
Spiking Neural P Systems with Functional
Astrocytes

Luis F. Maćıas-Ramos, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla, Spain
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain

lfmaciasr@us.es, marper@us.es

Abstract. Spiking Neural P Systems (SN P Systems, for short) is a
developing field within the universe of P Systems. New variants arise
constantly as the study of their properties, such as computational
completeness and computational efficiency, grows. Variants frequently
incorporate new ingredients into the original model inspired by real
neurophysiological structure of the brain. A singular element present
within that structure is the astrocyte. Astrocytes, also known collectively
as astroglia, are characteristic star-shaped glial cells in the brain and
spinal cord. In this paper, a new variant of Spiking Neural P Systems
incorporating astrocytes is introduced. These astrocytes are modelled
as computing devices capable of performing function computation in a
single computation step. In order to experimentally study the action of
Spiking Neural P Systems with astrocytes, it is necessary to develop
software providing the required simulation tools. Within this trend, P–
Lingua offers a standard language for the definition of P Systems. Part
of the same software project, pLinguaCore library provides particular
implementations of parsers and simulators for the models specified in
P–Lingua. Along with the new SN P System variant with astrocytes, an
extension of the P–Lingua language allowing definition of these systems is
presented in this paper, as well as an upgrade of pLinguaCore, including
a parser and a simulator that supports the aforementioned variant.

1 Introduction

Spiking Neural P Systems were introduced in [10] in the framework of mem-brane
computing [16] as a new class of computing devices which are inspired by the
neurophysiological behaviour of neurons sending electrical impulses (spikes) along
axons to other neurons.

A SN P System consists of a set of neurons placed as nodes of a directed graph
(called the synapse graph). Each neuron contains a number of copies of a single
object type, the spike. Rules are assigned to neurons to control the way information
flows between connected neurons, i.e. rules assigned to a neuron allow it to send
spikes to its neighbouring neurons. SN P Systems usually work

+
2

+
2

in a synchronous mode, where a global clock is assumed. In each time unit, for
each neuron, only one of the applicable rules is non-deterministically selected to
be executed. Execution of rules takes place in parallel amongst all neurons of
the system.

Since the introduction of this model, many computational properties of SN P
Systems have been studied. It has been proved that they are Turing-complete
when considered as number computing devices [10], used as language gener-
ators [5,3], or computing functions [15]. Also, many variants have come into
scene bringing new ingredients into the model (or sometimes dropping some of
them), while others modify its behaviour, that is, its semantics. Motivation of
this “research boom” can be found in a quest for both enhancing expressivity
and efficiency of the model, as well as exploring its computational power.

As a direct result of all of this, there is an extensive (and growing) bibliog-
raphy related to SN P Systems. For instance, it has been shown [4] how usage
of pre-computed resources makes them able to solve computationally hard prob-
lems in constant time. Also, study of different kinds of asynchronous “working
modes” has been conducted [18]. In what concerns to the addition of new ingre-
dients into the model, this involves (naming only some examples) weights [20],
antispikes [12], extended rules [18] or budding and division rules [13].

A SN P Systems variant with astrocytes was first i ntroduced i n [2]. Astro-
cytes are glial cells connected to one or more synapses that can sense the whole
spike traffic passing along their neighbouring synapses and, eventually, modify it.
Their functionalities include biochemical support of endothelial cells that form
the blood-brain barrier, provision of nutrients to the nervous tissue, maintenance
of extracellular ion balance, and a role in the repair and scarring process of the
brain and spinal cord following traumatic injuries. It has been shown that as-
trocytes propagate intercellular Ca waves over long distances in response to
stimulation, and, similarly to neurons, release transmitters (called gliotransmit-
ters) in a Ca -dependent manner.

Moreover, within the dorsal horn of the spinal cord, activated astrocytes have
the ability to respond to almost all neurotransmitters [9] and, upon activation,
release a multitude of neuroactive molecules that influences neuronal excitability.
Synaptic modulation by astrocytes takes place because of the 3-part association
between astrocytes and presynaptic and postsynaptic terminals forming the so-
called “tripartite synapse” [1].

Such discoveries have made astrocytes an important area of research within
the field o f n euroscience, t hus a lso a n i nteresting e lement t o c onsider bringing
into Natural Computing disciplines like Membrane Computing.

