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Abstract 

Land Use and Cover Change (LUCC) occurs as a consequence of both natural and human 

activities, causing impacts on biophysical and agricultural resources. In enlarged urban 

regions, the major changes are those that occur from agriculture to urban uses. Urban uses 

compete with rural ones due among others, to population growth and housing demand. This 

competition and the rapid nature of change can lead to fragmented and scattered land use 

development generating new challenges, for example, concerning food security, soil and 

biodiversity preservation, among others. 

Landowners play a key role in LUCC. In peri-urban contexts, three interrelated key actors 

are pre-eminent in LUCC complex process: 1) investors or developers, who are waiting to take 

advantage of urban development to obtain the highest profit margin. They rely on population 

growth, housing demand and spatial planning strategies; 2) farmers, who are affected by 

urban development and intend to capitalise on their investment, or farmers who own 

property for amenity and lifestyle values; 3) and at a broader scale, land use planners/ 

decision-makers. 

Farmers’ participation in the real estate market as buyers, sellers or developers and in the 

land renting market has major implications for LUCC because they have the capacity for 

financial investment and to control future agricultural land use.  

Several studies have analysed farmer decision-making processes in peri-urban regions. 

These studies identified agricultural areas as the most vulnerable to changes, and where 

farmers are presented with the choice of maintaining their agricultural activities and 

maximising the production potential of their crops or selling their farmland to land investors. 

Also, some evaluate the behavioural response of peri-urban farmers to urban development, 

and income from agricultural production, agritourism, and off-farm employment. Uncertainty 

about future land profits is a major motivator for decisions to transform farmland into urban 

development. Thus, LUCC occurs when the value of expected urban development rents 

exceeds the value of agricultural ones. Some studies have considered two main approaches in 

analysing farmer decisions: how drivers influence farmer’s decisions; and how their decisions 

influence LUCC.  
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To analyse farmers’ decisions is to acknowledge the present and future trends and their 

potential spatial impacts. Simulation models, using cellular automata (CA), artificial neural 

networks (ANN) or agent-based systems (ABM) are commonly used.  

This PhD research aims to propose a model to understand the agricultural land-use change 

in a peri-urban context. We seek to understand how human drivers (e.g., demographic, 

economic, planning) and biophysical drivers can affect farmer’s intentions regarding the 

future agricultural land and model those intentions. This study presents an exploratory 

analysis aimed at understanding the complex dynamics of LUCC based on farmers’ intentions 

when they are faced with four scenarios with the time horizon of 2025: the A0 scenario – 

based on current demographic, social and economic trends and investigating what happens if 

conditions are maintained (BAU); the A1 scenario – based on a regional food security; the A2 

scenario – based on climate change; and the B0 scenario – based on farming under urban 

pressure, and investigating what happens if people start to move to rural areas. These 

scenarios were selected because of the early urbanisation of the study area, as a consequence 

of economic, social and demographic development; and because of the interest in preserving 

and maintaining agriculture as an essential resource. Also, Torres Vedras represents one of 

the leading suppliers of agricultural goods (mainly fresh fruits, vegetables, and wine) in 

Portugal.  

To model LUCC a CA-Markov, an ANN-multilayer perceptron, and an ABM approach were 

applied. Our results suggest that significant LUCC will occur depending on farmers’ intentions 

in different scenarios. The highlights are: (1) the highest growth in permanently irrigated land 

in the A1 scenario; (2) the most significant drop in non-irrigated arable land, and the highest 

growth in the forest and semi-natural areas in the A2 scenario; and (3) the greatest urban 

growth was recognised in the B0 scenario. To verify if the fitting simulations performed well, 

statistical analysis to measure agreement and quantity-allocation disagreements and a 

participatory workshop with local stakeholders to validate the achieved results were applied. 

These outcomes could provide decision-makers with the capacity to observe different possible 

futures in ‘what if’ scenarios, allowing them to anticipate future uncertainties, and 

consequently allowing them the possibility to choose the more desirable future. 
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Résumé 

Les changements d’usage et occupation des sols résultent d’activités naturelles et 

anthropiques et peuvent avoir un impact négatif sur les ressources naturelles et même 

agricoles. Dans les régions métropolitaines, les principaux changements d’usage des sols sont 

ceux qui proviennent de la transformation des terres agricoles en des couvertures artificielles, 

essentiellement pour des usages urbains, industriels, de transports et de loisirs. Ces usages 

sont en concurrence avec les utilisations agricoles en raison, surtout, de la croissance 

démographique et de la recherche de nouvelles aires de construction. Cette concurrence 

permanente et la rapidité dont elle se produit a contribué largement à fragmentation et la 

dispersion à la fois des terres agricoles et des usages artificiels. Ces changements posent de 

défis, en particulier dans les domaines de la sécurité alimentaire, mais aussi de la nécessité de 

préserver les sols et la biodiversité dans des contextes plus urbanisés.  

Les propriétaires fonciers jouent un rôle majeur en ce qui concerne les changements 

d’occupation des sols. Dans un contexte périurbain, trois acteurs clefs sont généralement 

identifiés dans le processus de décision de changement d'utilisation ou la couverture des sols : 

1) Les investisseurs ou les promoteurs immobiliers, qui souhaitent obtenir un rendement 

maximal dans un contexte de développement urbain, en essayant d’obtenir la marge de profit 

la plus élevée possible. Leurs décisions dépendent souvent de la croissance démographique, 

de la recherche de nouveaux logements et des stratégies de planification et d’organisation du 

territoire ; 2) les agriculteurs qui sont affectés par les attentes concernant le développement 

urbain et qui prétendent capitaliser leurs investissements, ou les agriculteurs qui prétendent 

maintenir leurs terrains pour une question de consommation personnelle, agrément et/ou 

style de vie ; 3) à une échelle plus large, les acteurs qui planifient et définissent des stratégies 

pour l’usage futur de l’occupation du sol.  

La participation des agriculteurs au marché immobilier en tant qu'acheteurs, vendeurs ou 

agents sur le marché de la location présente des implications majeures sur l'évolution de 

l'utilisation et de l'occupation des sols, dans la mesure où ils ont la capacité d'investir 

financièrement, et en même temps, de contrôler l'usage futur de l’utilisation agricole. 

Plusieurs études ont analysé les processus de prise de décision des agriculteurs dans les 

régions périurbaines. Ces études ont identifié les aires agricoles comme étant les aires les plus 
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vulnérables aux changements, et où les agriculteurs ont la possibilité de maintenir leur activité 

agricole et de maximiser le potentiel de production agricole ou de vendre leurs terres agricoles 

à des investisseurs. D'autres études ont évalué la réponse comportementale des agriculteurs 

périurbains en fonction du développement urbain, du rendement de la production agricole, 

de l'agrotourisme et de l'emploi non directement lié à l'activité agricole. L'incertitude sur le 

revenu futur que les agriculteurs peuvent tirer de leur activité agricole est souvent un facteur 

décisif dans conversion des terres agricoles en aire urbaine. En ce sens, des changements dans 

l'utilisation et l'occupation des sols peuvent se produire lorsque le revenu provenant de la 

vente d'une terre agricole en faveur du développement urbain dépasse le revenu pouvant 

provenir de la production agricole.  

L'analyse des intentions des agriculteurs selon différents scénarios est extrêmement 

pertinente dans la mesure où elle permet de connaître les impacts potentiels résultant des 

modifications apportées à l'utilisation et à l'occupation des sols. La présente thèse vise à 

analyser les intentions des agriculteurs en ce qui concerne les changements d'utilisation et 

d'occupation du sol dans un contexte périurbain. L'objectif est d'identifier comment les forces 

motrices associées aux facteurs anthropiques (notamment dans les domaines économique, 

social et de planification) et biophysiques peuvent affecter les intentions des agriculteurs 

concernant l'utilisation future des terres agricoles. Cette étude propose une analyse 

exploratoire visant à comprendre la complexité associée à la dynamique de l'utilisation des 

sols et aux changements d'affectation des terres, en fonction des intentions des agriculteurs. 

Ces intentions ont été obtenues à partir d'entretiens avec des agriculteurs, confrontés à 

quatre scénarios pour l'horizon 2025. Il s'agit du scénario A0, qui repose sur le maintien de la 

tendance socio-économique actuelle ; du scénario A1 - basé sur chaînes d'approvisionnement 

alimentaire courtes ; du scénario A2 - basé sur une réchauffement climatique ; et enfin du 

scénario B0 - qui est lié à une demande croissante de terrains à bâtir pour créer de nouvelles 

aires résidentielles et/ou touristiques. 

L’identification et la sélection de ces scénarios ont été basées sur les caractéristiques 

spécifiques de la zone d'étude, qui est la municipalité de Torres Vedras (Portugal). Cette 

municipalité, en pleine zone littorale a été témoin d'une rapide urbanisation, principalement 

durant les années 1990 et au début des années 2000. Son développement économique et 

social a bénéficié de la proximité et d’une amélioration des accessibilités à la capitale Lisbonne 



An agent-based approach to model farmers' land use cover change intentions 

 

27 

 

ce qui a entraîné une réduction des surfaces agricoles ainsi que leur fragmentation. Mais, en 

contraste la municipalité de Torres Vedras est l’un des principaux fournisseurs de produits 

agricoles (fruits, légumes et vin) au Portugal, en particulier pour la région métropolitaine de 

Lisbonne. Ces raisons font que Torres Vedras soit un cas étude intéressant où la portée 

économique, sociale et urbaine se creuse avec la préservation et le maintien de l’activité 

agricole. 

Il existe actuellement un large éventail de modèles complexes permettant de modéliser et 

de simuler les modifications futures de l’usage et de l’occupation des sols. Les automates 

cellulaires, les réseaux de neurones artificiels et les systèmes basés sur des agents sont ceux 

qui ont été le plus récemment utilisés dans la littérature. Dans cette thèse, les intentions de 

changement de l'usage et de l'occupation du sol par les agriculteurs et pour des différents 

scénarios ont été associées à différentes forces motrices et projetées spatialement à l'aide des 

différents modèles : les automates cellulaires (chaînes de Markov), les réseaux de neurones 

artificiels (perceptron multicouche), et les cas des modèles à base d’agents. 

Les résultats identifiés, à travers les différents modèles, suggèrent que des changements 

significatifs dans l'utilisation et l'occupation des sols vont se produire en fonction des 

intentions des agriculteurs dans les différents scénarios. On a pu identifier en particulier (1) 

une croissance des cultures irriguées de manière permanente dans le scénario A1; (2) une 

diminution des terres agricoles non irriguées et une croissance des zones forestières et semi-

naturelles dans le scénario A2; et (3) une croissance des zones artificialisées dans le scénario 

B0. 

Afin de contrôler les performances de la modélisation des changements d’usage et 

d’occupation du sol pour les prévisions futures, différentes techniques d’étalonnage et de 

validation ont été utilisées pour évaluer d'une part la concordance entre les cellules prévues 

et attendues, et d'autre part l’affectation et la quantité de cellules dans chacune des classes 

d'utilisation et d'occupation du sol. Par ailleurs aux différentes techniques statistiques 

utilisées dans la validation des modèles (par exemple, indice de Kappa, kLocation, 

KHistogramme, valeur V de Cramer et métriques de paysage), un atelier participatif a été 

organisé avec des agents du territoire de la commune de Torres Vedras liés à l'aménagement 

du territoire, à l'agriculture, aux forêts et au développement immobilier. La réalisation de cet 
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atelier a permis de valider les résultats obtenus par les différents modèles, ainsi que 

d’identifier des stratégies à mener pour chacun des scénarios. 

Les résultats obtenus dans le cadre de cette thèse devraient permettre aux décideurs 

d’observer différents futurs possibles dans des scénarios de type "et si", leur permettant ainsi 

d’anticiper les incertitudes futures et, par conséquent, de choisir l'avenir le plus désirable en 

matière de l’usage et de l'occupation des sols. 
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Resumo 

As alterações de uso e ocupação do solo ocorrem em consequência das atividades naturais 

e antrópicas, causando impactos negativos nos recursos biofísicos e agrícolas. Nas regiões 

metropolitanas, as principais alterações de uso e ocupação do solo são as que ocorrem da 

alteração do uso de solo agrícola para usos artificiais. Estes usos competem com o uso agrícola 

devido, essencialmente, ao crescimento populacional e à procura por novas áreas para 

construção. Esta permanente competição e a forma rápida como ela muitas vezes ocorre, tem 

levado a uma crescente fragmentação e dispersão tanto do uso do solo agrícola como do uso 

do solo artificial. Estas alterações produzem novos desafios nomeadamente nas questões da 

segurança alimentar, e na premência da preservação do solo e da biodiversidade. 

Os proprietários de terrenos desempenham um papel fundamental nas alterações de uso e 

ocupação do solo. Num contexto periurbano, são geralmente identificados três atores chave 

no processo de decisão de alteração de uso e ocupação do solo, nomeadamente: 1) 

investidores ou promotores imobiliários, que esperam obter o máximo rendimento num 

contexto de desenvolvimento urbano, tentando obter a maior margem de lucro possível. As 

suas decisões estão muitas vezes dependentes do crescimento populacional, da procura por 

novas habitações e das estratégias de planeamento e ordenamento do território; outros 

importantes atores num contexto periurbano são 2) os agricultores que são afetados pela 

expectativa de desenvolvimento urbano e pretendem capitalizar os seus investimentos, ou os 

agricultores que pretendem manter os seus terrenos agrícolas por uma questão de auto 

consumo, amenidade, e/ou estilo de vida; e 3) numa escala mais alargada encontram-se os 

atores decisores do planeamento nas questões de definição de estratégias para o futuro uso 

de ocupação do solo.  

A participação dos agricultores no mercado imobiliário enquanto compradores, vendedores 

ou como agentes no mercado do arrendamento de terrenos agrícolas apresenta grandes 

implicações para as alterações de uso e ocupação do solo, na medida em que estes possuem 

a capacidade de investimento financeiro, e ao mesmo tempo, de controlo sobre o uso futuro 

da utilização agrícola. 

Diversos estudos têm analisado os processos de tomada de decisão dos agricultores nas 

regiões periurbanas. Estes estudos têm identificado as áreas agrícolas como as mais 
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vulneráveis de alteração, onde os agricultores têm a opção de manter a sua atividade agrícola 

e maximizar o potencial de produção das suas culturas ou vender os seus terrenos agrícolas 

para investidores. Outros estudos têm avaliado a resposta comportamental dos agricultores 

periurbanos em relação ao desenvolvimento urbano, ao rendimento da produção agrícola, ao 

agroturismo, e ao emprego não diretamente ligado à atividade agrícola. A incerteza sobre o 

rendimento futuro que os agricultores podem obter a partir da atividade agrícola é, muitas 

vezes, um fator decisivo nas decisões de converter terrenos agrícolas para desenvolvimento 

urbano. Neste sentido, as alterações de uso e ocupação do solo podem ocorrer quando o 

rendimento da venda de um terreno agrícola para desenvolvimento urbano é superior ao 

rendimento que pode ser extraído pela produção agrícola. 

Analisar as intenções dos agricultores, relativamente às alterações de uso e ocupação do 

solo tendo por base diferentes cenários, é de extrema relevância na medida em que permite 

reconhecer potenciais impactos. O presente projeto de doutoramento tem como objetivo 

analisar as intenções dos agricultores nas questões de alteração de uso e ocupação do solo 

num contexto periurbano. Pretende-se identificar de que modo as forças motrizes ligadas aos 

fatores antrópicos (nomeadamente nas questões demográficas, sociais, económicas e de 

planeamento) e a fatores biofísicos, podem afetar as intenções dos agricultores em relação à 

utilização futura do uso do solo agrícola. 

Este estudo apresenta uma análise exploratória que visa compreender a complexidade 

associada à dinâmica das alterações de uso e ocupação do solo, tendo por base as intenções 

dos agricultores. Estas foram obtidas a partir da realização de entrevistas a agricultores, 

quando confrontados perante quatro cenários para o horizonte temporal de 2025. Sendo eles: 

o cenário A0 – que tem por base a manutenção da atual tendência demográfica, social e 

económica; o cenário A1 – que é baseado na promoção de cadeias curtas de abastecimento 

alimentar (segurança alimentar a nível regional); o cenário A2 – baseado num aquecimento 

climático (verificando-se o aumento de períodos de seca); e por fim o cenário B0 – está 

relacionado com uma crescente procura por terrenos para construção, e por uma procura 

crescente por novas áreas residenciais ou para fins turísticos. 

A identificação e seleção destes cenários tiveram igualmente por base as características 

específicas do caso de estudo selecionado, o concelho de Torres Vedras (Portugal). Neste 
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concelho verificou-se uma rápida urbanização principalmente durante a década de 1990 e 

início da década de 2000, em resultado do desenvolvimento económico e social verificado na 

região, tendo levado a uma diminuição das áreas agrícolas assim como a um aumento da sua 

fragmentação. Para além deste fator a escolha do concelho de Torres Vedras teve por base a 

importância da preservação e manutenção da atividade agrícola no concelho, pela sua 

relevância tanto económica como social. O concelho de Torres Vedras é um dos principais 

fornecedores de produtos agrícolas em Portugal, com destaque para a região metropolitana 

de Lisboa, nomeadamente de fruta, produtos hortícolas e vinho. 

Atualmente existe um conjunto alargado de modelos complexos que permitem a 

modelação e a simulação futura das alterações de uso e ocupação do solo. Os mais utilizados 

recentemente na literatura têm sido os autómatos celulares, as redes neuronais artificiais e 

os sistemas baseados em agentes. Neste projeto de doutoramento acoplando as intenções de 

alteração de uso e ocupação do solo dos agricultores para os diferentes cenários, e utilizando 

os modelos acima mencionados foram projetadas espacialmente as referidas intenções, 

conjuntamente com diferentes forças motrizes, e assim verificadas as alterações de uso e 

ocupação do solo para os diferentes cenários e modelos. Especificamente, no caso dos 

autómatos celulares foram utilizadas cadeias de Markov, para as redes neuronais artificiais foi 

utilizada uma perceptron multicamada para a análise do crescimento das áreas artificializadas, 

e por fim no caso dos modelos baseados em agentes foram acopladas as intenções dos 

agricultores. 

Os resultados identificados, através dos diferentes modelos, sugerem que significativas 

alterações de uso e ocupação do solo ocorrerão tendo por base as intenções dos agricultores 

nos diferentes cenários. Como maiores destaques identificam-se (1) o maior crescimento das 

culturas permanentemente irrigadas no cenário A1; (2) um decréscimo dos terrenos agrícolas 

não irrigados, e o maior crescimento das áreas florestais e semi-naturais no cenário A2; e (3) 

o maior crescimento de áreas artificializadas no cenário B0. 

No sentido de verificar se a modelação das alterações de uso e ocupação do solo detinham 

um bom desempenho na predição futura, diferentes técnicas de calibração e validação foram 

utilizadas, tanto para avaliar a concordância entre células preditas e esperadas, como na 

alocação e quantidade de células em cada uma das classes de uso e ocupação do solo. Para 
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além das diferentes técnicas estatísticas utilizadas na validação dos modelos (por exemplo, 

índice Kappa, kLocation, KHistogram, Cramer´s V value, e métricas da paisagem), foi realizado 

um workshop participativo com agentes do território do concelho de Torres Vedras com 

ligações ao planeamento do uso do solo, à agricultura, às florestas e à promoção imobiliária. 

A realização deste workshop permitiu validar os resultados obtidos nos diferentes modelos, 

assim como na identificação de estratégias para cada um dos cenários.  

Os resultados obtidos neste projeto de doutoramento deverão permitir aos decisores do 

planeamento do uso e ocupação do solo a capacidade de observar diferentes futuros possíveis 

em cenários “e se”, permitindo-lhes antecipar futuras incertezas e, consequentemente, 

permitindo-lhes escolher o futuro mais desejável. 
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General Introduction 

Human activities have been recognised as the dominant force that have been influenced 

the LUCC globally (Bucała, 2014), affecting natural ecosystems (Pham et al., 2015) and the 

physical structure of the landscape. Worldwide, about 55 per cent of the population live in 

urban areas, in Europe about 74% (UN, 2018), and in Portugal around 64% in 2018 (WB, 2019).  

In Portugal, human activities have been also identified as the main driver. Improvements in 

road accessibility since joining the European community in 1986, the widespread use of motor 

vehicles associated with an increasing economy, have contributed to intensifying urbanisation 

(Abrantes et al., 2016; Gaspar, 2003; Marques da Costa and Marques da Costa, 2003), 

occurred mainly along the coast, particularly in both Lisbon and in Porto metropolitan regions. 

High levels of urbanisation have been transformed the natural land into artificial surfaces 

(Abrantes et al., 2013), mainly to residential and touristic activities (EEA, 2007), registering an 

increase of 31% of artificial surfaces between 1995 and 2010 (data source: DGT (2010, 1995)). 

These conversions have negative impacts to the prime agricultural land (Verheye, 2009), 

and they are one of the main spatial planning challenges in Europe (EEA, 2013; EEA, 2006). 

The landscape is changing. LUCC have critical implications in the disappearance of natural and 

agricultural areas, and is one of the most visible impacts on the environmental system (Liu et 

al., 2007; Salvati and Carlucci, 2014), leading to irreversible damages in natural resources.  

This phenomena is more critical in peri-urban regions of western urbanised countries, 

where some consequences have been recognized, such as the farmland fragmentation 

increase; rising traffic congestion (Chen and Chang, 2014); the disappearance of wildlife 

populations, species, and habitats (Jaeger and Madrinan, 2011); as well as direct 

consequences for food supply and foodshed basin (Gutzler et al., 2015; Satterthwaite et al., 

2010).  

These changes are often related to land agents' decisions, in which they are driven by 

different interests. They can be recognized as speculators or developers (Bhatta, 2010; Brown 

et al., 1981); farmers, interested to invest in their agricultural production (Ettema et al., 2007; 

van Vliet et al., 2015); as well as farmers, who have interested in the amenity qualities of the 

peri-urban regions (Paül and McKenzie, 2013; Valbuena et al., 2010b). Analyse who they are, 
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as well as understand what are their interests is critical to better manage the land (Capozza 

and Helsley, 1990; Heimlich and Anderson, 2001). 

Different drivers influence land-use decision-making and can determine agricultural 

profitability and land valuation. Farmer decisions on whether to convert farmland to urban 

land or to preserve it are two key issues. Some key drivers can help to maintain farming activity 

such as the proximity to agricultural cooperatives, commercial markets, and large consumers 

demand; as well as agricultural subsidies (i.e. at European Union level) such as the rural 

development or the Common Agricultural Policy (CAP) which aim to implement agricultural 

innovation mainly through the organisation of the food chain, and climate-resilient 

economies. However, other key drivers can both contribute to preserve farming activity or to 

put agricultural land under urban pressure such as the proximity to the transport network, 

which acts as both preserving/ converting land. On the one hand, it facilitates the distribution 

of agricultural production, on the other hand, it enables urban growth and urban population 

housing demand closer to rural amenities; land price as a valuable index in decisions about 

whether or not to rent, buy, sell or develop. The distance to the city centre also influences 

urban and agricultural land prices and rents; and land use planning instruments (Chicoine, 

1981; Dawkins and Nelson, 2002; Plantinga et al., 2002). Planning instruments can constraint 

or guide development through the use of land restrictions and land strategies. In Portugal, the 

regulatory land planning framework is implemented at the municipal level, through Municipal 

Master Plans (PDM) regulating urban development, land use classifications, and land-use 

constraints such as the National Agricultural Reserve (RAN) that identifies, monitors, and 

protects the best agricultural soils. RAN derives from national law and then is applied, and its 

limits are defined at the municipal level. 

Despite the existence of these policies, farmland conversion into urban uses continues, 

because they are poorly safeguarded at the local planning level (Abrantes et al., 2016; 

Marques da Costa et al., 2011). Measures such as urban containment policies, regulate 

agricultural fragmentation and preserve natural and agricultural areas are some of the policies 

that can be considered to mitigate agricultural land conversion to other uses. Understand the 

key trends in LUCC is critical to promote policies to improve the lives of both urban and rural 

inhabitants, by promoting a sustainable environment. 
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To address this problematic, complexity science can provide an interesting theoretical and 

methodological approach to identify these LUCC conversions, recognising how farmers’ 

decisions influence agricultural land use dynamics. Complex spatial models can be useful to 

couple agents behaviours with more spatial static data, i.e. to integrate farmer’s LUCC 

intentions in its rules and spatially project future LUCC, identifying how their intentions and 

demographic, economic, political, environmental, and physical conditions can lead to LUCC. 

While various empirical studies have been applied to analyse this phenomenon there still a 

gap in the literature concerning the capability of modelling approaches to provide applied 

answers for determining LUCC based on farmers’ intentions (which can be captured by 

interviews). 

Over the past two decades, modelling systems linked to artificial intelligence have been 

used to understand LUCC (Mishra et al., 2014; Pontius et al., 2004; Veldkamp and Lambin, 

2001). Dynamic modelling sought to overcome the existing limitations of geographic 

information technologies that were permanently stationary at two-dimensional perspectives 

(Burrough, 1998). In the last years, complex systems have provided enormous potentialities 

for land-use modelling (Batty and Torrens, 2001), addressing and incorporating predictable 

and unpredictable changes. Spatial simulation modelling allows quantifying the changes of 

land use classes (Liu et al., 2008), predicting future land use patterns, providing an exceptional 

platform to explore complex interactions between human and biophysical systems (Gimblett, 

2005). Complex phenomena are dynamic and comprise interdependencies through several 

aggregation stages. Currently, there is a broad range of mathematical models used, e.g., CA-

Markov chains, ANN, logistic models of diffusion, and ABM. The firsts are more efficient for 

modelling spatiotemporal phenomena focused on landscapes, and land-use transitions, 

whereas agent-based models are more focused on human actions (Munthali KG, 2012; Parker 

et al., 2003). Even though complex science may help to understand the unpredictability of 

LUCC (Allen, 1997; Batty and Torrens, 2001; Portugali, 2006). However, its integration into the 

political instruments is still at the beginning (Chettiparamb, 2006) and difficult to apply, mainly 

due to many institutional barriers (Brömmelstroet and Bertolini, 2010). 

Coupling LUCC models and spatial scenarios is a valuable task since it allows to indicate 

perceptions about alternative futures, and hypotheses. Scenarios are seen as a method to 

envisage future options linked to dynamic actions and to manage future uncertainties. Spatial 
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scenarios can be used as tools able to translate complex targeted information to policy-makers 

and the public. They can provide strategic support for decision-makers and researchers to 

evaluate potential future alternatives, identify multiple planning strategies, and to support 

the impacts of the strategic options. Different methods and tools have been proposed and 

used with implications for environmental assessment and land use management. In land-use 

management, scenarios have been used to analyse feedbacks from urban growth, urban form 

and agricultural land-use changes. 

As a case study for our empirical analysis, we choose Torres Vedras (covers an area of about 

407 sq. Km.), in Portugal. Torres Vedras had, in 2011, a population of 79,465 inhabitants and 

is located in a peri-urban area near Lisbon (50 km) dominated by forest and agricultural land. 

In the last decades has been suffering considerable urban pressure. Between 1995 and 2010 

registered an artificial surface increase of 41%.  

Agriculture activity (e.g., fruits, vegetables and wine) has been an essential sector in this 

municipality (Statistics Portugal, 2011). However, in the past few years, agricultural land has 

been declining, caused by many demographic and economic factors, such as a decrease in 

farmer population and in the used agricultural area, and a significant demand in urban 

development (Abrantes et al., 2016; Gomes et al., 2019b). 

In the following, we will describe the research objectives, questions and hypotheses of this 

PhD research, as well as the methodological approach and thesis structure, will be presented. 

 

Research objectives, questions and hypotheses 

In this PhD thesis, we proposed three different LUCC models (CA-Markov, ANN-MLP, and 

ABM) to analyse and simulate future farmers’ LUCC intentions for four different scenarios. 

They integrate geographical modelling, complexity science, land use science, and planning 

theory to recognise LUCC dynamics in a peri-urban context. According to this, the specific goals 

of our PhD research are: 

1) To measure the impacts of urban growth on agricultural land over time; 

2) To identify and predict different levels of agricultural land fragmentation, identifying 

its drivers; 
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3) To spatialize farmers’ LUCC intentions according to the following scenarios (for the 

time horizon of 2025): A0 – current demographic, social and economic trend (BAU); A1 

– regional food security; A2 – climate change, and B0 – farming under urban pressure; 

4) To validate the achieved results according to stakeholders’ LUCC expectations, through 

a participatory workshop; and  

5) To propose the integration of spatial complexity analysis to support spatial planning at 

the local level. 

 

These objectives aided to characterise the case study regarding the LUCC over time, and to 

better understand the behaviour of different drivers and actors, which have affected land 

transitions.    

In addressing the above objectives, this PhD research aims to answer the following research 

questions and hypothesis: 

1) What are the demographic, economic, political and environmental driving forces 

related to LUCC in Torres Vedras Municipality?: 

2) How farmers’ LUCC decisions and their motivations may affect land conversion in 

different scenarios? and; 

3) How to help planners in the decision-making process, since LUCC in peri-urban regions 

occurs very fast? 

 

According to these research questions, the following research hypotheses are proposed: 

1) Urban growth has a significant impact on agricultural land decrease and 

fragmentation; 

2) Social, demographic, economic, and political drivers affect farmers’ LUCC intentions in 

different scenarios; 

3) To engage stakeholders in the criticism of LUCC models’ outcomes may be the key to 

propose land use planning recommendations more efficiently. 
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Methodological approach 

To address the research objectives, questions and hypothesis presented above, we 

performed a step-by-step methodology used to achieve the proposed goals. We used a 

combination of LUCC analysis, geographical models, farmers' interviews, and a participatory 

workshop with local stakeholders, towards the creation of a consensual LUCC model for each 

scenario. According to the achieved results, we analysed and discussed the LUCC impacts for 

each scenario, and we addressed land-use strategies according to the specific impacts of each 

scenario. 

Following, we described the main methodological research approach adopted throughout 

this thesis: 

1) We developed a method (built in the NetLogo software tool), which we called LAND 

(Land-use chAnge and Neighbouring Distance) to measure the impacts of urban 

growth on agricultural land variation and agricultural land fragmentation over time, 

from the edge of existing urban areas; 

2) We created a methodology using landscape metrics and cluster analysis to measure 

agricultural land fragmentation in the past, in the present and to predict agricultural 

land fragmentation in the future, and identifying its drivers; 

3) We performed interviews targeted at currently active farmers to capture their LUCC 

intentions for four scenarios (for the time horizon of 2014-2025); 

4) We simulated future LUCC, integrating demographic, economic, political, and 

environmental driving forces, and incorporating farmers’ LUCC intentions, based on 

the CA-Markov, ANN-MLP, and Agent-Based Modelling (ABM) LUCC models; and 

5) We organised a participatory workshop to validate and analyse the LUCC models’ 

outcomes. The participants of this workshop were local stakeholders in the following 

main areas of land management: a) land use planning; b) real estate developer; c) 

agriculture; and d) forest. 
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The step-by-step methodology is shown schematically in Figure 0.1.  

 

 

Figure 0.1 – Schematic step-by-step methodology. 
 

Thesis structure 

The PhD research highlights the dynamics of LUCC in a peri-urban area. This study identifies 

a multimethod perspective and involves complex and interrelated analysis. This PhD research 

has three parts and seven chapters, each part and each chapter developing a step-by-step 

towards to simulate LUCC under different scenarios. The outline is shown schematically in 

Figure 0.2.  

 

 

Figure 0.2 – Thesis organisation flowchart. 
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Part One is related to state of the art of LUCC, modelling and planning and includes chapter 

1, 2, and 3. Chapter 1 outlines the agricultural land use and peri-urbanisation. We highlighted 

the concepts of land use/cover; peri-urbanization and land use/ cover; population and 

urbanisation in Portugal; and farmers’ role on LUCC. In Chapter 2, we presented a framework 

of geographic modelling and land use in the context of the complexity science; and we 

identified the earlier studies on LUCC analysis, the geographical models and LUCC, and the link 

between complexity science and Geography in LUCC modelling.  

Part two (the measurement of LUCC in Torres Vedras municipality) consists in two chapters 

(chapters 4 and 5). Firstly, in chapter 4 we introduced the Geographic Information Systems 

(GIS) data acquisition and management, and we contextualised the case study. In chapter 5 

we measured the influence of urban growth on agricultural land fragmentation, in our study 

area, using different methods. 

Part three includes chapter 6 and 7. It aims to integrate farmers’ LUCC intentions in LUCC 

modelling process and engaging stakeholders’ in LUCC modelling validation. In chapter 6, we 

presented different methods used to analyse farmers’ LUCC intentions. We first presented the 

four explorative LUCC scenarios and the farmers’ interviews, and secondly, we modelled the 

farmers’ LUCC intentions using the CA-Markov, ANN-MLP, and ABM models. And in chapter 7, 

we presented an analysis that engages local stakeholders’ in the process of LUCC models 

validation and discussion. 

Finally, we identified the contributions of this PhD thesis to the field of knowledge, the 

limitations, as well as we recognised the challenges for future research.  
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Part One: State of the art: LUCC, Modelling, and Planning 
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Introduction PART ONE 

Land use in peri-urban regions is in constant changing. To understand its spatial and 

temporal dynamics is of great importance in the study of land-use systems, and for land use 

planning. 

Complexity science can help to deal with this analysis, identifying the uncertainties of LUCC 

and giving answers to the unpredictable LUCC. Every stage involves dynamics, relationships, 

emergence and unpredictability. Integrating complexity science and LUCC analysis in the land 

use planning to understand the land-use dynamics is one of the most significant challenges 

that planning needs to face in the future.  

Part One investigates the theoretical literature regarding agricultural land use and peri-

urbanisation, geographic modelling, and how complexity science can be integrated more 

permanently into land-use planning. 
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Chapter 1 – Agricultural land use and peri-urbanisation 
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Introduction Chapter 1 

LUCC occurs in response to demographic, social, economic, and biophysical elements. In the 

last decades, the impact of human activities has grown affecting global, regional and local 

landscapes. Choices about LUCC have affected the land conversion from agriculture to urban 

uses, resulting in less land available for farming. Agricultural land is facing urban pressure in 

peri-urban regions. New strategies and efficient planning instruments to anticipate the effects 

of these pressures in these areas, as well as to implement strategies to minimise the urban 

expansion are needed.  

Land use planning instruments comprise population growth projections, promote social and 

economic inclusion, identify the relationship between spatial planning and land use 

management system, and define the best options for land use occupation. 

In this chapter, we explored the literature review about LUCC especially in peri-urban areas 

context, identifying its causes and consequences. 
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1. Land use/cover 

Land use definition as a function only recently has become autonomous. In 1994, Food and 

Agriculture Organization (FAO) at the Convention to Combat Desertification (UN, 1994) 

defined land use as the area that incorporates all elements of earth's terrestrial surface such 

as soil, surface hydrology, vegetation, and human settlements. Its conception is the result of 

a complex interaction connected by all these elements (Robson and Berkes, 2011; Turner et 

al., 2007). Land cover, on the other hand, is associated with what is observable by the human 

eye in the field and satellite and aerial images (Comber et al., 2005). FAO (2011) recognised 

three main dimensions which are incorporated by the land-use system:  

(1) environmental – includes greenhouse gas emissions, the productive capacity of land and 

ecosystems, air quality, water availability, and biological diversity;  

(2) social – comprises price and supply of a national food basket, land access, water and 

other natural resources, labour conditions, rural and social development, energy access, 

human health, and safety; and  

(3) economic – includes economic growth, economic viability and competitiveness, 

technology access, technological capabilities, and energy security.   

As a science, land use (also called land-change science and land-system science) is the study 

about the changes and impacts at the interface of these three previously mentioned 

dimensions (Ii et al., 2007; Verburg et al., 2013). It emerged as a sustainability science by 

encompassing multiple disciplines with a connection to human and natural sciences 

(Zscheischler et al., 2017).  

Forest, agricultural systems and urbanisation processes are the main fields studied by this 

science, being its analysis critical for land use management (Alexandratos and Bruinsma, 2012; 

Batty and Longley, 1986; Hyde et al., 1996). They are the basis for economic, social and 

environmental diversification in rural and urban communities. Decision-makers, stakeholders, 

and researchers have demonstrated concern about its changes and undesired consequences 

(Schreinemachers and Berger, 2006). Accurate, reliable and timely data on global trends in 

land-use dynamics are relevant for evaluating present and forthcoming needs and for setting 
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policy priorities to endorse inclusive and equitable development. Below we describe each one 

of these fields regarding its distribution and importance both globally and in Europe. 

1.1 Forest land 

In 2015, forest land covered around 31% of the world land (over 4 000 million hectares) 

(WB, 2019). In the European Union covers approximately 36% (representing more than 161 

million hectares of the total area). Ecologically, Europe's forest land belongs to many different 

biogeographical regions, in which 42% of this forest is composed by coniferous, 40% is a mixed 

forest, and 18% are broadleaved (EEA, 2018).  

Forests are ecosystems that have relevant environmental functions, to serve as habitat for 

a diversity of plant and animal species (Berg et al., 1994), to prevent landslides (Dhakal and 

Sidle, 2003), avalanches in mountainous regions (Feistl et al., 2015), and to filter water 

supplies (Hallema et al., 2018). Alongside its environmental profits, forests provide mainly 

wood, and other resources such as energy (Röser et al., 2008), forage for animals (Pabian et 

al., 2012), and opportunities for tourism and recreation (Ohe et al., 2017). 

Forests face several threats, such as droughts, fires, and pests. However, one of the main 

threats responsible for its reduction have been the agricultural expansion. Globally, in the last 

decades, 30% of the forest was converted to agricultural use (Barbier, 2004; Ramankutty et 

al., 2008), and more than 50% in the tropics (Gibbs et al., 2010). Furthermore, agricultural 

expansion and intensification have led to an increase in forest land fragmentation (Haddad et 

al., 2015; Ligtenberg et al., 2001). To counter this trend, the United Nation has been promoting 

its preservation by defining global aims such as to preserve and reverse the loss of forest cover 

worldwide and improve forest-based social, economic and environmental benefits. 

1.2 Agricultural land 

Agricultural lands are another of the significant biome on earth, occupying around 30% of 

the global ice-free land area (Ellis and Ramankutty, 2008), and constitute the major livelihood 

for 40% of the world’s population (WB, 2019). By 2050, human populations are projected to 

grow to nearly 10 billion (UN, 2017) increasing pressure on agricultural land to meet the 

demands for food by future populations. 
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In Europe, agricultural land corresponds to almost half of the territory (48%). In the 

European Union, the total agricultural area used (UAA) was around 179 million ha in 2016. 

France had the most significant agricultural area with 29 million ha, followed by Spain (24 

million ha), and by the UK and Germany (both with 17 million ha). In total, around 19 million 

hectares (11% of UAA) were potentially irrigable in 2013, located mostly in Southern Europe, 

namely in Malta (33.6% irrigated land of total UAA), followed by Greece (24%), Italy (23.7%), 

Cyprus (22.6%), Portugal (13.1%), and Spain (12.4%). Irrigation allows farmers to extend the 

growing season into the dry season. However, the irrigated land is one of the major cause of 

freshwater eutrophication, which indicates the pressure of these areas on water resources 

(Eurostat, 2013). Beyond this, other impacts from the environmental point of view can be 

pointed out to agricultural practice such as greenhouse gas emission (Oertel et al., 2016), 

biodiversity loss (Kok et al., 2018), losses of soil quality (Bayramin et al., 2008), and change of 

local and regional climates (Zhang et al., 2017). 

From this perspective, agriculture is one of the main responsible for environmental 

degradation, and its impacts are expected to rise in the future due to the projections of 

population increase and per capita consumption (UN, 2017). However, from the urban growth 

perspective, urbanisation is one of the main threat for agricultural land consumption 

(Morgado et al., 2017; Weber et al., 2018), particularly in the peri-urban regions (Gomes et 

al., 2018; Mazzocchi et al., 2017). 

1.3 Urban land 

Globally in 2019, more than 50% of the world’s population lives in urban areas, in which one 

people in eight live in the 28 mega-cities bigger than 10 million inhabitants, mostly located in 

the global South. By 2050, more than 60% of the world’s population is expected to live in 

urban areas (WB, 2019). 

Currently, North America is the region where more people live in urban areas (82%), 

followed by Latin America and the Caribbean (80%), and Europe (73%). By countries, China 

has the most prominent urban population (758 million), followed by India (410 million), and 

the United States of America (263 million). Moreover, by cities, Tokyo is the world’s biggest 
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city with 37 million inhabitants, followed by New Delhi with 29 million, and Shanghai with 26 

million inhabitants (WB, 2019). 

The urban population worldwide has overgrown since 1950, from 746 million to 3.9 billion 

in 2014. By 2050, it is expected to reach 6.3 billion, with approximately 90% of the growth 

concentrated in Africa and Asia. 

The urbanisation process historically has been related to economic and social growth. These 

significant phenomena of the XX century evolved from a contiguous growth around the city, 

and along highways and roads, connecting the suburbs (Salvati et al., 2018) in different forms. 

Enlarged cities (Gaspar, 1999; Pereira and Silva, 2008), metapolis (Ascher, 2010), city-regions, 

or periurban regions, are some of these forms, characterised by continuous population 

growth, frequently fragmented areas and located in the mix between urban-rural settlements, 

and economic activities (Allen, 2003). 

In Europe the urbanisation process took place quickly since 1950, but since the 1990s 

moderated its pace. Currently, in the European Union, there are over 800 cities, with more 

than 50,000 inhabitants, in which about 90% are small and medium-sized cities (between 50-

250,000 inhabitants). Europe's urban areas have different morphological types, in which can 

be recognised as monocentric (distributed over extensive areas), dispersed (scattered cities), 

linear (with linear forms of agglomeration), and polycentric urban region (multiple cities 

connected) (Waterhout et al., 2005). 

To harmonise the metropolitan area definition, Organisation for Economic Co-operation 

and Development (OECD), European Commission (EC), and Eurostat defined it as a functional 

economic united categorised by densely populated areas over 50,000 inhabitants and 

commuting zones. In 2017, the most densely populated metropolitan regions in European 

Union were London (14.2 million), followed by Paris (12.2 million), Madrid (6.5 million), 

Barcelona (5.5 million), and Berlin (5.2 million) (Eurostat). The metropolitan regions of the 

European Union are the motor of the economy representing 62% of its jobs, and 67% of gross 

domestic product (GDP). 



An agent-based approach to model farmers' land use cover change intentions 

 

53 

 

2. Peri-urbanisation and agricultural land use 

Urbanisation is one of the significant phenomena affecting the loss of prime agricultural 

land as a result of a demand for land around urban cities (Weber and Puissant, 2003), resulting 

in more frequent land tensions between urban and agricultural areas (Gardi et al., 2015). 

These pressures occur mainly in peri-urban regions, where transitional and competitive areas 

between urban and rural areas are recognised (Errington, 1994). Peri-urban regions are 

viewed as an intermediate area between urban-rural settlements with rural identity  

(Biegańska et al., 2018; Tedesco et al., 2017). They are frequently identified by the emergence 

of urban activities close to urban centres (Guastella and Pareglio, 2016), and a likely place for 

living, recreation or even for work (Brinkley, 2012; Hornis and Van Eck, 2008). 

Several typologies have been implemented by many researchers to characterise peri-urban 

areas. They have been classified since large residential areas, high population growth, 

intensification of residential areas, urban infrastructure, and services, coexistence between 

farming activities, and fragmented areas (Choy and Sutherland, 2008). In 1955 Spectorsky 

presented the concept of exurbanization (Nelson and Dueker, 1990). This concept is defined 

as the ring of wealthy rural communities inhabited by urban professionals who commuted to 

the urban city for work. Currently, these areas could also be called as suburbanization (Arthur 

and Thomas, 1999), in the perspective of an ever-widening city. Another closely related 

concept is counter-urbanisation. This concept suggests an increase in the migration away from 

the city to the countryside, as well as the relocation of services and industries (Fielding, 1982). 

Champion (1989) refers that counter-urbanisation is a tendency towards de-concentration, 

resulting from a complex pattern of flows.  

Migration dynamics, transport accessibility, economic and demographic development are 

important drivers (Geist and Lambin, 2006), leading to the emergence of urban sprawl. This is 

one of the land-use patterns related to peri-urban morphology (Bretagnolle et al., 2001; 

Debbage et al., 2017; Salvati and Carlucci, 2016; Stomp, 2013). Urban sprawl is defined as a 

low-density dispersed development outside the compact urban area and beyond the edge of 

service and employment (Gennaio et al., 2009). Batty et al. (1999) defined urban sprawl in 

three interconnected concepts of spatial dynamics: (a) the decline of central or core cities; (b) 

the emergence of edge cities; and (c) the rapid suburbanization of the peripheries of cities. 
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Moreover, Torrens (2000) defined urban sprawl as low-density growing along the fringes of 

the metropolitan areas, and is characterised by its compactness and dispersion. It is also 

identified as the urban expansion into the suburban areas and categorised by unplanned (EEA, 

2006), uneven growth (Oueslati et al., 2015), contiguous suburban growth (Logan and 

Crowder, 2002), mixed uses (Bengston and Youn, 2006), scattered and leapfrog development 

(Torrens and Alberti, 2000), strip or linear development, poly-nucleated nodal development 

(Galster et al., 2001), and both as a state, and a process (Jaeger et al., 2010).  

One of the main concerns regarding the urban sprawl and expansion of peri-urban areas is 

the loss of productive agricultural land, verified in the transitional zones between urban and 

rural areas. The agricultural land in this area can suffers from urban pressure. However, they 

can benefit from the market’s proximity. 

