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Abstract: The objective of this work is to present a trajectory planning algorithm for spacecraft
rendezvous that is able to incorporate Pulse-Width Modulated (PWM) control signals. The
algorithm is based on linearization around a previously computed solution. To initialize the
algorithm, a first solution needs to be obtained. To do so, the trajectory planning problem
is solved using Pulse-Amplitude Modulated (PAM) control signals; these are then converted
to PWM signals, which are used as an initial guess. Iterating, the solution is refined until an
optimal value is reached. Simulations show that this method converges after a few iterations.
The algorithm is simple and fast, hence it could be implemented online or used together with a
Model Predictive Controller.
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1. INTRODUCTION

Technology enabling simple autonomous spacecraft ren-
dezvous and docking is becoming a growing necessity
as access to space continues increasing. After decades
of development, many approaches have been proposed;
see Woffinden and Geller (2008) for an historical account
or Fehse (2003) for the basics.

Classicaly (Wie (1998)), the problem is modeled using
impulsive maneuvers, computing an initial and final im-
pulse (∆V ) to achieve rendezvous. Impulsive changes of
speed are also used in recent works (Tong et al. (2007);
Geller (2006)). Lately, approaches based on trajectory
planning and optimization (Breger and How (2008)) and
predictive control (Richards and How (2003); Rossi and
Lovera (2002); Asawa et al. (2006)) are emerging. However,
typically these methods allow the control signal (thrust) to
take any value in an allowable range. This type of control
signal is usually referred to as Pulse-Amplitude Modulated
(PAM).

A more realistic modeling of spacecraft thrusters would
take into account that typically, thrusters are ON-OFF
actuators, i.e., the thrusters are not able to produce any
value of force, but can be only switched on (producing the
maximum amount of force) or off (producing no force).
Thus only the times where the thrusters are turned ON or
OFF (the switching times) can be controlled. This type
of control signal is usually referred to as Pulse-Width
Modulated (PWM).

? The authors would like to acknowledge finantial support of the
Spanish Ministry of Science and Innovation and of the European
Commission for funding part of this work under grants DPI2008-
05818 and project FPT ICT HD-MPC.

The objective of this work is to present a trajectory
planning algorithm for spacecraft rendezvous that is able
to incorporate PWM control signals. The algorithm is
based on the fact that, even though in the rendezvous
model the PWM signals appear nonlinearly, this depen-
dence on the switching times is only weakly nonlinear.
Thus, linearization around reference values can faithfully
capture the dependence of the system on the switching
times, at least close to the reference values. To obtain
a first solution around which linearize the systems, the
trajectory planning problem is solved using PAM control
signals; these are then converted to PWM signals, which
are used as initialization for our algorithm. Iterating, the
solution is refined until an optimal value is reached. The
resulting algorithm is simple and fast and could be imple-
mented online, or with a Model Predictive Controller (such
as Gavilan et al. (2009)), allowing the MPC to include
PWM control signals. While the idea of linearization to
compute optimal PWM control signals is, as far as we
know, original, we note that local linearization techniques
have been used for optimal trajectory problems in other
contexts (see e.g. Kim et al. (2002)).

The structure of this paper is as follows. In Section 2 we
introduce the mathematical model for rendezvous space-
craft used for trajectory planning, both in the PAM and
PWM case. We follow in Section 3 where we formulate
the planning problem, detailing the equality and inequality
constraints, and the cost function. Section 4 describes the
method we propose to solve the planning problem. In
Section 5 we show simulations of the proposed method.
We close the paper with some remarks in Section 6.

2. MODEL OF SPACECRAFT RENDEZVOUS

In this work we use the the linear Hill-Clohessy-Wiltshire
(HCW) equations, as introduced in Hill (1878) and Clo-
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hessy and Wiltshire (1960). Those describe the relative
position of the spacecraft if the target is orbiting in a
circular keplerian orbit and approaching vehicle is close
enough to the target.