2

The model presented in [2], pretty complex, was then simplified i n [17], in
which only inhibitory astrocytes were considered. This simplification w as re-
cently revised again in [14], where “hybrid” astrocytes were introduced. Be-
haviour of an astrocyte of this kind, inhibitory or excitatory, relied on the amount
of spikes passing on its neighbouring synapses, in relation to a given threshold
associated to it. Thus, for a given astrocyte ast with associated threshold t with
k spikes passing along its neighbouring synapses synast at a certain instant,
a) if k > t, the astrocyte ast has an inhibitory influence o n t he neighbouring
synapses, and the k spikes are simultaneously suppressed (that is, the spikes
are removed from the system); b) if k < t, the astrocyte ast has an excitatory
influence on the neighbouring synapses, all spikes survive and pass to their des-
tination neurons, reaching them simultaneously; c) if k = t, the astrocyte ast
non-deterministically chooses an inhibitory or excitatory influence on the neigh-
bouring synapses. It is possible for two or more astrocytes to control the same
synapse. In this case, only if every astrocyte has an excitatory influence on the
synapse the spikes passing along that synapse survive.

In this paper, again, a new variant is introduced. Based upon the original
model defined in [2], new ingredients are introduced in order to turn astrocytes
into function computation devices. Briefly, a set of pairs (threshold, function) is
associated with each astrocyte. Existing spike traffic measured on distinguished
neighbouring control synapses attached to the astrocyte is matched against the
thresholds until one of them is selected. Subsequently, the associated function to
the matched threshold is selected. At this point, that function is computed tak-
ing as arguments the amounts of spikes measured on distinguished neighbouring
operand synapses attached to the astrocyte. Finally, the result of the function
computation is sent through a distinguished operand synapse.

So, by introducing this new kind of astrocytes, not only covering of func-
tionality of the astrocytes defined in [2] is achieved, also any computable partial
function between natural numbers can be computed in a single computation
step. Moreover, this new ingredient eases the design of machines that calculate
functions, as astrocytes can be viewed as “macros”.

In addition, a P–Lingua based simulator for the proposed model has been
developed, which also simulates the model defined i n [14]. The aforementioned
simulator is an extension of the one presented in [11]. P–Lingua is a program-
ming language intended to define P Systems [7,8,19], that comes together with
a Java library providing several services (e.g., parsers for input files and built-in
simulators).

This paper is structured as follows. Section 2 is devoted to introduce the
formal specification o f S N P S ystems w ith F unctional A strocytes (SNPSFA
for short). Section 3, is devoted to show applications of the presented model.
Section 4 is devoted to simulation: A P–Lingua syntax for defining SNPSFA

is introduced, along with several examples. Finally, the simulation algorithm is
shown. Section 5 covers conclusions and future work.

2 Spiking Neural P Systems with Functional Astrocytes

In this section, we introduce SN P Systems with Functional Astrocytes.

2.1 Syntax

A Spiking Neural P System with Functional Astrocytes (SNPSFA for short) of
degree (m, l),m ≥ 1, l ≥ 1, is a construct of the form

Π = (O, σ, syn, ast, out), where:

– O = {a} is the singleton alphabet (a is called spike);
– σ = {σ1, . . . , σm} is the finite set of neurons, of the form σi = (ni, Ri), 1 ≤
i ≤ m, where:

• ni ≥ 0 is the initial number of spikes contained in σi;
• Ri is a finite set of extended rules of the following form:

E/ac → ap

where E is a regular expression over a, and c ≥ 1, p ≥ 1 with c ≥ p;
– syn = {s1, . . . , sθ} ⊆ {1, . . . ,m} × {1, . . . ,m} with (i, i) 6∈ syn is the set of

synapses;
– ast = {ast1, . . . , astl} is the finite set of astrocytes, with astj , (1 ≤ j ≤ l) of

the form

astj = (synoj , syn
c
j , ωj , Tj , Fj , pj(0), γj), where:

