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”...Keep Ithaka always in your mind.

Arriving there is what you’re destined for.

But don’t hurry the journey at all.

Better if it lasts for years,

so you’re old by the time you reach the island,

wealthy with all you’ve gained on the way,

not expecting Ithaka to make you rich...”

Ithaka-C.P.Cavafy
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6.13 Scenario C for σ̄c =60(MPa), ḠIc =10(J/m2), µ =90 and γ =1.49. . . . . 152
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CHAPTER1
Introduction

1.1 Failure in composites and their joints. Motiva-

tion.

The use of composite materials in different industrial sectors is gaining a particular

relevance over the last two decades as a consequence of their superior specific stiffness

and strength ratios in comparison to metals.

Stemming from their complex nature (heterogeneous materials, typically with

several characteristic length scales), damage in composites is inevitably dependent

upon their internal structure that determines the characteristics failure modes (inter-

fiber failure, fiber failure, delamination events, fiber-kinking, matrix-fiber decohesion,

among others). The optimized use of composites has motivated the development of

a wide set of engineering modelling tools. Notice that the advantage of the high

strength-to-weight ratio of composites can be partially reduced or even totally missed

if higher safety factors have to be employed as a consequence of a certain lack of

knowledge on their failure mechanisms. This fact has motivated a huge effort of

studying the failure in composites during the last decades. Despite the large number

of studies carried out in this regard, the failure mechanisms in composites still lack a

way to be fully defined. The main reason is the coexistence of failure mechanisms that

are associated with the microstructure at different scales, as well as the interaction

between them, adds a high complexity to the failure mechanisms from a macro scale

point of view.

These failure mechanisms are particularly complex in laminates including plies

with different orientations. Recalling that in long fibre reinforced composites the

fibres are oriented in the direction where a greater stiffness and strength is needed.

Moreover, these materials are being gradually incorporated in the manufacturing lines

of components of first level of responsibility, in terms of structural integrity, among

other engineering applications in the strategic aeronautical industry. Historically, a

large number of failure criteria have been proposed based on a variety of assumptions.

According to Paŕıs (2001), a deep knowledge of the failure process in composite

1
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materials is necessary in order to improve the failure criteria currently proposed. Since

these criteria should be consistent with the interaction between the different scales of

the damage existing in composites and the behaviour of the interfaces between the

different components of the composite, among other things (Davila et al., 2005; Paŕıs

et al., 2007; Melro et al., 2013a,b).

In this sense, the integrity of composite structures is determined by, among other

conditions, the durability and strength of their adhesive joints and interfaces in gen-

eral. The adhesion must be guaranteed at several levels of the structure, namely

at fibre-matrix interfaces, interfaces between unidirectional plies in laminates, joints

between laminates and pieces, etc. Thus, one of the main concerns to design this

kind of structures is the adequate characterization of the interfaces between solids

on micro-, meso- and macro-scale. In this thesis, problem including interfaces on

composite materials at two scales will be studied (micro-scale and meso-scale):

• When composite unidirectional laminates are subjected to transverse loads they

usually exhibit a matrix failure, called also interfibre failure, typically initiated

in the form of debonds at fibre-matrix interfaces. That is why, the modelling of

these interfaces is so important and it has intensively been studied in the past.

An extensive review of works studying the problem of debond propagation along

the fibre-matrix interface can be found in Davila et al. (2005), Paŕıs et al. (2007),

Melro et al. (2013a,b), Távara et al. (2011) and references therein.

• Bonding of fibre-reinforced polymer (FRP) sheets is one of the most common

ways to repair and strengthen civil engineering structures (Hollaway, 2010).

An adequate interface characterization of this kind of joints is quite relevant

because the joint failure usually occurs due to loss of adhesion between the

adherents (J.G.Teng, 2001; Mazzotti et al., 2016).

Despite all the failure criteria proposed to date and all the work that has made

great progress in the knowledge regarding the failure of composite materials, the

study of crack initiation is still a pending subject for the scientific and engineering

community. This is mainly due to the inadequacy of the Linear Elastic Fracture

Mechanics (LEFM) to predict the crack onset in an undamaged material or interface

since LEFM always assumes the presence of a crack. Although the crack initiation

at micro and meso scales is still an open matter, some works have been developed in

order to study the initiation by computational methods such as Cohesive Zones Mod-

els (CZMs) (Barenblatt, 1959; Hilleborg et al., 1976; Needleman, 1987; Carpinteri,

1989a,b; Camacho and Ortiz, 1996; Maier and Frangi, 1998; Camanho et al., 2003;

Ortiz and Pandolfi, 1999; Vodička, 2016). However, one of the problems with the

CZM is that they require large computational resources. The CZMs assume different

hypotheses to those adopted in LEFM avoiding the presence of stress singularity at

the crack tip. Specifically, the CZMs assume a stress softening in front of the crack

tip. This softening zone is the so-called fracture process zone. Although, at the be-

ginning, the CZMs were used to study the behaviour of materials similar to concrete,

their use in composite materials opened up several areas of research at different scales.

Another way to describe the behaviour of a thin interface between solids can be to

model a layer of linear-elastic springs which allows studying the interface failure by
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different fracture criteria and by appropriate stiffness parameters. The above men-

tioned interface models, originally proposed by Prandtl (1933), Volkersen (1938) and

Goland and Reissner (1944), are usually referred to in the literature as (linear-)elastic

interfaces, weak interfaces or imperfect interfaces. Klarbring (1991) and Geymonat

et al. (1999), proposed a simplified model in which the elastic layer is treated as a

material surface, disappearing from a geometrical point of view but being represented

by its energy of adhesion. A comprehensive review for this kind of interface model

can be found in Geymonat et al. (1999).

Although the weak interface model has been known for a long time, recently sev-

eral authors coupled this model with suitable fracture criteria to obtain analytical

solutions for structural joints under different geometrical, material and loading pa-

rameters, e.g. Lenci (2001); Carpinteri et al. (2009); Bennati et al. (2009); Távara

et al. (2010, 2011); Cornetti et al. (2012); Weißgraeber and Becker (2013); Mantič

et al. (2015); Dimitri et al. (2018); Muñoz Reja et al. (2018); Rosendahl and Weiß-

graeber (2019) and Bennati et al. (2019). Based on the same idea, 2D and 3D compu-

tational implementation of the Linear Elastic-Brittle Interface Model (LEBIM) were

proposed (Mantič et al., 2015; Távara et al., 2010, 2011, 2019a). In these papers, the

numerical implementations were based on the Boundary Element Method (BEM) or

the Finite Element Method (FEM) and achieved by exploiting a Sequentially Linear

Analysis (SLA) solving scheme to predict the interface crack onset and propagation.

The developed codes have proven to be efficient and robust tools to study the interface

failure for several problems at different scales (micro, meso and macro).

In the LEBIM, due its simplicity, three mechanical properties are directly related

to each other: the interface fracture energy, strength and stiffness. Therefore if two

of them are defined (usually the fracture toughness and strength), then the third

one is actually also given, which usually leads to an interface compliance higher than

the actual one. Thus, obtaining an inadequate characterization for stiff interfaces.

Another disadvantage of the LEBIM is that its damage propagation always has an

infinitesimal growth, similarly to the LEFM. However, in some fracture processes, the

failure occurs instantaneously, leading to a crack growth with a finite length.

A way to overcome these drawbacks is to apply the Coupled Criterion of Finite

Fracture Mechanics (CCFFM) approach to LEBIM, which makes the stiffness become

an independent variable. The FFM theory assumes that cracks are formed instan-

taneously with a finite length (Hashin, 1996). Therefore, in the energy balance the

finite crack length ∆a is used instead of an infinitesimal crack. Moreover, Leguillon

(2002), Cornetti et al. (2006) and Mantič (2009), proposed a coupled stress and en-

ergy criterion to obtain the critical load needed to produce a crack of finite length.

Accordingly, the two conditions are able to provide the unknown critical load and

critical (finite) crack length (see Weißgraeber et al. (2016) for a review). This ap-

proach is usually referred to as Coupled Criterion of the Finite Fracture Mechanics

(CCFFM).
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1.2 Objectives of the thesis.

This thesis is part of research line that has been carried out by the Group of Elasticity

and Strength of Materials of the University of Seville (GESM) since the beginning

of 1990, and which has produced many advances in the knowledge of the failure

mechanisms in composites from the physical, mathematical and experimental point

of view. Thus, at the beginning of this thesis, the research group had already es-

tablished a deep physical and mathematical knowledge of several failure problems in

composite materials, as well as different theories that constitute the fracture mechan-

ics behaviour. Throughout all these years, the research group has developed different

computer tools that have helped to advance in the mentioned fields of knowledge.

Some of these tools have been fundamental in achieving the objectives of this the-

sis, particularly those related to the Linear Elastic Brittle Interface Model (LEBIM)

and the numerical methods of calculation which allow solving the partial differential

equations of continuum mechanics. Specifically in this thesis, the Boundary Elements

Method (BEM) and Finite Elements Method (FEM) have been used.

The objective, in the long term, of this research is to contribute to the generation

of failure criteria that allow the prediction of damage at the macro-, meso- and micro-

scale interfaces for composite materials and their applications. The specific objective

of this thesis is the study of a failure criterion based on the Couple Criterion of

the Finite Fracture Mechanics (CCFFM) applied to LEBIM (CCFFM + LEBIM),

and the production of analytical and numerical tools based on this new criterion.

In addition, these tools will be used to study specific problems in which composite

materials and their joints are present.

The tasks carried out to fulfill these general objectives are described in the fol-

lowing.

(i) Development of the analytical formulation of the coupled criterion applied to

the LEBIM. This development is divided into the two existing approaches, at

the present time:

• The first approach is based on the definition of the curves that produce

the formulation of the coupled criterion of Leguillon (2002). With this

approach, the coupled criterion applied to the LEBIM would imply the

integration of the Energy Relay Rate (ERR) along the path of the interface

failure.

• On the other hand, the second approach is based on Principle of Mini-

mum Total Energy subject to a Stress Condition (PMTE-SC) presented

by Mantič (2014). This approach is based on the energetic minimization

of the possible damaged configurations of the problem under study.

(ii) Suitable numerical implementations of two previous approaches in three codes:

• An algorithm based on the definition of the curves of the CCFFM is imple-

mented in a Boundary Element Method (BEM) code. This BEM code was
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developed by GESM and had IT already implemented the LEBIM before

starting this thesis.

• A Python script is developed to implement the same algorithm as above.

This code uses the commercial code ABAQUS based on the Finite Element

Method (FEM) to solve the displacement field of each problem. In this

code a user subroutine UMAT is used to model the interface by LEBIM.

This UMAT has been developed in the GESM.

• Another algorithm is developed in Python to implement the PMTE-SC

applied to the LEBIM. This code also uses the commercial code ABAQUS

and the same UMAT subroutine mentioned above.

(iii) Study of relevant particular cases of damage mechanisms, in form of cracks onset

and growth at macro and micro scale by CCFFM + LEBIM. The objective of

this point is to analyse the scope of the methodology developed in this thesis,

both numerically and analytically.

• Analysis of a crack in a thin adhesive layer for an isotropic DCB specimen

(macro scale). This simple and well-known example allows analysing in

detail the difference between the two approaches of the CCFFM + LEBIM.

• The evaluation of the shear strength in adhesive joints between concrete

and carbon fiber reinforced polymer (CFRP) laminates by CCFFM +

LEBIM (macro scale). Pull-push shear tests are studied in detail and

the predictions by the methodology presented in this thesis are compared

with two experimental test campaigns found in literature.

• Micro-mechanical behavior of interface cracks between matrix and fibre

under transversal loads (micro scale).

1.3 Outlines of the thesis.

The present thesis is organized in seven Chapters. Leaving aside the present introduc-

tion and the last chapter of conclusions and future developments, it can be divided

in three parts:

Part 1: State of art.

In chapter two, a brief bibliographical review regarding fracture mechanics is pre-

sented. The failure mechanisms along the interface between two solids are briefly

described and the formulation used in the LEBIM is also reviewed for its use in the

following sections.

Part 2: Development of the couple criteria applied to LEBIM and numer-

ical tools:

A general formulation of the coupled criterion applied to the LEBIM (CCFFM +

LEBIM) is developed at the beginning of Chapter 3. The mechanical characteristics

of the interface necessary to apply the couple criterion are described. Subsequently,

the two approaches of the CCFFM + LEBIM developed in this thesis are explained
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separately and the two pseudo-codes that have been used to implement them are

described.

Part 3: Study cases of damage and failure in composite materials at macro

and micro scale:

This part includes Chapters 4, 5 and 6. Each of them is a case study analysed using

the CCFFM + LEBIM.

• The first of the three cases, described in Chapter 4, includes an isotropic Double

Cantilever Beam test (DCB). It is studied under displacement control and under

load control separately. Although this test is included among the problems

solved by the CCFFM + LEBIM, it could actually be part of the development

of the coupled criteria applied to LEBIM. Since this test is used to study the

new criterion by means of the two approaches described above. In other words,

the objective of this case study is to analyse the behaviour of the new criterion

rather than the study of the test. Two analytical studies based on an Euler-

Bernoulli beam model and joined by an elastic interface are developed. The

analytical results are compared with the results of the two numerical tools

implemented and described in Chapter 4.

• Chapter 5 studies in detail the double pull-push shear tests (DPPS) which are

used to characterize the concrete reinforcement joints with composite materials.

The analytical development of this problem is similar to the DCB. However, this

study is a little more complicated, since a Timoshenko beam is used and the

interface is capable of transmitting normal and tangential stresses. Then, the

CCFFM + LEBIM based on curves is applied to the beam analytical model

and the prediction is compared with experimental tests from the literature.

Another experimental-analytical-numerical comparison is presented using an

inverse analysis to characterize the mechanical properties of the interface.

• Finally, the micro-mechanical behavior of interface cracks between matrix and

fibres under transversal loads is studied in Chapter 6. First, an isolated fi-

bre embedded in a matrix under transversal uni-axial tension loads or biaxial

transverse loads model (either tension-tension or tension-compression) is stud-

ied. Furthermore, the influence between two fibres is studied and the non-

symmetrical response of a symmetrical isolated fibre problem is analysed.
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Interface crack onset and

propagation

The work developed in this thesis is based on two main bases. On the one hand, a

novel fracture mechanics theory is used. This theory couple the two main criteria

of fracture mechanics: the maximum stress criterion and the energy criterion. On

the other hand, the damage model developed in this work is applied to the failure

of interfaces between two solids, at macro and micro scale. For this reason, some

fundamental milestones that will frame the theory and formulation developed in the

rest of this manuscript are briefly described in this chapter.

2.1 Classical fracture mechanics.

Although the study fracture mechanics dates back to the 16th century with the first

research by Leonardo Da Vinci, the main developments in this area have taken place

in the last century. This area of research remains to this day the source of numerous

studies and novel theories that attempt to explain the process of creating a new

surface on a solid. In addition to scientific studies to understand fracture mechanics

in different materials, numerous contributions from an engineering point of view must

be highlighted. These engineering contributions allow modelling complex problems

in a simple way and with an adequate precision.

Although the basis of the Linear Elastic Fracture Mechanics (LEFM) theory is still

essential today in order to explain the most advanced concepts of Fracture Mechanics,

this theory was not the first field of study within Fracture Mechanics. At the begin-

ning of the 20th century, several authors tried to explain the fracture process from

the point of view of the deformable solid and applying a criterion of maximum stress.

Among all the contributions of the time, it is noticeable the work of Wieghardt (1907).

In that work, Wieghardt studied in detail the first elastic solution at the vertex of

a corner and deduced the existence of a stress singularity proportional to rλ, with

0 < λ < 1 and r being the distance to the mentioned vertex. This solution could be

7
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the first elastic solution with a recognised stress singularity (Erdogan, 2000). Other

important works that contributed in the solution of the crack stress field were: the

research of Inglis (1913) which solved the stress field in a thin plate with an elliptical

hole, the research of Westergaard (1939) which obtained the power of singularity of

the stresses around the crack tip:

σ ∝ (1/
√
r); (2.1)

and the work of the Sneddon (1946) which studied plane cracks in three dimensions.

However, the study of fracture mechanics from a maximum stress point of view

left many unsolved questions. For example, how can a maximum stress criterion be

applied to an infinite stress? Or, why the size of the solid do not affect the crack

propagation? (a fact already observed in Da Vinci studies). In order to solve these

issues, Griffith (1921) established a theory based on the First Principle of Thermo-

dynamics: the energy of a system decrease when the system change from a state of

non-equilibrium to a state of equilibrium. Based on this principle, Griffith estab-

lished his theory on which Fracture Mechanics is currently based: according to the

well-known “ theorem of minimum energy” the equilibrium state of anelastic body,

deformed by specified surface forces, is such that the potential energy of the whole

system is a minimum. Griffith applied the energy balance at a flat homogeneous

isotropic plate of uniform thickness, containing a straight crack (of area A and length

a) and being subjected to stresses (σ) applied in its plane at its outer edge. Griffith

used the solution of Inglis (1913) to develop his theory and concluded that the crack

in a solid propagates if the stress exceeds the critical stress of the cracked solid.

