and the Kubernetes

technology is.

2.1 An overview of Pentesting

No system is one hundred per cent secure. With the growth of Web Applications, it is vigor-

ously complex to guarantee security while developing such applications [16].

Web Applications can either be static, dynamic, e-commerce, portal web applications, ani-

mated web applications flash-based or a content management system. Therefore, while developing

such applications, there are different challenges that the developers have to face. Security-wise,

those challenges are securing the database, accessing management or guaranteeing the safety of

the user. There are also other technical threats such as cross-site scripting, phishing, cross-site

request forgery, shell injection, session hijacking and SQL injection. Said challenges and threats

created the need for someone to simulate an attack on the applications. This is known as penetra-

tion testing or pentesting.

The roots of pentesting date back to the 1970s with the appearance of tiger teams on the

computer scene [28]. Tiger teams are teams of individuals highly specialized on problem-solving.

Sponsored by the Department of Defense (DoD) of the United States of America, teams of crackers

attempted to break the security of computers’ systems and find security issues to eventually apply

a patch. Although DoD sponsored most of these teams, in the 1970s IBM spent 40 million dollars

to raise awareness and address computer security. However, tiger teams were not as effective

as expected and their efforts were just the beginning of analysing security flaws in the computer

scene.

Presently, there are countless definitions for the term Pentesting, NIST defines it as "A test

methodology intended to circumvent the security function of a system [54]." or as "A method of

7

Chapter 2. Related Work 8

testing where testers target individual binary components or the application as a whole to deter-

mine whether intra or intercomponent vulnerabilities can be exploited to compromise the applica-

tion, its data, or its environmental resources." [54]

Pentesting involves the use of a variety of manual and automated techniques to simulate an

attack on an organisation’s information security arrangements [8].

Overall, Pentesting allows the simulation of authorized cyberattacks with the main purpose of

finding vulnerabilities and their exploitation.

There are three types of penetration testing:

• Black Box Penetration Testing;

• White Box Penetration Testing;

• Gray Box Penetration Testing.

The colours refer to the amount of access a threat actor has to the source code. It is an extremely

hard task to test an application or a program to full extent and find all single errors, however, it

is possible to find most of them through these three types. Only one of the types are chosen for

an application. Black box testing analyses the application as a single black box where there is no

prior knowledge of how the program behaves, its internal structure, design or implementation or

how it reacts to certain inputs. White Box testing is a testing strategy that allows the tester to view

the internal structure of an application. This allows the tester to follow every step of the control

flow graph, therefore, testing every possible input. Gray Box testing is a combination of both

black box and white box testing. In this type of test, only a part of the internal structure, design

and implementation is known.

2.2 Pentesting Methodologies

There are different approaches on how to correctly pentest an application: it depends from

the application type, the access to it, the level of knowledge of the pentester and the limitations

associated with the technology.

2.2.1 Penetration Testing Execution Standard (PTES)

Penetration Testing Execution Standard is a standard created with business and security service

in mind. It was conceived due to the lack of penetration testing in the industry back in 2009 [76].

Even though eleven years have passed, this standard is still relevant and still used. Each phase

depends on the previous one and the results that are generated from it.

PTES [76] defines penetration testing in seven phases:

• Pre-engagement Interactions. The first phase is the arrangement phase, before the pentest is

conducted. This phase comprehends a bureaucratic phase ranging from approval of docu-

ments, meetings convened and attended as well as the tools that are going to be used. In this

Chapter 2. Related Work 9

phase, the Rules of Engagement (RoE) are also established. These rules aim to protect both

the client and the pentester meaning that the systems will not be subject of needless risk nor

the pentest will face any legal action or fine.

• Intelligence Gathering. This is the reconnaissance phase. It is all about gathering as much

data as possible, passive or active, from external sources of the target systems. This data

ranges from social media websites, email and cellphone related devices. It also makes use of

OSINT (Open Source Intelligence) using search engines, job posting and reports that have

valuable data for the pentest. There are three levels of Information Gathering, these levels

identify how mature the application is. Level one is a one-click button information and can

be gathered via automated tools; level two is done via using the automated tools from level

one plus manual analysis; lastly, level three is the most advanced and requires heavy analy-

sis, most likely a full team working on it and requires a vast number of hours to gather the

information. Moreover, Intelligence Gathering also introduces social engineering spanning,

from staff impersonation via cellphone, studying of a social media profile and phishing.

There are three steps included in the Intelligence Gathering phase: Covert Gathering, Foot-

printing and Identification of Protecting Mechanisms. The Covert Gathering phase covers a

physical environment that sometimes may be required. Actions such as wireless scanning,

dumpster diving and physical security inspections are covered in this phase.

On the other hand, footprinting focuses on the direct and indirect interaction with the target

to gain data from a perspective external to the organization. Lastly, the identification of

protection mechanisms is a fundamental step to a successful conduct a pentest. It is expected

that applications have cryptographic functions in their protocols, Firewalls, Web Application

Firewall (WAF), Intrusion detection system (IDS), closed port protocol, a suitable patch

management environment but sometimes these simply are not possible due to a lapse in

memory or hardware/software restrictions.

• Threat Modeling. Upon gathering information from the previous phase, threat modelling

aims to understand how the business works (Business Process Analysis), how the processes

are correlated, where the important data is stored (Business Asset Analysis), what are the

important assets, in what kind of infrastructure the application is built on and what are the

third parties at stake. After comprehending said factors, the pentester can now simulate an

accurate attack to the application.

• Vulnerability Analysis. This is the process of cross-referencing the weaknesses identified,

the information obtained during the intelligence gathering along with ports scanned, CVE

records and DNS records into a single entry point to define the scope of the pentest and the

extent of the vulnerability. There are two types of vulnerability testing: active assessment

and metadata analysis. Active Assessment involves direct interaction with the component

being tested through the use of vulnerability scanners and passive assessment through traffic

monitoring.Traffic monitoring is to review, analyze and manage the traffic of the network

Chapter 2. Related Work 10

to find a specific issue or have a better understanding of the network. Metadata analysis is

the process of looking at the information contained in any file, ranging from last modified,

owner of the file and filesize.

• Exploitation. This phase consists of identifying attack vectors passable through its security

controls and choosing the one with the highest probability to have a larger impact on the

organization according to the Business Asset Analysis. Then, it will be established a priority

line according to which attack vectors should be explored: priority is given to the ones

with highest probability and highest impact, followed by the ones with highest probability

and lowest impact (and vice-versa), and lastly, attack vectors lowest impact and lowest

probability.

After exploiting the attack vector with highest probability of having the greatest impact, the

ones with lower probability will follow so that all attack vectors are analyzed according to

their priority.

• Post Exploitation. The exploitation of a system is just the tip of the iceberg. After the ex-

ploitation, the pentester must understand what information is available from said exploita-

tion by determining the value of the machine compromised. The value of the machine ranges

according to what data assets are stored in it and how likely is the machine to compromise

other machines in the same network. Upon deciding the value of the machine, the pentester

should be able to identify critical infrastructures and be capable of targeting sensitive data

with high impact to the organization.

• Reporting. Reporting is the last phase of PTES standard. In this phase, the pentester will

create a report with two sections: one is the objective of the conducted pentest and the other

a detailed technical report. The first section must contain the background, overall posture,

risk ranking, general findings and the recommendation summary to fix the vulnerabilities

found. The second section which is the technical report should include an introduction, the

information gathered, the assessment of the vulnerabilities, exploitation of said vulnerabili-

ties, post-exploitation, the exposure and conclusion.

The macro-steps described for this methodology are illustrated in Figure 2.1.

Figure 2.1: Penetration Testing Execution Standard.

2.2.2 Federal Risk and Authorization Management Program Penetration Test (FE-
DRAMP)

United States of America (USA) federal agencies are required by law to protect all federal

information that has been added to cloud services. FEDRAMP is an US program that provides

Chapter 2. Related Work 11

federal agencies with standards for security assessment, authorization and monitoring for cloud-

based products and service. This methodology is in compliance with NIST SP 800-115 Technical

Guide to Information Security Testing and Assessment, NIST SP 800-145 The NIST Definition of

cloud computing, NIST SP 800-53 Security and Privacy Controls for Federal Information Systems

and Organizations, IST SP 800-53A Assessing Security and Privacy Controls in Federal Informa-

tion Systems and Organizations: Building Effective Assessment Plans. It was designed by the

government of the USA and it was explicitly conceived for Cloud Service Provider (CSP). FE-

DRAMP organizes the methodology according to different targets, each having a different weight,

in order to conduct an effective penetration test:

• Web Application and API.

• Mobile Application.

• Network.

• Social Engineering.

• Simulated Internal Attack.

According do FEDRAMP [23], three steps are carried out for each target: Information Gather-

ing and Discovery, Exploitation and Post-Exploitation. Afterwards, there is a fully detailed report

with the scope of the target system, the attack vectors addressed during the penetration test, the

timeline of said activity, tests performed and results, findings, evidence and the access paths. This

report must be included in the Security Assessment Report (SAR). Posteriorly to said report, the

next pentest should be scheduled within 12 months. According to this methodology, all pentest

activities should be assessed by third party organizations with proven proficiency and capability

of maintaining the flow of the methodology.

There is a different workflow to be followed according to each step. The first step, Information

Gathering and Discovery.

• Web Application/API information gathering - firstly, a deep internet search should be made

regarding the target application to identify relevant public information, application archi-

tecture, account roles, authorization bounds, all user-controlled inputs. The mapping of all

content with the functionality must be done and also a web vulnerability scanning to said

target should be made.

• Mobile Application information gathering - firstly, equally to web application, there should

be an internet search to identify publicly available information, map all its content and

functionality and identify all permissions requested by the application.

• Network Information gathering - there should be Open Source Intelligence (OSINT) activ-

ities: an enumeration and inventory of live network endpoint and availability, fingerprint

operating system and networks, as well as performing vulnerability identification.

Chapter 2. Related Work 12

• Social Engineering Information gathering is performing internet searches to identify CSP

personnel of interest responsible for target system management.

• Simulated Internal attack information gathering is to perform a scoping exercise with the

CSP to determine potential attack vectors and also perform vulnerability identification.

The second step, exploitation:

• To exploit Web Application/API, the pentester must perform activities such as authentication

and session management, authorization, application logic and input validation.

• To exploit a Mobile Application, the privileges associated with the application must be

identified, as well as the information stored on device, the level of encryption, and the type

of information that is stored in cache and logs.

• With the intent of gaining access to the network target, first the attack scenarios should be

identified, presented to the CSP and the approval for the attack is required. If approved, the

pentester must attempt to elevate his privileges and afterwards document his results.

• A successful social engineering exploitation will target the employees of the Cloud Service

Provider whom are responsible for the management of the system.

• After identifying the attack vectors, a simulated internal attack should be pursued to exploit

all of the vectors to full extent. The main objective of this attack is to simulate a breach

of the corporate assets. The tester should also be able to escalate administrative privileges

through the CSP workstation image.

In the post-exploitation step, the tester will explore the vulnerabilities found during the last

step. The main goal of these activities is to demonstrate the impact of the said exploitation while

accessing different endpoints and accessing sensitive data, controls and infrastructure. The ease

of post-exploitation is susceptible to the privilege given to the tester and the technologies used by

the CSP.

The last step is reporting. The report must include the scope of the target system, the attack

vectors addressed, the timeline for assessment activity, tests performed, results, finding, evidences,

access paths. There should also be scheduled a new pentest within 12 months.

The macro-steps described for this methodology are illustrated in Figure 2.2.

Chapter 2. Related Work 13

Figure 2.2: FEDRAMP Penetration Testing.

2.2.3 Council for Registered Ethical Security Testers (CREST) Penetration Test

CREST Penetration Test approaches pentest in three different steps. It provides practical ad-

vice on how to pursue an effective penetration test. This guide was developed and based on other

industry standards of pentesting namely Centre for Protection of National Infrastructure (CPNI),

Open Web Application Security Project (OWASP), Open Source Security Testing Methodology

Manual (OSSTM) and PTES. The three steps are:

• Prepare for penetration testing (Preparation).

• Conduct penetration tests enterprise-wide (Testing).

• Carry out appropriate follow up activities (Follow up).

In the preparation phase there are seven key-steps that should be pursued. They are: the

maintenance of a technical security assurance framework, the establishment of a penetration test-

ing governance structure, evaluation of the main drivers that conduct to a pentest, identification

of target environments, the outlines of the tests and they aim to achieve them, the requirements

specifications and the selection of the appropriate suppliers.

On the second phase there are nine key-steps that should be pursued and some of these may

follow a repetitive cycle. These steps are: the agreement of test style and type, identification of

testing constraints, the scope statement, establishment of a management assurance framework,

implementation of management control processes, the use of an effective testing methodology,

conduct sufficient research and planning, identification and exploitation of vulnerabilities and in

the end reporting of key findings.

In the follow up phase there are six actions that should be followed: remediation of the weak-

ness, addressing the root causes of weaknesses, initiation of the improvement program, evaluation

Chapter 2. Related Work 14

of penetration testing effectiveness, building of lessons learned and creation and monitoring of

action plans.

The macro-steps described for this methodology are illustrated in Figure 2.3.

Figure 2.3: CREST Penetration testing framework.

2.2.4 Payment Card Industry Data Security Standard (PCI DSS) Penetration Test-
ing Guide

Payment Card Industry is a council that strengthens payment account data security by ensuring

that the cardholder data environment (CDE) is maintained in a secure IT system through the guides

of Data Security Standard. CDE is defined as “the people, processes,and technology that store,

process, or transmit cardholder data or sensitive authentication data" [59].

Data security standard has a requirement titled “Payment Card Industry Data Security Standard

(PCI DSS) Requirement 11.3 Penetration Testing”. It addresses obligatory penetration testing to

the security systems and processes for all applications that support financial transactions through

credit cards.

To guarantee a compelling and prosperous pentest, PCI DSS methodology provides three

phases, each one with distinct activities:

• Pre-engagement. First, it is vital to inform all parties involved regarding what types of

testing are going to be performed, how they will be performed and what is the target. The

organization is responsible for defining the CDE and providing all sort of documentation

to the pentester. In this phase, the rules of engagement should be agreed on to ensure that

the tester does not exceed the scope of the test. These rules encompass the time of the

Chapter 2. Related Work 15

testing, security controls established, presence of legacy systems and what steps should

be taken to not threaten the environment. It should also be defined as the success criteria

setting the limits of the penetration test. It is also required to do a review of past threats

and vulnerabilities in the previous 12 months. Since most systems have an IDS and WAF

the test should be executed to avoid these protection entities. There is also an Approved

Scanning Guide with a section titled "Scan Interference" that covers how to actively protect

the system during testing.

• Engagement. Each environment has different testing approaches. The organization should

supply login credentials to the tester to allow the tester to assess the security of the applica-

tion layer and the roles assigned to the credential. The organization should also guarantee

that the role that the tester is using has all the roles applicable to fully explore the security of

the application layer to full extent. The pentester must verify that there is a network segmen-

tation and that all LANs are isolated from the CDE. Upon accessing the cardholder data, the

tester commits to immediately notify the organization and provide the documentation of the

conducted test for them to follow the steps reviewed and find a patch for it.

• Post Engagement. After the engagement activities, both associations must guarantee that

all the exploration paths of the vulnerabilities were found and fixed. Additionally, after the

patch has been deployed, the tester must retake all the steps and test if the vulnerability still

exists. The last step should be cleansing of the environment, revamping credentials of the

tester and tools used and guaranteeing that rules of engagement were followed.

The macro-steps described for this methodology are illustrated in Figure 2.4.

Figure 2.4: PCI DSS Penetration testing framework.

Chapter 2. Related Work 16

2.2.5 Chosen methodology

The Table 2.1 shows the differences between the pentesting methodologies studied throughout

this chapter. They follow an identical path, however, their environments differ: FEDRAMP is

followed usually by US agencies and is only used in Cloud. PCI-DSS is a particular pentesting

methodology as it only works in a specific environment that is cardholder data. Despite the fact that

CREST and PTES methodologies can be followed in any environment, CREST methodology is

more certification-guided, meaning that the pentester who follows this methodology aims to have

the application certified. In contrast, the pentester who follow PTES seeks to find vulnerabilities

and exploit them. For this project, the PTES methodology was chosen due to its flexibility, as

some minor phases can be eliminated and still produce a valuable pentest. Additionally, PTES

also allows for selecting any network tool and threat modeling framework.

