
 

UNIVERSIDADE DE LISBOA 

FACULDADE DE MEDICINA 

 

 

 

 

Internal Limiting Membrane Peeling in Macular Hole 

 

 

 

Mun Yueh de Faria 

 

 

Tese orientada por: Professor Doutor Manuel Monteiro Grillo 
 

 

Doutoramento em Medicina 

Especialidade de Oftalmologia 

 

2020 

 





 

UNIVERSIDADE DE LISBOA 

FACULDADE DE MEDICINA 

 

 

 

Internal Limiting Membrane Peeling in Macular Hole 

Mun Yueh de Faria 

Tese orientada por: Professor Doutor Manuel Monteiro Grillo 
 

Doutoramento em Medicina, especialidade de Oftalmologia 
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Abstract 

 

 

Macular hole (MH) is a full-thickness defect in the fovea, the central part of the 

neurosensory retina. As the fovea is the site responsible for central vision, the main clinical 

manifestation of MH is central visual field defect and metamorphopsia.  

Descriptions of MH in the medical literature are available since the 19th century. However, 

these only aroused renewed interest after Kelly and Wendel had shown that surgery of 

pars plana vitrectomy (PPV), combined with vitreous cortex detachment and fluid–gas 

exchange could close MH in a significant proportion of cases, although it was assumed that 

the retina would be unable to heal. With time, the success rate of MH surgery gradually 

increased and this surgery is now one of the most successful vitreoretinal surgeries. 

A recent innovation was the introduction of internal limiting membrane (ILM) peeling, 

which leads to a reduction in tangential traction and a higher rate of closure, with less 

recurrence. In the last 10 years, ILM peeling during MH surgery has thus become a routine 

step and is nowadays performed by most retinal surgeons. With the advent of modern 

spectral-domain (SD) optic coherence tomography (OCT), however, one can now see 

abnormal structural changes to the inner retinal surface after surgery with ILM peeling, 

suggesting that the procedure can cause retinal damage, even though vision improves. 

Moreover, some clinical studies found adverse functional events that have given rise to 

concerns regarding the safety of ILM peeling.  

The purpose of the present PhD thesis was to examine anatomical and functional effects of 

ILM peeling in MH surgery. We conducted a prospective study in 72 patients with MH, 

(stages 2, 3 and 4). MH surgery consisted in PPV, ILM peeling, intraocular gas and face 

down position. Morphologic and functional outcomes were assessed, 3, 6 and 12 months 

after surgery. The results reveal the presence of microstructural alterations in the different 

macular layers after MH surgery with ILM peeling, when compared to pre-operative 
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measurements. Thinning of the Ganglion Cell Layer (GCL) and Inner Plexiform Layer (IPL) 

on both sides of the fovea were the main structural alterations, in particular at the 

temporal region. In addition, nasal Internal Retinal Layer (IRL) thickening and shortening of 

papilo-macular distance could also be detected in cases of successful MH surgery with ILM 

peeling. 

Multifocal electroretinography (mf ERG) is a noninvasive method that analyses multiple 

retinal locations around macular area, and was used in this work to provide a topographic 

map of electrophysiological activity in central retina.  

Before surgery, mf ERG showed almost undetectable retinal response in foveal and 

parafoveal areas, in ring 1 and ring 2. After surgery, the improvement in the retinal 

response density of mf ERG in the same ring seems to be consequent to closure of the MH, 

with realignment of photoreceptor cells and glial cell activation. Resolution of the central 

scotoma could be attributed to anatomical repair and, in our study, we found a statistically 

significant increase in N1 and P1 in ring 1. This increase was dependent on the integrity of 

Outer Retina Layers (ORL), External Limiting Membrane (ELM) and Elipsoide Zone (EZ). 

To study the contribution of the peeled ILM to the outcome of MH surgery, the final 

position of the ILM after surgery was assessed. This analysis reveals that when the ILM flap 

ended buried into the hole after surgery, no realignment of external layers could be 

observed. In contrast, when the ILM flap remained over the hole, ELM and EZ were 

realigned, and vision was improved. In this study, duration of MH and ORL integrity were 

studied and we concluded that duration of symptoms of MH seem to relate to integrity to 

these layers. 

The ultrastructure and behavior of peeled ILM was studied by using light and transmission 

electron microscopy. We found that when both ILM vitreous sides are in apposition, there 

are signs of fibrotic activity, producing a basal membrane with collagen microfibrils 

between the two sides. This suggests that the two ILM surfaces may adhere, flanking the 

hole and establish a bridge that contributes to better hole closure after MH surgery.  

Based on the above findings, we conclude that ILM peeling performed in cases of FTMH 

surgery allows hole closure and vision improvement, even though anatomical differences 

as seen in OCT, reveals thinning of inner retinal layers and nasal displacement of the closed 
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hole. Multifocal ERG revealed a functional alteration that is dependent on integrity of the 

ORL. Also, the position of ILM over the hole may have consequences on integrity of ORL 

and, consequently, BCVA. 

Key words: Macular hole, Internal Limiting Membrane, Surgery, Optical Coherence 

Tomography. 
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Sumário 

 

 

A retina é um tecido neuronal transparente composto de várias camadas e que forra os 

dois terços posteriores do globo ocular. A mácula, responsável pela visão central, visão de 

cores e de alta resolução, está situada no chamado polo posterior, entre as arcadas 

vasculares da retina. Tem um diâmetro de cerca de 5,5mm estando o seu centro a 3,5 mm 

do bordo do disco óptico e 1mm abaixo do centro do disco, em olhos emétropes. A fóvea 

corresponde ao centro da mácula. 

Na retina encontramos duas camadas básicas, a mais posterior, camada de epitélio 

pigmentar e a interna, camada neurossensorial. Esta retina neurossensorial é composta 

por 9 camadas, sendo do lado vítreo para o lado coroideu: 

Membrana limitante interna (MLI) 

Camada de células nervosas (CCN) 

Camada de Células ganglionares (CCG) 

Camada plexiforme interna (CPI) 

Camada nuclear interna (CNI) 

Camada plexiforme externa (CPE) 

Camada nuclear externa (núcleo dos fotorreceptores) 

Membrana limitante externa (MLE) 

Camada de fotorreceptores (zona elipsoide, ZE) 

Assim, a retina neurossensorial é composta de 3 camadas de corpos celulares neuronais e 

duas camadas de sinapses. A camada nuclear externa contém corpos celulares dos cones e 

bastonetes, a camada nuclear interna contém corpos celulares das células bipolares, 

horizontais e amácrinas. A camada de células nervosas é constituída por células 

ganglionares e algumas células amácrinas. Entre estas camadas de células neuronais, 

existem as camadas plexiformes em que ocorrem contactos sinápticos. Na camada 

plexiforme externa, ocorrem contactos entre cones, bastonetes e células bipolares e 

células horizontais. A camada plexiforme interna, permite a comunicação entre células 
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bipolares e células ganglionares, assim como informações das células amácrinas e 

horizontais sobre as células ganglionares. 

A membrana limitante interna é camada mais interna da retina e faz fronteira com o 

humor vítreo pelo que forma uma barreira de difusão entre a retina neuronal e humor 

vítreo. É considerada a membrana basal das células de Müller, formada pelos podócitos 

destas células, colagénio e proteoglicanos, que permite a adesão da MLI à retina e adesão 

do vítreo cortical à MLI. 

A membrana limitante externa forma a barreira para o espaço subretiniano, onde se 

projectam as porções internas e externas dos fotorreceptores para permitir associação 

com a camada de epitélio pigmentado atrás e a própria retina neuronal. 

O Buraco Macular é um defeito retiniano na fóvea, zona central da retina neurossensorial. 

Sendo a fóvea responsável pela visão central, o buraco macular pode originar 

metamorfopsia e defeito central nos campos visuais. 

 

O diagnóstico de Buraco Macular existe desde o século 19. No entanto, o seu interesse 

tem sido maior desde que Kelly e Wendell revelaram que era possível a resolução cirúrgica 

do buraco macular com vitrectomia via pars plana, descolamento posterior do vítreo e 

trocas fluido/ar. Apesar de se considerar que a retina não tivesse capacidade regenerativa, 

esta técnica permitia encerrar os Buracos Maculares em grande parte dos doentes. A taxa 

de sucesso no encerramento do Buraco Maculares foi gradualmente melhorando e, hoje 

em dia, é considerada a patologia vítreo-retiniana com maior sucesso cirúrgico. 

 

Com a introdução de delaminação da MLI, reduziu-se a tracção tangencial o que permitiu 

uma maior taxa de encerramento do buraco e menos recidivas. Nos últimos 10 anos a 

delaminação da MLI na cirurgia de buraco macular tornou-se rotina e é praticada pela 

maioria de cirurgiões vítreo-retinianos. Com o advento da Tomografia de Coerência Óptica 

(OCT) de domínio espectral (SD), conseguem-se observar alterações estruturais da retina 

interna com a delaminação, sugerindo possível lesão retiniana, mesmo que se verifique 

que o buraco encerre e a visão melhore. Por outro lado, a maior ou menor integridade da 

MLE e ZE observados no OCT após encerramento do buraco, parecem ter relação com a 
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recuperação da função visual. No entanto, alguns estudos revelaram alterações adversas 

que originaram preocupação sobre a segurança desta manobra. 

O objectivo da presente tese foi observar efeitos anatómicos e funcionais desta 

delaminação na cirurgia do buraco macular. Fizemos um estudo prospectivo em 72 

doentes com buraco macular de estadio 2, 3 ou 4, submetidos a cirurgia de vitrectomia via 

pars plana, delaminação da membrana limitante interna, trocas fluído/ar, gaz e decúbito 

ventral. Os resultados pós-operatórios foram registados aos 3, 6 e 12 meses após a 

cirurgia. 

Quanto a alterações anatómicas, os resultados revelaram alterações microestruturais nas 

diferentes camadas maculares após delaminação da MLI na cirurgia de buraco macular 

comparativamente aos dados pré-operatórios. Um estreitamento da camada de células 

ganglionares (CCG) e camada plexiforme interna (CPI), em ambos os lados, nasal e 

temporal da fóvea, parecem ser as maiores alterações. Mas a diferença de estreitamento 

das camadas, em cada um dos lados, nasal e temporal, são igualmente importantes, sendo 

a espessura total nasal maior que a espessura total temporal.   

Encontrou-se, ainda, um aumento da espessura do sector interno das camadas internas da 

macula nasal, assim como um encurtamento da distância entre o disco óptico e a mácula, 

após cirurgia com pelagem da MLI e encerramento do buraco. Assim, o buraco macular 

encerra modificando a sua posição inicial, aproximando-se do disco óptico e aumentando a 

espessura nasal da mácula. 

Utilizou-se o ERG multifocal para estudo de alterações funcionais da mácula antes e depois 

da pelagem da MLI na cirurgia do buraco macular. Trata-se de um método não invasivo 

que seleciona múltiplas zonas à volta da área macular, de modo a permitir um mapa 

topográfico de actividade eletrofisiológica na retina central. Após cirurgia eficaz, passa a 

haver um buraco encerrado, com ou sem integridade da membrana limitante externa, 

zona elipsoide e epitélio pigmentado. Neste estudo funcional, o ERG multifocal revelou, 

antes da cirurgia, uma resposta retiniana indetectável na área foveal e parafoveal nos 

anéis 1 e 2. Após encerramento do buraco, a melhoria da resposta retiniana nos dois anéis 

referidos parecem ser consequência do encerramento do buraco com realinhamento dos 

fotorreceptores. A resolução do escotoma central parece ser devida a reparação 
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anatómica do buraco. No nosso estudo houve um aumento das ondas N1 e P1 no anel 1. 

Este aumento foi dependente da integridade das camadas externas da mácula, MLE e EZ. 