σf =
2Eγs
πa

, (2.2)

where E is the Young modulus of the material and γs is the surface energy of the

solid, which is interpreted as the energy needed to break the intermolecular bond

and to generate a new surface. With this expression, Griffith answered the question

of the “size effect” observed previously, since the energy used to generate the new

surface in the solid must be proportional to the atomic bonds to be broken, that is,

proportional to the area of the new surface generated.

Griffith obtained good results concerning experimental tests on brittle materials

(e.g. ceramics and glass). However, the theory of Griffith did not work for materials

whose fracture involves other damage mechanisms that include the dissipation of

energy by irreversible processes, such as the plastic deformation at the crack tip. For

this reason, for some materials, the theory of Griffith was not able to predict either

the energy needed to generate a new crack or the stress field at the crack tip.

Years later and independently, Irwin (1948) and Orowan (1949) added a term to

the expression of Griffith to include plastic behaviour in the fracture. And Irwin

(1957) proposed a redefinition of the theory of Griffith which established the relation-

ship between the energy approach and the elastic solution of the crack, being today

the basis of the LEFM. In this work, Irwin defined the concept of Energy Relase Rate

(ERR), as the elastic potential energy released per unit area of the new crack, G. He

also defined the energy needed to generate this new crack per unit area and called

it “fracture critical energy” (Gc). The fracture critical energy can be found in the
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literature as Gc = R = 2γs. Besides, he proposed the following necessary condition

for the propagation of the crack:

Gc ≤ G (2.3)

This theory indicated that the elastic analysis of a fracture problem gives good

results with a small crack front process zone, even with unrealistic stresses in the

same area. It is possible because the energy needed to propagate the crack is taken

from the elastic mass of the solid and therefore crack propagation do not depend so

much on the stresses at the crack tip. Also, Irwin, from the works of Wieghardt

(1907), Westergaard (1939) and Sneddon (1946) formulated the asymptotic solutions

for the problems of cracks at small distance r from the crack tip. These asymptotic

solutions are defined by three stress intensity factors (SIF) KI , KII and KIII (and

three sets of related angular functions). KI is the SIF for mode I and it is associated

with the crack opening mode. KII is the SIF for mode II and it is associated with

the crack sliding mode. Finally, KIII is the SIF for mode III and it is associated

with the tearing mode. And he established a simple relationship between the energy

release rate and the stress intensity factor for an infinite cracked plate under tension:

K2
I = GE for plane stress, and K2

I (1− ν2) = GE for plane strain (2.4)

This fact is important due to G represents a global magnitude associated to the

strain energy of the whole solid and KI is a local magnitude. The critical intensity

factor KIc is usually referred to as “fracture toughness” but, in the literature, this

denomination is used for a variety of terms. In this thesis, the designations of the

terms are those that appear in Fig. 2.1. This figure also shows the relationship

between the material properties and the driving force that leads to the fracture of

the solid under study.

This properties depend on material and
the fracture mode

The driving force depends on material, 
geometry of the solid, nominal load and 
crack size

GcG

KcK

Critical Fracture EnergyEnergy Relase Rate

Stress Concentration Factor Fracture Toughness

These relationships depends on:
Material properties
Fracture mode

Figure 2.1: The relationship between the material properties and the driving force that leads to the
fracture.

From the works of Irwin, there has been a significant increase in contributions

to fracture mechanics from various points of view. One of the main focuses of re-

search over the years has been to design tests that are capable of reliably determining
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the fracture toughness (for the three individual modes or mixed mode) in different

materials. There has also been a significant contribution to the development of non-

linear fracture mechanics. These contributions, together with the development of new

computer tools, has provided answers to complex problems.

This century has been very productive in the field of fracture mechanics. The next

sections of this thesis will focus on the contributions concerning the development of

this thesis.

2.2 Interfacial fracture mechanics.

The increasing use of composite materials in different fields of engineering has led to

the study of the behaviour of these materials and their joints with other materials,

such as concrete or metals. This means that in structures where there is composite

there is also a large presence of very thin regions between two different domains. These

areas are defined as interfaces and the mechanical properties of the composite depend

on them, including fracture toughness. Therefore, the interface behaviour has been

a prosperous field of study in the recent years. This area of research has addressed

a variety of problems in order to understand the role of interfaces at different scales

(micro, meso and macro).

Within the field of composites, the study of the different interfaces is an important

issue to design a structural system adjusted to the actual behaviour of these compos-

ites. In this way, the development of more efficient structures, from an engineering

point of view, would be possible. Therefore, the Fracture Mechanics study applied to

the failure of these interfaces arises from the need to characterise interfacial cracks

in different engineering applications. For example, joints between metals or concrete

and a composite material, delamination in composites and, at micro-mechanical level,

the failure between the fibres and the matrix.

Therefore, the fracture mechanics applied to interfaces has produced a lot of re-

search in recent years. The first works of Williams (1959); England (1965); Erdogan

(1965); Rice and Sih (1965) and Malyshev and Salganik (1965) studied the interface

failure assuming an open crack model. In these models, the displacements coincide

on both sides of the undamaged part of the interface, while in the damaged interface,

both materials are separated while remaining free of traction. However, this model

suffered from some inconsistencies in the stress and displacement fields close to the

crack tip, for some specific cases. When England (1965) and Erdogan (1965) stud-

ied these inconsistencies became aware of the existence of regions where crack faces

physically interpenetrate on a very small scale (atomic or subatomic). For this reason

Comninou (1977) developed the contact model of interface cracks.

Rice (1988) analysed the behaviour of these contact areas and deduced that the

Williams open model was suitable for the study of interface failure if the non-linear

response size close the crack tip (plastic strain, contact, etc.) is small enough com-

pared to the smaller characteristic length of the model (layer thickness, crack length,

etc.). However, if the area where this non-linear behaviour exists are larger than the

characteristic length of the problem, then linear elastic contact models (Comninou,

1977), elastoplastic models (Shih and Asaro, 1988, 1989) or non-linear elastic models

(Knowles and Sternberg, 1983; Geubelle and Knauss, 1995) should be considered.
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Although the contact model solution could be a suitable solution to model any

failure along interfaces, this model is not always suitable to characterize the fracture,

because the non-linear behavior can be very complicated to predict, in some cases.

Depending on the non-linear behaviour of the contact zone, these problems can be

easily solved with simple algorithms or can take time to converge with more com-

plicated algorithms. In any case, the computing time is considerably extended with

these models.

Mantič et al. (2006) deduced a new relationship between the mixity measures

of Fracture Modes I and II based on the SIF approach and the ERR approach, if

the contact zone is less than the shortest characteristic length of the problem. As

Rice deduced, in this situation, the open model contains all the relevant information.

However, if the contact area is significant, only a contact model is suitable to predict

the failure propagation at the interface. Therefore, Hills and Barber (1993) and Hills

et al. (1996) propose to use a numerical method that takes into account both models

and that this algorithm itself decides which model to use in each case. This model was

implemented by Liu and Feng-Chen (1996). Furthermore, these numerical procedures

are also important in the cases where the two crack tips have different behaviours

(Bank-Sills and Ashkenazi, 2000) or for those cases where the contact behaviour is

changed with the failure propagation at the interface (fibre-matrix interface).

Another characteristic of the interface fracture is that the failure tends to grow

along the interface, rather than to kink out of the interface, because it is a weak plane.

In a homogeneous material, this weak plane is locally associated with the I-mode of

fracture. However, because the interface failure may remain within the interface or

may kink into one of the adjacent materials, the fracture mode will depend on the

ERR and the Gc in each possible option. According to He and Hutchinson (1989)

and Mantič et al. (2006), the conditions to propagate inside or outside the interface

are as follows:

Gint

Gint
c

>
Gkink

Gkink
c

→ to propagate into interface

Gint

Gint
c

<
Gkink

Gkink
c

→ to kink into one of the adjacent material

(2.5)

where “int” refers to the propagation along the interface and “kink” refers to the

propagation outside the interface.

According to Rice (1988) and He and Hutchinson (1989), Gint
c can be measured ac-

cording to the mixity at crack tip (phase angle ψK). Therefore the fracture toughness

of an interface can be expressed as: Gint
c (ψK), and it is an interface property indepen-

dent of the geometry and applied load. This behavior complicates the characterization

of the fracture at the interface when compared to the fracture of homogeneous ma-

terials, where the crack path propagation is defined by fracture toughness KI . Many

experimental tests have demonstrated this high dependence on the critical energy of

the interface and therefore on the mixity of the fracture mode, for example: Wang

and Suo (1990); Hutchinson and Suo (1992); Liechti and Chai (1992); Wang (1997)

and Bank-Sills and Ashkenazi (2000).
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Several phenomenological laws have been developed to define Gint
c (ψK). Three

that have fitted well with the experimental test have been those of Hutchinson and

Suo (1992), Charalambides and A.J.Kinloch (1992) and Benzeggagh and Kenane

(1996).

Most of the cases studied in this thesis will use the law proposed in Hutchinson

and Suo (1992), adapted to the Linear Elastic Brittle Interface Model (LEBIM).

A complete and exhaustive development of the contents included in this section

can be found at Mantič et al. (2006). Besides, a basic reference work on interfacial

fracture mechanics is Hutchinson and Suo (1992), and an introduction to interfacial

crack modelling can be found at Hills et al. (1996).

2.3 The Coupled Criterion of Finite Fracture Me-

chanics (CCFFM).

LEFM works well for cracked structures and sufficiently large cracks, but Griffith’s

criterion is not able to predict the crack onset and the propagation for small cracks.

However, many engineers assert that the study of the onset crack initiation has not

any sense because microcrack and other defects exist within any material system

prior to be loaded. In fact, most materials contain microcracks or voids due to their

manufacture. However, if these defects are assumed to be present at a small scale,

the crack initiation can be studied at a larger scale, for which the material can be

modelled like continuum and homogeneous material. The study of the crack initiation

in a continuum and homogeneous material can be developed if the microcracks and

other defects are small enough to affect the hypothesis of continuity and homogeneity.

Garćıa (2014) illustrated this scale effect on the damage. Before loading, the

material can have a distribution of defects that are not visible at a certain scale.

When the material is loaded the initial defects and other new defects start to grow

stably or generate other irreversible processes. This process leads to the appearance

of a crack on a higher scale, in which the damage variable was defined.

The Finite fracture mechanics (FFM) is based on this damage mechanims, where

the crack is produced instantly with a finite length, after the abruptly coalescence of

defects for a critical value of the tension. Therefore, the FFM does not maintain the

Griffth hypothesis which to assume that crack growth is infinitesimal. And this is

why, it is able to predict the fracture onset with a finite segment of the crack.

Hashin (1996) proposed the term “Finite fracture mechanics” to develop an energy-

based criterion which assumes a crack onset of a finite length. However, the term

has been also employed since then to refer to the common framework of the method

named “Theory of critical distances”, which have been proposed throughout the last

half-century (e.g. Neuber (1958); Tszeng (1993); Hashin (1996); Taylor et al. (2005)

and Cornetti et al. (2006)).

In the framework of the FFM, Leguillon (2002) proposed the coupled criterion

of the FFM (CCFFM), which is the base of this thesis. This criterion combines

two criteria traditionally used separately in brittle and quasi-brittle materials: the

stress criterion and the energy criterion. Since the first one is commonly used to

predict failure without stress singularities, and the energy criterion is employed in the
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presence of cracks. However, Leguillon postulated that the necessary and sufficient

condition for a finite-crack onset is the simultaneous fulfilment of both stress and

incremental energy criteria.

Leguillon (2002) presented this coupled criterion with a simple and well known

example. Leguillon showed that by using only the energy criterion to predict the

failure of a bar of a homogeneous and isotropic material submitted to an increasing

applied strain, the critical failure stress decreases while increasing the bar length.

This is because the elastic energy stored in the bar is proportional to its length,

while the energy dissipated in the formation of the new surface is only proportional

to the cross-section of the bar. Therefore, an erroneous deduction would be that

for sufficiently long bars the critical failure stress tends to zero. However, Leguillon

solves this problem by applying the energy criterion and the stress criterion, he took

as the critical failure stress the minimum stress that fulfils both criteria.

This coupled criterion remains within the framework of continuous mechanics as

opposed to atomistic models, allowing for much shorter computing times without

losing rigour. In addition, the coupled approach also needs less computational time

compared to other approaches within the continuous medium (cohesive zone models

or damage mechanics).

Leguillon (2002); Taylor et al. (2005); Cornetti et al. (2006); Camanho et al.

(2012); Sapora et al. (2015) and Doitrand and Sapora (2020), among others, have

demonstrated experimental evidence supporting the hypothesis of Leguillon. Taylor

et al. (2005) shows the prediction of the coupled criterion by several experiments with

short cracks that cannot be studied by the LEFM. Another classical problem studied

using this coupled criterion has been the crack onset at V-notches since the LEFM

can not predict the crack onset in this case either (Carpinteri et al., 2008; Sapora

et al., 2013, 2014, 2015). However, the coupled criterion can indeed predict this case,

as Leguillon (2002) proved.

2.3.1 Stress criterion.

The stress criteria are normally based on phenomenological laws because these criteria

depend heavily on the material microstructure and the failure of the material on a

smaller scale than the study where the stress criterion is applied. These criteria are

defined by a critical stress value of the material σc,ch, normally associated with the

tensile strength, and applied to a specific combination of the components of the stress

tensor, σij , at a specific point x.

Under the framework of finite fracture mechanics, the stress criterion must be

evaluated before the crack onset, and this criterion must be satisfied at every point

x of the new surface ∆Sc originated into the material. Following the formulation of

Mantič (2009, 2014) and Garćıa (2014), a quite general expression could be written

by functional f(σij ,∆Sc):

f(σij(x),∆Sc) ≥ σc,ch, with x ∈ ∆Sc (2.6)

In the present manuscript, the stress criterion have been used in two different

ways within the context of the CCFFM:
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• Originally, Leguillon (2002) introduced the pointwise stress criterion, where the

normal traction at every point x along the future new surface ∆Sc is compared

with σc,ch.

• Alternatively to the pointwise criterion, Cornetti et al. (2006) proposed to com-

pare σ̄ with σc,ch, where σ̄ is the averaged value of σ of all the points into

∆Sc.

Both described stress criteria have been applied to several problems by some

authors. For example, Cornetti et al. (2012) and l’Armée and Becker (2019) compared

the predictions of both criteria and obtained, for both methods, results in agreement

with experimental values. Often, the difference between the critical loads predicted by

both criteria is so small that the typical dispersion of the experiments is longer than

this difference. In this manuscript both methods will be described in the context of the

CCFFM applied to LEBIM and their formulations will be developed in Section 3.1.1.

A usual expression for the stress criterion in the context of the CCFFM and

introduced by Mantič (2009) is:

σnom

σc,ch
≥ s(x)

def
=

1

f(σij(x),∆Sc)
, (2.7)

where σnom is the applied nominal stress which depends on the problem and represents

the external loads.

2.3.2 Incremental energy criterion.

The energy criterion of the CCFFM is the same energy balance used by Griffith

between the pre- and post-crack states:

∆Π + ∆Ek + ∆R = 0, (2.8)

where ∆Π is the potential energy variation between the two states, ∆Ek is the varia-

tion of kinetic energy between the two states and ∆R is the energy dissipated at this

abrupt formation of a new crack surface (∆Sc). Following Leguillon (2002), in the

development of this thesis the heat exchange will be neglected and the initial state

is considered quasistatic. Therefore, ∆Ek ≥ 0 can be established. And the energy

criterion can be expressed as Leguillon proposed:

−∆Π ≥ ∆R (2.9)

This equation indicates that the crack onset and propagation can be produced if

the solid release enough elastic energy. Another way of rewriting this energy balance

is the one proposed by Mantič (2014). In this case, Π + R should keep constant or

decrease at a crack onset. Note that the potential elastic energy (Π) is conservative,

therefore, it should only depend on the state before and after of the crack forma-

tion. Remember that, as explained above, Π depends on the external loads and the

geometrical and elastic properties of the solids of the problem.

In order to calculate the released energy, ∆Π, Mantič (2014) indicated different

ways to do it, and Garćıa (2014) explained each one in detail with its advantages and

disadvantages:
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• The first method is based on the definition of the ERR. If G is integrated over

the new generated surface (∆Sc), the released energy in the fracture process

is obtained: −∆Π =
∫

∆Sc
G. One of the advantages of this procedure is that

many G solutions can be simply integrated. However, due to this procedure

depends on crack path, for cases where this path is not a priori known it is not

very efficient.

• The second method is a variant of the well-known Virtual Crack Closure Tech-

nique (VCCT). VCCT is used under the assumption that the virtual infinites-

imal extension of the crack does not significantly influence the elastic solution

close to the crack tip. An advantage of this method is that it only depends on

the initial and the final state of the crack so it is not necessary to study the

path followed by the crack. However, if the displacements of the crack faces are

very small, this method lead to some computational errors.

