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Abstract: Human metagenomes with a high diversity of virulence genes tend to have a high diversity
of antibiotic-resistance genes and vice-versa. To understand this positive correlation, we simulated
the transfer of these genes and bacterial pathogens in a community of interacting people that take
antibiotics when infected by pathogens. Simulations show that people with higher diversity of
virulence and resistance genes took antibiotics long ago, not recently. On the other extreme, we
find people with low diversity of both gene types because they took antibiotics recently—while
antibiotics select specific resistance genes, they also decrease gene diversity by eliminating bacteria.
In general, the diversity of virulence and resistance genes becomes positively correlated whenever
the transmission probability between people is higher than the probability of losing resistance genes.
The positive correlation holds even under changes of several variables, such as the relative or total
diversity of virulence and resistance genes, the contamination probability between individuals, the
loss rate of resistance genes, or the social network type. Because the loss rate of resistance genes may
be shallow, we conclude that the transmission between people and antibiotic usage are the leading
causes for the positive correlation between virulence and antibiotic-resistance genes.

Keywords: antibiotic resistance; virulence; microbiome; metagenomics; human gut; computer simulation

1. Introduction

Since the 1940s, antibiotics are widely used in human and animal health to cure in-
fections and as growth promoters in livestock and agriculture [1]. The initial optimism
has been gradually declining as several factors have contributed to the decrease in the
effectiveness of antibiotics in the so-called antibiotic crisis. Namely, extensive use in live-
stock and fish farming, non-adherence to antibiotic treatment and over-prescription, poor
infection control in hospitals and health care settings, poor sanitation and environmental
contaminations, together with the lack of development of new antibiotics, have contributed
to antibiotics liability [2].

As an incredible example of Darwinian selection, bacteria worldwide have gradually
become resistant to several antibiotics. Antibiotics select for resistant clones and prompt
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the emergence of new ones by triggering mutation rate and horizontal gene transfer,
e.g. through the activation of the SOS response [3]. The spread of resistance has terrible
consequences. For example, there were 875,500 disability-adjusted life-years and more
than 33,000 deaths in European Economic Area due to antibiotic resistance in 2015 [4].
Worldwide, at least 700,000 people die annually due to drug-resistant diseases [5]. Because
of the adaptive power of bacteria and the massive use of antibiotics, we are now in the
so-called ‘post-antibiotic’ era [6–8].

The human microbiota is the set of all the microorganisms that inhabit the human body.
It is often very complex, comprising both pathogenic and non-pathogenic bacteria. The
human microbiome is the catalog of human microbes and their genes [9]. Microorganisms
of the microbiome comprise about 3.8× 1013 bacterial cells [10], spanning thousands of
taxa. They colonize the body’s surfaces and biofluids, including tissues, such as skin,
mucosa and, importantly, the gastrointestinal tract [9].

Virulence factors are proteins that help bacteria colonizing a host or biome. According
to Liu and colleagues, “Virulence factors refer to the properties (i.e., gene products) that
enable a microorganism to establish itself on or within a host of a particular species and
enhance its potential to cause disease. Virulence factors include bacterial toxins, cell surface
proteins that mediate the bacterial attachment, cell surface carbohydrates and proteins that
protect a bacterium, and hydrolytic enzymes that may contribute to the pathogenicity of the
bacterium” [11]. These traits are easily spread in bacterial populations or microbiomes by
horizontal gene transfer, which can potentially convert mutualistic or commensal bacteria
into pathogens able to progress into new tissues, triggering an infectious disease [12]. That
is the case of Escherichia coli bacterial species, which can have many different pathotypes,
ranging from those responsible for mild infections to those that can inflict severe disease
or even death. For example, the extraintestinal pathogenic strains can circulate in the
blood and invade the brain endothelial cells, thus crossing the blood-brain barrier—when
they harbor the ibe gene [13] that can be encoded in plasmids, such as p157 or p026_1 [14].
Hence, horizontal gene transfer plays a significant role in keeping bacterial social behavior
within the consortium [15], during infection, when different bacteria contribute to the
synthesis of virulence traits.

There is a positive correlation between antibiotic resistance genes’ diversity and vir-
ulence genes’ diversity across human gut microbiomes [16]. This correlation is in line
with the evidence published on the co-occurrence of virulence and antibiotic resistance
traits in individual bacterial genomes [17–19]. Could this positive correlation result from
administering antibiotics in sick people due to bacterial infections, eventually selecting
bacteria encoding virulence and resistance determinants simultaneously? The adminis-
tration of antibiotics to clear drug-sensitive pathogenic bacteria may select a few clones
that, by chance, just acquired a resistance determinant, such as a spontaneous chromoso-
mal mutation, or resistance genes through horizontal gene transfer, contributing to the
co-selection of virulence and resistance genes. Eventually, this procedure could lead to a
positive correlation between the diversity of virulence and resistance genes. Yet, two facts
undermine this prediction: (i) many non-pathogenic bacteria of the microbiome may also
become drug-resistant through chromosomal mutations or the acquisition of resistance
genes by horizontal gene transfer; (ii) antibiotics are often used as growth factors of animals,
not for treatments. Indeed, many non-pathogenic (mutualistic or commensal) strains and
species are undoubtedly affected, which has been demonstrated [20–22]. Therefore, an
explanation for the positive correlation mentioned above is still missing.

Several factors may impact genes’ diversity. In the case of antibiotic resistance genes,
taking a certain antibiotic selects the genes that confer resistance to that specific drug.
Simultaneously, the same antibiotic also eliminates other genes conferring resistance to
other antibiotics possibly present in the bacteria of a metagenome. Consequently, even if
antibiotic intake may increase the number of genes conferring resistance to that specific
drug in the metagenome, the diversity of drug resistance genes decreases. Such a decrease
in diversity is a special case of the gut microbiota dysbiosis caused by antibiotic adminis-



Antibiotics 2021, 10, 605 3 of 20

tration [23,24]. For the same reason, antibiotic administration also decreases the diversity
of virulence genes.