2.1 LUCC drivers 

LUCC occurs as a consequence of both natural and human activities (Lambin et al., 2001; 

Marty et al., 2014; van Vliet et al., 2015), triggered by driving forces. The concept of driving 

force became well-known in landscape ecology during the 1990s (Bürgi et al., 2004; Eiter and 

Potthoff, 2007), in which were defined the processes responsible for the landscape changes 

(Bürgi et al., 2004). The driving forces, process and manifestations that influence LUCC, 

particularly agricultural land-use change, according to van Vliet et al. (2015) can be 

categorised as follows:  

i) underlying drivers (e.g., environmental, policy, technology, socioeconomic, 

culture, and location);  

ii) LUCC process - related to land manager decisions and farmer profile; and  

iii) manifestations of agricultural land-use change - connected to intensification (e.g., 

increase in agricultural land area), and disintensification (e.g., land abandonment) 

(Fig. 1.1). 
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Figure 1.13– Underlying drivers, LUCC process, and manifestations of LUCC (adapted from van Vliet, 2015). 

 

Worldwide, in the last three decades, almost 3% of semi-natural land has been converted 

to other land cover types (OECD) (e.g., croplands, and urban development). This has been 

contributed to the loss of ecosystems, land fragmentation, increase of flood risk vulnerability, 

air, noise and light pollution, and to the decrease of green spaces. 

Table 1.1 reviews some of the key global, national, and local driving forces responsible for 

the LUCC at different scales. 

 

Table 1.1 – Global, national and local driving forces. 

Scale Driving force Description Source 

Global 

World prices It can influence LUCC decisions. (Golub et al., 2009) 

Climate 

change 
It represents unpredictability - greater negative impacts. 

(Dale, 1997; Pielke, 

2005) 

High energy 

prices 
It increases food price. 

(Steinbuks and Hertel, 

2013) 

 

National 

Urbanisation It changes the food demand. (Matuschke, 2009) 

Shortening 

market chains 
It reflects a stricter price. 

(Bren d’Amour et al., 

2017) 

Water 

scarcities 
It promotes strategies to create irrigated agricultural land. 

(de Espindola et al., 

2012) 

 

Local 

Population 

pressure 
It can reduce the agricultural land available for farming. (Gomes et al., 2019a) 

Technology It can increase agricultural productivity. 

(Corbelle-Rico et al., 

2015; Springer and 

Duchin, 2014) 

Market access It can improve output markets. (Hettig et al., 2016) 
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In Europe, the landscape has been experienced significant changes in LUCC. Over the past 

century, Europe almost doubles the population from 288 million at the beginning of the last 

century to 513 million in 2018 (Eurostat). These dynamics were encouraged by different 

drivers such as political reasons, cultural history, land reforms, enhancing technological, as 

well as a diversity of institutional and economic drivers (van Vliet et al., 2015). The population 

growth and the need for cropland, grassland, and forest have been leading to a high level of 

LUCC. However, these dynamics are not homogeneous over Europe, which have been 

influenced by natural (e.g., precipitation, relief, and temperature), and socioeconomic 

characteristics (e.g., two world wars and different economic and social systems). 

In Portugal, the main activities, implemented since the first half of the 20th century, that 

have led to significant land use transformations, have been the rural wood-gathering, 

agriculture, and livestock production (Pinto-Correia and Vos, 2004). In the last decades, the 

main responsible for LUCC was accompanied by an extensive drop of cropland by conversions 

into grasslands and forest (particularly in Alentejo region) (source data: DGT, 1995, 2010). 

However, in the last few decades, former cropland has been abandoned due to migration, 

market competition and urbanisation (Antrop, 1993). These interactions and dynamics over 

time have provided a cultural self-sustainable system (Blondel and Aronson, 1999).  

2.2 Drivers in peri-urban areas 

Urban areas are the main settlement of human activities. In the last years, several 

researchers have been discussing the driving forces of urban expansion in peri-urban areas 

that have been shaping Europe. Below, we present some of the drivers, that we will use in our 

empirical study. 

Lambin et al. (2003) identified some of these drivers such as the resource scarcity; the 

change of diagnosis produced by the markets; the policy interference; the loss of adaptive 

capacity; and the changes in social organisation. In its turn, Quan (2006) identified 

industrialisation, infrastructure, agricultural intensification, and policy as the main driving 

forces responsible for LUCC.  

The urban expansion in peri-urban areas has implications for land use (Abrantes et al., 2016; 

Lambin et al., 2003; Wu et al., 2010), both in the socioeconomic and environmental 
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perspective (Bhatta, 2010), and they can be both negative and positive. The negative impacts 

are, for instance, the undesirable effects on public health and quality of life (Jackson and 

Kochtitzky, 2003), increased urban pollution (Nechyba and Walsh, 2010), greater dependence 

on cars (Owusu, 2013), spatial fragmentation (Haregewoin, 2005), and loss of farmlands 

(Bhatta, 2010). The positive aspects are the sense of community between the inhabitants 

(Arbury, 2005), more living space (Bhatta, 2010), decreasing crime rates (Owusu, 2013), and 

fragmented urban growth has been perceived as economic expansion (Oueslati et al., 2015). 

Agricultural land has always been, and remains, an economic, social and culturally 

significant part of life, and has been of vital importance in response to the preservation of 

environmental and landscape values (Kizos et al., 2010), to preserve the quality of food in 

urban markets (Paül and McKenzie, 2013), and to contribute to mitigate urban expansion 

(Coisnon et al., 2014).  The areas located on the urban fringe are frequently under pressure 

due land competition and scarcity, and often leading to farmland fragmentation (Jiang et al., 

2013), and agricultural production decrease (Hualou and Jian, 2010). This is one of the main 

barriers that agriculture is currently facing in many urban regions (Campbell, 2015; 

Kuemmerle et al., 2006).  

Recent studies have described how it can contribute to the loss of natural land and wildlife 

populations, modifications in local climate, flora, and fauna (Haddad et al., 2015; Matthew et 

al., 2015; Senthilkumar et al., 2009), and loss of agricultural productivity (Alfiky et al., 2012). 

Land conversion divides farmland parcels into smaller, and more isolated ones (Haddad et al., 

2015). One of the significant consequences of this division is the decrease in terms of 

productivity and quality of the agricultural products (Latruffe and Piet, 2014), thus increasing 

the costs of reconnecting separated habitats (Prugh et al., 2008).  

Many drivers influence these dynamics over time in peri-urban areas. They are controlled 

by five main drivers such as political, demographic, economic, social, and environmental 

drivers, as a result of land supply and demand, and affecting its patterns, structures, and 

functions. 

Over the past few years, some studies have contributed to describe the effects of landscape 

change (Abdollahzadeh et al., 2012; Sklenicka, 2016; Su et al., 2014; Xiao et al., 2013) and to 

understand its drivers (Alexander et al., 2015; van Vliet et al., 2015).  They encompass a wide 
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range of drivers such as technological, recreational, tourism, landscape protection, cultural 

(Bürgi et al., 2017; Eiter and Potthoff, 2007; Plieninger et al., 2016), agricultural intensification 

(Quan et al., 2006), transport infrastructures (Galster et al., 2001; Irwin et al., 2007; Levia, 

1998; Nechyba and Walsh, 2010; Torrens and Alberti, 2000), and land price (Nickerson et al., 

2012). They together, in a complex interactions process, are the mechanism that leads to LUCC 

(Bürgi et al., 2004; Busck and Kristensen, 2014). 

As shown, there are plenty of driving forces responsible for LUCC. One of the most widely 

studied is the land price. This driver has been studied over the years by several researchers 

alike since the initial studies of Adams et al. (1968), Clonts (1970), Fallah et al. (2012), Hushak 

(1975), and Hushak et al. (1979), analyzing several indicators that can influence the land 

prices. Complex interactions among landowners and urban developers lead to increase in 

farmland prices (Nickerson et al., 2012). Capozza and Helsley (1990) and Plantinga et al. (2001) 

presented one of the first works in this area, identifying the market price land as a valuable 

index in the decision. Landowners have the choice to rent or not to rent, buy or not to buy, 

sell or not to sell (Ettema et al., 2007; Koomen et al., 2007). Economic theory specifies that 

land values are equal to the number of expected returns (Pope, 1985), being the relation 

between land price, land income, and discount rate. Capozza and Helsley (1990) created a 

schematic diagram to illustrate urban and agricultural land prices and rents as a function of 

distance to city centre (Fig. 1.2), demonstrating that urban growth affects urban and 

agricultural land prices. 

 

Figure 1.24 – Land prices and distance to the city centre (adapted from Capozza and Helsley, 1990). 



An agent-based approach to model farmers' land use cover change intentions 

 

59 

 

Several researchers have identified other drivers that have been influencing land price in 

peri-urban areas such as water (Ding, 1999), negative externalities of urban development 

(e.g., air and water pollution), and land preservation (Brueckner, 1990; Engle et al., 1992).  

3. Farmers’ role on LUCC 

Progressive land-use changes – from agricultural land into urban land – generate new 

challenges and opportunities. Land agents are motivated by different interests and pursuing 

different strategies such as: (1) speculators or developers, who are waiting to take advantage 

of urban development and obtain the highest profit margin (Bhatta, 2010; Brown et al., 1981); 

(2) farmers, who are affected by urban development and intend to capitalize on their 

investment (Ettema et al., 2007; van Vliet et al., 2015); and (3) farmers, who opt to own a land 

property for the amenity qualities and for a higher life quality (Paül and McKenzie, 2013; 

Valbuena et al., 2010b). Despite the specific objectives of each actor, they are most of the 

times influenced by emotional intentions that may affect their decisions (Jiang, 2007; Jiang et 

al., 2007; Loewenstein and Lerner, 2003). 

Farmers decisions and their participation in land markets as buyers, sellers, developers, and 

renters (Berger, 2001; Fazal et al., 2015; Kaiser and Weiss, 1970) have consequences for land 

use conversion. They play a crucial role in making decisions (Ettema et al., 2007), and they can 

supply financial investment and control future land use occupation (Lubowski et al. 2008).  

Those who manage the land, in peri-urban areas face challenges arising from the proximity 

of land to an urban centre. Some descriptive studies have been done to analyse decision-

making processes on peri-urban areas (Berry 1978; Heimlich and Anderson 2001; Heimlich and 

Barnard 1992). Urban pressures present farmers with the choice between maintaining their 

agricultural activities and maximising the production potential of their crops or selling their 

farmland to land speculators. Lopez et al. (1988) analyse this dichotomy and Heimlich and 

Anderson (2001) evaluate the behavioural response of peri-urban farmers regarding urban 

development, income from agricultural production, agritourism, and off-farm employment. 

Capozza and Helsley (1990) consider the influence of uncertainty about future land rents as 

the best opportunity to transform farmland into urban development. These studies propose 
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that land use transformation occurs when the value of expected urban development rents 

exceeds the value of agricultural rents.  

Farmland location is a determining factor for economic sustainability. Different drivers 

influence agricultural profitability and land valuation. Drivers such as farmland proximity to 

other farmland, ready access to the transport network, proximity to agricultural cooperatives, 

proximity to the urban growth boundary, commercial markets (imports, exports), and large 

consumers (Livanis et al., 2006), water costs (Ding, 1999), negative externalities of urban 

development (e.g., rising prices, and air and water pollution), and growth control instruments 

(e.g., land preservation measures) (Brueckner, 1990; Engle et al., 1992) can be determinants 

in the land-use conversion. 

Different actors have different goals on land management issues. Real estate speculation is 

crucial to those who appreciate land values. Land-use conversion is linked to landowners' 

decisions and their participation in land markets as buyers, sellers, and developers, and on 

tenants to their involvement in land rent market. They play a fundamental role in what will 

take place in the land use in the future (Ettema et al., 2007), and they can supply financial 

investment and control future LUCC (Lubowski et al., 2008). The conversion of natural land to 

artificial surfaces must always have the approval of the policymakers (Bryant et al., 2010; Fazal 

et al., 2015; Valbuena et al., 2010b). They verify the viability of proposed projects and if 

conflicts with strategic spatial planning defined for a specific area. These strategies involve the 

control of land in its size, structure, and in the intention to preserve the biodiversity. 

Understand actors’ behaviours, identifying their intentions regarding land management 

under different scenarios is relevant towards a better land use management in the future. 

4. Population and urbanisation in Portugal 

Population growth has been in the early stages the push factor of urbanisation in Portugal. 

People from rural areas moved to the cities especially to the metropolitan regions of Lisbon 

and Oporto (mainly in the 1960s), who migrated due to the expectation to find better 

opportunities. These areas are mostly characterized by high population density, and very 

tertiarised (Statistics Portugal, 2011). The total population in mainland Portugal more than 
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double between 1864 (first general population census) and 2011 (15th population census). 

From 4.3 million inhabitants to over 10 million inhabitants in 2011 (Statistics Portugal, 2011). 

This population is mainly concentrated in the coastline from Viana do Castelo to Setúbal, and 

along the Algarve region coast (EEA, 2006; Gomes, 2017). Urbanisation was more intense in 

the decade of 1980s and 1990s mainly in the two metropolitan regions, characterised by a 

clear polycentrism (Carmo, 2013). According to the work developed by Abrantes et al. (2019), 

the majority of the municipalities in these two metropolitan regions are characterised by 

urban sprawl forms. The spatial patterns of urban development in Portugal have registered 

significant changes over the last decades. The evolution of land use pattern has occurred 

mainly in the fringe of these two metropolitan regions, and have involved changes from 

agricultural land into artificial land, mostly to residential and tourist settlements, industrial, 

and commercial surfaces.  

 

Land use evolution: 1995-2010 

In 2010, mainland Portugal was mostly covered by forest and semi-natural areas (54.47%), 

followed by permanent crops and heterogeneous agricultural land (21.84%), non-irrigated 

land (6.37%), pastures (5.16%), artificial surfaces (5.11%), permanently irrigated land (5.03%), 

and by water bodies and wetlands (2.01%) (Fig. 1.3 and Table 1.2). 
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Figure 1.35– Land use/cover in 1995 and 2010 in mainland Portugal. Land use classes: 1 - artificial surfaces; 2 

- non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous agricultural land; 5 - pastures; 6 
- forest and semi-natural areas; and 7 - water bodies and wetlands (data source: DGT, 1995, 2010). 

 

Table 1.22 – Land use/cover in 1995 and 2010 (%) in mainland Portugal. Land use classes: 1 - artificial surfaces; 

2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous agricultural land; 5 - pastures; 
6 - forest and semi-natural areas; and 7 - water bodies and wetlands (data source: DGT, 1995, 2010). 

Year/ LUC 1 2 3 4 5 6 7 

1995 3.82 9.93 4.89 22.00 7.24 50.48 1.64 

2010 5.11 6.37 5.03 21.84 5.16 54.47 2.01 

 
 

The Portuguese agricultural sector evolution suffered many changes during the last 

decades. It experienced a continuous decrease of agricultural producers, from 550,000 in 1989 

to 278,000 in 2009, and a decline of the utilised agricultural area was registered in the same 

period, from 4.1 to 3.5 million hectares.  

During 1995 and 2010 significant LUCC occurred. All agricultural land use classes decreased 

during this period, while forest and semi-natural areas and artificial surfaces increased. 
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Artificial surfaces, from 1995 to 2010, increased as a result of the loss of forest and semi-

natural areas (51,936 ha), permanent crops and heterogeneous agricultural land (29,183 ha), 

and permanently irrigated land and pastures (more than 10,000 ha each) (data source: DGT, 

1995, 2010). Moreover, the increase of forest and semi-natural areas were verified as a result 

of the loss of all agricultural land use classes (Table 1.3). 

 

Table 1.33 – Cross-tabulation of land use/ cover between 1995 and 2010 in mainland Portugal. Land 

use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and 
heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies and wetlands (data 
source: DGT, 1995, 2010). 

1995\ 
2010 

1 2 3 4 5 6 7 
Total 
(ha) 

1 333047 8037 10289 29183 10211 51936 371 443074 

2 47 455061 12203 29988 41809 11596 8 550712 

3 83 33615 359876 26504 8730 7303 20 436131 

4 169 80187 27923 1651908 24546 106788 10 1891531 

5 46 71415 6198 24584 331998 12778 4 447023 

6 2782 75220 15301 156625 194704 4272644 303 4717579 

7 273 4153 998 8957 5429 9853 144388 174051 

Total (ha) 336447 727688 432788 1927749 617427 4472898 145104 8660101 

 

 

Driving-forces 

Physical, environmental, demographic, social, economic, cultural and political conditions 

have influenced the land use patterns both temporarily and spatially in the past few decades 

in Portugal. Some works have been published related to the driving forces that have been 

responsible for LUCC in Portugal. For instance, the works developed by the LANDYN Project 

(DGT, 2013) and Meneses et al. (2017), analysed the entire territory; De Brum Ferreira (2001) 

studied the Alentejo region; Teixeira et al. (2014), analysed the central region of Portugal; and 

Moreira et al. (2001) and Pôças et al. (2011), studied the driving forces responsible for the 

LUCC in the North of Portugal. These studies identified that the main driving forces that 

influenced the evolution of artificial surfaces in the past few decades were the gross domestic 

product, resident population, and employed population in the tertiary sector. The land 

conversion to artificial surfaces has been one of the greatest LUCC occurred in Portugal in the 

last few decades with negative impacts for the environment. Moreover, the drivers that were 

identified as the main responsible for the agricultural land-use changes have been the gross 

domestic product, the employed population in the primary sector, and the European 
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agricultural funds. And lastly, the driving forces that have been the main responsible for the 

forest land change, in the last decades, are the fires, gross domestic product, European funds, 

and the employment (Beilin et al., 2014; Jones et al., 2011; Ribeiro et al., 2014).  
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Conclusion Chapter 1 

LUCC is a complex conversion process. LUCC is the result of interaction in space and time 

between environmental and human dimensions. It is considered as the most significant issue 

that has more impacts on physical and social aspects. Thus, LUCC plays an essential role in the 

livelihood of communities.  

In this chapter, we examined the land use/cover, particularly in peri-urban regions, 

identifying the main actors, the drivers, and the main causes and consequences of the LUCC 

in these areas. In the next chapter, we will explore how geographic modelling can be applied 

in the LUCC analysis. 
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Chapter 2 – Geographic Modelling, Complexity and Land 
Use: A Review 
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Introduction Chapter 2 

Complexity theory as a new science, with roughly 50 years of age, had gradually advanced 

in the past decades. It integrates interdisciplinary subjects, such as networks and graphs, 

fractals, self-organising systems, chaotic and cybernetic systems. Geography has emerged as 

an essential field to describe, to understand, and to explain connections between human and 

physical interactions in space and time. 

This chapter discusses and introduces the bridge between the classical geographical models 

and the modelling techniques. We presented some theories which have taken a view of 

geography as a complex social process. The purpose of this chapter is to identify current 

approaches to understand and to explain geographical procedures. 

Chapter 2 outlines a theoretical overview of landscape ecology, geographical models, and 

complexity science. Firstly, in landscape ecology, we identified its emergence and importance 

in the study of LUCC. Secondly, we presented some of the most widely cited geographical 

models. And finally, considering the complexity science, we recognised how this science can 

be useful in the study of LUCC. 
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1. Earlier studies in LUCC analysis 

The study of the landscape was firstly introduced in the researches of Alexander von 

Humboldt (1769-1859), Charles Darwin (1809-1882), Alwin Oppel (1849-1929), and Paul Vidal 

de la Blache (1845-1918). It was with Vidal de la Blache, a French geographer that the study 

of landscape incorporates not only natural conditions but also lifestyle (‘genre de vie’), and 

settlement patterns, implying composition, structure and function of landscapes. Since then, 

the landscape became a central subject in geography. Landscape methods such as field 

surveys, maps, and terrain photographs have been helping in its analysis and interpretation. 

Nevertheless, it was only with the first use of aerial photography (after the First World War), 

that landscape gave the first steps, over the bird’s-eye perception. This allowed the analysis 

of complex patterns (Davis et al., 2016; Turner, 2005).  

During the 1960s and 1970s, when geostatistics was firstly applied, landscape studies 

became old fashioned. However, in the following decade, the Dutch WLO (The Dutch 

Association for Landscape Ecology) revitalise this science. Since then, landscape studies have 

been studied by ecologists, which focused their analysis on ecological processes, by 

geographers in the analysis of the relationship between the space, heritage and social aspects, 

and by architects which concentrated their studies on scenery. 

Due to different meanings attributed to the landscape by the inter and transdisciplinary 

sciences UNESCO (The United Nations Educational, Scientific and Cultural Organization), 

World Heritage and the European Landscape Convention introduced two formal definitions. 

In 1996, UNESCO defined landscape has an interaction between nature and humans, reflecting 

the evolutions of society and settlement over time, influenced positively or/and negatively by 

physical, social, economic and cultural aspects. In its turn, the European Landscape 

Convention defined the landscape as perceived by people as a result of multi-interactions 

between environment and population (Council of Europe 2000).  

Since 2000s new landscape networks have emerged such as Landscape Europe, Landscape 

Tomorrow, and UNISCAPE. They aimed to apply scientific research into planning and managing 

landscapes, often supporting education and training at different scales. Since the 2000s, 

landscape ecology has made successive progress in both a practical and theoretical 

perspective. Wu (2013) enumerated the ten most recent advances in landscape ecology 
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namely in (1) the study of pattern–process–scale relationships of landscapes; (2) connectivity 

and fragmentation; (3) scale and scaling; (4) spatial analysis and landscape modelling; (5) 

LUCC; (6) history and legacy effects; (7) climate change interactions; (8) ecosystem services in 

changing landscapes; (9) landscape sustainability; and (10) accuracy assessment and 

uncertainty analysis. 

LUCC has been studied in landscape ecology (Cen et al., 2015; Hietel et al., 2004), Geography 

(Musa et al., 2017; Sirami et al., 2010), and Economy (Shi et al., 2018; Triantakonstantis and 

Mountrakis, 2012; Walker, 2001), incorporating driving forces to identify its connections 

(Heistermann et al., 2006). The analysis of spatial morphology, structure, location, distance, 

linkage, and evolution, studied in landscape science, are fundamental to Geography. These 

analyses have been implemented using different methods. Several researchers such as Batty 

and Longley (1986), Triantakonstantis and Mountrakis (2012), Antrop and Van Eetvelde 

(2000), and White and Engelen (1993) have been analysed the spatial dimension of the 

landscape using fractal analysis and landscape metrics. Fractal analysis was firstly used by 

Mandelbrot in 1975 (1975) to study regular and irregular objects at different scales, whereas 

landscape metrics were firstly used in the 1980s to measure the fractal geometry 

(Mandelbrot, 1982). Both methods have been used to quantify the spatial heterogeneity of 

patches and to measure some spatial elements such as the size, patch density, fractal 

dimension, and edge density. 

An extensive set of landscape metrics and spatial statistics approaches are available to 

quantify spatial patterns. They can be detected, mapped, and analysed integrating GIS 

techniques, such as a) the percentage of built-up areas that measures the dimension of built-

up areas (in the percentage of the total area) quantifying the land use consumption (Sudhira 

et al., 2004). It is the ratio of the extent of the built-up areas, to the size of the total area of 

each unit. Some studies have been developed to analyse it, e.g., (Herold et al., 2003; Loibl and 

Toetzer, 2003); b) dispersion that quantifies the spatial distribution of patches (Hayek et al., 

2011). It identifies the dispersed spatial arrangement and irregular and discontinuous 

fragmentation of patches (Burchfield et al., 2006; Salvati, 2014); c) urban permeation, which 

measures how far the built-up areas have extended through a given territory (Hayek et al., 

2011). It estimates the degree of permeated settlement areas (Hayek et al., 2011); d) density, 

that quantifies the average of patches (Torrens and Alberti, 2000); e) clustering, quantifying 
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the occupation of a small part of the land area in a developed area (Gordon et al., 1997); f) 

centrality, which corresponds to the distance from residential and no residential areas to 

Central Business District (CBD) (Bhatta et al., 2010); g) weighted urban proliferation, that 

corresponds to the product of the dispersion of the patches (Jaeger and Schwick, 2014); and 

for instance, the h) metric of utilisation density, which measures the number of people 

working or living in a built-up area (per km2). Built-up areas with more workplaces and 

inhabitants are considered more intensively, than in areas with a lower density or workplaces, 

and or inhabitants (Bernstein and Shierholz, 2014; Paulsen, 2012). 

These, as well as a wide range of other landscape metrics and methods, allow to measure 

landscape performance and contributes to analysing land use impacts. Along with these 

different methods, other approaches have been used to analyse LUCC. LUCC models are one 

of the most widely used approaches. In the next section, we will explore in detail the different 

LUCC models mentioned in the literature. 

2. Geographical models and LUCC 

LUCC models theorise, explain and create a mental abstraction of a land-use transformation 

in the future. They are used to recognise and describe the spatial analysis between people and 

environment, to apply advanced computational methods, to explore and test hypotheses 

based on geographic theory, to reproduce characteristics of the complex dynamics, and to 

reach and to understand human interactions (Heistermann et al., 2006; Verburg et al., 2006).  

LUCC models seek to reproduce the real world and to identify behaviours to understand 

transition processes (Macal, 2016). In the last years, LUCC model’s popularity has significantly 

improved due to upgraded computer power capabilities. They have been applied in many 

scientific fields, such as to understand the evolution, to develop hypotheses, and to make 

predictions. The modelling techniques have been asked to understand complex dynamics and 

to help decision-makers in the spatial planning process (Hersperger et al., 2018; Weber, 2003).  

LUCC models have been developed since the 1950s and 1960s (Yu et al., 2011) to study the 

urban growth phenomenon. The analysis of the complexity of land-use systems involves a 

multidisciplinary assessment (Agarwal et al., 2002), and scientific knowledge (Magliocca et al., 
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2015; Wang and Li, 2011). They have been performed by a multidisciplinary assessment 

(Agarwal et al., 2002; Verburg et al., 2006) analysing the relationship between different types 

of behaviour to understand complex dynamics, and artificially recognise what can happen in 

the real world (Macal, 2016).  

Different typologies of LUCC models have been identified in the literature. Several works, 

reviewing the existing LUCC models have been published in the last years. Lambin et al. (2000), 

focused their analysis on agricultural intensification models, in which divided in four 

categories: stochastic (e.g., transitional probability models); empirical-statistical (e.g., 

modelling spatial models); process-based (e.g., behavioural models and dynamic spatial 

models); and optimisation and dynamic simulation (e.g., deterministic and stochastic models). 

Moreover, Briassoulis (2000), classified LUCC models as econometric, optimisation, spatial 

interaction, and integrated models. Veldkamp and Lambin (2001) analysed the spatially 

explicit LUCC models. Additionally, Verburg et al. (2004) and Heistermann et al. (2006) focused 

their analysis on the characteristics of land-use systems. And more recently, Brown (2013) 

identified five key types of LUCC models: machine learning models, CA models, sector-based 

economic models, spatially disaggregated economic models, and ABM. 

One of the most commonly accepted LUCC models division is proposed by Heistermann et 

al. (2006). They identified three different categories of LUCC such as geographic land-use 

models, related to land characteristics and suitability (Koomen and Stillwell, 2007); economic 

land-use models (Bouman et al., 1999), referred to economic theory; and integrated models, 

coupling different modelling approaches to better answer the research question (Hawkins and 

Nurul Habib, 2019). Table 2.1 described three of the most widely cited LUCC models in each 

of the three categories mentioned above. 
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Table 2.14 – LUCC models: geographic, economic, and integrated. 

Category Model Description Scale Source 

Geographic 

CLUE 

CLUE simulates future LUCC: deforestation, 

land degradation, urbanization, and land 

abandonment. 

Global 
(Verburg et al., 

2002) 

DINAMICA-EGO 
It supports the development of 

geomodelling applications. 
National 

(Oliveira et al., 

2019) 

SLEUTH It is a modified CA to simulate future LUCC. Global (Clarke, 2018) 
 

Economic 

IMPACT 

It assesses alternative futures for global 

food supply, demand, trade, prices, and 

food security. 

Global 
(Rosegrant et al., 

2008) 

CAPRI It supports decision making related to CAP. Regional 
(Espinosa et al., 

2016) 

MIRAGE It is devoted to trading policy analysis. Global 
(Laborde and Valin, 

2012) 
 

Integrated 

LUMOCAP 

It evaluates LUCC and their impact on the 

rural landscape of the EU under the 

influence of CAP. 

Regional 
(van Delden et al., 

2010) 

Nexus 
It represents the processes of global 

agricultural intensification. 
Global 

(van Delden et al., 

2010) 

MagPIE 
It combines economic and biophysical 

approaches to simulate LUCC scenarios. 
Global (Popp et al., 2014) 

 

2.1 LUCC in classical geographical models 

Classical geographical models have in common the study of interaction, diffusion, migration 

and location, identifying who? what? why? and where?. They have been applied to represent 

land-use models (integrating principles of complexity theory) based on urban economics and 

social physics. Following, it is described seven of the most significant and widely cited 

theoretical models in geography related to land-use study such as (a) Von Thunen model; (b) 

Weber's model; (c) Walter Christaller's central place formulation; (d) Alonso's model (e) the 

gravity model of spatial interaction; (f) the Hagerstrand's model; and (g) Tobler's law. 

(a) Von Thünen model: In 1826 Johann von Thünen published the first study based on this 

theory in Der isolierte Staat. Von Thünen model has three different conditions representing 

the agricultural situation around a city: a) isolation (isolated market); b) ubiquitous land 

characteristics (the land around the market is entirely flat and fertility); and c) transportation 
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(there are no transport infrastructures) (Kanemoto, 1976). Von Thünen predicts agricultural 

land use based on concentric bands centred on the urban core, estimating land and transport 

costs (Kelly et al., 1996). As much closer to the urban core, the price of agricultural land 

increase (Parr, 2015). Consequently, the most productive agricultural activity is those located 

closest to the market, in which the Von Thünen model relates production and transport costs.  

(b) Weber's model: After Von Thünen's model, more researchers have created more 

complex location models. Weber in 1909 established an approach for the place of 

manufacturing activities. Weber identified two principles: (i) the transportation and labour 

costs and; (ii) the optimisation of industrial location (Weber, 1982). 

(c) Walter Christaller's central place theory: In 1933, Walter Christaller developed a theory 

that explains the location and the urban system dimension. This theory introduces a hexagonal 

lattice as an optimal mobility solution (Getis and Getis, 1966). The Christaller's central place 

theory comprises two main ideas: (i) threshold, in which the minimum population is critical to 

provide a good or service; and (ii) a range of goods or services, that represents the maximum 

distance that people can travel to purchase goods and services. Christaller's theory as the 

following main principles: (i) isotropic surface; (ii) regularly distributed population and 

resources; (iii) analogous purchasing power for all consumers; (iv) the transportation costs 

equal in all directions and proportional to distance; and (v) and no excess profits. 

(d) Alonso's model: Years later, Alonso (1964) developed a new theory based on bid-rent, 

transports costs, and proximity to the city centre. Bid-rent is explained by an urban land-use 

process, that defines the decision-makers behaviours, and the money that the tenant pays. 

Alonso's model assumes that (i) transport is accessible in all directions; (ii) all employment, 

goods, and services are available at the city centre only; (iii) tax rates are uniform; and (iv) 

both buyers and sellers know the market. 

(e) The gravity model of spatial interaction: It was designed in similarity with the physical 

law of gravitation (Isaac Newton - 1687). This gravity model predicts the best service location 

and analyses the distance, in which, people should travel to access to the specific service. 

(f) Hagerstrand's model: Hagerstrand theory describes the distribution of economic or 

cultural characteristics in nebula-like clusters. This theory is based on the principle that 

farmers who had accepted the subsidies most recently tended to be the neighbours of 
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previous adopters. This theory is found in three steps: (i) geographical proximity; (ii) the use 

of Monte Carlo or similar mathematical simulation techniques; and (iii) “the resistance 

concept”. These models presented an innovation in the study of the location theory and had 

been researched by many scientists over the last years. 

(g) Tobler's law: Everything is related to everything else. But near things are more related 

than distant things. This sentence is the principle of the first law of Geography introduced by 

Waldo Tobler’s in 1969 (Miller, 2004). Tobler's law is based upon the friction of distance and 

the distance decay effect, where distance itself delays interaction between two or more 

places. This law was first applied by Tobler to urban growth systems and is related to spatial 

dependence and spatial autocorrelation (Tobler, 1970).  

The above-mentioned geographical models have been the basis for many works in the field 

of land use science, supported by their theories and their experimental results (e.g., Wilson 

(1998), Phipps and Langlois (1997), White et al., (1997)). 

 

2.2 The role of GIS and spatial analysis in LUCC models 

GIS has emerged in the last few decades as an important science, using digital cartography, 

remote sensing, and database management (Burrough, 1986). GIS data can be shown in the 

vectorial and raster format. Vectorial data represents the real contour of objects, while raster 

data represents the object into discrete cells or pixels. The advantage of using raster data is 

mostly its easy management, using some procedures such as aggregation and comparison 

(Rocha, 2012). 

GIS can use statistical spatial analysis techniques to manipulate and to create relationships 

between spatial data. It also enables integrate deterministic and stochastic predictive analysis 

establishing artificial relationships between different spatial data (Macal, 2016). 

By the advantages mentioned above, GIS techniques were critical in the LUCC studies, in 

which multi-process approaches can be performed. These different processes can be achieved 

as follow: (i) identification of model's purpose; (ii) gathering data process; (iii) data 

preparation; (iv) variables selection and conversion; (v) processing and assessing; (vi) 
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validation, and (vii) applying and maintaining the model. Below we describe the points (iv), 

(v), and (vi), in which GIS approaches were applied.  

 

Variables selection 

Sensitivity analysis identifies the connection between parameters and the state or time path 

of endogenous variables to the system (Lilburne and Tarantola, 2009), assessing the absence 

of systematic errors. This approach allows decreasing the dimension of the variables selecting 

insensitive variables (Trucano et al., 2006), identifying the key features and patterns in the 

data (Behrens, 1997; Gelman, 2004). One of the most comprehensive techniques used to 

reduce the dimension of the variables is the binomial logistic regression and the multinomial 

logistic analysis. The binomial logistic regression is used to estimate a dichotomous dependent 

variable, whereas the multinomial logistic analysis is suitable for regression analysis with 

multinomial responses. Furthermore, select variables from other similar works and identify 

the most widely used, is another technique that can be performed (Rocha, 2012) 

 

Variables conversion 

Different normalization techniques have been used to transform data into a range of fixed 

values, such as fuzzy logic (Jiang and Eastman, 2000; Zadeh, 1965), multi-label classification  

(Omrani et al., 2017), Z-score (Altman, 1968), and min-max (Jain et al., 2005). Fuzzy logic is 

one of the most widely used. Studies based on fuzzy logic have been applied in several 

scientific areas such as robotics, computer modelling, engineering and geographical studies, 

e.g., Asakereh et al. (2014), Kainz (2001), and Guesgen and Hertzberg (2001). The fuzzy 

distance operators available in GIS environment define the shortest distance at each grid 

intersection to a set of target places. Fuzzy distance makes the data more accurate and is more 

appropriate for dealing with real-world problems. In fuzzy logic, there are three basic 

operations: union, intersection, and complement (Mizumoto and Tanaka, 1981) (Fig. 2.1).   
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Figure 2.16– Fuzzy operations. 

 

The fuzzy distance as a measure of fuzzy numbers in Euclidean space (Al-Ahmadi et al., 

2009) estimates the shortest distance in the plane (Danielsson, 1980), which corresponds to 

the distance between point x and point y (Fig. 2.2). 

 

Figure 2.27– Euclidean distance. 

 

In fuzzy logic, each location has a degree, e.g., between 0 and 1 (Fisher, 2000), and must 

have x, y locations, Xa, Ya and Xb, Yb. The distance between them can be expressed by the 

Pythagorean equation, which reveals the distance between two locations in a single value. 

Once, one of the two sites is represented as a fuzzy object, the sites need to be modelled as a 

fuzzy number. Another type of data normalisation is Boolean, in which only two values are 

considered - true or false (e.g., 0 or 1) (Fig. 2.3).  

 

Figure 2.38– Fuzzy and Boolean methods. 
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Processing, assessing and validation 

Calibration and validation are critical processes to land-use models. Calibration is the 

process to adjust the parameters to improve the model outcomes, reducing divergences 

between the observed and simulated results, whereas validation is the process for evaluating 

the quality of the outcome, verifying the tolerable range of accuracy (Rykiel, 1996). The 

efficiency of these techniques is dependent on the available data. 

LUCC are frequently calibrated to reproduce known past land-use patterns (Silva and Clarke, 

2002). When enough data is available, the model is validated separately (Batty and Torrens, 

2005; Kok et al., 2001), which means that the data used for validation is not used for 

calibration. A separate calibration can identify biased or overfitting models (Radosavljevic and 

Anderson, 2014). The accuracy assessment can be evaluated between two-time periods (t1 

and t2). The last time-period can be predicted and compared to a reference map. If the 

reference map and the predicted map (for the same period) reveal a high degree of similarity, 

it will be demonstrated that the model will be successful in predicting the LUCC in the future 

(Mishra et al., 2014; Pontius et al., 2004). 

Two different kinds of data sets must be used for calibration and evaluation procedures. 

Separation of time and space are one of the techniques used to calibrate data from the 

validation data set. The calibration method performs the statistical regression on the change 

quantity between point t0 and t1. The fixed limits and the regression relationship can be used 

to extrapolate the changes between point t1 and t2. A validation technique establishes the 

predicted map of time t2 to the reference map of time t2. The difference between the 

calibration and validation procedures can help to ensure that the model is not over-fitted 

(Pontius et al., 2004). Validation of LUCC models is implemented both qualitatively and 

quantitatively. Qualitative validation comprises the assessment of plausibility (An et al., 2005), 

clarity and intelligibility in the model (Acevedo et al., 2008). Quantitative validation connects 

models results in real-world data or results of other models (Acevedo et al., 2008; Parker et 

al., 2003).  

Due to the uncertainty and complexity of LUCC models, different techniques to validate 

models are used. Visual interpretation is one of these techniques, providing a better 

evaluation of model performance. However, this technique has as a disadvantage the fact of 
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visual interpretation is sometimes subjective, which means that a good result for one 

specialist could be a bad result to another (Butt et al., 2015; Puig et al., 2001). In this way, 

Brown et al. (2005) propose the concept of predictive accuracy (aggregate similarity) and 

process accuracy (spatial similarity). Predictive accuracy corresponds to the assess whether 

LUCC is located (van Vliet et al., 2013) (e.g., fuzzy set and multi-resolution approach), while 

process accuracy refers to measures whether LUCC is simulated realistically (Brown et al., 

2005) (e.g., landscape metrics and fractal dimension of patches). There are other methods 

employed such as conversion matrix e.g., Li and Yeh (2001), Receiver Operating Characteristic 

(ROC) e.g., Hajian-Tilaki (2013), landscape metrics and spatial statistics e.g., Ménard and 

Marceau (2007), fuzzy polygon matching techniques e.g., White (2006), and kappa simulation 

statistics e.g., van Vliet, Bregt, and Hagen-Zanker (2011) and Hasbani et al. (2011). The kappa 

statistic (or kappa coefficient) is the most widely used for this purpose. Kappa measures inter-

rater agreement between categorical variables x and y, which evaluate the prediction 

performance of classifiers (Cohen, 1960). A Kappa of 0 indicates agreement equal to chance, 

while a kappa of 1 indicates a perfect agreement (Viera and Garrett, 2005). 

Although there are several techniques to validate LUCC models some studies have 

demonstrated that some models cannot be validated. Konikow and Bredehoeft (1992) and 

Oreskes et al. (1994) explained some arguments. The main issues are the following: i) it is not 

possible to prove the veracity of any model, except for a closed system; ii) the relation 

between the scale of the process and the scale of the representation is frequently 

unidentified; iii) the inevitable existence of errors in parameterization during a simulation; and 

iv) errors might raise within a big-time span of the validation. Thus, validation is an open-

finished challenge without an ending (Aumann, 2007). Furthermore, the using a specific 

validation method does not mean that this could be the best one, and it is not necessarily an 

indication of the quality of the accuracy assessment of land-use models (Manson, 2007). Other 

studies have shown that LUCC is uncertain because human decisions that drive LUCC are 

infrequently deterministic (Manson, 2007), and because LUCC is caused by biophysical, 

demographic, and socioeconomic drivers that are mutually influential (Lambin et al., 2001). 

Moreover, the uncertainty is also expressed in many land-use models, especially those that 

comprise stochastic algorithms to simulate LUCC (Koomen et al., 2007).  
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3. Integrating complexity science and Geography in LUCC modelling 

As an emerging approach complexity science is the study of a system to understand and 

predict the behaviours of complex systems. The original Latin word of complexity (complexus) 

has the meaning entwined and twisted together, which may be perceived as something that 

has two or more elements, and that cannot be analysed separately. Complexity science has 

fascinated in the last decades a large number of fields such as natural and social sciences.  

The engagement between Geography and complexity science agenda has increasingly 

aroused interest. New knowledge has been established to explore interconnected 

relationships, unpredictability, multi-dimension, multi-scale and multi-time, and non-linear 

thinking. 

3.1 Complexity theory: evolution, main principles and models 

Complexity theory describes how the local interactions between individuals in a system lead 

to emerging patterns over time (Holland, 1992). René Descartes in century XVII (1596-1650) 

defended that “nothing comes out of nothing”. This quote can in a simplistic way describes 

how complexity science has been developed. Does not exist a single definition of complex 

system and there is no consensus about it (Newman, 2009), partially due complex system 

theory itself became recognised correctly only in the 1990s (Waldrop, 1992). However, it is 

agreed that complexity science corresponds to a system with interactions in a set of entities, 

processes, and agents (Heppenstall et al., 2016; Mitchell and Newman, 2002), through an 

extensive network with no central control (Mitchell, 2006). Local interactions between agents 

and the environment can result in unexpected and unpredictable behaviours at the global 

level, in a new bottom-up approach (Massotte, 1996). These local or global interactions can 

have positive and negative responses that can influence the system state (Bennett and 

McGinnis, 2008). 

Furthermore, complex systems consider that connexions and interdependencies are 

challenging to describe, to predict and to manage (Magee and de Weck, 2004), and they are 

the result of collective behaviours. Complex systems are more than the sum of individual 

actions (Newman, 2009). For a system to be called complex, needs to have their components 

self-organised, and less dependent on environmental actions (Cotsaftis, 2009). Complexity 
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science explores the dynamic systems in a broad and multi-disciplinary context. Since the first 

approaches, complexity science has spread from several disciplines, and they have 

contributed to the understanding of complexity science. Following we present some of these 

fields and its principal object of study: 

- Catastrophe theory – studies systems presenting unexpected discontinuous changes 

(Thom, 1977); 

- Chaos theory  – studies the stability of procedures in response to changes of scale 

(Feigenbaum, 1978; Li and Yorke, 1975; Lorenz, 1963); 

- Cybernetics (by Norbert Wiener in cybernetics mathematics; William Ashby in 

cybernetics of mind; and by Claude Shannon in information theory) (Heylighen, 2007) 

– investigates the regulation of process as complex systems; 

- Fractal geometry – describes and analyse irregularity (Mandelbrot, 1982); 

- Artificial intelligence – model activities and information lows as network structures 

(Spector, 2006); 

- Genetic algorithm – studies the answers for both constrained and unconstrained 

optimisation problems (Holland, 1992);  

- Ecological systems theory – studies ecological issues at different levels (Villamagna et 

al., 2013); 

- Geographical complexity – studies the geographical issues related to the complex 

systems (Barabási et al., 2011; Batty, 2005; O’Sullivan et al., 2006; Thrift, 1999; Urry, 

2010); 

- Big data/ data science – analyse and manipulate data and subjects' behaviour (Börner 

and Scharnhorst, 2009; Marres, 2017; Stonebraker, 1986), and  

- Agent-based modelling – studies the interactions between people, things, places, and 

time (Axelrod, 1997; Epstein and Axtell, 1997; Epstein, 2002; Ilbert, 2007; Schelling, 

1978; Squazzoni, 2012).  

Next, we illustrated in Figure 2.4 the emergence of each scientific field in the corresponding 

decade (directly or indirectly studied by land-use science), since its beginning (in the 1940´s) 

until the present moment (2020´s) (Castellani, 2018). 
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Figure 2.49– The history of complexity science (adapted from Castellani, 2018). 

 

In the following, we described three principles of the scientific fields that gave origin to the 

complexity science, namely the self-organisation, nonlinearity, and order and chaos: 

i) Self-organisation is an essential concept in complexity science (Heylighen, 2008). In self-

organisation, the interactions inside the system, lead to the spontaneous emergence of an 

intelligible spatial structure without exterior coordination, where there is no hierarchy of 

command and control, neither internal or external agents that monitor the process  

(Heylighen, 2008). This concept is the spontaneous emergence of a global structure of local 

interactions (Bonabeau et al., 1997; Heylighen, 2008). 

ii) Nonlinearity is a method of continuous and discontinuous change, diverging, according 

to speed, intensity, and effect. In nonlinearity, the cause-effect relation is disproportional, and 

the systems may change in structure and function. In non-linearity, there is no possibility to 

“add any two solutions to the equations that describe it and obtain another, and multiply any 

solution by any factor and obtain another” (Ladyman et al., 2011).  

iii) Order and chaos dynamic is part of the system that competes or cooperates with another 

system (Rickles et al., 2007). Chaos dynamic is related to unpredictable behaviour in a system 
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(Robb and Jimmy Gandhi, 2016). In the emergence, agents interact randomly with other 

agents, rather than being planned or controlled. This emergence has two types: weak and 

strong. The type weak is linear and can be homogeneous, independent, additative and 

synchronous. In another way, the type strong is nonlinear and is heterogeneous, 

interdependent, non-additative and asynchronous (Chalmers, 2006; Lichtenstein and 

Plowman, 2009). 

The complex systems evolution often comprises disconnected time-scales. The 

disconnection or transition is the consequence of an aggregation of techniques of changes, 

since collective behaviours and relations, physical, economic, or social configurations, cause 

irreversible changes in a system (Vasileiadou and Safarzyńska, 2010). Rotmans et al. (2001) 

identified four stages of stability transition: pre-development, take-off, breakthrough or 

acceleration, and stabilisation (Fig. 2.5). 