• Maybe, the most general method is to calculate the deformation energy of the

system, before and after the crack formation, and to obtain their difference

(∆U). The variation in the work of external forces must also be calculated

(∆W ). Since, ∆Π = ∆U −∆W , the energy balance of Eq. (2.9) can be directly

applied. One of the advantages of this method is that only the beginning and

the end of the crack path must be studied. Another advantage is that the

information regarding the internal energies of the solids and the work done by

the external loads is usually available in most FEM codes.

Another important term in the energy balance is the energy dissipated in the

fracture process (∆R). This concept is based on Griffith (1921, 1924), where he

proposed that a certain amount of energy is needed to break the atomic bonds in

the fracture of the materials. In Section 2.1, it was already explained that Griffith

developed his theory for brittle materials, where this definition of dissipated energy

was quite close to the actual fracture mechanism. However, for other type of materials,

the processes associated with the energy dissipation during crack growth are more

complex and this energy dissipation does not include other irreversible processes in

the material failure. A simple way to evaluate the energy dissipated in the new surface

∆Sc, is:

∆R = Gc∆Sc, (2.10)

where Gc is the constant fracture energy dissipated per unit of a new crack area, and

it can vary with the fracture mode mixity ψ depending on the type of material. For

example, in isotropic and homogeneous materials the onset and propagation of the

crack is normally produced in mode I. However, the variations of the Gc(ψ) depends

on the irreversible process close to the crack tip, for this reason, the critical energy

of the fracture depends strongly on the material and on its micro-structure. This

dependency on the fracture mode mixity is under discussion in CCFFM formulations

currently, since the definition of ψ is associated with a continuous propagation of the

crack, a fact that the FFM does not contemplate (see discussion in Garćıa (2014)).
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Following Mantič (2009) and Garćıa et al. (2014), a general and non-dimensional

form for linear elastic materials and proportional loading with nominal stress σnom

of the energy balance (based on 2.9) can be expressed as:

σ2
noml

3
ch

Ech
∆Π̂(∆Sc) ≥ Gc,chl

2
ch∆R̂(∆Sc), (2.11)

where lch and Ech are two characteristic variables of the problem that are associated

with the geometry and elastic properties of the problem itself. These variables are

used to apply the energy balance in a dimensionless form, due to the rest of the

variables, on which the energy balance depends, can be reduced by these two (Mantič,

2009; Garćıa et al., 2014). Additionally, Gc,ch is the characteristic critical fracture

energy of the problem and Gc(ψ) depend on it.

2.3.3 CCFFM General formulation.

As explained above, in general terms, the coupled criterion of finite fracture mechanics

applies the stress criterion and the energy criterion to a specific problem and set the

lowest failure stress that satisfies both criteria as the critical one. This stress is called

σnom,c and it is the result of minimizing the σnom in both criteria. For this reason,

both criteria must be expressed with respect to the same fracture characteristic σc,ch,

which was taken in the stress criterion associated with the strength. Therefore, if the

energy criterion takes the same form as the stress criterion, as introduced by Mantič

(2009) and Garćıa et al. (2014), it can be expressed as:

σnom

σc,ch
≥ γ

√
g(∆Sc) with g(∆Sc) =

∆R̂(∆Sc)

−∆Π̂(∆Sc)
(2.12)

where g(∆Sc) represents the ratio of the dimensionless dissipated energy to the di-

mensionless released energy and γ is a dimensionless brittleness number defined in

the context of the CCFFM by Mantič (2009) as:

γ =
1

σc,ch

√
Gc,chEch

lch
(2.13)

Mantič (2014) described the dimensionless function γ
√
g(∆Sc) as a (hyper)surface

of dimension n (or curve with n = 1) of the incremental energy criterion defined for

∆Sc. Where ∆Sc is the possible failure surface set by the stress criterion, and n is

the set of parameters describing the generation of that new surface ∆Sc (e.g. onset

point, orientation, path followed, etc). Each n value defines the possible crack paths

from its onset to the complete generation of the surfaces.

The formulation of the CCFFM can be written as in Eq. (2.14) by joining the

expressions of each criterion.

σnom,c

σc,ch
= min

∆Sc

max
{
s(∆Sc), γ

√
g(∆Sc)

}
, (2.14)

The dimensional functions s(∆Sc) and γ
√
g(∆Sc) are defined in the possible

fracture region ∆Sc and the minimum nominal load that satisfies both criteria must

be determined. It can also be said that the criterion look for the minimum damaged
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area ∆Sc that satisfies both criteria. The minimization of this expression refers to

the surface of the crack and sets the maximum of the two criteria, i.e. the value that

fulfils the criteria and produces a minimum crack surface should be taken.

However, the minimization of this surface is quite complex since the possible

paths of the crack are infinite. For this reason, the works applying the coupled

criterion assume additional hypotheses about the geometry of the crack on which

the minimization is performed, reducing the possible crack paths to a finite and

sufficiently low number to obtain analytical or semi-analytical results.

2.4 2D Linear Elastic Brittle Interface Model

Interface conditions ahead of an interface crack front play a critical role when defin-

ing a crack growth model. The Linear Elastic-(perfectly) Brittle Interface Model

(LEBIM) was proposed and studied by Prandtl (1933); Entov and Salganik (1968);

Lenci (2001) and Carpinteri et al. (2009), among many others, to model cracks prop-

agating along a weak surface/interface (which may represent, e.g., an adhesive layer).

It is characterized by a continuous spring-distribution with a linear elastic-(perfectly)

brittle law, which relates the displacement jump across this surface (material separa-

tion, in Mode I) and tractions acting there.

An improved constitutive law including a failure criterion of the LEBIM was

introduced by Távara et al. (2010, 2011) and Mantič et al. (2015). This model

covers also interfaces fracture due to shear under compression, by extending the

range of variation of the interface fracture toughness with the fracture mode mixity,

and considering the possibility of frictionless elastic contact at broken portions of the

interface. LEBIM can also be considered as a non-smooth limit case of the intrinsic

CZM, see Bialas and Mróz (2005); Valoroso and Champaney (2006); Jiménez et al.

(2007); Cornetti et al. (2012) and Dimitri et al. (2017). Moreover, Jiménez et al.

(2007) and Távara et al. (2019a) showed that in some specimens LEBIM predictions

can better fit experimental test results than the predictions obtained by a classical

CZM.

Although initially, this interface model represented an adhesive layer of a small

thickness h > 0, it can characterize debonding mechanisms between two solids of

different materials, strictly speaking, there is no additional third material between

bonded materials, as may occur in the case of fibre-matrix interface in an actual

composite.

In LEBIM the interface is modelled by a continuous distribution of springs with

a linear elastic behaviour up to its breakage (Távara et al., 2011, 2010; Mantič et al.,

2015). Although 3D LEBIM is giving good results (Távara et al., 2019a) in this

thesis a 2D LEBIM in plane strain is used. Thus, the normal and shear tractions at

an undamaged interface point x, σ(x) and τ(x), respectively, are proportional to the

normal and tangential relative displacements at this point, δn(x) and δt(x),

σ(x) = knδn(x), and τ(x) = ktδt(x), (2.15)

with kn and kt giving the normal and tangential stiffness of the spring located at x.

It can be shown that the ERR G(x) is given by the energy (per unit area) stored

in the unbroken spring at x and not necessarily located at the crack tip and at
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a infinitesimal interface segment (see Mantič et al. (2015) and further references

therein), leading to

G(x) = GI(x) +GII(x), (2.16)

where,

GI(x) =
〈σ(x)〉+〈δn(x)〉+

2
=
〈σ(x)〉2+

2kn
=
kn〈δn(x)〉2+

2
(2.17a)

GII(x) =
τ(x)δt(x)

2
=
τ2(x)

2kt
=
ktδ

2
t (x)

2
, (2.17b)

〈·〉+ = (·)+|·|
2 denoting the positive part of a number.

The fracture mode mixity is characterized by the energy based angle defined as

tan2 ψG = GII(x)/GI(x) for σ(x) > 0. Nevertheless, a generalization of this angle

covering any value of σ is necessary. In the present thesis the angle ψ defined as,

tanψ =
√
κ−1 tanψσ =

√
κ tanψu, for − π ≤ ψ, ψσ, ψu ≤ π, (2.18)

is used (cf. Mantič et al. (2015)), where

κ =
kt
kn
, tanψσ =

τ

σ
and tanψu =

δt
δn
. (2.19)

The interface failure criterion adopted in LEBIM is defined in terms of the ERR,

G and the interface fracture energy Gc (fracture toughness). Therefore, an interface

point breaks when the ERR, G(x) (defined in (2.16)) reaches the fracture energy,

Gc(ψ(x)), which depends on the fracture mode mixity of the point x.

Gc(ψ(x)) = GIc(ψ(x)) +GIIc(ψ(x)), (2.20)

where, in view of (2.16),

GIc(ψ(x)) =
〈σc(ψ(x))〉+〈δnc(ψ(x))〉+

2
=
〈σc(ψ)〉2+

2kn
, (2.21a)

GIIc(ψ(x)) =
τc(ψ(x))δtc(ψ(x))

2
=
τ2
c (ψ(x))

2kt
, (2.21b)

where σc(ψ(x)) and τc(ψ(x)) are the maximum allowed traction components at the

point x, and δnc(ψ(x)) and δtc(ψ(x)) the corresponding maximum relative displace-

ments at the same point, as Figure 2.2 represents. The fracture toughness in pure

mode I, i.e. for ψ(x) = 0, is denoted as Gc(0) = GIc(0) = ḠIc, and similarly in mode

II for ψ = π
2 , Gc

(
π
2

)
= GIIc

(
π
2

)
= ḠIIc. Then, defining σ̄c = σc(0) and τ̄c = τc

(
π
2

)
,

and dimensionless functions σ̂c(ψ(x)) and τ̂c(ψ(x)), with σ̂c(0) = 1, σ̂c
(
π
2

)
= 0 and

τ̂c(0) = 0, by

σc(ψ(x)) = σ̄cσ̂c(ψ(x)) and τc(ψ(x)) = σ̄cτ̂c(ψ(x)). (2.22)

The pure modes I and II fracture toughness are expressed as

ḠIc =
σ̄c

2

2kn
, and ḠIIc =

τ̄2
c

2kt
. (2.23)
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Figure 2.2: LEBIM constitutive law.

Similarly, a dimensionless function for critical energy Ĝc(ψ(x)), verifying Ĝc(0) =

1, can be defined by

Gc(ψ(x)) = ḠIcĜc(ψ(x)). (2.24)

In Mantič et al. (2015), the relation between the dimensionless functions σ̂c(ψ)

and τ̂c(ψ), and the critical energy Ĝc(ψ(x)) was established as:

σ̂c(ψ(x)) =

√
Ĝc(ψ(x)) ·

{
cosψ(x), |ψ(x)| ≤ π

2 ,

−| cotψ(x)|, |ψ(x)| ≥ π
2 ,

(2.25a)

τ̂c(ψ(x)) =
√
κ

√
Ĝc(ψ(x)) ·

{
sinψ(x), |ψ(x)| ≤ π

2 ,

signψ(x), |ψ(x)| ≥ π
2 ,

(2.25b)

It is important to note that Mantič et al. (2015) evaluated the ERR in LEBIM

by means of the VCCT, and show that the ERR of a small portion of the linear

elastic brittle interface is determined by the tractions at the point where the breakage

initiates and just at the moment before the breakage occurs (Lenci, 2001). For this

reason, LEBIM can be applied using an energy failure criterion, but it can also be

defined in terms of tractions or even relative displacements at the interface point

under study.

Note that in Figure 2.2, in the normal law once a portion of interface is broken, a

negative normal displacement, δn < 0, can be allowed leading to an interface overlap-

ping due to the penalty contact condition. It is possible because an elastic frictionless
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contact is considered there, and it is based on the idea that once the assumed interface

layer is broken some portions of this layer remains on the interface surfaces. Thus,

when these surfaces enter in contact, it seems reasonable that the portions of the layer

could compress with the same stiffness in normal direction as it had before breaking.

2.4.1 Interface failure criteria

Two different failure criteria are used in the present thesis according to the revision

of several failure criteria applied in LEBIM presented in Mantič et al. (2015). Both

criteria were originally physically motivated, and fitted well results of several exper-

imental campaigns in the past. They are written in a suitable form to match the

formulation introduced above. The dimensionless function Ĝc(ψ(x)), which in the

present formulation governs, according to (2.25), both the energy and stress based

criteria, is defined for each failure criterion.

2.4.1.1 Hutchinson and Suo criterion

This criterion, originally proposed by Hutchinson and Suo (1992) for interface cracks

at perfect interfaces, and referred hereinafter as HS-criterion, is adapted here to define

the fracture toughness in mixed mode as (cf. Mantič et al. (2015)):

Ĝc(ψ(x)) = 1 + tan2(1− λHS)ψ(x), (2.26)

with |ψ(x)| < ψ̄a(λHS), 0 ≤ λHS ≤ 1,

where

ψ̄a(λHS) = min{ψa(λHS), π} and ψa(λHS) =
π

2(1− λHS)
, (2.27)

ψ̄a is the angle of the failure curve asymptotes, λHS is the fracture mode-sensitivity

parameter of Hutchinson and Suo, 0.2 ≤ λHS ≤ 0.3 is a typical range for interfaces

with moderately strong fracture mode dependence.

2.4.1.2 Quadratic criterion

The quadratic criterion, originally proposed as a stress criterion (see Brewer and

Lagace (1988) and Hashin (1980)) is represented here by the implicit equation for the

failure curve in the plane of dimensionless tractions:

sign(σ̂c(ψ(x)))σ̂2
c (ψ(x)) +

σ̄2
c

τ̄2
c

τ̂2
c (ψ(x)) = 1, (2.28)

where the fracture mode sensitivity is defined by the ratio σ̄c

τ̄c
. Then, the dimensionless

fracture toughness function can be expressed as, cf. Muñoz Reja et al. (2016),

Ĝc(ψ(x)) =
〈cosψ(x)〉2+ + sin2 ψ(x)

sign(cosψ(x)) cos2 ψ(x) +
σ̄2
c

τ̄2
c
κ sin2 ψ(x)

, (2.29)

with |ψ| < ψa, where ψa = arctan(σ̄c, τ̄c κ) is the angle of the failure curve asymptotes.
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2.4.2 LEBIM implementation in BEM and FEM.

The 2D LEBIM was successfully implemented in a Boundary Elements Method

(BEM) code and in a Finite Element Method (FEM) code by Távara et al. (2010)

and Távara et al. (2018), respectively.

Távara et al. (2010) and Távara et al. (2011) implement LEBIM in a 2D BEM

code (Paŕıs and Cañas, 1997; Graciani et al., 2005), whose original version allowed

to model isotropic axisymmetric and anisotropic plane problems, with multiple solids

perfectly bonded or with contact zones between them. Távara incorporated into this

code the possibility of defining weak interfaces between elastic solids since the BEM

is a suitable tool for modelling a crack that grows along the weak interface. This

is due to the non-linearity introduced is associated only with the boundary of the

interface. This code has been used in this thesis to incorporate the CCFFM with one

of the implementations developed in the following chapter. It should also be noted

that, in this code, the conditions of balance and compatibility along the contact areas

are imposed in a weak form, allowing non-conforming discretizations.

Also Távara et al. (2018) and Távara et al. (2019) implement the LEBIM in the

commercial code ABAQUS based on FEM. For this implementation, a user subroutine

UMAT was used. The interface model developed is based on the continuum-based

approach, assuming an interface layer with a finite (small) thickness, which is denoted

by h. Therefore, the interface is meshed like the rest of the solids and these elements

transmit the stress from one solid to another solid assuming a spring behaviour.

Additionally, when one of these elements is damaged it is not capable of transmitting

tension but it can still transmit compression if it is in contact with another solid.

This behaviour is obtained by manipulating the constitutive operator of each element

of the interface (see Távara et al. (2018) for a more exhaustive description).





CHAPTER3
CCFFM applied to LEBIM

The main aim of this chapter is to present a new way of solving problems of crack onset

and propagation along interfaces by a combination of the Coupled Criterion of Finite

Fracture Mechanics (CCFFM) (Leguillon, 2002; Cornetti et al., 2006; Mantič, 2009)

described in Section 2.3 with the Linear Elastic Brittle Interface Model (LEBIM)

(Távara et al., 2010, 2011; Mantič et al., 2015) described in Section 2.4

The computational implementations and engineering applications of non-classical

models of Fracture Mechanics, such as Cohesive Zone Models (CZMs) and LEBIM (for

a comparison, see Dimitri et al. (2017); Távara et al. (2019) and Cornetti et al. (2019),

have increased considerably especially in the last decade. This fact justifies that this

topic is of great interest regarding the crack onset and propagation predictions.