• synoj = {soj,1, . . . , soj,rj} ⊆ syn, rj ≥ 1, is the astrocyte finite set of
operand synapses, ordered by a lexicographical order imposed on synoj ;
• syncj = {scj,1, . . . , scj,qj} ⊆ syn, qj ≥ 0, is the astrocyte finite set of control

synapses;
• ωj ∈ {true, false} is the astrocyte control-as-operand flag;
• Tj = {Tj,1, . . . , Tj,kj}, kj ≥ 1, is the astrocyte finite set of thresholds,

such that, Tj,α ∈ N, (1 ≤ α ≤ kj) and Tj,1 < . . . < Tj,kj ;
• Fj = {fj,1, . . . , fj,kj} is the astrocyte finite multiset (some elements in Fj

can be the same) of natural functions such that for each α (1 ≤ α ≤ kj):
∗ fj,α is a computable function between natural numbers;
∗ if ωj = true then fj,α is a unary function;
∗ if ωj = false and rj = 1 then fj,α is a unary constant function;
∗ if ωj = false and rj > 1 then fj,α has arity rj − 1;

• pj(0) ∈ N is the astrocyte initial potential;
• γj ∈ {true, false} is the astrocyte potential update flag;

– out ∈ σ is the output neuron.

2.2 Semantics

In order to precise semantics of a SNPSFA, let us informally introduce some
topological aspects of the model and the nature of the firing process. Given a
synapse sg = (σg,1, σg,2) ∈ syn, if an astrocyte is linked to sg, it can be viewed as
that it “makes contact” with sg in the “space between” s1g and s2g (it can be said
that the astrocyte is “attached” to the synapse as well). If there exists several
astrocytes attached to sg, all of them make contact at the same intermediate
point. These astrocytes can simultaneously read the spike traffic going from σg,1
to σg,2 at an instant t and eventually modify it.

Keeping in mind the intuitive ideas expressed above, we proceed now to for-
mally specify the semantics of SN P Systems with Functional Astrocytes as an
extension of the one defined for the well-known SN P Systems model. A global
clock is assumed and in every computation step one and only one rule can be
selected for a given neuron. Let us introduce the following notation as a matter
of convenience: given a synapse sy = (σ1

y, σ
2
y), we denote by σ1

y the input neuron
of sy and by σ2

y the output neuron of sy.

An astrocyte can sense the spike traffic passing along its neighbouring
synapses, both control and operand ones. For an astrocyte astj , if there are
k spikes passing along the control synapses in an instant t and the current po-
tential of astj at t is p, then the value s = k+ p is computed. At this point, the
number h satisfying that s ∈ [Tj,h, Tj,h+1) is computed out of s. Let us notice
that if s < Tj,1 then h = 1, and if s > Tj,kj then h = kj . Following this, by
using both h and the boolean value ωj , a number s′ is computed as follows. If
ωj = true then s′ = fj,h(s) directly. Otherwise, two cases are considered: a) if
the number of operand synapses rj is one, then s′ = fj,h(0); and b) if the num-

ber of operand synapses is greater than one and assuming that x1, x2, . . . , xrj−1
spikes are passing along the respective operand synapses associated to astj , then
s′ = fj,h(x1, x2, . . . , xrj−1). Finally, the multisets of the input and output neu-
rons associated to the operand and control synapses are updated. For the output
neurons: a) if they are associated to control synapses, then their corresponding
multisets are added the spikes passing along the synapses at instant t; and b)
if they are associated to operand synapses, then no change is applied to their
multisets, except for neuron sjo,rj

, which is added s′ spikes. Similarly, multisets
corresponding to input neurons associated to both operand and control synapses
are subtracted the spikes passing along the aforementioned synapses at instant t.

As a last remark, if the astrocyte potential update flagγj = t rue t hen the
astrocyte potential in t + 1 will be incremented in s units. Otherwise, the astro-
cyte potential does not change.

3 Applications of Spiking Neural P Systems with
Functional Astrocytes

As mentioned before, by introducing SNPSFA covering of functionality of as-
trocytes defined in [2] is achieved. Also, astrocytes within SNPSFA are able to
compute any computable natural partial function f : Nm− → N in a single
computation step. Let us illustrate this fact by showing how to re-implement
the examples covered in [2] within the scope of our proposed model. Moreover,
the corresponding P–Lingua files for the aforementioned examples are covered
in Section 4, thus by running the introduced simulator against these files, its
working process can be checked in relation to the semantics presented above.

3.1 Excitatory and Inhibitory Astrocytes

First couple of examples shows how to implement excitatory and inhibitory as-
trocytes respectively, with a given threshold k. Implementation involves defining
two functions: f(x), which is the identically zero function of arity one, and g(x).