1) In pre-development, indicators change only slightly, which does not exist a dynamic of 

equilibrium; 

2) In the take-off and acceleration stage, indicators change with growing speed, and the 

system starts to break; 

3) In the breakthrough or acceleration phase, the system changes structurally (Loorbach 

and Rotmans, 2006); and 

4) In the stabilisation stage, the speed of social change declines and a new dynamic 

equilibrium is achieved. 

 

 

Figure 2.510– Stages of transition (adapted from Rotmans et al. 2001). 
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These multi-stages provide a straightforward interpretation of what will occur throughout 

a transition process. The conceptual theory proposes a cyclic pattern, and a stabilisation stage, 

and can be the predevelopment stage for the next development stage. 

Complex systems studies are increasingly used in natural and social sciences (Ladyman et 

al., 2011), and provides a powerful tool to capture evidence about the world (Lempert, 2002). 

More recently complexity science has been studied in new fields of knowledge such as urban 

complexity (Bertolini, 2007; Bettencourt et al., 2007), and policy and evaluation (Befani, 2013; 

Gerrits and Merks, 2017; Geyer, 2003; Johnson, 2015; Mitleton-kelly, 2003; Morcol, 2012; 

Penn et al., 2013; Room, 2016; Silva and de Roo, 2010). 

In urban complexity have been studied urban form and energy (Salat and Bourdic, 2012), 

spatial strategies (Healey, 2006), food, energy, and water security (Romero-Lankao et al., 

2017), and the analysis of economic, demographic and urban morphology (Batty, 2008). 

Otherwise, policy and evaluation have been related to the understanding of collective 

decision-making.  

Whereas complexity science is in its early steps, it has had an impact on the development 

of computer models that can address simulation and modelling techniques. A model 

experiment can represent the application of simulation and modelling techniques in a complex 

system approach. Computer simulations have been considered to solve complex problems 

(Vangheluwe, 2001) and can integrate empirical data, entities, relations among objects; and a 

period. Simulations reproduce experimentally-observed real systems (real world) and can be 

divided into space and time (Fig. 2.6). 

 

 

Figure 2.611– Real systems vs abstract model. 
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A model is an abstraction of the world. Mathematical modelling has become an essential 

tool for the analysis of spatial phenomena, e.g., Batty (2005), and Encinas et al. (2007), 

suggesting a proper language to define complex behaviours (Marsan, 2009).  

There are three different types of mathematical modelling approaches to describe these 

dynamics: (1) deterministic; (2) stochastic; and (3) hybrid: 

 

(1) Deterministic: In deterministic models, the material properties are well known. The 

output of the model is entirely determined by the parameter values and the initial conditions, 

displayed by deterministic rate equations. A deterministic model can be stretched to account 

for the spatial organisation and has been effectively used to analyse reaction process (Batty 

and Longley, 1986; Musa et al., 2017). 

 

(2) Stochastic: Stochastic models have intrinsic randomness. The set of parameter values 

and initial conditions will lead to an ensemble of different outputs. 

 

(3) Hybrid: The hybrid model is a combination of both deterministic and stochastic models. 

Shanthikumar and Sargent (1983) suggested that hybrid models are used in analysis, 

optimisation, synthesis, gaining and in the comparison of alternative systems. Hybrid models 

avoid the difficulties associated with an only discrete or only continuous system 

representation. 

 

The increasing use of complex model simulations is related to the price (low cost), speed 

(faster) and reproducibility  (Iba, 2013). In the social science context, CA-Markov, ANN, and 

ABM have been widely used to describe and understand the dynamics of the system, to 

predict future behaviours. They have the advantage to remain simple but incorporating 

complex behaviours. The coupled approach of Geography and complex science in the study of 

LUCC modelling allow to describe, to understand, and to identify connexions among space-
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time patterns at multiple scales, relating interactions and nonlinearity between different 

factors.  

 

LUCC models in Geography 

Geographic modelling explain and predict geographical phenomena (Worboys, 2005). 

Theories and methods adopted from a new perspective of spatial simulation modelling have 

been used. The geographic models incorporate an accurate representation of geographic 

phenomena. They integrate an object-based and spatially-explicit approach linked to the 

complex systems dynamics (Mekni et al., 2012). They allow to better understand the 

spatiotemporal phenomena (Anderson and Dragicevic, 2016; Openshaw and Alvanides, 1999), 

through modelling human behaviours (Loewenstein and Lerner, 2003). 

Geospatial modelling represents an advance of geographic information science (Batty et al., 

2012) which has been contributed to an efficient way to reflect about new space perceptions 

(Blaschke and Merschdorf, 2014), answering the questions how? why? when? where? and 

what?. They create spatial knowledge and can be used as a support for spatial decision-making 

(Gounaridis et al., 2019; Lestrelin et al., 2017). 

Predicting and assessing future LUCC trajectories allow to identify their causes and 

consequences (Verburg et al., 2004). The complexity of land-use systems involve a 

multidisciplinary evaluation  (Agarwal et al., 2002), integrating a broad range of data such as 

biophysical, demographic, and socioeconomic variables (Houet et al., 2014; Silva and Wu, 

2012; Wang and Li, 2011). 

Currently there are a variety of LUCC models based on different empirical techniques, such 

CA (Li and Li, 2015), ANN (Morgado et al., 2014), ABM (Bert et al., 2011), multiple regressions, 

equation-based models (Parunak et al., 1998), system models (Nazemi and Wheater, 2015), 

statistical techniques (Lesschen et al., 2005), expert models (Landis, 1997), evolutionary 

models (Thrall et al., 2011), economic principles (Ward, 1961), spatial interaction (Silveira and 

Dentinho, 2010), evolutionary algorithms (Seixas and Nunes, 2007), genetic algorithms 

(Matthews et al., 2000), optimization techniques (Meyer et al., 2009), hybrid models (Berry et 

al., 1996), and microsimulation (Moeckel et al., 2003). One of the most widely used 
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approaches in LUCC simulation are CA, ANN and ABM (Li and Yeh, 2000; Stevens and Dragic, 

2006; Yüzer, 2004). They have been used to simulate LUCC dynamics, identifying its driving 

forces (Houet et al., 2010), and to capture the behaviour of individuals (more specifically in 

the case of the ABM). 

3.2 Cellular Automata 

CA has become the prominent modelling approach connected to complex system theory. 

The mathematicians Stanislaw Ulam and John von Neumann in the 1940s developed the CA 

method to investigate the behaviours of complex systems (Popovici and Popovici, 2002; 

Vangheluwe, 2001; White and Engelen, 1993). CA have identical automata cells organised on 

lattice points in a D-dimensional discrete space, in which the temporal change is expressed 

by: 
11( ) ( ( ) ( 1), , ( ))t t o t t nS x F S x X S x x S x X −+ = + + + , in which ( )tS x  corresponds to the state, in each 

automaton is located at ( )x  in the time ( )t ; F  corresponds to the state-transition function; 

 1 1, ,...,o nN x x X −= to the neighbourhood; and tS to the function that identifies locations. 

Traditionally CA is designed by five main elements: cell space; time step; cell states; cell 

neighbourhood; and transition rules (Jiao and Boerboom, 2006).  

Cell space (lattice) can be square (de Almeida et al., 2003), hexagonal e.g., Encinas et al. 

(2007) and Bays (1994), triangular e.g., Dyer and Rosenfeld (1981), or irregular e.g., Baran et 

al. (2011) (Fig. 2.7).  

 

Figure 2.712– Cell space: square (a), hexagonal (b), triangular (c), and irregular cell (d). 

 

Time step corresponds to the dynamics of each cell progress step by step (Wolfram, 1984) 

and identifies the temporal dimension. Most of the CA examples are synchronously (Regnault, 

2006). In synchronous mode, the numbers of cells change at once – in each time step. On the 

other hand, in the asynchronous mode for each time step, just one updating is executed to 

one randomly chosen cell (Schönfisch and De Roos, 1999).  
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Cell state defines the attributes in the system. Each cell can take just one state at every time 

steps. Cell states are represented by at least for two categorical states. In urban modelling, 

states can be characterised by urbanised or not urbanised (White et al., 2015). Every time the 

system is updated as a result of the evaluation of the transition rules in the interactive 

neighbourhood, and the state of each cell will be updated at any change (or the state will be 

maintained).  

In the cell's neighbourhood, each cell is influenced by the nearest cell (Ilachinski, 1987; 

Schiff, 2011). The neighbourhoods may have adjacent cell clusters defining distances to an 

individual automaton. The neighbourhood patterns are on Moore - 5x5 cells, Moore - 3x3 cells 

or Von Neumann (5 cells) method.  

Transition rules define how the state of one cell changes. Classic CA transition rules are 

deterministic. In some investigations, transition rules are modified into stochastic methods 

and fuzzy logic (Wu, 1998).  

CA became more common and popular when John Conway, in 1970, designed the Game of 

Life (Huang et al., 2009), the most popular 2-D binary CA. In this model, a finite space is divided 

into equal cells. The rules of the game are simple: on a grid, a set of rules is applied to the 

contents of each cell at each iteration of the automaton. It is represented by two states: ‘alive’ 

or ‘dead’ with an eight-cell Moore neighbourhood (White et al. 2015).  

A cell can “live” when a cell is “dead” at time t will be alive at time t + 1 (if three of its 

neighbours were alive at time t). In another hand, a cell can “dead” in two ways: overcrowding 

and exposure. The cell can die of overcrowding if more than three cells live and can die of 

exposure if there are less than two (Salen and Zimmerman, 2004). A cell can survive from the 

time (t) to time (t) + 1 if two or three of its neighbours are alive at the time (t)  (Gardner, 1970) 

(Fig 2.8). 
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Figure 2.813– Transition process of the game of life (adapted from Gardner, 1970). 

 

A ”lived” cell with 2 or 3 “lived” neighbouring cells will live for the next step (a0 to a1). Each 

cell with 4 or more “dead” neighbour’s cells will die (will be removed) for the next step (c1 to 

c2). Each empty (“dead”) cell adjacent to 3 neighbours is a “birth” cell, and it will turn into a 

“lived” cell in the next step (b0 to b1).  

Once the interaction begins, the transition rules are initially applied to “lived” cells to 

recognise whether they will be survivals (or not) for the next interaction. Next, all cells will be 

verified. If they meet the “dead” transition rule, they must convert or maintain the status for 

the following interactions. Lastly, entirely “dead” cells are analysed to identify where “births” 

will happen. Once these steps have been verified, the cells will modify or maintain their status, 

and then they will move to the next interaction. A similar practice is reiterated to produce 

succeeding generations (steps) until all cells are in a stable state (d0 to d1) or a blinkered state 

(e0 to e1 to e2) (Baran et al., 2011; White and Engelen, 1993; Wolfram, 1984). 

CA are one of the most widely used methods (Macal and North, 2010). It is a powerful 

method for studying complex systems and exploring principles of system evolution and self-

organisation (Mitchell, 1998). The simplicity of CA can create spatial-temporal configurations 

of great complexity over a restricted set of simple rules (Mitchell, 1998; Silva, 2011). CA are 

arranged in a regular spatial grid characterised by local interactions (Shalizi and Micheli-

Tzanakou, 2006), updated according to their neighbours.   

In 1907, Andrei Markov, a Russian mathematician, initiated the investigation of a new 

stochastic model. In this method, designed Markov chain, the results of a given test can affect 
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the results of the following experiment. Markov Chain is represented by a set of random 

variables (Diaconis, 2009), and has a transition probability matrix expressed by 1 2 1... n nt t t t +   

where nt corresponds to present time, 1nt +  to a point in the future, and  1 2 1, ..., nt t t −  to several 

locations in the past (Basharin et al., 2004; Levin et al., 2009).  

If the Markov chain has a restricted number of states, it is expressed by the following 

transition probability matrix (2.1): 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

....

....

... ... ...

....

n

n

n n n n

P P P

P P P

P P P

 
 
 
 
 
 
 
 

 

 

Markov chain outcomes are dependent on the present state and enable to divide between 

discrete and continuous time (Taylor and Karlin, 1998). 

 

CA for LUCC geospatial modelling 

Geospatial modelling is widely used in CA to model processes in space and time. Following 

successive theoretical explorations and structure improvements, CA has become a well-

established method for modelling LUCC in recent decades and has been widely used since it 

was introduced by Tobler (1979). CA has the ability to simulate dynamic development from a 

bottom-up perspective (Liu et al., 2008a), based on complex spatial forms (e.g. Agarwal et al. 

2002; de Almeida et al. 2003; de Kok et al. 2001; Li and Yeh 2002; Singh 2003; Wang and Li 

2011). CA-based on Markov chains is increasingly employed in LUCC (Dezhkam et al., 2017; 

Sang et al., 2011) incorporating the relationships between land use and driving forces that 

explains the LUCC in different periods. Some studies have been carried out regarding the 

usability of CA for LUCC simulation at different spatial resolutions. Large spatial resolutions 

make difficult the identification of detailed land-use transitions. Otherwise, CA models 

developed at small spatial resolutions have the advantage of a detailed resolution data, 

facilitating the identification of land use relationships, which is relevant to suggest and 

(2.1) 
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implement local, and sustainable environmental policies (Pan et al., 2010; Stanilov and Batty, 

2011). Small spatial resolutions are one of the most critical processes for land use planning 

and decision making (Antrop, 2004; Antrop and Van Eetvelde, 2000; Meeus and Gulinck, 2008; 

White and Engelen, 2000). Planners and decision-makers need to obtain high-resolution 

information on LUCC over time. However, there are few studies based on land use at small 

resolutions. It is mainly related to data availability (Bounfour and Lambin, 1999; Xie et al., 

2007). Some examples of CA-LUCC models are presented below in Table 2.2. 

 

Table 2.25 – LUCC models based on CA. 

Method Model Description Source 

CA 

MOLAND 

Provides a spatial planning tool used to evaluate, to 

monitor, and to model the urban development at the 

regional level. 

(Shahumyan et al., 

2014) 

SLEUTH 

Designed with predefined rules. SLEUTH uses four types of 

urban LUCC: spontaneous growth; new spreading centre 

growth; edge growth; and road-influenced growth. 

(Silva and Clarke, 

2002) 

RIKS 

It is developed at two scales. Macro-level: create LUCC 

based on socio-economic factors. Micro-level: allocate the 

cells to different land-use types. 

(Engelen, 1988) 

 

3.3 Artificial Neural Network 

ANN is a variant of the machine learning system inspired by the human brain neurons 

structure (Ahmad et al., 2017). ANN is an adaptive system that changes through the training 

time (Devi et al., 2013). The basic unit of computation in an ANN is the neuron (Monge and 

Crespo, 2017), which accepts inputs from other nodes with a specific weight. The output is a 

non-linear function, called activation function (Mishra et al., 2017), and performs a fixed 

mathematical operation (e.g., sigmoid, linear activation, piecewise linear activation, tangent 

hyperbolic, and threshold function) (Zamanlooy and Mirhassani, 2014). Each activation 

function is selected depending on the nature of the problem to be explained by the network. 

An ANN is categorised by three different types of nodes (Jain and Chakrawarty, 2017):  

(i) input layer - connects with the external environment; 
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(ii) hidden - is the intermediate layer between input and output, and 

(iii) the output layer - shows the pattern to the external environment. 

 

The learning methods in ANN are classified into supervised, unsupervised, and reinforced 

learning. In the supervised learning a segment of the training data performances as a teacher 

to the algorithm to fix the model; in unsupervised learning, a teacher is not present during the 

learning process; and in the reinforced learning a teacher is present but the expected output 

is not present (Carpenter and Grossberg, 1994).  

In the training process, weights are adjusted according to different algorithms. They are the 

gradient descent (with five different types) and the resilient backpropagation (Leema et al., 

2016). The most widely used algorithm is the backpropagation which spreads errors back 

during the training, e.g., Fan et al. (2018) and Anifah et al. (2017). 

There are several types of neural networks such as feedback (Djarfour et al., 2008), feed-

forward (Sawhney and Jeyasurya, 2006), multilayer perceptron (Sy, 2006), convolutional 

neural network (Liang and Hu, 2015), recursive neural network (Baldi and Pollastri, 2003), 

recurrent neural network (Cheng and Wang, 2007), long short-term memory (Hochreiter and 

Schmidhuber, 1997), sequence-to-sequence models (Doetsch et al., 2017), shallow neural 

networks (Soltanolkotabi et al., 2017), and Radial Basis Function (Orr, 1996). One of the most 

widely used is the feed-forward and Radial Basis Function. The feed-forward neural network 

was the first category of ANN created. Its data flows in one direction and have multiple nodes 

(or neurons) organised in layers. The nodes from adjacent layers have connections among 

them, in which no cycles in the network are presented. This network can have a single layer 

(does not have hidden layers) and a multi-layer perceptron (has one or more hidden layers) 

(Minemoto et al., 2017). The Radial basis function is a feed-forward network using a 

supervised training algorithm and organised with a single hidden layer of units (Kayri, 2015).  

ANN has been widely used to identify non-linear patterns. ANN is an emerged method 

(Ebrahimi et al., 2017; Mayoraz et al., 1996; Pijanowski et al., 2002) used for quantitative data 

modelling such as land use simulation (Morgado et al., 2014), climate forecasting, data mining 

and financial applications for knowledge induction and decision support. The ANNs share the 
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learning ability of humans and the principles of the human brain into the computer 

environment. 

The application of ANN has increased over the last few years due to advances in computer 

performance (Khan et al., 2013), and the increasing availability of ANN packages (Khan et al., 

2013). 

 

ANN for LUCC geospatial modelling 

ANN models have been used to detect and to monitor LUCC (Islam et al., 2018; Morgado et 

al., 2014; Pijanowski et al., 2002). ANNs use a machine similar to human behaviour (Bersini, 

2006) to quantify and model complex behaviours and patterns (Abdolrazzaghi et al., 2018; 

Aiolli et al., 2018). ANN is based on a machine-learning algorithm to model complex 

behaviours and patterns (Ebrahimi et al., 2017; Mayoraz et al., 1996; Pijanowski et al., 2002) 

and has been used to address prediction problems in many fields of scientific research such 

as energy applications in buildings (Kalogirou, 2015), medical issues (Liu et al., 2013), and land 

use simulation (Morgado et al., 2014).  

The use of the ANN technology has increased over the last few years due to advances in 

computer performance (Khan et al., 2013), and the availability of ANN packages (Khan et al., 

2013). Some advantages of applying this algorithm are its data-driven and self-adaptive 

capabilities, and the use of universal functional approximations. These do not require initial 

hypotheses on the data. 

The popularity of ANNs in the social sciences over the last decades have been due to the 

capability to learn complex phenomena (Garson, 1998). This learning takes place over 

probabilistic and logical functions (Specht, 1990), and its aptitude arises from the interaction 

between its neurons (Schneider et al., 2018). From the types of ANN, Multilayer perceptron 

(ANN-MLP) have been widely applied in social sciences  (Alizadeh et al., 2018; Gazder and 

Ratrout, 2015; Tamas et al., 2014). In LUCC, ANNs have as main advantage to integrate several 

explanatory variables that are based on empirical data (Chen et al., 2009). It consists of three 

steps: (i) classification through a decision-tree approach; (ii) transition of land use class; and 
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(iii) modelling the future LUCC. Some examples of ANN-LUCC models are presented below in 

Table 2.3. 

Table 2.36 – LUCC models based on ANN. 

Method Model Description Source 

ANN 

GIS-ANN Web - 

SECOA 

It allows stakeholders to measure LUCC according to 

different scenarios. 
(Morgado et al., 2014) 

Land 

Transformation 

Model 

Land use predicting model and identify the spatial and 

temporal patterns of LUCC and its driving forces. 

(Pijanowski et al., 

2002) 

 

3.4 Agent-based model 

ABM has emerged in recent years, with its origins in artificial intelligence (AI) (Moulin and 

Chaib-Draa, 1996). It enables to reproduce human actions such as cognition, communication, 

and learning (Conte and Paolucci, 2014). Although CA and ANN modelling is centred on how 

simple rules lead to transitions, ABM is centred on how interactions through computer-

encoded agents express the decision-making behaviours. ABM is one of the most capable 

modelling methods to assess complexity science theory (Macal and North, 2009; Jokar 

Arsanjani et al., 2013; Mitchell and Newman, 2002), adaptive systems (Holland, 1995), and 

artificial life (Langton, 1989). Inspired and reinforced by increasing computational power, ABM 

as part of complexity science and intelligent systems (Chen, 2012; Conte and Paolucci, 2014) 

is considered an advanced approach to simulate Real-World Systems (Batty et al., 2012). ABM 

integrates agents that have control over its actions to achieve predefined objectives (Banos, 

2010; Wooldridge, 1997), according to the following key features (Benenson and Torrens, 

2006):  

(1) autonomy: the agents are independent and autonomous, and they can swap 

information between other agents (Castle and Crooks, 2006; Parker et al., 2003); 

(2) heterogeneity: the agents have connections with other agents, acting as a group, in a 

bottom-up approach (Brown et al., 2008); 

(3) mobility: the agents can move in environmental space, interacting with each other, 

and sharing knowledge; 



An agent-based approach to model farmers' land use cover change intentions 

 

97 

 

(4) adaptability and learning: the agents are flexible to create complex adaptive systems 

(Holland, 1995), which can change its current state, and acquiring memory and 

learning (Smith et al., 2009); and  

(5) activity: the agents are independent in simulation. They are (i) pro-active: with goals 

according to their behaviours; (ii) reactive: they can be developed to have 

consciousness about their surroundings; (iii) bounded rationality; (iv) they are able to 

optimise information, and to have analytical capabilities (Parker et al., 2003); and (v) 

interactive and communicative: they communicate with each other.  

An ABM is designed according to different rules, such as mathematical or logical, explaining 

how, and who they are related to (Bandini et al., 2009; Gilbert, 2007). Agents can interact with 

each other by a cognitive model, establishing connections between their autonomous 

objectives, spatial environment (Luck et al., 2005), and they can be developed at multiple 

scales (Eames et al., 2014). Also, agents establish with each other coordination, 

communication, cooperation, competition and negotiation procedures (Jennings, 2000; 

Moulin and Chaib-Draa, 1996). 

ABM measure collective behaviours, and it is particularly useful when agents interact in a 

non-random manner. Agents are essential to test cognitive decision-making processes and to 

test the unpredictability in human behaviour related to the emotional responses (Crooks, 

2009) (Fig. 2.9). 

 

Figure 2.914– ABM representation. 

 

ABM is applied as experimental media to perform and to monitor simulations, as a support 

analysis of decentralised decision-makers, local-global interactions, self-organisation, 

emergence, and effects of heterogeneity in the simulated system (Bandini et al., 2009). In an 
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exploratory laboratory experiment, agents' attributes and behaviours can be changed, and 

the impacts visualised according to the run of multiple simulations (Evans et al., 2006).  

ABM in the context of social sciences helps to understand what led to the decision-making 

in human activities (Valbuena et al., 2010a). It helps to analyse the agent’s social and cognitive 

capabilities, their level of experience, preferences, and motivations (Conte and Paolucci, 

2014). ABM represents a new paradigm for simulation agent’s interactions (Barton, 2014).  

Until very recently, modelling techniques were restricted to examine the relationship 

between spatial elements. ABM introduces a non-spatial component to simulate agents’ 

behaviours, and their interactions in the environment (how agents influence and how agents 

are influenced by the space) supported by computer simulation modelling (Macal and North, 

2009). ABM is being applied to several scientific areas. Thomas Schelling in 1971 developed 

one of the earliest ABM applied to social sciences to explain and to evaluate racial segregation 

in American cities. According to Allen (1997), Schelling model influenced many authors later, 

namely due to the outcomes, model simplicity, and the model robustness.  

In recent years another ABMs have been applied in areas such as agriculture (Leyk et al., 

2009), ecology (Grosman et al., 2011), environmental planning and policy (Zellner, 2008), and 

social networks (Mason et al., 2008). 

Theoretical models are implemented through computer simulations techniques (Gilbert 

and Terna, 2000) and developed in different steps. According to Macal and North (2009), the 

decision to establish ABM implies enumerating a set of seven questions: 1. which problem 

should be explained by the model? 2. what are the agents in the model, with their behaviours, 

attributes, and dynamics? 3. what is the agent environment? 4. which actions are taken by the 

agents? 5. how does the agent interact with other agents? 6. where the agent's behaviour 

data come from? and 7. how to validate the model? 

Castle and Crooks (2006) recognised three main advantages of using ABMs: (i) emergent 

phenomena; (ii) human’s perception of real-world events; and (iii) agents who are flexible to 

learn from the environment. ABMs promise to have far-reaching effects in several areas to 

support decision-makers and researchers. 

 



An agent-based approach to model farmers' land use cover change intentions 

 

99 

 

ABM for LUCC geospatial modelling 

ABM offers an approach for evaluating the spatiotemporal relationships in LUCC through 

modelling its mechanisms, representing human decision-making, and using autonomous 

agents (Bonabeau, 2002) to describe different perceptions and behaviours (Bandini et al., 

2009).  

ABMs and GIS together can better understand spatial characteristics and complex 

interactions. The firsts models coupling ABM and GIS were in the study of pedestrian 

behaviours (Batty et al., 2003) and urban dynamics (Portugali et al., 1997; Sanders et al., 1997). 

SIMPOP in 1996 was the first ABM applied in Geography. SIMPOP analyses the urban 

settlements transitions at different times and scales (Bura et al., 1996; Pumain, 2006; Sanders 

et al., 1997). 

In the last years, ABM is increasingly employed to understand LUCC in agroecosystems level, 

model human-environment interactions, modelling urban growth patterns (Chen, 2012), and 

traffic patterns. A comprehensive review of ABM-LUCC is explored by Parker et al. (2003) and 

Bosquet and Le Page (2004). The strength of ABM for LUCC is on understanding the emerging 

patterns that arise from the interactions between agents and space. 

Although the attractiveness of ABM only in the last two decades have been recognised in 

the number of applications for simulating LUCC. Examples comprise the use of ABM for 

simulating the dynamics of urban modelling (Gilbert and Conte, 1995), and for simulating 

forest-agriculture transitions (Castella et al., 2005; Deadman et al., 2004). These applications 

allow an understanding of how individual interactions can produce large-scale outcomes in 

emerging patterns dynamics (Chen, 2012). Some examples of ABM-LUCC models are 

presented below in Table 2.4. 

Table 2.47 – LUCC models based on ABM. 

Method Model Description Source 

ABM 

PUMA 
It simulates LUCC based on a land conversion model and 

household model. 
(Ettema et al., 2007) 

ILUMASS 
It was developed to run at microscopy level, simulating 

LUCC, transportation, and environmental dynamics. 

(Wagner and 

Wegener, 2007) 

RAMBLAS 
It simulates the impacts of LUCC, and transportation 

planning policies. 

(Veldhuisen et al., 

2000) 
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Desakota 
It simulates how domestic and local forces, leads to LUCC in 

peri-urban areas. 
(Xie et al., 2005) 

ALUAM-AB 
It simulates LUCC triggered by market and policy changes, 

considering farmers’ preferences. 
(Huber et al., 2012) 
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Conclusion Chapter 2 

Geographic modelling, complexity and land use chapter was envisaged to provide an outline 

of both historical and current state of LUCC models. We introduced the bridge between 

classical geographical models and new modelling processes. The complexity of scientific 

research in the spatial and temporal dimensions are integrated to better understand human 

interactions. 

A comprehensive discussion of the most common LUCC models was presented, and some 

statistical methods to measure models’ accuracy were also identified. In this chapter, we 

illustrated the relevance of LUCC models, and how they should be applied and interpreted 

wisely so that modellers and decision-makers can take the best of what they can offer. In the 

next chapter, we will introduce to the topic of how LUCC modelling can be applied to land-use 

planning. 
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Chapter 3 - Land Use Planning and LUCC modelling 
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Introduction Chapter 3 

Guaranteed food security and environmental preservation are required while encouraging 

economic growth are vital for society. Find a balance between these two perspectives is one 

of the biggest challenges faced by land-use planners and society. Land use planning controls 

where and how human impacts can be reduced at the local, regional and global level. It is 

addressed to regulate greenhouse emissions and to preserve flora and fauna biodiversity. 

Land-use planning must also identify better practices to protect soil, to promote landscapes 

restoration, to support environmental management, and to promote well-being. 

In this chapter, we presented some policies and methods of land use planning, applied at 

European, national, regional, and local level. 
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1. Land use planning, agriculture and periurban areas 

Land-use planning is an instrument to support better planning practices (UN, 1993). It aims 

to identify alternatives for land use and adopt the best land-use options, to allocate land uses 

to meet the environmental, social and economic needs of people while preserving future 

resources (Adams et al., 2016). It incorporates social and economic trends as well as physical 

and geographical elements. Land use planning is a public policy that describes and regulates 

the use of land to support local development goals. It creates legal and administrative 

instruments that support the plan, in which is defined the allocation, zoning, and the density 

of construction on the land. Land use planning comprises the anticipation of the necessity for 

change as well as responses to it, addressing strategies for territorial elements such as 

transportation, commercial, industrial, residential, economic growth, mitigating and adapting 

to climate change, as well as protecting people from natural disasters. These strategies must 

be addressed taking into account three main principles, efficiency, equity, and sustainability: 

(i) efficient by corresponding different land uses with the areas that will produce the highest 

profits at the smallest cost; (ii) equity by safeguarding some requisites such as food security, 

employment, as well as income security of people; and (iii) sustainability by recognising the 

current needs, while preserving resources for future generations (Healey, 1986; Lestrelin et 

al., 2011; Morgado, 2012; Selman, 1988). 

The best principles for land use planning are those that both decision-makers and 

stakeholders can debate identifying the highest consensus about the goals of a specific 

territory, as well as those that incorporate the larger development vision (larger scale) for the 

locality (local scale). At a larger scale, land use planning, in many cases, establish the priorities 

balancing the competing demands for land in sectors such as the economy, tourism, housing 

and public amenities, road network, industries, as well as wildlife preservation. At the local 

scale, land use planning should be addressed to capture local stakeholders’ knowledge, and 

contributions, and the actions taken locally (Kurz and Baudains, 2010; Milder, 2007). 
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1.1 European Union 

Economic and social development determines undesirable effects on the environment. In 

Europe, to promote the spatial sustainability European Union (EU) created some policies to 

be applied in the EU territory. In 1999, the EU Council of Ministers established European 

Spatial Development Plan (ESDP). This plan aims to create general and common visions to 

develop national policies on spatial planning, while the diversity of national policies must be 

preserved. The intention to create the ESDP was to avoid disparities in European Union spatial 

planning, in order to achieve a more balanced between spatial planning and sustainable 

development; to create cooperation between urban and rural areas; to promote the 

polycentrism; to create economic and social cohesion; to preserve natural and cultural 

heritage; as well as to promote equal access to infrastructures and knowledge (Faludi, 2000; 

Shaw and Sykes, 2003). 

EU has a great diversity of agricultural landscapes. Over time, biophysical conditions and 

farm management had a critical role in shaping landscapes. EU has recognized the importance 

to preserve agricultural landscapes, to promote agricultural competitiveness, 

internationalization, social inclusion, employment, sustainability, and the efficient use of 

resources (EC, 2012) by creating over time interlinked policy instruments such as the 

Convention on Biological Density in 1992; the Pan-European Biological and Landscape 

Diversity Strategy in 1995; as well as the European Landscape Convention in 2000. However, 

CAP and more recently the Rural development 2014-2020 (or ‘the second pillar’ of the CAP), 

they were instruments that have affected Europe's landscape changes, as well as helped to 

create measures to preserve and valorise rural landscapes resources. These instruments have 

been promoted by supporting local farmers (e.g., set-aside) (Berger et al., 2006); by 

encouraging rural development priorities to implement agricultural innovation in food chain, 

and climate-resilient economies (OECD, 2016); by developing local markets, to create short 

supply chains, jobs, new markets (based on local products); as well as by creating connections 

between consumers and producers (EC, 2011).  

The effects of these EU policies in the supporting given to technological development have 

demonstrated that the “green revolution” has produced a deeply changed in a traditional rural 

landscape. These policies have also contributed, in some cases, to negatives effects on the 
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environment such as the intensification (e.g., cause irreversible damage in soil quality), as well 

as the abandonment of less productive areas. However, as positive effects, these policies have 

brought positive demographic, social and economic impacts (Patel, 2013; Pingali, 2012). 

1.2 Portugal 

Over the last few decades, Portugal have registered significant increases in urban growth, 

particularly in medium and small urban areas, as a result of economic growth, purchasing 

power, improvements on road networks and transport infrastructure, as well as the 

development of public facilities (Abrantes, 2007; Marques da Costa, 2001). Portugal is a 

unitary state in which the Portuguese Constitution defines different jurisdictions and financial 

autonomies, and territorial entities: 

i) national administration - includes the government (it sets the political orientations) 

and its departments (e.g., Directorate‑General for Territorial Development (DGT), 

Commission for Regional Coordination and Development (CCDR), Directorate-

General of Health (DGS), Institute for Nature Conservation and Forestry (ICNF), and 

The Portuguese Environment Agency (APA));  

ii) regional governments of Madeira and Azores. They are run freely by elected 

councils and executive, with their regulatory decisions (spatial structuring and 

economic development) but are required to a legality control (national 

administration), in which their financial resources come largely from national 

administration; and 

iii) local administration, in which integrates municipalities and municipal assemblies. 

 

Portugal has different planning hierarchy levels and practices. They are established in the 

Portugal planning system by the Portuguese Framework Law for the Policy on Territorial 

Management and Urbanism - law LBGPPSOTU n. º 31/2014 of 30 May and NRJIGT n. º 80/2015 

of 14 May, in which establishes the political-territorial development. This document specifies 

the spatial planning hierarchical framework from the national to the local level. The 

Portuguese spatial planning instruments and policies include four different types: 
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i) strategic. To define the territorial organization. It includes three programs: a) The 

National Program for the Territorial Management Policy (PNPOT), establish the conceptual 

framework for planning policy and the country's development model; b) The Regional 

Development Program (PROT), which defines the regional development model and 

includes recommendations at regional level (e.g., Regional Plan of Spatial Planning of 

Lisbon Metropolitan Area (PROTAML), Norte (PROT-Norte), Centro (PROTCENTRO), 

Alentejo (PROTALI), Algarve (PROT Algarve), Açores (PROTA), and Intermunicipal 

Programs); 

ii) instruments of territorial planning. It includes the following laws in force: a) Municipal 

Master Plan (PDM), which regulates urban development, land use classifications, and land-

use constraints; b) Urbanization Plan (PU) defines the urbanisation strategies, c) Detailed 

Plan (PP) that regulates the areas for construction; and d) the Inter-municipal spatial plan 

(PIOT) (however, this plan is not effectively applied); 

iii) sectoral policy instruments. It outlines sectoral economic and social policies. Sectoral 

Plans (PS) include the Natura 2000 (it protects rare natural habitats), National Water Plan, 

National Forest Plan, and National Road Plan; and 

iv) special plans (PEOT). These plans define the land classification that protects national 

parks, artificial lakes, and coastal areas (e.g., Protected Area Management Plans - POAP, 

Water Supply Management Plans - POAAP, and Coastal Areas Management Plans - POOC).  

 

These spatial planning instruments and policies described above have different scales of 

implementation. They are described in Table 3.1. 

Table 3.18 – Territorial management instruments. 

Scale Territorial instruments Scope 

National  

PNPOT Strategic 

PS Sectorial 

PEOT Specific scope 

Regional PROT Strategic 

Local 
PIOT Strategic 

PDM, PU, PP Regulatory 
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In addition to the mention spatial planning instruments and policies, there are legal 

frameworks (included in the legislative system) which have the goal to protect the 

environmental systems such as the National Agricultural Reserve (RAN) and National 

Ecological Reserve (REN).  

RAN was created in 1982 to identify, to regulate and to protect the best agricultural soils 

(soils of high suitability for agriculture), and to prevent the built-up areas occupation. REN was 

established in 1983 to identify and controls biophysical structures and elements with high 

ecological value and sensitivity (e.g., maximum infiltration soils, hilly slopes, river basin head, 

floodable areas, beaches and dunes). REN was considered a pioneering legal framework in 

environmental protection. Both RAN and REN are implemented at municipal land use plan. 

REN delimitation is mandatory and does not allow urban construction. 

1.3 Agricultural land use planning in peri-urban areas: from European 
to local policies 

Farming in peri-urban areas is imperative to supply people needs for healthy and local food. 

New emerging consumption pattern in the EU, the increasing pressure on existing resources 

(e.g., urban development), or climate change is putting societies facing some challenges. Peri-

urban agriculture has a central role in the direction to a sustainable model, that needs to have 

as a primary goal the maximisation of agricultural production and the minimisation of 

environmental impacts. 

Particularly in the European Union, policies are being implemented to promote short food-

supply and to endorse more competitiveness for agricultural land in these areas. They have 

also been created to support sustainable management actions in agricultural areas, to reduce 

land degradation, to preserve food security, and to endorse a multifunctional and high-quality 

agriculture. Europe’s CAP is an important instrument that defines rules and regulations for 

farming. The introduction of CAP in 1990, have forced the restructuring of agricultural land to 

be more competitive for global markets (Pinto-Correia and Vos, 2004). The central 

restructuring was based on high-production areas to better manage them with machines. In 

2013, a reform of CAP was introduced, defining new rules and regulations for the period 2014-

2020. This reform included opportunities for farming in peri-urban regions, with better 

support for local food, and short supply chains. 
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Another policy, that was created at the European Union level, was the European Agricultural 

Fund for Rural Development (EAFRD) in which the main purpose was to develop connections 

between rural and urban areas. In the same decade (in 2004), the European Economic and 

Social Committee (EESC) created the initiative ‘Opinion on Agriculture in Peri-urban Areas’, in 

which identified measures to support conservation, planning and management of peri-urban 

areas with agricultural activity. One of the suggestions was to implement a European 

Observatory to create sustainable management and development plans based on the 

promotion of food quality and in new activities in peri-urban areas related to leisure, 

environmental education, and ecotourism. This observatory aided to increase consciousness 

of agriculture’s role in the relationship between cities and countryside.  

In 2010, the European Union launched the initiative Europe 2020, a ten-year strategy that 

aimed to create sustainable agriculture with inclusive growth, by promoting employment, 

climate change mitigation, biodiversity preservation, and cultural heritage valorisation. 

Other initiatives have been created to promote farming in peri-urban regions. In the 2000s 

was created a European network called PURPLE that aimed to endorse European policies and 

regulation for peri-urban areas, establishing good practices among European Union, and to 

guarantee the food production close to large populations. 

All of these mentioned initiatives have increased awareness about the challenges that 

farming is facing in peri-urban regions in Europe. However, more should be done especially 

the need to integrate all these initiatives in all European Union policy areas. In the peri-urban 

regions as a dynamic and changing area (Lambin et al., 2003), decision-makers have the 

challenge to create on-going planning instruments to follow the rapid changes that are 

verified. They are responsible for addressing land-use strategies (Bryant et al., 2010; Fazal et 

al., 2015; Gutzler et al., 2015; Sakieh et al., 2015; Valbuena et al., 2010b), in which incorporate 

multiple environmental, demographic and socioeconomic indicators is needed.  

In Europe, some policies have been successfully implemented in the protection of 

agricultural land, such as the SCOT (Schéma de Cohérence Territoriale) in France. SCOT is a 

master plan framing zoning that aims to preserve farming in peri-urban areas for curtailing 

urban sprawl, in which comprise prospective and monitoring analysis to support territorial 
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diagnostics. This plan has been effective in decreasing farmland conversion (Desjardins and 

Leroux, 2007). 

In Portugal, agricultural preservation has been recognised as a strategic priority in spatial 

planning, where land protection policies have been created to control land conversion from 

productive agricultural land to other land uses. Its preservation has been received special 

attention in some previously mentioned spatial planning instruments and policies and legal 

frameworks (e.g., PNPOT, PROT, PDM, and RAN). Some of these measures have been related 

to increasing soil productivity, to safeguarding the quality of the landscape, to guarantee 

water sustainability, to improve agricultural competitiveness, as well as to encourage more 

sustainable agriculture. However, agricultural land remains being converted (Abrantes, 2007), 

despite the existence of these policies. There has been a dissonance between what these plans 

contemplate, and what happens in land transformation. They have had difficulty in 

recognising the importance of agriculture in the strategic planning and its influence on the life 

of urban areas, especially in peri-urban areas where land conversion occurs faster. It is needed 

to rethink this time lag and reconsidering about how to create measures to speed up the 

decision-making processes because usually, they do not respond immediately (or effectively) 

to social and economic transformations. A change from top-down administrative 

‘government’ is needed in the sense of being more inclusive, adaptive and at multilevel 

decision-making. This perception is critical for the sustainable management of social-

ecological systems. 

2. Methods to integrate stakeholders’ participation in land use analysis 

and planning 

The engagement of stakeholders in land use planning is critical to capture their knowledge 

and to identify their visions and concerns. In Portugal, some scientific projects have addressed 

these issues such as DAUME (Durabilité de l'agriculture (Peri) urbanisée en Méditerranée) and 

AgriMet-MOD. DAUME project aimed to evaluate governance forms of agriculture in peri-

urban regions, whereas AgriMet-MOD aimed to create technical and political 

recommendations to integrate agriculture into the spatial planning system. An interest for 

closer cooperation between decision-makers and researchers have been increasing.  
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In our research analysis, we performed public participation with stakeholders, supported by 

spatial scenarios to identify alternative futures. Below, we will develop these two main topics: 

public participation and spatial scenarios for alternative futures. 

2.1 Public participation 

To fill the gap between stakeholders’ visions and decision-makers, participatory methods to 

connect both sides have been growing. One of the first works concerning participatory actions 

was written by Sherry Arnstei in the 1960s entitled “A Ladder of Citizen Participation” (1969) 

to promote public participation. In 1971 U.S. Department of Transportation created some 

premises where decision-makers and stakeholders firstly discussed the concepts of 

participatory planning. In the 1990s, in France, Michael Godet (2008) established the concept 

of geoprospective that aimed to forecast the future of spaces and to estimate the influence 

of spatial dimension (Abrantes et al., 2016). One decade later, in 2001 Fred Fisher wrote one 

of the most critical documents recognising the participatory planning as part of the planning 

process, the Building Bridges through Participatory Planning (Fisher, 2001). 

Public participatory focused on the systematic evaluation of land use alternatives (Chen et 

al., 2003) intend to support decision-makers in the promotion of land-use sustainability and 

the needs of the local population (Bartke and Schwarze, 2015; Houet et al., 2017). It can 

reduce problem complexity, identifying uncertainties and sharing knowledge between 

stakeholders, and mitigate goals divergences (Gwaleba and Masum, 2018; Labiosa et al., 

2013), as well as to create relevant information-gap tasks, and to encourage active discussion. 

Public participation was developed based on the principle to create impartial judgements 

(Nyumba et al., 2018) and to promote an inclusive process to address demographic, social, 

economic, political and environmental issues. It can be conceptualized for design (i.e. 

communication), analysis (i.e. spatial evaluation), and negotiation (i.e. interactive decision 

support) (Carton and Thissen, 2009), in which should be incorporated a) study purpose; b) 

available data; c) methods, tools, and data structure used to achieve the objectives of the 

study; d) outcomes; and e) discussion and validation. Public participation has been an ongoing 

topic in municipal planning policies (Bonsu et al., 2017). At the local level, participation is 

related to the inclusion of a wide range of stakeholder’s visions at different stages of the 

decision-making planning process (Cascetta and Pagliara, 2013). The main contribution of 
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participation are related to promoting the legitimacy of decisions, to reduce conflicts, to 

include local knowledge, to validate outcomes, and to produce a shared understanding of land 

use strategies (Brown et al., 2018; Llambí et al., 2005; McCall, 2003). Finding better ways of 

gathering data and designing better tools for getting input into the decision-making process 

can play an essential role in public participation (Al-Kodmany, 2001). In land use analysis 

spatial scenarios are one of these forms (Pettit, 2005) to help decision-makers to evaluate 

LUCC impacts (Francis and Hamm, 2011; Jantz et al., 2010), as well as to make better decisions 

(Brits et al., 2014; Goldstein et al., 2012). Land-use planning supported by different 

stakeholders has been demonstrated be quite efficient, helpful, able to support spatial 

planning and to answer any questions about land conversion and location (Ghavami et al., 

2017). They also can provide a helpful baseline, and valued information about future demands 

to support strategic policies.  

At the beginning of public participation to identify the best land use alternatives, large 

copies of maps were used to discuss proposed plans (Burrough and McDonnell, 1998). 

However, in the most recent years, this process has been accomplished by GIS technologies 

(Longley et al., 1999), as a support instrument that focuses on visualisation, organising and 

assessing spatial data. In this way different approaches have been applied using GIS 

technologies in order to be more integrative for stakeholders participation, such as the 

concepts of Participatory GIS (McCall, 2003) focused on Public Participation (PPGIS), e.g., Wolf 

et al. (2015), and Group Spatial Decision Support Systems (GSDSS) e.g., MacEachren (2000). 

PPGIS enable to assess the geospatial data providing simultaneously participatory knowledge 

(Brown et al., 2018), while, GSDSS fills the gap of PPGIS in supporting the identification of 

potential conflicts and negotiation among stakeholders (Di Zio et al., 2017). 

Also, another participatory GIS technique is Spatial Decision Support Systems (SDSS) 

(Malczewski, 2006). SDSS is one of the widely used computer-aided planning systems 

(Geertman, 2002). It comprises managing, testing, building and visualising different scenarios, 

planning, monitoring and evaluating methods. To develop SDSS different steps need to be 

performed such as the identification of the problem, data collections, statistical analysis, 

scenario building, assessment of strategy, and participation and collaborative decision-

making. SDSS has three main principles: (i) integration of GIS technology; (ii) use of different 

data types, model algorithms and interactive communication between the user and the 
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system; and (iii) a tool for decision-makers. Previous studies have discussed the effectiveness 

of collaborative SDSS, e.g., Chakhar et al. (2008) and  Crossland et al. (1995). Its efficacy may 

contain usefulness (to support a specific goal), and clarity (the capability to recognise the data 

provided). Several well-known SDSS have been applied in the last years. Among such existing 

SDSS is What-if? (Klosterman, 1999), RAMCO (Uljee et al., 1999), UrbanSim (Waddell, 2002), 

CUF (Landis, 1994), INDEX (Condon et al., 2009), CommunityViz (Walker and Daniels, 2011), 

CITYgreen (Jantz and Manuel, 2013), SLEUTH (Chaudhuri and Clarke, 2013), and KLUM 

(Ronneberger, 2005) frameworks (Table 3.2). 