Methodology Steps Used for

PTES

Pre-Engagement
Intelligence Gathering

Threat Modelling
Vulnerability Analysis

Exploitation
Post-Exploitation

Reporting

Any environment

FEDRAMP
Information Gathering and Discovery

Exploitation
Post-Exploitation

Cloud environment

CREST
Preparation

Testing
Follow Up

Any environment

PCI-DSS
Pre-Engagement

Engagement
Post-Engagement

Cardholder data environment

Table 2.1: Penetration Testing methodologies

2.3 Most common Attacks in Web Applications

Open Web Application Security Project (OWASP) is an organization dedicated to web appli-

cation security. It is built on a community that functions independently to improve the security of

software. OWASP provides documentation, tools, videos, forums and conferences all to achieve

security amongst web applications.

OWASP supplies an awareness document of the top ten most common web application security

risks, being the latest release of said document in 2017 [57]. This document is based primarily on

a survey filled by over five hundred security professionals across the globe congregating data from

hundreds of vulnerabilities. Those vulnerabilities are:

Chapter 2. Related Work 17

1. Code Injection. These attacks subsist on sending untrusted data to be interpreted, using

a form or other submission method data to a web application. Among all types of code

injection, the most common attack is the injection of an SQL query into a text form. If

security measures are not taken, the SQL code could be executed resulting in data leaks or

compromising of the system. This type of attack can be prevented by validating or sanitizing

submitted data, or even adding controls to the database itself.

2. Broken Authentication. Vulnerabilities in authentication systems could lead a threat actor

to gain access to user accounts or even accounts with privileged administration. Some of

the strategies used to mitigate this type of vulnerability go through the use of 2-factor au-

thentication (2FA), limitation of the number of successive authentication attempts or the

implementation of weak passwords-checks.

3. Sensitive Data Exposure. In case web applications do not adequately protect sensitive data

contained within them, a threat actor can gain access to that data and thus use it for mali-

cious purposes. The exposure of sensitive data can be minimized by encrypting data, storing

passwords using salt hash functions as well as disabling caching features for sensitive infor-

mation.

4. XML External Entities (XXE). This is a type of attack that affects applications that analyze

XML data. This data may refer to external entities, such as a storage unit, which can lead to

data being sent to unauthorized external entities. The best way to prevent this type of attack

is by using other, less complex data formats, like JSON, or at the very least, disable the use

of entities in an application that uses XML, and also avoid serialization of sensitive data.

5. Broken Access Control. An access control system defines who can access particular infor-

mation or a functionality. If there is a break in this control of access, a threat actor can

perform tasks as if he was a privileged user. For example, an application can allow you

to change between different authenticated accounts by changing part of the URL, without

making any additional verification changes to ensure secure access control of the applica-

tion. The web may resort to the use of authentication tokens, which must be presented each

time a privileged order is placed.

6. Security Misconfiguration. This is the most common vulnerability on this list and is often

the result of default settings that are used or error messages that are displayed too much.

For example, an application may reveal vulnerabilities in the present errors that are too

descriptive. This risk can be mitigated by removing any unused functionality from the code

and ensure that only generic error messages are shown.

7. Cross-Site Scripting (XSS). This type of vulnerability exists when web applications allow

additional code in an URL path or page that will be viewed by a third party. A threat actor

can execute a script in the victim’s browser, using the URL of a page that at first sight would

be trusted. To mitigate this type of vulnerability, in addition to the use of more modern

Chapter 2. Related Work 18

development frameworks, untrusted HTTP requests should be ignored, and a validation and

sanitizion of content generated by users should be conducted.

8. Insecure Deserialization. This is a threat to web applications that serialize and deserialize

data frequently. The exploitation of this vulnerability is the result of deserialization of data

from unreliable sources, which may lead to consequences like denial of service or remote

code execution. There are methods to identify this type of attack, monitor and validate

deserialization, however, the only safe way to avoid this type the attack is by forbidding the

deserialization of data from unstrusted sources.

9. Use of components with known vulnerabilities. Web application development usually fol-

lows a framework and the use of libraries. Some threat actors look for vulnerabilities on

these components so that they can carry out attacks. Some of the most common elements

are used by thousands of web applications, which leads to the discovery of a vulnerability

in one of these components. To minimize the risk of using parts with known vulnerabilities,

these should not be used and, if used, they have to be under constant monitoring as well as

have the latest version of said libraries.

10. Insufficient Logging and Monitoring. Most of web applications don’t take the steps needed

to prevent a data breach. Plenty of studies show it takes about two hundred days to detect

a breach after it happened which means that threat actors have two hundreds days to tam-

per, damage, extract or destroy data from the system before any type of response. With

efficient logging, monitoring and a incident response plan, it is possible to reduce this time

opportunity.

2.4 Laws and Regulations

2.4.1 Sarbanes-Oxley-Act

Sarbanes-Oxley-Act (SOX) [78] was the catalyst and the main driver of the need for a Gov-

ernance Risk Compliance solution. After numerous scandal frauds, on July 30 of 2002 the U.S

congress passed a law to protect investors and accounting firms from said scandals. This act set a

precedent for all U.S companies:

• SOX act imposed criminal penalties and high fines for companies or individuals who attempt

to defraud.

• Senior Executives have to sign financial reports statements to validate their accuracy, there-

fore becoming personally responsible.

• Companies are accountable to hire an external auditor to audit the accuracy of said reports,

which must have a section for auditor opinion. This auditor must be in compliance with

pre-established requirements.

Chapter 2. Related Work 19

• Companies have to fully describe their internal controls and how are they are being applied.

• All codes of conduct must be Sarbanes-Oxley compliant.

• Security and Exchange Commission (SEC) is now fully capable and has the authority to

censure any suspicious actions from individuals, brokers, auditors or executives.

Due to this regulation, companies had to immediately respond by creating several controls to

be compliant with the act [25]. However, these controls were addressed individually as audits

came along and not as a comprehensive business process. Facing such issues, companies namely

PriceWaterHouseCoopers in 2004 decided to address these questions by combining every business

process through a universal perspective naming it Governance, Risk and Compliance.

2.4.2 European directive 2006/43/EC VIII

European directive 2006/43/EC VIII [21] belongs to European Company Law and Corporate

Governance and it covers audit and accounting regulations in the European Commission. This

directive acts like Sarbanes-Oxley-Act law in Europe, as it covers the responsible for approving

statutory auditors and audit firms. A statutory audit is a required review of the accuracy of the

financial reports made by external sources.

2.4.3 General Data Protection Regulation

General Data Protection Regulation [56] (GDPR) was issued on the 27th of April of 2016

on the European Union (EU) Official Journal. This new regulation introduced new regulatory

requirements for the protection of individuals and the processing of personal data and their free

movement. It was strictly applied directly to all the 28 Member States, without the need for

any transposition legislation. GDPR encompasses all the data treatment processes, from the data

controllers to the data processors.

A data controller is the entity that determines the purpose of processing personal data. The

entity could be a natural or legal person, a company, public authority, or other agency. Data con-

trollers determine the purpose and means of the processing of personal data. The Data processor

is the natural or legal person, public authority, or another body that processes personal data on

behalf of the data controller. Data processors do not determine the purpose of processing data.

They must only process data in the way determined by the data controller.

GDPR is designed to protect personal data today and in the future. Its Objectives include:

• Provide a robust set of rules to protect the fundamental rights and freedoms of individuals

in the EU.

• Enable the free movement of personal data within the EU.

• Harmonize data protection legislation across EU member states.

Chapter 2. Related Work 20

GDPR applies to all organizations that are established in the EU and process personal data in

the context of that establishment. It also applies to organizations established outside of the EU if

they process data on individuals in the EU when offering them goods and services, or monitoring

their behaviour.

GDPR defines two types of different data:

• Sensitive data is the personal information that reveals a person’s racial or ethnic origin,

political opinions, religious or philosophical beliefs, trade union membership, health, or

sexual orientation. Sensitive personal data also includes genetic data or biometric data. It

requires a higher level of protection. Sensitive personal data also includes personal data

relating to criminal convictions and offences as well as data that may facilitate identity theft

or payment fraud (like social security files, financial account numbers, credit card details

and government identification numbers).

• Personal Data is any information relating to an identified or identifiable natural person.

2.5 Governance Risk and Compliance

The Open Compliance and Ethics Group (OCEG) defines Governance Risk and Compliance as

"a capability to reliably achieve objectives (governance) while addressing uncertainty (risk man-

agement) and acting with integrity (compliance)” [4].

As the sales world is shifting, the business of the future will require constant risk monitor-

ing and reviewing. By controlling actions holistically and seeking to enhance efficiency, GRC

provides an integrated comprehensive view of the risk of all key business units.

Acts such as Sarbanes-Oxley-Act, European directive 2006/43/EC VIII and General Data Pro-

tection Regulation require constant risk monitoring due to tighter regulations imposed by the gov-

ernment. To manage all the gathered information, it is crucial to have a system that has the essen-

tial tools for continuous growth, wise-decision making and a better understanding of the full scope

of risk. The main focus of GRC is to maintain sensitive data and manage risk across the whole

organization while being able to communicate risk posture to internal and external groups.

This section will focus on the most relevant GRC software according to the Forrester Wave

report [2.5]. All the leaders from the reports are in line with Governance Risk and Compliance

and they all share the following modules:

• Access Control is the foundation of access governance and aims to regulate access risk and

thwart fraud by automating the administration of user access, applications, processes and

data against the wrongful risk use. The need for quality access government is clear, since

access control is a powerful tool to help organizations automate the process of managing

authenticated users to solely access what they are approved to, while maintaining the perse-

verance of the whole system and the segregation of duties coherent. Access controls grant

the ability to lower potential internal fraud while improving user experience and increasing

Chapter 2. Related Work 21

Figure 2.5: Forrester Wave chart for Enterprise Governance, Risk and Compliance Platforms.

productivity. This module conjointly permits the unceasingly monitorization of transactions

against current policies in order to detect anomalies and prevent cash leakage.

• In some solutions, Access Control acts as two modules, Application Access Controls Gov-

ernor (AACG) and Enterprise Transaction Controls Governor (ETCG). This latest module

provides the ability to track access from users by creating "continuous controls", granting

real-time monitoring and segregation of duties to ensure regulatory requirements and cor-

porate security

• Process Control grants the effectiveness of the controls and ongoing compliance. These

controls allow an enterprise to endlessly access existing controls in real-time, in order to

analyze if they are being applied properly thorough respective business areas, and if they

are aligned with each risk prevention measure. Process Control enables a company to define

controls to apply to risks, assets and all business processes. It works as a journal of the

enterprise strategy to address risk management according to regulatory requirements. It

provides an integrated way to reduce time and costs necessary to understand regulatory

requirements.

Process Control supports companies having regulatory challenges with library management,

according to the life cycle of policy management, forcing them to design, publish, imple-

ment and track policies through the organization. It also supplies an agile analysis of regu-

Chapter 2. Related Work 22

latory compliance from distinct perspectives. Through a complete guideline, it is possible

to audit IT risks and understand if they are being mitigated accordingly.

• Risk Management regulates risk crosswise the organization, incorporating risk experts from

diverse lines of business and facilitating the execution of risk assessment, in order to reduce

its cost. It helps the risk management team to address the specific challenges around oper-

ational risk, offering key solution features such as key risk indicator, single data repository,

business intelligence, decision support and loss event management. Through dashboards,

risk indicators, audit trailing and statistical analysis, risk management provides the capital

range that needs to be allotted to address the company’s operational risk, by collecting the

data that might be relevant to run these capital models. It follows the established flow of

ISO 31000 [34]. It also provides mechanisms to trace, monitor and review the progress.

Lastly, risk management provides a full analysis of whether the organization is compliant

with all the Information Security standards such as ISO/IEC 27001, Information Security

Forum (ISF) and National Institute of Standards and Technology (NIST). This solution al-

lows to complete risk management related activities such as the assessment of assets, threats,

existing controls, vulnerabilities and impacts.

• Audit Management (AM) is often incorporated into risk management, and it supplies in-

ternal auditors with an exclusive view of the whole GRC. AM combines every department,

giving the auditor a comprehensive perspective of each department compliance management

activities to provide an automated auditing procedure.

With the engagement activities, annual planning and work paper management that AM of-

fers it is possible to understand the full scope of risk and how to proceed before each audit.

This solution is Sarbanes-Oxley Act compliant, providing mechanisms to review and mon-

itor financial compliance obligations. It enables the processing and harmonization of the

audit environment, since audits are based on templates. With these templates, Audit Man-

agement compiles reports from audit outcome activities in order to analyze the results.

2.6 Eramba

Governance Risk and Compliance is often not supported by centralized software that incor-

porates these three fields. Many companies offer only one category of the three. For example,

Oracle provides a solution to deal with Risk management named ERP Risk Management exclu-

sively. This solution has embedded AI techniques to analyze risk through the organization; IBM

offers a solution to deal with Compliance called IBM RegTech to handle regulatory monitoring

and Compliance within the financial organization; IT governance can be handled with a solution

from BWise that allows creating a comprehensive, accurate and holistic view of IT operations and

assets through the organization. These examples are just a portion of software used in the industry.

There are many more, ranging from free open source software to more costly options.

Chapter 2. Related Work 23

Some companies that can not afford costly GRC systems, opt to choose Eramba as their so-

lution. With an ergonomic user interface, it offers eight different categories with six different

modules that interact with each other. It also provides numerous functions (that are listed on the

table A.1) each with the description of its main purpose. All these functions are the blueprints to

be in accordance with governance, risk and compliance.

Eramba splits the main modules into two different categories, "Problems" and "Solutions".

Problems are the cause of an organization implementing a solution. If there is no problem, there

is no need for a solution. Problems may vary from future audit (compliance management) and

critical assets with no controls (risk management) to the understanding the correct flow of the data

(data flow analysis). Solutions are implemented after all the problems are well-established and

there is a clear need for them. The Figure 2.6 demonstrates how the flow is distributed between

each problem and solution.

Figure 2.6: Eramba Problems and Solutions [19].

In Eramba there are some modules that are required by default and some are optional. There

are six different modules in total: Organization, Risk Management, Asset Management, Control

Catalogue, Compliance Management and Security Operations.

• Organization Module. In this module it is possible to describe organisation business units

(For example Finance, IT, Human Resources) along with their core processes, all the li-

abilities embedded in the scope of the GRC program (such as GDPR, Brand Reputation,

Financial and Accouting Obligations) and all the third parties involved (PCI-DSS, ISO).

• Risk management Module. This is one of the most important modules as it gives an overview

of how assets’ risks are managed across the organization. Besides managing all risks across

the organization, this module also provides a method to manage risk exceptions.

• Asset Management Module. This module provides asset identification, along with data flow

analysis.

• Control Catalogue Module. Controls in risk management are pivotal, as they are able to

reduce or even mitigate the risk. In this module are described all internal controls, business

continuity plans and security policies.

Chapter 2. Related Work 24

• Compliance Management Module. This model allows the management of all exceptions

to compliance, the insertion of compliance package with their due requirements (ISO/IEC

27001 for example) and its full analysis.

• Security Operations Module. This is an extremely essential module as it guides the defi-

nition of improvements across the organization. It is also possible to record and manage

security incidents which can then be linked to controls, assets and third parties.

2.7 Threat modelling

According to NIST, "Threat modeling is a form of risk assessment that models aspects of the

attack and defense sides of a particular logical entity, such as a piece of data, an application, a

host, a system, or an environment. The fundamental principle underlying threat modeling is that

there are always limited resources for security and it is necessary to determine how to use those

limited resources effectively [69]".

In short, threat modelling is a process by which it is possible to determine which threats are

important to an application and find entry points where defences may be lacking. To establish a

threat modelling it is vital to determine potential entry points (this depends on the type of system),

protected resources or assets and to examine and describe data flow paths. With threat modelling,

it is possible to find security issues by identifying and mitigating possible threats.

Examples of different methodologies for threat modelling are STRIDE, P.A.S.T.A, Trike,

VAST and OCTAVE.

The STRIDE methodology was described by Microsoft and currently is one of the most mature

threat-modelling methods [73]. It is an mnemonic that stands for Spoofing, Tampering, Repudia-

tion, Information Disclosure, Denial of Service and Elevation of Privilege:

• Spoofing is the act of impersonation something or someone else.

• Tampering is the process of modifying data or code.

• Repudiation is to claim the performance of an action.

• Information Disclosure is the exposure of information to someone not authorized to see it.

• Denial of Service is the constant denial of service to users.

• Elevation of Privilege is the ability to gain access without authorization.