Em buracos maculares de dimensão elevada, superior a 400 micras, a MLI é delaminada 

até ao bordo do BM, reservando uma porção maior que é dobrada sobre si própria e 

colocada sobre o buraco, permitido o seu encerramento. Comprovámos que o resultado 

funcional e a integridade dos fotorreceptores dependiam da posição final da porção de 

MLI sobre o BM. Neste estudo, verificámos que se um fragmento de MLI ficasse enterrada 

no buraco, havia encerramento do buraco, mas não realinhamento dos fotorreceptores. 

Se o fragmento de MLI se mantivesse sobre o BM, o BM encerrava e a camadas de 

fotorreceptores, traduzida pela membrana limitante externa e zona elipsoide, revelavam 

integridade em grande parte dos casos. Para esta integridade também tinha importância o 

tempo de evolução do BM. Quanto menor tempo de evolução do BM, melhor a taxa de 

realinhamento das camadas externas da macula. 

Sempre que possível, durante a cirurgia macular, depois da delaminação da MLI e de 

colocada uma porção evertida de MLI sobre o buraco, eram excisados dois outros pedaços 

de MLI e estes enviados para estudo. A ulta estrutura e o comportamento da membrana 

limitante interna excisada foram estudadas por microscopia óptica e electrónica.  

Verificou-se que, em meio rico, e estando as duas faces vítreas da MLI em contacto, havia 

sinais de actividade fibrótica com produção de membrana basal, o que permitia a 

aderência destas duas faces de MLI. Sugerimos no nosso estudo que células epiretinianas 

na MLI pudessem ter capacidade proliferativa, com formação de microfibrilhas entre as 

duas faces adjacentes de MLI. Este facto poderia explicar a aderência observada entre o 

folheto de ILM e os bordos do buraco macular, depois da cirurgia, o que contribuiria para o 

encerramento do BM. 

Baseados nos resultados encontrados, poderemos concluir que a delaminação de MLI em 

todos os casos de cirurgia de BM permite o encerramento do buraco e melhoria da visão, 

apesar de se verificar alterações importante na anatomia, medidas pela tomografia de 

coerência óptica, antes e depois da cirurgia. As alterações anatómicas mais importantes 

são diminuição da espessura das camadas internas da mácula, nasal e temporal, um 
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aumento da espessura total da porção nasal da mácula e uma diminuição da espessura 

temporal. E, ainda, um desvio nasal do BM depois do seu encerramento.  

O ERG multifocal revela alterações funcionais na mácula depois de cirurgia com pelagem 

da MLI e, esta alteração, depende da integridade das camadas externas da mácula.  

A integridade das camadas externas, MLE, ZE e EP determinam a função visual final. Para 

ser possível esta integridade, a posição da porção de MLI sobre o BM é muito importante, 

dependendo se esta fica enterrada no meio do buraco ou se fica sobre o buraco. Por fim, 

na análise por microscopia electrónica da MLI excisada, encontrámos microfibrilhas de 

colagénio entre as duas faces vítreas da membrana, que poderão contribuir para o 

mecanismo de encerramento do Buraco macular. 

 

Palavras chave - Buraco macular, membrana limitante interna, cirurgia, Tomografia de 

Coêrencia Óptica. 
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Overview of the thesis 

 

 

Over the years preceding the execution of this work, compelling evidence had indicated an 

essential involvement of vitrectomy and ILM peeling in the treatment of MH. Given the 

concerns of ILM peeling, we proposed to study how ILM peeling could influence macular 

anatomy and macular function after surgery.  In large macular holes, ILM was peeled 

around the hole, leaving one piece still attached and inverted over the hole. In this study, 

two other pieces of ILM were also collected elsewhere around the hole, prepared for 

transmission electronic analysis of peeled ILM and also allowing the study of behavior of 

ILM vitreal faces in contact. Closing the hole is not the only important result. Also, integrity 

of outer nuclear layers is fundamental for recovery of best corrected vision. Therefore, we 

studied the influence of ILM position over the hole and its relation to integrity of 

photoreceptor layer and pigment epithelium layer, after hole closure. The thesis is 

organized in five chapters. Chapter 1, a general introduction, hypothesis and aims, 

background that describes anatomy of macula, MH surgical treatment and complications, 

material and methods. Chapter 2, 3, 4 and 5 present the results obtained in the context of 

this thesis, published in peer review scientific journals.  

In these chapters we also discuss the key findings obtained throughout this thesis and the 

putative relevance of ILM peeling in macular anatomy as seen in OCT, and macular 

function measured in electrophysiological studies. The ultrastructure study of peeled ILM 

was also evaluated and the relation of the position of ILM in MH surgery in outer nuclear 

layer integrity as well as best correct visual acuity. Chapter 6 includes discussion and 

conclusions. 

 

 





1 

CHAPTER 1 

 

 

1. Introduction  

Idiopathic full thickness macular hole (MH) is a vitreomacular interface disorder, which can 

lead to severe visual impairment. (1) It is estimated that it is present in 33 of every 10,000 

individuals older than 55 years, with a female-to-male ratio of 2 to 3:1 (2). As the fovea is 

the site responsible for central vision, this full-thickness defects in the neurosensory retina 

results in vision loss, metamorphopsia, and central visual field defects (1). If loss of vision is 

very severe and only peripheral vision is maintained, quality of vision and quality of life are 

seriously affected.  

The role of the vitreous cortex in the pathogenesis of MH became better understood with 

the biomicroscopic observations of Donald Gass (3). The pathogenesis involves antero-

posterior traction and/or tangential traction exerted by the posterior vitreous cortex at the 

fovea from an incomplete posterior vitreous detachment (PVD) as a result of aging 

(4)(5)(6). A MH may form when PVD occurs, but the vitreous still tenaciously adheres to 

the edges of the fovea (4)(7). This phenomenon is possible when the liquefaction of the 

vitreous is not accompanied by a simultaneous weakening of the adherence of the 

posterior hyaloid to the fovea and optic nerve. 

OCT reveals, before the formation of MH, the presence of a partially detached ring of the 

vitreous extending from the fovea, where it remains attached to the papilla and to the 

vascular arcades on one side, and to the fovea in the center. A pocket of vitreous fluid is 

also visible immediately in front of the macula (4)(7). (Figure 1) Thus, passive movements 

of the vitreous fluid in the precortical vitreous pocket, along with the contraction of the 

posterior hyaloid adhering to the fovea, create antero-posterior traction.  
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Figure 1-Horizontal spectral-domain optical coherence tomography scan of an asymptomatic 47-year-old 
man showing a large pre-macular liquefied pocket (black area with white stars). Its posterior wall, the 
vitreous cortical layer overlying the macular area, is very thin, and shallow vitreous separation is beginning in 
the peripheral macula. (white arrows) 

 

The fovea consists mainly of photoreceptors and their axons covered by a cap of Müller 

cells. The ILM is rather thick at the macula but becomes thin over the fovea. (8) Generally, 

at sites where the ILM is thin, the vitreous fibers are more anchored to the retinal tissue 

and may exert greater tensile forces.  

The ILM, the layer that defines the transition between the retina and the vitreous body, is 

composed of the internal expansions of Müller cells and by a basement membrane made 

primarily of collagen fibers, glycosaminoglycans, laminin, and fibronectin connected to 

peripheral fibers of the cortical vitreous. Under certain conditions, the focal traction of the 

vitreous adherent to the central ILM can break the retina at its thinnest point (9). 

Stiffening, distortion, and enlargement of the MH rim are consequences of epi-macular 

glial and Müller cell proliferation through the retinal hole and over the ILM surface. After 

the formation of a MH, enlargement is largely caused by tensile shear strain from 

shortening of the ILM edges causing tangential traction. Moreover, stiffening and 

thickening of the ILM are important contributory causes of other pathologic macular 

conditions such as epiretinal membranes, diabetic tractional maculopathy, vitreomacular 

traction (VMT), and myopic traction maculopathy (10). 

Until the early 1990s, there was no treatment for established MH. MH surgery has evolved 

from the initial studies of Kelly and Wendel in 1991 (11), and became a treatable disease 

with PPV and elimination of the anteroposterior traction, allowing anatomical closure. The 
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rationale for surgical intervention originated in the identification of centrifugal traction as 

the cause of MH formation, rather than permanent loss of foveal tissue being responsible 

for the visual deterioration (12). Classic MH surgery by vitrectomy with posterior vitreous 

cortex separation, intraocular gas tamponade and face down position, has become the 

main treatment (13). The modification by addition of ILM peeling was first reported in 

1997 by Eckardt et al (14).  This intentional removal of the macular ILM resulted in a 

meaningful improvement in the anatomical success rate in the surgical treatment of an 

MH, and a cost-effective option for the treatment of this disorder (15)(16). 

Nowadays, focus is on ILM peeling as adjuvant therapy for increasing closure rates, with a 

number of options to choose from. Surgery for MH is now one of the commonest 

vitreoretinal surgeries undertaken, accounting for approximately 10% of all vitrectomies 

(17). ILM peeling has gained widespread acceptance because it has been shown to 

improve closure rates and to prevent late postoperative reopening, one of the most 

common complications of successfully closed MH (14)(18). 

Some authors like Kwok et al in 2005, described a number of changes in retinal structure 

and visual function after MH surgery, and suggest that ILM peeling may not be necessary 

in all cases (19). Nonetheless, several variations of the procedure have been described, 

depending on the hole dimension, including the extent of ILM peeled during surgery and 

various techniques of ILM peeling. Moreover, further developments of the technique have 

been proposed, including complete ILM peel and ILM peel associated to inverted ILM flap 

(20). 

There is a general consensus that the rate of anatomical closure of MH improved 

significantly after ILM peeling (21)(22). However, regardless of its beneficial effects, ILM 

peeling has also been shown to lead to some structural and functional alterations. (23) 

Immediate effects are focal retinal hemorrhages, whitish nerve-fiber layer, and full 

thickness retinal defects caused by instrument trauma or iatrogenic eccentric holes 

(24)(25). 

Swelling of the arcuate retinal nerve-fiber layer (RNFL) (26), on spectral domain optic 

coherence tomography (SD-OCT) seems to be the earliest short-term anatomical change in 

the macula after ILM peeling. A “Dissociated Optic Nerve-Fiber Layer” (DONFL) 
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appearance, first reported by Tadayoni et al, (27) after epiretinal membrane and ILM 

peeling, was described to occur a few months after ILM peeling in MH surgery and is 

believed to be related to loss of distal Müller cell processes resulting in dimpling of the 

nerve-fiber layer (27)(28). 

A variety of other morphologic and functional changes in the retina have been noted after 

ILM peeling. Some authors have observed paracentral scotomas and reduced central 

retinal sensitivity after ILM peeling (23)(28). Terasaki et al found electrophysiologic 

changes with delay in the recovery of the b-waves of focal macular electroretinograms 

(29), and decrease in thickness of the macular retinal layers (30), whereas other authors 

have found no functional consequences possibly relating to the difficulty of testing  (23). 

In summary, in the last 10 years, ILM peeling during surgery for a MH has become a 

routine step and is performed by most surgeons. With the advent of modern spectral-

domain SD-OCT, however, one can now see abnormal structural changes to the inner 

retinal surface with ILM peeling, suggesting possible progressive retinal damage. 

Moreover, some clinical studies found adverse functional events that have given rise to 

concerns regarding the safety of ILM peeling. 

 

2. Hypotheses and Aims  

In this study, we describe the current understanding regarding the pathogenesis of MHs. 

Surgical treatment with ILM peeling has allowed greater rate of MH closure, even for large 

MH. However, anatomic closure of MH is not always associated to the same functional 

outcomes. The purpose of the present thesis was to assess consequences in retina 

anatomy and function, after MH surgery with ILM peeling. More specifically, the questions 

addressed in this work were the following: 

1- Does MH surgery with ILM peeling lead to changes in macula anatomy?  

2- Does MH with ILM peeling affects retinal function as measured by Multifocal 

Electroretinography? 