Traditionally, LEBIM has been applied to characterize interfaces with a relatively

low stiffness. This is because the fracture toughness and critical tractions of an

interface modelled by LEBIM are coupled by an equation involving the interface

stiffness. However, such an interface model may be far from reality, because thin

adhesive layers are sometimes characterized by a large stiffness. Due to this fact, the

CCFFM approach has been incorporated into LEBIM (Cornetti et al., 2012; Muñoz

Reja et al., 2016, 2018, 2020b,a). Using this new approach, it was possible to uncouple

the fracture toughness, critical traction and stiffness of an adhesive interface.

As Section 2.3 describes, the present coupled criterion of FFM is used to predict

the crack onset and/or growth by finite increments of its length along a linear-elastic-

interface. It is based on the interface strength and fracture toughness criteria, each

of them representing a necessary but not sufficient condition for such a crack onset

and/or growth. Following the theoretical concepts explained at Section 2.3, this

criterion can be formulated by two different ways:

• CCFFM applied to LEBIM based on stress and energy criteria curves, where

the energy criterion is evaluated by the integral of the energy release rate.

• CCFFM applied to LEBIM based on Principle of Minimum Total Energy sub-

jected to a Stress Condition (PMTE-SC), where the energy criterion is evaluated

by the potential energy before and after crack onset.

23
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Each of these ways has a different formulation and implementation in the used

numerical codes BEM and FEM based, that will be developed in the following sections

of this chapter.

3.1 General framework of the CCFFM applied to

2D LEBIM

As described previously, the present coupled criterion of FFM is based on the interface

strength and fracture toughness criteria, each of them representing a necessary but

not sufficient condition for such a crack onset and/or growth according to CCFFM

exposed in 2.3.

3.1.1 Stress based (strength) criterion

In the context of the CCFFM (2.3.1), the stress criterion is evaluated before the crack

onset at the entire surface ∆Sc where the crack will initiate. However, as the coupled

criterion is applied to interfaces, the stress criterion is imposed at every undamaged

point x along every interface of the problem. The aim is to obtain one or more finite

segments of the crack from x = 0 to x = ∆a satisfying the stress criterion. This

condition is usually applied in one of the two following ways:

• As a pointwise criterion (Leguillon, 2002):

min
0≤x≤∆a

t(x)

tc(ψ(x))
≥ 1 (3.1)

• As an average criterion (Cornetti et al., 2006):

1

∆a

∫ ∆a

0

t(x)

tc(ψ(x))
dx ≥ 1 (3.2)

where the traction vector modulus at an undamaged interface point x and its critical

value, respectively, are defined as

t(x) =
√
σ2(x) + τ2(x), (3.3a)

tc(ψ(x)) =
√
σ2
c (ψ(x)) + τ2

c (ψ(x)). (3.3b)

σ(x) and τ(x) are proportional to the normal and tangential relative displacements

at the point x and are defined in Eq. (2.15). Let the critical normal and shear stress

components for pure mode I and II, respectively, be defined as σc(0) = σ̄c > 0 and

τc
(
π
2

)
= τ̄c > 0. Then, the critical normal and shear stress, σc(ψ) and τc(ψ), can

be defined by some dimensionless functions in the same way as the original LEBIM

(2.22), i.e. similarly as in (2.22):

σc(ψ) = σc,chσ̂c(ψ) and τc(ψ) = σc,chτ̂c(ψ), (3.4)

Note that σ̂c(ψ) is the dimensionless expression associated to the tensile strength

of the interface. It should be noticed that sometimes it is interesting to obtain a
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dimensionless function of the critical stress with respect to the shear strength of the

interface studied. For that reason, as in the Section 2.3.1, it seems reasonable to

denominate this characteristic variable of the material in general terms as σc,ch, as it

is shown in Eq. (3.4).

Following the dimensionless and general formulation introduced in Mantič (2014)

(2.3.1), the stress criterion can be written in general form, as:

Pointwise criterion:
σnom

σc,ch
≥ s(x) =

t̂c(ψ(x))

t̂(x)
∀x ∈ [0,∆a], (3.5a)

Average criterion:
σnom

σc,ch
≥ s(x) =

1

1
∆a

∫∆a

0
t̂(x)

t̂c(ψ(x))
dx

∀x ∈ [0,∆a], (3.5b)

with t̂(x) =
t(x)

σnom
and t̂c(ψ(x)) =

tc(ψ(x))

σc,ch
,

where σnom is the applied nominal stress which depends on the problem; σc,ch is a char-

acteristic interface strength parameter previously defined. Note that, tc(ψ(x)) can

be expressed by considering several stress criteria like in LEBIM (see Section 2.4.1).

Specifically, in this thesis a stress criterion based on the Hutchinson and Suo (1992)

phenomenological law is used, see Mantič et al. (2015); Muñoz Reja et al. (2016) and

Muñoz Reja et al. (2020b) for further details.

3.1.2 Energy based (fracture toughness) criterion

To initiate or propagate an interface crack by a finite increment of its length ∆a > 0

the following energy balance condition must be fulfilled:

−∆Π(∆a) ≥ ∆R(∆a), (3.6)

where the left and right hand side are defined as the decrement of the potential energy

(−∆Π) and the dissipated energy (∆R) at this (typically instantaneous) finite crack-

advance ∆a, respectively. As outlined in the Section 2.9, the energy released in the

fracture process can be obtained with different methods. Two methods are used in

this thesis:

• Calculating the integral of the ERR over the surface generated by the broken

interface, ∆a;

• Calculating the potential energy of the system, before and after the failure of

the interface. If the increment of potential energy and work is obtained, the

energy balance of Eq. (3.6) can be directly applied.

The use of each approach to the coupled criterion leads to a different implemen-

tation of the CCFFM+LEBIM: CCFFM+LEBIM by the curve method or by the

Principle of Minimum Total Energy subjected to a Stress Condition (PMTE-SC). In

the following sections, both implementations will be discussed.

The energy condition can also be written in terms of dimensionless functions by

denoting a characteristic fracture energy of the interface Gc,ch and a characteristic
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stiffness of the interface kch.

σ2
nom

2kch
∆Π̂(∆a) ≥ Gc,ch∆R̂(∆a) (3.7)

Note that Eq. (3.7) is similar to that proposed by Mantič (2009) and Garćıa et al.

(2014) at Eq. (2.11). However, the most notable differences between them are: the

length of the broken interface ∆a instead of the new surface generated in the solid, and

the characteristic interface stiffness kch instead of the characteristic elastic property

of the problem. These differences arise due to the problems under study with this

new method are 2D interface problems. For this reason, the term Ech

lch
in Eq. (2.11)

could be compared with the kch, since the interface stiffness is always defined by an

interface elastic property divided by the its thickness (Távara et al., 2008).

The energy dissipated in the debonding process, R̂(∆a), depends on the fracture

mode mixity ψ(ξ) associated to every point of the finite segment of the crack, ∆a.

However, there are two conceptually different ways to obtain the fracture mode mixity

used in literature:

• ψ(ξ) = ψ1(x) for x = ξ, defined by the stress state at each point x of the

potential crack surface before the crack onset, as Garćıa and Leguillon (2012)

and Leguillon and Murer (2012) proposed.

• ψ(ξ) = ψ2(a) for a = ξ, defined by the ratio of ERR components (GI(a) and

GII(a)) of a virtual crack growing between the initial configuration and the

finite crack produced by the crack onset, as Mantič (2009) proposed.

Although the fracture mode mixity is usually evaluated just ahead of the crack

tip supposing a quasistatic crack growth (second option), it may present difficulties

for interface cracks between dissimilar materials due to the oscillatory character of

crack tip fields, as highlighted in Mantič (2009). For this reason, the alternative

is based on employing the stress field along the potential crack path prior to the

crack onset (first option). Furthermore, the second option could be unreachable for

CCFFM applied to LEBIM based on Principle of Minimum Total Energy subjected

to a Stress Condition, since the intermediate cases between the onset and the end of

the crack are not analysed. Also, this approach is consistent with the hypothesis of

abrupt crack onset as it does not need an assumption of quasistatic crack growth.

3.1.3 General formulation of the CCFFM applied to LEBIM

Following the previous formulation of the CCFFM at Eq. (2.11), the dimensionless

function g(∆a) can be defined as, see also Mantič (2009):

g(∆a) =
∆R̂(∆a)

−∆Π̂(∆a)
(3.8)

Thus, following Cornetti et al. (2012), the parameter µ can be defined as:

µ =
2Gc,ch kch

σc,ch
2

, (3.9)
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and the energy criterion can be rewritten as:

σnom

σc,ch
≥
√
µ g(∆a) (3.10)

It should be noted that the fundamental difference between this dimensionless

expression for CCFFM+LEBIM and that proposed by Mantič (2009) and Garćıa et al.

(2014) at Eq. (2.12), are the dimensionless brittleness number γ and the parameter

µ. Both terms represent the fracture fragility of the problem under study. However,

due to the method presented in this thesis considers the interface failure between two

solids, the parameter µ is associated with the interface fragility while γ is associated

with the fragility of all the materials involved in the problem (Mantič, 2009). The

relationship between γ and µ can be obtained if, in Eq. (2.13), Ech and lch are

substituted by kch:

γ =
1

σc,ch

√
Gc,chkch and µ =

2Gc,ch kch

σc,ch
2

then µ = 2γ2 (3.11)

The possible dimensionless parameters which characterizes the interface brittle-

ness in pure mode I and II can be expressed as:

µI =
2knḠIc

σ̄2
c

and µII =
2ktḠIIc

τ̄2
c

. (3.12)
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Figure 3.1: CCFFM+LEBIM constitutive law in pure fracture (a)mode I and (b)mode II.

Following the original LEBIM, in Fig. 3.1 the constitutive law for CCFFM applied

to LEBIM in mode I and mode II are represented. These figures show that that µ

can also be defined, in general term, as: µ = σ2
max,ch/σ

2
c,ch, where σmax,ch and σc,ch,

are associated to the energy and stress based criterion, respectively. Thus, for µ = 1

the present model becomes equivalent to the original LEBIM. When µ value increases

the interface becomes stiffer, and for µ → ∞ the perfect interface (with vanishing

relative displacements along undamaged parts) is recovered.
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As can be seen from the above the fracture toughness, strength and stiffness of the

interface, characterized herein by the values of Gc,ch, σc,ch and kch, are independent

in the present FFM+LEBIM approach. Recall that in the original LEBIM, these

interface parameters were related by the equations ḠIc = σ̄2
c/2kn and ḠIIc = τ̄2

c /2kt
(Gc,ch = σ2

c,ch/2kch, in its general form).

Unlike perfect interfaces, where stress and energy based failure criteria are of

a different nature, here they are closely linked according to the relation between

tractions and the ERR associated to a point at a linear elastic interface. Hence, for

the sake of simplicity of the present coupled criterion formulation, both the energy

and stress conditions will be based on the same particular failure criterion giving the

shape to the dimensionless functions defined above in 2.25a and 2.25b. Therefore, in

this whole work:

σ̂max(ψ) = σ̂c(ψ) and τ̂max(ψ) = τ̂c(ψ) (3.13)

A consequence of this choice is that the failure curves of the stress and energy

criterion in the (σ, τ) plane are given by scaled curves. Moreover typically the predic-

tions by the FFM+LEBIM will be governed either by both criteria or by the energy

criterion only, as will be seen later on.

The interface failure envelopes are presented in the plane of the dimensionless

interface tractions in Fig. 3.2, for both HS and quadratic criteria defined above, having

the same ratio τ̄c/σ̄c. The relations between the maximum and critical normal and

shear stress can be observed, and also how these relations vary with parameter µ

(3.12). It is noticeable that the curve associated to the stress based criterion does

not vary with µ, while the curves associated to the energy based criterion scale with

the value of µ. According to the parameterized expressions in (2.25), a failure under

interface compressions may occur. In such cases an interface crack may appear or

propagate in presence of high values of shear stresses. It is also interesting to see in

Fig. 3.2, that the failure curves in the compressive zone tends to a constant slope

defined by the asymptote angle ψa in each criterion.
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Figure 3.2: Maximum and critical normal and shear stress given by (a) HS-criterion and (b) quadratic
criterion.
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Fig. 3.3 presents plots of the corresponding dimensionless fracture toughness func-

tions Ĝc(ψ) for both HS and quadratic criteria. Although there is some similarity in

their overall tendencies, Ĝc(ψ) for HS-criterion is a convex function whereas Ĝc(ψ)

for the quadratic criterion has a plateau for ψ close to π
2 where tension switch to

compression.
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Figure 3.3: Dimensionless fracture toughness functions Ĝc(ψ) =
Gc(ψ)

ḠIc
for both HS and quadratic

criteria.

At last, both criteria in Eqs. (3.5) and (3.10) are joined to express the new method

of the CCFFM applied to LEBIM as:

σnom,c

σc,ch
= min

∆a
max

{
s(∆a),

√
µ g(∆a)

}
, (3.14)

where σnom,c is the minimum load that satisfies both criteria and produces a crack

with length acrit = ∆a. Gc,ch, σc,ch and kch are usually chosen according to the

predominant fracture mode of the studied problem in order to obtain a better under-

standing of the results.

Note that, for ∆a → 0 the functions s(∆a) and g(∆a) represent the original

LEBIM if the same particular failure criterion to the dimensionless functions of the

Eq. (3.13) is used. It is due on one hand to the equivalence between the ERR and

the tractions, and on the other hand to the equivalence between the fracture energy

and critical tractions, at a particular unbroken interface-point, as Mantič et al. (2015)

showed by Eq. (2.17) and Eqs. (2.21,2.25), respectively. This equivalence implies that

for ∆a → 0 and µ = 1 the CCFFM+LEBIM reverts into the original LEBIM, due

to the characterization of the interface failure (represented by µ = 1) and by the

infinitesimal propagation of the LEBIM (∆a→ 0). These two features of the original

LEBIM highlight the two main reasons for the application of the CCFFM to the

LEBIM:

• On one hand, it is possible to uncouple the fracture toughness, critical traction

and stiffness of an adhesive interface with µ > 1.
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• On other hand, the LEBIM is released from the imposition of an infinitesimal

propagation of the failure, because CCFFM+LEBIM is able to predict the frac-

ture onset with a finite segment of the crack ∆a at a given moment. In this

way, the abrupt failure of the interface due to adhesive defects can be modelled.

Following this same idea, it can be concluded that s(∆a → 0) =
√
g(∆a→ 0).

And it can also be said that for µ > 1, s(∆a → 0) <
√
µ g(∆a→ 0). This means

that in cases where the interface failure propagation is infinitesimal, this model of

CCFFM+LEBIM refers to the energy criterion only. This statement is further de-

veloped in the following section where the curves s(∆a) and
√
µ g(∆a) are studied.

Therefore, in any case where
√
µ g(∆a) keeps a positive growth with respect to ∆a

(i.e.
δ
√
µ g(∆a)

δ∆a > 0) the CCFFM+LEBIM will be defined by the energy criterion

only and the interface failure propagation would be infinitesimal.

3.2 CCFFM applied to LEBIM based on the stress

and energy criteria curves.

The approach of the CCFFM applied to LEBIM based on the stress and energy cri-

teria curves is the most direct method based on the formulation presented in the

previous section. Because it is based on the study of the behaviour of the functions

s(∆a) and
√
µ g(∆a), defined in Eqs. (3.5) and (3.8) respectively. This approach is

very useful for the comprehension of the CCFFM applied to LEBIM in simple cases

of interface damage. However, it is not the most versatile method for its applica-

tion in problems including multiple interface failures or with unknown damage path

behaviour. This is due to a fundamental characteristic of this approach is that the

energy criterion must be evaluated in intermediate states produced between the initial

and final failure length, ∆a.

The stress criterion directly uses the definition of the function s(x) in Eq. (3.5),

which is continuously evaluated for an interval of x from crack onset xo, to the finite

segment of the crack ∆a. Even if s(x) is defined along the possible crack path, the

evaluation of any stress criteria should always be done before the propagation of the

crack, i.e. including only undamaged points along this finite segment. According

to this approach, the interface crack onset location corresponds to the undamaged

point of maximum stress. Note that, this statement is based on the above reasoning,

since in the crack onset location xo, where (∆a → 0), the stress criterion and the

energetic criterion must coincide. However, from the general point of view of the

coupled criterion in Eq. (3.14), the result of acrit = ∆a may predict a different crack

onset location than xo. Nevertheless, exploring around the point of maximum stress

of the problem seems appropriate. Also, it should be noted that this approach is

normally used to solve cases where the damage onset location is known, with one or

two possible crack paths, i.e. n = 1 or n = 2 (see Section 2.3.3).

Based on the previous description, the first step to apply this method is to evaluate

the stress criterion for the whole undamaged interface of the problem and to determine

the position of xo using the minimum value of the curve s(x). Once the crack onset

location is defined, the propagation of the interface crack is studied, starting from
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this point only. This means that when the failure starts at xo, this method of curves

cannot explore beyond xo, even if the stress criterion was also fulfilled in another zone

of the interface.

After the evaluation of the stress criterion, the energy criterion must be satisfied.