In the absence of antibiotics, resistance determinants impose a fitness cost, both in the
case of resistance mutations [25] and plasmids encoding resistance genes [26]. By growing
slower than sensitive clones, resistant clones are prone to be displaced by them. Therefore,
in time, metagenomes may lose resistance genes.

Humans in close contact may share their microorganisms, thus enriching their mi-
crobiomes with new bacteria (either commensal, mutualistic, or pathogenic) and new
genes, including those encoding for virulence and antibiotic resistance. Indeed, human
microbiomes are more similar among humans living together, irrespective of the genetic
relatedness, suggesting that transmission is a critical factor of the microbiome constitu-
tion [27,28]. Microbes’ transmission from mother to child by skin contact, breastfeeding
and kissing, is one of the best-studied examples of very close contact and microbiome
enrichment [29–33]. These studies suggest that bacteria in human microbiomes can have a
shared exposure or result from person-to-person transfer on the social network [34]. When
someone in the community takes antibiotics, there can be selection for resistance genes
in his/her metagenome and this individual may become a source of resistance genes to
his/her contacts in the network. The dissemination of bacteria and their genes may enrich
the human microbiome of his/her contacts with virulence and resistance genes. There-
fore, transmission between people should play a role in keeping the correlation between
resistance and virulence genes’ diversity.

Many individual-based models assume simple contact patterns, such as regular lat-
tices (e.g., Reference [35]) or random networks where all individuals can infect all others.
Still, natural populations will almost certainly follow none of these two model types of
microorganisms’ spread. Most natural populations have a structure between these two
cases [36]. In the simulations performed here, we assume structured populations organized
in three types of contact networks: regular, random, and small-world. In this work model,
each node of the network corresponds to a person (its metagenome).

Regular networks present both a large clustering degree (defined as the probability
that two nodes are connected, given that they share a close neighbor) and a large charac-
teristic path length (defined as the mean of the minimum distance between all pairs of
vertices in the network). In contrast to regular networks, completely random networks
present both a low clustering coefficient and a low characteristic path length. However,
none of the models are adequate to describe specific systems, e.g., the structure of human
populations. A few alternative models have been suggested to describe these systems
better. Small-world networks have been highly successful [37,38]. These networks reveal
a small mean path length, like random graphs, but a high clustering coefficient, as reg-
ular lattices. Epidemiologists have found these small-world properties in the spread of
infectious diseases and epidemics [36,39] and social interactions [40].

This work aims to find the key factors leading to the positive correlation between the di-
versity of virulence and antibiotic resistance genes observed across human metagenomes [16].
To this end, we have developed a computer model of a hypothetical network of human
beings that share their microbiomes (bacteria and genes). We simulated the transfer of
bacterial pathogens, antibiotic resistance and virulence genes in a human-to-human trans-
mission network.

We analyzed the impact of several variables, including the network structure, on the
resistance and virulence diversities’ final correlation. We show that a positive correlation
between the diversity of antibiotic resistance coding genes and those coding for virulence
emerges whenever the gene transmission rate between individuals is higher than the
probability that metagenomes lose resistance genes, irrespectively of all the other variables
tested. This simple rule explains the positive correlation between virulence genes’ diversity
and antibiotic resistance genes’ diversity. Moreover, the diversity of antibiotic resistance
and virulence genes is high in individuals who have passed a long time since they took
antibiotics and minimal for those who just took antibiotics.
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2. Methods
2.1. Building the Human Network

We simulated a network (Figure 1) where each node represents a person or, more
precisely, a person’s metagenome (in this case, bacteria and bacterial genes). To simplify
language, from now on, we refer to these human metagenomes in the network of contacts as
a person or people, meaning a person’s metagenome or people’s metagenomes, respectively.
The edges represent possible transmission avenues of microorganisms.
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which includes the passage of resistance and/or virulence genes that they may contain. All the individuals in the community
are organized in a network of contacts. In the regular network, each individual is linked to other four individuals (the four
closest individuals; n = 4). The other two types of network were constructed following Watts and Strogatz method [37].
From the regular network, each connection has a probability p to change, that is, each individual can be reconnected to
another one in the network. Therefore, the value of p defines the type of network: (i) p = 0 the network remains regular; (ii)
p = 0.5 is a small-world network; (iii) p = 1 the network becomes random.

We built the social contact network following the Watts and Strogatz method [37].
In a regular network, each node links to the n nearest nodes. In non-regular networks,
each node’s link has a certain probability p of being reconnected to another randomly
chosen node. The parameter p represents the probability of each connection to be modified.
We defined the network type by the value assigned to the parameter p (for example, a
regular network when p = 0, whereas p = 1 results in a random network). Unless noted, we
performed simulations with p = 0.5 and n = 4.

2.2. The Metagenome, Pathogenic Bacteria, and Antibiotic Administration

The computational model considers a hypothetical situation of a contact network made
of healthy people that share bacteria from their skin, oropharyngeal, or gut microbiomes.
Each human being shares his/her bacteria, including non-housekeeping genes that are
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accessory and yet important to the environmental adaptation, such as virulence and
antibiotic resistance.

The model considers the transmission of bacterial pathogens (able to cause infections)
and virulence and antibiotic resistance genes. We focused on the diversity of functions
encoded, irrespectively of its copy-number in the metagenome. That means that we are
addressing the functional diversity, and thus genotypes, of the metagenome. Accordingly,
in the simulations, we consider the presence of gene families (with similar functions) that
we refer to as “gene” from now on. We divided resistance genes into groups, each group
having the same number of families. Each group represents genes associated with resistance
to an antibiotic, encoding all the proteins involved in that mechanism of resistance. Of
note, we did not consider resistance to multiple drugs in our simulations. Therefore, there
are as many groups as there are antibiotics accounted for in the simulations.

To simulate the flow of bacteria from individuals outside the network or the trans-
mission from sources, such as food or contaminated water, we inserted five different
bacterial pathogenic species into random individuals once per cycle. In this model, we only
categorize species according to the antibiotic they are susceptible to, as explained below.