3- Does the surgical technique in ILM peel for large MH influences integrity of 

photoreceptor layer and visual acuity?  
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4- Is there a relation between duration of symptoms of MH and visual acuity after 

successful surgery? 

5- What alterations in the ultrastructure and behavior of peeled ILM that may help to 

explain the mechanisms of hole closure? 
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3. Background 

3.1 - Retina 

The neural retina is a transparent tissue of multiple layers that lines the posterior 2/3 of 

the eye. The macula is in the so-called posterior pole, between vascular arcades, 

responsible for the central, high-resolution and color vision. The human macula is 

approximately 5.5 mm in diameter, its center is approximately 3.5 mm lateral to 

the edge of the optic disc and approximately 1 mm inferior to the center of the disc. The 

fovea is located at the center of the macula. (Figure 2) 

 

  

Figure 2- Fundus photography of the Optic nerve head, Macula and Fovea 

 

3.1.1 - Macular layers  

The retina is composed of two basic layers, the outer, more posterior retinal pigment 

epithelium layer (RPE) and the inner neurosensory layer. (Figures 3 and 4) 

The neurosensory retina is composed of three layers of nerve cell bodies and two layers of 

synapses. The outer nuclear layer contains cell bodies of rods and cones, the INL contains 

cell bodies of the bipolar, horizontal and amacrine cells, and the ganglion cell layer 

contains cell bodies of ganglion cells and displaced amacrine cells. Between these nerve 

cell layers are two neuropils where synaptic contacts occur.  
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Figure 3 - A drawing of a section through the eye with a schematic enlargement of the retina. (From Simple 
Anatomy of the Retina by Helga Kolb) 

 

 

Figure 4- Diagram of organization of the retina  

 

The first area of the synaptic layer is the OPL where connections between rod and cones, 

and vertically running bipolar cells and horizontally oriented horizontal cells occur. (Figure 5) 
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Figure 5- Retinal layers with outer plexiform layer in red (From Simple Anatomy of the Retina by Helga Kolb) 

 

The second synaptic layer of the retina is the IPL, and it functions as a relay station for the 

vertical-information-carrying neurons, the bipolar cells, to connect to ganglion cells. In 

addition, different varieties of horizontally and vertically directed amacrine cells somehow 

interact in further networks to influence and integrate the ganglion cell signals. (Figure 6) 

The central retina close to the fovea is considerable thicker than the peripheral retina due 

to the increased packing density of photoreceptors, particularly the cones, and their 

associated bipolar and ganglion cells in the central retina compared with the peripheral 

retina.  

The fovea lies in the middle of the macula area of the retina to the temporal side of the 

optic nerve head. In this area, cone photoreceptors are concentrated at maximum density, 

with the exclusion of the rods, and arranged at their most efficient packing density which is 

in a hexagonal mosaic. No nerve fiber layers are found in the fovea, allowing direct access 

of light to photoreceptors. 

 

 

Pigment Epithelium 

Photoreceptor Layer 

Outer Nuclear Layer 
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Inner Plexiform Layer 
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Figure 6- Retinal layers with Inner plexiform layer in red (From Simple Anatomy of the Retina by Helga Kolb) 

 

The pigmented epithelial cells in the fovea are higher and contain more pigment than cells 

elsewhere in the retina, contributing to the darkness of this area. 

Müller cells are the radial glial cells of the retina. The ELM of the retina is formed from 

adherens junctions between Müller cells and the inner segments of photoreceptors.  

The ILM of the retina is likewise composed of laterally contacting Müller cells´ end feet and 

associated basement membrane constituents. (Figure 7) 

Pigment Epithelium 

Photoreceptor Layer 

Outer Nuclear Layer 

Outer Plexiform Layer 

Inner Nuclear Layer. 

Inner Plexiform Layer 

Ganglion Cell Layer 
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Figure 7- Graphic scheme of the retinal structure highlighting its major structures (Courtesy of S. Sciarini).  

 

3.1.2 - Internal Limiting Membrane 

The ILM sits at the inner surface of the retina bordering the vitreous humor and thereby 

forming a diffusion barrier between the neural retina and the vitreous humor. It is formed 

by the basement membrane of the Müller cells and it is composed of collagen and a wide 

variety of proteoglycans (31), many of which are involved in both the adhesion of the ILM 

to the retina and also the adhesion of the cortical vitreous to the ILM. The ILM thickens 

and becomes more rigid with age (32). Its vitreous side is smooth where it meets the 

condensed cortical vitreous but is deeply convoluted on the retinal side (33). (Figures 8 

and 9) 

Although thin, the ILM has a mechanical strength in the mega-pascal range,  similar to 

articular cartilage and approximately 1,000-fold stronger than cell layers, contributing to at 

least 50% of the retinal rigidity (32)(34). Despite the ILM being only a few microns thick, it 

contributes very significantly to retinal rigidity, and its removal during MH surgery results 

in an increase in retinal compliance, aiding hole closure. Also, this alteration in retinal 

compliance facilitates movement of the temporal retina towards the optic disk (35), 

thereby contributing to MH closure. 
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Figure 8- ILM in Transmission Electron Microscope (TEM), magnification 1000x s. Vitreous side is smooth and 
retinal side is convoluted. 

 

 

Figure 9- ILM in Transmission Electron Microscope, magnification 5000 x s. The upper smooth side is the 
vitreous side, the lower rough side is the retinal side. 
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Surgical peeling of ILM not only removes the remaining macular cortical vitreous, which 

could exert residual tangential traction, but also inhibits the formation of postoperative 

epiretinal membranes and secondary tangential traction(6)(36). Finally, ILM removal, and 

the consequent trauma to the Müller cell end feet, may lead to a retinal glial cell proliferation 

reaction, which could paradoxically enhance MH contraction and repair (6)(36). 

  

3.1.3 - Müller Cells 

Müller cells represent the major type of glial cells in the retina. In recent decades, Müller 

cells have been acknowledged to be far more influential on neuronal homeostasis in the 

retina than previously assumed (37). With their unique localization, spanning the entire 

retina and interposed between the vessels and neurons, Müller cells are responsible for 

the functional and metabolic support of the surrounding retinal neurons (38). Müller cells 

end feet are part of the ILM. In 1969, Yamada (39) reported the anatomy of the fovea 

centralis and described that the  inner half of the foveola is composed of an inverted cone-

shaped zone of Müller cells, the  Müller cell cone. (Figure 10) 

 

Figure 10- Schematic representation of the normal human fovea centralis from Gass, based on the 
histological findings of Yamada and Hogan et al. The Müller cell cone (M) is shown with its base forming the 

internal limiting membrane (arrow) and its apex forming the external limiting membrane (arrowhead). 

 

The cell bodies of Müller cells are located in the inner nuclear layer (INL), and many cellular 

processes in Müller cells span the whole thickness of the neurosensory retina. Müller cells 

end feet are part of the ILM, and all types of cell bodies and the retinal neuronal processes 

are ensheathed in these cells. On the other hand, Müller cells proliferate and form the 

ELM at the photoreceptor layer level. The ELM is connected to the ILM at the fovea center 

due to thickening of the Müller cell layer, creating a cone-shaped appearance. This forms 

the Müller cap, which is a reservoir of xanthophylls, and it enables Müller cells to protect 
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to the retina. It has been proposed that the Müller cell cone serves as a plug to bind 

together the receptor cells in the foveolar (40). Without this plug of glial cells, the retinal 

receptor cell layer with its thin layer of horizontally radiating nerve fibers would be highly 

susceptible to disruption and hole formation. There is indeed considerable evidence that 

MH formation begins with contraction of the pre-foveolar vitreous cortex that is tightly 

adherent to the ILM of the Müller cell cone. It is likely that Müller cell invasion and 

proliferation within the pre-foveolar vitreous cortex are important in causing contraction 

of the pre-foveolar vitreous cortex and the sequence of events of MH formation. 

Recently, investigators using OCT and scanning electron microscopy to study patients with 

impending MH have demonstrated evidence of a split in the foveola with cyst formation in 

some patients (41)(42). (Figure 11) 

 

Figure 11- Split in foveola and cyst seen in OCT of left eye of patient with macular hole on right side 
 
 
 

3.2 - Optical Coherence Tomography   

OCT is a non-invasive diagnostic imaging modality that enables in-vivo cross-sectional or 

three-dimensional visualization of the retinal microstructure. It has a rapid and simple 

execution, repeatability and precise measurements. OCT imaging is analogous to 

ultrasound, except that it uses light instead of sound. Measurements are performed by 

directing a beam of light onto tissue and measuring the echo time delay and magnitude of 

reflected or backscattered light using low-coherence interferometry. In Ophthalmology, 
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OCT has enhanced the detection of many subtle vitreous, retinal, and choroidal changes, 

which are difficult or impossible to be visualized by ophthalmoscopy (43) (44). 

OCT is currently the gold standard imaging technique for diagnosis and follow- up of retinal 

diseases including MH. (41) Our understanding and treatment for retinal diseases have 

been improved (45), especially the changes occurring in the vitreoretinal interface (46). 

The preoperative assessment of MH by means of OCT is fundamental for the evaluation of 

several important features that have been recognized to contribute to the anatomical and 

functional outcomes after surgical repair. The noninvasive morphological investigation of 

these lesions has allowed for the pivotal distinction between FTMH, characterized by an 

interruption in the neuroretina involving all the sensory layers (47), and other types of MH, 

such as lamellar macular hole (LMH) and pseudo-holes (48). 

Besides pre-operative OCT studies, the intra-operative and post-operative monitoring of 

the surgical outcomes has allowed for unattended insights on the response of the retinal 

tissue to the closing procedures (49)(50). In fact, ocular biomicroscopy is seldom able to 

evaluate the extent of retinal morphologic changes that take place after the surgery and is 

not able to establish any correlation between the anatomical and functional findings.  

The standard field of view in the OCT systems is 30º and it is important to examine disease 

primarily affecting the macula (43). Its ability to non-invasively image detailed ocular 

structures and associated microvasculature in vivo with high resolution has improved 

quality of patient care. OCT technology is based on the principle of low-coherence 

interferometry, where a low-coherence light beam is directed on to the target tissue and a 

three-dimensional volume of structural and flow information can be compiled. Typically, 

spectral domain OCT instruments use an infrared light source centered at a wavelength of 

about 840 nm. For a given wavelength, the axial resolution is dictated by the band-width of 

the light source. The latest commercial instruments typically have an axial resolution of 

approximately 5 μm, while research instruments have been built with a resolution as high 

as approximately 2 μm (Figure 12). The lateral resolution is limited by the diffraction 

caused by the pupil and it is normally about 20 μm. For clinical purposes, the image 

acquisition time is limited by the patient’s ability to avoid eye movements, the availability 
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of scanning techniques to adjust for movements, and the availability of tracking software 

that adjusts for eye movements.  

 

Fig 12- A- Fundus photo of a normal human macula, optic nerve and blood vessels around fovea. (200m) B- 
Optical Coherence tomography (OCT) image of the same normal macula in the area boxed in light green and 
between 3.00 mm diameter limited by medial yellow circle, parafoveal area, centered on fovea. The foveal 
pit (arrow) and the sloping walls with displaced inner retina neurons (yellow and red cells) are clearly seen. 
Green cells are packed photoreceptors, primarily cones, above the foveal center. 

 

The most commonly used quantitative parameter derived from OCT datasets is retinal 

thickness, obtained by segmenting the ILM and a boundary representing the RPE (Figures 

13 to 21). This information can be used to generate surface maps of the ILM and the RPE 

as well as two-dimensional and three-dimensional retinal thickness maps. These maps can 

be very useful in identifying and describing deviations from the normal anatomy and 

changes over time. In addition to total retinal thickness, a number of other quantitative 

parameters have been proposed, such as the thickness of the GCL or the thickness of the 

photoreceptors’ outer segments, as well as measurements of retinal lesions. 