Therefore, to initiate or propagate an interface crack by a finite increment of its length

∆a > 0 the following energy balance condition must be fulfilled

−∆Π(∆a) =

∫ ∆a

0

G(a) da ≥
∫ ∆a

0

Gc(ψ(ξ)) da ' ∆R(∆a), (3.15)

where the left and right hand side, respectively, represent the energy released (the

decrement of the potential energy −∆Π) and an estimation of the required (dissi-

pated) energy (∆R) at this (typically instantaneous) finite crack-advance.

The ERR G(a), defined by (2.16), is associated to a crack tip moving from the

position a = 0+ to a = ∆a (Lenci, 2001; Carpinteri et al., 2009) as defined in (3.16);

although strictly speaking, in the case of a crack onset the ERR G(a = 0) is associated

to an undamaged interface point at the position a = 0 (Mantič et al., 2015). This

observation may be useful in the numerical evaluation of the integral of G(a).

G(a) = GI(a) +GII(a) =
〈σ(a)〉+〈δn(a)〉+

2
+
τ(a)δt(a)

2
=
〈σ(a)〉2+

2kn
+
τ2(a)

2kt
, (3.16)

As described in Section 3.1.2, the estimation of the dissipated energy ∆R under

fracture mixed-mode is currently under discussion in the literature on FFM and sev-

eral approaches have recently been proposed (Mantič, 2009; Carraro and Quaresimin,

2014; Garćıa et al., 2015; Carrere et al., 2015). In the present work, Gc(ψ(ξ)) defines

the fracture energy (fracture toughness) required to break the spring at the crack tip

moving from the position ξ = 0+ to ξ = ∆a. The definition of ξ depends on the

path chosen for the calculation of the fracture mode mixity, as in Section 3.1.2, where

ψ = ψ1 and ξ = x, or ψ = ψ2 and ξ = a. Specifically, in this approach based on the

curves, the evaluation of ψ(ξ) in both ways are possible. Also, in the case of a crack

onset, Gc(ψ(ξ = 0)), strictly speaking, is associated to an unbroken spring at a = 0.

A generalization of the formulation proposed for pure fracture modes to a general

fracture mixed-mode leads to the following expressions:

Gc(ψ(a)) = GIc(ψ(a)) +GIIc(ψ(a)), (3.17)

where, in view of (2.21),

GIc(ψ(ξ)) =
〈σmax(ψ(ξ))〉+〈δnmax(ψ(ξ))〉+

2
=
〈σmax(ψ(ξ))〉2+

2kn
, (3.18a)

GIIc(ψ(ξ)) =
τmax(ψ(ξ))δtmax(ψ(ξ))

2
=
τ2
max(ψ(ξ))

2kt
, (3.18b)

where σmax(ψ(ξ)) and τmax(ψ(ξ)) are the maximum allowed traction components

associated to the energy criterion, and δnmax(ψ(ξ)) and δtmax(ψ(ξ)) the corresponding

maximum relative displacements, and following the original LEBIM in (2.22):

σmax(ψ) = σ̄maxσ̂max(ψ) and τmax(ψ) = σ̄maxτ̂max(ψ), or (3.19a)

σmax(ψ) = τ̄maxσ̂max(ψ) and τmax(ψ) = τ̄maxτ̂max(ψ), (3.19b)
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and the pure fracture toughness mode I and II are expressed as

ḠIc =
σ̄2

max

2kn
, and ḠIIc =

τ̄2
max

2kt
. (3.20)

Similarly to (2.24), a dimensionless function for fracture toughness Ĝc(ψ(ξ)) can be

defined by:

Gc(ψ(ξ)) = ḠIcĜc(ψ(ξ)) or Gc(ψ(ξ)) = ḠIIcĜc(ψ(ξ)), (3.21)

obviously verifying Ĝc(0) = 1 for every case of the previous equation.

The interface fracture and stiffness parameters (Gc,ch, σc,ch and kch) are usually

chosen according to the predominant fracture mode to obtain a better understanding

of the studied problem and because these parameters should be determined by suitable

experiments, possibly by applying some inverse procedures.

Following the general formulation of Section 3.1.3, the dimensionless function

g(∆a) can be defined by (3.8):

g(∆a) =

∫∆a

0
Ĝc(ψ(ξ)) dξ∫∆a

0
Ĝ(a) da

, (3.22)

Once the two dimensionless curves s(∆a) and g(∆a) have been defined, the

CCFFM can be established by Eq. (3.14). Then, the envelopes of both curves are

analysed to obtain the minimum ∆a that fulfils the two imposed criteria, as expressed

in Eq. (3.14). Three different situations that can be reached using the CCFFM +

LEBIM by the curves approach are shown in Fig. 3.4. In this figures the s(∆a) and√
µ g(∆a) curves present a different behaviour.

As mentioned previously, this approach is appropriate for interface failure where

the possible crack path is parameterized by 1 or 2 variables (all those in the figure

depend on one variable). Therefore, Fig. 3.4 shows the optimization of the two func-

tions in Eq. (3.14) by a representation of the function envelope for three representative

cases (the Figs. (c) y (d) are equivalent).

In all the plots included in Fig. 3.4, the blue zone represents the safe zone obtained

by the energy criteria and the pink zone represents the safe zone obtained by the stress

criteria. The CCFFM + LEBIM criterion predicts the minimum value of the nominal

stress (
σnom,c

σc,ch
) that satisfies both criteria producing a finite segment of crack (acrit).

In each plot, this minimum is highlighted by an orange dot.

Firstly, the similarities of the three cases in Fig. 3.4 will be described. It should

be noted that every plot is generated for µ > 1, and the function
√
µ g(∆a) (which

represents the energy criterion) always starts with a value higher than s(∆a) (which

represents the stress criterion). This is because the crack onset location in both cri-

teria is associated with the same point xo and because s(∆a→ 0) <
√
µ g(∆a→ 0),

as mentioned above. Also, the stress criterion is always represented by an increasing

function, because the failure onset location has been taken at the point with lowest

value of the stress criterion.

The differences between the three cases in the figure are determined by the be-

haviour of the energy criterion. In case (a), the function
√
µ g(∆a) advances with a

negative slope, fast enough to produce an intersection with the function s(∆a) at a
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Figure 3.4: Some examples of the CCFFM+LEBIM by the curves approach.

smaller value of ∆a than that produced by the minimum point in the energy crite-

rion. However, in case (b), the lowest nominal load is determined by the minimum of

the energy criterion curve. These two cases are named by Mantič (2008) as scenario

C (coupled scenario) and scenario E (energy scenario), correspondingly. Although

the shape of the curves are characteristic of the case under study, the parameter µ

governs the scale of the curve of the energy criterion, since higher values of µ higher

values of σnom

σc,ch
are obtained. This can determine the difference between scenario C or

E for the same problem but with different µ, and therefore different characteristics

of the interface. On the other hand, figure (c), represents a case where the energy

criterion has a positive growth with respect to ∆a. In this case the crack growth at

the interface is infinitesimal for any µ value. This case would be the same as applying

the original LEBIM with the fracture characteristics of the energy criterion interface,

i.e. with Gc,ch and σmax,ch instead of σc,ch, as shown in figure (d).
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3.2.1 Implementation of the CCFFM applied to LEBIM by

the curves method

An extended version of the computer code used in Muñoz Reja et al. (2016) is de-

scribed and tested in the following. It is based on the stress and energy criteria

functions (s(∆a) and g(∆a)) defined in the previous section. The pseudocode is

shown in Algorithm 3.1 and the variables used therein are described in Table 3.1. It

should be noticed that the algorithm can be implemented in a BEM or FEM code.

As mentioned in Section 2.4.2, specifically, two implementations of this code are

developed for 2D BEM and FEM. BEM implementation used the in-house code de-

veloped in Graciani et al. (2005). This code was extended in Távara et al. (2011)

including LEBIM at interfaces. FEM implementation uses a python script that calls

ABAQUS to solve the linear elastic solutions when necessary. The interface behaviour

in ABAQUS is included by means of a user subroutine UMAT presented in Távara

et al. (2018).

Other implementations of CCFFM in FEM have recently published, e.g., Li et al.

(2019) and Doitrand et al. (2020) developed general purpose numerical procedures,

whereas l’Armée and Becker (2019) developed a numerical procedure suitable to study

failure modes of single lap adhesive joints.

The input data of the code are the geometrical and mechanical characteristics

of the solids and the interfaces among them, and the boundary conditions of the

analysed case.

The index of the main loop in the pseudocode is k, representing a finite crack

advance. For each step k, the code calculates the critical load that generates the new

finite interface crack growth, ∆akFFM. The critical load, σnom,c, is provided by the

load factor fkFFM which multiplies (proportionally) the loads imposed to the model

(introduced as boundary condition). Following the notation of the previous section:

σnom,c = fkFFM · σnom.

In the first part of the k loop, the load factors needed to break each individual

interface node n (“spring”) using the stress criterion are calculated (fns ). The obtained

load factors define the discrete form of function s(∆a) along the interfaces. The

minimum value obtained for these factors defines the position where crack onset occurs

(initiates) for each step k. Then, three possible crack paths are proposed (starting

from the node where crack onset occurs) for crack growth: clockwise, anticlockwise

or symmetrical growth. Subsequently, the code propagates, according to the three

possible paths with finite increments (virtual cracks) ∆ajvir, to obtain the discrete

form of curve
√
µ g(∆a) using the load factor f je (∆ajvir) by means of the energy

criterion. For every virtual crack path, the load factor fdFFM, giving the minimum

load that satisfies both the stress and the energy criteria, is obtained using the discrete

envelope function of s(∆a) and
√
µ g(∆a). Finally, the load factor in every step k

(fkFFM) is set as the lowest fdFFM value.

In the particular cases where an a priory knowledge about the behaviour of stress

and energy criteria functions, s(∆a) and g(∆a), is available, the presented algorithm

can be easily modified to save computing time to exit the optimization loops once

the foreseen situation representing the global minimum of the discrete envelope func-

tion is achieved. For example, if the algorithm finds the first local minimum which
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presumably coincides with the global minimum in some situations.
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Table 3.1: Variables used in the pseudocode

Ni Interface node number, from N1 to Ntotal

(sequential numbering of interface nodes is assumed)
EC Energy Criterion
SC Stress Criterion
ECLF Energy Criterion Load Factor
SCLF Stress Criterion Load Factor
NO Node where the damage Onset initiates in each step k
d Number of the three possible damage directions starting from

NO (d = 1, 2, 3) for every step k
NLNI Last Node of the Interface for a direction d

∆ajvir Finite segment of the crack.
If d=1 its length is obtained by deactivating nodes
from NO to j (j > NO)
If d=2 its length is obtained by deactivating nodes
from j to NO (j < NO)
If d=3 deactivated nodes are from 2NO − j to j (j > NO)

fdFFM Load factor obtained by CCFFM+LEBIM for each d direction

∆adFFM Finite segment of the crack by CCFFM+LEBIM for each d direction

fkFFM Final load factor by CCFFM+LEBIM for each step k.

∆akFFM Final segment of the crack by CCFFM+LEBIM for each step k
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Algorithm 3.1: General pseudocode of CCFFM applied to LEBIM by
curves method for a numerical code based on BEM or FEM. The data used
in this code are defined in Table 3.1

for k step do
Solve the system of equations by BEM or FEM;
for n=N1,...,Ntotal do

fns = tnc /t
n // fns is the SCLF at the node n by (3.5a)

Obtain fmin
s =min

n
(fns )=fNO

s at the node NO;

Define three possible damage directions starting from NO, d:
1. Clockwise
2. Anticlockwise
3. Symmetrical growth

for d=1,...,3 do
for j=NO,...,NLNI(d) do

if d=1 or 2 then
Deactivate/break interface nodes from NO to j. Then, the virtual
crack ∆ajvir, is set

else // d=3
Deactivate/break nodes from 2NO − j to NO (j > NO) and
deactivate/break nodes from NO to j. Then, the virtual crack,
∆ajvir, is set;

Solve the system of equations by BEM or FEM for ∆ajvir;

Obtain f je // f je is the ECLF for the virtual crack ∆ajvir by

(3.10)

if f je ≥ f js then
f jenv = f je // f jenv is the discrete envelope representation of

f je and fns
else

f jenv = f js

Set fdFFM and ∆adFFM using the lowest value of f jenv;

Set fkFFM and ∆akFFM using the lowest value of fdFFM;

3.3 CCFFM applied to LEBIM based on the Prin-

ciple of Minimum Total Energy subjected to a

Stress Condition (PMTE-SC).

In a similar way as the previous CCFFM approach applied to LEBIM, the present

approach is also used to predict the crack onset and/or growth by finite increments

of the crack length along a linear elastic interface and it is based on the formulation

exposed in Section 3.1. The main difference with the previous methodology is that

this approach, based on the Principle of Minimum Total Energy subjected to a Stress

Condition (PMTE-SC), is more versatile for solving complex fracture problems. This

is mainly because it is more suitable for a general computational implementation of a

time stepping procedure covering problems for initiation and propagation of several

cracks. Moreover the total energy can be formulated as a separately convex functional

in terms of the displacements and damage variable fields, allowing to apply efficient
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and stable optimization algorithms to minimize the total energy.

This new formulation of the coupled criterion was introduced by Mantič (2014),

where several aspects and applications of the principle of minimum total energy to

the crack onset and propagation in composites were analysed, assuming a quasistatic

problem evolution (i.e. inertial forces are neglected). Following the formulation of

the coupled criterion proposed by Mantič (2014) and the analysis given in Section 2.3

in this thesis, the coupled criterion can be redefined as:

min
∆a⊂Aσ

Π(∆a) +R(∆a), (3.23)

where Π(∆a) is the potential energy of the system and R(∆a) is the energy dissipated

after an interface damage advance (new interface crack surface) ∆a. Aσ ⊂ ΓC is the

set of all (still) undamaged interface points on the interface (ΓC) where the stress

pointwise criterion defined in (3.5a) is satisfied before the considered crack advance

happens. ∆a ⊂ ΓC defines a possible crack advance, i.e. it represents the set of points

going to be damaged in this crack advance.

The key idea behind this formulation is that a new crack surface can only appear

in those regions where sufficiently high stresses are applied before the fracture process

occurs. The stress criterion would work as a filter for the PMTE since in some cases

this criterion, without considering a stress condition, could erroneously predict a crack

propagation for too low applied loads, e.g., in the test of a bar subjected to tensile

load, discussed by Leguillon (2002) and mentioned in Section 2.3.

(a) (b)

σnom

u=0

ΓC

σnom

u=0

ΓC

Aσ

Stress criterion

Figure 3.5: (a) Undamaged points of the interface ΓC, and (b) Aσ representation (the set of points
that satisfy the pointwise stress criterion)

In Fig. 3.5 the set Aσ obtained after the application of the stress criterion is

schematically represented, for a plane elastostatic problem including several interfaces
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(ΓC) shown in blue. For a given external load σnom, the undamaged points along

ΓC whose traction vector is greater than their critical traction vector are obtained

by computing a stress criterion (3.5a). Note that the set Aσ depends on the load

applied in each case and could be empty (Aσ = ∅) for sufficiently small applied loads.

However, Aσ will not be an empty set when the external load is large enough.

Once the set of points which can be damaged is known, i.e. which points will

be active when applying the principle of minimum total energy, the possible new

crack surfaces leading to the solution of the above minimization problem acrit must

be explored. As indicated by Mantič (2014), the PMTE-SC leads to searching of a

minimum by evaluating the total energy after the appearance of new crack surfaces.

However, in complex problems, in addition to a global minimum, several local minima

may appear which, especially those close to the initial configuration, can make difficult

to reach the global minimum. For this reason, special care should be taken when

exploring possible damaged areas within Aσ. Thus, suitable starting subsets Dn ⊂ Aσ
for n ∈ [1, N ] should be proposed. The number N can be given, e.g., by the number of

locations where damage could initiate, or the number of their possible combinations,

which will be explored for the search of the total-energy minimum.

It is suitable to define a damage variable, denoted here as ζ, which describes

the damage at each interface point, being 0 for a fully damaged point and 1 for an

undamaged one. This means that for a point x ∈ Dn, the damage variable associated

to this starting subset Dn vanishes at x, i.e. ζn(x) = 0, whereas for a point y in the

complementary subset Aσ \Dn, ζn(y) = 1. Typically, at least the empty set ∅ and the

full set Aσ are among the possible subsets Dn. A heuristic procedure, e.g., based on

the level sets given by the stress criterion and/or the components of ΓC with nodes in

Aσ, can be used to define the starting subsets Dn leading to an approximation of the

minimum of the total energy computed at acceptable computational costs. It can be

expected, for simple cases, that all the Dn will result in the same global minimum.