The STRIDE model was designed as a mnemonic framework to provide guidance while de-

veloping software, and identify possible threats and attacks of said software.

Shostack [1] describes a four-step framework to address threat modelling:

• Model System - Understanding how the system works by modelling it using Data Flow

Diagrams (DFD).

Chapter 2. Related Work 25

• Find Threats - Classification and enumeration of threats using STRIDE.

• Address Threats - Addressing threats by mitigating and reducing threats.

• Validate - Correctly verify if said threats were in fact mitigated.

Also known as threat model diagrams, DFD are graphic representations to portrait how the

flow of data is conducted through the whole system. This flow may be external or internal, thus

being possible to analyse the data boundaries of the system. Trust boundaries are where entities

with different privilege interact with others entities. These trust boundaries isolate trustworthy and

untrustworthy elements.

According to Shostack, the elements of a DFD are external entities, trust boundaries, data

storage, processes, data flow and multi-processes each with different notation represented in Figure

2.7.

Figure 2.7: Data Flow Diagram Elements.

There are different variants to perform a STRIDE-based threat modeling: STRIDE-per-element,

Stride-per-Interaction and DESIST. STRIDE-per element process applies STRIDE to each ele-

ment.

STRIDE-per-Interaction finds data flow at an intersection of a trust boundary. It finds threat

at origin, destination and interaction in a Data Flow. To create a STRIDE-per-interaction, first

create a table of elements, interactions and potential threats, afterwards make a DFD, then extract

the data flow at the intersection of trust boundary, subsequently enumerate threats and then lastly

create a table of the comparison result. DESIST is an acronym for Dispute, Elevation of privilege,

Spoofing, Information disclosure, Service denial, and Tampering. In DESIST, Dispute replaces

repudiation and Service denial replaces Denial of Service.

2.8 Cloud Computing

"Cloud computing is the delivery of computing services—servers, storage, databases, net-

working, software, analytics, intelligence and more—over the internet (the Cloud), enabling faster

innovation, flexible resources, and economies of scale" [51].

Cloud services provide distinct attributes and considerations from traditional On Premises

service. It provides a safer and more secure environment to host a web application such as Eramba.

Chapter 2. Related Work 26

Some services described may be more important and relevant than others, however each one plays

their part:

• High availability: The ability to keep the service up and running for long periods of time

with little to no downtime is fundamental to an application that should be running 24/7.

• Elasticity: The ability to automatically or dynamically increase or decrease resources as

needed. Although not common, this may be vital if many users need to access an application

at the same time.

• Fault tolerance: The ability to remain up and running even in the event of a component or

service is no longer functioning.

• Disaster Recovery: The ability to recover from an event which has taken down a Cloud

service.

• Scalability: The ability to increase or decrease resources given any workload.

• Agility: The ability to react quickly. Cloud services can allocate and deallocate resources

quickly. They are provided on-demand via self-service, so vast amounts of computing re-

sources can be provisioned in minutes. There is no manual intervention in provisioning or

deprovisioning services.

• Global reach: The ability to reach audiences around the globe is fundamental when Eramba

is used at a multinational level.

• User Latency capabilities: If users are experiencing slowness with a particular Cloud ser-

vice, they are said to be experiencing some latency. Cloud services have the ability to deploy

resources in datacenters around the globe, thus addressing user latency issues.

• Predictive cost considerations: It is possible to predict costs for each service hosted in Cloud

thus creating a budget to host Eramba annually or monthly.

• Technical skill requirements and considerations: Cloud services can provide and manage

hardware and software for workloads. A user can be expert in the application they want

to run without having the need for specialized skills to build and maintain the underlying

hardware and software infrastructure.

• Security: Cloud providers offer a broad set of policies, technologies, controls, and expert

technology skills that can provide better security than most organizations can otherwise

achieve. This is essential to improve the security of Eramba.

The Cloud model provides three different types of configuration.

• Public Cloud: A public Cloud is owned by the Cloud services provider (CSP). It provides

resources and services to multiple organizations and users, who connect to the Cloud service

Chapter 2. Related Work 27

via a secure network connection, typically over the internet. With a public Cloud, there is

no local hardware to manage or keep updated, as everything runs on the Cloud provider’s

hardware.

• Private Cloud: A private Cloud is owned and operated by the organization that uses the

resources from that Cloud. The organization creates a Cloud environment in their own data

center, and provides self-service access to compute resources to users within their organiza-

tion.

• Hybrid Cloud: A hybrid Cloud combines both public and private Clouds, allowing critical

applications to run in the private Cloud and other non-critical on the public Cloud.

Furthermore, Cloud Computing offers three different types of service Cloud, each one with

different levels of controls and flexibility.

• Infrastructure as a service (IaaS): IaaS is the most basic category of Cloud Computing ser-

vices. With IaaS, users rent IT infrastructure servers and virtual machines (VMs), storage,

networks, and operating systems from a Cloud provider on a pay-as-you-go basis. It is an

instant computing infrastructure, provisioned and managed over the Internet.

• Platform as a Service (PaaS): PaaS provides an environment for building, testing, and de-

ploying software applications. The goal of PaaS is to help create an application as quickly

as possible without having to worry about managing the underlying infrastructure. For

example, when deploying a web application using PaaS, it is not required to install an op-

erating system, web server, or even system updates. PaaS is a complete development and

deployment environment in the Cloud, with resources that enable organizations to deliver

everything from simple Cloud-based apps to sophisticated Cloud-enabled enterprise appli-

cations. Resources are purchased from a Cloud service provider on a pay-as-you-go basis

and accessed over the Internet.

• Software as a Service (SaaS): SaaS is software that is centrally hosted and managed for the

end customer. It allows users to connect to and use Cloud-based apps over the internet. SaaS

is typically licensed through a monthly or annual subscription.

To sum up, the Figure 2.8 summarizes each model. Each one contains different levels of

managed services and their usage relies on how responsibilities are distributed in the company.

With these different models, it is now possible to virtualize operating systems in the Cloud. A

notable approach to virtualize OS are containers.

Chapter 2. Related Work 28

Figure 2.8: Cloud Models

2.8.1 Requirements for Cloud Computing Architecture

There are three architectural requirements when migrating to Cloud Computing services [67]:

Cloud service provider requirements, organization requirements, user requirements. The Cloud

service provider requires a highly efficient and reliable architecture to support organization infras-

tructures. This architecture must be able to virtualize services, support fault tolerance (systems

continue to operate in the event of failure of some components) and provide storage mechanisms

to handle and store as much data as needed. All these usually are supplied via cheap tariffs with

on-demand support.

The organization requires the capacity to host their business services model via Cloud models

discussed in Section 2.8. As the CSP provides interoperability and scalability, these services are

easily adaptable to the CSP infrastructure. The user requires a simple interface with a low learning

curve associated and a self-learning capability that allows comprehending the extra features that

Cloud Computing brings, such as pricing, metering, and service level agreements (SLA). User pri-

vacy is now enhanced, as encryption and decryption operations increase the stability and usability

of Cloud services.

These requirements are directly dependent on each other. CSP must be aware of transparency

for billing, data governance, and user privacy; Otherwise, the user will not trust the CSP any-

Chapter 2. Related Work 29

more. Data security issues must be fixed and disclosed to CSP clients, or organizations will no

longer trust the provider to host their applications. Additionally, CSP features such as security,

compliance, reliability and SLA will impact the organization’s performance.

2.9 Containers

Containers are an encapsulation of an application with all its dependencies [48]. They are an

isolated environment contained in a server that, unlike virtual machines, shares a single system

kernel. Each one has their own processes for services, network interfaces and mounts.

A container virtualizes the underlying OS, thus no longer requiring an OS per application. In

essence, the container isolation allows the container image to perceive all the underlying compo-

nents (storage, RAM, CPU and networking connection) for itself.

Since a container holds an isolated instance of an OS, it enables a lightweight and efficient

deployment regardless of whether the environment is in an On Premises, private or hybrid Cloud.

It also enables developers to not have to be concerned with installation and configuration issues.

Additionally, by having a text file with all the commands required to assemble an image and

its dependencies, the software and its dependencies became less vulnerability-prone as the patch

only requires minor changes to the file.

The Table 2.2 establish the traits of containers versus virtual machines as well as the exposure

of high-value arguments for container implementation.

Containers Virtual Machines
Multiple containers can run on a single physical
or virtual machine (high density), enabling isolation at the process
level, therefore, providing additional isolation features
such as namespaces, cgroups, and other kernel capabilities

A few VMs can run together on a single
physical machine (low density),
relying on complete isolation of VMs for security

Containers share the same kernel
as their Docker Host

Each VM has its own OS and the physical
resources are managed by an underlying hypervisor

Containers leverage standard inter process
communications mechanisms, such as signals, pipes,
sockets, and so on, for networking.
Each container gets its own network and storage stack.

For networking, VMs can be linked to virtual
or physical switches. Hypervisors have buffer for I/O perfomance
improvement, NIC bonding, and so on.

Table 2.2: Containers versus Virtual Machines [22].

Containers also provide innumerable advantages versus a virtual machine as they occupy less

space and have shorter boot-up time. The containers have a better performance as they are hosted

in a single container, easy to scale up, highly efficient, easily portable and the data volumes can be

shared and reused among multiple containers.

The ideal environment is to have containers provisioned on virtual machine hosts, to utilize

advantages of both technologies. Use the benefits of virtualization to easily provision or decom-

mission machine hosts as required, and at the same time make use of containers to easily provision

application and quickly scale them as needed.

There are varied Linux containers solution (LXC) such as Docker, LXC, LXD, Rocket and

Warden.

Chapter 2. Related Work 30

2.9.1 Docker

Docker was used to migrate Eramba to a new environment due to a considerable amount of

reasons: the reproducibility (a Docker container operates the same way in any machine), isolation

(discussed on sub-section 2.9.1), security (if one container is compromised the others remain un-

affected), the Docker hub (a hosted repository with official images from components providers),

continuous integration and support, ease of use and a favorable environment manager which al-

lows to have separate containers for testing, development and production as well as facilitated

deployment. Additionally, Docker has an extensive community with plenty of documentation

which provides insights of a improved implementation.

Docker is a software development container platform on a host machine that enables to build

and run containers using Docker components and services. The Docker engine, also known as

Docker daemon, implements the blueprint that provides the specification for container images,

run time and network connectivity. The migration to Docker is also an effortless task as it can run

in any machine that runs Docker.

Docker images are sets of layers with metadata in JSON format. To successfully run a Docker

container, it is only required to build the Dockerfile and use Docker command build to run it.

In order to conceive multiple containers, Docker provides Docker compose. Docker Compose

is a solution that allows the creation of multiple containers in a coordinated way, making use of

a file in YAML format for the configuration of each of these elements and the networks used in

communication between them.

With this new environment, containers face different security issues than the usual virtual

machine implementation.

Docker security [17] relies on four major areas: isolation of processes at the userspace level,

the attack surface of the Docker engine, the hardening of the kernel and how it interacts with other

containers and loopholes in container configuration.

• Isolation: Docker containers are started by default with a restricted set of capabilities due

to their dependency of Linux kernel features such as namespaces, control groups (cgroups),

and network interface. With namespaces, processes running in a container can not see any

other process running in the host system or other container. Also, each container has their

own network and storage stack, meaning that there is no interference with other containers.

On the side of namespaces, cgroups, besides managing memory, CPU and the disk used by

the container, guarantee that a single container can not bring down the host by exhausting

one of those resources. All in all, these capabilities turn the root and the non-root binary

into an access control system, meaning that the root of the container is still the root of the

host but with less capabilities and privileges.

• Docker daemon attack surface: Docker engine requires root privileges, thus implying that

only trusted users should be allowed to control the Docker daemon. As Docker allows

sharing directory between the host and guest containers without limiting the access rights

Chapter 2. Related Work 31

of the container, it is possible to start the container in the host’s root directory. This means

that the guest can alter the host file systems without any restrictions.

• Hardening of the kernel: Host hardening involves reducing the attack surface by removing

unnecessary features or settings. Measures such as a policy for putting all Docker objects

in same domain or creating separate partition for containers, audit Docker files and logs

improve the host hardening. Security modules such as AppArmor, SELinux, GSREC, Sec-

comp, along others, also support host hardening by allowing users to specify file paths to a

binary, specifying permissions they have or custom actions to be taken when a system call

is called.

• Loopholes in container configuration: When configuring the Dockerfile it is important to set

the restart policy correctly, otherwise the container can enter in a loop cycle.

2.9.2 Container registries

Container registries are stored locations where it is possible to push and pull containers’ im-

ages. Docker Hub is the most used container registry as it supplies an extensive amount of con-

tainer images provided by third party (open-source, software vendors) or official sources. Docker

container registry has direct integration with Gitlab [27], so, with the correct environment, it is

possible to have Docker images hosted on Gitlab. With the continuous integration and continuous

delivery (CI/CD) environment provided by Gitlab shown with the script, the Docker image is al-

ways built from Dockerfile whenever there is a change in the file and the file is pushed to the Git.

This is a simple script that creates an environment to fully deploy a container.

1 s t a g e s :
2 - b u i l d
3 r e g i s t e r C o n t a i n e r :
4 s t a g e : b u i l d
5 image: Docker: s t a b l e
6 s e r v i c e s :
7 - Docker:18− d ind
8 v a r i a b l e s :
9 TAG: l a t e s t

10 s c r i p t :
11 - echo $CI_REGISTRY_PASSWORD | Docker l o g i n

$CI_REGISTRY −u $CI_REGISTRY_USER −−password − s t d i n
12 - Docker b u i l d − t "$CI_REGISTRY_IMAGE:$TAG" .
13 - Docker push $CI_REGISTRY_IMAGE

Listing 2.1: Docker CI/CD integration script.

By having an application containerized, there is now the opportunity to scale the application up

in pursuance of reaching organization users worldwide. Therefore, there is an urge for container

orchestration.

Chapter 2. Related Work 32

2.9.3 Container Orchestration

With this new environment of portability and reproducibility that are containers, the oppor-

tunity surges to scale containerized applications across Cloud Computing service. As containers

run similarly everywhere, scaling up the service as business needs demand and building services

across multiple machines without dealing with burdensome network settings becomes a straight-

forward challenge with the help of orchestration. Container orchestration defines the relationship

between containers: how will they scale, how they connect to the world and where do they come

from. It also provides redundancy and availability, allocation of resources between each container,

load balancing of service and health monitoring [48]. A container orchestration solution easily

allows to deploy thousands of instances with a simple command.

Tools such as Docker Swarm from Dockers, Mesos from Apache or Kubernetes from Google

guarantee that containers maintenance, management and escalation work as a smooth operation.

Kubernetes was the tool chosen for this project, due to the fact that despite the CSP selected

was Google, all other major CSP also have native support for it. The huge ecosystem Kubernetes

has and also its documentation and attractiveness made it the ideal tool for this project.

2.10 Kubernetes

Kubernetes, also known as k8s, is "a portable, extensible, open-source platform for managing

containerized workloads and services, that facilitates both declarative configuration and automa-

tion" [44]. It provides tools to auto-scale, roll, deploy, compute resource and manage volumes

across containerized applications. Like containers, k8s are designed to run anywhere, being able

to be run on a data center, a single machine, public Cloud, a hybrid Cloud or a private Cloud. Ku-

bernetes enforces implementation concepts of how containers and networks are organized. There

are some essential concepts that must be understood to fully comprehend Kubernetes.

A Kubernetes cluster consists of a set of nodes. They are the foundation of Kubernetes. When

running Kubernetes, a cluster is being executed. It is a set of nodes grouped together, meaning

that even if one node fails, the application is still accessible from the other nodes.

A node is a physical or virtual machine on which Kubernetes software is installed. It is con-

sidered as a worker machine where containers will be launched by Kubernetes. There are master

nodes and regular nodes. A master node controls and schedules all the activities in the cluster. The

master is responsible for deciding nodes operation such as scheduling workloads, managing life

cycle, scaling and upgrading. It also manages network and storage for the workloads. The master

watches over the nodes in the cluster and is responsible for the actual orchestration of containers.

It is required to have more than one node to maintain the application, if for some reason the only

node fails.

When installing Kubernetes on a system, different components are installed: API server, etcd,

kubelet, a container runtime, different controllers and a scheduler.

Chapter 2. Related Work 33

The API server acts as the front end for Kubernetes, with all the task management being

accomplished through this server.

Etcd is a distributed high accessibility reliable key value store used by Kubernetes to store all

data used to manage the cluster. It is responsible for implementing logs within the cluster to ensure

that there are no conflicts between the master.