A 

B 
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Spectral domain OCT has allowed researchers to assess the multilayer microstructure of 

the retinal fovea and demonstrate the importance of proper recovery of retinal lines in 

improving BCVA. Different retinal lines have been shown to influence visual improvement 

after closure of the MH. Wakabayashi and Bottoni (51)(52), emphasized ELM recovery as a 

sign of intact photoreceptor cell bodies and Müller cells.  

 

 

Figure 13 - The superimposed illustration is a representational drawing of the cell types found in a normal fovea 
(cells not to scale). Drawing is color coded by cell type. (From Atlas of OCT - Neal A. Adams, Heidelberg 
Engineering) 
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Figure 14- SD-OCT with identification of retinal layers in colors and correspondence in cell type and interface 
layers. (Courtesy of Heidelberg Engineering). 

 

Figure 15 - Complete PVD. The posterior face of the vitreous is completely separated from the retina.  
 

 

 

 

Figure 16- The posterior face of the vitreous is pulling on the fovea, resulting in a peaked appearance of the 
photoreceptors 
 

 

 

Figure 17- The posterior face of the vitreous is pulling on the fovea, resulting in a cyst. 
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A  A 

    B 

Figure 18 – SD OCT of 71 years old man, A-left eye in top and B-right eye in bottom with vitreomacular 
traction in both eyes and cystic lesions right eye. 
 

 

 

 A 

B 

Figure 19- The full-thickness macular hole in the OCT image has a partial roof and the traction from the 
posterior face of the vitreous is clearly visible, both in A and B 
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Figure. 20 Full-thickness macular hole. The hole goes all the way through the retina, exposing the RPE 
(shaded blue). The curling of the photoreceptor layers can most easily be identified by tracing the external 
limiting membrane (shaded yellow) between the photoreceptor nuclear layer and the photoreceptor inner 
segments. Several small intraretinal cysts (shaded orange) can be seen within the inner nuclear layer, 
between the outer plexiform layer (shaded green) and the inner plexiform layer (shaded red). (From Atlas of 
OCT - Neal A. Adams, Heidelberg Engineering)  
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Figure 21- Evolution of a macular hole in one of our patients, 68 years old, fellow eye of eye with macular 
hole, visualized with optical coherence tomography (OCT). A - OCT- Image of macula with posterior vitreal 
adherence and foveal traction. B-cavitation and rupture of outer retina layers. C-Full thickness macular hole. 
D-fifteen days after macular hole surgery; hole is closed. Note the subtle area of increased reflectance in the 
center.  

 

A 

B 

C 

D 
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3.3 - Macular Hole 

3.3.1 - Definition 

MH are full-thickness retinal defects in the foveal neurosensory retina, (Figure 22) leading 

to loss of central vision, metamorphopsia and a central scotoma in the affected eye. The 

majority of MH are primarily idiopathic (85%) with a smaller proportion being as a result of 

trauma, inflammation or high myopia (53)(54). 

The modern history of MH started with J.D. Gass who proposed a staging system ranging 

from impending to full-thickness MH, on the basis of biomicroscopic observation (3). Hee 

and Puliafito (41), were the first to describe the stages of MH on OCT scans, and Kelly and 

Wendel, (11) performed the first successful MH surgery.
 
 

 

 

Figure 22- Full-thickness macular hole showing a surrounding cuff of subretinal fluid. 

 

3.3.2 - Prevalence of Macular Hole and Risk Factor 

The prevalence of MH reported in literature varies greatly, with a prevalence of 0.02 to 0,8 

%  in the general population (2) (55) (56). Bilateral MH varies considerably from 5% to 16%. 
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Age 65 is an important risk factor for the development of MH. Liquefaction of the 

vitreous and the development of PVD increases with older age. Given that PVDs are known 

to increase the predisposition for the development of MH, this finding likely explains some 

of the heightened risk of MH among older individuals. Females have a higher risk of 

developing MHs relative to males (57) (58). This finding is thought to be associated with 

the effects of decreased estrogen in the vitreous gel (59). Estrogen changes during peri-

menopausal years and plays a role in the cross-linking and loss of vitreous collagen and 

glycosaminoglycans that occurs with vitreous liquefaction, subsequent vitreomacular 

traction, and the onset of MH pathological findings (2). Over 70% of MHs occur in women 

and more than half in patients 65-74 years old(60). 

 

3.3.3 - Physiopathology of Macular Holes.  

In recent years, the role of the vitreous in ocular physiology (61), and the pathobiology of 

vitreo-retinal diseases have been increasingly appreciated (62). During youth, there is a 

strong adhesion between the posterior vitreous cortex and the ILM of the retina, primarily 

at the vitreous base and at the posterior pole. After the fourth decade of life there is a 

significant decrease in the gel volume and an increase in the liquid volume of the human 

vitreous (63). With age, there is a weakening of vitreo-retinal adhesion, most likely due to 

biochemical alterations at the vitreo-retinal interface (63). 

When vitreous liquefaction occurs without concomitant vitreo-macular interface 

weakening, PVD can be pathologic and may develop into several kinds of vitreo-macular 

interface diseases (64)(65)(66)(67). 

If there is insufficient dehiscence at the vitreoretinal interface, PVD can induce a split 

within the posterior vitreous cortex (vitreoschisis) (68). Clinical diagnosis of a suspected 

PVD is based on clinical story of flashes and floaters, (69) and usually results in innocuous 

separation of the vitreous from the retina. Anomalous PVD is the consequence of gel 

liquefaction without sufficient dehiscence at the vitreoretinal interface, causing a variety of 

untoward sequelae. Sebag unified this concept and coined it anomalous PVD. According to 

Sebag, for an uncomplicated PVD to occur, two processes must occur concurrently: 

weakening of vitreo-retinal adhesion and vitreous liquefaction (63). An anomalous PVD 
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occurs when the extent of vitreous liquefaction exceeds the degree of weakening of vitreo-

retinal adhesion and leads to posterior vitreoschisis: when splitting of the posterior cortical 

vitreous occurs and forward displacement of the vitreous body leaves the outer layers of 

the posterior vitreous cortex still attached to the retina, potentially resulting in the 

formation of macular disease (68). 

It is now widely accepted that antero-posterior and dynamic vitreous traction associated 

with peri-foveal PVD is the primary cause of MH formation (13). Johnson et al (65), 

suggested that dynamic tractional forces that are generated by posterior cortical vitreous 

movement during the rotations of the eye may play an important role in MH  

development. In 2012, Mori et al. published the results of wide-angle montaged images of 

SD-OCT in patients with MH and described the mobility of posterior cortical vitreous, using 

the OCT tracking system. The mass and movement of the vitreous represents the potential 

force to act on the retina. Therefore, they proposed that the contribution of dynamic 

forces to the development of idiopathic MH is greater than what has been thought 

previously (70). Work by Gass (3)(42) in 1988 and data provided from OCT of impending 

MH have indicated that the first changes in macular hole formation is an intra-retinal split 

in the macula evolving into an intra-retinal cyst (71). This may lead to disruption of the 

cone-shaped zone of Müller cells that makes out the primary structural support in the 

central and inner part of the fovea centralis (40). 

 

3.3.4 - Classification of Macular Holes 

Gass described the stages of MH formation based on biomicroscopic findings, and this 

traditional staging system is still widely used in the clinics and in the literature. In Stage I, a 

central yellow spot is observed at the foveal center, with loss of the foveal depression 

(Stage Ia), which can be followed by the formation of a ring-shaped yellow reflex (Stage Ib) 

without a full thickness defect. In Stage II, a small FTMH (<400 μm) is formed, usually with 

a visible operculum. In Stage III, the FTMH widens to more than 400 μm in diameter, but 

complete PVD has not yet occurred, whereas Stage IV is the same as Stage III after 

complete vitreous separation from the disk (3).  
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The international study group directed by Duker and colleagues proposed a new anatomic 

classification of vitreo-retinal interface anomalies based on the use of SD-OCT (72). This 

classification defines 3 main conditions: vitreo-macular adhesion (VMA), VMT and MH. 

Vitreo-macular adhesion is not a pathological condition because the fovea is not deformed 

by vitreous traction, and vision is usually not disturbed. Retinal specialists suggest that this 

aspect is the first stage of PVD and occurs commonly after the age of 40 years (73). In 

VMT, the vitreous adhesion causes distortion of the foveal contour with visual impairment. 

This can be sub-classified as focal or large, according to the size of the vitreous adhesion. A 

full-thickness MH is characterized by a macular lesion with interruption of all retinal layers 

extending from the ILM to the RPE. It is subclassified according to the size of the hole 

determined by OCT and by the presence or absence of VMT. In the first case, an MH can 

be classified as small (250 mm), medium (250 to 400 mm), or large (>400 mm). According 

to the state of the vitreous, an MH is classified as with or without VMT.  

Besides of the leading criteria driving the therapeutic approach to MHs, OCT also identified 

important prognostic parameters,  including the presence of an epiretinal membrane or a 

lamellar hole-associated epiretinal proliferation (74)  and the status of the internal or 

external retinal layers (75). 

According to Soon et al (76), there is little difference between 350 μm and 450 μm MH, 

and when planning surgery, 400 μm should not be considered large. According to this 

study, 650 μm is a much better marker to divide medium and large MH, based on their 

results with 90% success in standard FTMH vitrectomy, involving ILM peel and gas 

tamponade on medium MH between 250 and 650 μm. They noted in their study that 

standard surgery for large MH (>650 μm) is less successful, and such techniques as ILM 

flaps and retinal expansion for MH apposition should be considered for this matter (76).  
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4. Surgery 

4.1 - Pars Plana Vitrectomy 

PPV was developed by Robert Machemer in 1970 (77). Machemer created a first closed-

system vitrectomy device with multifunctional 17-gauge cutter called the vitreous infusion 

suction cutter. PPV was a major advance, because for the first time it allowed for the 

removal of vitreous through a closed system, rather than through an open sky technique. 

In 1975, O’Malley and Heintz described the use of a 20-gauge 3 port PPV system (78) and 

this became the gold standard and remained so for at least 3 decades. Over the past 

several years, the development of small incision transconjunctival, sutureless PPV has led 

to a major shift in how many diseases are treated in the operating room.  

The development of new instruments and surgical strategies through the 1970s and 1980s 

was spearheaded by surgeon/engineer Steve Charles (79). More recent advances have 

included smaller and more refined instruments for use in the eye, illumination techniques 

and wide-angle viewing systems that have increased the safety, the effectiveness and the 

repeatability of the surgical maneuvers. 

 

4.2 - Macular hole Surgery   

In a 1991 pilot study by Kelly and Wendel(11), who performed vitrectomy and removal of 

the posterior cortical vitreous to relieve traction over the macula in 52 patients, shedding 

light on PPV as a possible therapy in the treatment of MH. Prior to this, idiopathic MH 

were considered an untreatable condition(11). In 1993, Kelly and Wendel (80) suggested a 

strategy for treating MHs based on a 3-port PPV with removal of the posterior hyaloid and 

apposition of the MH edges, by flattening them with intraocular tamponade in additional 

118 eyes. The goal of the surgery was to relieve all anteroposterior traction in the macular 

region.  

We now know, from randomized clinical trials (RCT), that surgical treatment is indicated 

for FTMH (stages 2, 3 and 4) whereas stage 1 should be handled conservatively as many 

resolve spontaneously (8)(13)(81). At present, surgical management can achieve anatomic 

closure rates better than 90% when surgery is performed with adjuvant therapy such as 
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ILM peeling (Figure 23) (19)(82)(83). Functional outcomes are more difficult to predict, and 

despite the high anatomic closure rates, reading vision remains compromised in 30-40% of 

patients (8). A visual acuity gain of more than 2 lines however can be expected in 60-85% 

of patients (82)(83). The reason for this discrepancy between function and morphology is 

unclear, but studies of closed MH with OCT have reported changes in ORL (sub-foveal 

cysts, photoreceptor defects) as possible explanations of compromised function after 

anatomically successful MH surgery (84)(85). The outcome of MH surgery is thought to 

depend mainly on pre-operative MH size and duration of symptoms, but outcomes have 

also been reported to depend on the used surgical technique (ILM-peeling, Indocianine 

Green staining) (86)(87). Post-operative visual field defects, which previously have been 

attributed to dehydration of the retina during fluid–air exchange, now seems to be a 

complication with low incidence (88). Small asymptomatic paracentral scotoma and 

macular RPE alterations seen postoperatively have been related to intraoperative retinal 

light toxicity and surgery with ILM peeling (89). 