Excitatory astrocyte, astexc, is depicted in the Fig. 1 with its formal
specification being:

astexc = ({(p′, q)}, {(p, q′)}, true, {0, k}, {f(x), g(x)}, 0, false)
and its working equation, assuming that α spikes pass through synapse (p, q′)

at a given instant t, being:

astexc(α, t) =

{
f(α) = 0 if 0 ≤ α < k
g(α) if α ≥ k

Fig. 1. Excitatory astrocyte.

Inhibitory astrocyte, astinh, is structurally identical to astexc, with its formal
specification being:

astinh = ({(p′, q)}, {(p, q′)}, true, {0, k + 1}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α spikes pass through synapse (p, q′)
at a given instant t, being:

astinh(α, t) =

{
g(α) if 0 ≤ α ≤ k
f(α) = 0 if α ≥ k + 1

3.2 Logic Gates

Second couple of examples shows how to implement logical gates, concretely
AND-gates and NAND-gates respectively. Implementation involves defining two
functions, f(x) and g(x), both of them unary constant functions, which asso-
ciates the 0 and 1 natural values respectively for every x ∈ N.

AND-gate astrocyte, astand, is depicted in the Fig. 2 with its formal
specification being:

astand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {f(x), g(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass
through synapses (A,A′) and (B,B′) at a given instant t, being:

astand(α, t) =

{
f(0) = 0 if 0 ≤ α ≤ 1
g(0) = 1 if α = 2

Fig. 2. AND-gate astrocyte.

NAND-gate astrocyte, astnand, is structurally identical to astand, with its
formal specification being:

astnand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass
through synapses (A,A′) and (B,B′) at a given instant t, being:

astnand(α, t) =

{
g(0) = 1 if 0 ≤ α ≤ 1
f(0) = 0 if α = 2

3.3 Discrete Amplifier

Last example shows how to implement a discrete amplifier which, as soon as
the spike amount passing through control synapse (B,B′) goes beyond a given
threshold k, computes the amplification function f∗,n(x) = n ∗ x from the input
given at E, otherwise no amplification is performed. Rules al → al belonging
to neuron p are interpreted in the same way as in [2]. Implementation involves
defining two functions: g(x) = f∗,n(x) and f(x), which associates x for every
x ∈ N.

Discrete amplifier astrocyte, astamp, is depicted in the Fig. 3 with its formal
specification being:

astamp = ({(p, p′), (q′, q)}, {(B,B′)}, false, {0, k}, {f(x), g(x)}, 0, false)

and its working equation, assuming that at a given instant t α spikes pass
through synapse (B,B′) and β spikes pass through synapse (p, p′), being:

astamp(α, β, t) =

{
f(β) = β if 0 ≤ α < k
g(β) = n ∗ β if α ≥ k

4 A P–Lingua Based Simulator for SNPSFA

This section introduces a P–Lingua simulator for SNPSFA, extending the one
presented in [11]. SNPSFA are only partially simulated because only certain func-
tions can be defined w ithin P –Lingua f ramework. A lso, l et u s n otice t hat an
extension of the simulator presented here intended to simulate SNPSA as intro-
duced in [14] is being developed.

P–Lingua syntax for specifying aforementioned SNPSFA is introduced, along
with several examples. To conclude, the simulation algorithm is shown.

266

Fig. 3. Discrete amplifier astrocyte.

4.1 P–Lingua Syntax

A set of new features has been incorporated into P–Lingua in order to support
SNPSFA. New instructions have been included to define both astrocytes and
functions, extending the P–Lingua model specification framework for Spiking
Neural P Systems. Thus, these instructions can be used only when the source
P–Lingua files defining the models begin with the following sentence:

@model<spiking_psystems>

In what follows, P–Lingua syntax for defining SNPSFA is introduced.

– Astrocytes.