 

Table 3.29 – SDSS framework. 

SDSS 

Framework 
Description Source 

What-if? 
Collaborative GIS-based planning support system. “What-if” projects land 

use, population and employment. 
(Klosterman, 1999) 

RAMCO 
Decision support environment for the management of coastal zones 

through the rapid assessment of problems. 
(Uljee et al., 1999) 

UrbanSim 
Supports metropolitan land use, transportation, and environmental 

planning. 
(Waddell, 2002) 

CUF Integrates population prediction and spatial allocation. (Landis, 1994) 

INDEX Evaluate the advantages and disadvantages of planning scenarios. (Condon et al., 2009) 

CommunityViz 
It supports city planning, land use planning, resources, environmental 

protection, and transportation planning. 
(Walker and Daniels, 2011) 

CITYgreen 
Analyse climate, air quality, water regulation, water purification, water 

treatment, and extreme events. 
(Jantz and Manuel, 2013) 

SLEUTH Predict urban growth. 
(Chaudhuri and Clarke, 

2013) 

KLUM Assess future agriculture land changes on a global scale. (Ronneberger, 2005) 

 

These frameworks have in common the knowledge sharing between stakeholders, experts, 

decision-makers and end-users, being a critical step to endorse conflict-solving and to reach 

consensus (Doi and Kii, 2012). They offer an easy-to-understanding interface to aid planners 

to analyse spatial data and to support planning decisions on long-term policy assessment by 

creating land-use strategies. They aim to promote efficient use of land to identify optimal land 

use allocation; and to recognise how better land use can be managed by evaluating impacts 

of alternative land use. 
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Although the advantages mentioned above, public participation to analyse and validate 

future alternatives for land use is yet seen as complex (Asgesen and Dragicevic, 2014), and 

difficult to apply to planning policies. In Portugal, these approaches at the municipal level are 

still scarce.  

2.2 Spatial scenarios for alternative futures 

Scenarios as a method to support public participation have been used to identify future 

uncertainties in endogenous and exogenous developments (Rounsevell et al., 2006) and to 

provide strategic support for decision-makers and researchers to evaluate potential future 

alternatives (Porter, 1985) with relevant implications for land management (Bonsu et al., 

2017; Kröger and Schäfer, 2016; Pocewicz et al., 2008). Spatial scenarios help to build multiple 

futures focused on competing for development (Xiang and Clarke, 2003) and to create and 

understand various planning strategies. 

Researchers have been developing scenarios since the 1990s. Scenarios indicate 

perceptions about alternative futures, and hypotheses that can be tested (Schwartz, 1996). 

Scenarios are seen as a method to obtain future images (Schoemaker, 1995) and to manage 

future uncertainties (Godet, 2000; Ringland, 1998). The European Environment Agency (EEA) 

(EEA, 2011) defines a scenario as a tool that represents complex targeted information to 

policy-makers and the public. Scenarios are narratives that connect current and historical 

events with hypothetical events that may take place in the future. Scenarios must be reliable, 

based on good arguments, identify any potential problem, identify alternatives, and project 

future images. Scenarios, as part of planning policies, can play an important role in territorial 

management instruments by integrating qualitative and narrative descriptions that should 

explain quantitative scenario descriptions. Scenarios are not predictions but ask questions, 

such as ‘what can happen?’, ‘what happens if?’. They should identify the stakeholders, the 

object, and the time-period (Scearce et al. 2004). The scenario must answer: where? why? 

and when? (Lambin, 1994). Borjeson (2006) identified three scenarios categories: predictive, 

explorative and normative. Each one is subdivided into two types (Fig. 3.1).  
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Figure 3.115– Scenarios categories and types (adapted from Borjeson et al. 2006). 

 

Predictive scenarios can be divided into forecasts and what-if. According to Borjeson (2006), 

projections scenarios answer the question “what will happen to the most likely development 

unfolds”? And in a what-if type scenario, answers to the question “what will happen, on the 

condition of some specific events”? The term what if is presented when there are probably 

effects at different visions (Scearce, 2004). 

Explorative scenarios are also divided into two types: external and strategic. External 

scenarios have external dynamics, beyond the control of the relevant actors. On the other 

hand, strategic scenarios integrate internal factors, which define a collection of probable 

consequences for strategic decisions. These scenarios answer the following question: “what 

can happen if we act in a certain way”? (Höjer et al., 2008). 

Finally, normative scenarios are divided into preserving and transforming. Preserving 

scenarios are established, to find how a target can be reached, within a predominant 

structure; and, transforming scenarios are used when a trend break is required to achieve a 

goal.  

Scenarios are presented as qualitative and quantitative. In a qualitative way, scenarios are 

presented descriptively or/and by visual symbols (diagrams). The major disadvantage of 

qualitative scenarios is related to the absence of numerical information (Alcamo, 2001; Varho 

and Tapio, 2013). Borjeson et al. (2006) presented the main characteristics of each category 

summarily, and the type of scenario (Table 3.3).  
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Table 3.3 10– Scenario types (adapted from Borjeson et al. 2006). 

Scenario 

(type) 
Quantitative/ Qualitative Time-frame 

Predictive – what will happen? 

Forecasts more quantitative; less qualitative usually short 

What-if more quantitative; less qualitative usually short 

Explorative – what can happen? 

External more qualitative; less quantitative usually long 

Strategic quantitative and qualitative usually long 

Normative – how can a certain target be reached? 

Preserving more quantitative usually long 

Transforming more qualitative; some quantitative long 

 

One of the most well-known future scenarios as support for policymakers was developed 

by the Intergovernmental Panel on Climate Change (IPCC) in Special Report on Energy 

Scenarios (SRES) in 2000 (Nakicenovic and Swart, 2000). This report defines possible future 

climate change with four narrative storylines (A1, A2, B1, and B2), setting global scenarios for 

the 21st century (Table 3.4). These scenarios aimed to mitigate issues such as human 

intervention to reduce the sources of greenhouse gases, and to better plan human 

settlements, and infrastructures. 

 

Table 3.411– SRES (adapted from Nakicenovic and Swart, 2000). 

Scenario Description 

A1 

- Rapid economic growth. 

- A global population reaches 9 billion in 2050. 

- Extensive social and cultural interactions worldwide 

A2 

- Self-reliant nations. 

- Increasing population. 

- Regionally oriented economic development. 

B1 

- Rapid economic and population growth. 

- Clean and resource-efficient technologies. 

- Global solutions to economic, social and environmental stability. 

B2 

- Continuously increasing the population. 

- Emphasis on local rather than global solutions. 

- Intermediate levels of economic development. 
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In the last years, other global models have been developed by OECD Environmental Outlook 

2050 (creating bridges between science and policy realms) (OECD, 2012), World Bank (2010), 

The European Environment State and Outlook 2015 (makes a reflection on European 

environment) (EEA, 2015), Models IMAGE (Integrated Model to Assess the Global 

Environment - simulates the environmental consequences of human activities) (The 

Government Office for Science, 2011), GLOBIOM (to assess competition for land use between 

agriculture, bioenergy, and forestry – global scale) (IIASA, 2014), and FAO (2013) (aims to 

create a Climate-Smart Agriculture at regional and local scale). These models have in common 

the integration of planning measures. 

Scenarios have been used in land use science since the 1960s. The first works were a study 

regarding urban growth in the Detroit area (Doxiadis, 1966), and a study concerning regional 

land-use planning (METLAND) (Fabos et al., 1978). Land-use scenarios have as the main goal 

to recognise the uncertainties to better prepare the future (Cork et al., 2000), and to promote 

desirable land uses (Leão et al., 2004a). Scenarios have been increasingly used as decision 

support tools to provide strategic urban planning (Hill and Lindner, 2010; Houet et al., 2016) 

and to identify spatial planning actors intentions (Ligtenberg et al., 2001). They help decision-

makers to anticipate potential futures (Aalders, 2008; Fonderflick et al., 2010), to assess 

extreme alternative prospects, and to create planning strategies.  

Integrating spatial scenarios into adaptive planning incorporates different steps. This 

process can answer to different hypotheses (Rauws and De Roo, 2016), such as to identify the 

problem (in collaboration with stakeholders), to select driving forces, and to define a time 

scale. Cork et al. (2000) identified the following characteristics which scenarios should have: 

(1) driving forces that had the most relevance in the past; (2) driving forces that will have a 

great importance for changes in the future; (3) explore the uncertainties; and (4) identify the 

needs to be addressed in the present to prepare the future. The last steps to prepare a 

scenario planning consists of returning to the original question, and answer with different 

scenarios (Wulf et al., 2010).  
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Conclusion Chapter 3 

Land-use planning strategies are focused on opportunities, organisational strengths and 

framing processes. It is defined as support for decision-makers to develop skills and to lead to 

better decisions about future land use actions. Spatial scenarios can anticipate and 

understand human’s behaviours, and they can improve the communication between 

stakeholders, identification of potential conflicts, and create strategies to apply in the land 

use planning context. 

While new planning standards such as compact urban development and polycentric 

development have been encouraged, urban sprawl and the loss of agricultural land remains 

as one of the significant challenges in Europe and in Portugal. It was found that the lack of 

effective spatial planning has resulted in uncoordinated urban outgrowth. 

This chapter described the land use planning in Europe and in Portugal, recognizing how 

different stakeholders can be mobilized to participate in the decision-making process, and 

how land-use planning can play a key role in guiding agricultural preservation, to contribute 

for better decisions, and to promote land-use sustainability in the context of peri-urban areas. 

 

 

  



An agent-based approach to model farmers' land use cover change intentions 

 

122 

 

  



An agent-based approach to model farmers' land use cover change intentions 

 

123 

 

Conclusion PART ONE 

Preserve agricultural land is a critical issue for generating food security and preserve 

biodiversity to support our livelihood. Since it is not possible to avoid land artificialization, it 

is important to continue developing methods to improve our understanding of land use 

management. Complexity science can provide an epistemological approach to better 

recognise the evolution and prediction of land-use dynamics. It can help planners in the 

decision-making process clarifying unpredictable conditions, identifying, in time and space, 

plausible future images, and ensuring a better quality of the living environment. 

The development of LUCC models can become an essential tool for spatial planning (Herold 

et al., 2005). A better LUCC analysis can support better-planning practices (de Kok et al. 2001; 

FAO 1993; Yirsaw et al. 2017) and identify the valuation of different land use options and 

socioeconomic settings to identify desirable land uses (FAO 1993). Land use planning provides 

policies to promote regulatory land-use implemented by decision-makers. These plans intend 

to control land use activities in the future, to preserve open landscapes for agriculture and 

nature, and to encourage sustainable development. However, these plans are too rigid 

especially when applied to peri-urban areas where land conversion occurs very fast. Thus, land 

use planning and decision-making processes applied to peri-urban areas are one of the 

significant policy challenges at the moment, and more studies are needed (Abrantes et al., 

2016a). 

The greater proximity to urban development has been increasing farmland prices (Guiling 

et al., 2009). The proximity to urban settlements and the urban pressure felt in these places’ 

present farmers with new challenges for the future. The literature focuses on three main 

challenges: maintaining their farmland (Malan, 2015); expanding their farmland (Deininger 

and Byerlee, 2011); and selling their farmland for urban development (Curran-Cournane et al., 

2016;  Satterthwaite et al., 2010). Analyse and understand how farmers would change the 

territory are of great importance to anticipate the uncertainties of the future.  

Although complexity science has been applied by some researchers in simulating LUCC (Fu 

et al., 2018; Sang et al., 2011), few studies have combined participatory planning from the 

LUCC perspective. 
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In the next Part, we will introduce the data and methods used in our case study and the 

results achieved to identify the LUCC transformations. 
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Part Two: Measurement of LUCC in Torres Vedras 
(Portugal) 
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Introduction PART TWO 

Part Two Measurement of LUCC in Torres Vedras (Portugal) is divided into two chapters. 

Firstly, in chapter 4, the GIS data (acquisition, management, storage, and normalization), and 

the case study were presented. Secondly, in chapter 5, a detailed description of the 

agricultural land use dynamics in Torres Vedras municipality over time, using different 

techniques were shown.  

We focused our analysis on measuring the influence of urban growth, and its impacts on 

agricultural land-use change and fragmentation. 
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Chapter 4 – Study area, GIS data acquisition and 

management 
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Introduction Chapter 4 

In this chapter we presented the case study and the driving forces used. These data were 

supported by GIS technology, which allowed to organise, manage, monitor, display, analyse, 

and to provide a standardised and verified set of core data. The use of spatial data allowed to 

understand complex spatial analysis, to interpret, to visualise geographically referenced 

information, and to identify spatial relations, patterns, and trends.  
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1. Torres Vedras (Portugal): the case study 

Torres Vedras Municipality (Portugal) is located roughly 50 km north of Lisbon - bathed by 

the Atlantic Ocean and is located on the western edge of the European continent. Torres 

Vedras covers an area of about 407 sq. Km, and is divided into 13 parishes (Fig. 4.1). The 

elevation ranges from the sea level to 395 m. The orographic effect and the Atlantic Ocean 

are a major control on temperature and precipitation, in which the average annual 

temperature is 15ºC, and the average annual rainfall is 682 mm. Torres Vedras is characterized 

by mild temperatures during the colder months, near absence of frost on the coastline, high 

air humidity throughout the year, and low thermal amplitudes (IPMA, 2019). 

 

 

Figure 4.116– Location of Torres Vedras Municipality (Portugal) in Europe. Parishes: 1 - União das freguesias 

de A dos Cunhados e Maceira; 2 - União das freguesias de Campelos e Outeiro da Cabeça; 3 - Ramalhal; 4 - União das 
freguesias de Maxial e Monte Redondo; 5 - Silveira; 6 - Ponte do Rol; 7 - União das freguesias de Torres Vedras (São Pedro, 
Santiago, Santa Maria do Castelo e São Miguel) e Matacães; 8 - São Pedro da Cadeira; 9 - Ventosa; 10 - Turcifal; 11 - União 
das freguesias de Dois Portos e Runa; 12 - Carvoeira e Carmões; 13 - Freiria (data source: (DGT, 2018)). 

 

Over the past two decades, Torres Vedras has been dominated by a rapidly growing urban 

expansion, and its population has been increasing since the late 1980s (Statistics Portugal, 

2011). In 2011, Torres Vedras Municipality (Portugal) had a population of 79,465 inhabitants, 

and a population density of 195 inhabitants per sq. Km (Fig. 4.2). 

500 km0
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Figure 4.217– Inhabitants in Torres Vedras (2011), by statistical sub-sections (data source: Statistics 

Portugal, 2011). 
 

During 1991-2011 Torres Vedras registered a population growth of 18% (Table 4.1). 

However, this growth has not been the same throughout the municipality. During this period, 

Santa Maria do Castelo e São Miguel and, A dos Cunhados parishes had a population growth 

around 47%, and 37%, respectively. Nevertheless, some other parishes had a negative 

population growth, such as Outeiro da Cabeça (-15%), and Matacães (-16%). 

 

Table 4.112– Resident population and population density, in Torres Vedras (data source: Statistics Portugal, 

1991, 2001, and 2011). 

Year Resident population Population density 

2011 79,465 165 

2001 72,250 177 

1991 67,185 195 

 

The A8 motorway, connecting to Lisbon and opened in 1996, it was of great importance for 

the urban expansion in Torres Vedras. Between 1995 and 2010, an urban increase by 41% was 

registered (data source: DGT, 1995, 2010), accompanied by an economic and social improve, 

since the late 1990s.  
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New business models characterise Torres Vedras responding to the challenges the 

agricultural industry is facing in areas of high urban pressure. This area is marked by farmers, 

who are dedicated to maintaining their agricultural activity; diversified crops; small-sized 

farmlands; and adoption of new technologies for farming (Statistics Portugal, 2011). However, 

in 2009, 43% of the farming population of Torres Vedras was aged over 65, in which the 

farming population has been declining. In 1989, there were 7,185 farmers; and in the most 

recent census (2009), there were 2,201, which represent a decrease of 226% (Table 4.2). The 

same trend occurred both nationally (-96%) and regionally – Oeste Region (-186%) for the 

same period. 

 

Table 4.213– Farmers by age group, in Torres Vedras (data source: Statistics Portugal, 1989, 1999, and 2009). 

Year\Age group Total 15-34 35-64 65+ 

2009 2,201 64 1,208 929 

1999 3,995 196 2,512 1,287 

1989 7,185 612 4,897 1,676 

 

The agriculture sector has always been an essential sector in Torres Vedras (Statistics 

Portugal, 2011). However, in the past few years, agricultural land has been declining, which 

has been resulted in agricultural land fragmentation. It has been caused by many 

environmental, demographic and economic factors, such as a decrease in farmer population, 

a decrease of the used agricultural area, and an increasing demand for urban development. 

The agricultural land decreased has been also accompanied by a decrease in the number of 

farmlands. In 1989 was 7,245, and in 2009, 2,337, registering a decrease of 210% (Table 4.3). 

 

Table 4.314 – Number of farmlands and UAA, in Torres Vedras (data source: Statistics Portugal, 1989, 1999, 

and 2009). 

 2009 1999 1989 

N. º of farmlands 2,337 4,111 7,245 

UUA (ha) 29,064 33,524 42,761 

 

Torres Vedras is one of the leading suppliers of agricultural goods in Portugal (e.g., fresh 

fruits, vegetables, and wine) (Statistics Portugal, 2011), in which is one of the most critical 
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sectors of the local economy (Statistics Portugal, 2009). The gross added-value of agricultural 

enterprises in Torres Vedras has increased by 63% in the last few years (2009-2016), which 

compares with 45% in the whole Oeste Region, and 57% nationwide.  

The average annual work (AAW) unit by 100 hectares of utilised agricultural areas has also 

been decreased. In 1989 was 42.7, in 1999 it was 32.9, and in 2009 it was 25. Torres Vedras is 

characterised by farming systems heterogeneity, playing an essential role at both local and 

regional scale. In the last years, Torres Vedras has been losing a considerable part of their 

agricultural land to urban land in the face of rapid urbanisation. The increased land 

competition and the demand for land have led to the parcels’ fragmentation. Productive 

agricultural land and natural protected areas have been decreased and subdivided into small 

parcels. Urban development has contributed to the decreasing of farmland, increasing the 

speculative urban pressure on the land market (Gomes et al., 2019a, 2019b).  

Regarding the land use composition, Torres Vedras is mainly covered (in 2010) by forest and 

semi-natural areas (about 40% of the total area), permanent crops and heterogeneous 

agricultural land (25.94%), artificial surfaces (11.54%), permanently irrigated land (11%), non-

irrigated arable land (9.09%), pastures (2.17%), and water bodies and wetlands (0.15%) (DGT, 

1995, 2010). Table 4.4 provides a detailed description of the subclasses included in each land-

use class (in %). 
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Table 4.415 – Land use classes and subclasses (data source: DGT, 2010). 

Land Use Class Land use subclasses 
2010 (%) - 

subclasses 

2010 (%) 

- classes 

1 - Artificial surfaces 

Urban fabric 7.09 

11.40 
Industrial, commercial and transport units 2.45 

Mines, dumps and construction sites 1.46 

Artificial, non-agricultural vegetated areas 0.40 

2 - Non-irrigated arable land With and without dispersed vegetation  9.09 9.09 

3 - Permanently irrigated 

land 
Permanently irrigated land 11.00 11.00 

4 - Permanent crops, and 

heterogeneous agricultural 

land 

Vineyards 13.68 

25.94 

Orchards 3.51 

Olive groves 0.04 

Complex cultivation patterns 7.18 

Annual crops associated with permanent 

crops 
0.95 

Land principally occupied by agriculture 0.56 

Agroforestry areas 0.02 

5 - Pastures Grassland (pastures and meadows) 2.17 2.17 

6 - Forest and semi-natural 

areas 

Broad-leaved forests 16.16 

39.94 

Coniferous forest 0.86 

Mixed forests 2.44 

Scrub and herbaceous vegetation associations 19.89 

Open spaces with little or no vegetation 0.60 

7 - Water bodies and 

wetlands 

Water bodies 0.15 
0.46 

Wetlands 0.31 

 

Evolution: 1995-2007-2010 

Torres Vedras, as well as other rural-urban transitional areas, is characterised by a highly 

dynamic LUCC. Actual land use data from 1995 to 2010 were compared. Artificial surfaces 

increased by 41.5%, and non-irrigated land increased by 3% from 1995 to 2010. Meanwhile, 

non-irrigated arable land, permanently irrigated land, permanent crops, and heterogeneous 

agricultural land decreased overall to 41% (pastures decreased -73.8%, followed by the 

permanent crops and heterogeneous agricultural land at -22.3%, and by the permanently 

irrigated land at -10%). Also, according to the land-use transition matrix, we observed that 

11% of forest and semi-natural areas, and 10% of permanent crops, and heterogeneous 

agricultural land were transformed into artificial surfaces. Moreover, 37% of permanent crops 
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and heterogeneous agricultural land were converted into non-irrigated arable land (Figure 

4.3). 

 

 

Figure 4.318– (a) Total area (in hectares) by land-use class in 1995 and 2010; (b) variation (in %) by 
land-use class between 1995 and 2010. Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently 

irrigated land; 4 - permanent crops; 5 - pastures; 6 - heterogeneous agricultural land; and 7 - forest and semi-natural areas 
(data source: DGT, 1995, 2010). 

 

The transition analysis between 1995 and 2010 demonstrates that LUCC were significantly 

higher in some land-use classes. 52.5 ha of forest and semi-natural areas in 1995 had been 

converted into artificial surfaces by 2010. During the same period, 214.9 ha of pastures had 

been converted into the forest and semi-natural areas. Moreover, between 1995 and 2010, 

92 ha that had been permanent crops in 1995 had been converted into non-irrigated arable 

land in that period (Fig. 4.4). 

 

Figure 4.419– (a) Total area (in hectares) by land-use class in 1995 and 2010; (b) variation (in %) by 
land-use class between 1995 and 2010. Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently 

irrigated land; 4 - permanent crops; 5 - pastures; 6 - heterogeneous agricultural land; and 7 - forest and semi-natural areas 
(data source: DGT, 1995, 2010). 
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2. GIS data acquisition and management 

Data were stored and managed in a geodatabase. Some studies have been carried out 

concerning the usability of data at different spatial resolutions. Large spatial resolutions make 

difficult the identification of detailed information. However, small spatial resolutions have the 

advantage of accurate resolution data, facilitating the identification of land use relationships, 

which is relevant to suggest and implement local sustainable environmental policies  (Pan et 

al., 2010; Stanilov and Batty, 2011). This is one of the most important procedures for planning 

and decision making (Antrop, 2004; Antrop and Van Eetvelde, 2000; Meeus and Gulinck, 2008; 

White and Engelen, 2000).  

In our research, our data is in the ETRS89/PT–TM06 projection system, and it was converted 

into raster format with a 1 ha resolution. The choice of the spatial resolution resulted from a 

trade-off between data costs, computer processing time, reliability, feasibility, and the 

ecological fallacy. A small spatial resolution has the advantage of providing detailed land-use 

data and facilitates the identification of land use relationships (Pan et al., 2010; Stanilov and 

Batty, 2011). 

2.1 Land use/cover 

Land cover maps for 1995, 2007, and 2010 at the 1:25,000 scale (the most updated and 

detailed data for the study area) were selected for this research. Original data is organised 

into 193 different land use/cover classes. The land cover was regrouped into 7 classes: 1 – 

artificial surfaces; 2 – non-irrigated arable land, 3 – permanently irrigated land; 4 – permanent 

crops and heterogeneous agricultural land; 5 – pastures; 6 – forest and semi-natural areas; 

and 7 – water bodies and wetlands (data source: DGT, 1995, 2010) (Fig. 4.5). 
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Figure 4.520– Land use cover 1995 and 2010 (Torres Vedras, Portugal) (data source: DGT, 1995, 2010). 

 

Artificial surfaces were grouped in the same land-use class due to the urban fabric and 

service growth, usually accompanied by population growth (Duranton and Puga, 2014;  

Satterthwaite et al., 2010). However, we divided agricultural land into four land use classes 

because the focus of this study was to provide an in-depth analysis of agricultural land use 

dynamics. Forest and semi-natural areas were grouped into one land-use class, as well as 

water bodies and wetlands. Following, we described in detail each of these seven land use 

classes: 

- (1) artificial surfaces: The Organisation for Economic Co-operation and Development 

(OECD), Eurostat and Directorate General Regional Policy (DG REGIO) defined artificial 

surfaces as the functional urban areas according to population size, and land-use 

activities. It includes continuous and discontinuous urban areas, industrial, commercial 

and transport units, road and rail networks, dump sites and extraction sites, and green 

urban areas;  

- (2) non-irrigated arable land includes cereals, legumes, fodder crops, root crops and 

fallow land, flowers and tree (nurseries cultivation and vegetables, whether open field 

or under plastic or glass (includes market gardening), aromatic, medicinal and culinary 

plants; 

- (3) permanently irrigated land comprises crops irrigated permanently or periodically, 

using a permanent infrastructure (irrigation channels, drainage network); 
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- (4) permanent crops and heterogeneous agricultural land incorporate vineyards, fruit 

trees and berry plantations (parcels planted with fruit trees or shrubs) olive groves, 

annual crops, and complex cultivation patterns (the juxtaposition of small parcels of 

diverse annual crops);  

- (5) pastures combine dense grass cover, of floral composition, dominated by 

Graminaceae, not under a rotation system; 

- (6) forest and semi-natural areas include broad-leaved forest; coniferous forest; mixed 

forest; shrub and herbaceous vegetation associations; and 

- (7) water bodies incorporate wetlands, inland wetlands and coastal wetlands. 

 

2.2 Driving forces 

The driving factors considered in our research were based on the literature mentioned in 

Part One, on data availability, and according to their capability of change for agriculture 

development and urban growth. The selected driving forces represent the most up-to-date 

available data and include demographic and economic variables (2001 and 2011) (Statistics 

Portugal, 2011), physical data, and land use regulation variables. These driving forces were 

selected following the literature and the specific characteristics of the case study. In addition, 

to reduce redundancies between variables, the Pearson correlation test was estimated 

between each method selected and between the driving forces. If the correlation coefficient 

between the two variables was higher than or equal to 0.9, then one of the driving forces 

respectively was removed (Griffith et al., 2000). Moreover, we estimated the Variance 

Inflation Factor (VIF) to measure the inflated variance (Brien, 2007). 

Table 4.5 identifies the list of driving forces, used in each method, to explain LUCC and 

agricultural land fragmentation. The reference period of the data, the original scale, and the 

data source were also showed. 
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Table 4.516 – Driving forces used in each method: 0. Land use/cover; 1. demographic and economic; 2. 
physical elements; and 3. land use regulation (method: ABM – agent-based model; AF – agricultural 
land fragmentation; ANN – artificial neural network; and CA – cellular automata). 

Category Driving force Year Method 
Original 

scale 
Source 

0 Land use/cover 1995; 2010 
ABM, AF, ANN, 

CA 
1:25,000 COS/DGT 

 

1 

Population density 

2001; 2011 

AF, ANN, CA 
Statistical 

subsection Statistics 

Portugal 

Dwellings AF, ANN 

Buildings AF, ANN 

Population of farmers 
1999; 2009 

AF 
Parish 

Agricultural Area Used AF 

Average urban land price (m2) February 2017 ANN Parish imovirtual.pt 
 

2 

Distance to the road network 2017 
ABM, AF, ANN, 

CA 
1:10,000 OpenStreetMap 

Distance to urban areas 
2010 

ABM, ANN, CA 

1:25,000 

COS/DGT 
Distance to agricultural land ABM, CA 

Distance to coastline  2018 CA DGT 

Distance to hydrographic network  2002 CA 

Igeoe 
Slope --------- 

ABM, AF, ANN, 

CA 
 

3 

National Agricultural Reserve 

2014 

AF, ANN, CA 

1:25,000 PDM 

National Ecological Reserve AF, ANN, CA 

Non-aedificandi areas  
ABM, AF, ANN, 

CA 

Urbanizable areas  AF, ANN, CA 

 

The demographic and economic drivers were obtained through Portuguese census and the 

periods are the closest to the time-period available for the land-use data. Population density, 

dwellings, and buildings have a positive effect on urban growth (Triantakonstantis and 

Mountrakis, 2012). The population of farmers and agricultural area used are directly related 

to the agricultural land increase or decrease. The higher the values of these driving forces, the 

higher the cultivated areas will be registered (Sima et al., 2015). The average urban land price 

(m2), as discussed in previous chapters, reveals that the higher the value, the higher is the 

probability of land to be converted into urban development (Ettema et al., 2007; Koomen et 

al., 2007). 
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Concerning the physical elements, distance to road network is identified as a vital driver in 

land-use conversion from non-artificial surfaces to artificial surfaces (Stanilov, 2003). The 

proximity of road-network to agricultural land also encourages agricultural development, 

taking into account the consumers' proximity. In addition, road network is an indicator of 

urban pressure (Triantakonstantis and Mountrakis, 2012), in which urban growth frequently 

occur near transportation facilities (e.g., road-network intersections), determining its form 

and structure (Rui and Ban, 2011). Regarding the distance to urban area, there are currently 

in spatial planning, the concern of build new urban areas close to existing urban areas 

(Veerbeek et al., 2010), due environmental, demographic, social and economic reasons 

(Alonso, 1964; Leão et al., 2004b; Megahed et al., 2015; Wu, 2002). Distance to agricultural 

land is related to the reduction of production costs. As much closer is the agricultural area to 

another agricultural land-use class, less will be the costs. The distance to the coastline 

represents the suitability areas for agricultural productivity, in which as closer agricultural land 

is to the coastal area better for agricultural productivity. Since these areas have frequently 

mild temperatures, near absence of frost, high air humidity, and low thermal amplitudes 

(IPMA, 2019). Regarding the distance to hydrographic network, it is related to water 

availability for agricultural irrigation (Bekchanovet et al., 2010), and for agricultural 

productivity improvement (Satterthwaite et al., 2010). Furthermore, slope is expressed by 

percentage or degrees and corresponds to the ratio between horizontal distance and vertical 

fall. The terrain is an essential physical element that has a strong influence on agriculture 

viability and urban development. The slope can be a physical limitation for agriculture (Zhang 

et al., 2007), and a barrier for urban development (Li and Yeh, 2000; Simone et al., 2004; 

Triantakonstantis and Mountrakis, 2012). 

Finally, regarding the land use regulation, indicates land restrictions and promotes specific 

land uses. The selected driving forces for this category were National Agricultural Reserve 

(RAN), National Ecological Reserve (REN), Non-aedificandi areas (NA), and Urbanizable areas 

(UA). RAN corresponds to the areas with high suitability for agriculture practice (Larsson, 

2006). It protects agricultural areas of being converted to other uses. REN preserves the 

natural values, with ecological value and areas with susceptibility to geological erosion 

(Vergílio and Calado, 2014). Its regulation reduces the impact of urban pressure (Azócar et al., 

2007; Sims, 2014). NA is the restriction for urban development. It includes Natura 2000. Made 



An agent-based approach to model farmers' land use cover change intentions 

 

144 

 

up of Special Areas of Conservation and Special Protection Areas, it preserves vulnerable 

habitats and species and ensure that these areas are restored and maintained in proper 

conservation (EC, 2015). And UA defines the best areas for new built-up areas, and they are 

regulated as areas expected to be urbanised within the next ten years. 

Different normalisation methods are used to combine data in the same unit scale such as 

fuzzy logic (Jiang and Eastman, 2000; Zadeh, 1965), multi-label classification  (Omrani et al., 

2017), Z-score (Altman, 1968), and min-max (Jain et al., 2005). In our study, we choose a 

sigmoidal fuzzy membership functions (Chen & Wang, 1999) to data normalization, due to its 

interpretability and simplicity (Rodríguez-Fdez et al., 2016), and its ability to deal with 

uncertainty, incomplete data, and nonlinearity (Bauer and Tomizuka, 1996; Zimmermann, 

2010). In fuzzy logic, the values range from 0 to 1, with 0 being no suitability and 1 is the 

highest suitability (Fig. 4.6). 
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Figure 4.621– Driving forces. 1. Population density; 2. Dwellings; 3. Buildings; 4. Population of farmers; 5. Agricultural 

areas used; 6. Average urban land (m2); 7. Distance to road network; 8. Distance to urban areas; 9. Distance to agricultural 
land; 10. Distance to coastline; 11. Distance to hydrographic network; 12. Slope; 13. National agricultural reserve; 14. National 
ecological reserve; 15. Non-aedificandi areas; 16. Urbanizable areas. 
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Conclusion Chapter 4 

This chapter describes the case study and data acquiring and management. Torres Vedras 

Municipality (Portugal) was selected for the experiments of this research.  

In the first section of this chapter, we characterised the case study regarding the geographic, 

demographic and economic situation, and the land use and driving forces used in the different 

methods were shown. 

In the second section, we introduced the data management, in which we explained some 

pre-processing of geospatial data such as GIS data attributes, data standardisation, and 

multicollinearity. 

In the next chapter, we will introduce the methodological procedures to measure the 

influence of urban growth on agricultural land-use changes, and a method to analyse 

agricultural land fragmentation. 
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Chapter 5 – Measuring agricultural land-use dynamics: the 
influence of urban growth on agricultural land 

fragmentation 
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Introduction Chapter 5 

LUCC may take place across a specific landscape over a given period. It can occur naturally 

or through anthropogenic changes. In this chapter, we will present two different approaches 

to measure agricultural land use dynamics. One measuring the influence of urban growth on 

agricultural land variation and fragmentation, and another method used to measure 

agricultural land fragmentation using a coupled approach of landscape metrics and cluster 

analysis. In both methods, we identified the land conversion impacts on agricultural land. 
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1. The influence of urban growth in agricultural land use patterns 

Urban growth is responsible for changes in agricultural land use patterns, dynamics, and 

spatial structure. In this section, we conceive and describe a method, which we called Land-

use chAnge and Neighbouring Distance―LAND, to measure and estimate the impacts of urban 

growth on agricultural land. 

1.1 LAND method 

The purpose of LAND method is to identify the distribution of urban growth in agricultural 

land dynamics from the edge of existing urban areas. We assessed whether the urban growth 

trend is more or less discontinuous, and we verified the greater or smaller urban containment. 

The periods of analysis are between 1995 and 2010 (year 0–year 1). The results achieved were 

visualised as maps and graphically (Fig. 5.1). 

 

Figure 5.122– Land-use chAnge and Neighbouring Distance (LAND) method interface. Author: Gomes et 

al., (2018) 
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The LAND method was written in the Logo programming language and developed in 

NetLogo (please see the programming code in Appendix I). NetLogo is one of the most 

commonly used software tools to model the environment (Banos et al., 2015; Donkin et al., 

2017; Tisue and Wilensky, 2004). The LAND method aims: 

- quantify LUCC in area (ha) and percentage from year 0 (1995) to year 1 (2010) at 

different distances, ranging from 10 m to 200 m (we estimated the values for each 10 

m section zone), and from the land-use class x to the land-use class y; 

- quantify the impacts of urban growth in the agricultural land and forest; 

- identify the distribution of class frequencies for the neighbourhood of remaining (not 

selected) land use classes; and  

- detect stable land use classes between two periods. 

In each running process (the step from state 1 to state 2), the LUCC output can be visualised 

graphically in the interface, and a .txt table. Figure 5.2 illustrates an extract of how the LAND 

method is represented after each running process, where we can visualise the state of each 

cell in different colours.  

 

 

Figure 5.223– Extract of the LAND method running. (a):  LUCC between pastures-1995 (year 0-state 1) 
and artificial surfaces–2010 (year 1-state 2) (b) Neighbours (50 m distance) in LUCC between 
pastures-1995 (state 1) and artificial surfaces-2010 (state 2). Each colour represents one state. Red means: 

changed state 1 to state 2; grey: maintained state 1 as state 1; green: changed state 1 to other states; white: other states 
that have maintained their class and become stable states; and orange means: changed other states to other states. 
 

 

In our research, we measured the influence of neighbouring distance for new artificial 

surfaces (and its impacts on agricultural land) in year 1 counted from the edge of artificial 
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surfaces that had existed in year 0; we then verified in which non-artificial areas of year 0 

(non–irrigated arable land, permanently irrigated land, permanent crops, pastures, 

heterogeneous agricultural land, and forest) these changes had occurred (Fig. 5.3). 

 

Figure 5.324– LAND method mechanism. 

 

1.2 Impacts of urban growth on agricultural land 

The effects of urban growth on agricultural land have several environmental, demographic, 

social and economic consequences, already discussed in the previous chapters. 

Regarding the land structure, as more compact is the urban growth, less will be the 

agricultural and forest land fragmentation. Thus, to verify if the new urban areas (in 2010), are 

more or less compact, from the existing ones (in 1995), we estimated the first goal proposed 

by LAND method.  

So, according to the achieve results we demonstrated the spatial continuity that links the 

new urban areas with the existing ones and an increasing trend towards the compactness of 

built-up areas with the 10 m section zone. The spatial relationships between the new artificial 

surfaces were also tested statistically through the estimation of a linear-log regression, where 

an r2 of 0.9864 (strong correlation) was obtained between the distance and the new artificial 

surfaces. In addition, we tested the spatial autocorrelation analysis using the Moran’s–Rook’s 

Case (4 × 4 and 8 × 8 neighbourhood) (Eastman, 2003), in which showed values of 0.9612 and 

0.9543, respectively, which indicates that the emergence of new artificial surfaces has a strong 

spatial correlation with the existing artificial surfaces in 1995. And lastly, the analysis of 

cumulated values, obtained from LAND method, has shown that 7.6% of the total new artificial 

surfaces in year 1 (2010) emerged 10 m from the artificial surfaces that had already existed in 
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year 0 (1995); 14.7% at 20 m; 30.9% at 50 m; and 49.4% in the first 100 m. In the 1995–2007 

time period, the highest percentage of new urban areas was found less than 200 m from 

existing ones, when compared to the 2007–2010 period (72.2% and 64.4%, respectively). 

However, when we analysed new artificial areas closer to the edge of artificial surfaces that 

had already existed in year 0, we verify greater urban contiguity in the 2007–2010 period. In 

the 1995–2007 time period, 32% of new urban areas emerged in the first 50 m of existing 

urban areas, and 35% in the 2007–2010 period (Fig. 5.4). 

 

 

Figure 5.425–  Total weight (%) of new artificial surfaces from the edge of existing urban areas less and 
more than 20 m, 50 m, 100 m, and 200 m, for the three-time periods: 1995–2010, 1995–2007, and 
2007–2010 (data source: (DGT, 1995, 2007, 2010). 
 

Then, to estimate the impacts of built-up areas with the 200 m section zone, we measured 

the percentage of land use classes that changed from non-artificial surfaces to artificial 

surfaces at each 10 m interval (from 1995 to 2010). The results reveal that permanently 

irrigated land lost the highest percentage 200 m from the edge of urban areas (84%), whereas 

pastures and forest and semi-natural areas lost less land, respectively 60% and 64%, 

particularly along the urban core of the city of Torres Vedras and along the coastline (Fig. 5.5). 
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Figure 5.526– LUCC (in %) from non-artificial surfaces to artificial surfaces, and linear-log regression in 
the areas of urban growth from 1995 to 2010 according to the distance from existing built-up areas 
(data source: DGT, 1995, 2010). 
 

Moreover, to verify the impacts of new built-up areas on agricultural and forest land 

fragmentation in the analysed 200 m section zone, we estimated the patch density index (for 

1995 and 2010) of all non-artificial surfaces. This landscape metric is defined as the number 

of patches divided by the total area, in which smaller values mean more fragmented areas 

(Schneider and Woodcock, 2008). According to this, Table 5.1 shows these values for 1995 and 

2010, in which we verified an increase of land fragmentation in all agricultural land use classes, 

and in the forest and semi-natural areas, although the compactness of urban growth verified 

in the same period. 

 

Table 5.117 – Patch density estimated for all agricultural land use classes and forest and semi-natural 
areas (in the 200 m section zone - from 1995 to 2010) (data source: DGT, 1995, 2010). 

Land-use class 1995 2010 

2 - Non-irrigated land 0.28 0.14 

3 - Permanently irrigated land 0.14 0.07 

4 - Permanent crops and heterogeneous agricultural land 0.10 0.07 

5 - Pastures 0.31 0.19 

6 – Forest and semi-natural areas 0.09 0.03 

 

These performed statistical analysis have led to identifying that between 1995 and 2010, 

there were progressively less fragmented urban areas, and at the same time an increase in 
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agricultural land fragmentation was verified. We have also demonstrated the high influence 

of existing artificial surfaces in year 0 on the emergence of new artificial surfaces in year 1. 

During the 1995–2010 period, 70% of new artificial surfaces appeared in the firsts 200 m from 

existing artificial surfaces. 

A series of authors have studied impacts on LUCC and their implications (Bucała, 2014; Jiang 

and Tian, 2010; Quintas-Soriano et al., 2016; Wu et al., 2011). Figure 5.6 shows the 

demographic and land use regulation impacts of urban growth in Torres Vedras Municipality, 

obtained from the same range used in LAND method. RAN―defined as the best soils for 

agriculture and imposing a constraint to urban development (Abrantes et al., 2016) ―lost a 

total of 180 ha: 123 ha less than 20 m from existing artificial surfaces and 57 ha more than 200 

m from the edge of existing areas. Moreover, we have identified the transgressions to non-

aedificandi areas, i.e., areas where construction is forbidden. These non-aedificandi areas 

include the REN, groundwater, flood areas, railway station, quarries, spring water, cultural 

heritage, coastal planning, and the Natura 2000 network. We established that a total of 207 

ha were consumed by urban development between 1995 and 2010.  

Developable areas defined as future urban development in the Master Plan were classified 

as urban areas between 1995 and 2010, 168 ha less than 200 m, and 56 ha more than 200 m 

from the edge of existing urban areas (which corresponds to 8.5% of the total developable 

areas as defined in the Master Plan) (Fig. 5.6). 

 

Figure 5.627– Impacts of urban growth on non-aedificandi areas, RAN, and developable areas. 
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Comparing the resident population between 2001 and 2011 at subsection level in the urban 

areas that emerged between 1995 and 2010, we verified that population increased by 83% in 

the new urban areas less than 200 m from the edge of existing urban areas (in 1995), and 29% 

in areas more than 200 m away. Lastly, the conversion to urban development led to the 

decrease of agricultural and forest and semi-natural areas. In the 1989–2009 time period, 

farmers’ population at municipality level decreased from 7,185 in 1989 to 2,201 in 2009, and 

farms also reduced in number in the same period from 7,245 to 2,337 (Statistics Portugal, 

2011).  

In the next section, to perform a more detailed analysis of agricultural land fragmentation, 

we presented a method that couples landscape metrics and cluster analysis. 

2. Agricultural land fragmentation 

As we verified in the previous section agricultural land fragmentation has increased in the 

last years in Torres Vedras. Agricultural land fragmentation is characterised by agricultural 

land uses that are not adjacent to one another; such parcels are small and can be held by the 

same farmer or by different farmers. The quantification of fragmentation has been used to 

recognise the land’s structural elements and their changes over time (Haase and Nuissl, 2010; 

Sahraoui et al., 2016; Weng, 2007). Agricultural land fragmentation is a highly vital indicator 

to monitor landscape quality (O’Neill et al., 1997), and can be employed to create measures 

aimed at minimising fragmentation (Abrahams et al., 2015), or detecting trends in the 

evolution of landscape fragmentation (McGarigal et al., 2005). 

Agricultural land fragmentation affects the profitability of agriculture but also affects 

human communities. Recent empirical and theoretical literature has shown the various 

methods to study this phenomenon. It has been studied using different methods, such as 

landscape metrics (Gustafson, 1998; Irwin et al., 2007; Leitão et al., 2006; McGarigal and 

Marks, 1994; Peng et al., 2010; Salvati et al., 2014), regression techniques (Hargis et al., 1998), 

fractal studies, entropy analysis (Vranken et al., 2014), field research and statistical analysis 

(Karwat-Woźniak, 2011; Kuemmerle et al., 2009; Vijulie et al., 2012), and econometric models 

(Jayne and Muyanga, 2012).  
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Land fragmentation has been widely studied. However, an in-depth analysis aimed at 

measuring agricultural land fragmentation, and its prediction is needed. The purposes of this 

section are: (1) to identify different degrees of agricultural land fragmentation (using a set of 

landscape metrics and a cluster analysis); (2) and to predict agricultural land fragmentation 

for 2025 using a multi-layer perceptron in a business as usual scenario. Creating agricultural 

land fragmentation scenarios can be relevant in the decision-making process. Some 

advantages of applying ANN in the prediction of agricultural land fragmentation are its data-

driven and self-adaptive capabilities, the use of universal functional approximations, and the 

classifiers that do not require initial hypotheses on the data. 

These analyses offer insights to land planners so that they can better manage land use 

classes (and it can be effected in land use regulations) (Li et al., 2016). The innovative approach 

of this analysis is the fact that it combines landscape metrics and cluster analysis to identify 

the degrees of agricultural land fragmentation, as well as the use of a neural network to 

predict its evolution. 