We assume that individuals infected by pathogenic bacteria feel sick and take an
antibiotic prescribed to that pathogen. The antibiotic selects cells carrying resistance genes
by clearing susceptible bacteria. In this work, we assume that each resistance gene present
in a metagenomecan be in two different possible levels: in some metagenomes, they
are present in low copy number, so we assume that they are not transmissible to other
individuals in the network; in other metagenomes, the copy number of resistance genes is
high due to the selective pressure of antibiotics to which they were previously submitted.
In the latter case, we assume that they are more likely to be transferred from a person
to another.

Moreover, upon antibiotic consumption, the following events can occur: (i) elimination
of the pathogenic bacteria involved in the infection; and (ii) selection, in the metagenome,
of resistance genes belonging to the same group of resistance as the antibiotic used—this
means that the copy number of these resistance genes gets so high that they become trans-
ferable to other people. Finally, the model also considers that any antibiotic decreases the
bacterial diversity of the microbiome. Specifically, the model considers that the antibiotic
kills bacteria carrying virulence genes or carrying genes that confer antibiotic resistance but
not the one used. Therefore, the computer model assumes that the antibiotic administrated:
(iii) eliminates virulence genes with a certain probability; and (iv) eliminates resistance
genes associated with other antibiotics with a certain probability—note that we consider
that these genes become non-transferable, but they are still present in low copy numbers.

As explained in the introduction, in the absence of antibiotics, resistance determinants
confer a fitness cost. Accordingly, the model considers that each metagenome loses specific
resistance genes according to a “loss rate” (with this process, these genes become non-
transferable) [33].

2.3. Algorithm of the Program

We described the implementation of the procedures in detail in the pseudocode
(Table 1; also see the flowchart in Figure 2). All code is available on GitHub https://github.
com/cpfdomingues/simulation-code-human-transmission-genes-bacteria (accessed on 4
March 2021).

At the beginning of each simulation, we randomly distribute all bacterial pathogens,
all virulence gene families, and all resistance gene families by the population—group of
people considered in the network during the simulation. We distribute each virulence gene,
each resistance gene, and each bacterial pathogen among 1 to 2% of the population.

Taking the example of virulence genes, we proceed as follows: (i) take a random
number between 0.01 (1%) and 0.02 (2%) to obtain the percentage of individuals that should
receive a gene of virulence; (ii) convert this percentage into the number of individuals that
is going to receive the gene according to the size of the population (% obtained * size of the

https://github.com/cpfdomingues/simulation-code-human-transmission-genes-bacteria
https://github.com/cpfdomingues/simulation-code-human-transmission-genes-bacteria
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population); (iii) select randomly as many individuals as those obtained in (ii); (iv) activate
this gene in the metagenomes of the selected individuals.

For example, consider a simulation with a network of 1000 individuals and 100 viru-
lence genes. We start with the first virulence gene: (i) suppose we get the number 0.012
randomly; (ii) that means that 0.012 × 1000 = 12 individuals are going to receive the first
virulence gene; (iii) we randomly select 12 individuals out of 1000; (iv) we activate that
virulence gene in the 12 individuals.

We proceed in this way with all virulence genes, all resistance genes, and all pathogenic
bacteria considered in the simulation (Table 2).

To parameterize the model, we performed exploratory simulations, each one com-
posed of several cycles. Parameters that do not influence the correlation sign (Suppl.
Tables S3.1–S6.6, S8.1, and S8.2) have a default value shown in Table 2.

Table 1. Pseudocode of the program *.

Process Pseudo Code

Gene transfer

For each connection between two individuals do (for each
individual of the connection do (get the genes present in
each individual metagenome; transmit genes to the other
individual of the connection according to the gene
transmission probability)).

Transfer of bacterial pathogens

For each connection between two individuals do (for each
individual of the connection do (get the pathogenic
species present in each individual; transmit pathogen to
the other individual of the connection according to the
bacterial pathogen transmission probability)).

Screening of individuals For each individual do (check if the individual has a
pathogenic bacteria).

Antibiotic effect

Choose an antibiotic randomly.
Select all resistance genes associated with the
chosen antibiotic.
Eliminate resistance genes not associated with the chosen
antibiotic according to the probability of eliminating genes
under antibiotic intake.
Eliminate virulence genes according to the probability of
eliminating genes under antibiotic intake.

Loss rate of resistance genes under
antibiotic consumption

Eliminate resistance genes not associated with the chosen
antibiotic due to fitness cost according to the loss
rate probability.

Loss rate of resistance genes
without antibiotic consumption

Eliminate resistance genes according to the loss
rate probability.

Immigration of bacterial pathogen
into the network

For each bacterial species do (select a random individual;
insert the bacterial pathogen in the individual).

* Pseudocode of the program sketched in Figure 2. The program code was implemented in the Python program-
ming language.
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Table 2. Parameters and default values used in simulations.

Parameters Default Values Other Values

Rewiring connectivity probability p 0.5 0 or 1
Number of individuals 1000 3000

Number of virulence genes 100 200, 400
Number of resistance genes 100 200, 400

Number of pathogenic bacterial species 5 NA
Number of antibiotics 5 NA

Gene transmission probability 0.005, 0.01 0.0005, 0.0025, 0.015, 0.02
Bacterial pathogen transmission probability 0.15 0.05, 0.1, 0.2, 0.25

Probability of eliminating genes under antibiotic intake 0.7 0.3, 0.5
The loss rate of resistance genes 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03 NA

The main steps of the program in each cycle are:

(i) Transfer of pathogenic bacteria, virulence, and resistance genes between people (i.e.,
between linked nodes), according to specific transmission probabilities (Table 2). With
this process, the diversity of genes present in the recipient metagenome increases.
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(ii) Select people infected by at least one pathogenic bacterium. These people take
antibiotics (chosen according to the pathogen). The antibiotic clears the pathogen and
selects for resistance genes for the antibiotic used. According to a certain probability
(Table 2), the antibiotic also eliminates virulence genes and resistance genes unrelated
to the administered antibiotic. Finally, the metagenome loses a few more resistance
genes not associated with the antibiotic, according to the loss rate probability (Table 2).
The cause of this loss is the fitness cost of resistance genes.