The HCW model also assumes that the target vehicle is
passive and moving along a circular orbit of radius R.
Thus the angular speed of the target through its orbit
is n =

√
µ
R3 , where µ is the gravitation parameter of the

Earth, µ = 398600.4 km3/s2.

Denote by k the time instant t = t0 + kT , where T is
an adequately chosen sampling time (the sampling time
chosen in this work is 60 s). We formulate two versions of
the HCW equations in discrete time. In the first version,
the control inputs are constant during a whole sampling
time. This is referred to as the PAM discrete model. In
the second version, it is assumed that thrusters are not
able to produce any force value, but can be only switched
on (producing the maximum force) or off (producing no
force), and only once during each sampling time. This is
referred to as the PWM discrete model.

2.1 PAM discrete model

Assuming the control signal constant through the sampling
time, it can be shown that

x(k + 1) = ATx(k) +BTu(k). (1)
In (1), x(k), u(k) denote respectively the state at time k,
and the input amplitude (from time k to k + 1). Also,

x = [x y z ẋ ẏ ż]T , u = [ux uy uz]
T
. (2)

In these definitions, x, y, and z denote the position of the
chaser in a local–vertical/local–horizontal (LVLH) frame
of reference fixed on the center of gravity of the target
vehicle. In the LVLH frame, x refers to the radial position,
y to the in-track position, and z to the cross-track position.
The velocity of the chaser in the LVLH frame is given by
ẋ, ẏ, and ż. The variables ux, uy, and uz are the inputs
(thrust actuation) acting on the chaser vehicle, referred to
the LVLH axes as indicated by their respective subscripts.

The matrices AT and BT appearing in (1) are given by

AT =



4− 3C 0 0
S

n

2(1− C)
n

0

6(S − nT ) 1 0 −2(1− C)
n

4S − 3nT
n

0

0 0 C 0 0
S

n
3nS 0 0 C 2S 0

−6n(1− C) 0 0 −2S 4C − 3 0
0 0 −nS 0 0 C


,(3)

BT =



1− C
n2

2nT − 2S
n2

0
2(S − nT )

n2
−3T 2

2
+ 4

1− C
n2

0

0 0
1− C
n2

S

n
2

1− C
n

0
2(C − 1)

n
−3T + 4

S

n
0

0 0
S

n


, (4)

where S = sinnT and C = cosnT .

Compact formulation
Next we develop a compact formulation that simplifies the
notation of the problem. The state at time k + 1, given
the initial state at time 0 (which is denoted as x0) and
the input signals from time 0 to time k, is computed by
applying recursively Equation (1):

x(k) =Akx0 +
k−1∑
j=0

Ak−1−jBu(j). (5)

Define now xS and uS as a stack of Np states and input
signals, respectively, spanning from time 1 to time Np,
where Np is the planning horizon:

xS =


x(1)
x(2)

...
x(Np)

 , uS =


u(0)
u(1)

...
u(Np − 1)

 .
Then,

xS=



ATx0 +BTu(0)

A2
Tx0 +

1∑
j=0

A1−j
T BTu(j)

...

A
Np

T x0 +
Np−1∑
j=0

A
Np−1−j
T BTu(j)


, (6)

which can be written as
xS = Fx0 + GuS, (7)

where G is a block lower triangular matrix with its non-
null elements defined by (G)ij = Ai−jT BT and the matrix
F is defined as:

F =


AT
A2
T
...

A
Np

T

 . (8)

2.2 PWM discrete formulation

Considering now the case of ON-OFF thrusters, it is
assumed that the thrusters are not able to produce any
value of force, but can be only switched on or off. Also,
it is assumed that there is an aligned pair of thrusters
for each direction i = 1, 2, 3 with opposing orientation.
To distinguish between the positive and negative they are
denoted as u+

i and u−i , whereas the respective maximum
thrust is referred to as u+

imax
and u−imax

, respectively.
Finally, during each sample time each thruster is allowed
to fire only once.