2.1 Landscape metrics 

Landscape metrics can quantify spatial patterns and structures of land use cover patches 

(Bhatta et al., 2010; Jaeger and Schwick, 2014; Oueslati et al., 2015). Accordingly, two 

statistical approaches can be used: first–order and second–order statistics. First-order 

statistics, e.g., patch area, patch density (Su et al., 2014), number of patches (Torrens, 2006), 

define the variation at individual locations (Haining et al., 1984). However, second-order 

statistics identify the spatial dependence between two areas (Getis, 1983), e.g., proximity 

index (Hargis et al., 1998), nearest neighbour distance (Su et al., 2014), landscape division 

index (Plexida et al., 2014). According to the recommendation of Farina (1998) to analyse land 

fragmentation, we need to identify five patch characteristics: patch size, edge, shape, 

connectivity, and isolation/ proximity. They are effective measures to quantify significant 

characteristics of agricultural land fragmentation that other landscape metrics are unable to 

capture successfully. For each patch, we selected those characteristics that better express 

agricultural land fragmentation according to the landscape metrics more widely used. More 

specifically: (1) for patch size, we selected mean patch size (MPS) (Su et al., 2014); (2) for edge, 

we selected mean patch edge (MPE) (McGarigal and Marks, 1994); (3) for shape, we chose 
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mean shape index (MSI) (Su et al., 2014); (4) for connectivity, we selected effective mesh size 

(MESH) (Su et al., 2014); and (5) for isolation/ proximity, we selected mean proximity (MP) 

(Hargis et al., 1998). These landscape metrics measure the pattern and structure of each 

agricultural land use class and indicate the agricultural aggregation or fragmentation level of 

a given landscape. The more aggregate the patches are, the less fragmented they will be. Table 

5.2 describes the characteristics of each landscape metric. 

Table 5.218 – Selected landscape metrics. 

Landscape metric Description 

MPS It characterises the extent of fracture of the landscape spatial structure. 

MPE It describes the average edge of land cover patches. 

MSI It indicates the irregularity of patch shape. 

MESH It indicates patch size. 

PROX It divides sparse distributions of small patches. 

 

Agricultural land fragmentation was analysed using landscape metrics that integrated V-

Late 2.0 (Vector-based Landscape Analysis Tools Extension) and the FRAGSTATS 4.0 

(McGarigal and Marks, 1994) package. 

This analysis was performed for 1995 and 2010, for four agricultural land use classes: non-

irrigated land, permanent irrigated land, permanent crops and heterogeneous agricultural 

land, and pastures (Fig. 5.7). 

 

 
Figure 5.728– Agricultural land use classes. Land use classes: 2 - non-irrigated land; 3 - permanently irrigated land; 4 

- permanent crops and heterogeneous agricultural land; 5 - pastures (data source: DGT, 1995, 2010). 
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2.2 Driving forces – agricultural land fragmentation 

As debated in chapter 1, it was recognized that LUCC is closely related to social, 

demographic, and economic development (Long et al., 2007; Wu et al., 2013). The relationship 

between agricultural land fragmentation and human activity is the focus of significant debate 

in the field of agricultural land use studies (Cheng et al., 2015; Tilman and Lehman, 1987). 

Based on our results, we believe this to be the case in our study area. In Torres Vedras, during 

1995 and 2010, 891 ha of agricultural land have been converted into artificial surfaces. 

Moreover, forest land has also damaged agricultural land and changed its pattern and levels 

of fragmentation. In the previous section, we verified a significant correlation between the 

high levels of agricultural land fragmentation and population/artificial surfaces’ growth. This 

same driver played an essential role in the increase of farmland/agricultural land 

fragmentation in the studies conducted by Su et al. (2014), Cheng et al. (2015), and Abrantes 

et al. (2016). The driving forces selected for this analysis are presented in the previous chapter 

in Table 4.5. 

 

Square of analysis 

To better identify the agricultural land fragmentation analysis, as well as to be easier to 

compare data from different periods, a square of analysis for our case study was performed. 

However, according to previous studies, land dynamics and driving forces usually change at 

different spatial scales (Susilo, 2017). Then, we tested two scales of analyses: 2 by 2 km and 5 

by 5 km squares (Fig. 5.8).  

 

 

Figure 5.829– 2*2km (a) and 5*5 km (b) squares. 

5 km0 5 km0
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To aggregate the data of the selected landscape metrics and driving forces (for the analysis 

of agricultural fragmentation) into these two squares, we estimated three different 

procedures for each landscape metric and driving force, according to its specific features: (1) 

density by square; (2) % by square; and (3) average by square. Density by square (1) was 

estimated according to the proportion of the variable in each square analysed. Each value was 

estimated pursuant to the value of the variable by parish or subsection divided by the 

respective area that is concordant with each square. The percentage by square (2) was 

estimated based on the value of each square divided by the total area of the corresponding 

square multiplied by 100 to obtain the percentage. Finally, the average by square (3) 

corresponds to the average value of the variable obtained in each square. 

2.3 Multi-regression analysis 

Agricultural land fragmentation was analysed by establishing relationships between 

landscape metrics, land use regulations, environmental, demographic, and economic driving 

forces. A multi-regression analysis was used to identify the significant driving forces that 

explain agricultural land fragmentation variability. To verify the outcomes obtained for each 

analysis (time vs scale), the maximum likelihood method (Lubowski et al., 2008) was used. 

Also, to verify in which square (2 by 2 km or 5 by 5 km) the dependent variable (representing 

different degrees of land fragmentation) can be better explained by the driving forces, we 

computed a linear regression analysis. According to previous studies, land dynamics and 

driving forces usually change at different spatial scales (Anderson et al., 2009; Roces-Díaz et 

al., 2018; Susilo, 2017). Smaller cells may suggest better precision, and more detailed 

information, however, this may not represent better accuracy. Then, we ascertained that for 

both periods (1995 and 2010) and the landscape fragmentation metrics studied (MPS, MPE, 

MSI, MESH, and Proximity), the 5 by 5 km square can better explain the driving forces than 

the 2 by 2 km square, with R2 value always higher (Table 5.3). 

 

 

 

 



An agent-based approach to model farmers' land use cover change intentions 

 

162 

 

Table 5.319 – R2 values of linear regression estimated for the 2 by 2 km and 5 by 5 km squares (1995 
and 2010) (using as dependent variables the following landscape metrics: MPS, MPE, MSI, MESH, and PROX; and using the 

driving forces showed in Table 4.5. Land use classes: LUC 2 - non-irrigated land; LUC 3 - permanently irrigated land; LUC 4 - 
permanent crops and heterogeneous agricultural land; LUC 5 – pastures) (data source: DGT, 1995, 2010). 

  LUC 2 LUC 3 LUC 4 LUC 5 

  
1995  

2x 

1995  

5x 

2010  

2x 

2010  

5x 

1995  

2x 

1995  

5x 

2010  

2x 

2010  

5x 

1995  

2x 

1995  

5x 

2010  

2x 

2010  

5x 

1995  

2x 

1995  

5x 

2010  

2x 

2010  

5x 

MPS 0.78 0.95 0.72 0.87 0.77 0.90 0.78 0.99 0.73 0.98 0.81 0.95 0.85 0.98 0.63 0.90 

MPE 0.70 0.89 0.66 0.85 0.77 0.94 0.80 0.99 0.70 0.94 0.75 0.91 0.79 0.97 0.62 0.89 

MSI 0.48 0.81 0.43 0.84 0.72 0.86 0.72 0.94 0.60 0.78 0.59 0.89 0.59 0.90 0.52 0.90 

MESH 0.83 0.94 0.76 0.88 0.88 0.92 0.85 0.95 0.82 0.96 0.78 0.95 0.86 0.97 0.45 0.95 

PROX 0.73 0.94 0.65 0.78 0.69 0.90 0.68 0.95 0.73 0.94 0.63 0.96 0.60 0.92 0.50 1.00 

 

According to these results, we choose the 5 by 5 km square to conduct the subsequent 

analysis, once they can better explain the selected driving forces. 

2.4 Agricultural land fragmentation: 1995 and 2010 

As previously mentioned, agricultural land fragmentation is the breaking up of larger areas 

into smaller and more isolated areas. According to this, to identify similar characteristics in 

the 5 by 5 km square, a cluster analysis was computed. This technique aimed at identifying 

different levels of agricultural land fragmentation by grouping landscape metrics. These 

metrics were normalised using the z-score method and used as variables in k-means clustering 

(cluster analysis) (Milligan and Cooper, 1988). K-means clustering is an efficient method to 

measure the variability of agricultural land fragmentation for the different land-use classes 

because this method groups data based on proximity in variable space. No spatial constraints 

or Euclidean distance method were used as parameters. After the first analysis, the MSI metric 

was excluded due to its low R2 value in every clustering analysis (below 0.5). R2 represents 

how well each variable discriminates the total variation of the dataset (Table 5.4). 
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Table 5.420 – Overall variable statistics R2. Land use classes: LUC 2 - non-irrigated land; LUC 3 - permanently 

irrigated land; LUC 4 - permanent crops and heterogeneous agricultural land; LUC 5 - pastures (data source: DGT, 1995, 
2010). 

 LUC 2 LUC 3 LUC 4 LUC 5 

Landscape metrics 1995 2010 1995 2010 1995 2010 1995 2010 

MESH 0.7878 0.9318 0.9662 0.9784 0.7996 0.8893 0.9202 0.5015 

MPS 0.7745 0.6643 0.9032 0.9198 0.6751 0.8107 0.7160 0.6792 

PROX 0.7679 0.7166 0.9859 0.9814 0.9405 0.8921 0.5035 0.9668 

MPE 0.6726 0.5547 0.9178 0.8571 0.6704 0.7430 0.6521 0.6651 

 

The agricultural land use structure and its transition are reflected in the levels of agricultural 

fragmentation and to support its interpretation. So, clustering analysis was based on three 

categories: low, medium, and high fragmentation (Fig. 5.9).  

 
 
 

 

 

 
 

Figure 5.930– Levels of agricultural fragmentation for 1995 and 2010, using k-means clustering 
method. Land use classes: 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous 

agricultural land; 5 - pastures. 

 

The cluster “low” highlights the lowest distance between each agricultural land-use class, 

and conversely, the cluster “high” represents the highest distance between each one. 

MESH and PROX landscape metrics had the highest overall R2 values for every cluster 

analysis. MESH had the highest values in the cluster “class 2 – 1995” (0.7878), in the “cluster 

2 – 2010” (0.9318), and in the “cluster 5 – 1995” (0.9202). Otherwise, PROX landscape had the 

low medium high
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highest overall R2 values in the remaining clusters (cluster 3 and 4 for the years 1995 and 2010, 

and cluster 5 for the year 2010) with R2 values above 0.89.  

 

Standardised coefficient beta 

The landscape metrics were selected as dependent variables, and the variables that reflect 

demographic, economic and environmental characteristics were selected as independent 

variables. Using the standardised coefficient beta approach, we determined the most 

influential driving forces behind agricultural land fragmentation in 1995 and 2010. 

Standardised coefficient beta is positive when a positive relationship between the dependent 

and the independent variable is verified. It follows that the most important independent 

variable in 2010 (cumulative of the five-metrics analysed) in the land-use class 2 and 3 is the 

agricultural area used (negative relationship), followed in class 4 and 5 by the population of 

farmers (negative relationship) and agricultural area used (positive relationship) (Appendix II). 

We demonstrated with these results that the demographic and economic variables we 

selected explain the process of agricultural land fragmentation in our study area. 

2.5 Agricultural land fragmentation: 2025 

In this subsection, we evaluated the potential of ANN-MLP to predict agricultural land 

fragmentation. An ANN-MLP was employed to different levels of agricultural land 

fragmentation, with a time horizon of 15 years (2025) using the conventional model 

feedforward backpropagation algorithm (Basu et al., 2015; Snell et al., 2000). 

ANN-MLP are capable of taking into account any non-linear relationship among the driving 

forces and the dependent variable (Mas and Flores, 2008). However, a limitation in the use of 

ANN-MLP to model agricultural land fragmentation is that this method provides a “black box” 

approach (Kanungo et al., 2006). In this analysis, the model was based on simple ANN-MLP 

structure, based on the current conditions (BAU scenario). This analysis is in line with other 

studies that used ANN-MLP to predict several phenomena, such as LUCC (Morgado et al., 

2014), stock market index (Moghaddam et al., 2016), or river flow time series (Hu et al., 2001).  
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One of the most relevant characteristics of ANN-MLP is the number of neurons in the hidden 

layer (if they are lacking, the analysis could be poor; conversely, if they are in large numbers, 

the network may outweigh the data). We opted to achieve an ANN-MLP in automatic mode. 

The model chooses the parameters to achieve the best performance until the maximum 

interactions, or maximum accuracy are reached (Ahmed, 2005; Dzieszko, 2014) (Fig. 5.10 and 

Table 5.5; 5.6). 

 

Figure 5.1031– Diagram of a feedforward neural network. 

 

Data were separated into training and testing sets. All the input variables were normalised 

using the standard deviation method. 

 

Table 5.521 – Network information. Land use classes: LUC 2 - non-irrigated land; LUC 3 - permanently irrigated land; 

LUC 4 - permanent crops and heterogeneous agricultural land; LUC 5 - pastures. 

Input layer Covariates LUC 2 LUC 3 LUC 4 LUC 5 

 Number of units 29 29 29 29 

 Rescalling method for covariates normalised 

Hidden Layer Number of Hidden Layers 1 1 1 1 

 Number of Hidden Layers – Layer 1 9 8 6 9 

 Activation function hyperbolic tangent 

Output Layer Dependent variables 
LUC 2 
(2010) 

LUC 3 
(2010) 

LUC 4 
(2010) 

LUC 5 
(2010) 

 Number of units 2 2 3 3 

 Activation function softmax 

 Error function cross-entropy 

 

We used the softmax activation function. It is used to evaluate backpropagation algorithms 

and is best suited to deal with multi-class classification difficulties. As error function, we used 

cross-entropy.  
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Table 5.622 – Network information by land-use class. Land use classes: LUC 2 - non-irrigated land; LUC 3 - 

permanently irrigated land; LUC 4 - permanent crops and heterogeneous agricultural land; LUC 5 - pastures. 

  
LUC 2 

(n) 
LUC 2 

(%) 
LUC 3 

(n) 
LUC 3 

(%) 
LUC 4 

(n) 
LUC 4 

(%) 
LUC 5 

(n) 
LUC 5 

(%) 

Sample 
Training 20 83.3 20 83.3 20 80.0 20 80.0 

Tests 4 16.7 4 16.7 5 20.0 5 20.0 

Valid 24 100.0 24 100.0 25 100.0 25 100.0 

Excluded 18 
 

18 
 

17 
 

17 
 

Total 42 42 42 42 

 

The error is the sum-of-squares while the activation function is applied to the output layer. 

Table 5.7 shows the cross-entropy error and % of incorrect predictions of the training and 

testing sets for the four agricultural land use classes analysed. Test results indicate an overall 

incorrect prediction of 0.345 in Class 2, 0.526 in class 3, 0.829 in class 4, and 1.436 in class 5. 

This means high prediction levels for all land use classes. This analysis also indicates that the 

incorrect predictions of agricultural land fragmentation for land use classes 2, 3, and 4 are null, 

and for class 5 it is 20% (Table 5.7). 

 

Table 5.723 – Model summary of cross-entropy error and incorrect predictions. Land use classes: LUC 2 - 

non-irrigated land; LUC 3 - permanently irrigated land; LUC 4 - permanent crops and heterogeneous agricultural land; LUC 5 
- pastures. 

  LUC 2  LUC 3 LUC 4 LUC 5 

Training 
Cross-entropy error 6.578 4.656 0.067 4.796 

% of incorrect predictions 10% 5% 0% 10% 

Tests 
Cross—entropy error 0.345 0.526 0.829 1.436 

% of incorrect predictions 0% 0% 0% 20% 

 

The results obtained with the neuronal network have shown high predictive ability in 

classifying the levels of agricultural land fragmentation (Fig. 5.11). 
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Figure 5.1132– Levels of agricultural fragmentation by agricultural land use class for 2025, using the 
ANN-MLP method. Land use classes: 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and 

heterogeneous agricultural land; 5 - pastures. 

 
 

Our results demonstrate that high agricultural land fragmentation areas increased in the 

permanently irrigated land, and in permanent crops and heterogeneous agricultural land, and 

the high levels of fragmentation have remained stable in the non-irrigated land and pastures 

during the reference year 2010 and the projected the year of 2025. In general, results suggest 

that agricultural land fragmentation will increase in 2025, particularly near the coast (in 

permanently irrigated land), and in the South of Torres Vedras (in permanent crops and 

heterogeneous agricultural land) where agricultural land fragmentation is expected to 

increase (Fig. 5.12). 

 

 

Figure 5.1233– Levels of agricultural land fragmentation by agricultural land use class for 2025, relating 
the level of fragmentation and the area (in ha) of each agricultural level using ANN-MLP method. 
Land use classes: 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous agricultural 
land; 5 - pastures. 

low medium high
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These outcomes are in accordance with other studies that describe the tendency of 

agricultural land fragmentation increase in Europe, e.g., Sklenicka (2016), Ciaian et al. (2018), 

and Hartvigsen (2014). 

There are different approaches to validate the achieved results (Marcus and Elias, 1998). 

One of the most widely used approaches, as found in the literature, is Cramer´s V (Dzieszko, 

2014; Wang et al., 2012). Thus, the Cramer´s V value for each agricultural land-use class 

fragmentation scenario was performed. The validation step aims to determine the accuracy 

of the predicted map of agricultural land fragmentation in 2025, i.e. ascertaining whether the 

model is concordant with the real-world (Ahmed et al., 2013; Mondal, Sharma et al., 2016). 

Using as dependent data land use in 1995, and as independent data the variables listed in 

Table 4.5, we forecast 2010 agricultural land fragmentation for land classes 2, 3, 4, and 5 using 

the same ANN-MPL parameters. Agricultural land fragmentation validity was measured by 

cross-tabulation of the 2010 agricultural land fragmentation with the forecast 2010. Table 5.8 

shows the values obtained. These reveal good agreement scores, especially in class 3 (0.9457). 

 

Table 5.824 – Cramer´s V values (LUC 2010, LUC 2010 – predicted). Land use classes: LUC 2 - non-irrigated 

land; LUC 3 - permanently irrigated land; LUC 4 - permanent crops and heterogeneous agricultural land; LUC 5 - pastures. 

Index LUC 2  LUC 3 LUC 4 LUC 5 

Cramer´s V 0.7145 0.9457 0.6249 0.7427 
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Conclusion Chapter 5 

To measure the spatial configuration, several methods have been studied and used. In this 

chapter, a method to measure the impact of urban growth on agricultural land use variation 

was presented, as well a method coupling landscape metrics and cluster analysis to measure 

agricultural land fragmentation were performed.  

Measurements of LUCC can be presented in relative and absolute values (Bhatta et al., 

2010). The LAND method, firstly presented in this chapter, was performed at both scales. The 

main advantage of expressing it at a relative level is that it can be used in different case 

studies, and the results can be compared. Relating the LAND method with the 13 suitability 

criteria to measure LUCC, following Jaeger et al. (2010), we can ascertain that the LAND 

method meets all 13 criteria. These criteria are related to patch structure, and other elements, 

such as intuitive interpretation, mathematical simplicity, and modest data requirements. The 

LAND method fails to provide a spatial-geometry analysis, an important issue to measure LUCC 

(Frenkel and Ashkenazi, 2008; McGarigal and Marks, 1994). However, LAND method, unlike 

other measures e.g., Pozoukidou and Ntriankos (2017) and Xu and Min (2013), provides 

detailed information on LUCC in space and in time, offers easy mapping, and shows LUCC 

monitoring capabilities.  

Moreover, the LAND method can be used and adapted for different scales, replicable for 

other case studies, land use resolution data, and land use classes, and at different 

neighbouring distances. The LAND method can examine LUCC and land fragmentation from 

urban, agricultural, and forest land perspective. 

In addition, the landscape metrics used in the agricultural land fragmentation analysis have 

shown they can help understanding landscape patterns. They were used to categorise 

different degrees of fragmentation (low, medium, and high) and to simulate agricultural land 

fragmentation in 2025. Our analysis suggests that MESH, MPS, PROX, and MPE landscape 

metrics are effective measures to quantify significant characteristics of agricultural land 

fragmentation through different time-periods. The driving forces behind these changes are 

closely related to demographic and economic development and human activity (Cheng et al., 

2015; Tilman and Lehman, 1987) as also demonstrated by Long et al. (2007) and Wu et al. 

(2013).  
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By tracking the LUCC between 1995 and 2010, 891 ha of agricultural land was converted 

into artificial surfaces. We found a significant correlation between the high levels of 

agricultural land fragmentation and population and artificial surfaces’ growth. The same driver 

played an important role in the increase of agricultural land fragmentation in the studies 

conducted by Su et al. (2014), Cheng et al. (2015), and Abrantes et al. (2016).  

We have confirmed that urban growth had in the studied period consequences in the 

patterns and dimensions of farmlands, with implications for agricultural productivity 

(Anriquez and Bonomi, 2007). Understanding the dynamics of agricultural land fragmentation 

is an essential issue for farms' viability as well as for spatial planning. In this sense, we have 

introduced in this chapter another method that examined in more detail the agricultural land 

fragmentation, using landscape metrics and a cluster analyse.  

The current tendency, in Torres Vedras, of agricultural land consumption for urban 

development is contrary to the principles of sustainability. Tracking this evolution is critical. 

Different policies may have different effects on a territory. Land use planning measures to 

reduce the loss of agricultural land and protect and preserve natural areas are needed 

(Bengston and Youn, 2006; Cheshire, 2009; Dawkins and Nelson, 2002). For land planners, the 

results obtained in both methods can be relevant to identify the impacts of their decisions on 

landscape transformation at the local level, to define land priorities and designing new policies 

to avoid undesirable futures. These methods can help decision-makers to develop instruments 

for implementation of urban containment policies, as well as to limit, monitor, and regulate 

agricultural land fragmentation, e.g., Bengston and Youn (2006), Dearborn and Gygi, (1993), 

Fertner et al. (2016), and Jehling et al. (2016) preserve natural and agricultural areas (Bengston 

and Youn, 2006), and convert vacant plots or redevelop low–density inner-city areas, e.g., 

Bengston and Youn  (2006), Cheshire (2009), and Owusu (2013). 

Longer time periods of land use coverage would be an advantage in this work. This would 

help to check if the land transitions we verified is a long-term or a temporary trend. The results 

obtained in both methods can also be used as inputs in studies to evaluate the negative and 

positive impacts of LUCC, such as urban pollution, social fragmentation, water 

overconsumption, or loss of wildlife habitat.   
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Conclusion PART TWO 

In this Part, we introduced the case study, as well as the data used in this project. In 

addition, we measured the agricultural land-use changes, identifying the influence of urban 

growth on agricultural land fragmentation using different methods. According to the results, 

we verified that agricultural land has been decreasing, and the agricultural land fragmentation 

has been increasing in our empirical study. We have also presented a methodology towards 

to understand the agricultural land fragmentation in the future. This methodology was 

performed according to a BAU scenario to anticipate the impacts on land use, as well as to 

identify better land-use strategies.  

Mapping, measuring and simulating LUCC processes is important to support decision-

making and anticipate LUCC transformations. However, we gain in the projection of LUCC if 

we couple human behaviours with the environment. According to this, in the next chapter, we 

will illustrate the results obtained from different LUCC methods, in which were integrated 

farmer's LUCC intentions, captured by interviews. 
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Part Three: Integrating farmers’ intentions and engaging 

stakeholders’ in the LUCC modelling processing 
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Introduction PART THREE 

Part Three Integrating farmers’ intentions and engaging stakeholders’ in the LUCC modelling 

processing is divided into two chapters: chapter 6 and chapter 7.   

Chapter 6 presents different complex methods to model farmers' LUCC intentions and is 

subdivided into five sections: 1) the four explorative scenarios; 2) farmers’ interviews; 3) 

modelling farmers’ LUCC intentions with CA; 4) modelling farmers’ LUCC with ANN-MLP, and; 

5) modelling farmers’ LUCC intentions with ABM. 

Chapter 7 is focused on the analysis of the results and in the participatory workshop. This 

workshop aimed to engage stakeholders to analyse and to validate the results achieved. 

Moreover, we have discussed better land-use practices that can be taken, according to each 

scenario. 
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Chapter 6 – Farmers’ LUCC Intentions, scenarios, and LUCC 

models 
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Introduction Chapter 6 

To address the objectives of our study, and test strategies according to the uncertainties of 

LUCC, we designed four scenarios connected to demographic and economic developments 

and based on the past and current policies. The time horizon of scenarios is 2025 (usually the 

ten-year time interval of a master plan). We developed plausible and coherent future pictures, 

establishing narratives from the present to the thinkable futures. We identified explanations 

of how the future may be described based on “if-then” or “what-if” scenarios, to support 

spatial policies which should include better agricultural production management, 

environment protection, and the best locations for urban development. The four scenarios 

developed are A0 scenario - BAU; A1 scenario – regional food security; A2 scenario - climate 

change; and B0 scenario - farming under urban pressure. These scenarios were selected 

because they incorporate much of the range of potential future impacts on agricultural land 

and human settlements of our case study. The data used in this analysis included farmers 

interviews, land use, economic, demographic, physical, and land policies data. 

LUCC dynamics is a critical issue in sustainable land use planning (Lambin et al., 2001). The 

relevance of LUCC in peri-urban land-use planning has been highlighted by many studies 

(Buxton et al., 2016; Kleemann et al., 2017). Predicting LUCC at the municipal scale is essential 

to verify areas that are more susceptible to land degradation (Veldkamp and Lambin, 2001). 

Models support mathematical representations, simulating its characteristics and 

behaviours. They are used to develop narratives that can be experienced empirically. 

Modelling future LUCC provides a relevant mean and its relationship with driving forces 

(Verburg et al., 2004). An understanding of LUCC is a fundamental part of sustainable land 

planning. Conversion of agricultural land use classes by human action can affect the natural 

resource system. Modelling methods have changed the paradigm for LUCC analysis. They have 

improved the understanding of how driving forces and human behaviours have influenced the 

LUCC. A diversity of LUCC models have been developed for predicting LUCC at different levels 

of complexity (Islam et al., 2018; Valbuena et al., 2010a). They consist of three mechanisms: 

(1) multitemporal; (2) transitional function; and (3) a simulated land use map of LUCC (Batty 

and Torrens, 2001). CA, ANN, and ABM models have become widespread because of its 

simplicity to operate, and complexity to simulate phenomena.  
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Different driving forces were identified in relation to LUCC from 1995 to 2010. A set of 

factors and constraints that represent the attraction and repulsion for land use conversion 

were used. The selected variables were mapped for each scenario generated by using 

common GIS functions. The driving forces were selected following the literature. The farmers' 

interviews included a set of questions which were used to quantify the land use class 

conversion.  

In this chapter, we presented the narrative of the LUCC scenarios used in this analysis, as 

well as the results of the farmers’ LUCC intentions obtained from the farmers’ interviews were 

shown. Based on this data different LUCC models were used to spatialize the farmers’ LUCC 

intentions. The selected methods were the CA-Markov, ANN-MLP, and ABM. The use of 

different methods helped to reduce future uncertainties. 
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1. The four explorative LUCC scenarios 

To address the objectives of this chapter and test strategies according to the uncertainties 

of LUCC, we created four exploratory scenarios connected with demographic and economic 

developments and based on past and current policies. The time horizon of the scenarios is 

2014-2025. We extrapolated plausible and coherent narratives from the present to possible 

futures to support spatial policies for improved agricultural productivity, environment 

protection, and the best locations for urban development. We selected four scenarios: A0 

scenario – BAU; A1 scenario – regional food security; A2 scenario – climate change; and B0 

scenario – farming under pressure. These scenarios are in accordance with the FAO and EU 

policies trends and challenges and they were the basis to capture the farmers’ LUCC intentions 

in the interviews. Therefore, a transitional probability matrix was obtained for each land-use 

class in each scenario. These matrices (obtained from the farmers’ interviews) coupled with 

the land use and the selected driving forces identified for each LUCC model (please see Table 

4.5) allowed to mapping farmers’ LUCC intentions. The flowchart below outlines the scenarios 

and models used (Fig. 6.1).   

 

 

Figure 6.134– Scenarios and LUCC models applied. 

 

Below we describe the four scenarios developed in detail. 
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1.1 A0 scenario: BAU 

The A0 scenario aims to understand, according to current demographic, social and 

economic trends, the farmers’ LUCC intentions, in which they define their priorities for future 

agricultural activity (expanding, keeping, or selling their farmland). A0 scenario is also based 

on LUCC trends observed in the most recent years. 

1.2 A1 scenario: regional food security 

In the A1 scenario, farmers identify their motivations and priorities in a context of increasing 

demand for agricultural products, following the guidelines of rural development 2014-2020 

and CAP programs. The A1 scenario reflects a reinforcement of local agricultural production, 

where the average annual work unit of utilised agricultural areas can increase. This scenario 

includes the valuation of agricultural land, innovative industries, greater use of technology, 

and the modernisation of agricultural practices (Recanati et al., 2019). To boost agriculture, 

we highlight the need to improve transportation infrastructure and planning policies to 

minimise agricultural land fragmentation and conversion (Gomes et al., 2019b). A1 scenario’s 

key trends seek to revitalise agriculture through an increase of European funds. This demand 

is signalled by a changing food habits (e.g., dietary pattern), and stock building (EC, 2011). The 

A1 scenario also indicates increased purchasing power and the importance of the agricultural 

markets closest to urban centres. A1 scenario meets the principle of food security recognized 

as a priority in the Paris Agreement (United Nations Framework Convention on Climate 

Change), and the Habitat III Agenda (UN) in which food security of peri-urban regions was 

identified as a key for a more sustainable urban development. Some of these issues are 

addressed by the FAO Agricultural Development Economics Division in Alexandratos and 

Bruinsma (2012). 

1.3 A2 scenario: climate change 

The A2 scenario describes a narrative in which farmers explain their intentions in a context 

of declining agricultural production and productivity. In a rapidly declining trajectory, actual 

production systems collapse as a consequence of climate change. IPCC (Intergovernmental 

Panel on Climate Change) stated in the latest report that at our case study latitude long 

periods of drought will be recorded, and this will reduce yields in general. Moreover, several 
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studies have recognized that agricultural production decline when the daytime temperature 

exceeds a specific value (Luo, 2011; Zhao et al., 2017). Less reliable supplies of water will be 

also a consequence of climate change, with direct consequences on economic agricultural 

viability (Günther et al., 2005; von Gunten et al., 2015). Other factors that can also contribute 

to the production decrease, have been already discussed in several studies such as the 

increased fuel costs (Lindegaard et al., 2016; Pimentel et al., 1973); ageing farming population 

(Recanati et al., 2019); farmland fragmentation (Gomes et al., 2019b); increased production 

costs (Olynk, 2012); and arable land decay (Stoate et al., 2001).  

The A2 scenario recognises decreased purchasing power and increased imports of 

agricultural products from regions where the final cost of agricultural products is lower. Some 

of these concerns are identified by Anderson (2010) and in The CAP 2014–2020: scenarios for 

the European agricultural and rural systems by Nazzaro and Marotta (2016). 

1.4 B0 scenario: farming under urban pressure 

The purpose of the B0 scenario is to assess an increase of built-up areas and an increased 

probability of new peri-urban residents. The B0 scenario implies population growth; increased 

purchasing power; increased demand for more living space; growing market demand; and 

improved road access and public transport facilities. Moreover, in this scenario, real estate is 

viewed as an attractive investment. These issues are recognised by Satterthwaite et al. (2010) 

and Rauws and de Roo (2011). 

2. Farmers' interviews 

Interviews are an efficient and planned format to interpret and describe a phenomenon 

(Kvale, 1983). In our analysis, they were used to support scenario building, representing an 

efficient and planned format to interpret and describe a phenomenon (Kvale, 1983). Face-to-

face interviews were the technique used to capture the farmers' LUCC intentions. This 

technique has the advantage of personal interaction (Opdenakker, 2006; Szolnoki and 

Hoffmann, 2013). 
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The interviews were designed to investigate farmers' profile, farming practices, and LUCC 

intentions. They were conducted with currently active farmers. All farmers were informed 

about the content of this study and gave their consent to participate. Farmer contacts were 

obtained through local stakeholders such Confederation of Farmers of Portugal, Farmers 

Association of Torres Vedras, Promotorres, Câmara Municipal de Torres Vedras, and six Civil 

Parishes: Silveira, União das freguesias de A dos Cunhados e Maceira, Turcifal, Santa Maria, 

São Pedro e Matacães, Ramalhal, and União das freguesias de Carvoeira e Carmões. In 

addition, a large number of field visits were conducted to better identify suitable areas for 

conducting the farmer's interviews (Fig. 6.2). 

 

 

Figure 6.235– Farmers’ interviews (randomly distributed by parish). 

 

Interviews were used and designed to inquire which elements focused on the farmers’ 

profile, farming practices, and farmers' intentions of future LUCC. The farmers' interviews had 

the following questions: (1) age; (2) gender; (3) education; (4) farmland size; (5) whether the 

farmer is the owner or the tenant; (6) characterisation of each land-use class of their farmland 

in percentage. For all scenarios we asked: (7) whether the farmer intends to expand, keep, 

and/or decrease the farmland; (8) whether the intention is to expand farmland and for which 

land-use class; (9) the area of intended new farmland, distance from current farmland, and 

distance to water bodies or hydrographic network (within or outside the Torres Vedras 

municipality); (10) whether the farmers intended to abandon farming, or decrease farmland 
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size, and if so, how much, for which land-use class; and (11) intentions to change due to other 

economic activity. Farmers interviews intend to achieve the following goals: 

1) What impacts have individual decisions on LUCC?  

2) What are the key drivers in the decision of LUCC intentions? 

3) What is agriculture's role in urban system development? and 

4) How can agriculture be integrated more permanently in the territorial organisation? 

 

Sample, confidence interval, and sampling error 

Sampling is an important procedure to capture representativeness (Robinson, 2014). It 

includes probability sampling (a random selection); purposive sampling (a selective population 

sample); and no-rule sampling (with no specific rules). To guarantee the representativeness 

of the population and estimate the sampling errors some probability sampling types such as 

randomness, stratification, clustering, and systematic sampling was performed. 

In our study, probability sampling and stratified sampling techniques were used to select 

the farmers. Probability sampling was based on a random selection of farmer contacts and in 

different age groups. Quota sampling improved the representativeness by reducing sampling 

error (Daniel, 2012). One of the advantages of this technique is the detailed information 

collected for each subpopulation. 

In order to improve data collection, the interviews were conducted over a long period of 

time. The first stage was carried out in December 2014, and the last stage was carried out in 

May 2017. To identify a sample of the total farming population to be interviewed in Torres 

Vedras, we followed different steps. Firstly, to verify data accuracy we estimated the 

confidence interval and sampling error (Krejcie and Morgan, 1970) (Equation 6.1): 
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where n corresponds to sample size, N = Universe, X2 = confidence level at one degree of 

freedom, e = sampling error, and p = sample proportions.  

(6.1) 
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We estimated a sampling factor that corresponded to the ratio between the sample and 

the farming population (n/N). In our analysis, we divided the total farming population (N) into 

subpopulations (k) N1, N2,…,Nk, where the sum of all the subpopulations N1, + N2 + …+ Nk must 

be equal to N. We used a sample size in each age group, proportional to its size, where the 

sizes of the samples are the same.  

To identify the sample of the total farming population to be interviewed, we followed the 

following steps. Firstly, the sample size required for the sensitivity test was estimated using a 

different margin of error and confidence interval scenarios. In Table 6.1 we illustrate six 

scenarios. 

Table 6.125 – Statistical test and confidence interval scenarios. 

Initial Conditions 
Margin of 
error (%) 

Confidence 
level (%) 

Population 
size (n) 

Response 
distribution (%) 

Sample 
size (n) 

A1 9.58 95 

2.201 50% 

100 

A2 6.61 95 200 
A3 5.26 95 300 

B1 10.00 90 66 

B2 10.00 95 93 
B3 10.00 99 155 

 

In order to assign the margin error and the confidence interval we took into account a 

balance between 1) the values accepted in the literature (Greenland et al., 2016); 2) the costs 

per interview; 3) the time took per interview, and; 4) the difficulty of obtaining the farmers’ 

contacts. Following this procedure, we chose the B2 scenario, in which we assigned a 

confidence interval of 95% and a maximum error margin of 10%. The farmers interviewed by 

age groups are expressed in Table 6.2. 

 

Table 6.226 – Farmer population (data source: Statistics Portugal, 2009) and farmers interviewed by age group 
(Torres Vedras). 

Farmers Total 15-34 35-64 65+ 

Farmer population (2009) 2,201 64 1,208 929 

Farmers' interviewed 93 10 56 27 

 

Farmers’ LUCC intentions 

We used 29 variables extracted from the farmer’s interviews (Appendix III). Questions 

included farmers profile (e.g., gender, age, education, and if they are landowners or/and 
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tenants) and farmlands profile (e.g., current farmland dimension and the % occupied by each 

agricultural land use class). For the A0, A1, A2, and B0 scenario we asked the following 

questions regarding LUCC's intentions:  

- If the farmers intend to expand and/or decrease the agricultural land use classes;  

- If they expect to develop and reduce the agricultural land use classes, how much? and 

where?; and 

- if they have the intention to sell their farmland to urban development, if yes, partially 

or totality? 

The responses reveal that 91% of the farmers interviewed are men, and 9% are women. The 

majority of respondents have between one and four years of education (36%), followed by 

ten and twelve years (20%), higher education (14%), seven and nine years (17%), and by the 

population between five and six years of school (13%). The majority of the farmers are 

landowners representing 90% of the total farmers interviewed. Most farmers have a small to 

medium-sized farm, in which 47% of their farms have less than 5 hectares, 15% have between 

21 and 50 hectares, 9% have between 11 and 20 hectares, 5% have between 6 and 10 

hectares, and 2% of farmers have more than 51 hectares. 

The findings revealed the farmers’ LUCC intentions to expand, keep, and/or decrease the 

farmland, for which land-use class, and how much for each scenario. Figure 6.3 shows the 

percentage of farmers’ LUCC intentions to expand cultivated land by each scenario and age 

group. 

 

Figure 6.336– Farmers’ LUCC intentions to expand cultivated land (2 – non-irrigated arable land; 3 – 
permanently irrigated land; and 4 – permanent crops and heterogeneous agricultural land) by 
scenario and age group. 
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According to the interviews with farmers, those in the 15-34 age group are the ones that 

have the highest intentions to expand cultivated land in every scenario, because of their age, 

and their ambition and capacity to expand their farmland (except for the A2 scenario, in which 

none of them has the intention to expand cultivated land) (Fig. 6.3). 

In detail, and analysing the farmers’ LUCC by scenario, in the A0 scenario, 15% of the total 

farmers in Torres Vedras intend to expand the cultivated land, in which 21% of the farmers 

intend to expand their cultivated land between 1% and 25%; 29% between 26% and 50%; 29% 

between 75% and 100%; and 21% more than 100%. Comparing the variation of current 

farmland size with the A0 scenario, we verify a smooth increase of non-irrigated land (0.06%), 

followed by permanent crops (10%), and by permanently irrigated and heterogeneous 

agricultural land (20%). In this scenario, pastureland will register a slight decrease. 

In the A1 scenario, 54% of the farmers expect to expand the area of cultivated land. The 35-

64 age group shows the greatest intention to increase farmland size. Farmers intend to 

increase permanent crops by 71%, permanently irrigated and heterogeneous agricultural land 

by 68%, and non-irrigated arable land by 2.9%. 

In the A2 scenario, no farmers intended to expand their cultivated land. However, 30% 

would decrease cultivated land if the A2 scenario occurred: 29% are in the 15-34 age group; 

57% in the 35-64 age group; and 14% are over 65. In this scenario, an increase of pasture land 

by about 560%, and an increase of forestland by about 281% will occur, with 36% of the 

farmers intending to reduce their cultivated land between 26% and 50%; 25% between 25 and 

50%; 25% between 51% and 75%; and 14% between 1 and 25%.   

Lastly, in the B0 scenario, land price valuation exerts a decisive influence. Most farmers are 

landowners, 84 in a total of 93. They can choose whether to sell or not for urban development 

(if at present or in the future their land is not affected by restrictions on urban development). 

While 32% of the landowner farmers intend to abandon agricultural activity, 79% intend to 

sell their farmland to investors and change their economic activity. The remaining 21% of the 

farmers intend to sell their farmland partially to investors for residential or tourist uses. 

However, 18% of these landowner-farmers who intend to sell their farmland (partially or 

wholly) plan to buy another agricultural land near their current farmland and continue 

farming. In this scenario, younger farmers (landowners) are more liable to sell their farmland 
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to urban development: 54.5% in the age group 15-34 years; 40.8% of the age group 35-64; 

and 32% of the older farmers (+65 years). 

3. Modelling farmers’ LUCC intentions with CA 

CA-based on Markov chains are increasingly employed in LUCC (Dezhkamet al. 2017; Sang 

et al. 2011), incorporating the relationships between land use and driving forces.  

The methodology used in this section included the interviews with farmers (which captured 

the farmers’ LUCC intentions), and then a combination of GIS, and CA – Markov Chain – 

developing step-by-step guidelines towards the creation of a simulation model to predict 

LUCC. The main contributions of this section are: (a) to spatially analyse and model future 

LUCC and their impacts on the territory, and (b) to help understand how farmers’ decisions 

can affect the decline, maintenance, or expansion of agricultural land in Torres Vedras. 

3.1 CA-Markov 

In order to obtain land-use scenarios, based on the CA-Markov model, we used IDRISI Selva 

software (Eastman, 2012). The simulation scenarios are composed of seven main 

components: multicollinearity of driving forces, cell states (fuzzy and Boolean logic), 

neighbourhood configuration, transition rules, time step resolution, and model assessment. 

The detailed steps are shown in Figure 6.4. 
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Figure 6.437– Methodological framework of CA-Markov LUCC model. 

 

Multicollinearity of driving forces 

After we identified the most important driving forces that characterise the case study and 

the phenomena under study, we estimated explanatory variable redundancy 

(multicollinearity). We used the VIF to quantify the degree of multicollinearity. The values 

obtained were below 2, which means that all the driving forces in the model are stable (Brien, 

2007). 

 

Cell states (fuzzy and Boolean logic) 

The fuzzy analysis function was applied to demonstrate the suitability of each cell to be 

converted from state 1 to state 2. Fuzzy analysis corresponds to a normalisation process in 

which physical driving forces are transformed into a range of fixed values (Kainz, 2001). In 

Boolean logic, only two possible values are considered: true or false (e.g., 0 or 1) (Sui, 1992).  
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Neighbourhood configuration 

The neighbourhood configuration chosen was the Moore neighbourhood with 5x5 cells. 

Neighbourhoods have adjacent cell clusters that define the distance to an individual 

automaton (Verburg et al., 2004). 

 

Transition rules to quantify land-use class conversion (Markov chain and farmers’ LUCC 

intentions) 

To estimate the probability of the quantity of LUCC (in area) in 2025, two approaches were 

employed: Markov chain and farmers’ LUCC intentions. 

Markov chain is represented by a set of random driving forces (Diaconis, 2009), and has a 

matrix of transition probabilities expressed by 1 2 1... n nt t t t +  . Where nt corresponds to 

present time, 1nt +  to a point in the future, and 1 2 1, ..., nt t t −  to several points in the past 

(Basharinet et al. 2004; Levinet et al. 2009).  

Farmers’ LUCC intentions were collected from the interviews. To obtain the matrix of LUCC, 

the following procedures were performed: 

 

a) We added the number of hectares of all the agricultural land use classes (non-irrigated 

arable land, permanently irrigated land, permanent crops and heterogeneous agricultural 

land, and pastures) that correspond to the current farmlands of the interviewed farmers;  

b) We calculated the percentage of growth for each agricultural land-use class (and for each 

scenario) based on farmers’ LUCC intentions; 

c) Afterwards, we obtained the percentage of growth and multiplied the percentage of each 

agricultural land-use class by the corresponding land use class of the reference land use map 

(to obtain the area in hectares ― positive or negative); 

d) In order to identify the changes that will occur in the future from each land-use class 

(transition matrix), we used the trends (in %) of past years (between 1995 and 2010) to obtain 

positive and negative growth (we distributed the quantity of land according to this %); 

e) When the expected growth (in hectares) for a specific agricultural land-use class was 

higher or lower than the available land (obtained in d), we used the pastures and forest and 
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semi-natural areas as passive land use. We added or subtracted pastures and/or forest and 

semi-natural areas in hectares (in the transition matrix) if the agricultural area had decreased 

or increased (proportion distribution between pastures and forest and semi-natural areas was 

based on the percentage of changes that occurred in the past (1995-2010) using the same 

procedure described in d); 

f) For the B0 scenario, we estimated artificial surface growth as follows:  

The area expected to be changed from agricultural, forest and semi-natural areas to 

artificial surfaces according to the farmers’ intentions.  

Subsequently, we multiplied the area in hectares of the farmers’ intentions to transform 

their agricultural land into artificial surfaces by the construction index of 0.25 approved in the 

Torres Vedras Master Plan (Notice No. 927/2014), whose Article 31 specifies the conditions of 

construction. To identify passive land, we used the same technique described in d) above. 

Complying with these two transition rules, we used each technique for the land use classes 

and scenarios mentioned in Table 6.3.  

 

Table 6.327 – Transition rules techniques used for each land-use class and each scenario. 

Land Use Classes BAU 
 

A0, A1, A2 
 

B0  

Artificial surfaces 

BAU 

BAU  
 

Farmers’ LUCC 
intentions 

 

Non-irrigated arable land  
Farmers’ LUCC 

intentions 
 

Permanently irrigated land 

Permanent crops and heterogeneous agricultural land 

Pastures 

Forest and semi-natural areas 
BAU BAU 

Water bodies and wetlands 

 

Transition potential maps: logistic regression analysis 

Logistic regression was used to acquire the relative weights of explanatory driving forces, 

which represent the very driving forces that influence LUCC (Wu 2002), is estimated according 

to the following formula (Mahiny and Turner, 2003) (Equation 6.2): 

 

𝑃(𝑦 = 1|𝑋) =
exp (∑𝐵𝑋)

1 + exp  (∑𝐵𝑋)
 

 

(6.2) 
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where P is the probability of the dependent variable; X corresponds the independent 

variable; B to the estimated parameters. 