(iii) The metagenomes of people that did not take an antibiotic in this cycle also lose
resistance genes according to the loss rate probability (Table 2). As above, this loss is
a consequence of the fitness cost imposed by resistance genes on their hosts, which is
not happening with virulence genes.

(iv) Add the five bacterial pathogens in five randomly-chosen individuals of the community.

2.4. Statistical analysis

We considered that Y (diversity of resistance genes) correlates with X (diversity of
virulence genes), according to:

Y = a.X + b.

In this equation, parameter a represents the linear regression slope, while b represents
the point at which the line crosses the y-axis.

Given the complexity of human interactions, it is paramount to simplify the computer
simulations. A simplified model allows us to comprehend the effect of specific factors
in our simulations, which would otherwise be extremely difficult to detect. As these
simplifications do not allow us to make quantitative inferences, we make qualitative
analyses. The focus is always on the correlation or linear regression slope sign between
the diversity of virulence and antibiotic resistance genes and whether the correlation
is significantly different from zero. Accordingly, the null hypothesis is that there is no
correlation between antibiotic resistance genes’ diversity and virulence genes’ diversity.
The alternative hypothesis is that there is a correlation between antibiotic resistance genes’
diversity and virulence genes. We define α = 1 × 10−6, rejecting the null hypothesis if
P-value < α.

We performed the data analyses described above, and the Student’s t-tests (see Sup-
plementary Information) with R—version 3.5.1 [41].

3. Results
3.1. The Number of Diseases and the Probability of Transmission

This work aims to understand the positive correlation between antibiotic resistance
genes’ diversity and virulence genes in metagenomes across human populations observed
by Escudeiro et al. (2019) (Reference [16]). As explained in the Methods section, we
assumed that people interact with each other in a network of connections that enables the
flow of bacterial pathogens, antibiotic-resistance and virulence genes. In the simulations,
five different pathogenic bacteria circulate between linked people. When pathogenic
bacteria infect an individual, that person takes an antibiotic. The antibiotic clears, not only
the bacterial pathogen, but also removes a fraction of virulence and resistance genes.

A priori, the pathogen transmission probability could have any value. However, if
this value is too high or too low, we reach unrealistic stages. For too high transmission
probabilities of pathogens, several people become infected by more than two pathogens
simultaneously, which may be unrealistic. For too low transmission probabilities, the
pathogen is extinct from the system (because sick people eliminate them with antibiotics
before the pathogen has the opportunity to go to another host). Given the importance of
this parameter, we must calibrate its value to avoid these situations. Therefore, we started
this study searching for the parameters that (i) led individuals to have no more than two
pathogenic species simultaneously at a given cycle; and (ii) end each cycle with at least a
pathogen in the population.



Antibiotics 2021, 10, 605 9 of 20

Accordingly, we performed simulations with different bacterial pathogen transmission
probabilities and counted the number of pathogenic bacteria that each individual has per
cycle. As we can see in Table 3, when the bacterial pathogen transmission probability is
0.2, some individuals in a specific cycle (out of two million possibilities) became infected
by three pathogenic bacteria. Therefore, we settled the bacterial pathogen transmission
probability to be less than 0.2. Moreover, as shown in Table 4, the proportion of cycles
that end without pathogens increases when pathogen transmission probability decreases.
Therefore, we set this probability to 0.15 in the simulations.

Table 3. Number of pathogenic species according to the bacterial pathogen transmission probability.

Number of Pathogenic Species (in 2,000,000 Possibilities)

Bacterial Pathogen
Transmission
Probability

0 1 2 3 4 5

0.05 1,987,473 12,496 31 0 0 0
0.1 1,982,852 17,094 54 0 0 0

0.15 1,973,053 26,763 184 0 0 0
0.2 1,940,458 58,759 779 4 0 0

0.25 104,967 262,575 527,204 705,479 399,253 522

Table 4. Simultaneous extinction of all pathogenic bacterial species according to the bacterial
pathogen transmission probability.

Bacterial Pathogen
Transmission Probability

Number of Times that All Pathogenic Bacterial Species
Disappeared in a Cycle (in 2000 Possibilities)

0.05 570
0.1 70
0.15 2

3.2. Calibration of the Transmission Probability

As explained earlier, individuals take antibiotics when infected with pathogenic
bacteria. However, antibiotics can select any resistant bacteria of the human microbiome,
pathogenic or not. Consequently, antibiotic administration lowers the diversity of virulence
genes, so it is essential to calibrate the probability of transmission of these genes so that
they do not disappear from the network. These genes disappeared from the network when
gene loss rate was higher than gene flow between individuals.

To better understand the impact of the gene transmission probability, we studied the
simplest case, the one in which there is no fitness cost for harboring resistance genes (hence,
resistance gene loss rate = 0), so only antibiotics can eliminate genes.

As shown in Figure , when the gene transmission probability was below 0.005 (Fig-
ure A,B), virulence genes disappeared from the network. On the other hand, when the
transmission probability of genes was above 0.01 (Figure E,F), several individuals had the
maximum diversity of genes in their metagenome, which does not correspond to the obser-
vation by Escudeiro et al. (2019) (ref. [16]). Following these results, the gene transmission
probability should be 0.005 or 0.01 (Figure C,D).