(a) (b)

σnom

u=0

ΓC

Aσ

σnom

u=0

ΓC

Aσ

σnom

u=0

ΓC

Aσ

(c)

D =Ø1
D =2 Aσ D ⊂3 Aσ

Figure 3.6: Examples of suitable subsets Dn ⊂ Aσ .
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An example of three possible Dn configurations are represented in Fig. 3.6. Recall

that these Dn are subsets of Aσ shown in Fig. 3.5. Figs. 3.6 (a) and (b) correspond

to the empty set (all points within Aσ are undamaged) and the full set (all points in

Aσ are damaged), respectively. At least these two subsets should always be used in a

minimization of the total-energy. In Fig. 3.6 (c) the minimization of the total energy

starts considering all points in the red zone (D3) as damaged. The rest of the points

included in Aσ \D3 (yellow zone) are considered as undamaged.

Once the N starting damage configurations are defined, each of them is used in

a minimization procedure to obtain the acrit associated to the configuration with the

lowest total energy. Note that acrit can be continuous or discontinuous along the

interface components. It can also be possible that the minimum energy is associated

to a no crack advance, i.e. acrit = ∅, or viceversa to a maximum crack advance, i.e.

acrit = Aσ. Therefore, the interpretation that the damage can abruptly coalescence

from several defects seems to be in line with the present approach of the FFM.

The minimization problem described in Eq. (3.23) can also be rewritten in terms

of the energy variation from an initial state a0 (even if it is previously cracked or not)

to a final state (i.e. after the failure) acrit. It should be noticed that starting from an

initial configuration a0 (either with or without a previous damage), a new damage

can only appear along the interface if Π(∆a0) + R(∆a0) ≥ Π(∆acrit) + R(∆acrit).

Therefore,

min
∆a∈Aσ

∆Π(∆a) + ∆R(∆a) (3.24)

is equivalent to Eq. (3.23), and it is referred to in Mantič (2014) as the (incremental)

principle of maximum decrease of the total energy.

Obviously, in Eq. (3.24), the original condition of the coupled criterion in Eq. (3.1.2)

is fulfilled, since in the initial configuration ∆Π(∆a0) + ∆R(∆a0) = 0. It can also

be seen that by minimizing ∆Π(∆a) + ∆R(∆a) not only the energy condition is ful-

filled (which can be satisfied by many failure configurations) but the minimum energy

state of the system is being looked for. Therefore, the novel formulation presented by

Mantič (2014) is able to predict the damage along the interface in those cases where

the prediction by the original formulation (Eq. (2.14)) of the coupled criterion is not

unique. However, the critical load predicted by both formulations is be the same.

A new theoretical formulation of the CCFFM+LEBIM introduced by Mantič

(2014) is the basis for the first computational implementation of PMTE-SC described

in the following. Fig. 3.7, extracted from Mantič (2014), represents four typical sce-

narios when applying the PMTE-SC:

(a) The possible crack advances along the interface part where the stress criterion

is satisfied (Aσ) do not fulfill the energy criterion. This is due to the fact that

∆Π(∆a) + ∆R(∆a) > 0 in Aσ zone, and therefore the interface failure remains

the same as in the initial state a0 = acrit.

(b) The maximum crack advance along the interface part where the stress crite-

rion is satisfied (Aσ) fulfills the energy criterion. This allows a crack onset by

tunneling through the total energy barrier ∆Π(∆acrit) + ∆R(∆acrit) = 0.

(c) The stress values are high enough to satisfy the stress criterion in a long part

of the interface (Aσ). Several of the possible crack advances fulfill the en-
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a crita =0 a 0 a crit

a 0 a crit a crita 0

Figure 3.7: Typical scenarios of the application of the principle of minimum total energy subjected
to the stress condition (from Mantič (2014)).

ergy criterion. This situation allows damage to occur by tunneling through

the total energy barrier and the subsequent unstable growth of the crack with

∆Π(∆acrit) + ∆R(∆acrit) < 0.

(d) The stress values are high enough only in a small region, without covering the

whole decreasing part of potential energy graph shown in the figure, ∆Π(∆acrit)+

∆R(∆acrit) < 0.

3.3.1 Implementation of the Alternating Minimization Algo-

rithm for PMTE-SC.

This section presents the algorithm based on the PMTE-SC introduced in the previous

section and implemented in a FEM code. Although, this algorithm can also be

implemented in a BEM code, this implementation is not included in the present

thesis. A Python script is developed to be used together with the commercial code

ABAQUS and the UMAT described in Section 2.4.2 and developed in Távara et al.

(2018).

It should be noticed that the algorithm introduced herein, unlike the previous one

(Algorithm 3.1), does not provide the minimum load that satisfies both the stress and

the energy criteria, but predicts the finite interface segment that fails for a determined
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load. Therefore, the definition of steps in these pseudocodes is very different. While

in Algorithm 3.1, the load and the damage in each step is predicted by the algorithm

itself, in the present Algorithm 3.2, the load is imposed by the user and the produced

damage is provided by the algorithm. Then, in this pseudocode, each load step k

is defined by a specific imposed load and the results are the variable ζk describing

the damage configuration and the displacement field uk. It should be noted, that

for a specific load the damage may occur after several iterations m, since the initial

configuration of each step m (i.e. uk,m and ζk,m) may change even if the load remains

constant.

In the first part of the code, the k-th load provides the zone of the interface that

satisfies the stress criterion Ak,mσ . From Ak,mσ , the suitable subsets Dk,m
n are set

for the iteration k,m. In particular, only two subsets are considered in this code:

Dk,m
1 = ∅ and Dk,m

2 = Ak,mσ , leaving for future developments the exploration of other

suitable subsets.

The main novelty of the pseudocode is included in its second part, since it deals

with the minimization of the total energy in Eq. (3.23) for each suitable starting

subset Dk,m
n , defining the first damage configuration ζk,mn for each n. Following

Roub́ıček et al. (2013); Vodička et al. (2014) and Roub́ıček (2015), in the present

implementation, an Alternating Minimization Algorithm (AMA) is designed to split

the minimization procedure shown in Eq. (3.23) into the separate minimization with

respect to the displacement field of the system uk,mn and then with respect to the

damage variable ζk,mn . Thus, each j-th AMA iteration is divided in two:

i) Firstly, the displacement field uk,mn,j is obtained by minimizing the total energy

in Eq. (3.23) for a starting damage configuration defined by Dk,m
n . Notice that,

this is the direct solution obtained by FEM, since this method provides the

displacements in all nodes of a FEM mesh for a stable equilibrium configuration

when the potential energy is minimal (Zienkiewicz et al., 2005). Obviously the

dissipated energy does not change here.

ii) Secondly, for the displacement field obtained in (i), the damage configuration

ζk,mn,j in Eq. (3.23) is minimized from the same first damage configuration Dk,m
n .

Then, the damage configuration ζk,mn,j is defined by the damage variable at each

element alongAk,mσ . The minimization with respect to the damage configuration

(ζk,mn,j ) can be carried out by the simplex algorithm or by a loop over every

element in Ak,mσ comparing the change of the elastic strain energy in the element

and the change of the dissipated energy for either element breaking or healing. It

should be noticed that during element breaking, the elastic energy in the element

vanishes and the dissipated energy associated with the element increases (it is

given by the associated fracture energy). However, during element healing the

elastic energy in the element increases (it is given by the relative displacements

of the end-points of the broken element) and the dissipated energy associated

to the element decreases (vanishes).

The AMA is repeated until a difference of the damage variable between two steps

less than ε is obtained, for all Dk,m
n . Then, comparing solutions for all n, the config-

uration uk,mn and ζk,mn that provides the lowest Π + ∆R values is chosen. Iterations
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loop on m continues if the damage keep propagating for the same applied load (re-

lated to a step k). Note that ∆Π = Πm − Πm−1, but Πm−1 does not vary at each

step m. Therefore it is similar to minimize ∆Π than minimize Πm. However, from a

computational point of view in FEM, the second option is more direct.

It may also happen, that for an imposed load (step k) the interface is completely

damaged after several m steps, not being able to properly capture a possible snap-

through behaviour. To solve this issue, the load at k-th step could start from zero

each time a damage occurs and allowing only one iteration in m.
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Table 3.2: Data used in the pseudocode.

Variables used in the pseudocode:

f Imposed load or displacement in the study case.
∆f Load increment between two steps.
ζ(element) Damage variable for each element along the interface.

0 value means damaged interface element
(with zero stiffness in tension and shear).

1 value means undamaged interface element
(with full initial stiffness).

ζ Damage configuration of ΓC given by all values ζ(element).
u Displacement field
ψ Fracture mode mixity associated to ψ2(a) described in Section 3.1.2,
tc(ψ) Critical traction modulus for the stress based criterion.
Gc(ψ) Critical fracture energy for the energy based criterion.
Aσ Set including all undamaged elements that satisfy the stress criterion
D Proposed subset of Aσ that contains damaged elements assumed

before the minimization. Note that Aσ \D is composed for the rest of the
undamaged elements of Aσ.

N Number of considered starting damage configurations.
ε Difference of the damage variable between two AMA iterations.

Each variable defined above may be affected by the following subscripts and superscripts:

k Load step.
m Iteration within a load step.
n First damage configuration within an iteration. n ∈ [1, N(k,m)], with N(k,m) ≥ 2
j AMA iteration
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Algorithm 3.2: General pseudocode for an Alternating Minimization Algo-

rithm for PMTE-SC a. The data used in this code are defined in Table 3.2

for k step do

The iteration m is initialized with m = 1 ;

if k=1 then

The variables are set:


fk selected based on original LEBIM

ζk = ∅ and ζk,m = ∅
uk = ∅ and uk,m = ∅

else

The variables are set:


fk = fk−1 + ∆f

ζk = ∅ and ζk,m = ζk−1

uk = ∅ and uk,m = ∅

while ζk = ∅ do
m=m+1 ;

Minimize uk,m−1 7→ Π(fk, uk,m−1, ζk,m−1); // FEM calculation

Update uk,m = uk,m−1;

From uk,m compute ψk,m and then: tc(ψ
k,m) and Gc(ψ

k,m) on ΓC ;

Set Ak,mσ on ΓC by stress criterion ;

if Ak,mσ = ∅ then
Set solution uk,m and ζk,m = ζk,m−1

else

Define Dk,m
n ⊂ Ak,mσ for n ∈ [1, N(k,m)], with N(k,m) ≥ 2;

Define the first ζk,mn for every N ;

for n = 1 to N(k,m) do

j = 1;

ζk,mn,j = ζk,mn ;

while ‖ζk,mn,j −ζ
k,m
n,j−1‖ ≤ ε do

j = j + 1;

minimize uk,mn,j 7→ // FEM calculation

7→ Π(fk, uk,mn,j , ζ
k,m
n,j−1) +R(Gc(ψ

k,m), ζk,mn,j−1−ζ
k,m−1) ;

minimize ζk,mn,j 7→ Π(fk, uk,mn,j , ζ
k,m
n,j ) +R(Gc(ψ

k,m), ζk,mn,j −ζ
k,m−1)

subject to 0 ≤ ζk,mn,j (elem) ≤ ζk,m−1(elem) ∀ elements ∈ Ak,mσ
and ζk,mn,j (elem) = ζk,m−1(elem) ∀ elements 6∈ Ak,mσ ;

Set solution uk,mn = uk,mn,j and ζk,mn = ζk,mn,j ;

Store configuration

[uk,mn , ζk,mn ,Π(fk, uk,mn , ζk,mn ) +R(Gc(ψ
k,m); ζk,mn −ζk,m−1)];

Set solution uk,m = uk,mn and ζk,m = ζk,mn for the n with the lowest value

of Π(tk, uk,mn , ζk,mn ) +R(uk,m−1; ζk,mn −ζk,m−1) ;

Set solution uk = uk,m and ζk = ζk,m;

aThis algorithm has been developed in collaboration with V. Mantič (Universidad de Sevilla) and
C.G. Panagiotopoulos (FORTH Hellas, Crete).
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Double cantilever beam: A

comparison between the two

approaches of the CCFFM

applied to LEBIM.

4.1 Introduction

The main objective of this chapter is to compare the predictions of the interface

failure for a specific case by the two approaches of the coupled criterion applied to

the LEBIM which are exposed in Section 3.2 and Section 3.3. For this purpose,

two analytical studies, based on the curve method and the PMTE-SC, have been

developed and applied to the Double Cantilever Beam (DCB) test. For this study an

Euler-Bernoulli beam model has been used as well as an elastic interface to model

the joint.

The DCB is a well-known test used to determine the fracture toughness in pure

fracture mode I of adhesively bonded joints. This test allows a good understanding

and characterization of the adhesive layer which is very important in the quality eval-

uation of adhesively bonded joints. In particular it allows determining the parameters

that characterize their resistance to fracture and failure. The DCB test is also used

as a prediction method for delamination growth and to compare the performance of

different composite laminates. A review of several applications of this test can be

found in Garg (1988) and Tay (2003).

In Section 4.2, an analytical model is developed to obtain the stress and the

displacement fields along the interface between the two beams of the test. Similar

models were developed by Volkersen (1938), Goland and Reissner (1944), Kanninen

(1973), Erdogan (1997), Benveniste and Miloh (2001), Lenci (2001) and Dimitri et al.

(2017), among other authors. With this model, the CCFFM+LEBIM is applied using

47
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the curves methodology and the PMTE-SC methodology, developed in Section 4.3

and Section 4.4. This investigation studies the effect of applying a displacement

control or a load control, for each of the two approaches of the CCFFM + LEBIM.

The interface is characterised by the µ parameter expressed in mode I. Both studies

will be carried out separately and with different parametrization.

One of the most important result of this chapter is the detailed study of the

PMTE-SC applied to the DCB test. Since it allows the analysis of the behaviour

of this failure methodology applied to the delamination of an interface. In section

Section 3.3, the interpretation of the energy balance introduced by Mantič (2014) was

developed. Where the increment of the potential energy plus the increment of the

energy dissipated at the abrupt formation of a new delamination must be equal or

smaller than zero:

∆Π(∆a) + ∆R(∆a) ≤ 0, (4.1)

i.e., Π(a) + R(a) should keep constant or decrease for a crack onset, being R(a)

the total dissipated energy during the failure of the interface of size a and Π(a) the

stored elastic energy U(a) plus the potential energy of the external load Πext = −W .

Therefore, the study of the minimization of the function Π(a)+R(a) provides a crack

onset (∆a) with the least possible damage and with the minimum possible energy, in

a zone (∆a) of the undamaged interface that verifies the stress criterion.

Specifically, in the case studied in this chapter, the whole interface between the

two beams of the DCB is a potential failure zone, starting from a pre-crack a = 0 to

the end of the interface. However, the crack will only grow in those zones where the

stress criterion is satisfied and which will depend on the applied load. In these zones,

where the stress criterion is verified, the function Π(a) +R(a) must be minimized for

both the displacement control and the load control tests.

As can be seen in Section 4.2.3 of this chapter, there are no differences in the stress

field between the two types of test, but there is a difference in the energy behaviour

of the DCB test when the load control or the displacement control are imposed.

It is important to highlight that in both tests a crack growth in mode I is pre-

dominated and therefore the shear stresses are omitted. Hence, the function ψ(ξ) is

always zero, even if it is defined by the stress state at each point x of the potential

crack surface before the crack onset or by the ratio of ERR components of a virtual

crack growing between the initial configuration and the finite crack produced by the

crack onset (see Section 3.2).

4.2 Analytical model for the Double Cantilever Beam

Referring to the free-body diagram of an element of length dx represented in Fig. 4.1,

the following equilibrium equations can be written for the upper beam:

dV (x)

dx
+ b σ(x) = 0 (4.2)

dM(x)

dx
− V (x) = 0, (4.3)

where, V (x) and M(x) are the shear force and the bending moment per unit width,

respectively; and σ(x) is the normal stress component along the adhesive.
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Figure 4.1: Double Cantilever Beam test configuration and equilibrium of an infinitesimal element
of a beam. The bar over u and P means the imposed limit conditions.

The kinematic equations for each of the beams are:

χ(x) =
dϕ(x)

dx
(4.4)

ϕ(x) =
dw(x)

dx
, (4.5)

where ϕ(x), χ(x) and w(x) are the rotation, curvature and transverse displacement

respectively.

Also, the constitutive equation for each beams is

χ(x) =
12M(x)

E′h3b
, (4.6)

where, E′ = E
(1−ν2

b )
is the elastic modulus for plane strain conditions for an isotropic

material.

As the adhesive layer is modelled by a spring distribution, then the normal stress

component is directly related to its respective relative displacement, δn, between the

adherents. Then, the Euler-Bernoulli beam kinematical assumption yields

σ(x) = knδn(x) = 2knw(x), (4.7)

where kn represent the normal stiffness of the adhesive layer or in a broader view the

stiffness of the bonded joint.