The scheduler is responsible for distributing work on containers across multiple nodes. It looks

for newly created containers and assigns them to nodes.

The controllers are responsible for noticing and responding when nodes or endpoints go down.

For instance, one important controller is the replication controller. It guarantees that at any time,

there is always a homogeneous set of pods up and available. Another important controller is the

controller manager, responsible for gathering and sending data to the API server.

The container runtime is the underlying software that is used to run containers according to

their environment, which in this situation is Docker containers.

Kubelet is the Kubernetes’ node agent that runs on each node in the cluster. The agent is

responsible for making sure that the containers are running on the nodes as expected. It report

activities back to the master, such as pod and node health, as well as liveness probe. It is also

responsible for starting and running containers scheduled on that node.

Kubectl is the command-line tool that allows to run commands against Kubernetes clusters.

As Kubernetes is an HTTP REST API, kubectl’s main job is to carry out HTTP requests to the

Kubernetes API. It allows to deploy applications, inspect and manage resources as well as view

cluster logs.

Networking in Kubernetes is slightly different than Docker networking. In Docker, containers

have a private subnet and can not communicate directly with containers in different hosts without

port forwarding or proxy. In Kubernetes, containers within a pod share the same virtual IP address

and port, which means they can find each other through localhost. Meaning, it is no longer required

any network translation operation.

Other important concepts regarding Kubernets are Pods, Labels and Service.

• Pods are groups of one or more containers that are deployed and scheduled together. The

deployment has a shared storage/network and instruction on how to run the containers. Typ-

ically, the containers in a pod work together to provide a service. Additionally, Kubernetes

itself provides other containers to monitor and log the services. Nodes are the workers that

host the Pods. When a worker node dies, the pods on it are also lost.

• Labels. Labels are key-value pairs used to describe identifying characteristics of the object.

They identify attribute of objects that are meaningful and relevant to users. They can be

used to describe, for instance, if the environment is in testing phase or in production phase.

• A service is a REST object and an abstract way to expose an application running. Via label

selectors, a service can be connected to pods. Services provide the layer of abstraction

required so that applications do not need to know the details of the service they are calling,

Chapter 2. Related Work 34

and the application code only requires the name and port of service of the database in order

to call it.

Securing a Kubernetes environment

Security-wise, Kubernetes approaches security as a defense in depth and distinguishes four

different layers of security which are the 4C [45]. Cloud, Clusters, Containers and Code. Each

layer builds for the other, meaning that Code represents the central layer, followed by Containers,

which are then followed by Clusters and finally Cloud. Cloud security differs from CSP to CSP

as each has different features, however, most of them operate in a similar manner. Google Cloud

Platform security options are discussed in Section 4.3.

To secure a cluster there are a few steps that can be taken [46]. It is required to control the

access to the Kubernetes API, as everything in a Kubernetes cluster is controlled via an API.

Regulating who can access the API and its actions is fundamental. To correctly monitor API

access, a TLS should be used for all traffic. The authentication mechanism used must match the

cluster size: after correctly authenticated, each API call is expected to pass the authorization phase.

As Kubernetes has a RBAC integrated component, every user has a role assigned with permission

of get, create or delete with specified resources.

Kubelet allows unauthenticated access to the API and it exposes powerful endpoints that grant

control over the node and container. To monitor the access to the kubelet there are some additional

settings such as x509 client certificates and bearer tokens. Additionally, kubelet allows to delegate

the access to the kubelet API, meaning that not everyone who is authenticated and with autho-

rization can access some resources. Kubelet has a set of different policies that limit access, usage

and additionally monitor how those resources act on the cluster, for example, network policies to

restrict which pods in other namespaces have permission to access other pods or pods within their

namespaces. With these policies it is also possible to restrict Cloud metadata provided by the CSP

and to control to which nodes pods may access.

Pods definition may contain an additional field which is securityContext: this field allows to

specify what kind of Linux user can run the pod. By default, specific kernel modules are loaded

when needed, for instance, when a filesystem is mounted, to prevent this it is possible to configure

a file to disable those modules.

It is also possible to protect cluster components (etcd) from future compromise. Gaining

access to the etcd back-end for the API is an attack surface, so it is recommended to use strong

authentication mechanism such as TLS client certifications and to isolate etcd servers behind a

firewall. It is recommended to enable audit log despite being a beta feature as of the time of

writing, it is also recommended to disable features that are in alpha stage however this differs

from the risk appetite of the organization, rotate credentials frequently to reduce the lifespan if

an attacker gets access. Moderate third party integration to cluster before enabling them. Also

Kubernetes will encrypt all traffic through the etcd database.

Container security was already discussed in the Section [2.9]. All in all, it is recommended

Chapter 2. Related Work 35

to scan the container for known vulnerabilities to figure out what we are dealing with, to sign

container images to verify the authenticity of said images. Also it is important to monitor who can

access the container and follow the principle of least-privilege.

Code layer is the most vulnerable attack surfaces of the four layers. The developer must

build the application with security in mind following popular frameworks, OWASP Top 10, get an

external security audit, access over TLS only, encrypt everything by default, analyse statically the

code and use automated tools to verify if the application is secure.

Chapter 3

Eramba Solution Analysis

In this chapter, the Penetration Testing Execution Standard (PTES) [76] methodology was

followed. The decisions of why PTES was chosen have already been discussed in the previous

chapter (2.2.5).

On this section, while using PTES a full vulnerability analysis of Eramba was persecuted.

Although it is a seven-phase methodology, threat modeling, vulnerability analysis, exploita-

tion, and post-exploitation were studied at a comparably large extent versus pre-engagement and

intelligence gathering. The reporting phase was not done.

Pre-engagement and intelligence gathering had lesser attention since both are minor on this

project and did not influence the pentest’s result. The reporting phase was not conducted because

the vulnerability analysis and post-exploitation provided enough information to serve as a report.

As PTES was fulfilled in a restrained laboratory - access to the organization’s private network

via a VPN with full access to Eramba in a subnet dedicated to it - the Rules of Engagement

(RoE) were considerably low. Hence, the pre-engagement interactions were almost non-existent.

Additionally, there was access to many tools, which made it unclear which tool should be chosen.

Furthermore, the intelligence gathering was done at a level-two degree ("level two is done via using

the automated tools from level one plus manual analysis") since there were no limits imposed to

physically access the machine where Eramba was hosted in, nor limitations on the virtual machine.

The choice of STRIDE for threat modelling is motivated due to several reasons: it is one of

the most used threat-modeling methods in the industry; it is a technical approach to cyber threats;

it is comprehensive and analyzes security properties such as authentication, authorization, confi-

dentiality, integrity, nonrepudiation and availability against each system component; it provides

a clear understanding of the impact of a component vulnerability on the entire system and helps

ensure system security as the component level [42].

The threat modelling was built following Adam Shostack framework [1] using Microsoft

methodology named STRIDE to find, rank and enumerate threats. On this phase a study of how

the application is built, what are the main assets and how the authentication mechanisms work was

compassed.

The vulnerabilities analysis phase and exploitation were made together and are discussed in

the same Section, Section 3.2. This was because right after the vulnerability was found, an ex-

37

Chapter 3. Eramba Solution Analysis 38

ploitation was provided for it. In some cases, some vulnerabilities are false positives, meaning

that the network tool used provided an alert for the vulnerability found. However, with manual

studying, it was proven that there was no vulnerability.

Since Eramba has over three hundred enterprise users and over ten thousand community down-

loads, plentiful of pentests were persecuted by different teams [15] [60], meaning that the vul-

nerabilities found were low level and easily fixable in the next chapter. Additionally, the post-

exploitation phase provides guidelines to improve Eramba security and is also affiliated with the

next chapter.

It was not possible to cover all the tests on this document as there were multiple attempts making

use of different network tools to find different types of exploits, vulnerabilities and flaws - tools

such as metasploit which is a "pentest platform that enables to find, exploit and validate vulnera-

bilities" [41]. With metasploit there was an attempt to gain a reverse shell via PHP and a corrupted

PDF file using "adobe_utilprintf" payload; With dirbuster, which is a "mutlithreaded java applica-

tion designed to brute-force directories and files names on web/application servers" [41] there was

an attempt to mass list as directories on the web application but unsuccessful; With Nikto which

is an "Open Source (GPL) web server scanner which performs comprehensive tests against web

servers for multiple items, including over 6700 potentially dangerous files/programs" [41] some

tests were made but nothing too conclusive, and with SQLmap, which is an open source penetra-

tion testing tool that automates the process of detecting and exploiting SQL injection flaws and

taking over of database servers" [41] plenty of injections were tried but with no return. However,

as the Acutenix report shows [15], Eramba does not have any injectable fields so it was not pos-

sible to manipulate the database. Even though there is an Acutenix report showing no alerts, the

researcher also tried to detect cross-site scripting opportunities using XXSer [41] which is an "au-

tomatic -framework- to detect, exploit and report XSS vulnerabilities in web-based applications"

[41].

3.1 Eramba threat model

To diagram Eramba, a STRIDE-per-element was chosen, as it shows how certain threats are

more prevalent than others according to each element. This variant focuses on a set of threats

against each data flow diagram element described on Table 3.1. The threat model of Eramba was

then designed and is described on the Figure 3.1.

Data Flow Diagram Element S T R I D E
External Entity X X
Process X X X X X X
Data Flow X X X
Data Store X X X

Table 3.1: STRIDE-per-Element.

Chapter 3. Eramba Solution Analysis 39

Figure 3.1: Threat Model.

It is also fundamental to understand the underlying architecture of Eramba, the business logic

behind it and the database. What is the path an HTTP request goes through when clicking on the

URL? What language was the application written in? What is the ideal configuration and how

is the authentication done? These next subsections will focus on how Eramba is built. All these

configurations are based on Eramba’s guidelines provided by their website [20].

Chapter 3. Eramba Solution Analysis 40

Model View Controller

Model View Controller (MVC) is the standard for assembling the code of interfaces with the

user. It handles output, how data is shown and its appearance. Additionally, it also handles input,

it selects the view and the data to display, makes validations, makes the necessary changes in the

model and decides what happens next. [43]. MVC models guarantee separation of business logic

from data and presentation layers. As MVC is a standard in web application architectures, there

are numerous frameworks that facilitate this process, namely CakePHP, Laravel and CodeIgniter.

CakePHP was used to create this application. The Figure 3.2 simplifies how an HTTP request is

handle in Eramba.

Figure 3.2: Eramba Model View Controller.

Upon requesting a page or resource from Eramba, the request will go to the dispatcher; The

dispatcher locates and loads the correct controller; The controller, which is the connection between

view and the model, will also communicate with the model to process the data requirements. After

collecting the data, the request is sent back to the controller which will redirect to view. Lastly,

the view generates the output to the user terminating the request cycle. Eramba is a REST web

application. A REST API consists of an assembly of interlinked resources. REST API operations

allow being called from any HTTP client, thus meaning that for Eramba to work it is only required

a workstation with an HTTP client.

Configuration

Eramba runs using Apache, PHP, a Database and a Linux Server. It provides two different

techniques to configure it: Either by the source code provided in a ZIP file, or a virtual machine

(VM) to host the software.

To configure the VM, it is required to have an Open Virtualization Format (OVF) compatible

Virtual Machine. The PHP version must be 7.1, 7.2 or 7.3; MySQL version should be higher than

5.6.5; MariaDB, which is a open source relational databases, should be 10.x version; the Apache

version should be higher than 2.2 and OpenSSL should be higher than 0.9.x.

Chapter 3. Eramba Solution Analysis 41

Database Structure

Eramba database is built on MySQL and it has 346 tables. When configuring the database

there are some settings that should be set, namely the maximum allowed packet setting. This value

indicates the maximum size of one packet sent by MySQL and must be equal to two hundred units.

InnoDB is the engine used to manage MySQL database system. The innodb lock wait timeout,

which is "the length of time in seconds an InnoDB transaction waits for a rowlock before giving

up", should be at least set for two hundred units as it is the ideal time before of a search within

a row in a database. A rowlock means that the SQL will only lock the affected row and not the

entire table of a database when executing the delete operation.

Authentication and Access Management

As Eramba is expected to have multiple users, each one with different permissions, it uses a

Role-based access control system (RBAC). The main objective in guaranteeing an access control

based on profiles is to guarantee that the users of a given system do not have indiscriminate access

to the features and information. With the use of this type of access control, users can only access

the resources required through the profiles assigned to it. It is a simplified management of authori-

sations while adding flexibility in specifying and ensuring compliance with appropriate protection

policies. Users can be assigned of a certain profile according to their responsibilities and qualifi-

cations, and in addition, profiles can easily be assigned or removed. Profiles can also be changed

without the need to change the access infrastructure as well. With the use of RBAC, the decisions

of who can access which information are directly related with the user role in organization.

RBAC means that each profile will be associated with a set of operations, and users are appro-

priately assigned certain profiles [24].

For instance, a user may be associated with one or more profiles, and a certain profile may be

associated with one or more users. Profiles can be created according to the users’ function in the

organisation, and the set of operations associated with a profile will restrict users to that same set

of operations.

This kind of access control is effective for: systems which treat sensitive information, systems

that support the specification of competencies to perform certain tasks, systems that highlight the

specification of rules which avoids conflicts of interest and systems that promote the principle of

minimum privilege.

In Eramba, users are given a role by the administrator, each one with different permissions.

These permissions may range from add, delete and edit content. Eramba has five different portals

for the users to interact with, each one providing different functions and each having their own

authentication options and limitations:

• Main Portal;

• Awareness Portal;

• Online Assessments Portal;

Chapter 3. Eramba Solution Analysis 42

• Account Review Portal;

• Policy Portal.

The nucleus module of Eramba is dictated by the "Main Portal". All other portals are used

when specific functions for each user are enabled. Thus, each portal has its own authentication

option and limitation associated with it.

There are four ways of authenticating in Eramba:

• Lightweight Directory Access Protocol (LDAP) - It is an application protocol used over an

IP network to manage and access the distributed directory information service. The purpose

of a directory service is to provide a systematic set of records organized in a hierarchical

structure [72].

• Local Password - This authentication is done via the user and password plus salt stored in

the database.

• Google OAuth - Google OAuth is an API that uses OAuth protocol to authenticate and

authorize users to log in [30].

• Security Assertion Markup Language (SAML) - SAML is an XML-based framework that

allows identity and security information to be shared.

Despite the method of authentication, any user is required to have an account. The authentica-

tion process for Eramba is described in the Figure 3.3.

Figure 3.3: Authentication Process [20].

Chapter 3. Eramba Solution Analysis 43

3.2 Vulnerabilities Analysis and Exploitation

Vulnerabilities assessment allows to maintain an awareness of the vulnerabilities of an appli-

cation while providing knowledge to the IT team. Additionally, it also permits to quantify the

risk in the long run to then mitigate it. Governance Risk and Compliance may seem to contain

non-sensitive information but if there is no correct due diligence by upper management, there is a

vast possibility for bigger issues. Usually the main core information of a GRC is risk information

and what kind of controls there are to mitigate or transfer them. A correctly placed threat actor

may use this information wisely to compromise the organization.

The most notorious method to identify web application vulnerabilities is to follow the list

named OWASP TOP 10. This list is a industry standard to ensure that a web application is the most

secure possible. On this chapter, two vulnerabilities from TOP 10 were found: Use of components

with known vulnerabilities and an overall security misconfiguration of the environment the app

was configured in. However there are some other notable vulnerabilities that should be assessed

besides TOP 10 Section [2.3]. Web applications are built on server-side and client-side, each one

with different vulnerabilities and threats. The server side may open several ports for the acceptance

of requests and communication between components; there could be lack of patching; no system

hardening; no firewall, and others. Usually, server side attacks attempt to compromise and breach

data that the applications are present on.

Client-side is typically served through a user interface, commonly known as UI. Client-side

attacks tend to target software such as web browsers, email clients and other type of applications.

In this Section, using network tools mainly of open-source nature, we describe threats found

in Eramba that its users may face. Those users may face these threats if Eramba is not configured

correctly, either client-side, server-side or if the underlying infrastructure is not protected.

According to Adam [1], STRIDE threats may violate securities’ properties such as confi-

dentially, authentication, integrity, non-repudiation, availability and authorization. The Table 3.2

demonstrates which properties STRIDE may violate.

Threat Property Violated
Spoofing Authentication
Tampering Integrity
Repudiation Non-repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Elevation of Privilege Authorization

Table 3.2: STRIDE securities properties violated.