The following sentence can be used to define a SNPSFA astrocyte astbj , with
b standing for binder, as the astrocytes presented in [2] inspired the func-
tional astrocytes presented in this paper:

@mastb =

(

label-j,

operand-synapses-j,control-synapses-j,control-operand-flag-j,

set-thresholds-j,set-functions-j,

potential-j,update-potential-j

);

where:

• label-j is the label of the astrocyte;

• operand-synapses-j is the set of operand synapses associated to the
astrocyte, with operand-synapses-j = {soj,1, . . . , soj,rj} and soj,v =

(σo,1j,v , σ
o,2
j,v), a pair of neuron labels defining the synapse;

• control-synapses-j is the set of control synapses associated to the astro-
cyte, with control-synapses-j = {scj,1, . . . , scj,qj} and scj,u = (σc,1j,u, σ

c,2
j,u),

a pair of neuron labels defining the synapse;

• control-operand-flag-j is the astrocyte control-as-operand flag, with
control-operand-flag-j ∈ {true, false};

• set-thresholds-j is the astrocyte natural set of thresholds, defined as
set-thresholds-j = {Tj,1, . . . , Tj,kj} with Tj,1 < . . . < Tj,kj ;

• set-functions-j is the astrocyte set of natural computable functions, de-
fined as set-functions-j = {fj,1, . . . , fj,kj}, all of them having the same
arity;

• potential-j is the astrocyte initial potential, with potential-j ∈ N;

• update-potential-j is the astrocyte potential update flag, verifying that
update-potential-j ∈ {true, false};

– Functions.

The following sentence can be used to define a function of name f-name:

@mastfunc =

(

f-name(x1,...,xN),

f-name(x1,...,xN) = "expr(x1,...,xN)"

);

where:

• f -name is the function name, a P–Lingua identifier;

• x1, . . . , xN is the list of arguments; notation for naming arguments must
follow the convention of starting with x and immediately being followed
by a integer literal, starting with 1 and being incremented in one unit
each time;

• exp(x1, ..., xN) is the function defining expression; this expression must
yield a natural number; because of the underlying coding library, exp4j
[6], definition of functions is restricted to use elements shown at

http://projects.congrace.de/exp4j/;

Let us notice that, as we are restricted when defining functions, SNPSFA
are only partially simulated. The following functions are pre-defined, thus
can be used directly, without having to be explicitly defined in the P–Lingua
source file:

• zero(x1) is the identically zero function of arity one;

• identity(x1) is the identity function of arity one;

• pol() is a function template allowing the definition of a polynomial as-
trocyte function pol(x0, x1, . . . , xn, x) of any arity n + 2, n ≥ 0, defined
as follows:

pol(x0, x1, . . . , xn, x) = x0 +
n∑

i=1

xi ∗ xi

with xi ∈ N, 0 ≤ i ≤ n, x ∈ N;

x0, . . . , xn, x arguments take value from the spikes passing through the
operand synapses associated to a given astrocyte astj at a instant t in
the following way:

x0 soj,1(t)

x1 soj,2(t)

. . .

xn soj,rj−2
(t)

x soj,rj−1
(t)

• sub() is a function template allowing the definition of a natural
substraction function sub(x1, . . . , xn) of any arity n greater or equal
than one, defined as follows:

sub(x1, . . . , xn) =

{
x1 − x2 − · · · − xn when x1 − x2 − · · · − xn ≥ 0
0 otherwise

with xi ∈ N, 1 ≤ i ≤ n;

x1, . . . , xn arguments take value from the spikes passing through the
operand synapses of a given astrocyte astj at an instant t in the following
way:

x1 soj,1(t)

. . .

xn soj,rj−1
(t)

Let us notice that if n = 1 and the astrocyte control-as-operand-flag
is set, then it is trivial to show that sub(x1, . . . , xn) = potential(j, t) +
spikes(j, t).

4.2 Examples

In what follows, a set of on line examples are listed. Each of them corresponds to
a P–Lingua file that shows one of the SNPSFA applications presented in Section
3.

– Excitatory astrocyte:
http://www.p-lingua.org/examples/SNPSFA excitatory.pli.

– Inhibitory astrocyte:
http://www.p-lingua.org/examples/SNPSFA inbitory.pli.

– AND-gate:
http://www.p-lingua.org/examples/SNPSFA AND gate.pli.

For this example, forgetting rules have been used assuming a natural ex-
tension of the proposed model. This allows generating “random” boolean
signals coming from neurons A and B.

– Discrete amplifier:
http://www.p-lingua.org/examples/SNPSFA amplifier.pli.