3.3. Correlation between Diversities Is Positive if Gene Transmission Probability Is Higher Than
the Resistance Gene Loss Rate

With the system already calibrated, we studied the correlation between virulence
genes’ diversity and resistance genes’ diversity for various gene transmission probability
and resistance gene loss rates. For that, we fixed all the other parameters (see Table 2).
Figure 4 shows that, if the gene transmission probability is higher, the same, or only slightly
lower than the loss rate, the correlation between the diversity of virulence genes and the
diversity of resistance genes is positive (Suppl. Table S1, Figure 4).
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(A,B): disappearance of the diversity of virulence genes; (C,D): positive correlation between the diversity of resistance genes
and the diversity of virulence genes; (E,F): positive correlation between the diversity of resistance genes and the diversity of
virulence, with many individuals having a high diversity of the two gene types. Parameters as follows. In all cases, we set
resistance genes loss rate = 0. In (A), when the gene transmission probability is low (0.0005), virulence genes disappeared
from the network. In (B), gene transmission probability = 0.0025 (R = 0.309, slope = 11.00, p-value = 1.47 × 10−23). In (C),
gene transmission probability = 0.005 (R = 0.934, slope = 0.798, p-value = ~0). In (D), gene transmission probability = 0.01
(R = 0.973, slope = 0.757, p-value = ~0). In (E), gene transmission probability = 0.015 (R = 0.972, slope = 0.754, p-value = ~0).
In (F), gene transmission probability = 0.02 (R = 0.976, slope = 0.751, p-value = ~0).
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Figure 4. Effect of the relative values of the gene transmission probability and the resistance genes loss rate. (A,B): the
relationship between the diversity of virulence genes (horizontal axes) and the diversity of resistance genes (vertical axes).
Each dot represents the case of an individual metagenome. In both (A) and (B), the gene transmission probability = 0.005.
(A): resistance genes loss rate = 0, which is lower than the gene transmission probability, resulting in a positive slope;
(R = 0.929, slope = 0.775, p-value ~ 0). (B): resistance genes loss rate = 0.03, which higher than the gene transmission
probability, resulting in a negative slope; (R = -0.682, slope = −0.174, p-value = 1.19 × 10−137). (C): Slope of the regression
between the diversity of virulence and resistance genes according to the loss rate (horizontal axes) and the gene transmission
probability (vertical axes). Green: positive slopes; Red: negative slopes; Blue: the slope is not significantly different from
zero (p-value ≥ 1 × 10−6).
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3.4. Correlations Maintain Sign Even when People Take Antibiotics Randomly

In the preceding section, we concluded that the correlation between virulence and
resistance gene diversities is positive if the genes’ transmission probability is higher than
the resistance gene loss rate. However, such correlation could, at least in part, result from
the spread of the pathogen that leads to antibiotic administration. Here, we evaluate what
happens if individuals take antibiotics at random, not because they are coping with a
bacterial infection. We chose these individuals randomly in each cycle. In the previous
simulations where antibiotic intake was a consequence of the pathogen presence, there
were 13 out of 1000 individuals, on average, taking antibiotics in each cycle. Thus, in
this section, we considered that the probability that a random individual takes antibiotics
is 0.013. At the end of simulations, we obtained the same correlations’ signs (either a
positive or a negative correlation), when we compare the two situations, random antibiotic
intake versus caused by pathogen spread through the network (compare Suppl. Table S1
and Figure 4C with Suppl. Table S2.1 and Suppl. Figure S1.1, respectively). In other
words, whatever the reasons for taking antibiotics are, the correlation between diversities
is positive if gene transmission probability is higher than the resistance gene loss rate.

3.5. Taking Antibiotics Is Crucial for a Positive Correlation between Virulence and Resistance
Genes’ Diversity in Metagenomes

In the previous sections, we showed that, independently of the cause for antibiotic
administration, the positive correlation between virulence and resistance genes’ diversity
emerges if the gene transmission probability is higher than the loss rate. Here, we ask if
taking antibiotics by people is crucial for this outcome.

If no one takes antibiotics, there is no counter-selective pressure on commensal bacteria
encoding virulence genes. The result is that virulence genes’ diversity gets the maximum
possible value in everyone’s metagenome in the community (in Suppl. Figure S2.1A,B,C, all
the dots converge to the right). If the loss rate is null (if there is no fitness cost of resistance),
all metagenomes accumulate every possible virulence and resistance gene families, so their
diversity attains the maximum achievable value (in Suppl. Figure S2.1A, one can see that
all the dots congregate to a single point at the top right corner). If the loss rate is low, there
is some diversity of resistance genes in the population (in Suppl. Figure S2.1B, all the dots
distribute in a vertical line on the right side). Finally, if the loss rate is high, more resistance
genes are lost than those that accumulate through transmission, so all metagenomes lose
all resistance genes (see Suppl. Figure S2.1C, where all the dots congregate to a single point
at the bottom right corner).

3.6. Positive Correlations Are Robust under Changes in the Main Simulated System’s Properties

We have seen that the positive correlation between virulence and resistance genes’
diversity holds if the gene transmission probability is higher than the loss rate (Figure 4C).
We then analyzed the robustness of this result. The following five subsections show the
impact of changing some of the simulations’ variables, including network type. We studied
the following variables: population size, the ratio between virulence genes and antibiotic
resistance genes, the elimination probability under antibiotic intake, the proportion of the
population harboring antibiotic-resistance genes in their metagenome, and the network
type (regular, small-world, or random).

3.6.1. Positive Correlations Are Robust under Changes in the Population Size

In most simulations, we assumed that the human population has just a thousand
people due to computing power constraints. Therefore, it is essential to investigate whether
population size impacts the correlations’ signs. We performed simulations with a popula-
tion size of 3000 individuals, instead of 1000 individuals, for the 14 conditions shown in
Figure 4C. Although there were significant differences between the slopes in three cases,
we didn’t observe a change of the correlation’s sign from the cases where the population
size was 1000 individuals (Suppl. Table S3.1 and Suppl. Figure S3.1). An increase in
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the population size leads to a rise in the number of intermediaries between two distant
individuals. Therefore, for virulence genes and antibiotic resistance genes to be transferred
between these two faraway individuals, more contacts are needed, and, consequently, more
time is required to achieve a stable correlation.