The primary goal of MH surgery is to induce hole closure which is an absolute requirement 

for visual acuity improvement. The rationale for surgical management as originally 

described by Kelly and Wendel (13) is mobilization of hole edges by removing tangential 

and anterior-posterior vitreous traction, activation of marginal glial cells by vitrectomy and 

epiretinal membrane peeling, and finally, immobilization and apposition of hole edges by 

intraocular gas tamponade and face-down positioning. Since the initial report by Kelly and 

Wendel numerous adjuvant surgical techniques focusing on any of these general surgical 

principles have been tried in an attempt to enhance closure rates, but at present no 

convincing evidence exists to support the supposition that any of these improvements will 

result in a better functional outcome. 
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Figure 23 - Circular ILM peel. Brilliant Blue dye.  

 

4.2.1 - ILM Peeling  

The ILM represents the structural boundary between the retina and the vitreous. It is 

formed by the basal lamina of the Müller cells and also by projections from the Müller cells 

footplates. The ILM is translucent and 1.5 μm thick in the peripheral foveal area (39). 

Surgical removal of the ILM in MH surgery was first performed in 1996 in an attempt to 

ensure complete removal of all tangential tractional components (glial cells, macrophages, 

fibrocytes, myofibroblasts) involved in MH formation (90). By removing the ILM, it was 

believed that the scaffold, where upon the cellular proliferation occurred, was removed.  

Despite lack of scientific evidence for its beneficial effects on anatomical and functional 

outcomes, the procedure has been adopted by most vitreoretinal surgeons as a 

supplementary treatment in MH surgery. Eckardt et al in 1997 (14), were one of the first to 

describe ILM peeling, and it was reported to give good results and increase the rate of 

closure for MH. Several publications confirmed the efficacy of ILM peeling in MH surgery. 

According to Lois et al (22), at 1 month postoperatively in patients undergoing ILM peeling, 

closure was achieved in 84% of patients compared to 48% of patients who did not have 

ILM peeling. Park et al (91), also showed in 58 eyes that VPP with ILM peeling was superior 

than vitrectomy alone in closing MH. Schaal et al (92), Mester et al (93), and Brooks (94), 

based on case series, reported better primary anatomic closure rates with ILM peeling. 
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Christensen (8) in a randomized trial comparing outcomes with and without ILM peeling in 

78 patients, concluded that surgery with ILM peeling, is associated to a significantly higher 

closure rate than surgery without ILM peeling (95% versus 45%) (Figures 24 and 25). 

 

While ILM peeling may improve anatomic closure rates, its effect on functional outcomes 

after MH surgery is even more controversial with some case studies reporting loss of 

functional potential after surgery with ILM peeling, as referred by Navarro et al in 2003 

(95) and Abdulla et al in 2004 (87), while others studies have reported visual outcomes to 

be better after ILM peeling. In a large prospective study focusing on the long-term 

outcomes of ILM peeling for MH after at least 12 months, Haritoglou et al described 

promising results (96). The authors reported anatomic closure in 87% of the cases after 1 

year of surgery, closure in 96% of re-operated eyes, and a median best-corrected visual 

acuity improvement from a median of 20/100 pre-operatively to 20/40 postoperatively in 

94% of the cases. As several sources have displayed favorable anatomic and functional 

outcomes with ILM peeling, this technique has become part of the standard of practice for 

vitreoretinal surgeons repairing FTMH. 

 

4.2.2 - Technique  

 ILM peeling has become a more widely accepted procedure since the introduction of vital 

dyes. Because the ILM is poorly visible, its identification is challenging, and its removal 

difficult, even for an experienced vitreoretinal surgeon because of the difficulty in 

distinguishing with confidence, the ILM from the nerve fiber layer. Moreover, incomplete 

ILM removal may cause a failure in MH closure, whereas inadvertent injury to the nerve 

fiber layer may cause paracentral scotomata (96). 

To achieve reproducible, complete, and less traumatic ILM peeling, intraocular vital dyes 

have been introduced to facilitate clear ILM identification. Available materials are usually 

classified as a staining material such as ICG, acid violet or as coating material such as 

triamcinolone acetonide (TA) and blood. However, most clinicians discontinued the use of 

ICG as an intraoperative vital stain because of concerns about toxicity (97). Other vital dyes 

were later introduced to replace ICG: trypan blue and brilliant blue G. This last dye has a 

good safety profile, provides significant anatomical and functional postoperative results, 
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(98) and has the peculiar characteristic of staining the ILM and not the rest of the retina as 

satisfactorily as ICG.  

Following dye injection and wash out, the ILM is grasped directly with forceps and a flap of 

the ILM is created and peeled in a circular motion parallel to the retinal surface, and 

removed or placed over the hole. 

The technique of ILM peel and inverted flap was described by Michalewska et al in 2010 

(20), and was shown to provide superior anatomical and functional outcomes in cases of 

large MH. This involves preserving a flap of the ILM connected to the margin of the 

macular hole and then fulcruming this tissue upside-down from all sides to cover the 

macular defect. Another modification in practice is the use of an ILM hinge, which 

connects the ILM flap to the hole margin, and is then folded and placed into the MH (99). 

Rizzo et al (100), also found in a retrospective study on 620 eyes of 570 patients, that 

vitrectomy, ILM peel and inverted flap technique together are more effective than the 

standard ILM peeling technique, showing better results in large MH and myopic MH. 

According to recent RCT, the inverted ILM flap technique demonstrated higher anatomical 

success rates with a better functional outcome; however, statistically significance 

difference was not achieved (101). Soon et al reported application of ILM peeling for the 

management of large MH (76), and they claim 90% success with standard MH vitrectomy 

involving ILM peel and gas tamponade in medium MH between 250 and 650 μm. Free flap 

ILM is used in patients with persistent MH hole after previous surgery, where a free patch 

of peripheral peeled ILM is placed over or in the MH (102).  

 

Figure 24- Peeled ILM over the hole.  
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Figure 25- Inverted flap of ILM dyed with Brilliant Blue 

 

Intraocular tamponade with gas or silicone oil is performed to facilitate apposition of hole 

edges by providing buoyant forces that push the retina against the underlying RPE. The 

forces are greatest at the apex of the arc of contact, and by sustaining an accurate face-

down position, the maximum vector forces can be directed against the MH. Favorable 

closure rates have been achieved with the use of short-acting gases, such as sulfur 

hexafluoride (SF6) (103)(104)(105), and 2–4 days of prone positioning. 

  

4.2.3 - Retinal Damage  

ILM peeling is now a widely recognized technique used routinely for traction 

maculopathies, but what are the possible complications of this intervention? It is a 

technique that requires additional intraoperative agents, dyes, instruments, and surgical 

time. Few reports to date have shown adverse visual outcomes in patient status after an 

ILM peel, but there has yet to be a large enough randomized control trial assessing side 

effects of ILM removal, and therefore the question remains: Does the ILM have a function 

vital to the integrity of the retina that would render it damage upon ILM removal? If so, 

what type of retinal damage can this surgical technique induce?  

Soon after peeling, the macula assumes a whitish color, frequently with small hemorrhages 

in the area of the denuded macula. This appearance is probably from swelling resulting 

from interruption in the axonal transport of ganglion fibers that run under the ILM. 

Swelling of the arcuate RNFL (106), is followed by a DONFL appearance, which is 
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sometimes visible on fundus examination with blue light a few weeks or months after 

surgery (27). 

On OCT, a notch or dimples in the inner retinal layers may be detectable. These dimples 

probably form in areas where there are Müller cell attachment plaques that are thicker 

and more adherent to the ILM (107). In En face OCT frames, the dimples appear as 

concentric dark spots in the area of the macula, denuded from the ILM (108). 

After ILM peeling and MH closure, the distance between the fovea and the optic disk is 

shortened and the foveal contour appears asymmetrical (109). The displacement of the 

fovea towards the disk thickens the retina on the nasal side and thins the retina on the 

temporal side (110). Thinning on the temporal side is increasingly evident months after 

surgery. (Figure 26) 

RNFL thinning may result from an injury with the subsequent degeneration and apoptosis 

of Müller or ganglion cells. Despite these anatomical changes, the effects on vision are 

uncertain. Some authors have documented the occurrence of paracentral micro-scotoma 

measured with microperimetry in retinas denuded from the ILM (106)(27). This scotoma 

may be deep or multiple, may coexist with good visual acuity, and are usually 

asymptomatic; however, they sometimes may worsen the quality of vision, such as 

reductions in reading speed or contrast sensitivity. The cause of this micro-scotoma may 

be direct trauma to retinal cells induced by forceps and the mechanical stretching of the 

ILM, or they may be caused by secondary degenerative phenomena. ILM peeling could 

induce the degeneration of some arcuate fibers directed toward the optic nerve or 

apoptosis of some Müller cells that lie beneath the area of the peeled retina. Haritoglou 

and co-workers demonstrated that fragments of Müller cell end feet might remain 

attached to the ILM after peeling. This maneuver probably damages a certain percentage 

of these cells (111). 

Furthermore, in most patients who underwent ILM peeling, Tadayoni found absolute 

micro-scotoma, which were not present in patients who did not undergo peeling (23). 
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Fig. 26- (A) preoperative macular hole; (B-D) postoperative temporal thinning of the retinal layers 
respectively after 20 days, 5 months and 2 years.  

 

In conclusion, there are several papers that present results comparing surgery of MH with 

ILM peeling and surgery with no ILM peeling, concluding that peeling was related to higher 

closure rates and less reopening. Focus has been on hole closure, a difficult achievement 

so far. After MH closure, central scotoma disappears and some patients regain visual 

acuity whilst others do not. With recent SD OCT, we can now measure anatomical 

consequences in each macular layer, before and after surgery, and integrity of each 

external cellular layer after hole closure. These variations of integrity may be the cause of 

functional limitations and visual acuity gain.  Also, mf ERG measured before and after 

surgery may give results on visual function. In this thesis, we try to relate all these results 

with surgical technique, duration of symptoms before surgery and final visual acuity.   
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5. Materials and Methods 

5.1 - Population 

Enrollment was conducted between January 2015 and December 2017. During this period, 

72 patients were referred to the Department of Ophthalmology of Hospital Santa Maria. 

Patients were examined to confirm the diagnosis of FTMH and, after inclusion and 

exclusion criteria were verified, were scheduled for MH surgery. 

5.1.1 - Inclusion criteria 

1. MH stage 2 or higher 

2. Male or female aged 18 years or older 

3. Visual symptoms due to MH  

4. Intraocular pressure 21 mmHg 

5. Signed informed consent form 

 

5.1.2 - Exclusion criteria: 

1. Epiretinal fibrosis 

2. Systemic disease affecting retinal function 

3. Axial length greater than 26.0 mm 

4. Ocular disorders in the studied eye that may confound interpretation of study 

results (glaucoma, retinal detachment, optic nerve disease) 

The tenets of the Declaration of Helsinki were followed. All patients provided written 

informed consent to the surgical and study procedures. Approval was obtained from the 

Ethics Committee of Hospital Santa Maria.  

The study was registered in the clinicaltrials.gov database (NCT03799575: Internal Limiting 

Membrane and Macular Hole). 