Thus, the PWM output for each time interval k is com-
pletely described by two new control variables for each
pair of thrusters: the pulse width κ+

i (k) and the pulse
start time τ+

i (k) (for the positively oriented thruster in
the direction i) and similarly κ−i (k) and τ−i (k) for the
negatively oriented thruster in the direction i. Then, for
t ∈ [kT, (k + 1)T ], we have:

u+
i (t) =


0, t ∈

[
kT, kT + τ+

i (k)
]
,

u+
imax

, t ∈
[
kT + τ+

i (k), kT + τ+
i (k) + κ+

i (k)
]
,

0, t ∈
[
kT + τ+

i (k) + κ+
i (k), (k + 1)T

]
,
(9)
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and similarly for the negatively oriented thrusters. The
new variables control variables verify κ+

i (k) > 0, τ+
i (k) >

0 and τ+
i (k) +κ+

i (k) < T , and similarly for the negatively
oriented thrusters. The last constraint prevent the PWM
signal to spill over to the next time interval.

Call the PWM control variables as uP(k):

uP(k) =



τ+
1 (k)
κ+

1 (k)
τ−1 (k)
κ−1 (k)
τ+
2 (k)
κ+

2 (k)
τ−2 (k)
κ−2 (k)
τ+
3 (k)
κ+

3 (k)
τ−3 (k)
κ−3 (k)



. (10)

To find the HCW equations for PWM inputs, define

b1t =



1− C
n2

2(S − nt)
n2

0
S

n
2(C − 1)

n
0


, b2t =



2nt− 2S
n2

−3t2

2
+ 4

1− C
n2

0

2
1− C
n

−3t+ 4
S

n
0


,

b3t =



0
0

1− C
n2

0
0
S

n


, (11)

which are the three columns of the matrix Bt in (4), but
defined for different t.

Then the system evolution equation (1) is replaced in the
PWM case by

x(k + 1) = Ax(k) +BPWM (uP(k))umax, (12)
where

BPWM (uP(k)) =



AT−τ+
1 (k)−κ+

1 (k)b
1
κ+
1 (k)

AT−τ−1 (k)−κ−1 (k)b
1
κ−1 (k)

AT−τ+
2 (k)−κ+

2 (k)b
2
κ+
2 (k)

AT−τ−2 (k)−κ−2 (k)b
2
κ−2 (k)

AT−τ+
3 (k)−κ+

3 (k)b
3
κ+
3 (k)

AT−τ−3 (k)−κ−3 (k)b
3
κ−3 (k)



T

, (13)

umax =


u+

1max

−u−1max

u+
2max

−u−2max

u+
3max

−u−3max

 . (14)

Notice that system (12) is nonlinear in the PWM variables
uP(k).

Compact formulation
The compact formulation developed before can be readily
adapted to PWM inputs. Equation (7) is now written as

xS = Fx0 + GPWM(uPS
)umaxS

, (15)
where uPS

is a stack vector with all the PWM sig-
nals, GPWM is a block lower triangular matrix with
its non-null elements defined by (GPWM(uPS

))ij =
Ai−jBPWM (uP(j − 1)), and the constant vector umaxS

is defined as:

umaxS
=


umax

umax

...
umax


N times. (16)

3. FORMULATION OF THE PLANNING PROBLEM

Next we formulate our planning problem, introducing
the constraints (both equality- and inequality-type con-
straints) and the objective function that has to be mini-
mized. The formulation is done for both PAM and PWM
control signals.

3.1 Constraints on the problem

Inequality constraints on the state

For sensing purposes (see Breger and How (2008)), during
rendezvous it is required that the chaser vehicle remains
inside a line of sight (LOS) area. To simplify the constraint,
we consider a 2-D LOS area as shown in Figure 1. This
LOS region is the intersection of a cone, given by the
equations y ≥ cLOS(x− x0) and y ≥ −cLOS(x+ x0), and
the region y ≥ 0.

Fig. 1. Line of Sight region.