3.6.2. Positive Correlations Are Robust under Changes in the Ratios between Virulence
and Antibiotic Resistance Genes Diversities

In all the other sections, we considered that virulence and resistance genes have
the same total diversity. Here, we studied the effect of assuming that the diversity of
virulence genes is different from that of resistance genes for the same 14 conditions of
gene transmission probability and loss rate studied in the previous section. For that, we
performed simulations similar to the previous ones, but with the following ratios between
virulence and antibiotic resistance genes: 1:2, 1:4, 2:1, 4:1. Although there were significant
differences between the slopes in 48 out of 56 cases, we did not detect any change in the
correlation’s sign (Suppl. Tables S4.1 to S4.4 and Suppl. Figures S4.1 to S4.4).

3.6.3. Positive Correlations Are Robust under Changes in the Gene Elimination Probability
when People Take Antibiotics

When an individual takes an antibiotic, virulence genes and resistance genes are
eliminated from the metagenome with a probability of 0.7 (except for resistance genes
corresponding to the antibiotic used, which are selected, not eliminated). In this section,
we analyzed the impact of using other elimination probabilities when an individual takes
an antibiotic because the proportion of resistant cells in a bacterial community may change
due to horizontal gene transfer. For that, we performed simulations similar to the previous
ones, for the same 14 conditions of gene transmission probability and loss rate, but where
the probability of eliminating genes under antibiotic intake is 0.3 and 0.5 for all gene types
(instead of 0.7). In 19 out of 28 cases, the slopes were not significantly different from those
obtained with a probability of 0.7 (Suppl. Tables S5.1 and S5.2). The slopes were different in
the other nine cases, but the sign remained the same (that is, correlations are still positive or
negative if they are already positive or negative, respectively, for the elimination probability
of 0.7) (Suppl. Tables S5.1 and S5.2 and Suppl. Figures S5.1 and S5.2).

We also checked the impact of setting the probability of eliminating antibiotic resis-
tance genes different from that of eliminating virulence genes. Although the slopes were
significantly different in 51 out of 84 tested cases, the slopes’ sign remained the same (Suppl.
Tables S6.1 to S6.6 and Suppl. Figures S6.1 to S6.6). Overall, these results show that the
slope’s sign is robust under changes in the elimination probability.

3.6.4. Positive Correlations Are Robust under Changes in the Initial Proportion of
Metagenomes Containing Antibiotic-Resistance Genes

In the previous sections, we considered that every individual carries all the antibiotic
resistance genes in two alternative states at the beginning of the simulation. The two
states are: (i) either resistance genes were present at low copy numbers (hence being very
unlikely to be transmitted to other people) or (ii) resistance genes are at high copy numbers
caused by recent antibiotic exposure (thus with a high chance of being transmitted to
other people). In this section, we study the effect of considering that, initially, only 10% of
the metagenomes contain antibiotic-resistance genes. With this parameter changed, the
simulations take more time to stabilize because 90% of the population receives resistance
genes only through the transmission. We performed simulations similar to the ones shown
in Figure 4 but with 5000 cycles. The final slopes are not significantly different from the
case where all metagenomes initially contain antibiotic-resistance genes (Suppl. Table S7.1
and Suppl. Figure S7.1).

3.6.5. Positive Correlations Are Robust under Changes in the Network Type

The simulations leading to Figure 4 were performed in a network with a rewiring
probability of p = 0.5 (see Methods). We then performed similar simulations but in a regular
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(p = 0) and in random (p = 1) networks. This parameter did not change the correlation
signs (see Suppl. Tables S8.1 and S8.2). However, the time needed (number of cycles) to
reach a stable distribution was lower for higher values of p, this being explained by the
low characteristic path length and the low clustering coefficient when p is high (random
graph) (Suppl. Figure S8.3).

In conclusion, the correlation between virulence and resistance genes’ diversity is pos-
itive if the gene transmission probability is higher than the loss rate of antibiotic-resistance
genes, even when we change following variables: the cause for antibiotic administration
(randomly or due to pathogen spread); population size; the ratio between the total availabil-
ity of virulence antibiotic resistance genes in the community; the elimination probability
under antibiotic intake; the proportion of the population harboring antibiotic-resistance
genes in their metagenome; and the network type (regular network, small-world network,
and random network).

4. Discussion

Antibiotics affect hundreds of commensal and mutualist bacterial strains and species,
even if their administration aims at targeting bacterial pathogens. Moreover, healthy
animals often take antibiotics, given the properties of these drugs as growth-promoters.
With these two processes, antibiotic-sensitive bacteria are counter-selected, raising the
frequency of antibiotic resistance cells in metagenomes. Meanwhile, metagenomes from
sick and healthy people harbor virulence genes. This paper aimed to understand why
there is a positive correlation between the diversity of virulence and antibiotic-resistance
genes among human populations’ microbiomes [16]. For that, we developed a computa-
tional model tailored to address the relationship between antibiotic-resistance genes and
virulence genes.

Since this is the first study ever performed to address this issue, we chose to keep the
simulations as general as possible. However, it can be adapted to generate simulations
adjusted to specific antibiotics or other health scenarios in future studies.

Our simulations’ main result is that a positive correlation emerges if the gene trans-
mission probability is higher than the loss rate of antibiotic-resistance genes. We can
understand this result in the following way.

Bacterial pathogens, antibiotic resistance genes and virulence genes flow between
human individuals’ microbiomes in a network of contacts. In the absence of bacterial
pathogens, people do not take antibiotics in that particular cycle; in these people, the
diversity of virulence genes increase through transmission from their contacts in the
network. However, for the case of antibiotic resistance genes, two opposing forces play a
role in the microbiomes of people not taking antibiotics: (i) transmission from other people
in the network makes the diversity of resistance genes increase, whereas (ii) gene loss, due
to fitness cost imposed by resistance determinants, decreases it. At the end of a cycle, the
diversity of resistance genes increases exclusively if the effect of transmission is higher
than that of gene loss. The gene loss is just the consequence of the fitness cost imposed
by resistance determinants (e.g., chromosomal mutations or mobile genetic elements)
in competition with susceptible cells. However, the transmission effect has two main
contributors: the transmission probability and the number of connections, which depends
on the network type and varies from person to person in non-regular networks. Altogether,
Figure 4C and the corresponding figures in Supplementary File (Suppl. Figures S3.1, S4.1–
S4.4, S5.1, S5.2, S6.1–S6.6, S7.1, S8.1, and S8.2) show that, if the transmission rate is higher
than the loss rate of antibiotic-resistance genes, a positive correlation emerges between the
diversity of antibiotic resistance genes and virulence genes.