 



34 

5.2 - Interventions 

All patients were treated equally, by a retina surgeon of the ophthalmic department of 

CHLN-Hospital Santa Maria, following same surgical protocol: 23 or 25 G PPV, separation of 

posterior vitreous cortex with triamcinolone acetonide, brilliant blue assisted ILM peeling, 

15% SF6 gas tamponade and face down position.  

A careful examination of the retinal periphery was then performed with indentation, and 

any iatrogenic retinal breaks found were treated by laser. 

Preoperative examinations were performed the day before MH surgery, and follow-up was 

scheduled at 3, 6, and 12 months after MH surgery. All patient contacts included a 

standard ophthalmologic evaluation of anterior segment, applanation tonometry and 

fundus observation. 

Functional outcomes assessment was through BCVA and mf ERG. BCVA was performed 

using Snellen Chart and converted to log Mar for statistical analysis, before and after 

surgery at 3, 6 and 12 months. Hand motion was considered as logMAR 3.0 and counting 

fingers as logMAR 2.0. Metamorphosia, other visual symptoms and patient quality of life 

were also recorded. 

Subjects were stratified by, age, sex, MH staging, lens status, surgical details (ILM 

dissection technique if present, total excision, inverted flap, fovea sparing) 

Multifocal ERG was recorded pre-operatively and at 12 months after surgery. RETIscan 

Multifocal ERG (Version 6.12.5.12; Roland Consult) was used for mf ERG recording. In the 

present study, we focused on amplitude and latency of N1 and P1, before and after 

surgery 

Morphological outcomes were assessed by OCT, before and after surgery. All MH were 

staged based on the recent OCT based classification, and only full-thickness MH of grade 

2–4 were considered for the study. The minimum diameter of the MH was assessed in all 

cases. Retinal sectional images were acquired using Spectralis SD-OCT (Heidelberg 

Engineering, Heidelberg, Germany), using eye-tracking software for posterior pole images 

centered on the fovea (61 acquisitions, 120-μm intervals). Evaluations were performed at 

baseline, and 1, 3, and 6 months after surgery. The presumed foveal center was identified 
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as mid-distance of the nearest MH borders. The edge of RPE or the sclera in eyes with 

peripapillary atrophy was the disk margin. The papillo-foveal distance was manually 

measured with software calipers as the distance from the foveal center to the disc margin.  

All thickness measurements were made automatically by SD-OCT auto-segmentation 

software before and after surgery. Reference data ensured that each measurement was at 

the same segmentation location irrespective of the layer analyzed. In cases of automatic 

layer misalignment, manual alignment was possible by SD-OCT software before automatic 

measurements. In order to limit measurement bias associated with MH-associated retinal 

derangement, we used nasal and temporal grids of retinal areas ≤1.750 μm away from the 

fovea for calculations and comparisons. Also, integrity of ORL, ELM and EZ were evaluated 

in OCT and compared with ILM position over the hole during surgery. 

ILM Peeling were performed in every MH surgery and inverted flap was performed in large 

MH. Whenever possible, two samples of ILM per patient were collected and harvested for 

laboratory analysis. One of the samples was immediately fixed and submitted to Optic 

Microscopy (OM) and Transmission Electron Microscopy (TEM) analysis, and another 

sample was kept in enriched medium 199 (Gibco) for 20 minutes at room temperature, 

after which it was also fixed and submitted to OM and TEM analysis.  

Both samples from same patient followed the protocol: 

dx.doi.org/10.17504/protocols.io.qjiduke 

Regions of interest in both conditions, immediately fixed and kept in enriched medium 199 

(Gibco) for 20 minutes, were screened in a Hitachi H-7650 transmission electron 

microscope at 100kV acceleration.  

 

All the results found in this study are in next Chapters. 

http://dx.doi.org/10.17504/protocols.io.qjiduke
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CHAPTER 2 

 

 

Tomographic Structural Changes of Retinal Layers After Internal Limiting 

Membrane Peeling for Macular Hole Surgery 

Mun Faria, Nuno Ferreira, Diana Cristóvao, Sofia Mano, David Sousa, Manuel Monteiro-

Grillo 

Ophthalmic Research, 2018, DOI: 10.1159/000480243  

 

Internal Retinal Layer Thickness and Macular Migration After Internal Limiting 

Membrane Peeling in Macular Hole Surgery 

Mun Faria, Nuno Ferreira, Sofia Mano, Diana Cristóvao, David Sousa, Manuel Monteiro-

Grillo 

Eur J Ophthalmol 2018; 00 (00): 000-000 DOI: 10.5301/ejo.5001066 
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In this chapter we studied OCT data of MH before and after surgery to determine 

alterations in anatomy. 

Aim: To determine tomographic structural changes of retinal layers after ILM in MH 

surgery. 

Methods: 

36 eyes of 32 patients, were subjected to 23 or 25 G pars plana vitrectomy and 3,5 mm 

diameter ILM peeling for MH.  

Retinal cross-sectional images were acquired using spectral-domain OCT, using the eye-

tracking feature with software posterior pole images centered on the fovea, before and 

after surgery at 1, 3, 6 and 12 months. Thickness of IRL and ORL were assessed, at 1750 

m from fovea, roughly the diameter of ILM peel at MH surgery. Each macular layer was 

also evaluated before and after surgery and distance from papilla to fovea before and after 

closed MH were measured. 

Mun Faria contributed to Research Design, Data Interpretation, Manuscript Preparation, 

Conceptualization and Investigation. Nuno Ferreira was involved in Validation and Review, 

Diana Cristóvão contributed to Data Interpretation, Sofia Mano contributed in Resources, 

David Sousa was involved in Methodology, Review, and Editing. Manuel Monteiro Grillo 

contributed to Manuscript Preparation, Review and Editing. All authors read and approved 

the final manuscript. 

The results of this study allowed the following peer reviewed publication: 
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Paper 1- Tomographic Structural Changes of Retinal Layers After Internal Limiting Membrane 

Peeling for Macular Hole Surgery Ophthalmic Research, October 2017, DOI: 

10.1159/000480243. 
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Paper 2- Internal retinal layer thickness and macular migration after internal limiting 

membrane peeling in macular hole surgery. Eur J Ophthalmol 2017; 00 (00): 000-000 DOI: 

10.5301/ejo.5001066. 
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CHAPTER 3 

 

 

Multifocal Electroretinography in Assessment of Macular Function after  

Internal Limiting Membrane Peeling in Macular Hole Surgery 

 

Mun Faria, David Sousa, Sofia Mano, Raquel Marques, Nuno Ferreira, Ana Fonseca. 

Journal of Ophthalmology, 2019 doi.org/10.1155/2019/1939523  
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In this chapter we studied macular function, by means of multifocal electroretinography, 

to determine the type of alterations after ILM peeling in a closed MH. 

Aim: The purpose of this prospective study was to characterize macular function by means 

of multifocal electroretinography (mf ERG), before and after surgery. We try to relate 

integrity of inner and outer macular layers with functional results measured by mf ERG. 

Methods: 

Nonrandomized prospective study of 33 consecutive eyes of 33 patients with MH, who 

underwent vitrectomy with ILM peeling. BCVA and integrity of external layers were 

measured with OCT. RETIscan mf ERG, was used for mf ERG recording. Each component of 

multifocal electroretinography, N1 and P1 amplitude and latency, were measured. Mean 

follow-up time was at least 12 months after surgery. 

Mun Faria contributed to Research Design, Data Interpretation, Manuscript Preparation 

Conceptualization and Investigation. David Sousa was involved in Methodology, Review, 

and Editing. Sofia Mano contributed in Resources, Raquel Marques contributed to 

Statistical Analysis, Nuno Ferreira was involved in Validation and Review, Ana Fonseca 

contributed to Manuscript Preparation, Review and Editing. All authors read and approved 

the final manuscript. 

 

The results of this study allowed the following peer reviewed publication: 
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Paper 3- Multifocal Electroretinography in Assessment of Macular Function after Internal 

Limiting Membrane Peeling in Macular Hole Surgery. Journal of Ophthalmology, Volume 

2019, Article ID 1939523, 7 pages https://doi.org/10.1155/2019/1939523  

https://doi.org/10.1155/2019/1939523
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CHAPTER 4 

 

 

Inverted Internal Limiting Membrane Flap Techniques and Outer Retinal Layer 

Structures 

Mun Faria, Helena Proença, Nuno Ferreira, David Sousa, Eliana Neto, Carlos Marques-

Neves. 

Retina, 2019, doi: 10.1097/IAE.0000000000002607. 
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ILM peeling and Inverted Flap MH surgery is a technique to treat large MH. Peeled ILM may 

be inverted until hole border and placed over the hole or placed into the hole. The two 

techniques differed mostly in how the peeled ILM flap is positioned over the hole and we 

relate that position with integrity of outer retina layers after MH closure.  

  

Aim: To examine the influence of the position of peeled and inverted ILM in outer retinal 

layers of a surgically closed MH. Also, relation of integrity of each of the outer retinal layers, 

ELM and EZ and duration of symptoms before surgery. 

 

Patients and Methods 

Setting and patients 

62 eyes of 58 patients with large MH, with hole diameter superior to 400m, underwent 

surgery at the Department of Ophthalmology of Hospital de Santa Maria, Lisbon, Portugal. 

Only closed MH were included, with a minimum follow-up of 12 months. Twenty-four eyes 

had ILM inserted in macular hole (10 intentionally inserted and 14 due to misdirection of 

the ILM flap with fluid-air exchange) and thirty eight eyes had ILM covering MH. The two 

groups were compared with BCVA and OCT before and after surgery. 

Optical coherence tomography 

Retinal images were acquired using Spectralis SD-OCT (Heidelberg Engineering, 

Heidelberg, Germany). The status of the foveal EZ and ELM were examined for each eye 

after successful surgery, to test their integrity, intact or disrupted.  

Mun Faria contributed to Research Design, Data Interpretation, Manuscript Preparation 

Conceptualization and Investigation. David Sousa was involved in Methodology, Review, 

and Editing. Helena Proença contributed in Review and Editing. Eliana Neto was 

responsible for Investigation. Nuno Ferreira was involved in Validation, Review, and 

Editing. Carlos Marques Neves contributed with Editing and Review. All authors read and 

approved the final manuscript. 

The results of this study allowed the following peer reviewed publication: 
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Paper 4 - Paper Inverted Internal Limiting Membrane Flap Techniques and Outer Retinal 

Layer Structures. Faria MY, Proença H, Ferreira NG, Sousa DC, Neto E, Marques-Neves C. 

Retina. 2019 Jun 21. doi: 10.1097/IAE.0000000000002607. [Epub ahead of print] 

PMID: 31259810 
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CHAPTER 5 

 

 

Morphology of Internal Limiting Membrane Peeled on Macular Hole Surgery 

Mun Faria, David Sousa, Bruna Almeida, Andreia Pinto, Nuno Ferreira 

Journal of Ophthalmology, 2019, doi.org/10.1155/2019/1345683 
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In this chapter we tried to study the Morphology of ILM Peeled on MH Surgery, in ILM 

pieces collected during surgery and studied by OM and TEM. 

Aim: This work aims to describe ultrastructure and behavior of ILM peeled in macular hole 

(MH) surgery. 

 

Patients and Methods: 

Seven patients with stage four MH were submitted to a standard surgical procedure. The 

surgery consisted of a 23-gauge, three-port PPV and ILM peeling.  ILM is peeled in a 

rosette way around macula, trimmed until the border of hole, but one large flap is left, big 

enough to invert over the MH. Two other samples of ILM, per patient, were also collected, 

elsewhere in macular area, and harvested for laboratory analysis. 