The LOS constraint is ALOSx(k) ≤ bLOS , where

ALOS =

[ 0 −1 0 0 0 0
cLOS −1 0 0 0 0
−cLOS −1 0 0 0 0

]
, bLOS =

[ 0
cLOSx0

cLOSx0

]
.

(17)

Using the compact formulation that was developed in
Section 2.1, the constraints equations for the state can
be rewritten as:

AcxS ≤ bc, (18)
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where Ac and bc are given by:

Ac =


ALOS

ALOS
. . .

ALOS

 , bc =


bLOS
bLOS

...
bLOS

 .(19)

Then, for the case of PAM control and using equation (7),
one can reformulate the LOS constraints as constraints for
the control signals in the following way:

AcGuS ≤ bc −AcFx0, (20)
and similarly for the case of PWM control.

Equality constraints on the state

Equality constraints are formulated to ensure that the
chaser spacecraft arrives at the origin with zero velocity at
the end of the planning horizon. Thus, these constraints
can be written as x(Np) = 0. Defining Aeq as

Aeq =


0

. . .
0

Id6×6

 , (21)

the equality constraint can be written as:
AeqxS = 0. (22)

Then, for the case of PAM control and using equation
(7), one can reformulate the arrival conditions as equality
constraints for the control signals in the following way:

AeqGuS = −AeqFx0, (23)
and similarly for the case of PWM control.

Input constraints

For the case of PAM control, one would have limitations
on the magnitude of the control, given by

umin ≤ uS ≤ umax. (24)

For the case of PWM control, the constraints are given by
κ±i (k) > 0, τ±i (k) > 0 and τ±i (k) + κ±i (k) < T .

3.2 Objective function

The objective function to be minimized in the planning
problem is the 1-norm of the control signal, which is
proportional to fuel consumption.

PAM control inputs

For the case of PAM control inputs, the selected control
function is given by:

JPAM =
Np−1∑
k=0

‖uT (k)‖1 = ‖uS‖1. (25)

PWM control inputs

For the case of PAM control inputs, using (9) it can be
seen that the selected objective function is given by:

JPWM =
Np−1∑
k=0

3∑
i=1

(
u+
imax

κ+
i (k) + u−imax

κ−i (k)
)
. (26)

4. COMPUTATION OF THE OPTIMAL CONTROL
INPUT

As shown in Section 2.2, the discrete HWC equations in
the PWM case are nonlinear in the switching times. Thus,
it is neither easy nor fast to solve an optimization problem
using the switching times as control variables.

To find the optimal control input without needing to solve
a nonlinear planning problem, the following scheme is
proposed:

Step 1. A PAM linear optimization problem is solved.
Step 2. A PAM/PWM filter is used to convert the PAM
input signals to PWM signals (i.e., switching times) that
produce a very similar system output.

Step 3. The plant equations, in the PWM formulation,
are linearized around the previous step solution, thus
obtaining a linear plant with respect to the switching
time. A linear optimization problem is then posed and
solved. The resulting solution is taken as a better
approximation towards the real solution.

Step 4. Repeat the linearization process of Step 3
around the new solution. Optimize again to find a better
refinement. The process is iterated until the solution
converges.

Next, we describe all the step in our scheme.

4.1 Computation of PAM control input

To compute the optimal control plan (with PAM control
signals), one seeks the control signal that minimizes the
cost function over the planning horizon, satisfying at the
same time the PAM constraints:

min
uS

JPAM (uS) (27)

subject to: AcGuS ≤ bc −AcFx0

AeqGuS = −AeqFx0

umin ≤ uS ≤ umax.

Since the cost function and the constraints are linear, then
(27) can be readily solved.

4.2 Initial PWM solution: A PAM/PWM filter

The PAM solution found when solving (27) is transformed
to an equivalent PWM solution using a PAM/PWM filter.
This filter is formulated in the literature (for instance
in Shieh et al. (1996); Ieko et al. (1999)) where several
methods are proposed. These methods allow to, given the
PAM inputs of a system, compute equivalent PWM inputs
that produce a system output optimally approximating the
output of the system when driven by the PAM signals.