Differentiating Eq. (4.5) and accounting for the Eqs. (4.4) and (4.6) we obtain

d2w(x)

dx2
=

12M(x)

E′h3b
(4.8)

Differentiating Eq. (4.8) and accounting for the Eq. (4.3) we get

d3w(x)

dx3
=

12V (x)

E′h3b
(4.9)
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Differentiating Eq. (4.9) and accounting for the Eqs. (4.2) and (4.7) we get

d4w(x)

dx4
+

24knw(x)

E′h3
= 0 (4.10)

Note that, considering Eq. (4.7) and the previous Eq (4.10), a similar differential

equation for the normal stress component is obtained:

d4σ(x)

dx4
+

24knσ(x)

E′h3
= 0 (4.11)

In order to get dimensionless expressions, the characteristic length parameter lch,

relating the stiffness of the beam to that of the interface, is defined in a similar way

as in Dimitri et al. (2017) and Kanninen (1973):

lch = 4

√
E′h3

6kn
. (4.12)

Table 4.1: Dimensionless variables and parameters.

ξ = x
lch

λ = l
lch

η = h
lch

α = a
lch

ŵ = w
ū

σ̂ = σ
P/b lch

Then, Eqs. (4.10) and Eqs. (4.11) can be rewritten in terms of the dimensionless

parameters defined in Table 4.1 as:

ŵiv(ξ) + 4ŵ(ξ) = 0 (4.13)

σ̂iv(ξ) + 4σ̂(ξ) = 0 (4.14)

where the derivatives are now taken with respect to ξ. To solve (4.14), first its

characteristic (fourth-order) equation is written as

q4 + 4 = 0 (4.15)

and the four roots of Eq. (4.15) can be expressed as:

q1,2 = 1± i, q3,4 = −1± i, (4.16)

Finally, the dimensionless displacement ŵ(ξ) and stress σ̂(ξ) can be expressed in

a similar way as in Dimitri et al. (2017):

ŵ(ξ) = eξ(C1 sin ξ + C2 cos ξ) + e−ξ(C3 sin ξ + C4 cos ξ) (4.17)

σ̂(ξ) = eξ(C1 sin ξ + C2 cos ξ) + e−ξ(C3 sin ξ + C4 cos ξ) (4.18)

where C1, . . . , C4 are integration constants to be determined from the boundary con-

ditions.
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Figure 4.2: Boundary conditions used to model the DCB test under displacement control.

4.2.1 Displacement field solution along the interface under dis-

placement control.

The four boundary conditions are obtained by substituting the values of the shear

force, bending moment and the displacement at the extreme of the beams into the

previous equations.

As Fig. 4.2(b) represented, the first two boundary conditions are given by evalu-

ating Eqs. (4.8) and (4.9) at x = 0:

ŵ′′(0) = 0 (4.19)

ŵ′′′(0) = 0 (4.20)

For the third and fourth boundary conditions application is necessary to write

the reaction P (ū) as a function of w(x). According to Fig. 4.2(b) and Eq. (4.9) this

relation can be obtained as:

w′′′(l − a) =
−12P (ū)

E′h3b
(4.21)

The third boundary condition can be seen in Fig. 4.2(a) where the displacement

applied at the extreme of the beams is ū. With the relation between P (ū) and

w′′′(l− a) the third boundary condition can be written in terms of the dimensionless

parameters:

ŵ(λ− α) + ŵ′(λ− α)α− ŵ′′′(λ− α)
α3

3
= 1 (4.22)

Finally, the last boundary condition must satisfy that M(l − a) = Pa. Therefore

from Eq. (4.8) and Eq. (4.21) the following boundary condition can be obtained:

ŵ′′(λ− α)− ŵ′′′(λ− α)α = 0 (4.23)
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The system of equations is solved using the software Wolfram Mathematica. The

displacement field obtained depends on three of the dimensional parameters defined

in the Table 4.1 (ξ, α and λ). However, only ξ and α, will change in the rest of

the problem formulation. Since ξ refers to any point along the interface between the

beams and α refers to the crack tip location. Therefore, in the rest of the formula-

tion, the displacement field is written according to these two variables only. Thus,

Eq. (4.24) represents the solution of the displacement field along the interface for an

undamaged point ξ and an initial crack length α :

ŵ(ξ, α) =

[
− 3
(

e3α+ζ+λ + eα−ζ+3λ
)
α cos (α− ζ − λ)+

+ 3 e3α−ζ+λ
((
− 1− e2ζ +α

)
cos (α+ ζ − λ)− e2ζ

(
− 1 + α

)
sin (α− ζ − λ)

)
−

− 3 e3α−ζ+λ
((
α+ e2ζ(−1 + 2α)

)
sin (α+ ζ − λ)

)
+

+ 3 eα−ζ+3λ

((
1 + e2ζ(1 + α)

)
cos (α+ ζ − λ) + 2 cos (ζ) sin (α− λ)

)
+

+ 3 eα−ζ+3λ α

(
sin (α− ζ − λ) + (2 + e2ζ) sin (α+ ζ − λ)

)]/
[

e4α

(
− 3 + 2α

(
3 + (−3 + α)α

))
+ e4λ

(
3 + 2α

(
3 + α(3 + α)

))
+

2 e2(α+λ)

(
− 4α3 + 2α

(
− 3 + α2

)
cos
(
2(α− λ)

)
+
(
3− 6α2

)
sin
(
2(α− λ)

))]
(4.24)

The displacement at the crack tip will also be necessary, for the rest of the problem

development, which is obtained by evaluating ξ = λ− α:

ŵ(λ− α, α) =

[
3 e4α

(
− 1 + α

)
+ 3 e4λ

(
1 + α

)
−

− 6 e2(α+λ)

(
α cos

(
2(α− λ)

)
− sin

(
2(α− λ)

))]/
[

e4α

(
− 3 + 2α

(
3 + (−3 + α)α

))
+ e4λ

(
3 + 2α

(
3 + α(3 + α)

))
+

2 e2(α+λ)

(
− 4α3 + 2α

(
− 3 + α2

)
cos
(
2(α− λ)

)
+
(
3− 6α2

)
sin
(
2(α− λ)

))]
(4.25)

4.2.2 Stress field solution along the interface under load con-

trol.

The four boundary conditions are obtained by substituting the values of the shear

force and the bending moment at x = 0 and x = l − a as shown in Fig. 4.3(b).

Thus, the first two boundary conditions are given by evaluating Eqs. (4.8) and

(4.9) at x = 0. These boundary conditions can be expressed in terms of the normal
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Figure 4.3: Boundary conditions used to model the DCB test with load control.

stress component, see Eq. (4.7):

σ̂′′(0) = 0 (4.26)

σ̂′′′(0) = 0 (4.27)

In the third boundary condition V (l− a) = −P̄ must be fulfilled and from Eqs. (4.9)

the following expression can be obtained:

σ̂′′′(λ− α) = −4 (4.28)

And the last boundary condition is obtained from Eq. (4.8) to satisfy M(l− a) =

P̄ a.

σ̂′′(λ− α) = 4α (4.29)

In a similar way as done for the analysis under displacement control, this system

is solved using Wolfram Mathematica. Then, the stress distribution along the inter-

face is obtained which depends on the same parameters and variables as the solution

defined in Section 4.2.2. Thus, the following function defines the normal stress com-

ponent at an undamaged point ξ within an undamaged zone of the interface and an

initial crack length α:
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σ̂(ξ, α) =

[
− 2
(

e3α+ζ+λ + eα−ζ+3λ
)
α cos (α− ζ − λ)+

+ 2 e3α−ζ+λ
((
− 1− e2ζ +α

)
cos (α+ ζ − λ)− e2ζ

(
− 1 + α

)
sin (α− ζ − λ)

)
−

− 2 e3α−ζ+λ
((
α+ e2ζ(−1 + 2α)

)
sin (α+ ζ − λ)

)
+

+ 2 eα−ζ+3λ

((
1 + e2ζ(1 + α)

)
cos (α+ ζ − λ) + 2 cos (ζ) sin (α− λ)

)
+

+ 2 eα−ζ+3λ α

(
sin (α− ζ − λ) + (2 + e2ζ) sin (α+ ζ − λ)

)]/
[

e4α + e4λ +2 e2(α+λ)

(
− 2 + cos

(
2(α− λ)

))]
(4.30)

Note that, although the numerator of Eq. (4.30) is proportional to the numerator

of Eq. (4.24), the solutions of the test under displacement control and under load

control are different.

For the rest of the problem formulation, normal stresses at the crack tip are

obtained by evaluating ξ = λ− α:

σ̂(λ− α, α) =

[
2 e4α

(
− 1 + α

)
+ 2 e4λ

(
1 + α

)
−

− 4 e2(α+λ)

(
α cos

(
2(α− λ)

)
− sin

(
2(α− λ)

))]/
[

e4α + e4λ +2 e2(α+λ)

(
− 2 + cos

(
2(α− λ)

))]
(4.31)

4.2.3 Stresses distribution and displacement field along the

interface for a specific case.

In order to analyze the behaviour of the solutions for the stress and displacement

fields obtained in the previous sections, the data included in Table 4.2 are used to

graphically represent the normal stress component and the displacement for a specific

interface. The obtained values of the dimensionless parameters defined in Table 4.1

are also presented in Table 4.2.

Fig. 4.4 (a) show the obtained stress and displacements distribution for load con-

trol and displacement control respectively. The distribution are presented in their

dimensionless form, for an initial crack length α = 0. It should be noticed that

the nondimensionalization is obtained using the boundary conditions at the end of

the beam for each configuration. Results in Fig. 4.4 (b) indicates that the solution

of the dimensionless displacement field under displacement control is just twice the

dimensionless stress distribution under load control.

Fig. 4.5 represents the dimensionless stress and displacement at the crack tip as it

moves from 0 to λ. It can be seen that the good agreement between the displacement
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Table 4.2: Default mechanical and geometrical characteristics used for the debond analysis of the
DCB test.

l(mm) h(mm) b(mm) a(mm) E(GPa) ν

Beams 237 1.5 1 0 135 0.3

kn(MPa/µm)
Adhesive 0.30

Characteristic length: lch=4.08388mm

Dimensionless
λ=58.033 α=0.000 η=0.367

parameters
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Figure 4.4: ŵ(ξ, 0) under displacement control and σ̂(ξ, 0) under load control for α = 0.

and stress distribution in Fig.4.4 is lost as the crack length α increases. This due to

the evolution of both solutions is very different for each boundary condition at the

end of the beam. While the displacement at the crack tip under the displacement

control, ū, gradually decreases, the stress at the same point and under load control,

P̄ , significantly increases. These different behaviours of both solutions will lead to a

great difference in the failure evolution along the interface for each test.
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Figure 4.5: ŵ(λ− α, α) under displacement control and σ̂(λ− α, α) under load control at the crack
tip.

4.3 CCFFM applied to linear-elastic interfaces for

the DCB under displacement control.

4.3.1 Solution obtained by the stress and energy criteria curves.

Following the theoretical concepts exposed in Section 3.2, for the specific case of the

DCB test under displacement control, the ERR can be defined for a point associated

with the crack tip whose position in this system is (λ− α), as:

G(λ− α) = 2knū
2ŵ2(λ− α, α) = 2knū

2Ĝ(λ− α) with Ĝ(λ− α) = ŵ2(λ− α, α)

(4.32)

where α can be interpreted as the “virtual advance” of the crack tip in the energy

criterion framework. On the other hand, in the stress criterion framework, α has a

“fixed position” representing the initial position of the crack tip.

Therefore, the energy criterion can be defined as:

2knū
2

GIc
≥ g(∆α) con g(∆α) =

∆α∫ α+∆α

α
Ĝ(λ− α) dα

(4.33)

depending on a finite crack increase ∆α.

To be consistent with the nondimensionalization used in the previous sections and

to be able to subsequently compare the results of the test under displacement control

and load control, the definition of critical displacement as wc = σc

2kn
will be used,

where σc is the critical normal stress for pure mode I. Note that, the stress criterion

is evaluated on the whole undamaged interface (λ − α − ∆α ≤ ξ ≤ λ − α), and it

must be satisfied in the same ∆α zone that the energy criterion:
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if s(ξ) =
1

ŵ(ξ, α)
then

ū

wc
≥ s(∆α) for all ξ, λ−∆α ≤ ξ ≤ λ

and for a specific value of α

(4.34)

Finally, if the parameter µ defined in Section 3.1.3 is rewritten according to the

critical displacement (µ = GIc

2knw2
c
) the CCFFM by curves can be expressed as:

ū

wc
≥ ūf

wc
= min

∆α
max

{
s(∆α),

√
µ g(∆α)

}
(4.35)

where ūf is the minimum displacement applied to the beam end that satisfies both

criteria and produces a crack with length ∆αc = ∆α.

In order to interpret the behaviour of the failure criterion included in Eq. (4.35)

for this specific test, both curves have been represented using the geometrical and

mechanical characteristics described in the Table 4.2 and for µ = 8.
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Figure 4.6: s(∆α) and
√
µg(∆α) functions for the DCB under displacement control with µ = 8.

Fig. 4.6 shows that for small values of ∆α, the energy criterion starts above the

stress criterion and with a positive slope. As already justified in Section 3.2, the

initial part of the energy criterion function (∆α → 0) will always be larger than

the initial part of the stress criterion function, due to µ > 1. However, the shape

of the increasing function
√
µg(∆α) depends on the type of problem. If the slope

of the energy criterion curve increases continuously until the intersection with the

stress criterion curve, it can be deduced that the growth of the interface crack will be

infinitesimal with ∆αc → 0. Thus, leading to a stable crack propagation, i.e. if the

displacement at the ends of the beams is continuously increased, the interface debond

is also produced in a continuous way. Consequently, as in the original LEBIM, the
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interface failure is only ruled by the ERR, and the failure criterion can be expressed

as:

ū

wc
≥ ūf

wc
=

√
µ

Ĝ(λ− α′)
(4.36)

Fig. 4.7 shows the characteristic behaviour associated to the failure criterion of the

original LEBIM against the energy failure criterion of the CCFFM+LEBIM. While

the energy based criterion of the coupled criterion is function of a finite increase of

the crack length, ∆α, the criterion on which the infinitesimal failure is based uses a

function of a crack growth α′. For a better understanding of the problem, results in

Fig. 4.7 do not considered a pre-crack, i.e. α = 0.
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Figure 4.7:
√
µg(∆α) and

√
µ

Ĝ(λ−α′)
functions, representing the energy criterion of LEBIM and

CCFFM+LEBIM with µ = 8, respectively.

4.3.2 Solution obtained by PMTE-SC.

In Section 3.3, the relation between the change in the potential energy of a system and

its deformation was defined as ∆Π = ∆U−∆W , but ∆W vanishes under displacement

control. Therefore, the incremental energy balance for this test under displacement

control can be expressed as:

∆U(∆a) + ∆R(∆a) ≤ 0 (4.37)

So, in this subsection U(a)+R(a) will be minimized subjected to a stress condition.

The first section explains the energy formulation used within this approach to obtain

the function U(a) + R(a), which must be minimized. That section also provides the

calculation of the minimum by the definition of the ERR, for this specific case. Later,
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the CCFFM+LEBIM by PMTE-SC is applied to the same test which was evaluated

by the CCFFM+LEBIM in the Section 4.3.1.

4.3.2.1 Energy based formulation

For an easier comprehension of the formulation, the zone of the beams including

an undamaged interface is denominated AB, and the zone of the beams where the

interface is damaged is named BC, as shown in Fig. 4.8.

u, P

l-a

y

x
a

A

B

C

Figure 4.8: DCB test configuration.

In general, the deformation energy of both zones according to Euler-Bernoulli’s

theory can be expressed as:

UAB = 2UAB beam + UAB interfaces

UBC = 2UBC beam

(4.38)

where,

UAB beam = 2

∫
AB

1

2

(
12M(x)2

E′h3b

)
dx

UAB interfaces =

∫
AB

b σ(x)w(x)dx

UBC beam = 2

∫
BC

1

2

(
12M(x)2

E′h3b

)
dx

(4.39)

Eqs. (4.39) show that the deformation energy of a beam is the sum of the de-

formation energies corresponding to the internal work within the beam and that

corresponding to the springs along the interface. Notice that, as this model is based

on the Euler-Bernoulli beam theory, the shear deformation energy has not been taken

into account, because the shear strain is neglected. It should also be noticed that the

displacements along the interface w(x) is half of δn(x), the relative normal displace-

ment between the two beams. The solution for w(x) is defined in Eq.(4.24) and it

depends on two problem variables: α and ξ. The dependence on these two variables

must be taken into account in order to calculate the definite integrals of Eqs. (4.39).

Accounting for the Eqs. (4.39) and substituting the equations of the beam moment

(4.8) and the stress field along the interface (4.7), the elastic energy at AB zone can

be written as:
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UAB(α) =
E′h3b

12

ū2

l3ch

∫ λ−α

0

(
δ2ŵ(ξ, α)

δξ2

)2

+ 4ŵ(ξ, α)2dξ (4.40)

where the first term of the integral is associated with the deformation of the two

beams and the second term is associated with the deformation of the interface.