4.3 Simulation Algorithm

In [8], a Java library called pLinguaCore was presented under GPL license. The
library provides parsers to handle input files, b uilt–in s imulators t o g enerate P
System computations and is able to export several output file f ormats t hat rep-
resent P Systems. pLinguaCore is not a closed product because developers with
knowledge of Java can add new components to the library, thus extending
it.

In this paper, an upgrade of the library is presented. Support for SNPSFA has
been included, as an extension of the works presented in [11]. As a result of this,
pLinguaCore is now able to handle input P–Lingua files defining SNPSFA. In
addition, a new built–in simulator capable of simulating computations of these
systems has been included into the library. For downloading the latest version of
pLinguaCore, please refer to http://www.p-lingua.org. Also, a simulator for
astrocytes as introduced in [14] is in development.

The following pseudo-code shows a computation step from instant t to
t + 1 for a SNPSFA, illustrating the way in which the simulator operates. The
pseudo-code is structured in two algorithms, following the semantics of SNPSFA
introduced in Section 2. The first one deals with the input neurons of the systems,
while the second one deals with astrocytes and output neurons. Notation follows
from Section 2, while additional required notation can be found at the end of
this Section.

Algorithm 1 Neurons loop

1: let σ = {σ1, . . . , σm} be the set of all the neurons in the system
2: for i = 1 to m do
3: σi(t+ 1) σi(t)− li(t)
4: end for

Algorithm 2 Astrocytes loop

1: let ast = {ast1, . . . , astl} be the set of all the astrocytes in the system
2: for j = 1 to l do

3: spikes(j, t)
qj∑

u=1

scj,u(t)

4: selector(j, t) spikes(j, t) + pj(t)

5: h

1 if selector(j, t) < Tj,1

kj if selector(j, t) > Tj,kj

e if e = max {x | 1 ≤ x ≤ kj ∧ Tj,x ≤ selector(j, t)}
6: f∗

j fj,h
7: if ωj = true then
8: output(j, t) f∗

j (selector(j, t))
9: end if

10: if ωj = false and rj = 1 then
11: output(j, t)← f∗

j (0)
12: end if
13: if ωj = false and rj > 1 then
14: output(j, t)← f∗

j (soj,1(t), . . . , soj,rj−1(t))
15: end if
16: for u = 1 to qj do
17: σc,2

j,u(t+ 1) σc,2
j,u(t) + scj,u(t)

18: end for
19: for v = 1 to rj − 1 do
20: σo,2

j,v (t+ 1) σo,2
j,v (t)

21: end for
22: σo,2

j,rj
(t+ 1) σo,2

j,rj
(t) + output(j, t)

23: if γj = true then
24: pj(t+ 1) spikes(j, t)
25: end if
26: end for

Required Additional Notation Following notation from Section 2, we intro-
duce the following required additional notation.

– Given an astrocyte astj , (1 ≤ j ≤ l), we denote the synapses attached to

astj as sλj,w = (σλ,1j,w, σ
λ,2
j,w), λ ∈ {o, c}, w ∈ {u, v}, and:

• we denote the operand synapses of astj as

soj,v = (σo,1j,v , σ
o,2
j,v), 1 ≤ v ≤ rj , (rj ≥ 1);

• we denote the control synapses of astj as

scj,u = (σc,1j,u, σ
c,2
j,u), 1 ≤ u ≤ qj , (qj ≥ 0).

– Given an astrocyte astj , (1 ≤ j ≤ l) attached to a synapse sλj,w = (σλ,1j,w, σ
λ,2
j,w)

as defined above, we denote sλj,w(t) as the number of spikes fired by σλ,1j,w at
an instant t of a computation.

– Given a neuron σi, 1 ≤ i ≤ m, we denote

• σi(t) = number of spikes contained in σi at instant t by a computation

• li(t) = number of spikes corresponding to the left hand side of the se-
lected rule in neuron σi at instant t by a computation

• ri(t) = number of spikes corresponding to the right hand side of the
selected rule in neuron σi at instant t by a computation

5 Conclusions and Future Work

In this paper we present a new variant of Spiking Neural P Systems, wich in-
cludes astrocytes capable of calculating computable functions in a simple com-
putation step. Applications of this variant are vast, as exemplified in the study
cases shown, but yet to explore. In this sense, a new release of P–Lingua, that
extends the previous SN P System simulator has been developed, incorporating
the ability to work with astrocytes. This new simulator has been included into
the library pLinguaCore and tested by simulating examples taken from the lit-
erature, concretely the ones existing in [14] and [2] (these ones adapted to the
introduced SNPSFA variant).