Following these references, a PAM control signal can be
optimally approximated by a PWM control signal by using
the following rules for each time instant k and direction i:

(1) Use the positive or negative thruster according to the
sign of the PAM signal ui(k).

(2) The pulse width must be computed using the Prin-
ciple of Equivalent Areas: κ±i (k) = T |ui(k)|

u±
imax

, where

u±imax
is the maximum level of the (positive or nega-

tive) thruster i.
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(3) Since only one impulse per sample time is considered,
it must be allocated at the center of the sampling
interval, that is τ±i (k) = 1

2 (T − κ±i (k)).

The PWM signals uP(k) constructed by this method
produce an almost identical output to the system driven
by PAM signals. However, the PWM are not necessarily
optimal since their constraints are quite different; in fact
they might even not verify the constraints. Thus, this so-
lution is only used as an initialization for the optimization
algorithm proposed next.

4.3 Refined PWM solution: An optimization algorithm

Noting that most nonlinearities appearing in the system
equations (12) are of the form cosnt or sinnt, where n
is the orbital angular velocity, and noting nt � 1, we
approximate (12) by linearizing BPWM (uP(k)) around
uP(k). Then, the system equations are:

x(k+1) = Ax(k)+BPWM (uP(k))umax+B∆(uP(k))∆(k),
(28)

where

B∆=



−A′
T−τ+

1 −κ
+
1
b1
κ+
1
u+

1max(
−A′

T−τ+
1 −κ

+
1
b1
κ+
1

+AT−τ+
1 −κ

+
1
b1
′

κ+
1

)
u+

1max

A′
T−τ−1 −κ

−
1
b1
κ−1
u−1max(

A′
T−τ−1 −κ

−
1
b1
κ−1
−AT−τ−1 −κ−1 b

1′

κ−1

)
u−1max

−A′
T−τ+

2 −κ
+
2
b2
κ+
2
u+

2max(
−A′

T−τ+
2 −κ

+
2
b2
κ+
2

+AT−τ+
2 −κ

+
2
b2
′

κ+
2

)
u+

2max

A′
T−τ−2 −κ

−
2
b2
κ−2
u−2max(

A′
T−τ−2 −κ

−
2
b2
κ−2
−AT−τ−2 −κ−2 b

2′

κ−2

)
u−2max

−A′
T−τ+

3 −κ
+
3
b3
κ+
3
u+

3max(
−A′

T−τ+
3 −κ

+
3
b3
κ+
3

+AT−τ+
3 −κ

+
3
b3
′

κ+
3

)
u+

3max

A′
T−τ−3 −κ

−
3
b3
κ−3
u−3max(

A′
T−τ−3 −κ

−
3
b3
κ−3
−AT−τ−3 −κ−3 b

3′

κ−3

)
u−3max



T

, (29)

and where the value of κ and τ variables at time k is
used. The variable ∆(k) represents the increments or
decrements with respect to uP(k):

∆(k)=



∆τ+
1 (k)

∆κ+
1 (k)

∆τ−1 (k)
∆κ−1 (k)
∆τ+

2 (k)
∆κ+

2 (k)
∆τ−2 (k)
∆κ−2 (k)
∆τ+

3 (k)
∆κ+

3 (k)
∆τ−3 (k)
∆κ−3 (k)



. (30)

The matrices used in (29) are defined as:

A′t =


3nS 0 0 C 2S 0

6n(C − 1) 0 0 −2S 4C − 3 0
0 0 −nS 0 0 C

3n2C 0 0 −nS 2nC 0
−6n2S 0 0 −2nC −4nS 0

0 0 −n2C 0 0 −nS

, (31)

and

b1
′

t =



S

n
2(C − 1)

n
0
C
−2S

0


, b2
′

t =



2− 2C
n

−3t+ 4
S

n
0

2S
−3 + 4C

0


, b3
′

t =



0
0
S

n
0
0
C

. (32)