Laboratory Analysis 

Of the two samples of ILM per patient that were harvested, one was immediately fixed and 

submitted to Optic Microscopy (OM) and Transmission Electron Microscopy (TEM) 

analysis, and another sample was incubated in enriched medium 199 (Gibco) for 20 

minutes at room temperature, after which it was also fixed and submitted to OM and TEM 

analysis. The Electron Microscopy protocol for ILM, are: 

1 If the samples were incubated in enriched medium upon harvest, let them rest at room 
temperature for 30-40min, then, remove the medium and replace it with EM fixative. 
[If the samples need to be immediately fixed go directly to step 2]  
 
2 Fix samples for at least 1h in 2% formaldehyde and 0,2% glutaraldehyde in 0,1M 
phosphate buffer (0,1M PB) balanced with 8% sucrose at 4ºC; 
  
3 Wash 2 x 5min in 0,1M PB (8% sucrose) buffer at 4ºC; 
 
4 Embed fragments in 1% agarose in PBS; once the agarose is set, slice a small cube around 
your sample. [this step reduces sample lost along the protocol] 
 
5 Wash 2 x 5min in 0,1M PB (8% sucrose) buffer at 4ºC; 
 
6 Post-fix in Osmium tetroxide 1% in 0,1M PB (8% sucrose) buffer, 1h with agitation on ice; 
 
7 Wash 3 x 5min in distilled water, with agitation, room temperature (R.T.) (if necessary 
leave O.N); 
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8 Post-fix and counter-stain with Uranyl Acetate 1% in distilled water, 30min, protect from 
light, with agitation, R.T; 
 
9 Wash 2x5min in distilled water, agitation, R.T; 
 
10 Dehydrate 2x5min in 50% EtOH, agitation, R.T; 
 
11 Dehydrate 2x5min in 70% EtOH, agitation, R.T; 
 
12 Dehydrate 2x5min in 96% EtOH, agitation, R.T; 
 
13 Dehydrate 2x10min in 100% dry EtOH, agitation, R.T; 
 
14 Prepare the samples with 2 changes of Propylene Oxide for 15min each, with agitation, 
R.T.; 
 
15 Pre-impregnate with a mixture of 1:1 propylene oxide and EPON Resin (hard) 1h at R.T 
with agitation 
 
16 Impregnation with EPON resin (hard) O.N. at 4ºC with agitation; 
 
17 Inclusion in silicon moulds, 48h at 60ºC. 
 

Mun Faria contributed to Research Design, Data interpretation and Manuscript 

preparation. David Sousa was involved in Methodology, Review, and Editing. Bruna 

Almeida contributed to Resources. Andreia Pinto was responsible for Histology and ILM 

samples Preparations, Selections and Interpretation. Nuno Ferreira was involved in 

Validation, Review, and Editing.  All authors read and approved the final manuscript. 

The results of this study allowed the following peer reviewed publication: 
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Paper 5- Morphology of Internal Limiting Membrane Peeled on Macular Hole Surgery. 

Journal of Ophthalmology, Volume 2019, Article ID 1345683, 6 pages 

https://doi.org/10.1155/2019/1345683  
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CHAPTER 6 

Global Discussion and Concluding Remarks 
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1. Global Discussion  

Since the introduction of PPV for closure of FTMH by Kelly and Wendel in 1991, there have 

been several refinements in this surgical technique, aimed at improving anatomical and 

functional outcomes after surgery (3)(13). One of these was the use ILM peeling, first 

described by Eckardt (14), and has been reported to significantly improve the rate of 

anatomical closure (18). ILM peeling releases the tangential traction of the residual 

prefoveal vitreous after PVD and removes the traction of the epiretinal cellular 

constituents adjacent to the MH. These two factors should alter the mobility of the MH 

edge (40) and allow better closure. Also, ILM peeling is a major trauma that tears the 

footplates of Muller cells. This incites the contraction of glial cells that proliferate following 

the MH surgery with ILM peeling. The balance between glial cell proliferation and 

centripetal displacements of the photoreceptors determines the successful restoration of 

foveal integrity (112)(113)(114).  

In the last 10 years, ILM peeling during surgery for an MH has become a routine step and is 

performed by most surgeons. However, removing the ILM during surgery might have 

adverse consequences, due to loss of its structural role or secondary collateral nerve fiber 

layer loss during removal, and thus may be detrimental to the retina (8).  

In paper 1 and 2 we concluded that at 6 months after MH surgery with ILM peeling, 

analysis of macular layers´ thickness revealed thinning of RNFL-GCL-IPL complex, in both 

the nasal and temporal side of the macula. This complex consists of three layers, RNFL, 

made of axons of ganglion cells, GCL, containing the bodies of ganglion cells, and IPL, made 

of dendrites of ganglion cells.  All these three layers appear decreased in this study, both 

nasal and temporal to fovea, and this seems to be an indicator of ganglion cell damage, as 

these cells are concentrated at the macula and are most sensitive to ischemic changes 

(115)(116). 

In this work, Outer Retinal thickening was found on both nasal and temporal sides of the 

fovea. The outer retina consists of ELM, ellipsoid zone, and RPE. ELM is the first membrane 

to restore continuity after MH closure (117). Only afterwards, displacement and 

restoration of the outer portion of photoreceptors begins, with determination of 

continuity in the ellipsoid zone, which seems to explain the ORL thickening we found in this 



94 

study(84). Hasimoto et al (118) also came to same conclusion, that the thickening of ORL 

may be related to progressively restoration of outermost retinal layers, ELM and EZ.  This 

ORL thickening may be one explanation for ELM realignment and photoreceptor 

restoration as part of MH closure and vision restoration. 

Also, in our study, we found an asymmetric parafoveal retinal thickness in eyes with closed 

MH, with increased total nasal and decreased total temporal thickness, associated to nasal 

displacement of the fovea. It seems that after removal of rigid preoperative ILM, there are 

biomechanical retinal forces that displace the fovea, resulting in stretching and thinning of 

retinal parenchyma in the temporal subfield, as seen by other authors (119)(120), and 

thickening of the nasal macula.  

In the present study, we found that increased nasal thickness was dependent on the 

medial part of IRL. This layer includes deeper regions of IPL, INL, OPL, and inner segments 

of photoreceptors. Although Modi et al (120) only refers to increased thickness of INL,  in 

our study, both INL and OPL layers seem to be thickened after ILM peeling. INL contains 

mainly horizontal, bipolar, and glial cells, which seem to be the most altered and 

thickened, because of stretching. The OPL is the area in which photoreceptors 

communicate with the horizontal cells and bipolar cells, and we speculate that this is of 

major importance in the recovery of disrupted photoreceptors.  

In other vitreomacular traction syndromes, such as epiretinal membrane (121)(122), the 

middle part of the inner retinal layer structure is important for visual recovery and 

metamorphopsia improvement and we propose that in MH surgery with ILM peeling,  

thickening of middle part of IRL should be important in macular closure, eventually 

inducing glial proliferation and anatomical restructuring of photoreceptor outer segment.  

Thickening of the middle part of IRL after closure of MH may also be associated to fovea 

displacement. In cases of spontaneous closure of MH there is no foveal displacement 

(123), so we can infer that ILM peeling is the cause of macular displacement. The ILM is 

attached to the optic disc and after peeling there is a rebalance of tractional forces and 

nasal shift of the closed MH. The reason for displacement of the denuded and elastic 

retinal tissue after the removal of rigid preoperative ILM is yet to be established. Ishida et 

al (119)  suggested neural contraction excited by ILM peeling. Thickening of the nasal 
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medial part of IRL, especially INL and OPL, may be a cause or a consequence of this nasal 

shift. 

Temporal macula thinning was also reported by several authors. RNFL is thinner at the 

temporal area than at the nasal area and exposure to Brilliant Blue dye may be a factor to 

take into consideration. Traumatic temporal grasping could also be an explanation. Nukada 

et al (124) and  Ohta et al (110) also reported deeper retinal structural damage more 

frequently in the temporal macula, resulting in marked atrophy in MH surgery.  

The purpose of the third study was to characterize macular function by means of 

multifocal ERG, before and after MH surgery.  

Each component of mf ERG, N1 and P1 amplitude and latency, were measured, before and 

after surgery. Also, we tried to relate each of the studied components with ILM peeling, 

MH closure and integrity of outer nuclear layers.  

Multifocal electroretinography (mf ERG) assesses visual function providing a topographic 

map of local retinal electrophysiological activity in central retina (125). after MH closure. 

Our results revealed a reduced thickness of internal macular layers, especially GCL (126), 

measured at 3 mm diameter centered on the fovea, roughly the degree reached by the 

second ring in mf ERG.  

It has generally been thought that outer retina integrity after MH surgery is associated to 

visual recovery (127). Although the N1 amplitude was reduced in the presence of MH, the 

66% increase of its amplitude after ILM peeling, hole closure and realignment of 

photoreceptors, confirms that the N1 amplitude was related to and generated from the 

outer retina. 

In this study, we showed that the visual acuity of patients improved after MH surgery. The 

mechanism by which visual function improves after surgery is not clearly understood. The 

centripetal movement of the previously displaced photoreceptors to its original site as 

proven by OCT images may be the simplest explanation (128). However, even with 

integrity in photoreceptor lines, vision improvement is limited. BCVA increased in both the 

intact and disrupted groups. Even though clinically the results are better in the intact 

group, there is a large variability, which may have prevented a higher statistical 

significance in this group. 
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Besides the low recovery of P1, there was also a delay of implicit time.  After ILM peeling 

and closure of MH, implicit time of P1 wave in ring 1 maintained a delay compared to 

normative data (129). The delay may be related to surgical aggression of ILM peeling, or 

even ischemia in the macular area (130). Implicit time was delayed before surgery and 

never recovered, even after closure and visual recovery (131). Andréasson and Ghosh(132) 

already referred  to a very slow cone function recovery even after successful anatomical 

healing. 

Hood et al (125) have suggested that multifocal ERG value might be affected by numerous 

factors that cannot be detected and controlled. In our study, P1 in ring 1 increased both in 

the intact and disrupted groups, with no statistical differences, suggesting a loss of 

interaction with ORL. Thus, we suspect that ILM peeling may damage inner retinal layers 

and Muller cell function which, and might have some negative effect on P1 wave of 

multifocal ERG and visual acuity.  

In the fourth paper, we tried to relate final position of peeled ILM over the MH and the 

integrity of outer nuclear layers. Large MH are difficult to close and the flap technique 

reported by Michalewska et al (20) allowed good rate of hole closure. According to OCT 

images  by this author and other authors such as  Kuriyama et al in 2013 (133) and Iwasaki 

et al in 2018 (134), the inverted ILM flap covering of the MH was important for hole 

closure. A difficulty in this technique was that the ILM flap could detach during fluid-air 

exchange.  The intentional anchoring of ILM flap to hole border to avoid flip back, or even 

spontaneous relocation of ILM flap deep in MH after surgery, in post-operative face down 

position, results in MH closure. In fact, some surgeons intentionally gently tuck the flap 

into the MH to secure the free end under the hole edge during fluid-air exchange, like 

Casini in 2017 (135). This insert or tuck in technique was also described by other authors, 

such as Rizzo et al in 2018 (100), who also found, in a retrospective study on 620 eyes of 

570 patients, that vitrectomy, ILM peeling and inverted flap technique are more effective 

than the standard ILM peeling technique. These authors peeled the ILM and anchored the 

ILM flap into the hole. However, in these situations, ILM flap reach the bottom of the hole, 

the hole closes, but the flap may become an obstacle to natural MH closure and/or 

functional recovery of outer retina. 
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If the flap is placed over the hole, even with the best surgical technique, the inverted ILM 

may 1) flip back during fluid-air exchange, even if initially in proper position, which may 

result in surgical failure; 2) dip into the hole and become in contact with the inner lining of 

the hole or 3) stay over the hole on the intended position. 