3.2.1 Brute-Force Attack

A brute-force attack is a cryptographic attack that relies on guessing all the possible combina-

tions of the pair username:password. This is a trial and error approach with the hopes of eventually

Chapter 3. Eramba Solution Analysis 44

achieving the correct username and password.

There are numerous methods to try brute-force attack. For this attack Burp Intruder [61] was

used. Burp Intruder is a component from Burp suite, which is a very popular toolkit used for

pentesting web applications. Burp Intruder is a fuzzing tool: it works by taking the HTTP request,

modifying the request by changing a set of values through an input point (username and password,

for example) and automatically issuing the modified request to the server. The output success is

recognized by the content length and status code. With Burp Intruder there are four type of attacks:

Sniper, Battering ram, Pitchfork and Cluster bomb. Each attack varies according to the payload

(data transmitted) number and position assigned to it.

Sniper Attack uses a single set of payloads. It individually targets each payload position for

iteration.

Battering ram also uses a single set of payloads, however it iterates through the payload and

places the same payload into all defined positions at once.

Pitchfork attack uses multiple payloads. The attack iterates through the multiple payloads used

for each different position.

Cluster bomb attack was the one used and it also uses multiple payloads. On this attack is

possible to assign a payload for each different position: one for the username position and the

other for the password position, looping through all possible combinations between them.

The payload used for this attack was a common word text file with 14,341,564 passwords used

by the industry, named "rockyou". The Figure 3.4 shows the attack was successful: It is possible

to conclude this due to the status code and length of the request response.

Figure 3.4: Brute force attack results using Burp Intruder.

Chapter 3. Eramba Solution Analysis 45

Since the HTTP status code is 302, it means that the page has been found and is redirecting

to the mainpage of Eramba which translates to a successful log in session. Also, it is possible to

verify that the length of the request response is different from the others since the logged in page

leads to no errors at all.

3.2.2 Address Resolution Protocol (ARP) Spoofing

ARP Spoofing also known as ARP poisoning is a sniffing technique. The threat actor sends

falsified ARP messages over a local area network to link a threat actor’s MAC address with the

IP address of a legitimate computer or server on the network. After the linkage is successful,

the threat actor is able to perform a man-in-the-middle attack (MITM) and sniff any traffic going

between the target and the internet. If sensitive information such as credit card details or passwords

are sent in plaintext the target is going to face difficulties. By doing a MITM attack and sniffing

the network after an ARP poison, the threat actor is able to intercept the credentials of an account

to successfully log in to Eramba environment. The ARP poisoning was possible using Ettercap,

a free and open source network security tool for MITM attacks and the capture was done via

Wireshark. The figure 3.7 shows a successful ARP spoofing attack. The process to complete ARP

poisoning was the following:

1. Set up a malicious host (Kali linux) in the same network as the target host (web browser).

2. Start ARP spoofing using the Ettercap tool.

3. Start Wireshark to sniff packets that flow through the network.

4. Analyze Wireshark capture.

Figure 3.5: HTTP header that show the requests from the client IP to the Eramba host.

Chapter 3. Eramba Solution Analysis 46

Figure 3.6: Log in request from client to Eramba host.

Figure 3.7: Packet that show the login was successful.

Chapter 3. Eramba Solution Analysis 47

3.2.3 Session Hijacking

Cookies are small pieces of data used to store information on the users’ web browser. These

are used to store stateful information and improve ease of access on the user part. A common use

of cookies is to identify an associated user with a multi interaction session in a website. The user

logs into a website and the server sends a session cookie also known as session token. This cookie

will either go in an HTTP header or will be explicitly included in a hidden field. Cookies have

three purposes: Session management, personalization and tracking.

A session hijacking attack consists of a man in the middle attack exploiting a logged in session

and changing the values of the HTTP request.

A session hijacking happens when a threat actor steals a valid cookie and reuses it to imper-

sonate the user. This attack is a man-in-the-middle attack (MITM) and this was only possible due

to it being an unencrypted communication. This attack was done using Burp Suite.

3.2.4 Unencrypted Communication

Eramba default configuration allows insecure HTTP communications. This means that every

single piece of data and information transmitted over the HTTP channel by users is eavesdrop

prone. There are different methods to disable this, being the most known SSL/TLS. SSL/TLS

ensures a safe communication between client and the server over the transport layer, namely TCP.

Client and server exchange parameters for a secure session - in this negotiation both peers authen-

ticate using asymmetric key pair and certificates x.509 of each public key. Authentication of the

client implies a mutual authentication, however the opposite (client-side authentication) does not

imply mutual authentication. Server authentication is done implicitly, via verification of the server

certificate; it then verifies if the public key of certificate matches. Client authentication is accom-

plished in a different way. It authenticates with a certificate verify message that is accomplished

via all messages exchanged of the protocol until this point [3].

Overall, SSL/TLS allows client-server applications to communicate across a network in a way

designed to prevent eavesdropping, tampering and man-in-the-middle. This protocol, when used

over HTTP is named HTTPS and uses port 443 to communicate. Although SSL/TLS are fairly

secure, there is still a widely known vulnerability that myriad devices suffer from: the Heartbleed

bug. This bug occurs with OpenSSL cryptographic software library. Overall, it allows stealing

information encrypted by SSL/TLS. All things considered, despite having SSL/TLS configured,

it is important to configure it correctly not to have this vulnerability. In certain circumstances, a

threat actor may suit himself to a man-in-the-middle position that allows him to monitor, track and

record network traffic between a user and the application, to obtain all the user-supplied informa-

tion, particularly sniff user credentials. Additionally, a threat actor is able to modify the traffic and

misuse the application as intended.

Chapter 3. Eramba Solution Analysis 48

3.2.5 Cross-site Request Forgery

A cross-site request forgery (CSRF) is a confused deputy attack, a program tricked by a threat

actor into misusing its authority. It inherits the privileges and identity of the end user and forces

the user to execute unwanted actions in a vulnerable site in which he/she is authenticated. A CRSF

exploits the relationship between the client and the server. In theory, everything that the server uses

to establish trust with a browser is what allows a CSRF to happen. This means that it requires some

sort of HTTP request, cookies or other authentication method. Along side with an authentication

method, it also requires a web form or request with predictable parameters so that a pentester can

craft the request. CSRF are not possible in GET requests that change server state [3]. To prevent

CSRF attacks it is recommended to use random nonce tokens per session when a user logs in

and stores data. For any subsequent page that checks the session data, if the nonces token do not

match, then no other requests are forwarded. The framework CakePHP enables CSRF protection

by simple adding "CsrfComponent" to the code. OWASP ZAP allows to generate a Eramba CSRF

proof of concept (PoC). By clicking on "Generate anti-CSRF test FORM", a new tab will open

with CSRF PoC which contains POST parameters and values from the HTTP request. Then, these

values can be adjustable by a threat actor and he can change them however desired.

3.2.6 Use of components with known vulnerabilities

Web applications typically use numerous commercial libraries and open source software de-

veloped by third parties, namely as authentication and session management, communications li-

braries, cryptographic libraries, report generation, logging libraries and many others. OWASP

also lists "Use of components with known vulnerabilities" as its number nine vulnerability, there-

fore these security details should be taken seriously. Those vulnerabilities in libraries usually are

identified by a developer, vendor or a pentester but sometimes, by the time they are identified,

plenty of web applications were developed using said libraries. Periodically, when some vulnera-

bilities are found on these libraries, a patch is uploaded to fix the vulnerability but only in the next

version. Web applications must include mechanisms that ensure that libraries with known vulner-

abilities are not used or that at least are used with limitations. Eramba uses plenty of different web

components from third parties to build its system.

Almost every single application has known vulnerabilities from third parties, either from

Jquery, Bootstrap, Apache, MySQL etc. If not monitored or tracked, these can be a backdoor

to the application. Some vulnerabilities may lead to minor impacts while others may lead to major

data breaches. This is why it is crucial to correctly configure and monitor the application as well

as apply a policy for patch management process. Depending on the asset, this risk may be impor-

tant to evaluate and prioritize. When using known vulnerabilities components, it is important to

research the flaws, weaknesses, understand if the application uses the components at the full extent

and also distinguish their nested dependencies. It is also critical to establish to what degree can

the application be vulnerable and to balance if it is really required to use those components. To

prevent these classes of vulnerabilities, the developer should monitor databases of known vulner-

Chapter 3. Eramba Solution Analysis 49

abilities such as Common Vulnerabilities and Exposures (CVE), National Vulnerability Database

(NVD) or a community-driven open-source vulnerability database (VULDB). Topping that, the

developer should also subscribe to email alerts for security vulnerabilities related to components

used, and only obtain components from legitimate and secure sources, verifying if the checksum is

official. Some vulnerabilities are easy to find, while others require tremendous skill level to craft

the request. The most effective prevention is to not use any kind of libraries made by third parties.

Besides being an unrealistic scenario, this approach would introduce other type of vulnerabilities.

Therefore, development teams of web applications must define a process that allows to safely use

libraries developed by third parties. Eramba uses three components with known vulnerabilities:

Jquery with version 2.1.4, Jquery UI dialog 1.14 and bootstrap 3.3.7. These components will now

be studied to understand if their usage presents any true positive or false positive.

jQuery 2.1.4

JQuery is a fast, small, and feature-rich JavaScript library. It makes concepts like HTML

document traversal and manipulation, event handling, animation, and Ajax much simpler with an

easy-to-use API that works across a multitude of browsers [39]. The jquery version that Eramba

uses is the 2.1.4 and according to CVE 2015-9251 [9], "is vulnerable to Cross-site Scripting (XSS)

attacks when a cross-domain Ajax request is performed without the dataType option, causing

text/javascript responses to be executed" [9]. This happens due to the failure of sanitizing user-

input value. A threat actor may take advantage of this vulnerability to execute code in a user

browser.

jQuery 1.14 UI dialog

Jquery-UI is a library required to manage UI elements in Jquery. This library is known for hav-

ing a varied set of user interface interactions, effects, widgets and themes, all built on Jquery [40].

As many applications, Eramba also adopted Jquery-UI to create its UI components. According to

CVE-2016-7103 [10], this library has a known vulnerability. This vulnerability requires specific

circumstances to happen, mainly that the web page has a dialog component. The UI component

dialog allows to inject XSS content into "closeText" parameter of a dialog function. The proof of

concept is shown on the script [3.1] for this vulnerability [11]. However, there are no webpages

with dialog components, thus we can consider this a false positive.

1 <!DOCTYPE html>
2 <head>
3 <title>XSS in closeText option of component ui dialog</title>
4
5 <script src="https://code.jquery.com/ jquery-2.1.4.js"></script>
6 <script src="https://code.jquery.com/ui/1.11.4/ jquery-ui.js"></

script>
7 <link rel="stylesheet" type="text/css" href=" http://code.jquery.

com/ui/1.9.1/themes/base/jquery-ui.css">
8 <script>
9 $(document).ready(function () {

Chapter 3. Eramba Solution Analysis 50

10 $('#dialog').dialog({ closeText: '<script>
11 alert("XSS in here")<\/script>' });
12 });
13 </script>
14 </head>
15 <body>
16
17 <div id="dialog" title="Dialog Title">Content here!</div>
18
19 </body>
20 </html>

Listing 3.1: XSS closeText PoC.

Bootstrap 3.3.7

Bootstrap is described as a HTML, CSS, JavaScript open-source framework used to design

mobile-first responsive projects. It enables developers to quickly build responsive websites, sup-

plying the developer with numerous advantages such as responsive grids, responsive images, nav-

igation bars, menu dropdowns, progress bars, etc. Additionally, Bootstrap also requires jQuery

to function. Eramba uses Boostrap version 3.3.7, which is outdated and with certain conditions

vulnerable to XSS. According to CVE-2018-14040 [12], this vulnerability affects the data-target

attribute and occurs due to lack of validation of user-supplied input. Data-target enables web

developers to control a widget in JavaScript. A threat actor can exploit this vulnerability by per-

suading a target user to follow a malicious link. However, this vulnerability only occurs when

the data-target attribute relies on external data accompanying the page where others users besides

the threat actor are affected. If data-target attributes are made of hardcoded html text, it is not

considered an issue. The PoC of this vulnerability is shown on the script [3.2]. The environment

for the vulnerability to occur is not present in any of Eramba pages, therefore we can conclude

that this vulnerability is also a false positive.

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.4/

jquery.min.js"></script>
5 <script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/

bootstrap.min.js"></script>
6 </head>
7 <body>
8
9 <button data-toggle="collapse" data-target="<img src=x onerror=

alert(0)>">Test</button>
10 </body>
11 </html>

Listing 3.2: Bootstrap vulnerability PoC.

Chapter 3. Eramba Solution Analysis 51

3.2.7 Excessive administrator privileges

One of the most common authentication methods is via password, due to its simplicity, ease

of use and convenience. However, in order to set up a user account in Eramba, the administrator

has the full power. For any user that intends to create an account, they must ask the administrator

for it. Then the administrator must go to the access management portal and create an account with

the user details. Those details are: username; password; email; which groups and portals the user

has access to and if any REST API is enabled. This means that the password is no longer unique,

since the administrator has to set it up. Additionally, when the user tries to log in for the first time,

Eramba requires the user to change the password, yet the password can be the same as the one

administrator set for the first time which is not a best practice according to security standards. To

sum up, the administrator is the core of access management in Eramba and can fully compromise

it if he so wishes.

3.2.8 Weak Cryptographic Algorithm

According to NIST [54], a Cryptographic algorithm is a "well-defined computational proce-

dure that takes variable inputs that may include a cryptographic key to provide confidentiality, data

integrity, authentication and/or non-repudiation". There are several encryption and hashing algo-

rithms that are no longer secure. Hashing algorithms are vital for web applications as they provide

secure passwords in a fast way, through low-use of compute power using a one-way function. Er-

amba uses Bcrypt algorithm to store users password in the database. Bcrypt is a key derivation

and adaptive function based on Blowfish cipher that can encrypt data up to 512 bits. It also in-

corporates a salt mechanism to protect against rainbow table attacks and the option to change salt

round values - the higher the value, the more time is required to brute-force the resulting hash. As

it has the option to configure numbers of rounds, it is also a slower hash but a more strengthened

key.

Blowfish cipher is a 16-round Feitsel cipher and a particularly fast symmetric-key block cipher.

It has a 64-bit block size and variable key length (according to input) from 32 bits up to 448 bits.

Usually, passwords are not stored directly into a database as it would be easy to compro-

mise the system in case the database was compromised. To solve this problem, passwords are

mutated via a one-way function which then produces a hash [3]. Therefore, passwords inserted

by the users are mutated via said function and then the resulting hash is compared with stored

database hash. Besides this mutation, password are sometimes transformed using a random value

designated by salt. This salt is used in conjunction with the password for the first time the pass-

word is inserted and then the one-way function is applied. Lastly, the resulting value is stored

for future use in the database. Typically one-way function is given by: f(salt, password) =

salt|MutatedPassword .

With a tool like Hashcat [31] which has Bcrypt support, it is possible to perform a dictionary

attack (trying all words in a list), a combinator attack (concatenating words from multiple word

lists), a brute-force attack, a mask attack (trying all characters from given charsets) or a hybrid

Chapter 3. Eramba Solution Analysis 52

attack (combining world lists masks). When having full access to the database, a threat actor may

use these tools to compromise a user password and the required time only depends on graphics

and the computer processing unit.

3.2.9 Denial of Service

A Denial of Service (DoS) attack attempts to overwhelm and exhaust application’s resources,

making said application slow or unresponsive to legitimate users. A Distributed Denial of Service

(DDos) attack aims to make a server, service or infrastructure unavailable. The attack can take

many forms: a server bandwidth overload to make it unavailable or a depletion of the machine’s

system resources, preventing it from responding to legitimate traffic. Denial of Service can be

a useful probing technique as well an attack in itself. A lone DDos attack impact is usually

temporary although it can be exceedingly costly to the victim. However, a DDos can preclude far

more damaging attacks. A system that fails under a DDos attack can be quite informative on what

parts of the system have been neglected or less invested in. When the web application starts to fail,

it is important to understand if database queries failed before the website. If so, this means that

the database server or the website software is most likely being neglected. If the website itself just

times out static pages, it means that the hosting server may have issues or the software hosted in

it is under specced. The error handling may also not have been very well executed and bad error

handling throwing error may provide more information. At the time of a DDoS attack, a series of

requests are sent at the same time from various points on the web. The intensity of this "crossfire"

makes the service unstable, and in the worst case, unavailable.