In each logistic regression analysis, we used different input driving forces to explain the 

dependent variable (land use/cover 2010). These driving forces depend on each land-use class 

and scenario. Thus, we used different explanatory driving forces for artificial surfaces (land-

use class 1) (AS), agricultural areas (land use classes 2, 3, 4, and 5) (AA), forest and semi-natural 

areas (land use class 6) (FSNA), and water bodies and wetlands (land-use class 7) (WBW). Table 

6.4 shows the driving forces used for each scenario.  

 

Table 6.428 – Explanatory driving forces used in the logistic regression analysis for artificial surfaces, 
agricultural areas, forest and semi-natural areas, and water bodies and wetlands for each scenario 

(dependent variable: land use/cover 2010). 

N Driving forces AS  
(BAU, 

A0) 

AS  
(A1, A2, 

B0) 

AA  
(BAU, 

A0) 

AA 
 (A1, A2, 

B0) 

FSNA 
(BAU, A0, 

A1, A2, B0) 

WBW  
(BAU, A0, 

A1, A2, B0) 

1 Distance to the road network ⃝ ⃝ ⃝ ⃝ ⃝  

2 Distance to coastline ⃝ ⃝ ⃝ ⃝   

3 Distance to urban areas ⃝ ⃝     

4 Distance to agricultural land  ⃝ ⃝ ⃝   

5 Slope ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 

6 Distance to hydrographic network   ⃝ ⃝  ⃝ 

7 RAN   ⃝ ⃝   

8 Urbanizable areas ⃝ ⃝     

9 Non-aedificandi areas ⃝ ⃝     

10 Population density ⃝      

 

Time step resolution 

Time step resolution was 1 year, and the simulations carried out cover a time span of 15 

years (or 15-time steps ― from 2010 to 2025). 

3.2 Testing model performance 

Model assessment implies using techniques to check that the simulations are satisfactorily 

estimated (Trucano et al., 2006). There are many techniques to validate the accuracy of 

predictions. Kappa index has been widely used to validate LUCC models (Kandziora et al., 

2014; Pan et al., 2010; Yu et al., 2011) measuring the inter-rater agreement between 

categorical variables x and y, and evaluating the prediction performance of classifiers (Cohen, 

1960). A kappa of 0 indicates that agreement is due to chance, while a kappa of 1 means a 
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perfect agreement (Viera and Garrett, 2005). However, Pontius and Millones (2011) proposed 

to quantify disagreement and allocation disagreement.  

Different types of kappa coefficients (measuring agreements and quantity-allocation 

disagreements) were applied to evaluate the simulation performance of different scenarios. 

We compared simulated 2010 land use with the reference map for 2010. Using the driving 

forces shown in Table 4.5 (chapter 4, section 2.2) for the BAU scenario, we performed the 

matrix of Markov transition areas and the suitability obtained from the logistic regression 

analysis from 1995 to 2007. Subsequently, we computed the CA-Markov to simulate 2010 land 

use (Fig. 6.5). 

 

     
Figure 6.538– (a) Land use – 2010 (reference map); (b) Land use – 2010 (predicted map). Land use classes: 

1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous 
agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies and wetlands (data source: DGT, 1995, 
2007, 2010). 

 

We measured the inter-rater agreement, i.e., we compared the actual observed agreement 

with the expected agreement over random allocation. Pontius (2000) refers that kappa values 

below 1 can be caused both by dissimilarity in sizes and by the allocation of land use classes 

on the map, and they do not quantify disagreement and allocation disagreement (Pontius and 

Millones 2011). As the first step to minimise this disadvantage, a contingency table was 

measured (van Vliet et al. 2011). Table 6.5 represents the cross-tabulation between the 

reference map and the predicted map for land use in 2010. 
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Table 6.529 – Cross-tabulation between Land use 2010 - reference map, and Land use 2010 - predicted 
map (ha). Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops 

and heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies and wetlands (data 
source: DGT, 1995, 2007, 2010). 

predicted\ 
reference 

1 2 3 4 5 6 7 Total 

1 444478 1644 2575 8977 2664 16229 760 477327 

2 1374 291476 17350 34489 7148 9932 66 361835 

3 1766 2228 383055 50107 237 17007 144 454544 

4 3220 21008 16353 922633 3181 40752 141 1007288 

5 977 17349 10215 5180 36611 9453 0 79785 

6 12378 36415 18229 34715 38446 1532960 232 1673375 

7 0 8 0 0 0 12535 4803 17346 

Total 464193 370128 447777 1056101 88287 1638868 6146 4071500 

 

From this contingency table analysis, we retrieve the observed and expected fraction of 

agreement, and the maximum fraction of agreement (van Vliet et al. 2011). To integrate these 

parameters into the Kappa index, Hagen (2002) identifies KHistogram and KLocation, 

described as follows (Equation 6.3): 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
→ {

𝐾𝐻𝑖𝑠𝑡𝑜 =
𝑝𝑀𝑎𝑥 − 𝑝𝑒

1 − 𝑝𝑒

𝐾𝐿𝑜𝑐 =
𝑝𝑜 − 𝑝𝑒

𝑝𝑀𝑎𝑥 − 𝑝𝑒

} → 𝐾𝑎𝑝𝑝𝑎 = 𝐾𝐻𝑖𝑠𝑡𝑜 × 𝐾𝐿𝑜𝑐 

 

Where Po is the correct observed proportion, Pe is the expected fraction of agreement, and 

PMax is the total number of cells taken in by each class. KHistogram ranges from 1, indicating 

a perfect agreement, to 0 indicating no agreement, whereas KLocation ranges from -1 to 1, in 

which 1 corresponds to a perfect allocation. Table 6.6 expresses kappa, klocation, and 

khistogram values obtained between Land use 2010 (reference map) and Land use 2010 

(predicted map). 

 

Table 6.630 – Kappa index, kLocation, and KHistogram between Land use 2010 (reference map) and 
Land use 2010 (predicted map). Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated 

land; 4 - permanent crops and heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water 
bodies and wetlands (data source: DGT, 1995, 2007, 2010). 

Measures 1 2 3 4 5 6 7 

Kappa 0.93687 0.77632 0.83023 0.85844 0.42380 0.87465 0.40758 

Kappa Location 0.95189 0.78610 0.83729 0.88652 0.44688 0.89028 0.78055 

Kappa Histogram 0.98423 0.98755 0.99157 0.96832 0.94835 0.98244 0.52218 

 

(6.3) 
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The results of the kappa histogram indicate similarity in all land use class sizes (except for 

water bodies and wetlands); hence, all dissimilarity is caused by the incorrect allocation of 

LUCC as expressed with Kappa Location. 

The indexes mentioned above identify the agreement between two maps. Also, to identify 

the accuracy of a simulation outcome in relation to the accuracy that can be predictable given 

the quantity of LUCC in the simulation, three more parameters were estimated: kappa 

simulation, kappa transition, and kappa transloc. The values obtained are as follows: Kappa 

simulation = 0.84805; kappa transloc = 0.86703; and KTransition = 0.97811. Since the values 

are close to 1, this suggests that the predicted map is very accurate. These values were 

obtained from the Map Comparison Kit (Visser and de Nijs, 2006). 

3.3 Logistic regression performance to identify the most significant driving forces 

To identify LUCC driving forces and measure the influence of explanatory variables, logistic 

regression was performed. Table 6.7 describes the driving forces that most influence each 

land-use class. The drivers that most influence artificial surfaces are those related to human 

activities (e.g., population density, and distance to urban areas), and for the cultivated land 

are those related to the distance to agricultural land, physical elements such as distance to 

the coastline, slope, and agricultural land use protection (RAN). The outcomes present good 

explanatory capability, which means that LUCC can be explained by these driving forces. 

 

Table 6.731 – Regression analysis for each land-use class. Land use classes: 1 - artificial surfaces; 2 - non-irrigated 

land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous agricultural land; 5 - pastures; 6 - forest and 
semi-natural areas; and 7 - water bodies and wetlands (data source: DGT, 1995, 2007, 2010). 

Driving forces 1 2 3 4 5 6 7 

Distance to road network 1.2016 0.1138 0.5740 0.3387 -0.1569 0.8147  

Distance to coastline 0.5353 -1.9153 6.4375 -0.6189 -0.0533   

Distance to urban areas 30.0381       

Distance to agricultural land  16.7638 18.9496 18.1329 25.6346   

Slope 0.1782 0.5589 -0.0018 0.2616 -0.2246 1.0069 -0.4155 

Distance to hydrographic network  0.1625 0.1776 -0.6626 -0.2194  10.8896 

RAN  0.2878 0.8056 0.6006 -0.0544   

Urbanizable areas -0.8014       

Non-aedificandi areas 1.0200       

Population density 58.0011       
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3.4 Land use cover changes in the different scenarios 

Evolution: 2010-2025 

Every scenario shows an increase in artificial surfaces, particularly the B0. In this scenario, 

there is an increase by 1,918 hectares (41%) in the place of previously agricultural land, 

predominantly permanently irrigated land and pastures. 

In the A1 scenario (regional food security), substantial growth of permanently irrigated land 

(3,043 hectares) was seen, which shows the importance that farmers attribute to water 

availability in their farms (Fig. 6.6). 

 

 

 

Figure 6.639 – LUCC for each land-use class for the year 2010 and for the 2025 scenarios. Land use classes: 

1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous 
agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies and wetlands. 

 

In Figure 6.7, a strong spatial correlation between new artificial surfaces, in the B0 scenario, 

and their proximity to existing artificial surfaces (in the reference map) can be confirmed, 

emphasising the relevance of the distance to urban areas driving force for this land-use class.  
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Figure 6.740– (a) B0 scenario; (b) B0 scenario (artificial surfaces) and Land use 2010 (artificial surfaces) 
- reference map. Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - 

permanent crops and heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies 
and wetlands. 
 

Figure 6.8 shows the best (A1 - regional food security) and worst-case (A2 - climate change) 

scenarios for agricultural productivity. 

 

     

Figure 6.841– (a) A1 scenario; (b) A2 scenario. Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - 

permanently irrigated land; 4 - permanent crops and heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural 
areas; and 7 - water bodies and wetlands. 

 

In the A1 scenario, the emergence of new cultivated land is envisaged. We verified an 

increase by 269 hectares when compared to the reference map for 2010. This new cultivated 

land from previously uncultivated land was converted from pastures (67%), and from forest 
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and semi-natural areas (33%). This increase was only seen in the permanently irrigated land 

(Fig. 6.9). 

  

    

     

Figure 6.942– Agricultural land use classes in 2010 (reference map) and 2025 (A1 scenario): (a) non-
irrigated land); (b) permanently irrigated land; (c) permanent crops and heterogeneous agricultural 
land; and (d) pastures. 

 

In the A2 scenario, a loss of agricultural land by 4,743 hectares (from 2010) was registered. 

The highest losses were recognised in permanent crops and heterogeneous agricultural land, 

with annual mean losses of 142 hectares, followed by non-irrigated arable land (103 hectares 

per year), and permanently irrigated land (72 hectares per year) (Fig. 6.10). 
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Figure 6.1043– Agricultural land use classes in 2010 (reference map) and 2025 (A2 scenario): (a) non-
irrigated land); (b) permanently irrigated land; (c) permanent crops and heterogeneous agricultural 
land; and (d) pastures. 

 

Figure 6.11 shows the variation of land use classes between 2010 and the 2025 scenarios. 

Artificial surfaces registered the highest increase in the B0 scenario, the same percentage of 

increase that had occurred in the past between 1995 and 2010 (41%). In the A1 scenario, 

permanently irrigated land increased by almost 70% when compared to 2010. Pastures 

decreased in every scenario ― particularly in the A1 scenario ― losing 60% of the area. Forest 

and semi-natural areas gained land in every scenario except for the A1 scenario. 
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Figure 6.1144–- LUCC between Land use 2010 (reference map) and the Land use 2025 scenarios. 

 

Comparing the results obtained in this analysis with the literature review on CA LUCC 

models, we can state that these results highlight the importance of competition between the 

various land use classes at the local level, suggesting a self-organising system. These outcomes 

also address complex problems, such as the evolution of LUCC developed by Hasbani et al. 

(2011) and Singh et al. (2015).  

3.5 Competitive interactions between cells 

When CA are used, cell competition arises when two cells with different characteristics 

oppose each other. This is related to the specific characteristics of land use classes, their 

capacity and availability to expand to another land-use class, and existing factors and 

constraints. Therefore, we accordingly compared the percentages of growth that farmers 

showed in their LUCC intentions with what happened when we modelled these intentions in 

the CA approach. Table 6.8 shows a comparison between these two evolutions. Regarding the 

most similar percentages of growth, permanently irrigated land in the A1 scenario had similar 

growth in both farmers’ intentions and the percentage of growth between 2010 and 2025 

obtained in the CA simulation (68%). The same happened in the case of non-irrigated arable 

land in the A2 scenario. Farmers’ intentions had a similar percentage of growth for this land-

use class (-45.61%) as the results obtained in the CA (-41.57%). 

Nevertheless, for one land use to gain land another one must lose it. In the A0 scenario, 

farmers intended to increase permanent crops and heterogeneous agricultural land by 10%; 
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however, in the CA simulation, there was a decrease by -16% (for this land-use class) (Table 

6.8).  

 

Table 6.832 – Comparison between the evolution of each land-use class according to farmers’ 
intentions and the outcomes obtained in the CA simulation. 

Land use classes A0 (%) A1 (%) A2 (%) 

 
Farmers’ 

intentions 
CA 

Farmers’ 
intentions 

CA 
Farmers’ 

intentions 
CA 

Non-irrigated arable land 0.06 -43.27 2.90 -29.21 -45.61 -41.57 

Permanently irrigated land 20.23 -4.72 67.97 67.96 -17.06 -24.13 

Permanent crops and 
heterogeneous agricultural 

10.03 -16.23 71.32 -16.03 -11.00 -20.11 

Pastures -6.35 -33.45 -25.40 -59.67 560.32 -10.31 

 

3.6 Landscape metrics analysis 

Lastly, we analysed and assessed the potential consequences of LUCC pattern for each 

scenario using landscape metrics by comparing the variation and the spatial patterns between 

the reference map and the predicted scenarios. The mean patch size, the nearest neighbour 

distance, and the number of patches were estimated. These are the most widely used metrics 

in landscape analysis (McGarigal and Marks, 1994). The mean patch size metric relates to the 

size of each land-use class with the number of patches of each land-use class (McGarigal and 

Marks, 1994). The mean nearest neighbour distance corresponds to the average distance of 

developed patches to their nearest developed neighbours, based on edge-to-edge distance 

(McGarigal and Marks, 1994). And the number of patches (McGarigal and Marks, 1994) 

corresponds to the number of spatial entities. They were estimated assuming that landscape 

metrics are capable of identifying land-use class morphology (Liu et al. 2008), as well as they 

are capable to create a dynamic monitoring system of land utilisation. They were estimated 

for each class and scenario. Following, we described this analysis focusing on the scenarios 

where we verified the largest spatial variations of LUCC when compared to the reference map 

(Fig. 6.12): 

a) In the A1 scenario, the number of patches in permanently irrigated land dropped from 

426 (in 2010) to 292. This reveals the compactness of this land-use class and its expansion 

concentrated on the same land-use class. 
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b) In the A2 scenario, in general, agricultural land use classes showed a substantial increase 

in the number of patches and a decrease in the covered area, revealing an increase of 

agricultural land fragmentation (Gomes et al., 2019b). 

c) In the B0 scenario, the nearest neighbour distance for artificial surfaces was 

underestimated ranging from 138.86 m (in 2010) to 256.7 m. In addition, the number of 

patches dropped from 625 in 2010 to 477 in the BAU scenario, and 484 in the B0 scenario, 

showing more compactness in artificial surfaces (Oueslati et al., 2015). 

 

Figure 6.1245– Evolution of mean patch size, nearest neighbour distance, and the number of patches 
index by reference maps and scenarios. 

 

 
Additionally, in the BAU scenario (obtained from the CA-Markov LUCC model) we 

recognised in the permanently irrigated land, and permanent crops and heterogeneous 

agricultural land an increase in the number of patches and a decrease of mean patch size. This 

reveals a fragmentation land increase. To reinforce these outcomes, according to the achieved 

results in Part Two, in the BAU scenario, already discussed in chapter 5 - section 2.5, the 

agricultural land fragmentation for the same land use classes will also be verified in 2025. 
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In the next section, we will present another approach based on an ANN-MLP LUCC model 

(to estimate artificial surfaces growth) and on farmers’ LUCC intentions (to estimate 

agricultural land-use variation) for the same scenarios. 
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4. Modelling farmers’ LUCC intentions with ANN-MLP 

As previously mentioned, decisions about future land use are complex and involve a wide 

range of conditions. The perceptions, intentions, and interests of the stakeholders involved 

are usually unpredictable. Different stakeholders manage land by choosing different future 

options and revealing different visions. Moreover, the use of an algorithm can be decisive in 

the spatialization of the outcomes. In this sense, in this subsection and to reduce the 

uncertainties about the LUCC in the future, we explored the same scenarios mentioned above 

projected for the time horizon of 2025 based on the same farmers’ LUCC intentions. According 

to this, we modelled an ANN-MLP to allocate the potential areas for urban development. 

 

4.1 Methodological approach 

The step-by-step methodology to model farmers’ LUCC intention using the coupled 

approach (1) farmers’ LUCC intentions (to determine agricultural areas allocation) and the (2) 

ANN-MLP (to determine artificial surfaces alocation) had the following procedures:  

 

Determining agricultural areas allocation 

Firstly, to allocate the agricultural areas: 1. we estimated the variation (%) of the current 

farmland size and the LUCC farmers’ intentions for each land-use class; 2. we multiplied this 

variation by the corresponding agricultural land-use class of the reference land use map 

(2010); and 3. based on land use map (2010) we created a grid divided into cells of 1 hectare. 

When the variation was negative, we eliminated the cells to other agricultural land use classes 

until the sum of total losses (in ha) for each agricultural class was calculated. When the 

expected variation was positive, we used as passive land uses, pastures, other agricultural 

classes and forest and semi-natural areas (as the land use classes that are available to be 

converted to other agricultural land use classes). In order to promote consolidation of 

agricultural areas (Lerman and Cimpoieş, 2006; Liu et al., 2016), we allocated these  1 ha cells 

close to the same agricultural land use type (in the available area) (Table 6.9). 
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Table 6.933 – Farmer´ LUCC intentions: variations (ha) of each land-use class – A0, A1, A2, and B0 
scenario.  

Land use classes Land use 2010 A0 A1 A2 B0 

Non-irrigated arable land 3701 2 107 -1688 11 

Permanently irrigated land 4478 906 3043 -764 -782 

Permanent crops and heterogeneous agricultural 10561 1059 7532 -1161 -116 

Pastures 883 -56 -224 4947 -56 

 

Determining artificial surfaces allocation 

To map in the total hectares that each agricultural land-use class could be converted into 

artificial surfaces, we used the same procedure described above. Here the cells were 

distributed in the agricultural land use classes (of passive land uses), and the forest and semi-

natural areas land-use class.  

The prediction to determine artificial surfaces allocation was based on an ANN-MLP. Firstly, 

we tested several parameters to identify better model performance (Ahmed, 2005; Dzieszko, 

2014). The best combination of parameters is depicted in Table 6.10. 

 

Table 6.1034 – Network information. 

Input layer Covariates  

 Number of units 14 

 Rescalling method for covariates normalised 

Hidden Layer Number of Hidden Layers 1 

 Number of Hidden Layers – Layer 1 10 

 Activation function hyperbolic tangent 

Output Layer Dependent variables Land use 2010 

 Number of units 7 

 Activation function softmax 

 Error function cross-entropy 

 

The ANN-MLP uses three types of layers: input, hidden, and output. Each layer represents 

nodes which include the lines the flow of information from one node to the next. The input 

layer is passive (that is, it does not change the data), and the hidden and the output layer are 

active (the data is changed) (Zou et al., 2009). For the structure of our ANN-MLP, we choose a 

traditional approach of just one hidden layer. Hard learning tasks can be shortened by growing 

the number of hidden layers, yet a 3-layer ANN-MLP can compute any decision boundary, 

changing only the number of hidden neurons (Rocha et al., 2018). 
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Remembering Kolmogorov’s theorem, we know that using 2n + 1 hidden neurons can assure 

a perfect fit of all continuous functions. Nonetheless, in real-world uses, this can include too 

many neurons. A solution of 2n/3 hidden neurons gives results with similar accuracy and 

requiring a smaller amount of training time (Wang, 1994). In our model, ten hidden neurons 

were used in order to guarantee an equilibrium among accuracy and simulation speed. 

Considering that several driving forces pointing in the same direction may differ, or that by 

accumulating enough of them one could exceed the probability of change, we opted for the 

hyperbolic tangent as first activation (transfer) function.  

As dependent variable we used land use data 2010, and as independent variables we used 

the following driving forces (input layers): land use 1995; population density (2001 and 2011); 

dwellings (2001 and 2011); buildings (2001 and 2011); average urban land price (2017); 

distance to the road network; distance to urban areas; slope; national agricultural reserve; 

national ecological reserve; non-aedificandi areas; and urbanizable areas (please see Table 

4.5). As activation function we applied a softmax classifier (Liu et al., 2016), representing a 

simplification of the sigmoidal function (Chen and Cao, 2009) but performing better when 

using several land use classes and fitting each input to one class. As error function, a cross-

entropy (Nasr et al., 2002) was applied because it was considered more adjusted to evaluate 

backpropagation algorithms.  

 

Artificial surfaces were allocated following two principles:  

1) location according to the ANN-MLP approach for agricultural land where the quantity 

of growth was based on farmers’ intentions to sell to urban developers (1312 ha), and 

forest land where the quantity of growth was based on the ANN approach (507 ha);  

2) since the prediction obtained (in ha) by the ANN-MLP algorithm was lower than the 

farmers’ LUCC intentions, the remaining (in ha) urban growth based on the farmers’ 

intentions to sell agricultural land to urban developers were allocated randomly, in 

areas without restrictions to urban construction, but following the principle of urban 

compactness (Burton, 2002; Gomes et al., 2018),  as close as possible to the existing 

urban areas (907 ha). We only illustrated the values of the B0 scenario because in the 
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A0, A1, and A2 scenario no farmers demonstrated intentions to sell their farmland to 

urban development. 

The most significant driving forces, identified according to the sensitivity analysis, using the 

ANN-MLP approach, demonstrated that demographic and economic development exerted a 

significant effect on urban expansion. According to the results obtained, population, buildings 

and dwellings were the most significant driving factors (Fig. 6.13). 

 

 

Figure 6.1346– Most significant driving forces (normalised) (%) obtained in the ANN-MLP prediction. 
Driving forces: population (P); dwelling (DW); building (B); area expected to be urbanized (AEU); distance to road network 
(DRN); distance to urban areas (DUA); land restrictions (LR); best soils to agriculture (RAN); slope (S); and urban land price 
(ULP). 

4.2 LUCC analysis 

Spatial and temporal land-use variation and allocation are desirable for any planning 

instruments at local, regional and national levels (Hegazy and Kaloop, 2015). Between 1995-

2010 under the A0, A1, A2, and B0 scenarios positive and negative change were verified in the 

different land use classes analysed (Fig. 6.14). 
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Figure 6.1447– Evolution (in hectares) of each LUC class between 1995, 2010, and 2025 in A0, A1, A2, 
and B0 scenario. 

 

In the A0 scenario non-irrigated arable land (+5%), permanently irrigated land (+20%), and 

permanent crops, and heterogeneous agricultural land (+10%) showed an increase in 

comparison to the reference year of 2010. Nevertheless, pastures decreased by 2%. In the A1 

scenario, was also registered an increase in all agricultural land use classes, especially in 

permanently irrigated land (68%), and permanent crops, and heterogeneous agricultural land 

(71%). In the A2 scenario, inversely was registered a decrease in all cultivated land use classes, 

and an increase of 64% in pastures (Fig. 6.15). 
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Figure 6.1548 – A0, A1, and A2 scenario. Land use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently 

irrigated land; 4 - permanent crops and heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 
7 - water bodies and wetlands (data source: DGT, 1995, 2007, 2010). 

 

The B0 scenario showed a decrease in all agricultural land use classes and forest and semi-

natural areas, which was converted into urban built-up structures. The urban growth increase 

of 47.7% (2010-2025), is higher than the growth of 41.5% in the period 1995-2010 (Fig. 6.16). 
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Figure 6.1649– (left) B0 scenario and Land use 2010 (reference map). Land use class: (1) artificial 
surfaces; (right) B0 scenario. Land use classes: (2) non-irrigated arable land; (3) permanently irrigated 
land; (4) permanent crops and heterogeneous agricultural land; (5) pastures; (6) forest and semi-
natural areas; and (7) water bodies and wetlands. 
 

4.3 Agricultural areas under potential urban pressure 

To identify the parishes with the highest potential areas under urban pressure, the driving 

forces used to predict the artificial surfaces in the previous subheading and a cluster analysis, 

were computed.  

In this methodological stage, four main steps to standardise the data were used:  

1) the data were converted at parish level;  

2) the density by parish was estimated for the driving forces of population, dwelling, 

building, area expected to be urbanised, land restrictions and best soils to agriculture;  

3) the mean value by parish was estimated for the driving forces of distance to road 

network, distance to urban areas, urban land price, and slope; and  

4) a new driving force was included: the urban growth rate between 1995 and 2010. 

To determine the number of clusters, the Pseudo-F statistics method was used. This method 

relates the between-cluster to the within-cluster sum-of-squares, and a large Pseudo-F 

statistic specifies different clusters (Caliński and Harabasz, 1974). This analysis was run for 2 
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to 15 clusters, and the Pseudo-F statistic was estimated for each hypothesis (Fig. 6.17). A peak 

could be observed at 2-cluster hypothesis. 

 

 

Figure 6.1750– Pseudo F-Statistics value by cluster between 2 and 15. 

 

According to the computed variables and the 2-cluster hypothesis population density (R2, 

0.85), areas expected to be urbanized (R2 0.64), dwellings (R2 0.63), buildings (R2 0.56) and 

urban growth (R2 0.55), represent the more effective predictor of clustering (i.e. overall R2 > 

5). Cluster 1 – represents the parishes dominated by the lowest potential intensification of 

urbanisation, and; cluster 2 – is characterised by the parishes with the highest potential 

intensification of urbanisation, and where agricultural areas are more vulnerable to being 

converted to urban uses. 

Following in Figure 6.18, we verified the concordance between the parishes of cluster 2, 

and the parishes where the urban growth was highest, using the coupled method farmers’ 

intentions and ANN-MLP approach.  
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Figure 6.1851– Potential highest urbanizable areas and projected artificial surfaces in A0 (ANN-MLP) 
and B0 scenario (based on farmers’ LUCC intentions plus ANN-MLP). 

       

 

We verified high rates of artificial surfaces in B0 scenario in the parishes potentially most 

susceptible to further urbanisation (four in total). However, we also identified another three 

parishes with high rates of conversion, although these were not in the cluster of the highest 

potential to be converted into urban development. One such parish is located at the coast (A 

dos Cunhados), and other two in the southern (São Pedro da Cadeira e Ventosa) of the cluster 

of higher potential. These areas show higher levels of urban pressure and high demand for 

urban land. 

In order to verify the agreement between the projected artificial surfaces verified in the B0 

scenario 2025 and the area expected to be urbanised (defined in the Master Plan of Torres 

Vedras), the kappa value (Cohen, 1960) was estimated. The value achieved was 0.4205, 

corresponding to a moderate agreement (McHugh, 2012). 
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5. Modelling farmers’ LUCC intentions with ABM 

In the third and last LUCC model performed, we draw up a model based on ABM to evaluate 

multiple alternative future land uses to better recognise the LUCC and to better support 

spatial planning. According to this, we designed an ABM model to establish an experiment of 

multi-outcomes. The purpose of this ABM model was to project trajectories to “what-if” 

scenarios, involving some spatial elements, such as land use layer, land use regulations, some 

physical and demographic drivers (please see Table 4.5), and farmer's LUCC intentions 

(encoded in the model).  

5.1 FARMER model: design and implementation 

Agriculture land use management requires the capacity to incorporate a diversity of 

purposes and to integrate all the desires of stakeholders responsible for its management. They 

are mainly farmers driven by different goals. Some are driven by economic incentives, while 

others are interested in preserving the long-term ecological functions of agriculture. Also, 

decision-makers are often-times motivated by economic growth and environmental 

protection. There are a wide number of spatial optimisation techniques able to integrate many 

and occasionally disagreeing/ divergent purposes. One of the most recognised due to its ability 

to create feasible resolutions is the ABM. To study the dynamics of agriculture management, 

ABM offers a simulation approach in which computer agents characterise the decision making 

of individual units (Manson, 2005; Parker et al., 2003). ABM is suitable for simulating LUCC in 

which the agents can be explicitly encoded into a spatial model to assess how the different 

LUCC intentions lead to the emergence of new land-use patterns. 

The purpose of this chapter was to address the optimisation-complexity of LUCC using the 

four scenarios presented previously.  

 

ABM toolkits 

ABM tools are divided into modelling environments; open libraries; and computer network 

(Parker et al., 2003). Many ABM software and toolkits have been developed for social science 

(Banos et al., 2017), such as geography, economy, sociology or anthropology. Currently, there 
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are almost one hundred platforms based on ABM (Railsback et al., 2006). Following, we 

describe some of the widely used (Railsback et al., 2006): 

1) Cormas - Common-pool Resources and Multi-Agent Systems - is specially designed to 

simulate interactions between agents, identifying and solving territorial land-use 

conflicts (Page et al., 2000); 

2) GAMA - Gis and Agent-based Modelling Architecture - is developed for modelling 

spatially explicit dynamics (Taillandier et al., 2012); 

3) MASON - Multiagent Simulation Toolkit - is designed to support a large number of 

agents based on a single machine, foraging algorithms, and evolutionary computation 

(is written in Java)  (Luke, 2014); 

4) Repast - The Recursive Porous Agent Simulation Toolkit - seeks to support the 

development of flexible models of living social agents, and integrate libraries for neural 

networks, genetic algorithms, and social network modelling (North et al., 2006); 

5) SWARM - allows interactive access, presents a graphical representation, and an 

assignment of an independent schedule for each simulation (Iba, 2013); 

6) ASCAPE - Agent-Landscape - is one of the earliest ABM tools and was developed by the 

Centre on Social and Economic Dynamics (CSED), Brookings Institution. ASCAPE 

support complex model designs and running on Java-enabled platforms; 

7) OBEUS - Object-Based Environment for Urban Simulation - is based on Geographic 

Automata System (GAS) (Castle and Crooks, 2006); 

8) Geo-Relationship - allows to make spatial relationships between geographic automata 

of the same or different types (Benenson and Torrens, 2004), and; 

9) NetLogo - is an integrated modelling environment designed for agent-based modelling, 

and provides a high-level of automated simulation experiments (Berryman, 2008).  

NetLogo is one of the most widely used ABM (Ghosh, 2015). It was designed by Wilensky 

(2004) and was developed at the Centre for Connected Learning and Computer-Based 

Modelling at North-western University. NetLogo provides a powerful programming language 

(Railsback et al., 2006), often used to model natural and social phenomena, and complex 

behaviours systems (Morgado et al., 2012). According to their advantages, we choose NetLogo 

(version 6.0) to develop our ABM model. We had the concern of using open-source software, 
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and we designed it from a user-friendly perspective to be easier to interpret by the users. The 

costs of our ABM model maintenance and data used are low. 

 

FARMER model: an overview 

Our ABM was designated as FARMER model (FARmers intentions of changing land use in 

MEtropolitan Regions) and was based on agent-based modelling technology. FARMER model 

represents a planning decision-making model approach that incorporates a built-in model 

using spatial data. FARMER model allows to identify futures LUCC according to a set of spatial 

parameters such as convert or not forest and semi-natural areas into agricultural land; farming 

or not in areas with a specific slope; and limit the artificial surfaces growth from a specific 

distance of the existing artificial surfaces and road network (to see the programming code 

please see Appendix IV).  

FARMER model allows visualising the results spatially and graphically. The land use outputs 

can be exported georeferenced in ASCII format and the statistics in .dbf format. In Figure 6.19 

is represented the FARMER model flowchart. 

 

 

Figure 6.1952– FARMER model flowchart. 
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Spatial distribution 

As stated previously, we considered seven heterogeneous land use classes: artificial 

surfaces, non-irrigated arable land, permanently irrigated land, permanent crops and 

heterogeneous agricultural land, pastures, forest and semi-natural areas and water bodies 

and wetlands. The spatial environmental also comprises protected areas, slope and road 

network. Each cell has the potential to be changed (with an exception for built-up areas, and 

water bodies and wetlands – these cells cannot be replaced). Farmers’ LUCC intentions are 

distributed in each cell of non-irrigated arable land, permanently irrigated land, permanent 

crops and heterogeneous agricultural land, pastures, and forest and semi-natural areas. 

 

Time, spatial resolution, and extends 

The forecast horizon time is 2025. Each pixel represents an area of 1 hectare. This value was 

achieved according to the study dimension area, and the NetLogo characteristics and 

capabilities. 

 

Design concept 

FARMER model allows importing land use (time 0) in ASCII format (raster data). Simulation 

start in time t = 0 (land use 2010), and the projection period is 2025 (t = 1). Figure 6.20 shows 

the FARMER model interface.  
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Figure 6.2053– FARMER model interface. 

 

FARMER model: agents 

Farmers identified their LUCC intentions according to the four studied scenarios. These 

intentions were estimated based on the change probability for each land-use class captured 

from the farmers’ interviews (Table 6.11) (please see chapter 6, section 2). 

 

Table 6.1135 – Farmers’ LUCC intentions – change probability (%) – by scenario and land-use class. Land 

use classes: 1 - artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and 
heterogeneous agricultural land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies and wetlands. 

Scenario 1 2 3 4 5 6 7 

A0 0.00 0.06 20.00 10.00 -6.00 ---- ---- 

A1 0.00 3.00 68.00 71.00 -25.00 ---- ---- 

A2 0.00 -46.00 -17.00 -11.00 560.00 ---- ---- 

B0 47.80 0.28 -17.00 -1.00 -6.00 ---- ---- 

 

In each LUCC simulation is projected by a single time step. FARMER model has a quick 

response in each running simulation.  

5.2 FARMER model: running simulations for A0, A1, A2, and B0 scenario 

Many researchers have studied the importance to test the validity of ABM-LUCC models (An 

et al., 2005; Manson, 2005). Some of these tests represent a functional verification, which 
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should be included efforts to break the model (Parker et al., 2003). These tests are used to 

control if the model is corrupted or produces entirely unreasonable results (An et al., 2005). 

The purpose is to identify the robustness of the model and recognises the inferences of any 

uncertainty assessment on simulation response (Helton, 2008), determining if there is a 

statistically significant change between simulation responses under different settings. To 

identify the perturbation and influence of each parameter on each simulation response, we 

used a function in NetLogo called BehaviourSpace, in which allows to perform a sweep for all 

potential simulations. We performed it using different settings, selecting a specific parameter 

in each of the following groups: artificial surfaces growth: 0%; 20%; or 40%; forest and semi-

natural areas growth: 0%; 20%; or 40%; convert forest and semi-natural areas to agricultural 

land: Yes or No;  farming 0-10º; farming 0-20º; distance to existence urban areas: 100m or 

200m; and distance to road network: 100m or 200m. Following, we present a radar charter 

showing the LUCC in all potential simulations (Fig. 6.21). 
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Figure 6.2154– FARMER model simulations (144 simulations). 
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Figure 6.21 represents the LUCC variation for each land-use class and for A0, A1, A2, and B0 

scenario, according to the parameters mentioned above (to see the complete description of 

these radar charters, please see Appendix V). 

 

Dissimilarities between A0, A1, A2, and B0 scenario 

As demonstrated in Figure 6.21, different results in all possible 144 simulations for each 

scenario were verified. In the next chapter, we will identify the simulation (the one in the 144 

possible simulations) that had the lowest deviations comparing to the stakeholders’ LUCC 

visions (captured from a participatory workshop) for each scenario (in percentage). 
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Conclusion Chapter 6 

As demonstrated in this chapter, LUCC is controlled by some indicators such as land use 

instruments, demographic, economic, and environmental drivers, topographic constraints, 

and human decisions.  

The role of human activities in controlling land use has been noted to have different effects 

on land use. Anticipating LUCC decisions, indicating alternative futures and its consequences, 

to support policy-makers is one of the biggest challenges facing spatial planning. The analyses 

of how farmers play in the decision-making process (local-level actors) and their interactions 

between other factors and constraints allow verifying how, where, why and what land-use 

conversions may occur. In this chapter, we introduced advances in land use modelling, 

complex dynamics, and planning purposes, using CA-Markov, ANN-MLP, and ABM models 

based on farmers' future LUCC intentions. We identified suitable land uses to avoid futures 

consequences.  

These models were performed to identify LUCC in the following scenarios: A0 - BAU; A1 – 

regional food security; A2 - climate change; and B0 - farming under urban pressure. These 

models presented in this chapter were capable of measuring the implications for land use and 

environment, and as the final goal to be integrated into planning processes. These models 

allow anticipating plausible futures to better understand the space-time land-use dynamics, 

providing guidance and strategies that can be applied in spatial planning and management of 

land.  

In the next chapter, a discussion regarding the achieved results in this research, and an 

approach to engaging stakeholders into the LUCC models outcomes will be performed. 

 

  



An agent-based approach to model farmers' land use cover change intentions 

 

223 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Chapter 7 – LUCC models discussion: stakeholders’ 

engagement 
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Introduction Chapter 7 

Chapter seven is the last chapter of this PhD thesis. In this chapter, we discussed the 

relevance to better understand LUCC over time, and we debated the strengths and weakness 

of each LUCC model performed. In addition, we presented the results of a participatory 

workshop with local stakeholders held in Torres Vedras. This workshop had as the main goal 

to engage stakeholders in the LUCC models discussion and validation process. We also 

debated the importance of using mixed methods in the decision-making process.  
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1. LUCC models: understand the past and the present to think about 

the future 

There is a real need to understand the LUCC in the past and the present, recognise its 

causes, and simulate LUCC into the future to monitor its dynamics. The analysis of future LUCC 

can inform decision-makers, preventing land degradation, and allowing a better 

understanding of the mechanisms for different responses. A set of techniques can be used to 

analyse agricultural land-use changes, spatially and temporally, allowing to monitor, and to 

create measures to avoid land-use classes of being fragmented, thus promoting the existence 

of agricultural land areas of higher dimension. 

LUCC models can provide optimum assistance to end-users (Liu et al., 2016; Xiaoli et al., 

2009). In the previous chapter, we presented three different models to conduct simulations 

and modelling LUCC in Torres Vedras municipality. They attend to understand what-if 

questions and evaluate alternative futures (Epstein, 1999). Time can be fast-tracked and can 

support critical issues with an interactive, and visual approach  (Torrens, 2006) to understand 

the unpredicted consequences of farmers' actions. The evolution between static into dynamic 

models was not a one-step procedure. Static models, e.g., Alonso (1960), initially yielded place 

to recursive models, e.g., Maddala and Lee (1976) before being converted into dynamic 

models (Beaumont, 1981; Wegener, 1985). Effective developments in the LUCC dynamic 

models occurred only by the 1980s, when CA and ANN models started to be applied, e.g., 

Couclelis (1985), Deadman (1993), Batty and Xie (1997), Portugali (2000), and White and 

Engelen (2000). Nonetheless, ABM emerging during the mid-1990s (Forrest and Jones, 1995).  

There is an increasing amount of research about using these LUCC models, e.g., Parker 

(2002), Pontius (2004), and Veldkamp and Lambin (2001). They are critical for understanding 

land-use dynamics and supporting land-use planning and decision making. One of the major 

challenges in its implementation is to couple human behaviours and environmental, 

demographic and economic driving forces. In this research, we attempt to incorporate all 

these features in the LUCC models performed. Below in Table 7.1 strengths and weaknesses 

are described, for each LUCC model examined. 
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Table 7.136 – LUCC models: strengths and weaknesses. 

Method Strengths Weaknesses 

CA-Markov 
chain 

- transition probability maps based on 
farmers’ LUCC intentions were created; 
- outputs in the more accurate quantity of 
change value; and 
- the probability of each cell is estimated. 

- cells allocation start from the nearest cells to the 
changed cells; and 
- in some areas, the available data is not enough to 
estimate good transition probabilities. 

ANN-MLP 

 
ANN-MLP – Artificial surfaces allocation 

- it allows to integrate artificial surfaces 
allocation in the model, based on a 
business-as-usual scenario (identifying 
potential areas that can be converted into 
urban development); and 
- it does not require a complex algorithm to 
build an accurate model. 
 

Farmers’ interviews – Agricultural land 
allocation 

- it allows identifying precise quantification 
of farmers’ LUCC intentions by directly 
relate these intentions with the same 
proportion of land use classes. 

ANN-MLP – Artificial surfaces allocation 
- only artificial surfaces were considered; 
- nonlinear relationships; and 
- it requires high processing time; 

 
 
 
 
 

Farmers’ interviews – Agricultural land allocation 
- It is limited to questions and scenarios we have done in 
this research; and 
- random allocation of LUCC was defined (while land 
restrictions were considered). 

ABM 

- flexibility: a diversity of rules can be 
integrated into the model, e.g., farmers’ 
LUCC intentions; land restrictions; and 
potential areas to be converted; and 
- low cost and time-saving approach. 

- multi-simulations can be viewed as strengths and 
weaknesses. However, as a weakness multi-simulation 
creates uncertainties about identifying the best final map 
for each scenario; and 
- difficulty to verify models’ validity and check its accuracy 
level. 

 

 

As is underlined the greatest advantage of performing CA-Markov-LUCC model was to 

integrate transition probability matrices based on farmers’ LUCC intentions and transition 

probability maps based on driving forces. CA-Markov-LUCC also has the aptitude to simulate 

dynamic developments from a bottom-up perspective (Liu et al., 2008a). Regarding ANN-MLP-

LUCC model (in projecting artificial surface growth) has as the main goal to reproduce the 

human brain (using a machine learning) without previous knowledge of its functional form 

(Zou et al., 2009), identifying complex behaviours and patterns. And the greatest advantage 

of using ABM-LUCC model was its flexibility, namely the use of a multiplicity of rules that could 

be integrated into the model, and the interaction of agents that have the capability to make 

decisions (Macal and North, 2009). 

As demonstrated each model has its specific strengths and weaknesses, and we cannot say 

that there is one better LUCC model than other. However, in an attempt to identify which 

model, according to the outcomes of each scenario, is more adapted to the characteristics of 

the territory, we organised a participatory workshop, engaging representative stakeholders of 
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Torres Vedras (the LUCC models outcomes considered for this analysis were the CA-Markov 

chain and ANN-MLP – we did not consider the ABM-LUCC model due to its multi-outcomes for 

each scenario). Stakeholders could identify, according to their visions, the LUCC model that 

they consider better adjusted in each scenario. Stakeholders’ engagement allowed to identify 

their interests, increasing the complexity of the LUCC models performed, and allowed to 

decrease the uncertainties of the outcomes. We believe that this approach is one step towards 

understanding the implications of LUCC in the future. 

2. Participatory workshop for LUCC models validation and land use 

planning decision-making 

This section introduces to the topic of how a participatory workshop can be suitable to 

analyse and validate the achieved results. We presented a step-by-step methodology to 

explain how this workshop was applied in our case study engaging local stakeholders. This 

workshop aimed to evaluate the efficiency of the LUCC models and to identify the LUCC model 

better adjusted in each scenario towards better land-use planning. 

2.1 Participatory workshop: stakeholders' engagement 

The participatory workshop provided one step forward to integrate stakeholders’ LUCC 

visions and to identify better land use and management practices. Combine multiple 

stakeholders’ visions allowed to verify the complexity of decisions that land planners must 

have to improve land-use strategies. 

A participatory workshop in Torres Vedras engaging local stakeholders was performed. In 

this workshop, we captured the LUCC visions from each stakeholder to the four studied 

scenarios. Based on this purpose, we engaged seven participants that comprise a wide range 

of interests. We invited representative stakeholders (by phone and e-mail) (that fit their 

responsibilities in Torres Vedras municipality) of the following main areas of land 

management: i) land use planning; ii) real estate developer; iii) agriculture; and iv) forest. We 

had positive responses from all land-use groups, with exception from the real estate developer 

group. In this sense, the participants of the participatory workshop were: 
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a) land use planning: 1 planning technician from Torres Vedras city council;  

b) agriculture: 1 element from Farmers Association of Torres Vedras; 1 element from 

LEADEROESTE - Rural Development Association; 1 element from Confederation of Farmers of 

Portugal (CAP-OESTE); and 1 farmer (selected randomly from the sample of the interviewed 

farmers); 

c) forest land-use group: 1 element from AFLOESTE association; and 1 element from APAS 

Forest association.  

The participatory workshop was performed using a round-table to allow stakeholders to 

communicate and think spatially. The selected stakeholders, with their roles of great 

importance for the interpretation and analysis of the outcomes in this research, comprises 

those parties who are affected by land use management decisions, those who can determine 

such decisions, as well as those who intend to determine LUCC. As a central and final purpose 

to include stakeholders together was to analyse and validate LUCC models’ outcomes.  

It was proposed that the workshop consists of three hours of meeting, bringing together 

the mentioned participants. The workshop was conducted on January 29rd, 2019 (from 10 a.m. 

until 1 p.m.) at Centro de Educação Ambiental (Environmental Education Centre) in Torres 

Vedras (Fig. 7.1). All participants were informed about the content of this study and gave their 

informed consent to publish their responses (however, they are mentioned anonymously). 

 

   

Figure 7.155– Participatory workshop at Centro de Educação Ambiental (Environmental Education 
Centre) in Torres Vedras. 
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The workshop started with a thirty-minute presentation showing the main results achieved 

in this PhD research, followed by 2h30 of analysis and discussion regarding the LUCC models 

results (Portuguese was the language spoken in the workshop). It allowed exchanging 

knowledge from different points of view, to discuss individual visions concerning the LUCC, to 

recognise lacks, as well as to express recommendations.  