If the inverted ILM stays over the hole on the intended position, it allows a dry closed hole 

provided by fluid air exchange, allowing realignment of retinal layers, as shown by our 

results, and supported by the results obtained by Shin et al in 2014 (136). These authors 

avoided packing the MH with the folded ILM, resulting in a multilayered membrane, as 

observed in OCT, and used perfluorocarbon to guarantee a single layered ILM to provide a 

more regular structure for glial proliferation and aid in regeneration of ORL in closing the 

MH. Park et al in 2019 (137), also compared the ILM insertion technique with the inverted 

flap technique and concluded that both techniques were effective in closing large MH, 

although the inverted flap was superior in recovery of photoreceptors layers and better 

postoperative visual acuity. 

In our study, we peeled about 3mm of the ILM around the hole, trimmed until the border 

with care taken to leave one piece of ILM inverted over the hole. One of the surgeons 

intentionally placed the ILM flap into the hole. All others tried to place the inverted ILM 

free, and maintained an inverted position in MH surgery.  Even with all the precautions, 14 

eyes of this over the hole technique, resulted in ILM tuck into the hole, preventing the 

realignment of photoreceptors in a closed MH. The eyes with inverted flap and one layer 

of ILM completely covering the hole achieved a closed space and ELM and EZ restored 

after 12 months. Based on these results, it seems that ILM anchored in the hole allows 

hole closure but prevents centripetal movement of photoreceptors, therefore inhibiting 

realignment of MLE and EZ, either by obstruction or excessive gliosis. Hu et al in 2018 

(138) reported that OCT after the inverted ILM flap technique revealed foveal hyper-

reflective lesions suggestive of excessive gliosis in the fovea. In our study, foveal hyper-

reflective lesions were also apparent after ILM inserted in the hole, and the ELM and EZ at 

this site were disrupted. Should it result in scar formation, this may limit the recovery of 

ELM and the ellipsoid zone.  

When the hole is covered with the ILM flap, there may be glial activation with Muller cell 

gliosis associated to bridging the gap between the edges of the retinal hole, confirmed 



98 

with studies by Frangieh in 2005 (139) and Yamana in 2000 (140). Shiode et al in 2017 

(141), in the studies of idiopathic MH, have fund that the migration and gliosis of Muller 

cells are induced in environments where ILM acts as a scaffold surrounded by a dried 

environment rather than being surrounded by vitreous fluid, that may result in non-closure 

of MH, even if ILM is in position. Other authors, such as Boninska et al in 2018 (142), refer 

that in cases where only a thin ILM-flap was noted over the MH after surgery, regeneration 

of retinal tissue starting from the external limiting membrane was followed by restoration 

of the EZ layer. 

In conclusion, our results show that the ELM and the EZ recovery rates after ILM flap with 

ILM covering MH were higher than those obtained using the ILM peeled and inserted in 

the hole.  Also, in this paper, we found that the duration of symptoms of MH seems to 

have a role in the realignment of ELM in the Cover group, with no effect on outcomes in 

the case of inserted cases, as shown by our results. These results are consistent with 

Preferred Practice Pattern (PPP) of Idiopathic MH by American Academy of 

Ophthalmology, (edition 2017) in which patients with duration of symptoms fewer than 6 

months may achieve better closure rates. Also, these results are consistent with a recent 

systematic review and large meta-analysis of 5480 eyes, by Rahimy and McCannell who 

concluded that ILM peeling at the time of surgery significantly reduces the likelihood of the 

hole reopening (143) and  a recent Idiopathic MH Preferred Practice Pattern (144) 

published in September 2019, in which approximately 90% of recent MH that are <400 μm 

diameter can be closed with vitrectomy surgery.  

Besides studying anatomical and functional changes, in the fifth paper, we also analyzed 

peeled ILM in seven patients, using light and transmission electron microscopy.  

During surgery, after ILM peeling around the hole and trimming of excess tissue, a piece of 

ILM big enough to cover the hole is placed inverted over the hole. Two other samples of 

ILM, per patient, were also collected, elsewhere in macular area, and harvested for 

laboratory analysis. 

Some ILM samples were stained with anti-Glial Fibrilliary Acidic Protein (anti-GFAP) 

antibody and the majority of cells found were positive for this protein. GFAP is the 

hallmark protein in astrocytes (145), a main type of glial cells in the central nervous 
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system. We also analyzed the area of collagen in percentage (values in % μm2) on ILM 

samples fixed upon collection or after culture for 20 min in enriched medium. This culture 

period led to a significative increase in collagen in ILM. 

ILM peeling and flap is widely accepted as a safe surgical technique with high success 

rates, in large MH closure. Also, in cases of refractory MH, the autologous transplantation 

of ILM allowed for an improved anatomical outcome of these MH (146). The peeled ILM, 

transplanted or inverted, contains Muller cell fragments that can induce gliosis on the 

retina and on the surface of ILM. The MH closes, eventually because ILM merges with 

structures at the hole borders, and we speculate that the creation of this closed space may 

activate growth factors that induce cell realignment. In our study we found a merging 

tendency of ILM pieces when kept in enriched media, in six of seven patients, 

accompanied by collagen fibers and fibrosis, as observed by TEM analysis. Yokota et al 

(147) described newly synthesized collagen fibers in an ultrastructure study of peeled ILM 

after vitrectomy for myopic traction maculopathy. Schumann also found newly formed 

collagen at vitreal side of the removed ILM from failure MH surgery in 2008 (36). We 

suggest that this fibrosis may actually happen in the ILM vitreous side of our ILM sample, 

with the flap technique, allowing hole closure, either because the vitreous side of the ILM 

has epiretinal cells, or because of the presence of collagen fibers from the vitreous cavity.  

In summary, we suggest in this paper that the epiretinal cells present in the ILM vitreous 

side may be important in the sealing process of MH surgery. Results of this study are 

suggestive of the fibrotic activity between the two sealed ILM sides creating a closed space 

which restricts the diffusion of various cell growth factors, allowing high local 

concentrations of these factors, which facilitates restructuring of the MH. However, this 

can only occur once the mechanical forces, antero-posterior and tangential, have been 

relieved by surgery.  
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2. Concluding Remarks  

The purpose of the present thesis was to examine anatomical and functional effects of ILM 

peeling in MH surgery. 

We conducted a clinical study and 12 months of follow-up to examine morphological and 

functional outcomes after MH surgery with ILM peeling, intraocular gas and face down 

position. Morphologic and functional outcomes were assessed after surgery. ILM samples 

obtained during surgery were analyzed.  

The hypotheses which established the rationale for conducting the study were verified 

through the following findings:  

1-Surgery for MH with ILM peeling was found to induce nasal thickening and temporal 

thinning of internal macular layers. Nasal thickening was mainly due to middle part of 

internal retinal layer. ORL increased in every side, nasal and temporal, of closed MH. 

2- Surgery for MH with ILM peeling not only induced nasal and temporal, RNFL-GCL-IPL 

complex thinning, but also nasal displacement of the closed hole. 

3- After macular closure, ORL, ELM and EZ were intact or disrupted. The improvement of 

mean visual acuity and electrophysiological parameters were dependent on integrity of 

photoreceptor layers. N1 wave increase in intact photoreceptor was superior than in 

disrupted photoreceptor group,  

4- Final visual outcome after closure of MH was highly correlated to foveal photoreceptor 

layer Integrity. We found that this integrity was dependent on how ILM flap was placed 

over the hole. If ILM covered the hole during all post-operative time, there could be some 

integrity of the foveal photoreceptor layer. In cases where ILM flap were inserted in the 

hole, there seem to be an obstacle to realignment and discontinuity of the foveal 

photoreceptor layer was present in every patient. 

5-The duration of symptoms of MH before surgery seems to have a role in the realignment 

of ELM in the Cover group, with realignment of ELM being superior when the evolution 

time was less than 6 months. 
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6- Results of light and transmission electron microscopy of ILM samples showed formation 

of microfibrils between adjacent sides of ILM. This finding may explain adherence of ILM 

flaps to the hole border, allowing better closure of the hole in this type of MH surgery. 

Also, ILM samples were stained with anti-GFAP antibody (anti-glial fibrillary acidic protein) 

and the cells found in peeled ILM were positive for this protein.  

Taken together, our results showed that MH surgery with ILM peeling is associated to 

important anatomical and functional consequences. 

In eyes with successful MH surgery there is disappearance of central scotoma and 

improvement of visual acuity. Morphological studies of closed MH with OCT, detected 

thickness effects on postoperative macular structure. The thinning of Internal layers did 

not seem to interfere with BCVA, and the thickening of external layers could be related to 

reconstruction of the foveal ELM. 

Integrity and changes of the central photoreceptor layer matrix, ELM, EZ and RPE, 12 

months after surgical closure may predict the likelihood of an eye regaining reading vision 

after 12 months, shown in electrophysiological studies. The limited recovery in mf ERG 

suggests an alteration of retinal physiology that could explain limited vision recovery. 

There is improvement in vision recovery if there is realignment of photoreceptors, integrity 

of ORL. 

In addition, we found that pos-operative integrity of foveal photoreceptor layer, ELM and 

EZ was also dependent on how a peeled ILM is placed over the hole or into the hole during 

surgery. The more intact this structure was on OCT 12 months after, the better the visual 

acuity. Every effort should be made in order to maintain an inverted flap on top of the 

retina, covering the hole, since this may facilitate the reconstruction of the ORL structures 

after MH surgery. Nevertheless, even in surgeries where the ILM is carefully placed over 

the hole, after the inverted flap technique, fluid-air exchange, intraocular gas and 

facedown position, the flap position may be difficult to control and may be driven into the 

hole. 

Also, the realignment of ELM was superior when the duration of symptoms were less than 

6 months compared with over 12 months at both one month and 12 months assessment. 
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These results suggest that these patients should undergo surgery as soon as possible, in 

order to achieve the best possible outcomes. 

ILM is very thin and transparent. But we managed to dye, peel, invert over the MH, and 

also peel two other pieces big enough for analysis. The ultrastructure studies of these ILM 

pieces in Electron Microscopy allowed us to identify cells and also, in certain conditions, 

collagen microfibrils in adjacent vitreal faces in contact.  

Few studies have provided evidence of collagen microfibrils between ILM vitreal faces in 

contact. In this thesis, electron microscopic analysis provided significant images of collagen 

that could contribute to understand the fusion potential between two ILM faces in contact 

and closure of MH. 

Further studies are needed on the effects of ILM peeling in eyes particularly susceptible to 

mechanical and metabolic damage. Eyes suffering from glaucoma, diabetes, macular 

degeneration, high myopia, and so on, might be more susceptible to trauma from ILM 

peeling. These eyes could suffer additional injury from macular surgery that could impair 

the planned visual recovery. Also, there are still disputes regarding the safety of vital dyes 

used to allow visualization of ILM and further studies are necessary to validate their use in 

MH surgery.  

Therefore, a more accurate analysis using retinal imaging methods and functional tests 

might help us to understand and distinguish in which cases ILM peeling can be useful and 

in which cases it can be dangerous. It would be desirable to develop increasingly precise 

and minimally traumatic techniques to permit removal of the ILM with the least impact 

possible on Muller cells. Surgeons should be aware that it is necessary to limit ILM peeling 

in eyes with concurrent diseases and to learn to limit the extent of this maneuver, especially 

in retinal areas more prone to mechanical trauma such as the temporal side of the macula.  

An interesting concept currently being studied is the possible role of intraoperative OCT in 

ILM dissection, which would suggest performing ILM peeling only when ILM pathological 

thickening is present, especially if associated with the presence of an epiretinal membrane 

(148). Also, timing of surgery, and position of peeled ILM during surgery affects 

photoreceptor integrity and, ultimately, BCVA, and should be carefully considered prior to 

surgery. 
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Lastly, research with the newly  introduction of OCT angiography (OCTA) (149)(150), a 

relatively new, dye-less, depth-resolved technique that allows the visualization of retinal 

microvasculature by detecting intravascular blood flow, could be used to noninvasively 

investigate retinal capillary networks and foveal avascular zone changes in patients who 

underwent macular surgery. 
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