DoS and DDoS attacks can be split into five different categories [18]:

• Network device level: These attacks may occur due to software deficiency such as bugs or

hardware exhaustion.

• OS level: The attack takes advantage of protocol implementation techniques.

• Application Level: In this kind of attack, the threat actor studies the application to find

application flaws that allow him to exhaust resources of the victim.

• Data flood: In data flooding attacks, the threat actor attempts to over fatigue the network

bandwith by sending extremely large amounts of data to process. Attacks such as SYN

Flood, UDP Flood, HTTP flood or ICMP flood are common examples of this attack as they

are used to overload the network with data packets.

• Protocol Feature attack: Attacks based on protocol features exploit flaws of protocol im-

plementation or bugs of installed protocol. Common examples of these attack are Smurf

Attack, SYN, UDP and ICMP.

To assess the studied vulnerability, a SYN Flood attack was performed. This attack was chosen be-

cause it is an extremely powerful and straightforward attack. SYN flood, as discussed previously,

Chapter 3. Eramba Solution Analysis 53

is a data flood attack [5]. It exploits the TCP connection known as three-way handshake, using

one of the TCP headers named as synchronize flag. The threat actor sends repeated SYN packets

using spoofed addresses to the same host. Then, the host acknowledges the request (ACK) from,

supposedly, multiple connections and attempts to establish connection with each one. When trying

to establish connection, the host sends SYN-ACK and waits for a reply from the client, however,

since it is a spoofed IP address, it never sends back a reply, leaving the host waiting for the ACK.

During this time, the host can not close down the connection and before the connection times

out it receives another SYN packet. This means that an immense number of connections are left

open and eventually the host overflows. To perform this attack, a network tool named Hping was

used [32]. Hping is a command-line TCP/IP packet generator that can be used for firewall testing,

advanced port scanning, networking testing, manual path discovery, remote OS fingerprinting and

other network related actions. Through Hping and a set of commands, it was possible to perform

a successful SYN Flood attack on Eramba as seen on Figure 3.8. It must be noted that this proce-

dure was done in a safe laboratory environment, in a sandbox, with no harm to the company. To

effectively make a distributed denial of service attack, a botnet would be necessary.

Figure 3.8: SYN Flood Attack.

3.2.10 Password Field automatic

The log-in form contains the password field with auto-complete enabled. This is both a server

and a client side issue. According to CWE-200 [14], this is exposure of sensitive information

to an unauthorized actor, as the product may expose sensitive information to an actor that is not

explicitly authorized to access the information. Despite being a minor vulnerability, it still may

compromise the security of the company if misused. A threat agent may capture a user’s creden-

tials if it gains control over the user’s computer. Additionally, if a user finds another application

with XSS vulnerability it is possible to capture all browser-stored credentials. From the client-side,

the user must configure his browser options to enable auto-filling in forms. From the application

Chapter 3. Eramba Solution Analysis 54

it self, the HTML form must include the attribute "autocomplete=off" within the form tag in order

to prevent all form fields. However, some browsers may ignore this atribute, even though it is

required for web application to get PCI compliance.

All in all, this should not be a problem if two factor authentication is correctly implemented.

The access management already discussed provides a comprehensive overview of how the au-

thentication process works in Eramba. Additionally, it is also possible to add an extra step of

authentication with Google Oauth, as discussed in in Authentication and Access Management 3.1.

3.3 Post-exploitation

The next step of the Shostack framework is to go through the list of threats and address them.

There are four actions to be taken against each threat:

• Mitigating threats.

• Eliminating threats.

• Transferring threats.

• Accepting the risk.

The main focus should be to mitigate the threats, however this action may be costly, involving

complex work, consuming extensive resources or requiring constant monitoring. Since the objec-

tive of this project is to provide a solution both for security and scalability of the Governance Risk

and Compliance software that is Eramba, the actions to be taken will be discussed in the follow-

ing chapter as most of the vulnerabilities found are immediately mitigated/eliminated/transferred

while using cloud computing to host. The Table 3.3 illustrates the result of STRIDE. It was not

possible to map "Weak Cryptographic Algorithm" (3.2.8) to the table as it does not fit any of the

fields. If in the future new vulnerabilities are discovered in components, these may or may not be

mapped with STRIDE.

INTERACTION S T R I D E
Brute-Force Attack
ARP Spoofing
Session Hijacking
Unecrypted Communication
CSRF
Use of components with known vulnerabilities
Excessive Administrator privileges
Weak Cryptographic Algorithm
Denial of Service
Password Field Automatic

Table 3.3: STRIDE iteration result.

Chapter 3. Eramba Solution Analysis 55

The Table 3.4 provides the standard mitigation applicable to STRIDE threats. In the next

chapter, cloud computing offers a solution for almost all of the threats, as when hosting with a

CSP we are mostly transferring the risk to the CSP. With the study of Cloud Services we were able

to map these countermeasure with said services thus providing this table.

Threat Countermeasures Cloud Services

S

Strong authentication.Do not store secrets in plaintext.
Do not pass credentials in plaintext over the wire.
Protect authentication cookies with
Secure Sockets Layer (SSL).

VPC Network;
IAM
Managed Certificates

T

Data hashing and signing.
Digital signatures.
Strong authorization.
Use tamper-resistant protocols across communication links.
Secure communication links with protocols
that provide message integrity.

Managed Certificates

R
Create secure audit trails.
Use digital signatures.

Managed Certificates

I

Strong authorization.
Strong encryption.
Secure communications links with protocols that
provide message confidentiality
Do not store secrets in plaintext.

By default

D
Resource and bandwidth throttling techniques.
Validate and filter input.

Cloud Armor;
Load Balancer

E
Follow the principle of least privilege and
use least privileged service accounts
to run processes and access resources

N/A

Table 3.4: STRIDE Threats and Countermeasures mapped with Cloud Services.

Chapter 4

Eramba Cloud Solution

In this chapter, a solution for the scalability problem of Eramba is presented. This chapter

also provides an agenda to mitigate most of the security vulnerabilities discussed in the previous

chapter [3]. Additionnaly provides the foundation for an Eramba-as-a-Service Through Cloud

computing and containerization, almost all of the vulnerabilities were mitigated in conjunction

with future vulnerabilities that may have appeared on the hardware side. When considering mit-

igation techniques, the host and network configuration were considered as the main entry point

to mitigate. The countermeasures referenced in the Table 3.4 are easy to implement and moni-

tor and also provide on-going support via any Cloud Service Provider (CSP). It is important to

differentiate the application and the infrastructure needed to host Eramba.

This solution provides vulnerability fixes to the current software (community version 2019)

and provides on-going solutions to the hardware that the software is hosted on. Additionally, as

it was provided an Eramba container as a solution, any underlying OS infrastructure issues are

mitigated. Furthermore, using Kubernetes as the main tool for container orchestration, the clear

choice for the CSP was Google Cloud Platform. With all advantages Google Cloud offers, namely

less costly tariff prices, integration with open source software and easy integration with hybrid

Cloud, the deployment is a straightforward task and it has a smooth learning curve associated with

it. Google was also the founder of Kubernetes which further supports this choice. The solution

offers an almost one-click setup of Eramba, as the new setup is extremely intuitive. It is also the

first step of what could potentially be a new future for the infrastructure of the organization since

it is going to be the first application built on Cloud hosting computing and not On Premises. The

X-as-a-Service is the future and is seen as a facilitator for the users and system administrators, as

the users do not notice any difference and the latter do not have to spend plentiful of hours trying

to set up and scale up the application as the user-base increases.

4.1 Requirements Gathering

In order to develop a container solution to further orchestrate it on Kubernetes, it is required

to combine hardware, capable of supporting the desired functionalities with a system compatible

and desirable. For that there are a set of requirements that must be established.

57

Chapter 4. Eramba Cloud Solution 58

The set of requirements is summarised in the table [4.1].

Requirements Description

R1
The solution must allow any organization’s user to access the
software worldwide at any time.

R2 The system must be portable.
R3 The system must be compatible.
R4 The system must be transparent.
R5 The system must be fault tolerant.
R6 The system must be scalable.
R7 A new entry must be registered through all replicas.

R8
The organization’s DNS must be able
to associate a Google static IP to a custom organization domain.

R9 The load balancer must be capable of balancing the load as required.
R10 The load balancer must be able to associate more than one service at the time.
R11 The response time must be under 5s.
R12 The operational cost must be under 10C per day.
R13 The system must have a SLA uptime of 99.95%.

R14
The system must be able to protect itself from security threats
namely DDoS and Brute-force attacks.

R15 The solution must have a renewable TLS/SSL certificate.

R16
The hosting machine must have at least two
GB of RAM for master nodes and two CPU cores.

R17
Machines that host the worker node used must have at least
one GB of RAM and one CPU core.

Table 4.1: Requirements Table

4.2 Eramba Container

To fulfill requirements number two (portability) and number three (compatibility), a container

solution was designed for Eramba. The new solution for Eramba is an adapted version from an

Eramba image pulled from Docker Hub [47]. This image from Docker Hub was not suitable for

Kubernetes integration. In order to function properly, it was required to create an extra file for

global configurations of databases values; create a script to make new directories needed, and

another additional script was required to build database entries. All this defeated the purpose of

a containerized solution as it is not a one-click solution. Consequently, some adjustments were

made and the new docker file is shown on appendix B. All database values are the default one and

do not represent the true value. This now translates into a one-click solution.

The Figure 4.1 shows the new architecture of Eramba containerized. This image is also open-

source and will have significant modifications when migrating to Kubernetes.

Chapter 4. Eramba Cloud Solution 59

Figure 4.1: Eramba containerized.

All Eramba dependencies are now written on a single text file that is Dockerfile which can

be visualized on section B. Dependencies such as MariaDB, PHP, Apache, wkhtmltopdf and a

Linux operating system are no longer required to be installed on a virtual machine. Eramba is

now a light-weighted portable application that is capable of running in any machine with Docker

installed. To further orchestrate this solution across Cloud Computing services, an architecture

was designed based on Google Cloud Platform.

4.3 Architecture of Eramba as Service

To meet the remaining requirements the following architecture has been designed and pro-

posed. This architecture aims at ensuring that requirements are met as well as promoting a smooth

approach to the services that the cloud offers. Google Cloud offers mechanisms for fault tolerance,

scalability and transparency by default so, requirements number one (accessible worldwide); num-

ber four (transparency); number five (tolerance); number six (scalability) and number seven are

met.

4.3.1 Google Kubernetes Engine

Google Kubernetes Engine is Google´s fully managed Kubernetes platform, which is an

enterprise-grade platform for stateful and stateless containerized apps. It offers managed Kuber-

netes and comprises a high availability control plane that Google collects and operates, and nodes,

which hold the pods and the connected Google Cloud services (discussed previously). There are

Chapter 4. Eramba Cloud Solution 60

two ways to interact with GKE: using kubectl or the Cloud console. GKE simplifies platform

operations with load balancing auto-scale, auto-upgrade, and auto-repair features. It is secure by

default, including data encryption and vulnerability scanning of container images. Additionally,

it supports integrated Cloud monitoring with infrastructure applications and Kubernetes’ specific

views.

Eramba Kubernetes object runs in a GKE Zonal Container Cluster, which is the foundation of

GKE. This cluster consists of at least one control plane, and one or more machines called nodes

created during the cluster creation process. The control plane includes the Kubernetes API server,

scheduler, storage, and core resource controllers. The control plane is responsible for deciding

what runs on all cluster nodes. This includes scheduling, workloads, managing networks, storage,

life-cycle, and upgrades all in an automated way. GKE offers high availability (HA) and scaling.

For availability, it is possible to choose between two types of clusters: zonal and regional. Regional

cluster is better suited for HA because they have multiple control planes across various zones in a

region. On the other hand, zone cluster has one control plane in a single zone. GKE provides four

types of auto-scaling for workloads and infrastructure. Workloads: Horizontal pod auto-scaling

(HPA) for adding and removing based on utilization metrics like CPU and memory; vertical pod

autoscaler for sizing pods Infrastructure: cluster autoscaler for adding and removing nodes based

on the scheduled workload; node auto-provisioning for dynamically creating new node pools with

nodes according to the need of users’ pods.

As stated, GKE is secure by default: It offers automatic data encryption and the OS images

deployed are Google certified. It is possible to access clusters only via private IP, and it provides a

robust identify, access management and role-based access controls. Moreover, GKE offers trusted

networking. Global VPC allows to connect and isolate clusters; Load balancing allows to deploy

public services behind a single domain; Cloud Armor provides protection against Layer 7 load

balancing (high-level application layer) and DDoS attack.

4.3.2 Google VPC network

Google Virtual Private Cloud network is a virtual version of a physical network, implemented

inside Google’s production network. It provides connectivity to instances used by GKE and dis-

tributes traffic from google Cloud external load balancer to backends. Traffic to and from instance

can be controlled with network firewall rules, and network administration can be secured using

IAM roles. While using containers, Eramba solution makes use of VPC network by creating

external IP addresses accessible through the internet.

VPC Firewall Rules

Since VPC firewall rules deny all network traffic by default, the backend instance must allow

connections from the external load balancer. These firewall rules define the allowance of HTTP

traffic from 130.211.0.0/22 and 35.191.0.0/16 IP (both subnets for load balancers) to reach back-

end instances or endpoints passing the health check. This operation must be done manually since

Chapter 4. Eramba Cloud Solution 61

GCP does not do it automatically, and Kubernetes service requires a 200 HTTP response to fully

function. For these rules to take effect, a LivenessProbe and a ReadinessProbe are required in the

Eramba Kubernetes solution file. Liveness probes are needed for the kubelet to know when to

restart a container, and the Readiness probe defines when a container is ready to start accepting

traffic.

4.3.3 Google Load Balancer

Google Load balancer distributes user traffic across multiple instances of applications. By

spreading the load, load balancing reduces the risk for applications to experience performance

issues. Google Cloud Load Balancer is a fully distributed software, and it offers multiple features

that were used in the Eramba solution: Single IP address to serve as the frontend; Automatic

intelligent autoscaling for backends; External load balancing to reach Eramba application from

the internet; Layer 7-based load balancing to add content-based routing decisions focused on at-

tributes, such as the HTTP header and the uniform resource identifier. For this solution, an external

HTTP(S) load balancer was used. An external HTTP(S) load balancer distributes traffic coming

from the internet to the Google VPC. Additionally, alongside an ingress C.2 object (an object that

defines rules for routing HTTP(S) traffic to the application running in a cluster) associated with

the service created from the Eramba solution, it is then possible with Google Managed Certifi-

cates to redirect traffic via 443 port to have secure communications between the load balancer and

the client. Moreover, an external load balancer provides DDoS protection crucial for the Eramba

Kubernetes Solution. All of Google Cloud proxy-based external load balancers inherit DDos Pro-

tection from Google Front Ends, which are part of Google’s production infrastructure. It is also

possible to enable Google Cloud Armor to enhance DDoS protection.

4.3.4 Google Custom Resource ManagedCertificate

Google Self Managed Certificates uses Let’s Encrypt Certificate Authority to provide the abil-

ity to automate the certificate issuing and renewal using Automatic Certificate Management Envi-

ronment (ACME) protocol. It is a Google custom resource that specifies the domain that the SSL

Certificate will be created for. The solution shows how Eramba SSL certification is created via a

ManagedCertificate. Since it is a free certificate, it expires after three months, but it is automati-

cally renewed. Additionally, to create a Google Self Managed Certificate, it is required to have a

DNS domain from the organization to configure the DNS record for said domain, in order to map

the IP address of the load balancer created.

4.3.5 Google Cloud Armor

Google Cloud Armor offers protection to applications and infrastructure from DDoS attacks. It

provides built-in defenses against infrastructure DDoS attacks. As it protects some of the world’s

biggest websites like Google Search, Gmail, and Youtube, it is sufficient to cover an applica-

tion like Eramba. Additionally, Google Cloud Armor also provides predefined rules to defend

Chapter 4. Eramba Cloud Solution 62

against OWASP TOP 10 attacks, namely cross-site scripting, and SQL injection. If any of those

vulnerabilities are found, the system is well-prepared. Moreover, Cloud Armor also offers Web

Application Firewall (WAF) services that can be integrated with the organization’s modsec rules.

4.3.6 Container Optimized Images (COOS)

COOS are images that are designed by Google to run Docker containers strictly. They provide

a smaller attack surface for provident attacks, and they are locked down by default, meaning that

they include firewall and security settings by default and benefit from automatic updates. As the

COOS root filesystem is always mounted as a read-only, it is possible to run containers quickly,

efficiently, and securely.