Equation (33) is now compactly written as
xS = Fx0 + G∆(uPS

)∆S + GPWM(uPS
)umaxS

, (33)
where G∆(uPS

) is a block lower triangular matrix
with its non-null elements defined by (G∆(uPS

))ij =
Ai−jB∆(uP(Np − j − 1)) and ∆S is a stack vector of the
increment in the PWM variables ∆(k). The LOS inequal-
ity constraints (20) can be reformulated as constraints for
the PWM variables in the following way:

AcG∆∆S ≤ bc −AcFx0 −AcGPWMumaxS
, (34)

where the dependence of GPWM(uPS
) and G∆(uPS

) on
uPS

has been omited for simplicity. Similarly, the equality
constraints become:

AeqG∆∆S = −AeqFx0 −AeqGPWMumaxS
. (35)

The constraints on the ∆(k) are as follows:

−∆κ±i (k)≤ κ±i (k), −∆τ±i (k) ≤ τ±i (k) (36)

∆τ±i (k) + ∆κ±i (k)≤ T − τ±i (k)− κ±i (k), (37)

|∆(k)| ≤∆MAX , (38)
where (38) is used to avoid too large variations in each
iteration step. These constraints can be summarized as

A∆(k)∆S(k) ≤ b∆(k). (39)
Finally, the objective function can be rewritten as a
function of the PWM variables and their increments as
J(uPS

,∆S) = JPWM (uPS
) + J∆(∆S), where

J∆(∆S) =
Np−1∑
k=0

3∑
i=1

(
u+
imax

∆κ+
i (k) + u−imax

∆κ−i (k)
)
.(40)

Thus, a linear programming problem with PWM outputs
can be posed as follows:

min
∆S

J∆(∆S) (41)

s. t.: AcG∆∆S ≤ bc −AcFx0 −AcGPWMumaxS
,

AeqG∆∆S = −AeqFx0 −AeqGPWMumaxS
,

A∆∆S ≤ b∆.

The solution of (41), ∆S, can be used to recompute new
PWM variables:

uNEW
PS

= uPS
+ ∆S. (42)

Then, the values of uNEW
PS

is used to recompute the
various matrices appearing in (41), and the optimization
problem is solved again. Iterating, it is expected that the
solution keeps improving until a solution close to the global
optimum is reached. Next, this is shown in simulations.

5. SIMULATION RESULTS

We next show simulations of the trajectory planning
problem for spacecraft rendezvous using our algorithm.
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Fig. 2. Solution trajectory, showing the initial trajectory
with PAM inputs (dashed) and the final trajectory
with PWM inputs (solid).
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Fig. 3. Value of objective function depending on iteration
number.
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Fig. 4. Initial PAM control signal.

The planning horizon Np was chosen as 50. The value of
u±imax

was chosen as 10−4 km/s2. Initials conditions were

r0 = [0.2 0.6 0.2]T km, v0 = [0.0015 0.002 −0.001]T km/s.
The solution trajectory is shown in Fig. 2 (solid). The
PAM solution that was used to initialize the algorithm
is shown in the same figure (dashed). In this and other
figures only the x and y coordinates are shown for the
sake of brevity. As it can be seen in Fig. 3, the algorithm
converged after 6 iterations to a solution with a cost
function approximately 2.5% smaller. Each iteration took
less than a second on a conventional computer, using
MATLAB’s linprog to calculate the solution. Comparing
the initial PAM (Fig. 4) and PWM (Fig. 5) control
signals, it can be seen that for both the control effort is
concentrated at the beginning, with some mid-course and
final maneuvers that are different for both cases.
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Fig. 5. Final PWM control signals.

6. CONCLUDING REMARKS

We have presented an algorithm to compute the optimal
PWM control signals applied to rendezvous of spacecraft.
The algorithm uses the HCW model with LOS and equal-
ity constraints, but can be generalized to more complicated
models and constraints. Since the algorithm is very fast,
it could be used online to implement an MPC scheme
(e.g. Gavilan et al. (2009)) including PWM control signals.
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