The LUCC models allowed the conception of a reliable picture of future land use, 

quantification and through its results point out territorial dynamics and trends. The use of 

different models to simulate the same phenomena, in the same studied area, helped to 

minimise the uncertainty associated with the achieved results.  

LUCC models outcomes (CA-Markov and ANN-MLP) were showed to the stakeholders. 

Figure 7.2 shows the methodology flowchart of both LUCC models (to see the complete results 

and methodology adopted in each model, please see chapter 6).  

 

 

Figure 7.256– LUCC models (CA-Markov and ANN-MLP): methodology flowchart. 
 

The results in percentage, as well as the printed maps of each LUCC model and scenario 

(printed at A3 format), were used as the basis for this participatory workshop (Fig. 7.3 and 

Table 7.2).  
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Figure 7.357 – LUCC maps: CA-Markov and ANN-MLP - A0, A1, A2 and B0 scenario. 

 

Table 7.237 – LUCC (%): CA-Markov and ANN-MLP - A0, A1, A2 and B0 scenario. Land use classes: 1 - 

artificial surfaces; 2 - non-irrigated land; 3 - permanently irrigated land; 4 - permanent crops and heterogeneous agricultural 
land; 5 - pastures; 6 - forest and semi-natural areas; and 7 - water bodies and wetlands. 

LUC 2010 

 

A0 – 
CA 
(%) 

A0 – 
ANN (%) 

 

A1 – 
CA (%) 

A1 – 
ANN 
(%) 

 

A2 – 
CA 
(%) 

A2 – 
ANN 
(%) 

 

B0 – 
CA 
(%) 

B0 –    
ANN (%) 

1 11.40 14.77 12.71 14.41 11.36 14.77 11.40 16.11 17.13 

2 9.09 5.16 9.57 6.44 9.32 5.31 8.76 8.11 9.25 

3 11.00 10.48 13.30 18.47 18.41 8.34 10.68 9.22 8.80 

4 25.94 21.73 28.59 21.78 44.29 20.72 25.21 20.29 23.85 

5 2.17 1.44 2.14 0.87 2.16 1.94 3.55 1.16 2.07 

6 40.25 46.27 33.55 37.87 14.30 48.75 40.25 44.96 38.75 

7 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

 

Accompanied by the printed maps one questionnaire was distributed to each participant. 

The questionnaire had four main parts. The first part was related to LUCC models analyses, 

the second regarding the LUCC models evaluation, the third concerning the LUCC models as a 

support decision system, and the fourth part about the workshop evaluation (Table 7.3).  
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Table 7.338 – Questionnaire addressed to stakeholders. 1. LUCC models analysis; 2. LUCC models 
evaluation; 3. support decision system; and 4. workshop evaluation. 

Part Questions 

1 

a. Which LUCC model (CA-Markov or ANN-MLP) do you consider that have better results? 

b. According to the chosen LUCC model, do you consider the location of the LUCC plausible? 

c. According to the chosen LUCC model, do you consider that the % values for each LUC meet your 
vision? (if not, please indicate the values in %). 

 

2 

a. Are the LUCC models clear and easy to follow? 1 (lowest score) - 5 (highest score) 

b. Are the data presented satisfactory to raise awareness regarding LUCC? 1 (lowest score) - 5 
(highest score) 

c. Any suggestion? 
 

3 

a. Do you think that LUCC models are informative and useful to support land use planning? 1 
(lowest score) - 5 (highest score) 
b. Do you think that LUCC models are valuable to raise awareness concerning the LUCC impacts? 
1 (lowest score) - 5 (highest score) 
c. Would you recommend this LUCC analysis to other case studies (other municipalities)? 1 
(lowest score) - 5 (highest score) 

 

4 

a. How do you rate the relevance of this participatory workshop in the collaborative 
participation? 1 (lowest score) - 5 (highest score) 

b. How do you rate the organisation of this participatory workshop, and how this participatory 
workshop took place? 1 (lowest score) - 5 (highest score) 

c. Any suggestion? 

 

In the sections below, we will show the results obtained in this questionnaire, the main 

conclusions derived from the discussion performed at the end of the workshop, as well as how 

we integrated the stakeholders’ LUCC visions into the FARMER model. Although seven 

participants were present in the workshop, one of them (from the agriculture land use group) 

not filled out the questionnaire accompanied by the interpretation of the maps, because this 

participant felt difficulty in its interpretation. However, this participant actively collaborated 

in the theoretical discussion of the results. 

2.2 LUCC models analysis and validation 

In the first part of the questionnaire, stakeholders identified the best suited LUCC model 

according to their expectation for each scenario (they chose between the CA-Markov and 

ANN-MLP model). Then, we asked them if they considered the location of the LUCC plausible. 

And finally, even if they had chosen one model, and even if they had considered the location 

plausible, but if they did not agree about the percentage of each land-use class, they had the 

hypothesis to indicate what values were according to their expectation.  
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Therefore, according to the results, five in six participants chose CA-Markov as the best-

fitted LUCC model in the A0 scenario; also, five in six considered plausible the LUCC location; 

and two in six did not agree about the % of each LUCC. Table 7.4 shows the percentage of each 

land-use class according to the stakeholders’ visions in the A0 scenario.  

 

Table 7.439 – A0 scenario: stakeholders’ LUCC visions. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non-

irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and heterogeneous agricultural land; 
LUC 5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodies and wetlands. 

Stakeholder LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 

1 12.71 9.57 13.3 28.59 2.14 33.54 0.15 

2 14.77 7.16 12.48 23.73 1.44 40.27 0.15 

3 14.77 5.16 14.48 21.73 1.44 42.27 0.15 

4 14.77 3.00 20.00 20.00 10.00 29.23 3.00 

5 14.00 6.85 11.00 26.00 2.00 40.00 0.15 

6 14.77 5.16 10.48 21.73 1.44 46.27 0.15 

 

In A1 scenario, all stakeholders elected CA-Markov LUCC model as the best-suited model 

taking into account their visions. Only one participant in six did not agree about the location 

of LUCC. However, all of them agreed about the total percentage of LUCC. According to these 

results, stakeholders’ LUCC visions were the same for all land use classes and were based on 

the LUCC results of CA-Markov model (Table 7.5). 

 

Table 7.55 – A1 scenario: stakeholders’ LUCC visions. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non-

irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and heterogeneous agricultural land; LUC 
5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodies and wetlands. 

Stakeholder LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 

1 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

2 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

3 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

4 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

5 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

6 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

 

In A2 scenario four in six stakeholders selected the CA-Markov LUCC model as the best-

suited model. Five in six participants agreed with the LUCC location. And only two (in six) did 
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not agree about the percentage of LUCC. Table 7.6 displays in detail the percentage of each 

stakeholders’ LUCC visions for the A2 scenario. 

 

Table 7.640 – A2 scenario: stakeholders’ LUCC visions. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non-

irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and heterogeneous agricultural land; LUC 
5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodies and wetlands. 

Stakeholder LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 

1 11.40 9.76 11.68 25.21 4.55 37.25 0.15 

2 14.77 5.31 8.34 20.72 1.96 48.75 0.15 

3 14.77 5.31 8.34 20.72 1.96 48.75 0.15 

4 14.77 3.00 23.23 20.00 10.00 26.00 3.00 

5 14.77 5.31 8.34 20.72 1.96 48.75 0.15 

6 11.40 8.76 10.68 25.21 3.55 40.25 0.15 

 

Finally, in B0 scenario, three stakeholders identified the ANN-MLP LUCC model, and the 

other three selected CA-Markov LUCC model as the best-suited models according to their 

visions. Five in six stakeholders agreed with the LUCC location, and only one did not agree 

about the percentage of each land-use class according to the chosen model. The final 

percentage achieved by the stakeholders for the B0 scenario is expressed in Table 7.7. 

 

Table 7.741 – B0 scenario: stakeholders’ LUCC visions. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non-

irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and heterogeneous agricultural land; LUC 
5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodies and wetlands. 

Stakeholder LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 

1 16.11 8.11 9.22 20.29 1.16 44.96 0.15 

2 16.11 8.11 9.22 20.29 1.16 44.96 0.15 

3 16.11 8.11 9.22 20.29 1.16 44.96 0.15 

4 25.00 3.00 18.00 15.00 10.00 26.00 3.00 

5 17.13 9.25 8.80 23.85 2.07 38.75 0.15 

6 17.13 9.25 8.80 23.85 2.07 38.75 0.15 

 

As demonstrated CA-Markov was the most elected LUCC model by stakeholders for A0, A1, 

and A2 scenario. This was verified, probably due to the fact of the CA-Markov model be based 

on the neighbourhood principle (please see chapter 3, section 3.2). The expansion of the land 

use classes is verified by contiguity and this can reflect the idea of what stakeholders think 

regarding the LUCC for these three different scenarios. Nevertheless, in the case of B0 
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scenario, the choice was not consensual. Three stakeholders mentioned the CA-Markov as the 

more adjusted model, and the other three stakeholders considered the ANN-MLP LUCC model 

as the more adjusted according to their expectations. As previously mentioned, ANN-MLP is 

based on the principle of spatial expansion distribution as a complex behaviour and not 

necessarily by spatial contiguity (please see chapter 3, section 3.3), and perhaps, for this 

reason, these stakeholders considered that this can represent a more realistic situation 

concerning the growth of the artificial surface in B0 scenario. 

In the second, third, and fourth part of the questionnaire, we asked the stakeholders about 

the reliability of the LUCC models, the relevance of these models as a support for decision-

making, as well as evaluation about the way of how this participatory workshop was 

organised. 

According to the answers, based on a scale ranging between 1 (lowest score) and 5 (highest 

score), the mean of the responses for the ease of LUCC maps interpretation was 4 (value 

considered as very good). The same value was obtained in the answer about if they find the 

results satisfactory for raising awareness in the LUCC analysis. They considered a relevant 

approach in the deliberative decision-making process, as well as a way of recognising the 

importance of the perception of others to achieve a shared solution. 

As suggestions to improve the reliability of the LUCC models, stakeholders have pointed out 

to include less land use classes; to show the urban perimeters, and to show the names of the 

localities on the map to improve the readability; as well as to separate the land use class forest 

and semi-natural areas into three other land use classes, such as forest, bush areas, and  

uncultivated areas. 

Moreover, in the part of the questionnaire about decision support, stakeholders classified 

as very good - 4 (mean value - scale from 1 to 5), the possibility of these LUCC models being 

informative and as a support in land use planning. Regarding the question about if they 

recommend this analysis to other cases studies the answer was of high recommendation (the 

mean value obtained was 4). They suggested developing similar approaches to other 

municipalities, indicating that these LUCC models can be effectively used as a support for 

participatory spatial planning and applied into municipal planning policies and regulations. 
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These recommendations aided to set limits to the models’ complexity as well as to determine 

its lacks. 

In the last part of the questionnaire, stakeholders were asked to provide an evaluation of 

the efficacy and usability of the workshop, identifying positive and negative aspects, and 

mentioning why. In the evaluation of the relevance of this participatory workshop, they 

considered very importantly (the mean value was 4), and they found very good (4 – scale 1-5) 

the way the organisation of this workshop took place. 

2.3 Participatory workshop: integrating stakeholders’ LUCC visions into FARMER 
model 

In this section, we presented an experimental exercise, based on the stakeholders’ LUCC 

visions for each scenario. We identified through the FARMER model the parameters needed 

to achieve similar results in terms of percentage for each land-use class (Figure 7.4). This 

exercise allowed to reduce one of the weaknesses presented by the ABM-LUCC model: the 

multi-outcomes. Thus, by choosing the simulation that presents the lowest deviations 

comparing with the stakeholders’ LUCC visions, we reduced the uncertainties, by increasing 

the accuracy level of outcomes. 

 
Figure 7.458– Integrating stakeholders’ LUCC visions into FARMER model. 

  

 

The first step was to find the stakeholders’ LUCC visions for each scenario (global vision). 

Thus, we find the value for each scenario and for each land-use class (Table 7.8). 
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Table 7.842 – Stakeholders’ LUCC visions – A0, A1, A2, and B0 scenario. Land use classes: LUC 1 – artificial 

surfaces; LUC 2 – non-irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and 
heterogeneous agricultural land; LUC 5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodies and 

wetlands. 

LUCC visions  
(global vision) 

LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 

A0 14.30 6.15 13.62 23.63 3.08 38.60 0.63 

A1 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

A2 13.65 6.24 11.77 22.10 4.00 41.63 0.63 

B0 17.93 7.64 10.54 20.60 2.94 39.73 0.63 

 

The second step was to find in all possible 144 simulations (for each scenario) in the FARMER 

model, the simulation that had the lowest deviation in comparison to stakeholders’ LUCC 

visions (Table 7.9).   

 
Table 7.943 – Stakeholders’ LUCC visions and selected simulation in FARMER model for A0, A1, A2, and 
B0 scenario. Land use classes: 1 – artificial surfaces; 2 – non-irrigated arable land; 3 – permanently irrigated land; 4 – 

permanent crops and heterogeneous agricultural land; 5 – pastures; 6 – forest and semi-natural areas; 7 – water bodies and 
wetlands. 

Land use classes 1 2 3 4 5 6 7 

Initial state 11.41 9.08 11.01 25.92 2.21 40.27 0.14 
 

Scenario A0 

Stakeholders’ LUCC visions (%) 14.30 6.15 13.62 23.63 3.08 38.60 0.63 

Selected simulation A0 (%) – FARMER model 13.96 7.12 14.14 23.45 1.76 39.43 0.14 

Deviations 0.34 -0.97 -0.52 0.18 1.32 -0.83 0.49 
 

Scenario A1 

Stakeholders’ LUCC visions (%) 14.41 6.44 18.47 21.78 0.87 37.88 0.15 

Selected simulation A1 (%) – FARMER model 15.34 8.68 10.39 24.37 2.10 38.98 0.14 

Deviations -0.93 -2.24 8.08 -2.59 -1.23 -1.1 0.01 
 

Scenario A2 

Stakeholders’ LUCC visions (%) 13.65 6.24 11.77 22.10 4 41.63 0.63 

Selected simulation A2 (%) – FARMER model 13.31 8.87 10.74 25.09 2.17 39.68 0.14 

Deviations 0.34 -2.63 1.03 -2.99 1.83 1.95 0.49 
 

Scenario B0 

Stakeholders’ LUCC visions (%) 17.93 7.64 10.54 20.60 2.94 39.73 0.63 

Selected simulation B0 (%) – FARMER model 18.41 8.30 10.01 23.22 2.05 37.87 0.14 

Deviations -0.48 -0.66 0.53 -2.62 0.89 1.86 0.49 
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Therefore, we identified the parameters needed to achieve those outcomes. The possible 

parameters are: artificial surfaces growth: 0%; 20%; and 40%; distance to artificial surfaces 

(100m and 200m); distance to road network (100m and 200m) (non-aedificandi areas are 

incorporated in the model by default); farming 0-10º; farming 0-20º; forest and semi-natural 

areas growth: 0%; 20%; and 40%; convert forest to agriculture; do not convert forest to 

agriculture. In addition, a probability of change for each land-use class and scenario (in %) 

based on the farmers’ LUCC intentions is incorporated by default in the FARMER model. Table 

7.10 shows the parameters needed to achieve the selected simulation in each scenario 

displayed in Table 7.9.  

 

Table 7.1044 – FARMER model parameters. Group: a – artificial surfaces; b – agricultural land; c – 
forest and semi-natural areas; d – water bodies and wetlands. 

Group  A0 A1 A2 B0 

 Farmers' LUCC intentions (%) - static 

a 

1 - Artificial surfaces (%) 

0.00 0.00 0.00 47.80 

plus 

Parameters (%) 

40.00 40.00 40.00 20.00 

Distance to artificial surfaces (m) 100 200 200 200 

Distance to road network (m) 200 200 100 200 

 Farmers' LUCC intentions (%) - static 

b 

2 - Non-irrigated arable land 0.06 2.90 -45.61 0.28 

3 - Permanently irrigated land 20.23 67.97 -17.06 -17.00 

4 - Permanent crops and heterogeneous 
agricultural land 

10.03 71.32 -11.00 -1.00 

5 - Pastures -6.35 -25.40 560.32 -6.00 

 
plus 

Parameters (%) 

Farming (slope in º) 0-10 0-20 0-20 0-20 

Convert forest and semi-natural areas to 
agricultural land use classes? 

Yes Yes Yes Yes 

 Farmers' LUCC intentions (%) - static 

c 6 - Forest and semi-natural areas 

0.00 0.00 0.00 0.00 

plus 

Parameters (%) 

0.00 0.00 0.00 0.00 

 Farmers' LUCC intentions (%) - static 

d 7 - Water bodies and wetlands 0.00 0.00 0.00 0.00 
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As we can verify in Figure 7.10, farmers' LUCC intentions (%) are the most determinant 

parameter responsible for the LUCC in the selected simulation for each scenario, as well as 

distance to artificial surfaces, distance to road network, and farming slope parameter. 

At the end of the workshop, stakeholders were asked: which LUCC they think, according 

their own visions, will be verified in 2025? After an acutely discussion they reached a LUCC 

consensus which is expressed as follows: artificial surfaces 16%; non-irrigated land 4.5%; 

permanently irrigated land 16%; permanent crops and heterogeneous agricultural land 

27.94%; pastures 2%; forest and semi-natural areas 31.56%; and water bodies and wetlands 

2%.  

Therefore, in order to hierarchize the most plausible scenarios according to these values, 

we estimated the deviations between these values and the values of the global stakeholders’ 

LUCC visions for each scenario (Table 7.11). Following this order, the most plausible scenario 

is A0, followed by A1, A2, and by B0 scenario.  

 

Table 7.1145 – Stakeholders’ LUCC visions (%) for 2025. Land use classes: LUC 1 – artificial surfaces; LUC 2 – non-

irrigated arable land; LUC 3 – permanently irrigated land; LUC 4 – permanent crops and heterogeneous agricultural land; 
LUC 5 – pastures; LUC 6 – forest and semi-natural areas; LUC 7 – water bodies and wetlands. 

 LUC 1 LUC 2 LUC 3 LUC 4 LUC 5 LUC 6 LUC 7 Total 

LUCC visions (2025) 16.00 4.50 16.00 27.94 2.00 31.56 2.00 
 

Deviations 

(global vision) A0 1.70 -1.65 2.38 4.31 -1.08 -7.04 1.37 19.53 

(global vision) A1 1.59 -1.94 -2.47 6.16 1.13 -6.32 1.85 21.46 

(global vision) A2 2.35 -1.74 4.23 5.84 -2.00 -10.07 1.37 27.60 

(global vision) B0 -1.93 -3.14 5.46 7.34 -0.94 -8.17 1.37 28.35 

 
 

Consequently, we spatialized this simulation, that expresses the consensual LUCC 

transformation which stakeholders think, according to their knowledge, will be verified in 

2025 (Fig. 7.5).  
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Figure 7.5 – Land use cover 2025: stakeholders’ LUCC vision (A0: selected simulation – Stakeholders-

LUCC model). Land use classes: 1 – artificial surfaces; 2 – non-irrigated arable land; 3 – permanently irrigated 
land; 4 – permanent crops and heterogeneous agricultural land; 5 – pastures; 6 – forest and semi-natural areas; 
7 – water bodies and wetlands. 

 

Figure 7.5 allows verify spatially these transformations. In the location assigned by A, we 

identify the site where the probability of conversion from permanent crops and 

heterogeneous agricultural land to permanently irrigated land is higher. In the location 

assigned by B which represents the artificial surfaces' growth, we recognized that artificial 

surfaces expansion occurs along the road network, and mainly infilling around existing 

artificial surfaces. The spatial patterns of this artificial surface' growth are categorized by linear 

directions, more marked in the south and west directions. 

Moreover, the location C marks one of the highest transitions from non-irrigated arable 

land to permanently irrigated land, and location D from permanent crops and heterogeneous 

agricultural land and non-irrigated arable land to permanently irrigated land. The loss of forest 
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and semi-natural areas is verified throughout the municipality, especially near their limits, 

consumed by artificial surfaces and agricultural land. 

As demonstrated above the participation of the representative stakeholders was critical to 

successfully examine and validate and analyse the LUCC models presented in this research.  

In the next section, we will mention the importance of using these mixed methods in the 

decision-making process. 

3. Importance of mixed methods in the decision-making process 

Engaging stakeholders in the decision-making process (Hersperger et al., 2010; 

Schreinemachers and Berger, 2006), have been identified as a useful tool for exploring 

changes in ecological systems (Brady et al., 2012; Rounsevell et al., 2005), and an essential 

step for better spatial planning.  

Preserving agricultural areas has become critical for policy-makers, who seeking to protect 

food security and to maintain farming as a livelihood. In many countries, policy instruments in 

place have not been useful tools for keeping agricultural practice (Abrantes et al., 2016; 

Martellozzo et al., 2018). Tobe effective, spatial planning policies involving local decision-

making and public participation could (1) comprise agricultural security areas (Larson et al., 

2001); (2) promote  links between farmers and consumers (Lea et al., 2006); and (3) create 

urban containment policies (Gomes et al., 2018). The change detection analysis aid generates 

up-to-date information to support planning and decision making (Puertas et al., 2014). 

In this PhD research different LUCC modelling approaches, recognising farmers’ LUCC 

intentions were analysed, compared, discussed, and validated. The engagement of farmers 

and stakeholders in this study allowed to improve the knowledge of LUCC dynamics in Torres 

Vedras and to reduce future uncertainties, as well as allowed raise awareness by involving 

them in the building of the LUCC models (by farmers), and in the LUCC models validation and 

examination (by stakeholders). Using multi-methods, incorporating insights from different 

actors demonstrated how the outcomes could most effectively support decision-makers. 

These methods can provide a better LUCC understanding, allowing to develop new hypotheses 

that can support spatial planning.  



An agent-based approach to model farmers' land use cover change intentions 

 

243 

 

The participatory workshop allowed to improve decision-makers perception about the 

importance of a spatial and temporal LUCC analysis. Combine multiple stakeholders’ 

perspectives allowed to integrate their objectives towards policy and decision-making, 

providing one step forward to create better land use and management practices. According 

to this analysis, decision-makers can become more aware of future LUCC, and stakeholders 

more conscious about the complex trade-off decisions that land planners must identify to 

improve land-use strategies. Stakeholders interaction might seem like a source of land use 

conflict due perhaps they might have divergent opinions. However, methods such as weight 

their opinions in the negotiation process should be a good solution to help decision-makers 

towards better land-use strategies.  
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Conclusion Chapter 7 

This chapter illustrated how LUCC analysis could be evaluated numerically and qualitatively 

integrating stakeholders’ knowledge. Although the emerging of LUCC models and their 

coupling with GIS, a gap between decision-makers and science still persist. However, in this 

chapter, we introduced some methods and techniques to minimise this gap. Stakeholders’ 

feedback has demonstrated to be appropriate to reach consensus, reinforcing the relevance 

of integrating complexity analysis to address land-use planning questions.  

These results can support local and regional stakeholders in LUCC decision-making 

processes indicating alternative futures and showing how, where, and which land-use 

conversions may occur. According to the results obtained, we identified suitable land uses to 

avoid undesirable future consequences (adaptive land use management), and anticipating and 

understanding future land use uncertainties e.g., the need to increase water availability – a 

limited resource – in a scenario of regional food security, or the need to strengthen urban 

containment policies in a scenario of farming under urban pressure. 

This is the last chapter of this thesis, and the main purpose was to highlight the outcomes 

obtained in the different methodological approaches, to identify LUCC in different scenarios, 

and to recognise how LUCC models can be applied to support spatial planning instruments at 

the local level.  

In the next section of this thesis, a general conclusion, the PhD thesis contribution, 

limitations, and future work will be drawn. Furthermore, the research questions and 

hypothesis of this PhD research will be evaluated. 
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Conclusion PART THREE 

The discussion presented in Part three was undertaken to address the gaps between 

complexity and spatial planning. In this last Part, we demonstrated, as many researchers have 

discussed, the importance of integrating the views of private landowners and stakeholders 

into spatial planning decisions (Brown et al., 1981). They are a vital part of the process of 

improving spatial planning instruments. We discussed: a)  how the LUCC models can help to 

solve planning issues; b) how LUCC models can be useful to understand better and manage 

critical demographic, social and economic issues; c) how LUCC models can provide solutions 

to spatial planning instruments; and d) how LUCC models can be valuable to create sustainable 

development strategies anticipating and understanding future land use uncertainties. 

The urban growth in peri-urban regions and its direct impacts on the agricultural land 

decrease and fragmentation is contrary to the principles of sustainability. Tracking the 

changes is essential to identify these dynamics. New approaches were proposed. The analysis 

presented in this last Part highlights farmers’ LUCC intentions in a business-as-usual scenario, 

in a regional food security, in a climate change, and in a farming under urban pressure 

scenario. We have introduced a methodology to better understand land-use dynamics to 

explain and discuss the impacts of farmers’ decisions on land use transformation. The results 

achieved using the CA-Markov and ANN-MLP methods showed an increase of permanently 

irrigated land and a decrease of pastures in the A1 scenario; a drop in non-irrigated arable 

land and permanently irrigated land in the A2 scenario; and an increase of artificial surfaces, 

and a higher decrease of pastures in the B0 scenario.  

The analysis of these results in the participatory workshop, allowed to identify better 

practices that can be taken into the realm of spatial planning policies.  
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General Conclusion  

This PhD research presents a step forward methodology, demonstrating a complex 

interrelationship analysis between individuals and their behaviours and the external 

environment. This research has discussed a methodological approach to be integrated into 

land-use planning processes and is organised into three main parts with seven chapters.  

Part One is a revision of the state of art of this PhD research with theoretical background 

about LUCC, modelling and spatial planning. It is subdivided into three chapters (chapter one, 

chapter two, and chapter three). Chapter one presents a literature review of preceding 

research work on agricultural land use and peri-urbanisation, its drivers and impacts. Chapter 

two depicts a literature review of geographic modelling, complexity and land use. And chapter 

three is regarding how land use planning and LUCC modelling can be integrated. 

Part Two – Measuring LUCC in Torres Vedras (Portugal) is divided into two chapters (chapter 

four and chapter five). Chapter four describes the land use, driving forces, and the data 

management of the case study. Chapter five presents the empirical study about the influence 

of urban growth on agricultural land evolution and a method to analyse agricultural land 

fragmentation. 

Part three – Integrating farmers’ LUCC intentions in LUCC modelling process and engaging 

stakeholders’ in the LUCC modelling process is divided into two chapters (chapter six and 

chapter seven). Chapter six is one of the main chapters of this thesis, in which is described 

every step to model LUCC using farmers’ LUCC intentions, applied to four scenarios, and using 

three different methods. Chapter seven discusses the LUCC models outcomes. This task 

demonstrated the importance of integrating mixed methods in the decision-making process. 

Moreover, we also pointed out some policy recommendations.  

The primary concern of this thesis was to describe and to evaluate the impacts of farmers' 

LUCC intentions according to different scenarios in a peri-urban region. This research arises 

from the current relevance of agricultural land preservation, the necessity for a more 

sustainable urban development, and the need for more efficient local and regional policies.  
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One of the potential threats of land-use sustainability is the conversion from agriculture 

land into artificial surfaces. In this PhD research, we addressed different approaches to 

answering the proposed hypotheses. 

The first hypothesis that urban growth has a significant impact on agricultural land decrease 

and fragmentation was accepted. Based on this hypothesis it can be concluded that urban 

growth had severe impacts on agricultural land decrease and agricultural land fragmentation 

increase. However, we also verified, through LAND method, that urban growth occurred near 

to the existing urban areas. In our findings, we corroborated the ‘first law’ of geography 

(Tobler, 1969) and the theory of spatial dependence, in which a high urban containment, 

coalescence, and reducing discontinuity was verified. These results are in line with Fertner et 

al. (2016), and Jehling et al. (2016). 

The second hypothesis that social, demographic, economic, and political drivers affect 

farmers’ LUCC intentions in different scenarios, was accepted. We concluded that drivers such 

as for emotional reasons or land use regulations can be decisive in the LUCC conversion. We 

also found that economic drivers can be critical. Thus, from farmers’ interviews we captured 

the following economic drivers that can be decisive: in A1 scenario - the increase of European 

funds and increase of production costs; in A2 scenario - the decrease of European funds; and 

in B0 scenario - the increase of urban land prices.   

Moreover, other demographic, economic, and political drivers were also recognised as the 

main responsible for LUCC according to the LUCC models’ results. According to the CA-Markov 

and ANN-MLP - LUCC models the driving forces that most influence artificial surfaces growth 

were population density, dwelling, buildings, and distance to urban areas; and in the CA-

Markov for all agricultural land use classes were those related to distance to agricultural land, 

distance to coastline, slope, and agricultural land use protection (RAN).  

The third hypothesis that the stakeholder’s engagement in the criticism of LUCC models’ 

outcomes may be the key to propose land use planning recommendations more efficiently 

was accepted. However, while stakeholders’ analysis was recognised appropriate to reach 

consensus, emphasising the significance of the participatory workshop, we think that more 

needs to be done, namely in incorporating this analysis into the policies and spatial planning 

instruments to improve land-use strategies. 
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Land use strategies should find a balance between economic growth and agricultural 

protection (Martín-Retortillo and Pinilla 2015; Xuezhenet et al. 2010). Several studies – e.g., 

Lovell (2010), Parker (2007), Vagneron (2007) – have suggested that agricultural policies 

should contribute to reducing human impacts on the local and regional ecosystems. A decision 

support system to define land use strategies should identify where, when, what, and how 

much land should be used for a specific purpose. Therefore, measures to mitigate agricultural 

conversion to other uses, as well as to mitigate agricultural land fragmentation, it is required 

to inform decision-makers, preventing land degradation, e.g., Alfiky et al. (2012), and allowing 

a better understanding of the mechanisms for different responses. 

In Torres Vedras (Portugal), the last two decades were characterised by progressive 

urbanisation resulting in a decrease of permanent crops, heterogeneous agricultural land, and 

pasture. In this research, we verified how demographic, economic and environmental factors 

could affect farmer’s intentions on future agricultural LUCC. Farmers balanced costs and 

benefits while deciding to maintain, abandon, expand or sell to agricultural or urban use. We 

demonstrated how farmer age is another critical factor for LUCC decisions since younger 

farmers are more open to change their economic activity. In the B0 scenario, the youngest 

farmers are happy to sell their current farmland and to buy a new farm in another place, 

preferably in Torres Vedras if there is an economic advantage. Older farmers may be less 

willing to change for emotional reasons such as shown by Fazal et al. (2015). Older farmers 

wish to leave their farmland to their descendants, and they considered that their advanced 

age inhibits them from reinvesting in another location. According to the achieved results in 

Torres Vedras a dynamic monitoring system of land utilisation should be settled according to 

each scenario: 

a) In the A1 scenario, in which was registered the highest demand for permanently irrigated 

land, measures should be considered to improve irrigation systems to make the farmers 

more efficient and competitive, e.g. Levidow et al. (2014), and Holzapfel et al. (2009). 

This was one of the main solutions pointed by the stakeholders in the participatory 

workshop;  

b) In the A2 scenario, was registered the higher growth in the forest and semi-natural areas. 

Currently, in our case study, more than 80% of the forest is eucalyptus - non-

Mediterranean tree. In this case, land use recommendations should focus on the creation 
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of incentive programs to promote the planting of Mediterranean trees, as suggested by 

Brundu and Richardson (2016), and Vallejo (2005).  

c) In the B0 scenario, the greatest urban growth is verified. Urban containment and 

agricultural protection policies should be strengthened/applied more effectively given 

the major urban growth that might occur, as suggested by Bengston and Youn (2006), 

Cheshire (2009), and Salvati et al. (2018). 

 

The integration of complexity science into the spatial planning process is something that 

needs to be applied. This integration can help to reduce the slowness of the analysis among 

the demographic, economic and LUCC transformations and the application of land protection 

tools. This integration can help, in addition, to analyse these transformations in a more 

efficient way, finding a better balance between the population needs and environmental 

protections.  

Regarding the spatial planning instruments, where these analyses could be integrated, 

beyond the Municipal Master Plan (PDM) (with the limitation to be applied singly to one 

municipality), plans such as the Inter-municipal plans (PIOT), could be a better way to analyse 

and understand the land transformations at a larger scale. The focus could be not limited to 

one municipality but in a more inclusive perspective between one municipality and their 

neighbours, because sometimes the transformations are not limited to the border of one 

municipality (but a set of them). The application of PIOT in Portugal, although they are 

provided by law, they are not yet effectively applied in the Portuguese spatial planning 

process.  

 

Medium-long-term perspectives 

In recent years, Lisbon has seen major changes in the housing stock. Political measures such 

as the amendment on housing rental law (which facilitate the eviction of tenants); the golden 

visa (which allow a non-EU citizen to purchase a real estate property with a value equal to or 

above 500 thousand Euros, and then to obtain a granting of Residence Permit); the tax-free 

for retirement income for people non-habitual residency in Portugal; or the growth of tourism 
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in Lisbon in recent years (which have been transformed the long-term rental houses into 

short-term rental), have been led to an increase in house prices. 

Therefore, the high prices of housing in Lisbon, have been increased the demand for housing 

demand outside the city by residents, which have been leading to a price-spreading effect. 

This makes the municipality of Torres Vedras (located roughly 50 km north), one of the 

potential targets in the demand for housing by new residents.  

Beyond this recent phenomenon, we think that in a medium-long-term period, there are 

other factors that can lead to an increase in housing demand in areas like Torres Vedras, such 

as the evolution of information technology. In recent years more people can work from home. 

They can benefit from the proximity of Lisbon, but they do not need to commute daily to 

Lisbon. Another fact, we believe can increase the housing demand by new residents, will be 

the electric cars. Although the incontestable benefits that these vehicles have in the 

greenhouse effect (zero-emission), we think, due to the low cost of charging, they indirectly 

can promote the increase of extensive urbanization. People will be able to commute low cost 

in long distances, and the demand for single-family homes can increase. 

In addition, to the amenities that Torres Vedras benefit for having mixed urban and rural 

uses, it benefits for being bathed (in 20 km) by the Atlantic Ocean. The coast of Torres Vedras 

is one of the main tourist hotspots in the municipality. The locality of Santa Cruz (at Silveira 

parish) is well-known for their beaches and for practice surfing (in 2018, Santa Cruz was home 

to one of the stages of the World Surf League). Some hotels on the coast, such as the Areias 

do Seixo (opened in 2010) and the Noah Surf House Portugal (opened in 2018), the quality of 

the beaches (in 2019, 11 beaches were distinguished with Blue Flag) and the natural 

landscapes of Torres Vedras, have given some national and international notoriety in recent 

years. These are good indicators for the touristic sector, however, these attraction spots can 

create some disequilibrium in the protection of natural and agricultural land, especially near 

the coast where the soils are more fertile, and the agricultural productivity is higher. These 

dichotomies create new challenges for planners, especially when agriculture is an important 

contributor to the local economy. In addition, to reinforce the importance of this economic 

activity, recently (in 2018) Torres Vedras received the prize of the European Wine City. 
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These dynamics will create inevitably some LUCC. Some more expected than others, and 

some may occur in the next few years or in a medium-long term. Accordingly, we need to be 

prepared for these transformations. 

From the artificial surfaces’ growth perspective (for residential or tourism uses), and apart 

from the issues already discussed, the new built-up areas must have environmental concerns 

such as buildings with high energetic efficiency using renewable energies, green roofs, and 

environmentally friendly construction materials. 

From the agricultural land perspective beyond the threat of urban pressure, the agricultural 

sector must be aware of global warming (with longer periods of drought and greater scarcity 

of water availability), and the need to change the production of certain crops. These 

readjustments can be also related to other causes, such as by the use of new technology, by 

the competition of other markets or even by the demand for new consumption patterns. 

Modern technology has been increasing the quantity and quality of agricultural products in 

recent years. Smart farming is already a reality, and technology can improve even more 

agricultural production, using, for instance, unmanned tractors controlled via GPS, drones to 

kill vermin, and precision agriculture.  

Farmers can also be faced by other challenges in the future such as the new alternatives of 

production and consumption, especially those that developed their economic activity in the 

vegetable sector. For instance, the production of vegetables cultivated at home or in the urban 

core, for self-consumption, or even the urban vertical farming, produced in buildings, in the 

urban core of the cities, can represent a competitive market for peri-urban farmers. 

These political, environmental, demographic social and economic issues, will change the 

actual paradigm of farming in peri-urban areas in a near future, forcing farmers to be capable 

to readapt their production, according to the changes that may occur. 

 

PhD thesis contributions 

In the context of geospatial modelling, there is a broad of scientific-technological 

approaches. Along with this line of scientific background, this research is primarily committed 

to exploring the dynamics of LUCC based on farmers’ intentions. Once the LUCC models 
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performed to handle a comprehensive agricultural land use analysis, this study aims at 

opening up new methodological paths for further investigations. LUCC simulation experiments 

are dealing with different categories of land use that have been conducted by Parker et al. 

(2003), Lambin et al. (2003), and Valbuena et al. (2010a). While the LUCC predictions 

developed by these authors are generated upon exploratory techniques, the LUCC predictions 

performed in this PhD research are based upon on new narratives and storylines to 

understand LUCC dynamics through farmers’ LUCC intentions. We presented a prospective 

approach to better understand spatial and temporal land-use dynamics, identifying what is 

more relevant in the decision process. The results achieved in this study should: (1) inform the 

policymakers and the community (demonstrating future land use alternatives and showing its 

impacts); (2) show the suitable land use options to avoid undesirable future impacts (adaptive 

land use management); and (3) simulates and predicts LUCC to support planners, to create 

sustainable development strategies, and to anticipate and to understand future land use 

uncertainties. 

This PhD thesis has explored the potential for developing geospatial modelling. We 

integrated LUCC modelling (CA-Markov, ANN-MLP, and ABM) with a GIS-based methodology 

to support planning decisions at the local planning level. We aimed to understand how 

farmers’ play in the decision-making process; to understand LUCC stakeholders’ visions, and; 

verify How? Where? Why? and What land-use conversions may occur. As the main 

contribution, we intend to facilitate the communication and exchange of knowledge between 

farmers and decision-makers for framing the best political options for land use. Modelling 

LUCC is an effective way to integrate expert knowledge for evaluating land use alternatives. 

Future uncertain and stochastic events can be unexpected. However, coherent and 

plausible land-use strategies can be applied to evaluate potential future impacts on land use 

(Rounsevell et al., 2006). We established how modelling LUCC could be successfully 

incorporated through land-use spatial planning. We point out a challenge facing to implement 

regulations in territorial management instruments and integrate farmers’ LUCC intentions and 

stakeholders’ visions into the realm of spatial planning practices. 

This PhD research makes relevant contributions and encompasses several essential 

features. We lead to a better understanding and management of critical demographic, 
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economic and environmental issues, to a better understanding regarding the preservation and 

maintenance of farming in peri-urban areas, and we introduced advances in land-use 

modelling. 

We believe that this PhD research is one step forward towards to better recognise the 

environmental landscape. It offers insights to land planners so that they can better manage 

the land (Li et al., 2016), identifying the driving forces that were, are, and will be responsible 

for LUCC. More studies on agricultural land change should be carried out to monitor its 

dynamics (spatially and temporally). It remains scant in the Portuguese context.  

Implementing policies to preserve agricultural land needs to be done, and more laws for its 

protection must be passed in a timely manner (Abrantes et al., 2016; Gomes et al., 2018). In 

addition, this remark is especially relevant for our case study, once Torres Vedras is one of the 

major suppliers of fresh fruits, vegetables, and wine in Portugal (Statistics Portugal, 2011). 

 

Limitations 

During this PhD research, we confronted with several weaknesses in the data gathering, as 

well as the challenge of LUCC model analysis and validation. The difficulties arising from 

accurate data acquisition and finding appropriate models. Following, we detailed some of the 

main limitations of this research. 

Due to limited available data, we think the calibration process was not long enough to 

detect satisfactory LUCC for longer predictions (a wider time-span would have been more 

proper). Also, during the progress of this PhD thesis, an updated land-use data for the year 

2015 was developed and validated by DGT. However, we opted to use the year 2010 as the 

most updated land-use data. This mainly due the fact of the arable land use class in 2015 was 

not subdivided (between non-irrigated arable and permanently irrigated) as it was in the land 

use maps of 1995, 2007, and 2010. Nevertheless, we compared the agreement between land 

use map 2010 and 2015 using the Kappa index of agreement (KIA). As outcomes we obtained 

the following KIA values: artificial surfaces = 0.9658; arable land = 0.8026; permanent crops 

and heterogeneous agricultural = 0.8894; pastures = 0.7867; forest = 0.9278; and wetlands 

and water bodies = 0.8814. These values reveal high levels of agreement. 
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Regarding the LUCC models, although they can be of value, it is still difficult to communicate 

the outcomes to non-experts. Moreover, LUCC models have some weaknesses that must be 

addressed. Each model and each scenario employed is built on some hypotheses which might 

not represent the best choices. In addition, it will be important in further analysis to test the 

methodology applied in this research into other case studies. Modelling LUCC has also 

demonstrated to be useful for the identification of the main impacts on land conversion. 

However, there's still a gap between these models and local planning authorities to manage 

and reorganise land allocation priorities according to the environmental, demographic and 

economic needs.  

 

Future work 

This PhD research explored a methodological approach to support collaborative land use 

planning processes and examined the integration of spatial planning and complexity science. 

Although the results presented were effectively tested, several issues remain unexplored and 

can be addressed by future researches. More analyses need to be conducted. As future work, 

it can be recommended, e.g., (1) to gather detailed and updated land use data (using satellite 

images, for instance); (2) to analyse LUCC for a longer time horizon; (3) to apply other LUCC 

models (e.g., CLUE, DINAMICA, and Land Change Modeler) to test different statistical 

approaches; (4) to integrate other stakeholders (e.g., real estate developers, and foresters) to 

determine their LUCC intentions, in order to have a more comprehensive review of all future 

land use transformations intentions, which can help decision-makers in a better land 

management; (5) to test the proposed methodology for comparison in another study area to 

evaluate the replicability; and (6) regarding the FARMER model, we think is still a prototype, 

and some progress such as to improve the usability of the model, to allow to add other spatial 

factors and constraints, or even to allow the user to define their LUCC intentions for each land 

use class and scenario, are some developments which we think could be an advantage for the 

model. 

In brief, the current PhD research is entrusted with providing methodological guidance for 

future scientific investigations. We believe this study will help, in future works, researchers, 

modellers and decision-makers to better visualise and evaluate the effects of future LUCC.   
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extensions [GIS nw] 
 
globals [road selection selection-remainder selection-stable selection-other changes-tested? ] 
 
patches-own 
[ 
  landuse_date1 
  landuse_date2 
  variable-to-map 
  tagged-as-neighboor? 
] 
;************************* 
;Load File and display map 
;************************* 
 
to load-file-date1 
 print "Importing Landuse" 
let file user-file 
file-open file 
foreach sort patches [ ?1 -> ask ?1 [set landuse_date1 file-read ] ] 
file-close 
 end 
 
 to load-file-date2 
 print "Importing Landuse" 
let file user-file 
file-open file 
foreach sort patches [ ?1 -> ask ?1 [set landuse_date2 file-read ] ] 
file-close 
 end 
 
 
 
 to load-file 
   ifelse LandUse-Date = "Date1" 
  [ 
    load-file-date1 
  ] 
  [ 
    load-file-date2 
  ] 
 end 
 
 
to setup-roads 
  set road gis:load-dataset  user-file 
gis:set-drawing-color black gis:draw road 2 
 
end 
 
 to setup 
   reset-ticks 
   set selection [] 
   set changes-tested? 0 
   ask patches [set tagged-as-neighboor? 0] 
 end 
 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;LAND USE CHANGE Date 1-Date2;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
to define-selection 
 set selection patches with [landuse_date1 = LandUse-Date1 and landuse_date2 = LandUse-Date2] 
end 
 
 
to define-selection-remainder 
 set selection-remainder patches with [landuse_date1 = LandUse-Date1 and landuse_date2 != LandUse-Date2 and landuse_date2 != 
LandUse-Date1] 
end 
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to define-notchanging-patches-selection 
 set selection-stable patches with [landuse_date1 = LandUse-Date1 and landuse_date2 = LandUse-Date1] 
end 
 
to define-notchanging-patches 
 set selection-other patches with [landuse_date1 != LandUse-Date1 and landuse_date1  = landuse_date2] 
end 
 
to tag-selection-neighborhoors 
  ask selection 
  [ 
    ask patches in-radius Neighboring-distance [set tagged-as-neighboor? 1] 
  ] 
end 
 
 
to tag-selection-remainder-neighborhoors 
  ask selection-remainder 
  [ 
    ask patches in-radius Neighboring-distance with [tagged-as-neighboor? = 0] [set tagged-as-neighboor? 2] 
  ] 
end 
 
to tag-selection-stable-neighborhoors 
  ask selection-stable 
  [ 
    ask patches in-radius Neighboring-distance with [tagged-as-neighboor? = 0] [set tagged-as-neighboor? 3] 
  ] 
end 
 
to tag-selection-other-neighborhoors 
  ask selection-other 
  [ 
    ask patches in-radius Neighboring-distance with [tagged-as-neighboor? = 0] [set tagged-as-neighboor? 4] 
  ] 
end 
 
to set-changes-date1-date2 
  ask patches [set tagged-as-neighboor? 0] 
  define-selection 
  define-selection-remainder 
  define-notchanging-patches 
   define-notchanging-patches-selection 
   map-changes 
  set changes-tested? 1 
  tag-selection-neighborhoors 
  tag-selection-remainder-neighborhoors 
 tick 
  end 
 
 
to map-changes 
 ask patches [set pcolor grey] 
 ask selection [set pcolor red] ; "LandUse-Date1 --> LandUse-Date2 (RED)" 
 ask selection-remainder  [set pcolor green] ;"LandUse-Date1 --> Any other landuse - Date2 (GREEN)" 
 ask selection-other [set pcolor white] ; stable patches with other LandUse-Date1 
 ask selection-stable [set pcolor orange] ;"LandUse-Date1 --> LandUse-Date1 (ORANGE)" 
end 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;;MAP LAND USE;;;;;;;;;;;;;;;;;;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
to map-landuse 
 
  ifelse LandUse-Date = "Date1" 
 
      [ 
    ask patches 
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    [ 
    set variable-to-map landuse_date1 
  ]] 
  [ 
  ask patches 
    [ 
 
    set variable-to-map landuse_date2 
  ]] 
 
 
  ask patches with [ variable-to-map = 1 ] [ 
    set pcolor red ] 
  ask patches with [ variable-to-map = 2 ] [ 
    set pcolor yellow ] 
  ask patches with [ variable-to-map = 3 ] [ 
    set pcolor 49 ] 
  ask patches with [ variable-to-map = 4 ] [ 
    set pcolor 111 ] 
  ask patches with [ variable-to-map = 5 ] [ 
    set pcolor orange ] 
  ask patches with [ variable-to-map = 6 ] [ 
    set pcolor 128 ] 
  ask patches with [ variable-to-map = 7 ] [ 
    set pcolor 67 ] 
  ask patches with [ variable-to-map = 8 ] [ 
    set pcolor 86 ] 
end 
;;;;;;;;;;;;;;;; 
;;;;LEGEND;;;;;; 
;;;;;;;;;;;;;;;; 
 
to-report %CultivatedLand  [variable] 
 report count patches with [variable = 1] / Count patches * 100 
end 
 
to-report %uncultivatedLand [variable] 
 report count patches with [variable = 2] / Count patches * 100 
end 
 
to-report %forestsareas [variable] 
 report count patches with [variable = 3] / Count patches * 100 
end 
 
to-report %builtupareas [variable] 
 report count patches with [variable = 4] / Count patches * 100 
end 
 
to-report %wetlandswaterbodies [variable] 
 report count patches with [variable = 5] / Count patches * 100 
end 
 
to-report %roadnetwork [variable] 
 report count patches with [variable = 6] / Count patches * 100 
end 
 
to-report %rivers [variable] 
 report count patches with [variable = 7] / Count patches * 100 
end 
 
to-report %protectedareas [variable] 
 report count patches with [variable = 8] / Count patches * 100 
end 
 
;;;;;;;;;;;;;;; 
;;;;;END;;;;;;; 
;;;;;;;;;;;;;;; 
 

;;Land-use 

;-9999 = nodata 
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Standardized Coefficient Beta value. Independent variables (rows); landscape metrics using 

agricultural land use classes (1995 and 2010) (columns).  