4.3.7 Cloud Identify Access Management (IAM)

Cloud IAM is a Google Cloud unified system for managing access to resources and assigning

permissions for users and services to access those resources. Cloud IAM is designed for organi-

zations with plenty of projects and users. As Eramba marks the new step for the organization’s

digital transformation, IAM will unify control for access for all Cloud projects and resources in

one place in the future.

4.3.8 Security Command Center

Security Command Center is a built-in security control that can help to prevent, detect, and

respond to threats in GCP. With the command center, it is possible to generate cryptographic keys,

create data loss prevention policies, and manage built-in web security scanner for future threats.

4.3.9 Architecture Overview

The following diagram 4.2 provides an overview of the Architecture of a Eramba cluster in

GKE with all Cloud features discussed in the previous section 4.3.

Chapter 4. Eramba Cloud Solution 63

Figure 4.2: Eramba Kubernetes Solution architecture.

Chapter 4. Eramba Cloud Solution 64

4.4 Kubernetes Solution Design

Kubernetes objects are persistent entities that are expressed in an YAML file. It is only required

to apply information via an YAML file to kubectl to launch a kubernetes instance. Then, kubectl

converts the information from YAML file to JSON and makes an API request. YAML files have

some optional parameters values and some others are required. Values such as apiVersion (version

of kubernetes API used on the project), kind (kind of object created, either a pod, service or a

deployment), metadata (data that helps to identify unique objects, namely name string, UID and

namespaces) and spec (state desired for the object) are needed. Other values are optional such as

status or annotations.

The proposed solution is expressed in a YAML file that is listed in appendix [C.1]. The ar-

chitecture is shown on the Figure [4.2], and it illustrates how a user can connect to Eramba from

any public IP (accepted in organization’ DNS). The load balancer will effectively distribute the

request as needed.

This Kubernetes object has particular nuances: the replica number is adjustable and it can be as

high as needed; the MySQL user and MySQL password are default for documentation purposes;

the image is hosted on a private registry in GitLab being only accessible by its owner.

The features mentioned in Section 4.3 add new security measures that mitigate most of the

security issues found in the previous chapter.

4.5 Implementation

This section will provide an agenda to deploy and implement the new solution offered. For

a user to access Eramba, there are several steps that take place. The user must have access to

organization policies to allow the user’s IP to access the application; if the user doesn’t have

permission, he will be denied access. Additionally, the organization must have a Google Cloud

Platform account and a DNS server. When Google Cloud Platform access is created, there are a

series of steps to ensure that the application is fully operational and secure:

• The first operation is to enable the cluster API to start the Google Kubernetes Engine (GKE)

and create a cluster. GKE offers optional features to ensure the security of the cluster,

namely: the validation of the authenticity of OS and kernel modules by enabling secure

boot; intranode visibility to observe data flowing between pods and nodes; placement of

the Kubernetes API on a private network of VPC; placement of the node pool on a private

network; enabling shielded GKE nodes.

• The organization must then reserve a static external IP address to redirect it to the organiza-

tion’ DNS domain attributed to Eramba.

• Subsequently, a ManagedCertificate custom resource definition must be created to specify

the domain that the SSL certificate will be created for; This can be done via the deployment

of the YAML file described in appendix ??.

Chapter 4. Eramba Cloud Solution 65

• Then, the service and deployment on C.1 must be applied to get up the pods and running.

To guarantee that the certificates will work, the type of nodes must be set to nodeport.

The ingress file should be configured to match the static IP address and domain to be asso-

ciated with. This will create an External HTTP(S) LoadBalancer.

• Afterwards, an external domain from the DNS will be linked to a static external IP address,

e.g.: https://www.eramba.organizationDNSdomain.com All these steps are

described in 4.2.

4.6 Results

According to section 3.3, there are four actions that can be taken against each threat. With the

proposed architecture, some vulnerabilities are eliminated and others are accepted. The Table 4.2

maps what feature(s) will eliminate the vulnerability found.

Cloud
Feature

VPC
Network

Load
Balancer

Managed
Certificate

Cloud
Armor

IAM

Vulnerability
Brute-force

Attack
X X X X

ARP
Spoofing

X X X X

Session
Hijacking

X X X X X

Unencrypted
Communication

X X

CSRF X X X X
Denial of Service X X X

Table 4.2: Mapping Google Cloud features with Vulnerabilities found.

By using this Cloud Features, "Brute-force" (3.2.1); "ARP Spoofing" (3.2.2); "Session Hi-

jacking" (3.2.3); "Unencrypted Communication" (3.2.4); "CSRF" (3.2.5) and "Denial of Service"

(3.2.9) threats are all eliminated. "Use of components with known vulnerabilities" (3.2.6) threat

does not need any kind of mitigation since all vulnerabilities found were considered false pos-

itive. "Excessive administrator privileges" (3.2.7), "weak cryptographic algorithm" (3.2.8) and

"Password Field Automatic" (3.2.10) threats were all accepted as the potential loss from them is

not enough to warrant spending money to avoid them as it would require a team of developers to

reprogram some features of the application.

This proposed architecture will meet all requirements established in Section 4.1. The Table

4.3 maps what feature(s) will meet each requirement.

https://www.eramba.organizationDNSdomain.com

Chapter 4. Eramba Cloud Solution 66

Cloud
Feature

GKE
VPC

Network
Load

Balancer
Managed
Certificate

Cloud
Armor

IAM COOS

Requirement
R1 X X
R2 X
R3 X
R4 X
R5 X
R6 X
R7 X
R8 X X
R9 X
R10 X
R11 X X X X
R12 X X X X X X X
R13 X X X X X X X
R14 X
R15 X
R16 X
R17 X

Table 4.3: Mapping Google Cloud features with requirements met.

Google Kubernetes Engine provides a cluster architecture that supports portability, compatibil-

ity, fault tolerance and auto-scalability with Cloud TPU (Tensor Processing Units). With Google

VPC Network using Cloud DNS, it is possible to associate an external domain to a static google IP.

Google Load Balancer allows to distribute load as demand requires and supports multiple backend

services. With metrics to measure access time, it is possible to conclude that each average requests

takes about 2,5 seconds, however, some heavier requests took as much as 5 seconds. The costs are

less than 10C per day (roughly 6C) and as more services are hosted in the backend services the

expense will dilute through all the services.

The GKE offers an SLA up to 99,5% for zonal clusters which reflects exactly the requirement

needed. The solution also inherits the protection from Cloud Armor which is ideal for DDoS,

brute-force attacks and other attacks mentioned through this project. Google Custom Resource

Managed Certificate offers SSL protection and allows to automatically renew certificates every

three months. Lastly, Container Optimized solutions provide more than two GB of ram and more

than two CPU cores of usage.

4.7 Discussion

The implementation proposed is not entirely ideal as not all threats are mitigated. Although

it is not possible to calculate the costs of hosting Eramba locally, it is possible to presume that

Chapter 4. Eramba Cloud Solution 67

it is cheaper to host Eramba locally than in the Cloud. This cost happens because Eramba is the

only application hosted in the Cloud. When more applications are migrated to the Cloud, the

cost of hosting will be diluted as all the Google Cloud features can be shared. Additionally, with

this implementation, the hardware supporting the application is no longer a problem. There is

automatic scaling and node management (either to maintain node health or vulnerability) is done

automatically, with logs being able to be directly sent to the SIEM. Moreover, when trying to

perform the attacks discussed in chapter 3, the threat actor will automatically be blocked by the

CSP and, depending on the attack performed, possibly face a fine or even jail time. They may face

a fine or even jail due to the CSP having tied relationship with governments who seek to protect

the privacy and security of CSP’s users. This adds a new abstract layer of security as monetary

damage or jail time frighten and dissuade threat actors from trying any attack. The hosting of

Eramba, according to Google Cloud bill management, costs close to about 2,5C per day which

translates into 78C per month. Although meeting requirement number twelve (The operational

cost must be under 10C per day), for the P&L (profit and loss) structure of the organization it is

an extra accentuated cost. The discriminated cost is described in the Figure 4.3.

Figure 4.3: Google Cloud Cost per day.

To meet requirement number eleven, Google PageSpeed Insights was used to report the perfor-

mance of the page. This search engine considers different scenarios including mobile and desktop

connection and type of content display and response time. The results are shown on Figure 4.4 for

desktop usage - these results can be slightly improved if CSS and jQuery scripts are moved to an

inline version, however it is not worth the high cost.

Figure 4.4: Google PageSpeed report results

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The work described in this document was developed in the scope of the Project in Information

Security, subject of the completion of the Master in Information Security at Faculdade de Ciências

da Universidade de Lisboa. This work was developed during an internship at EY Consulting in

Portugal.

The goals of the work were based on pentesting an open Governance Risk and Compliance

software and analyzing its vulnerabilities. Additionally, another objective was to reduce the large

amount of resources consumed by virtual machines hosting the application on a physical server.

Furthermore another objective was to simplify the setup and configuration of Eramba to turn it as

light-weighted as possible in order to provide process isolation. Thus providing greater usage of

resources via Containers.

As the organization owns different offices worldwide, the software needed to be accessible in

any part of the world reasonably quickly. It was required to provide container orchestration to

offer the option to scale up and down based of the demand, plus provide the option to auto-scale

as needed. With container orchestration it was also provided fault tolerance.

The organization also required to switch their infrastructure on-premises to Cloud computing

due to their abundant advantages such as high availability; elasticity; fault tolerance; disaster

recovery; scalability; agility; global reach; user latency capabilities; predictive cost considerations;

technical skill requirements and security. The Cloud Service Provider chosen was Google Cloud

mainly due to their raw integration with kubernetes.

The first phase of the project was dedicated to research existing pentesting methodologies that

are widely employed by the specialists, afterwards a study was persecuted of laws and regulations

that may influence GRC such as SOX, European Directive 2006/43/EC VIII and GDPR. More-

over, a study of Governance Risk and Compliance purpose was conducted. After this study a full

analysis of a GRC tool named Eramba was made.

On the second phase, the Governance Risk and Compliance tool was pentested and the threat

model of Eramba was designed. Following each step of the threat model framework proposed by

Adam Shostack: model the system, find threats, address threats and validate them.

69

Chapter 5. Conclusion and Future Work 70

Consequent to verifying that Eramba is secure to a really high degree the third and final

phase was conducted: a migration of the virtual machine Eramba hosting environment to a light-

weighted environment scalable as the demand required. To provide redundancy and availability

worldwide relatively quick a popularized container orchestration tool known as Kubernetes was

used. By creating a Kubernetes object via an YAML file it was possible to simplify the deployment

of an extensive resource usage application that is Eramba.

The result of this work can be seen as a particular solution to a vulnerability assessment and

a method to mitigate most of the vulnerabilities assessed whilst providing a scalable and light-

weighted environment. Overall, it was an hardening of the application Eramba. As Cloud com-

puting is becoming the new normal, this project provides the first step for a digital transformation

of the organization to fully migrate its infrastructures to the Cloud.

5.2 Future Work

Regarding future work to be developed, the first step should be to implement a pentest team to

follow vulnerabilities disclosed by the community and fix future vulnerabilities that may appear

on Eramba immediately. The second step is to assemble a team of Cloud Engineers to moni-

tor Eramba and the next organization’s application deployed in the Cloud. Cost-wise, it is only

beneficial to host Eramba in Cloud computing if other applications share Google Cloud services

provided in this solution. Furthermore, Cloud Engineers should also contact Google to have access

to fully perform attack simulations in this environment.

Additionally, Cloud Engineers are required because Google Cloud also discloses vulnerabil-

ities found in containers. When developing this project, a High-security vulnerability described

in CVE-2020-14386 [13] was discovered. This vulnerability was one in the Linux Kernel and

allowed the container to escape to obtain root privilege on the host node.

The work developed assumes that the organization has a big enough number of users to jus-

tify Cloud hosting. Moreover, the architecture described must be changed to support when more

applications migrate to the Cloud as minor web services can make use of the same load balancer

created.

Bibliography

[1] ADAM SHOSTACK. Threat Model: Designing for Security. Microsoft, 2014.

[2] AGENCY, I. A. E. The Fukushima Daiichi Accident Report by the Director General. Direc-

tor General (2015), 1–222.

[3] ANDRÉ ZUQUETE. Segurança em redes informáticas. FCA, 2012.

[4] APPROACH, H. O., AND METRICS, E. 2017 GRC Metrics Survey. Tech. rep., OCEG, 2017.

[5] BOGDANOSKI, M., SHUMINOSKI, T., AND RISTESKI, A. Analysis of the SYN Flood DoS

Attack. International Journal of Computer Network and Information Security 5, 8 (2013),

15–11.

[6] CALDWELL, F., SCHOLTZ, T., AND HAGERTY, J. Magic Quadrant for Enterprise Gover-

nance , Risk and Compliance Platforms. October 3, July (2011), 1–19.

[7] CERULLO, V., CERULLO, M. J., RACZ, N., WEIPPL, E., SEUFERT, A., ALEKSIC, A.,

LJEPAVA, N., RISTIC, M., CHENG, D. C., LIM-CHENG, N. R., VILLAMARIN, J. B., CU,

G., LIM-CHENG, N. R., AND DE, N. An ontology based framework to support multi-

standard compliance for an enterprise. International Journal of Advanced Computer Science

and Applications 224, 12 (2004), 456–466.

[8] CREASEY, J. A guide for running an effective Penetration Testing programme. Crest, April

(2017), 1–64.

[9] CVE. Cve-2015-9251, 2015. [Online; accessed 30-January-2020].

[10] CVE. Cve-2016-7103, 2016. [Online; accessed 30-January-2020].

[11] CVE. Cve-2016-7103, 2016. [Online; accessed 30-January-2020].

[12] CVE. Cve-2018-14040, 2016. [Online; accessed 30-January-2020].

[13] CVE. Cve-2020-14386, 2020. [Online; accessed 24-September-2020].

[14] CWE. Cwe-200, 2006. [Online; accessed 15-April-2020].

71

Bibliography 72

[15] DAVIS, C. D., SWANSON, C. A., ZIEGLER, R. G., CLEVIDENCE, B., DWYER, J. T.,

AND MILNER, J. A. Executive Summary Report. The Journal of Nutrition 135, 8 (2005),

2014S–2029S.

[16] DE JIMENEZ, R. E. L. Pentesting on web applications using ethical - Hacking. 2016 IEEE

36th Central American and Panama Convention, CONCAPAN 2016, 503 (2017).

[17] DOCKER. Docker security, 2020.

[18] DOULIGERIS, C., AND MITROKOTSA, A. DDoS attacks and defense mechanisms: Classi-

fication and state-of-the-art. Computer Networks 44, 5 (2004), 643–666.

[19] ERAMBA CONTRIBUTORS. Basic grc relationships in eramba, 2019. [Online; accessed

30-October-2019].

[20] ERAMBA CONTRIBUTORS. Eramba website, 2019. [Online; accessed 30-October-2019].

[21] EUROPEAN PARLIAMENT AND THE COUNCIL. Directive (EU) No 43/2006 of the European

Parliament and of the Council. Official Journal of the European Union (2006).

[22] FALLIS, A. Learning Docker. Packt Publishing, 2013.

[23] FEDRAMP. FedRAMP Penetration Test Guidance. Security (2017), 1–34.

[24] FERRAIOLO, D., CUGINI, J., AND KUHN, D. R. Role-based access control (RBAC): Fea-

tures and motivations. Proceedings of 11th Annual Computer Security Application Confer-

ence pages (1995), 241–248.

[25] FRIGO, M. L., AND ANDERSON, R. J. A Strategic Framework for Governance, Risk, and

Compliance. Strategic Finance 90, 8 (2009), 20–61.

[26] GENERAL, A. Investigation : WannaCry cyber attack and the NHS. Tech. Rep. April 2018,

UK Government, 2019.

[27] GITLAB. Container registry, 2020.

[28] GOLLMANN, D. Computer Security (2nd Edition). O’Reilly Media, 2006.

[29] GOOGLE KUBERNETES ENGINE. Kubernetes engine, 2020. [Online; accessed 30-July-

2020].

[30] HARDT, D. The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor, October

2012.

[31] HASHCAT. Hashcat, 2020.

[32] HPING. Hping, 2020.

Bibliography 73

[33] IBM. IBM OpenPages GRC Platform Watson Financial Services. Tech. rep., IBM, 1996.

[34] ISO31000 Risk management — Principles and guidelines, 2009.