At the moment, an extension of the implemented simulator supporting Spik-
ing Neural P System with “hybrid” Astrocytes as defined in [14] is in develop-
ment. Once this work is done, a desirable feature would be to provide a mecha-
nism for defining arbitrary computable functions, thus fully simulating SNPSFA.
Additional elements such as weights and antispikes might also be incorporated.

Acknowledgements

The authors acknowledge the support of the project TIN2009–13192 of the
Ministerio de Ciencia e Innovación of Spain, cofinanced by FEDER funds, and
the support of the Project of Excellence with Investigador de Reconocida Vaĺıa
of the Junta de Andalućıa, grant P08-TIC-04200.

References

1. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia,
the unacknowledged partner. Trends in Neuroscience 22(5), 208–215 (1999)

2. Binder, A., Freund, R., Oswald, M., Vock, L.: Extended spiking neural P
Systems with excitatory and inhibitory astrocytes. In: Proceedings of the
8th Conference on 8th WSEAS International Conference on Evolutionary
Computing - Volume 8. pp. 320–325. EC’07, World Scientific and Engineering
Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2007),
http://dl.acm.org/citation.cfm?id=1347992.1348008

3. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string
languages generated by spiking neural P Systems. Fundam. Inform. 75(1-4), 141–
162 (2007)

4. Chen, H., Ionescu, M., Isdorj, T.O.: On the efficiency of spiking neural P Systems.
In: Proceedings of the 8th International Conference on Electronics, Information,
and Communication, Ulanbator, Mongolia. pp. 49–52 (06 2006)

5. Chen, H., Ionescu, M., Ishdorj, T.O., Păun, A., Păun, G., Pérez-Jiménez, M.J.:
Spiking neural P Systems with extended rules: universality and languages. Natural
Computing 7(2), 147–166 (2008)

6. Congrace Developer Team: The exp4j website. http://projects.congrace.de/exp4j/
7. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A p-

lingua programming environment for membrane computing. In: Corne, D.W.,
Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5391, pp. 187–203. Springer
(2008)

8. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of p-lingua 2.0. In: Păun, G., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5957, pp. 264–288. Springer
(2009)

9. Haydon, P.G.: Glia: listening and talking to the synapse. Nature Reviews
Neuroscience 2(3), 185–193 (2001)

10. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P Systems. Fundam. Inform.
71(2-3), 279–308 (2006)

11. Maćıas-Ramos, L.F., Pérez-Hurtado, I., Garćıa-Quismondo, M., Valencia-Cabrera,
L., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A p-lingua based simulator for spiking
neural P Systems. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan,
S. (eds.) Int. Conf. on Membrane Computing. Lecture Notes in Computer Science,
vol. 7184, pp. 257–281. Springer (2011)

12. Pan, L., Păun, G.: Spiking neural P Systems with anti-spikes. International
Journal of Computers, Communications and Control IV, 273–282 (09 2009),
http://www.journal.univagora.ro/?page=article details&id=372

13. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P Systems with neuron
division and budding. Science China Information Sciences 54(8), 1596–1607 (2011)

14. Pan, L., Wang, J., Hoogeboom, H.J.: Asynchronous extended spiking neural P
Systems with astrocytes. In: Proceedings of the 12th international conference on
Membrane Computing. pp. 243–256. CMC’11, Springer-Verlag, Berlin, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-28024-5 17

15. Păun, A., Păun, G.: Small universal spiking neural P Systems. Biosystems 90(1),
48–60 (2007)

16. Păun, G.: Computing with membranes (P Systems): An introduction. In: Current
Trends in Theoretical Computer Science, pp. 845–866 (2001)

17. Păun, G.: Spiking neural P Systems with astrocyte-like control. J. UCS 13(11),
1707–1721 (2007)

18. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

19. Research Group on Natural Computing, University of Seville: The p–lingua
website. http://www.p-lingua.org

20. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spik-
ing neural P Systems with weights. Neural Comput. 22(10), 2615–2646,
http://dx.doi.org/10.1162/NECO a 00022