Independent variables: 1 – resident population (density); 2 – population of farmers (density); 3 – dwelling 

(density); 4 – buildings (density); 5 – agricultural area used (density); 6 – artificial surfaces (%); 7 – non-irrigated 

land (%); 8 – permanent irrigated land (%); 9 – permanent crops and heterogeneous agricultural land (%); 10 – 

forest (%); 11 – pastures (%); 12 – vineyards (%); 13 – road network (%); 14 – national agricultural reserve (%); 

15 – national ecological reserve (%); 16 – non-aedificandi areas (%); 17 – urbanizable area (%); 18 – slope 

(average). 

Land use classes: 2 - non-irrigated land; 3 - permanent irrigated land; 4 - permanent crops and heterogeneous 

agricultural land; and 5 - pastures). Landscape metrics: MPS, MPE, MSI, MESH, and PROX.  

  MPS 2 MPE 2 MSI 2 MESH 2 PROX 2 MPS 3 MPE 3 MSI 3 MESH 3 PROX 3 

  95 10 95 10 95 10 95 10 95 10 95 10 95 10 95 10 95 10 95 10 

1 0.38 0.53 0.20 0.65 -0.14 0.75 -0.26 -0.07 -0.66 0.21 0.04 0.13 0.05 0.14 -0.16 0.37 -0.12 0.14 -0.15 0.08 

2 -0.39 -8.64 -0.25 -9.43 0.30 -8.86 -0.48 -9.19 -0.27 -9.49 0.08 0.53 0.18 -2.65 0.26 -11.10 -0.10 5.20 0.01 5.14 

3 0.15 1.86 0.43 1.55 0.61 1.27 1.21 1.69 2.21 1.53 -0.18 2.04 -0.01 1.87 0.86 1.63 0.42 2.95 0.44 3.18 

4 -0.85 -3.58 -1.19 -3.09 -1.70 -2.46 -1.60 -3.01 -2.37 -2.12 -0.55 -2.82 -0.59 -2.93 -0.72 -3.49 -1.35 -4.30 -1.35 -4.22 

5  9.03  9.91  9.40  8.68  9.29  -0.39  2.66  10.97  -4.32  -4.32 

6 -0.26 0.67 -0.42 0.37 -0.70 0.07 0.09 0.33 0.23 0.27 -0.49 -0.43 -0.49 -0.29 -0.21 0.52 -0.42 -0.24 -0.26 -0.36 

7           -0.09 -0.73 -0.10 -0.89 -0.07 -0.87 -0.85 -0.40 -0.78 -0.44 

8 -0.03 -0.30 -0.06 -0.17 -0.13 0.48 0.24 0.54 -0.03 0.00           

9 0.79 0.74 0.45 0.84 -0.88 1.46 0.57 0.10 -0.05 0.46 -1.22 -0.78 -1.14 -0.75 -0.14 -0.08 -1.46 -0.19 -1.43 -0.32 

10 -0.33 -0.25 -0.43 0.06 -0.87 0.46 -0.71 -0.06 -1.11 -0.20 -0.87 -0.16 -0.82 -0.20 -0.38 -0.32 -1.76 -0.19 -1.81 -0.15 

11 0.04 -0.71 0.00 -0.44 -0.11 0.48 -0.02 0.04 -0.03 -0.51 -0.03 -1.24 -0.05 -1.29 0.07 -1.11 -0.45 -0.91 -0.46 -0.97 

12 -0.96 -2.71 -0.77 -2.48 -0.16 -2.12 -0.81 -0.47 -0.49 -1.64 0.05 -1.35 -0.04 -1.35 -0.43 -1.51 -0.28 -1.87 -0.32 -1.82 

13 -0.37 -1.30 -0.19 -1.14 0.19 -0.91 -0.11 -1.21 -0.03 -1.02 -0.02 -0.56 -0.01 -0.37 -0.07 -0.21 0.33 -0.63 0.46 -0.60 

14 -0.07 0.54 -0.21 0.36 -0.79 0.21 0.14 0.44 0.35 0.60 -0.11 0.63 -0.13 0.68 -0.04 0.68 -0.01 0.46 -0.07 0.49 

15 -0.29 0.05 -0.32 0.06 -0.24 -0.04 -0.28 0.54 -0.30 -0.04 0.23 -0.24 0.27 -0.27 0.45 -0.33 -0.18 -0.36 -0.17 -0.43 

16 0.86 1.38 0.70 1.31 0.54 1.26 0.40 0.61 -0.17 0.59 0.10 0.85 0.08 0.77 -0.40 0.84 0.26 1.57 0.23 1.42 

17 0.10 0.42 0.26 0.40 0.59 0.33 -0.02 1.38 0.23 0.36 0.71 0.55 0.65 0.56 0.64 0.44 0.26 0.48 0.01 0.46 

18 0.33 0.59 0.13 0.50 -0.53 0.52 0.66 0.35 0.57 0.67 -0.41 0.36 -0.48 0.48 -0.50 0.76 0.47 0.13 0.48 0.23 
 

  MPS 4 MPE 4 MSI 4 MESH 4 PROX 4 MPS 5 MPE 5 MSI 5 MESH 5 PROX 5 

  95 10 95 10 95 10 95 10 95 10 95 10 95 10 95 10 95 10 95 10 

1 0.28 0.92 0.28 1.13 0.30 1.51 -0.13 -0.35 -0.18 -0.34 0.09 1.18 -0.13 0.82 -0.31 1.13 0.26 0.87 0.35 1.35 

2 0.09 -10.5 0.34 -12.3 0.22 -11.7 0.08 -2.93 0.04 -2.05 -0.62 -6.19 -0.72 -2.85 -0.70 2.70 0.70 -15.7 0.94 -4.85 

3 1.14 0.23 0.98 -0.51 0.28 -0.89 -0.21 -1.25 0.23 -1.14 -0.08 -1.54 0.40 -1.58 0.61 -1.95 -0.21 -2.28 -0.06 -0.13 

4 -1.46 -1.52 -1.68 -1.12 -1.26 -1.00 -0.02 0.81 0.01 0.79 -0.20 -0.12 -0.62 0.28 -0.94 1.91 0.07 -0.32 -0.09 -0.36 

5  10.7  12.7  12.1  3.16  2.22  7.88  4.18  -3.37  18.25  4.42 

6 -0.03 -0.27 0.05 -0.24 0.32 0.00 0.24 0.27 0.41 0.28 -1.11 -0.06 -1.05 -0.27 -0.73 -0.42 -1.58 -2.43 -0.81 1.45 

7 -1.41 -1.50 -1.23 -1.17 -0.21 -0.82 -0.99 -0.14 -1.42 -0.28 -1.57 -0.48 -0.90 -0.51 0.09 -0.28 -3.66 -4.73 -1.95 -0.61 

8 -1.28 -1.02 -1.38 -0.81 -0.56 -0.40 -0.71 -0.24 -0.96 -0.35 -1.45 -2.43 -0.57 -2.70 0.75 -0.84 -4.78 -11.8 -3.46 1.67 

9           -2.33 -3.22 -1.66 -3.81 -0.41 -1.98 -4.72 -11.9 -2.82 4.71 

10 -1.74 0.06 -1.73 0.27 -0.74 0.43 -1.11 -0.02 -1.51 -0.03 -2.58 -1.72 -1.70 -2.29 -0.15 -1.31 -5.59 -11.4 -3.87 1.70 

11 -0.22 -0.84 -0.14 -0.19 0.11 0.18 -0.50 0.15 -0.56 -0.04           

12 -0.78 -0.73 -0.99 -0.28 -0.84 -0.76 0.02 1.59 -0.42 1.39 0.55 1.11 0.70 1.63 0.86 0.47 -0.37 3.51 -1.36 -4.67 

13 -0.42 -0.68 -0.32 -0.44 -0.02 -0.71 0.22 0.85 -0.67 0.65 0.20 0.18 0.81 0.59 1.21 0.03 -0.46 1.16 0.16 -2.58 

14 0.35 0.63 0.18 0.38 -0.14 0.56 0.23 -0.46 0.51 -0.35 -0.05 -0.70 -0.10 -0.82 -0.41 0.83 0.20 -2.39 0.60 2.74 

15 -0.12 -0.32 0.05 -0.31 0.48 -0.19 0.16 0.39 0.11 0.40 0.01 -0.03 0.08 0.04 0.23 -0.61 -0.33 0.86 0.30 -0.39 

16 0.28 1.26 0.33 1.29 0.02 1.16 0.23 -0.20 0.22 -0.18 0.18 0.66 -0.13 0.35 -0.21 -0.50 0.44 1.22 -0.05 0.87 

17 0.10 0.19 0.13 0.14 0.05 0.27 -0.56 -0.61 -0.35 -0.51 0.23 -0.07 -0.03 -0.29 -0.31 -0.36 0.45 -0.49 -0.02 0.51 

18 0.32 0.62 0.11 0.50 -0.12 0.88 0.13 -0.89 0.21 -0.81 -0.11 -1.03 -0.02 -1.10 0.04 0.66 -0.33 -1.97 -0.12 1.98 
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Farmers’ interview form 

 

Question number/ 
variable 

Profile  

 Date  

 Name  

1 Age  

2 Education  

 Mobile phone   

 E-mail  

3 Parish  

4 Do you benefit from subsidies? (e.g., CAP)  

 

 

Question number Farm  

5 Farmland hectares  

6 Number of agricultural parcels  

7 Owner and/or tenant  

 

 

Question number 
Farmlands’ characterization based on the 

following LUC classes 
(%) 

8 Artificial surfaces  

9 Non-irrigated arable land  

10 Permanently irrigated land  

11 
Permanent crops and heterogeneous 
agricultural land 

 

12 Pastures  

13 Forest and semi-natural areas  

14 Water bodies  

 

 

Question number Future LUCC intentions I A0 A1 A2 B0 

15 Expand/ decrease the farmland (%)     

16 If expand, where?     

17 Distance from the current farmland (m)     

18 Distance from water bodies (m)?     

19 Distance from road network (m)?     

 

 

Question number Future LUCC intentions II A0 A1 A2 B0 

20 Artificial surfaces      

21 Non-irrigated arable land     
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22 Permanently irrigated land     

23 
Permanent crops and heterogeneous 
agricultural land 

    

24 Pastures     

25 Forest and semi-natural areas     

26 Water bodies     

 

 

Question number Future LUCC intentions III A0 A1 A2 B0 

27 To sell the farmland? (%)     

28 
If yes: artificial surfaces? (%); agricultural 
areas? (%); forest and semi-natural areas? 
(%) 

    

29 Abandon? (%)     

 

 

Thank you for your cooperation. 
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patches-own [landuse modified-landuse no-building-areas road-network slope] 
 
;************************* 
;Load File 
;************************* 
 
to load-file-landuse 
 print "Importing landuse" 
let file user-file 
file-open file 
foreach sort patches [ ?1 -> ask ?1 [set landuse file-read ] ] 
file-close 
 end 
 
 to load-file-no-building-areas 
 print "Importing no-building-areas" 
let file user-file 
file-open file 
foreach sort patches [ ?1 -> ask ?1 [set no-building-areas file-read ] ] 
file-close 
 end 
 
to load-file-road-network 
 print "Importing road-network" 
let file user-file 
file-open file 
foreach sort patches [ ?1 -> ask ?1 [set road-network file-read ] ] 
file-close 
 end 
 
to load-file-slope 
 print "Importing slope" 
let file user-file 
file-open file 
foreach sort patches [ ?1 -> ask ?1 [set slope file-read ] ] 
file-close 
 end 
 
 to load-file 
   If Raster = "landuse" 
  [ 
    load-file-landuse 
  ] 
  if Raster = "no-building-areas" 
  [ 
    load-file-no-building-areas 
  ] 
  if Raster = "road-network" 
  [ 
    load-file-road-network 
  ] 
  if Raster = "slope" 
  [ 
    load-file-slope 
  ] 
  end 
 
to reset-landuse 
ask patches 
[set modified-landuse landuse] 
map-landuse 
reset-ticks 
end 
 
to setup-environment 
load-file 
reset-landuse 
reset-ticks 
  end 
 
;************************* 
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;Patches - and display map 
;************************* 
 
to map-landuse 
  ask patches with [ modified-landuse = 1 ] [ 
    set pcolor [168 0 0] ] 
  ask patches with [ modified-landuse = 2 ] [ 
    set pcolor [211 255 190] ] 
  ask patches with [ modified-landuse = 3 ] [ 
    set pcolor [230 230 0] ] 
  ask patches with [ modified-landuse = 4 ] [ 
    set pcolor [168 112 0] ] 
  ask patches with [ modified-landuse = 5 ] [ 
    set pcolor [255 235 175] ] 
  ask patches with [ modified-landuse = 6 ] [ 
    set pcolor [56 168 0] ] 
  ask patches with [ modified-landuse = 7 ] [ 
    set pcolor [56 168 0] ] 
  ask patches with [ modified-landuse = 98 ] [ 
    set pcolor white ] 
  ask patches with [ modified-landuse = 99 ] [ 
    set pcolor blue ] 
 end 
 
;;landuse legend 
;;1 = artificial surfaces 
;;2 = non-irrigated arable land 
;;3 = permanent irrigated land 
;;4 = permanent crops and heterogeneous agricultural land 
;;5 = pastures 
;;6 = forest and semi-natural areas 
;;7 = water bodies 
;;98 = Outside Torres Vedras 
;;99 = Atlantic Ocean 
 
 
to no-building-areas1 
  ask patches with [ no-building-areas = 0 ] [ 
    set pcolor gray ] 
  ask patches with [ no-building-areas = 1 ] [ 
    set pcolor green ] 
  ask patches with [ no-building-areas = 98 ] [ 
    set pcolor white ] 
  ask patches with [ no-building-areas = 99 ] [ 
    set pcolor blue ] 
  end 
 
;;no-building-areas legend 
;;No building areas legend 
;;0 = Building areas [gray] 
;;1 = No Building areas [green] 
;;98 = Outside Torres Vedras [white] 
;;99 = Atlantic Ocean [blue] 
 
 
to road 
  ask patches with [ road-network = 0 ] [ 
    set pcolor gray ] 
    ask patches with [ road-network = 1 ] [ 
    set pcolor black ] 
  ask patches with [ road-network = 98 ] [ 
    set pcolor white ] 
  ask patches with [ road-network = 99 ] [ 
    set pcolor blue ] 
  end 
 
;;Road Network legend 
;;0 = No Road Network [gray] 
;;1 = Road Network [black] 
;;98 = Outside Torres Vedras [white] 
;;99 = Atlantic Ocean [blue] 
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to slope1 
 ask patches with [ slope = 0 ] [ 
   set pcolor gray ] 
 ask patches with [ slope = 1 ] [ 
   set pcolor yellow ] 
 ask patches with [ slope = 2 ] [ 
   set pcolor orange ] 
 ask patches with [ slope = 3 ] [ 
   set pcolor red ] 
 ask patches with [ slope = 4 ] [ 
   set pcolor black ] 
 ask patches with [ slope = 98 ] [ 
   set pcolor white ] 
 ask patches with [ slope = 99 ] [ 
   set pcolor blue ] 
  end 
 
;;Slope legend 
;;0 = 0º - Slope [gray] 
;;1 = >0º - 5º=< - Slope [black] 
;;2 = >5º - 10º=< - Slope [gray] 
;;3 = >10º - 15º=< - Slope [black] 
;;4 = >15º - 20º< - Slope [black] 
;;98 = Outside Torres Vedras [white] 
;;99 = Atlantic Ocean [blue] 
 
 ;**************************** 
 ;       Scenario A0         ; 
 ;**************************** 
 
to scenario_A0 
  urb0-A0 
  urb10-A0 
  urb20-A0 
  urb30-A0 
  urb40-A0 
  urb50-A0 
  forest-to-agriculture-A0 
  slope-farming-0-10-A0 
  for0-A0 
  for10-A0 
  for20-A0 
  for30-A0 
  for40-A0 
  for50-A0 
  tick 
  if ticks = 1 [stop] 
end 
 
;;;;;;;;;;;;;;;;;;;;;;; 
;     SCENARIO A0     ; 
;;;;;;;;;;;;;;;;;;;;;;; 
 
;; Scenario A0 - Class 1 - artificial surfaces 
 
to urban-A0-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A0 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A0 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A0 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A0 * 100 < Dens-urb-A0 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
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] 
end 
 
to urban-A0-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A0 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A0 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A0 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A0 * 100 < Dens-urb-A0 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A0-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A0 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A0 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A0 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A0 * 100 < Dens-urb-A0 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A0-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A0 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A0 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A0 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A0 * 100 < Dens-urb-A0 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A0-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A0 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A0 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A0 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A0 * 100 < Dens-urb-A0 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
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to urban-A0-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A0 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A0 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A0 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A0 * 100 < Dens-urb-A0 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urb0-A0 
If UrbanA0 = "0%" 
[ 
Urban-A0-0 
] 
end 
 
to urb10-A0 
If UrbanA0 = "10%" 
[ 
Urban-A0-10 
] 
end 
 
to urb20-A0 
If UrbanA0 = "20%" 
[ 
Urban-A0-20 
] 
end 
 
to urb30-A0 
If UrbanA0 = "30%" 
[ 
Urban-A0-30 
] 
end 
 
to urb40-A0 
If UrbanA0 = "40%" 
[ 
Urban-A0-40 
] 
end 
 
to urb50-A0 
If UrbanA0 = "50%" 
[ 
Urban-A0-50 
] 
end 
 
 
;; Scenario A0 - Class 2 - non-irrigated arable land 
 
to scenario_A0_class2 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.006 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
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    ] 
end 
 
to scenario_A0_class2_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.006 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
to scenario_A0_class2_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.006 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
 
;; Scenario A0 - Class 3 - permanently irrigated land 
 
to scenario_A0_class3 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < 0.2 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
to scenario_A0_class3_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < 0.2 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
to scenario_A0_class3_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6  and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < 0.2 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
 
;; Scenario A0 - Class 4 - permanent crops and heterogeneous agricultural land 
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to scenario_A0_class4 
ask patches with [modified-landuse = 2  or modified-landuse = 3  or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < 0.1 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A0_class4_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < 0.1 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A0_class4_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < 0.1 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
 
;; Scenario A0 - Class 5 - Pastures 
 
to scenario_A0_class5 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.06 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A0_class5_slope_0_10 ;; Slope for farming : 5-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.06 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A0_class5_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.06 ;; Farmers’ LUCC intentions 
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    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
;; Scenario A0 - Class 6 - Forest and semi-natural areas 
 
to forest-A0-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A0-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A0-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A0-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A0-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A0-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
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if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to for0-A0 
If ForestA0 = "0%" 
[ 
forest-A0-0 
] 
end 
 
to for10-A0 
If ForestA0 = "10%" 
[ 
forest-A0-10 
] 
end 
 
to for20-A0 
If ForestA0 = "20%" 
[ 
forest-A0-20 
] 
end 
 
to for30-A0 
If ForestA0 = "30%" 
[ 
forest-A0-30 
] 
end 
 
to for40-A0 
If ForestA0 = "40%" 
[ 
forest-A0-40 
] 
end 
 
to for50-A0 
If ForestA0 = "50%" 
[ 
forest-A0-50 
] 
end 
 
to f_A0 
If ForestA0 = "0%" 
[ 
forest-A0-0 
] 
If ForestA0 = "10%" 
[ 
forest-A0-10 
] 
if ForestA0 = "20%" 
[ 
forest-A0-20 
] 
if ForestA0 = "30%" 
[ 
forest-A0-30 
] 
if ForestA0 = "40%" 
[ 
forest-A0-40 
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] 
if ForestA0 = "50%" 
[ 
forest-A0-50 
] 
end 
 
 
;*********************************************** 
;    conversion from forest to agriculture?  A0 ; 
;*********************************************** 
to convert-forest-to-agriculture-A0 
scenario_A0_class2_forest_to_agriculture 
scenario_A0_class3_forest_to_agriculture 
scenario_A0_class4_forest_to_agriculture 
scenario_A0_class5_forest_to_agriculture 
end 
 
to not-convert-forest-to-agriculture-A0 
scenario_A0_class2 
scenario_A0_class3 
scenario_A0_class4 
scenario_A0_class5 
end 
 
to forest-to-agriculture-A0 
  ifelse Forest-A0? 
  [convert-forest-to-agriculture-A0] 
  [not-convert-forest-to-agriculture-A0] 
end 
 
 
;************************************* 
 ;       slope farming 0-10   A0 ; 
 ;************************************* 
to slope-farming-0-10-yes-A0 
scenario_A0_class2_slope_0_10 
scenario_A0_class3_slope_0_10 
scenario_A0_class4_slope_0_10 
scenario_A0_class5_slope_0_10 
end 
 
to slope-farming-0-10-no-A0 
scenario_A0_class2 
scenario_A0_class3 
scenario_A0_class4 
scenario_A0_class5 
end 
 
to slope-farming-0-10-A0 
  ifelse A0-0-10º? 
  [slope-farming-0-10-yes-A0] 
  [slope-farming-0-10-no-A0] 
end 
 
 
 
 
 ;**************************** 
 ;       Scenario A1         ; 
 ;**************************** 
 
to scenario_A1 
  urb0-A1 
  urb10-A1 
  urb20-A1 
  urb30-A1 
  urb40-A1 
  urb50-A1 
  forest-to-agriculture-A1 
  slope-farming-0-10-A1 
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  for0-A1 
  for10-A1 
  for20-A1 
  for30-A1 
  for40-A1 
  for50-A1 
  tick 
  if ticks = 1 [stop] 
end 
 
;;;;;;;;;;;;;;;;;;;;;;; 
;     SCENARIO A1     ; 
;;;;;;;;;;;;;;;;;;;;;;; 
 
;; Scenario A1 - Class 1 - artificial surfaces 
 
to urban-A1-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A1 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A1 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A1 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A1 * 100 < Dens-urb-A1 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A1-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A1 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A1 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A1 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A1 * 100 < Dens-urb-A1 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A1-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A1 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A1 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A1 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A1 * 100 < Dens-urb-A1 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A1-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 



An agent-based approach to model farmers' land use cover change intentions 

 

326 

 

if any? patches in-radius D-to-RN-urb-A1 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A1 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A1 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A1 * 100 < Dens-urb-A1 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A1-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A1 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A1 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A1 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A1 * 100 < Dens-urb-A1 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A1-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A1 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A1 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A1 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A1 * 100 < Dens-urb-A1 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urb0-A1 
If UrbanA1 = "0%" 
[ 
Urban-A1-0 
] 
end 
 
to urb10-A1 
If UrbanA1 = "10%" 
[ 
Urban-A1-10 
] 
end 
 
to urb20-A1 
If UrbanA1 = "20%" 
[ 
Urban-A1-20 
] 
end 
 
to urb30-A1 
If UrbanA1 = "30%" 
[ 
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Urban-A1-30 
] 
end 
 
to urb40-A1 
If UrbanA1 = "40%" 
[ 
Urban-A1-40 
] 
end 
 
to urb50-A1 
If UrbanA1 = "50%" 
[ 
Urban-A1-50 
] 
end 
 
 
;; Scenario A1 - Class 2 - non-irrigated arable land 
 
to scenario_A1_class2 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.03 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
to scenario_A1_class2_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.03 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
to scenario_A1_class2_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.03 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
 
;; Scenario A1 - Class 3 - permanently irrigated land 
 
to scenario_A1_class3 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < 0.68 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
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end 
 
to scenario_A1_class3_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < 0.68 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
to scenario_A1_class3_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6  and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < 0.68 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
 
;; Scenario A1 - Class 4 - permanent crops and heterogeneous agricultural land 
 
to scenario_A1_class4 
ask patches with [modified-landuse = 2  or modified-landuse = 3  or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < 0.71 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A1_class4_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < 0.71 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A1_class4_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < 0.71 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
 
;; Scenario A1 - Class 5 - Pastures 
 
to scenario_A1_class5 
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ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.25 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A1_class5_slope_0_10 ;; Slope for farming : 5-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.25 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A1_class5_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.25 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
;; Scenario A1 - Class 6 - Forest and semi-natural areas 
 
to forest-A1-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A1-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A1-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
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] 
end 
 
to forest-A1-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A1-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A1-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to for0-A1 
If ForestA1 = "0%" 
[ 
forest-A1-0 
] 
end 
 
to for10-A1 
If ForestA1 = "10%" 
[ 
forest-A1-10 
] 
end 
 
to for20-A1 
If ForestA1 = "20%" 
[ 
forest-A1-20 
] 
end 
 
to for30-A1 
If ForestA1 = "30%" 
[ 
forest-A1-30 
] 
end 
 
to for40-A1 
If ForestA1 = "40%" 
[ 
forest-A1-40 



An agent-based approach to model farmers' land use cover change intentions 

 

331 

 

] 
end 
 
to for50-A1 
If ForestA1 = "50%" 
[ 
forest-A1-50 
] 
end 
 
to f_A1 
If ForestA1 = "0%" 
[ 
forest-A1-0 
] 
If ForestA1 = "10%" 
[ 
forest-A1-10 
] 
if ForestA1 = "20%" 
[ 
forest-A1-20 
] 
if ForestA1 = "30%" 
[ 
forest-A1-30 
] 
if ForestA1 = "40%" 
[ 
forest-A1-40 
] 
if ForestA1 = "50%" 
[ 
forest-A1-50 
] 
end 
 
;*********************************************** 
;    conversion from forest to agriculture?  A1 ; 
;*********************************************** 
to convert-forest-to-agriculture-A1 
scenario_A1_class2_forest_to_agriculture 
scenario_A1_class3_forest_to_agriculture 
scenario_A1_class4_forest_to_agriculture 
scenario_A1_class5_forest_to_agriculture 
end 
 
to not-convert-forest-to-agriculture-A1 
scenario_A1_class2 
scenario_A1_class3 
scenario_A1_class4 
scenario_A1_class5 
end 
 
to forest-to-agriculture-A1 
  ifelse Forest-A1? 
  [convert-forest-to-agriculture-A1] 
  [not-convert-forest-to-agriculture-A1] 
end 
 
 
;************************************* 
 ;       slope farming 0-10   A1 ; 
 ;************************************* 
to slope-farming-0-10-yes-A1 
scenario_A1_class2_slope_0_10 
scenario_A1_class3_slope_0_10 
scenario_A1_class4_slope_0_10 
scenario_A1_class5_slope_0_10 
end 
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to slope-farming-0-10-no-A1 
scenario_A1_class2 
scenario_A1_class3 
scenario_A1_class4 
scenario_A1_class5 
end 
 
to slope-farming-0-10-A1 
  ifelse A1-0-10º? 
  [slope-farming-0-10-yes-A1] 
  [slope-farming-0-10-no-A1] 
end 
 
 ;**************************** 
 ;       Scenario A2         ; 
 ;**************************** 
 
to scenario_A2 
  urb0-A2 
  urb10-A2 
  urb20-A2 
  urb30-A2 
  urb40-A2 
  urb50-A2 
  forest-to-agriculture-A2 
  slope-farming-0-10-A2 
  for0-A2 
  for10-A2 
  for20-A2 
  for30-A2 
  for40-A2 
  for50-A2 
  tick 
  if ticks = 1 [stop] 
end 
 
 
;;;;;;;;;;;;;;;;;;;;;;; 
;     SCENARIO A2     ; 
;;;;;;;;;;;;;;;;;;;;;;; 
 
;; Scenario A2 - Class 1 - artificial surfaces 
 
to urban-A2-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A2 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A2 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A2 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A2 * 100 < Dens-urb-A2 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A2-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A2 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A2 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A2 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A2 * 100 < Dens-urb-A2 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
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[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A2-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A2 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A2 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A2 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A2 * 100 < Dens-urb-A2 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A2-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A2 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A2 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A2 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A2 * 100 < Dens-urb-A2 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A2-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A2 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A2 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A2 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A2 * 100 < Dens-urb-A2 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A2-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A2 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A2 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A2 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A2 * 100 < Dens-urb-A2 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
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] 
end 
 
to urb0-A2 
If UrbanA2 = "0%" 
[ 
Urban-A2-0 
] 
end 
 
to urb10-A2 
If UrbanA2 = "10%" 
[ 
Urban-A2-10 
] 
end 
 
to urb20-A2 
If UrbanA2 = "20%" 
[ 
Urban-A2-20 
] 
end 
 
to urb30-A2 
If UrbanA2 = "30%" 
[ 
Urban-A2-30 
] 
end 
 
to urb40-A2 
If UrbanA2 = "40%" 
[ 
Urban-A2-40 
] 
end 
 
to urb50-A2 
If UrbanA2 = "50%" 
[ 
Urban-A2-50 
] 
end 
 
 
;; Scenario A2 - Class 2 - non-irrigated arable land 
 
to scenario_A2_class2 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < -0.46 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
to scenario_A2_class2_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < -0.46 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
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to scenario_A2_class2_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < -0.46 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
 
;; Scenario A2 - Class 3 - permanently irrigated land 
 
to scenario_A2_class3 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < -0.17 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
to scenario_A2_class3_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < -0.17 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
to scenario_A2_class3_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6  and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < -0.17 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
 
;; Scenario A2 - Class 4 - permanent crops and heterogeneous agricultural land 
 
to scenario_A2_class4 
ask patches with [modified-landuse = 2  or modified-landuse = 3  or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < -0.11 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A2_class4_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
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  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < -0.11 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A2_class4_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < -0.11 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
 
;; Scenario A2 - Class 5 - Pastures 
 
to scenario_A2_class5 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < 5.6 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A2_class5_slope_0_10 ;; Slope for farming : 5-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < 5.6 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A2_class5_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < 5.6 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
;; Scenario A2 - Class 6 - Forest and semi-natural areas 
 
to forest-A2-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
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[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A2-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A2-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A2-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A2-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A2-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to for0-A2 
If ForestA2 = "0%" 
[ 
forest-A2-0 
] 
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end 
 
to for10-A2 
If ForestA2 = "10%" 
[ 
forest-A2-10 
] 
end 
 
to for20-A2 
If ForestA2 = "20%" 
[ 
forest-A2-20 
] 
end 
 
to for30-A2 
If ForestA2 = "30%" 
[ 
forest-A2-30 
] 
end 
 
to for40-A2 
If ForestA2 = "40%" 
[ 
forest-A2-40 
] 
end 
 
to for50-A2 
If ForestA2 = "50%" 
[ 
forest-A2-50 
] 
end 
 
to f_A2 
If ForestA2 = "0%" 
[ 
forest-A2-0 
] 
If ForestA2 = "10%" 
[ 
forest-A2-10 
] 
if ForestA2 = "20%" 
[ 
forest-A2-20 
] 
if ForestA2 = "30%" 
[ 
forest-A2-30 
] 
if ForestA2 = "40%" 
[ 
forest-A2-40 
] 
if ForestA2 = "50%" 
[ 
forest-A2-50 
] 
end 
 
;*********************************************** 
;    conversion of forest to agriculture?  A2 ; 
;*********************************************** 
to convert-forest-to-agriculture-A2 
scenario_A2_class2_forest_to_agriculture 
scenario_A2_class3_forest_to_agriculture 
scenario_A2_class4_forest_to_agriculture 



An agent-based approach to model farmers' land use cover change intentions 

 

339 

 

scenario_A2_class5_forest_to_agriculture 
end 
 
to not-convert-forest-to-agriculture-A2 
scenario_A2_class2 
scenario_A2_class3 
scenario_A2_class4 
scenario_A2_class5 
end 
 
to forest-to-agriculture-A2 
  ifelse Forest-A2? 
  [convert-forest-to-agriculture-A2] 
  [not-convert-forest-to-agriculture-A2] 
end 
 
 
;************************************* 
 ;       slope farming 0-10   A2 ; 
 ;************************************* 
to slope-farming-0-10-yes-A2 
scenario_A2_class2_slope_0_10 
scenario_A2_class3_slope_0_10 
scenario_A2_class4_slope_0_10 
scenario_A2_class5_slope_0_10 
end 
 
to slope-farming-0-10-no-A2 
scenario_A2_class2 
scenario_A2_class3 
scenario_A2_class4 
scenario_A2_class5 
end 
 
to slope-farming-0-10-A2 
  ifelse A2-0-10º? 
  [slope-farming-0-10-yes-A2] 
  [slope-farming-0-10-no-A2] 
end 
 
 
 
 
 
 
 
 
 ;**************************** 
 ;       SCENARIO A3 
 ;**************************** 
 
;;to scenario_A3 
;;  build-protected-areas-A3 
;;  f_A3 
;;  tick 
;;  if ticks = 1 [stop] 
;;end 
 
 
 
 
 
 
 
 ;**************************** 
 ;       Scenario A3         ; 
 ;**************************** 
 
to scenario_A3 
  urb0-A3 
  urb10-A3 
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  urb20-A3 
  urb30-A3 
  urb40-A3 
  urb50-A3 
  build-in-not-protected-areas-A3 
  forest-to-agriculture-A3 
  slope-farming-0-10-A3 
  for0-A3 
  for10-A3 
  for20-A3 
  for30-A3 
  for40-A3 
  for50-A3 
  tick 
  if ticks = 1 [stop] 
end 
 
 
;;;;;;;;;;;;;;;;;;;;;;; 
;     SCENARIO A3     ; 
;;;;;;;;;;;;;;;;;;;;;;; 
 
;; Scenario A3 - Class 1 - artificial surfaces - ;; Users’ LUCC intentions 
 
to urban-A3-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A3-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A3-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
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set pcolor 12] 
] 
end 
 
to urban-A3-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A3-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urban-A3-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0 ] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1 and modified-landuse = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
to urb0-A3 
If UrbanA3 = "0%" 
[ 
Urban-A3-0 
] 
end 
 
to urb10-A3 
If UrbanA3 = "10%" 
[ 
Urban-A3-10 
] 
end 
 
to urb20-A3 
If UrbanA3 = "20%" 
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[ 
Urban-A3-20 
] 
end 
 
to urb30-A3 
If UrbanA3 = "30%" 
[ 
Urban-A3-30 
] 
end 
 
to urb40-A3 
If UrbanA3 = "40%" 
[ 
Urban-A3-40 
] 
end 
 
to urb50-A3 
If UrbanA3 = "50%" 
[ 
Urban-A3-50 
] 
end 
 
;; Scenario A3 - Class 1 - artificial surfaces - ;; Farmers’ LUCC intentions 
 
to scenario_A3_class1 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 
and no-building-areas = 0] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.478 ;; Farmers’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
 
to scenario_A3_class1_build_in_protected_areas ;; Build in protected areas?-A3scenario 
ask patches with [modified-landuse = 2 or modified-landuse = 3  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6] 
[ 
if any? patches in-radius D-to-RN-urb-A3 with [road-network = 1] 
and 
any? patches in-radius D-to-urb-A3 with [modified-landuse = 1] 
and 
count patches in-radius D-to-urb-A3 with [modified-landuse = 1] /  count patches in-radius D-to-urb-A3 * 100 < Dens-urb-A3 
and 
random-float 1 < 0.478 ;; Farmers’ LUCC intentions 
[ 
set modified-landuse  1 
set pcolor 12] 
] 
end 
 
 ;************************************* 
 ;       build in protected areas  A3   ; 
 ;************************************* 
to build-in-protected-areas-A3 
  scenario_A3_class1_build_in_protected_areas 
end 
 
to build-not-in-protected-areas-A3 
  scenario_A3_class1 
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end 
 
to build-in-not-protected-areas-A3 
ifelse Build?-A3 
[build-in-protected-areas-A3] 
[build-not-in-protected-areas-A3] 
end 
 
 
;; Scenario A3 - Class 2 - non-irrigated arable land 
 
to scenario_A3_class2 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.28 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
to scenario_A3_class2_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.28 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
to scenario_A3_class2_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 2] 
    and 
    random-float 1 < 0.28 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  2 
    set pcolor 68] 
    ] 
end 
 
 
;; Scenario A3 - Class 3 - permanently irrigated land 
 
to scenario_A3_class3 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < -0.17 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
to scenario_A3_class3_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 4 or modified-landuse = 5  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < -0.17 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
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    set pcolor 43] 
    ] 
end 
 
to scenario_A3_class3_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2  or modified-landuse = 4 or modified-landuse = 5 or modified-landuse = 6  and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 3] 
    and 
    random-float 1 < -0.17 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  3 
    set pcolor 43] 
    ] 
end 
 
 
;; Scenario A3 - Class 4 - permanent crops and heterogeneous agricultural land 
 
to scenario_A3_class4 
ask patches with [modified-landuse = 2  or modified-landuse = 3  or modified-landuse = 5] 
   [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < -0.01 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A3_class4_slope_0_10 ;; Slope for farming : 0-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < -0.01 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
to scenario_A3_class4_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 5 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 5 with [modified-landuse = 4] 
    and 
    random-float 1 < -0.01 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  4 
    set pcolor 32] 
    ] 
end 
 
 
;; Scenario A3 - Class 5 - Pastures 
 
to scenario_A3_class5 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.06 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
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to scenario_A3_class5_slope_0_10 ;; Slope for farming : 5-10º? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4  and slope = 0 and slope = 1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.06 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
to scenario_A3_class5_forest_to_agriculture ;; Conversion from Forest to Agriculture? 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 6 and slope = 0 and slope = 
1 and slope = 2] 
  [ 
    if any? patches in-radius 200 with [modified-landuse = 5] 
    and 
    random-float 1 < -0.06 ;; Farmers’ LUCC intentions 
    [ 
    set modified-landuse  5 
    set pcolor 28] 
    ] 
end 
 
;; Scenario A3 - Class 6 - Forest and semi-natural areas 
 
to forest-A3-0 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A3-10 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.1 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A3-20 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.2 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A3-30 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.3 ;; Users’ LUCC intentions 
[ 



An agent-based approach to model farmers' land use cover change intentions 

 

346 

 

set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A3-40 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.4 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to forest-A3-50 
ask patches with [modified-landuse = 2 or modified-landuse = 3 or modified-landuse = 4 or modified-landuse = 5] 
[ 
if any? patches in-radius 5 with [modified-landuse = 6] 
and 
random-float 1 < 0.5 ;; Users’ LUCC intentions 
[ 
set modified-landuse  6 
set pcolor 72] 
] 
end 
 
to for0-A3 
If ForestA3 = "0%" 
[ 
forest-A3-0 
] 
end 
 
to for10-A3 
If ForestA3 = "10%" 
[ 
forest-A3-10 
] 
end 
 
to for20-A3 
If ForestA3 = "20%" 
[ 
forest-A3-20 
] 
end 
 
to for30-A3 
If ForestA3 = "30%" 
[ 
forest-A3-30 
] 
end 
 
to for40-A3 
If ForestA2 = "40%" 
[ 
forest-A3-40 
] 
end 
 
to for50-A3 
If ForestA3 = "50%" 
[ 
forest-A3-50 
] 
end 
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to f_A3 
If ForestA3 = "0%" 
[ 
forest-A3-0 
] 
If ForestA3 = "10%" 
[ 
forest-A3-10 
] 
if ForestA3 = "20%" 
[ 
forest-A3-20 
] 
if ForestA3 = "30%" 
[ 
forest-A3-30 
] 
if ForestA3 = "40%" 
[ 
forest-A3-40 
] 
if ForestA3 = "50%" 
[ 
forest-A3-50 
] 
end 
 
;*********************************************** 
;    conversion of forest to agriculture?  A3 ; 
;*********************************************** 
to convert-forest-to-agriculture-A3 
scenario_A3_class2_forest_to_agriculture 
scenario_A3_class3_forest_to_agriculture 
scenario_A3_class4_forest_to_agriculture 
scenario_A3_class5_forest_to_agriculture 
end 
 
to not-convert-forest-to-agriculture-A3 
scenario_A3_class2 
scenario_A3_class3 
scenario_A3_class4 
scenario_A3_class5 
end 
 
to forest-to-agriculture-A3 
  ifelse Forest-A3? 
  [convert-forest-to-agriculture-A3] 
  [not-convert-forest-to-agriculture-A3] 
end 
 
 
;************************************* 
 ;       slope farming 0-10   A3 ; 
 ;************************************* 
to slope-farming-0-10-yes-A3 
scenario_A3_class2_slope_0_10 
scenario_A3_class3_slope_0_10 
scenario_A3_class4_slope_0_10 
scenario_A3_class5_slope_0_10 
end 
 
to slope-farming-0-10-no-A3 
scenario_A3_class2 
scenario_A3_class3 
scenario_A3_class4 
scenario_A3_class5 
end 
 
to slope-farming-0-10-A3 
  ifelse A3-0-10º? 
  [slope-farming-0-10-yes-A3] 
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  [slope-farming-0-10-no-A3] 
end 
 
 
 ;**************************** 
 ;       LEGEND 
 ;**************************** 
to-report %artificial_surfaces 
 report count patches with [modified-landuse = 1] / Count patches * 100 
end 
 
to-report %non_irrigated_arable_land 
 report count patches with [modified-landuse = 2] / Count patches * 100 
end 
 
to-report %permanently_irrigated_land 
 report count patches with [modified-landuse = 3] / Count patches * 100 
end 
 
to-report %permanent_crops_and_heterogeneous_agricultural_land 
 report count patches with [modified-landuse = 4] / Count patches * 100 
end 
 
to-report %pastures 
 report count patches with [modified-landuse = 5] / Count patches * 100 
end 
 
to-report %forest_and_semi_natural_areas 
 report count patches with [modified-landuse = 6] / Count patches * 100 
end 
 
to-report %water_bodies 
 report count patches with [modified-landuse = 7] / Count patches * 100 
end 
 
 ;**************************** 
 ;       END 
 ;**************************** 
 
; Copyright 2019 
; Eduardo Gomes 
;funded by Portuguese Foundation for Science and Technology (FCT). 
 
; See Info tab for full copyright and license. 
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A0 scenario 

 

A0 scenario – FARMER model (144 simulations).  Code: 1 – forest 0%; 2 - forest 20%; 3 – forest 40%; 4 -  convert 

forest to agriculture (false); 5 – do not convert forest to agriculture (true); 6 – farming 0-10º (true); 7 - farming 0-20º (false); 
8 – distance to existence urban areas (100m); 9 – distance to existence urban areas (200m); 10 – distance to road network 

(100m); 11 – distance to road network (200m). 
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A1 scenario 

 

A1 scenario – FARMER model (144 simulations). Code: 1 – forest 0%; 2 - forest 20%; 3 – forest 40%; 4 -  convert 

forest to agriculture (false); 5 – do not convert forest to agriculture (true); 6 – farming 0-10º (true); 7 - farming 0-20º (false); 
8 – distance to existence urban areas (100m); 9 – distance to existence urban areas (200m); 10 – distance to road network 

(100m); 11 – distance to road network (200m). 
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A2 scenario 

 

A2 scenario – FARMER model (144 simulations). Code: 1 – forest 0%; 2 - forest 20%; 3 – forest 40%; 4 -  convert 

forest to agriculture (false); 5 – do not convert forest to agriculture (true); 6 – farming 0-10º (true); 7 - farming 0-20º (false); 
8 – distance to existence urban areas (100m); 9 – distance to existence urban areas (200m); 10 – distance to road network 

(100m); 11 – distance to road network (200m). 
 

 
  



An agent-based approach to model farmers' land use cover change intentions 

 

354 

 

B0 scenario 

 

B0 scenario – FARMER model (144 simulations).  Code: 1 – forest 0%; 2 - forest 20%; 3 – forest 40%; 4 -  convert 

forest to agriculture (false); 5 – do not convert forest to agriculture (true); 6 – farming 0-10º (true); 7 - farming 0-20º (false); 
8 – distance to existence urban areas (100m); 9 – distance to existence urban areas (200m); 10 – distance to road network 

(100m); 11 – distance to road network (200m). 

 

 

 

 