[35] ISO/IEC 22301 Societal security — Business continuity management systems — Require-

ments, 2009.

[36] ISO/IEC 27002 Information technology — Security techniques — Code of practice for in-

formation security controls, 2009.

[37] ISO/IEC 27005 Information technology — Security techniques — Information security risk

management , 2011.

[38] ISO/IEC 27001 Risk management — Information technology - Security techniques - Infor-

mation security management systems - Requirements, 2005.

[39] JQUERY. Jquery, 2020. [Online; accessed 30-January-2020].

[40] JQUERY-UI. Jquery, 2020. [Online; accessed 30-January-2020].

[41] KALILINUX. Kali linux penetration testing tools, 2020. [Online; accessed 30-November-

2019].

[42] KHAN, R., MCLAUGHLIN, K., LAVERTY, D., AND SEZER, S. Stride-based threat modeling

for cyber-physical systems. ISGTEurope (09 2017), 1–6.

[43] KRASNER, G. E., AND POPE, S. T. A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System. Journal Of Object Oriented Programming

1, 3 (1988), 26–49.

[44] KUBERNETES. Kubernetes concept, 2020.

[45] KUBERNETES. Kubernetes security, 2020.

[46] KUBERNETES. Securing a cluster in kubernetes, 2020.

[47] MARKZ0R. Eramba image, 2020.

[48] MARTIN, R. C. Using Docker. O’Reilly, 2011.

[49] MCCLEAN, C., HAYES, N., AND MURPHY, R. The Forrester Wave™: Governance, Risk,

And Compliance Platforms. Tech. rep., Forrest Waver, 2014.

[50] MEIER, J., MACKMAN, A., VASIREDDY, S., DUNNER, M., ESCAMILLA, R., AND MU-

RUKAN, A. Improving Web Application Security : Threats and Countermeasures, vol. 2003.

Microsoft Press, 2003.

[51] MICROSOFT. What is cloud computing?, 2020.

Bibliography 74

[52] NATIONAL TRANSPORTATION SAFETY BOARD. Collapse of I-35W Highway Bridge Min-

neapolis, Minnesota National Transportation Safety Board. Tech. rep., US government, 2007.

[53] NIST. SP800-30r1 Guide for Conducting Risk Assessments. NIST Special publication,

September (2011).

[54] NIST. Nist, 2019. [Online; accessed 30-November-2019].

[55] ORACLE. Oracle ® Enterprise Governance, Risk and Compliance. Tech. Rep. May, Oracle,

2013.

[56] OTTO, M. Regulation (EU) 2016/679 on the protection of natural persons with regard to the

processing of personal data and on the free movement of such data (General Data Protection

Regulation – GDPR). International and European Labour Law 2014, March 2014 (2018),

958–981.

[57] OWASP. Top 10 web application security risks, 2020. [Online; accessed 30-January-2020].

[58] PALFREYMAN, D. Organised Uncertainty: Designing a World of Risk Management, vol. 14.

Oxford, 2010.

[59] PCI-DSS. Data Security Standard. Security, April (2015), 139.

[60] PENTEST ERAMBA PARTNER. Partner pentest eramba, 2020. [Online; accessed 30-June-

2020].

[61] PORTSWIGGER. Burp suite, 2020. [Online; accessed 3-March-2020].

[62] POWER, M. The End of Enterprise Risk Management. Research Gate, January 2007 (2016).

[63] PROGRAM, C. BWise ® Compliance Management. Tech. rep., Nasdaq, 2016.

[64] RACZ, N., AND SEUFERT, A. A.: A frame of reference for research of integrated gover-

nance, risk &compliance (GRC. International Conference on Communications and Multi-

media Security (2014), 106–117.

[65] RACZ, N., WEIPPL, E., AND SEUFERT, A. Governance, risk & compliance (GRC) software

- An exploratory study of software vendor and market research perspectives. Proceedings of

the Annual Hawaii International Conference on System Sciences (2011), 1–10.

[66] RACZ, N., WEIPPL, E., AND SEUFERT, A. Integrating IT governance, risk, and compliance

management processes. Frontiers in Artificial Intelligence and Applications 224 (2011),

325–338.

[67] RIMAL, B. P., JUKAN, A., KATSAROS, D., AND GOELEVEN, Y. Architectural Require-

ments for Cloud Computing Systems: An Enterprise Cloud Approach. Journal of Grid

Computing 9, 1 (2011), 3–26.

Bibliography 75

[68] RISK, R. Risk Management and Compliance Software Platform Financial and Reputation

Risk. Tech. rep., SAI Global, 2017.

[69] SCARFONE, K. Draft NIST Special Publication 800-154 Guide to Data-Centric System

Threat Modeling Draft NIST Special Publication 800-154 Guide to Data-Centric System

Threat Modeling. NIST 800-154 (2019).

[70] SCHOLER, S., AND ZINK, O. SAP governance, risk and compliance. Tech. Rep. April,

SAP, 2009.

[71] SCOTT CAVE. A real life example of how a business continuity plan can save your business„

2019. [Online; accessed 15-October-2019].

[72] SERMERSHEIM, J. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC

4511, RFC Editor, June 2006.

[73] SHEVCHENKO, N., CHICK, T. A., RIORDAN, P. O., SCANLON, T. P., AND WOODY, C.

Threat Modeling : a Summary of Available Methods. Research Report, July (2018), 26.

[74] SRIRAMYA, P., AND KARTHIKA, R. A. Providing password security by salted password

hashing using Bcrypt algorithm. ARPN Journal of Engineering and Applied Sciences 10, 13

(2015), 5551–5556.

[75] SURVEY, T. I. S. O. THE ISO SURVEY OF MANAGEMENT SYSTEM CERTIFICA-

TIONS – 2018 – EXPLANATORY NOTE Background The ISO Survey of Certifications is

an annual survey of the number of valid certificates to. ISO, September (2019), 2017–2018.

[76] TEAM, T. P. The Penetration Testing Execution Standard Documentation. PTES (2017),

223.

[77] THE, A. R. B. Y., NUCLEAR, I., ADVISORY, S., ATOMIC, I., AND AGENCY, E. The

chernobyl accident: Updating of INSAG-1. International Nuclear Safety Advisory Group,

1993.

[78] UNITED STATES CODE. Sarbanes-oxley act of 2002, pl 107-204, 116 stat 745. Codified in

Sections 11, 15, 18, 28, and 29 USC, July 2002.

Appendix A

Eramba modules and functionalities

Figure A.1: Organization Module [19].

Figure A.2: Risk Management Module [19].

77

Appendix A. Eramba modules and functionalities 78

Figure A.3: Asset Management Module [19].

Figure A.4: Control Catalogue Module [19].

Appendix A. Eramba modules and functionalities 79

Figure A.5: Compliance Management Module [19].

Figure A.6: Security Operation Module [19].

Appendix A. Eramba modules and functionalities 80

Section Description

Dashboard
Shows a summary for all major KPIs on the system,
these KPIs are pre-defined key metrics from the core modules.
Describes the scope of your GRC program.
Describes internal or external program
Describes the program goals, objectives and issues.

Program

Describes the members of the GRC team, its members, and their competences.
Describes the organization’s business units and business processes.
Describes third-party affiliations and obligations.Organization
Describes organizational liabilities.
Identifies and classifies assets.

Asset Mgt Describes the flow a data asset goes through
throughout its lifecycle in the organization.
Describes the organization’s internal controls,
their testing, audits, issues and maintenance.
Describes contracts their expiration date,
value and these can be linked to controls.
Describes continuity plans and their tasks.
Describes policies and track their reviews.

Control Catalogue

Manages policy exception requests to policies
described in the Policy module.
Manages asset-based risk and their reviews.
Manages third-party risk and their reviews.
Manages business process risk, their impact on
the organization, and their reviews.Risk Mgt
Manages exception requests to risks and links
them to risks defined in the Risk module.
Manages compliance exceptions and
links them to Compliance Analysis module.
Manages the list of regulatory, standards and frameworks
the organization needs to be compliant with.
Maps compliance requirements to controls, policies, risks, etc.

Compliance Mgt

Documents compliance findings and keeps track of their progress, deadlines, etc..
Manage custom questionnaires and submit them to different audiences to gather
remote feedback through Eramba’s web portal.
Describes security incidents and their lifecycle.
Manages custom training and awareness activities through the use of videos,
multiple choice and disclaimer texts.
Activities are assignable using Active Directory
groups and can be scheduled regularly to meet compliance needs.
Collects account information from different
systems and ensures they are reviewed regularly.

Security Operations

Describes projects and their tasks, this module links to all other modules in Eramba.

Table A.1: Eramba specifications extracted from Basic GRC relationships [19].

Appendix B

Eramba Dockerfile

1 version: "3.7"
2 services:
3 db:
4 image: markz0r/eramba-db
5 environment:
6 MYSQL_DATABASE: erambadb
7 MYSQL_USER: eramba
8 MYSQL_PASSWORD: root
9 MYSQL_ROOT_PASSWORD: root

10 app:
11 build: .
12 depends_on:
13 - db
14 environment:
15 ERAMBA_HOSTNAME: app
16 MYSQL_HOSTNAME: db
17 MYSQL_USER: eramba
18 MYSQL_DATABASE: erambadb
19 MYSQL_PASSWORD: root
20 DATABASE_PREFIX: ""
21 DB_SCHEMA_SCRIPT: /c2.8.1.sql
22
23 ports:
24 - "8080:8080"
25 links:
26 - db

Listing B.1: Eramba dockerfile.

81

Appendix B. Eramba Dockerfile 82

Appendix C

Eramba Kubernetes Solution

1 ap iVers ion : apps / v1
2 kind : Deployment
3 metadata :
4 a n n o t a t i o n s :
5 kompose . cmd: kompose − f docker −compose −copy . yml c o n v e r t
6 kompose . v e r s i o n : 1 . 2 1 . 0 (992 df58d8)
7 creat ionTimestamp : n u l l
8 l a b e l s :
9 i o . kompose . s e r v i c e : app

10 name: app
11 spec :
12 r e p l i c a s : 1
13 s e l e c t o r :
14 matchLabels :
15 i o . kompose . s e r v i c e : app
16 app: app
17 t i e r : web
18 s t r a t e g y : {}
19 t empla te :
20 metadata :
21 a n n o t a t i o n s :
22 kompose . cmd: kompose − f docker −compose −copy . yml

c o n v e r t
23 kompose . v e r s i o n : 1 . 2 1 . 0 (992 df58d8)
24 creat ionTimestamp : n u l l
25 l a b e l s :
26 i o . kompose . s e r v i c e : app
27 app: app
28 t i e r : web
29 spec :
30 i m a g e P u l l S e c r e t s :
31 - name: r e g c r e d
32 c o n t a i n e r s :
33 - env:
34 - name: MYSQL_DATABASE
35 va lue : erambadb

83

Appendix C. Eramba Kubernetes Solution 84

36 - name: MYSQL_PASSWORD
37 va lue : r o o t
38 - name: MYSQL_ROOT_PASSWORD
39 va lue : r o o t
40 - name: MYSQL_USER
41 va lue : eramba
42 image: markz0r / eramba −db
43 i m a g e P u l l P o l i c y : ""
44 name: db
45 r e s o u r c e s : {}
46 - env:
47 - name: DATABASE_PREFIX
48 - name: DB_SCHEMA_SCRIPT
49 va lue : / c2 . 8 . 1 . s q l
50 - name: ERAMBA_HOSTNAME
51 va lue : app
52 - name: MYSQL_DATABASE
53 va lue : erambadb
54 - name: MYSQL_HOSTNAME
55 va lue : 1 2 7 . 0 . 0 . 1
56 - name: MYSQL_PASSWORD
57 va lue : r o o t
58 - name: MYSQL_USER
59 va lue : eramba
60 image: r e g i s t r y . g i t l a b . com / m i g u e l r c h a v e s / t h e s i s : l a t e s t
61 l i v e n e s s P r o b e :
62 httpGet :
63 path : /
64 port : 8080
65 per iodSeconds : 5
66 t imeoutSeconds : 60
67 s u c c e s s T h r e s h o l d : 1
68 f a i l u r e T h r e s h o l d : 3
69 i n i t i a l D e l a y S e c o n d s : 70
70 read ines sProbe :
71 httpGet :
72 path : /
73 port : 8080
74 per iodSeconds : 5
75 t imeoutSeconds : 60
76 s u c c e s s T h r e s h o l d : 1
77 f a i l u r e T h r e s h o l d : 3
78 i n i t i a l D e l a y S e c o n d s : 70
79 i m a g e P u l l P o l i c y : ""
80 name: app
81 p o r t s :
82 - c o n t a i n e r P o r t : 8080
83 r e s o u r c e s : {}
84 r e s t a r t P o l i c y : Always

Appendix C. Eramba Kubernetes Solution 85

85 serviceAccountName : ""
86 volumes : n u l l
87 s t a t u s : {}
88 ---
89 ap iVers ion : v1
90 kind : S e r v i c e
91 metadata :
92 a n n o t a t i o n s :
93 kompose . cmd: kompose − f docker −compose −copy . yml c o n v e r t
94 kompose . v e r s i o n : 1 . 2 1 . 0 (992 df58d8)
95 creat ionTimestamp : n u l l
96 l a b e l s :
97 i o . kompose . s e r v i c e : app
98 app: app
99 name: app

100 spec :
101 p o r t s :
102 - name: "8080"
103 port : 80
104 t a r g e t P o r t : 8080
105 type : NodePor t
106 s e l e c t o r :
107 i o . kompose . s e r v i c e : app
108 app: app
109 t i e r : web

Listing C.1: Eramba Kubernetes solution.

1
2 ap iVers ion : e x t e n s i o n s / v 1 b e t a 1
3 kind : I n g r e s s
4 metadata :
5 name: i n g r e s s −ml
6 a n n o t a t i o n s :
7 kubernetes . i o / i n g r e s s . g loba l − s t a t i c −ip −name: "eramba-ip"
8 spec :
9 r u l e s :

10 - hos t : "eramba.organizationDNSdomain.com"
11 ht tp :
12 paths :
13 - backend:
14 serviceName : app
15 s e r v i c e P o r t :
16
17
18 so
19
20
21 \ begin { l s t l i s t i n g } [language=yaml , c a p t i o n ={Eramba Managed

C e r t i f i c a t e . } , l a b e l ={ erambass l } , c a p t i o n p o s =b]

Appendix C. Eramba Kubernetes Solution 86

22
23 ap iVers ion : n e t w o r k i n g . gke . i o / v 1 b e t a 2
24 kind : M a n a g e d C e r t i f i c a t e
25 metadata :
26 name: e r a m b a c e r t i f i c a t e
27 spec :
28 domains:
29 - "eramba.organizationDNSdomain.com"

Listing C.2: Ingress to create a load balancer.

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Goals
	Work Plan
	Contributions
	Document Structure

	Related Work
	An overview of Pentesting
	Pentesting Methodologies
	Penetration Testing Execution Standard (PTES)
	Federal Risk and Authorization Management Program Penetration Test (FEDRAMP)
	Council for Registered Ethical Security Testers (CREST) Penetration Test
	Payment Card Industry Data Security Standard (PCI DSS) Penetration Testing Guide
	Chosen methodology

	Most common Attacks in Web Applications
	Laws and Regulations
	Sarbanes-Oxley-Act
	European directive 2006/43/EC VIII
	General Data Protection Regulation

	Governance Risk and Compliance
	Eramba
	Threat modelling
	Cloud Computing
	Requirements for Cloud Computing Architecture

	Containers
	Docker
	Container registries
	Container Orchestration

	Kubernetes

	Eramba Solution Analysis
	Eramba threat model
	Vulnerabilities Analysis and Exploitation
	Brute-Force Attack
	Address Resolution Protocol (ARP) Spoofing
	Session Hijacking
	Unencrypted Communication
	Cross-site Request Forgery
	Use of components with known vulnerabilities
	Excessive administrator privileges
	Weak Cryptographic Algorithm
	Denial of Service
	Password Field automatic

	Post-exploitation

	Eramba Cloud Solution
	Requirements Gathering
	Eramba Container
	Architecture of Eramba as Service
	Google Kubernetes Engine
	Google VPC network
	Google Load Balancer
	Google Custom Resource ManagedCertificate
	Google Cloud Armor
	Container Optimized Images (COOS)
	Cloud Identify Access Management (IAM)
	Security Command Center
	Architecture Overview

	Kubernetes Solution Design
	Implementation
	Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Eramba modules and functionalities
	Eramba Dockerfile
	Eramba Kubernetes Solution