At first, one might expect to see a negative correlation whenever the transmission
probability is lower than the loss rate. Yet, we have seen that, when the transmission prob-
ability is only slightly lower than the loss rate, for example, if the transmission probability
is 0.005 and the loss rate is 0.01, the correlation is still positive (Figures C and 4A, Suppl.
Table S1). The reason for these counter-intuitive cases is that, in each cycle, one individual
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contacts with four other individuals, and during each of these contacts, they share bacteria
from its microbiomes. In turn, each individual can only be medicated with antibiotics once
(at the end of a cycle). That implies that the rate of loss of resistance genes applies only
once in a cycle. Therefore, the impact of the transmission rate is higher than the loss rate of
resistance genes.

We assumed that resistance determinants are already present in low amounts in all
metagenomes because they are a part of the natural bacterial lifestyle, and human beings
have used massive quantities of antibiotics since the 1940s [42,43]. What is the impact of
this assumption? As shown in Suppl. Table S7.1, if we assumed that, initially, only 10%
of the metagenomes contain antibiotic-resistance genes, the only difference is that more
cycles are needed to stabilize the correlation. The final correlations between the diversity
of resistance genes and the diversity of virulence genes are the same as in the default case.
Moreover, we have seen in Section 3.4 that, even if antibiotic consumption in the population
is random, to simulate the improper use of antibiotics (i.e., unrelated to infection by the
pathogen), the correlation sign does not change. This result indicates that the positive
correlations between the diversity of resistance genes and the diversity of virulence genes
may not result from antibiotic misuse.

The transmission probability between people and the loss rate of antibiotic-resistance
genes are the two critical parameters of our main result, so it is relevant to know them.
The interest and attention drawn to the Human microbiome have enormously increased
in recent years, yet we still do not know much about the dynamics of the flow of non-
housekeeping genes in shared microbiomes.

Sarowska and colleagues recently reviewed the fate of the extraintestinal pathogenic
Escherichia coli (ExPEC), which are facultative pathogens of the normal human intestinal
microbiome. ExPEC pathogenicity relies on many virulence genes, and pathogenicity
islands, or mobile genetic elements (such as plasmids) encoding some of them. One of the
authors’ conclusions is precisely the difficulty in assigning ExPEC transmission to people
due to the delay between ExPEC colonization and infection: ExPEC cells can live in human
intestines for months or even years before starting an infection [44]. The same problem
applies to the transmission rate of antibiotic-resistance genes: there is very little data on
transmission rates between people [43].

We observed that what is essential to understand the positive correlation between
resistance and virulence genes diversity are not the exact values for the transmission rates
but the relationship between the transmission and loss rates. Therefore, we now discuss
how much is the loss rate of resistance determinants in human metagenomes. Several
longitudinal studies have shown that antibiotic-resistance genes often remain tens of days,
sometimes months, in human gut microbiomes [45–48]. While still harboring resistance
genes, people most probably contact several other people. Yet, the relationship between
transmission and loss rates is still unclear.

As explained in the methods section, the loss of antibiotic resistance results from the
fitness cost of resistance determinants on bacterial cells (compared to otherwise isogenic
susceptible cells). Several studies have shown that resistance determinants, here broadly
comprising resistance mutations and resistance genes encoded in the chromosome or
plasmids, frequently impose a fitness cost on their hosts (giving the sensitive strains a
growth advantage) [49]. However, several mechanisms decrease or even eliminate it. First,
compensatory mutations, which mask the deleterious effects of resistance mutations, have
been observed in several studies [50–54]. Second, resistance mutations can be beneficial
in specific resistance genetic backgrounds, e.g., through epistatic interactions with other
chromosomal mutations [25]. Third, while resistance plasmids often impose a fitness cost
to their hosts, it has also been observed that plasmids and/or cells need just a few tens
or hundreds of bacterial generations to adapt to each other [55–60]. Fourth, plasmids
sometimes increase the fitness of bacteria that already harbor a resistance mutation [26];
likewise, some resistance mutations increase the fitness of plasmid-bearing cells [26]. The
same may happen with two plasmids: one of them compensating for the fitness-cost



Antibiotics 2021, 10, 605 16 of 20

of the other [26,61]. Fifth, plasmids may interact with other plasmids to facilitate their
transfer [62–65]. Sixth, a few studies suggested that plasmids appear costly because their
fitness effect is often measured a long time after its isolation from nature [65,66]. Seventh,
transferable plasmids may have adaptive value to their hosts as promoters of bacterial
biofilms formation [67–69]. Biofilms often confer protection to bacteria against harmful
agents, including antibiotics.

Together, these factors suggest that the fitness cost of resistance determinants is often
very low or null, allowing the permanence of resistance determinants in microbiomes
for long periods. Some resistance determinants may even be beneficial in the absence
of antibiotics [70]. This stability of resistance determinants implies that their loss rate,
the probability that a metagenome loses a particular resistance gene or mutation, is un-
doubtedly lower than the transmission probability. Therefore, antibiotic consumption
and transmission between people lead to a positive correlation between the diversity of
resistance genes and virulence genes.

We have shown that the network structure has a low influence on the final correlation
between virulence and resistance genes’ diversity. However, there is a difference in the
total time needed to achieve the final distribution, being much lower when the structure
is random or in a small-world regime. The cause of such faster convergence is the small
characteristic path length (both of random and small-world network types), facilitating
transmission between people. This result agrees with previous studies showing, for
example, that the shorter path lengths in small-world networks increase the efficiency of
natural selection [71]. It is natural to consider that the structure of microbial populations is
related to the structure of contacts of their hosts. In humans, the network of friendships in
a high school [72,73] and sexual contacts in Sweden [74] have a small-world property (also
see Reference [75]).

We already knew that people with a higher diversity of resistance genes in their gut
metagenomes have a higher diversity of virulence genes [16] and that the presence of both
types of adaptive accessory traits in a microbiome may potentiate the appearance of plas-
mids or bacteria encoding virulence and resistance genes simultaneously and prompting
their spreading into different bacteria [16]. However, the data shown here has further
worrying health implications. While people with lower diversity of virulence genes also
tend to have a lower diversity of resistance genes, the simulations presented here show
that these people are precisely those that have recently taken antibiotics. Although the
overall diversity of resistance genes is minimal in these people, they probably have a high
concentration of certain resistance genes. These genes can then be transferred horizontally
to cells encoding virulence genes.

5. Concluding Remarks

In this study, we tested the hypothesis that the correlation between the diversity of
antibiotic resistance genes and virulence encoding genes is due to the flow of bacteria
and genes between individuals within a human contact network, using simulation-based
experiments with a statistically significant association between cause and effect.

Bacterial transmission and antibiotic use are chief to explain the positive correlation
between antibiotic resistance gene diversity and virulence gene diversity across human
metagenomes. This result is robust and general because we made very few assumptions
and remains valid under changes of several relevant variables (data and respective p-values
in Suppl. Tables S2.1 to S8.2).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10050605/s1, Table S1: Parameters used for Figure 4C and the results of the simula-
tions, Table S2.1: The impact of considering random consumption of antibiotics on the correlation
between virulence and resistance genes, Figure S1.1: Effect of considering random consumption
of antibiotics, Figure S2.1: Effect of considering no consumption of antibiotics, Table S3.1: The
impact of considering 3000 individuals on the correlation between virulence and resistance genes,
Figure S3.1: Effect of considering bigger populations (3000 individuals), Table S4.1: The impact of
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considering a ratio of 1 virulence gene for 2 resistance genes on the correlation between virulence
and resistance genes, Figure S4.1: Effect of considering a ratio of 1 virulence gene for 2 resistance
genes, Table S4.2: The impact of considering a ratio of 1 virulence gene for 4 resistance genes on
the correlation between virulence and resistance genes, Figure S4.2: Effect of considering a ratio
of 1 virulence gene for 4 resistance genes, Figure S4.3: Effect of considering a ratio of 2 virulence
genes for 1 resistance gene, Table S4.4: The impact of considering a ratio of 4 virulence genes for
1 resistance gene on the correlation between virulence and resistance genes, Figure S4.4: Effect of
considering a ratio of 4 virulence genes for 1 resistance gene, Table S5.1: The impact of considering a
probability of eliminating genes under antibiotic intake of 30% on the correlation between virulence
and resistance genes, Figure S5.1: Effect of considering a probability of eliminating genes under
antibiotic intake of 30%, Table S5.2: The impact of considering a probability of eliminating genes
under antibiotic intake of 50% on the correlation between virulence and resistance genes, Figure S5.2:
Effect of considering a probability of eliminating genes under antibiotic intake of 50%, Table S6.1:
The impact of considering a probability of eliminating virulence genes under antibiotic intake of 30%
and a probability of eliminating resistance genes under antibiotic intake of 50% on the correlation
between virulence and resistance genes, Figure S6.1: Effect of considering a probability of eliminating
virulence genes under antibiotic intake of 30% and a probability of eliminating resistance genes
under antibiotic intake of 50%, Table S6.2: The impact of considering a probability of eliminating
virulence genes under antibiotic intake of 30% and a probability of eliminating resistance genes
under antibiotic intake of 70% on the correlation between virulence and resistance genes, Figure S6.2:
Effect of considering a probability of eliminating virulence genes under antibiotic intake of 30%
and a probability of eliminating resistance genes under antibiotic intake of 70%, Table S6.3: The
impact of considering a probability of eliminating virulence genes under antibiotic intake of 50%
and a probability of eliminating resistance genes under antibiotic intake of 30% on the correlation
between virulence and resistance genes, Figure S6.3: Effect of considering a probability of eliminating
virulence genes under antibiotic intake of 50% and a probability of eliminating resistance genes
under antibiotic intake of 30%, Table S6.4: The impact of considering a probability of eliminating
virulence genes under antibiotic intake of 50% and a probability of eliminating resistance genes
under antibiotic intake of 70% on the correlation between virulence and resistance genes, Figure
S6.4: Effect of considering a probability of eliminating virulence genes under antibiotic intake of
50% and a probability of eliminating resistance genes under antibiotic intake of 70%, Table S6.5: The
impact of considering a probability of eliminating virulence genes under antibiotic intake of 70%
and a probability of eliminating resistance genes under antibiotic intake of 30% on the correlation
between virulence and resistance genes, Figure S6.5: Effect of considering a probability of eliminating
virulence genes under antibiotic intake of 70% and a probability of eliminating resistance genes
under antibiotic intake of 30%, Table S6.6: The impact of considering a probability of eliminating
virulence genes under antibiotic intake of 70% and a probability of eliminating resistance genes
under antibiotic intake of 50% on the correlation between virulence and resistance genes, Figure S6.6:
Effect of considering a probability of eliminating virulence genes under antibiotic intake of 70% and
a probability of eliminating resistance genes under antibiotic intake of 50%, Table S7.1: The impact
of considering that, initially, only 10% of metagenomes contain antibiotic resistance genes on the
correlation between virulence and resistance genes, Figure S7.1: Effect of considering that, initially,
only 10% of metagenomes contain antibiotic resistance genes, Table S8.1: The impact of considering a
random network (p = 1) on the correlation between virulence and resistance genes, Figure S8.1: Effect
of considering a random network (p = 1), Table S8.2: The impact of considering a regular network
(p = 0) on the correlation between virulence and resistance genes, Figure S8.2: Effect of considering a
regular network (p = 0), Figure S8.3: Effect of the networks.
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