For the determination of the elastic energy of the BC zone, the equations of

the free-body diagram developed in Section 4.2 can not be used, because these are

only formulated for the zone where an elastic interface exists. However, the bending

moment equation in BC zone can be easily deduced, as:

M(x) = P (l − x) for all x, l − a ≤ x ≤ l (4.41)

Taking into account the relationship between the load of the beam ends and the

vertical displacement of the crack tip by Eq. (4.21), the elastic energy of BC zone can

be expressed as:

UBC(α) =
E′h3b

12

ū2

l3ch

∫ λ

λ−α

(
(λ− ξ)δ

3ŵ(λ− α, α)

δξ3

)2

dξ (4.42)

The strain energies in both zones can also be expressed in their dimensionless

form:

ÛAB(α) =
12l3ch

E′h3bū2
UAB(α) and ÛBC(α) =

12l3ch
E′h3bū2

UBC(α) (4.43)

Thus, the energy dissipated at the abrupt formation of a new crack and the total

dissipated energy including the formation of the new debond along the interface are:

R(∆a) = GIc∆a b and R(a) = GIca b (4.44)

Finally, the function to be minimized is:

U(α) +R(α) =
E′h3bū2

12l3ch

(
ÛAB(α) + ÛBC(α)

)
+ b lchGIcα

= b lchGIc

(
ū2

4µw2
c

(
ÛAB(α) + ÛBC(α)

)
+ α

) (4.45)

And its dimensionless form:

Û(α) + R̂(α) = (U(a) +R(a))
1

b lchGIc
=

(
ū2

4µw2
c

(
ÛAB(α) + ÛBC(α)

)
+ α

)
(4.46)

The above expression (4.46) is independent of the initial pre-crack (α0), since it

is only affected by the term α which is evaluated in the interval α0 < α < λ.

The curves of the energy criterion shown in Fig. 4.9 are obtained using Eq. (4.46)

and the parameters included in Table 4.1 for different imposed displacement values

at the ends of the beams.

Results in Fig. 4.9 show that for small values of the imposed displacement ( ū
wc

),

the minimum of the function is obtained at α = 0, i.e. no damage growth. However,
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Figure 4.9: Function Û(α) + R̂(α) for several values of the dimensionless boundary condition in
displacement ū

wc
.

when the imposed displacement increases, the energy function curves become convex

producing a minimum for values of α > 0. It should be noted that if the problem

had an initial pre-crack α0 = 2, none of the four imposed displacements represented

in the Fig. 4.9 would cause an interface failure. This is because none of the curves

have their minimum for α values greater than 2.

A way to find the local minimum of the curves obtained by Eq. (4.46), the first-

derivative test can be used within the area where the stress criterion is fulfilled.

dÛ(α)

dα
+

dR̂(α)

dα
= 0 (4.47)

The definition of the ERR presented in Eq.(4.32) is used to calculate the first term

of the derivative. Based on LEFM framework, the ERR (G(a)) for crack growth can

be calculated as the variation of the potential energy per unit area of the crack
(
−dΠ

dA

)
.

However, as this is a displacement control test, in this case, the work developed by the

boundary load is null when the crack along the interface growths. For this reason, the

energy required for the crack growth is exclusively obtained from the elastic energy

of the system:

G(a) = −dΠ(a)

dA
= −dU(a)

dA
(4.48)

Using Eq. (4.32) the ERR can be obtained at the crack tip with ξ = λ− α.

G(a(λ− α)) = 2knū
2Ĝ(λ− α) = 2knū

2(ŵ (λ− α, α))
2

(4.49)

Also, the derivative of the elastic energy of the whole system with respect to crack

growth α can be obtained using Eq. (4.43):
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dU(a(α))

dA
=
E′h3bū2

12l3ch b

(
dÛAB(a)

da
+

dÛBC(a)

da

)
=
ū2kn

2

(
dÛAB(α)

dα
+

dÛBC(α)

dα

)
(4.50)

Therefore, the relationship between the expressions of the ERR and the one de-

rived from the elastic energy, in dimensionless form, becomes:

4(ŵ (λ− α, α))
2

= −

(
dÛAB(α)

dα
+

dÛBC(α)

dα

)
(4.51)

4Ĝ(λ− α) = −

(
dÛAB(α)

dα
+

dÛBC(α)

dα

)
(4.52)

Fig. 4.10 shows the relationship between the elastic energy and the ERR of the

DCB test under displacement control. Noticed that both curves are perfectly over-

lapping.
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Figure 4.10: Relationship between the elastic energy and the ERR of the DCB test under displace-
ment control.

Hence, the local inflection point of the function is produced for an α value which

satisfies:

dU(a)

dA
+

dR(a)

dA
= −2knū

2(ŵ(λ− α, α))2 +GIc = 0 (4.53)

And in dimensionless form:

ū2

µw2
c

(ŵ(λ− α, α))
2

= 1 (4.54)
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Figure 4.11 represents the results of Eq. (4.46) for the data included in Table 4.1

for several values of the two input variables: the displacement imposed at the ends of

the beams ( ū
µwc

) and the damaged interface area (α). The sum of the strain energy

and the dissipated energy forms a convex surface where the “warm” colours represent

the areas of the surface with the lowest energy, and “cool” colours the areas with the

highest energy. The red dots located in the surface valley are the minimum values

for each load ( ū
µwc

) obtained using Eq. (4.54).

Figure 4.11: Surface which represents Eq. (4.46).

4.3.2.2 Application of the PMTE-SC to a specific case and comparison

between methods.

Fig.4.55 shows the function Û(α) + R̂(α) for the geometrical and mechanical charac-

teristics described in the Table 4.2 and with µ = 8.

As an example and in order to describe the energy behaviour of the system, eleven

different ū
wc

values have been used, which represent the displacement imposed at beam

ends for the same wc. These displacements are increased from 1 to 3.03, in intervals

of 0.203 (this value is chosen so the initial part of one the curves coincides with the

initial part of the energy criterion curve, see Fig. 4.7, and to get a reasonable size

of the displacement increment). Fig. 4.12 shows that for increasing values of ū
wc

the

initial values of the different curves and their curvatures also increase.

Before looking for the minimum of each represented function, the interface zone

that verifies the stress criterion must be analysed in each curve, because it is only

within this zone that the minimum of the function may occur.
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The interface zone that fulfills the stress criterion can be obtained by verifying

the following expression, for each ξ point along the undamaged interface:

ū

wc
≥ 1

ŵ(ξ, α)
then 1 ≥ wc

w(ξ, α)
, (4.55)

This expression is similar to Eq. 4.34 applied in the curves methodology.
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Figure 4.12: Function Û(α) + R̂(α) for several values of the dimensionless boundary condition in
displacement ū

wc
(ranging from 1 to 3.03 in intervals of 0.203). The discontinuous lines are the zone

including α values that satisfy the stress criteria. The dots represent the minimum at each curve.

Eq. (4.55) provides the zone (α values) including points which are prone to fail by

the imposed displacement ū. This zone is represented in the Fig. 4.12 by a discontin-

uous line in each curve. It should be noted that as ū
wc

increases the zone that satisfies

the stress criteria also increases. Starting from the first curve, where not a single

point verifies Eq. (4.55), to the last curve, which has the largest zone where failure is

possible. After determining the zone where interface failure is possible due to stress

criteria, the minimum of each curve Û(α) + R̂(α) is calculated by the ERR, shown in

the previous section. However, the minimum of each curve, with the exception of the

last one, is located at the beginning. This means that the failure only occurs in the

last (red) curve, even though the stress criterion may allow the failure in the other

cases. According to Fig. 4.12, for the ū
wc

= 3.03 the crack growth is produced for

α = 0.0674.

For a deeper understanding of the PMTE-SC methodology, the results in Fig. 4.12

are compared with the results obtained by the CCFFM+LEBIM by the curves method-

ology, developed in Section 4.3.1. Fig. 4.13 shows the curves s(∆α),
√
µg(∆α) and√

µ

Ĝ(λ−α′)
for µ = 8, as done in Section 4.3.1. For comparison purposes, horizontal

lines are included to the plot, these lines coincide with ū
wc

values and colours used in
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Figure 4.13: Comparison of the ∆α value predicted using PMTE-SC and the curves methodology.
Each horizontal line represents the same aplied dimensionless displacement ū

wc
included in Fig. 4.12.

Fig. 4.12. The intersection of the horizontal lines with the s(∆α) curve is indicated

with points of the same colour as the horizontal lines. The dots define, for each ū
wc

,

the length of the zone ∆α that may allow the damage due to the stress criteria. Notice

that this zone coincides with the end of the dotted lines in the Fig. 4.12. Moreover,

according to the curves methodology, ū
wc

= 3.03 is the only applied displacement that

propagates the interface crack (notice that the crack growth predicted is infinitesimal)

with a ∆α = 0.0674, exactly as the prediction by the PMTE-SC approach.

4.3.3 Numerical simulation

This section presents a comparison of the numerical results obtained using both

CCFFM+LEBIM methodologies described in Section 3.1 for the DCB test under

displacement control.

Lets recall that for this specific test, the growth of the interface failure is infinites-

imal as the imposed displacement at the ends of the beams increases. Therefore,

instead of using the algorithm developed in Section 3.2.1 based on the definition of

the curves of the energy and tension criteria, an algorithm based on the LEBIM

and developed by Távara et al. (2019) is used, including the interface characteristics

affected by the parameter µ, as explained in Section 3.1.3.

Both the algorithm based on LEBIM and the algorithm based on the PMTE-

SC (Section 3.3.1), have been developed to be used together with the FEM-based

commercial code ABAQUS. Thus, the mesh and the imposed boundary conditions

for both cases are exactly the same, see Fig. 4.14. The mechanical and geometrical



66 Chapter 4

characteristics of the model indicated in the Table 4.2 are used, in order to be also

able to compare the analytical and numerical results.

l = 237mm 13mm

u 

u 

h = 1.5mm

h = 1.5mm
h = 0.01mma

Interface

kn=300MPa/mm 

σc =7.5MPa 
GIc=750 J/m2 

μ  = 8  

1896 elements CPE4

Beams

E =135GPa
ν = 0.3  

  

24000 elements CPE4
Isotropic
b = 1mm

Figure 4.14: DCB boundary conditions used in the numerical model under displacement control.

The numerical code of the original LEBIM uses as input the mechanical parame-

ters in Fig. 4.14, and gives as result the imposed displacement ū at the ends of the

beams that provokes the failure of the interface. Each numerical step produces the

failure of a single element. Although the code also allows to use the number of ele-

ments to be broken as an input parameter (as a different solving option), in this case

where the damage is infinitesimal, it is more appropriate that each numerical step

“breaks” a single element only.

It is also interesting the comparison of the numerical and analytical results for

the PMTE-SC included in this section. For this purpose, an imposed displacement ū

close to the value that breaks the first element using the original LEBIM is imposed.

Resulting in an imposed displacement that do not produce damage in any element.

Then, the code automatically looks for the displacement that produces the damage

in an element. Subsequently, in each k step, the imposed displacement is increased

(in the present example the increment is set to 0.005mm) and each step may cause a

finite fracture along the interface or not.

Fig. 4.15 shows ten curves, associated to the first ten steps, representing the sum

of U(a) + R(a) in the system. As in the previous section, the discontinuous part

within a line corresponds to the interface zone that fulfills the stress criterion and the

continuous line corresponds to the interface zone that does not.

These curves are calculated by the Eq. (4.46) and (4.55), and the analytical mini-

mum provided by (4.54) is indicated by an asterisk. The numerical minimum provided

by the code implemented in Python is shown as a solid dot. The difference, in terms

of a, between the asterisks and the dots are always smaller than the element size, so

this difference can be attributed to the discretization of the interface.

Fig. 4.16 presents the numerical load-displacement curve for the DCB test under

displacements control by both the original LEBIM code and the PMTE-SC code.

Both curves are plotted in the form of a sawtooth wave because the system is loaded
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Figure 4.15: Functions U(a) +R(a) for a specific dimensionless boundary condition in displacement
ū. The discontinuous part of the lines are the zone which satisfies the stress criteria. The dots are
the minimum of every curve obtained by the numerical code. The asterisks are the minimum of
every curve obtained by Eq. (4.55).

in displacement. However, the sawtooth size of the LEBIM results is smaller than

those provided by the PMTE-SC. This is because the LEBIM code breaks element

by element, while in the PMTE-SC code the number of elements damaged along

the interface depends on the applied load. At the initial part, jumps in both curves

coincide, i.e. element by element. This is due to the slope of the curve is steep.

However, due to the load (imposed displacement) increment is constant for each

step, in the PMTE-SC method, when the curve decreases its slope damage may be

produced along more elements. It should be noticed that damage could be reduced

with a routine that controls the size of the load increments, depending on the control

variable chosen. Even so, the PMTE-SC represents very well the behaviour of a real

test, where a crack is produced for a given imposed displacement.
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Figure 4.16: Load-Displacement curve for the DCB test under displacement control.

4.4 CCFFM applied to linear-elastic interfaces for

the DCB under load control.

4.4.1 Solution obtained by the stress and energy criteria curves.

For the specific case of the BCD test under load control, the ERR can be expressed

as:

G(λ−α) =
P̄ 2

b2l2ch2kn
σ̂2(λ−α, α) =

P̄ 2

b2l2ch2kn
Ĝ(λ−α) with Ĝ(λ−α) = σ̂2(λ−α, α)

(4.56)

Following the above relations, the energy criterion can be rewritten as:

P̄ 2

b2l2ch2knGIc
≥ g(∆α) with g(∆α) =

∆α∫
∆α

Ĝ(λ− α) dα
(4.57)

As in the previous section, the stress criterion can be written as a function of σc:

if s(ξ) =
1

σ̂(ξ, α)
then

P̄

b lchσc
≥ s(∆α) for all ξ, λ−∆α ≤ ξ ≤ λ

and for a specific value of α.

(4.58)

Finally, if the parameter µ, defined in Section 3.1.3, is rewritten as function of the

critical normal tension for pure mode I (µ = 2knGIc

σ2
c

), the CCFFM by can be defined

as:
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P̄

b lchσc
≥ P̄f

b lchσc
= min

∆α
max

{
s(∆α),

√
µ g(∆α)

}
(4.59)

where P̄f is the minimum load applied to the beam end that satisfies both criteria

and produces a crack with length αc = ∆α.

Following Section 4.3.1, for a deeper understanding of the behaviour of the failure

criterion, included in Eq. (4.59), for this specific test, both curves are represented

with the geometrical and mechanical characteristics described in Table 4.2 and for

µ = 8.
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Figure 4.17: s(∆α) (blue lines) and
√
µ g(∆α) (yellow lines) functions for the DCB in load control

with µ = 8 and several load steps.

In Fig.4.17, yellow lines represent the energy based criterion, while the blue lines

represent the stress based criterion. Unlike the previous test, the energy criterion

starts with a negative slope, above the stress criterion. Therefore, the minimum that

satisfies both criteria is the intersection of the curves. This produces an instantaneous

finite segment of the crack αc for a specific load P̄f

b lchσc
. Both the finite damage and

the load are defined by the intersection of both curves. In Fig.4.17, the coordinates of

the intersection points (αc,
P̄f

b lchσc
) for each step of the CCFFM+LEBIM is depicted

with different colours. Note that if a crack grows up to αi
c in an i step, the evaluation

of the next crack growth starts at this point.

In Fig.4.18 each point is defined by αc and P̄f

b lchσc
for each load step, until the end

of the interface. In the DCB test under displacement control, the crack propagation

is stable. However, Fig.4.18 shows an unstable crack propagation, because the load
P̄f

b lchσc
in the first step is the highest load of all the steps.
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Figure 4.18: Load - Crack propagation curve for the DCB test under load control.

4.4.2 Solution obtained by PMTE-SC

This section is developed in a similar way as the displacement control test in Sec-

tion 4.3.2 but with some important differences when calculating the system energy.

For this reason, the procedure to be followed will not be so detailed, but the differences

concerning the previous test studied will be highlighted. An important difference is

that the potential energy variation of the system is ∆Π = ∆U−∆W , without neglect-

ing the term of work, because it does not disappear under load control. Therefore,

the incremental energy balance for the test under load control can be expressed as:

∆U(∆a)−∆W (∆a) + ∆R(∆a) ≤ 0 (4.60)

Thus, in this subsection U(a) −W (a) + R(a) will be minimized subjected to a

stress condition.

The outline of this section will follow the same structure as the one in Section 4.3.2.

4.4.2.1 Energy based formulation.

Although the energy based formulation in this section is similar to the one in Sec-

tion 4.3.2, this has been adapted to the stress field along the interface defined in

Eq. (4.7).

Therefore, accounting for Eqs. (4.39) and substituting the equations of the beam

moment (4.8) and the stress field along he interface (4.7), the elastic energy at AB

zone can be written as:

UAB(α) =
P̄ 2

b lch2kn

∫ λ−α

0

1

4

(
δ2σ̂(ξ, α)

δξ2

)2

+ (σ̂(ξ, α))
2

dξ (4.61)
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Where the first term of the integral is associated with the deformation of the two

beams and the second term with the deformation of the interface. To calculate the

elastic energy of the BC section, the equation of bending moment in BC zone is used

(Eq. (4.41)), being expressed as:

UBC(α) =
P̄ 2

b lch2kn

∫ λ

λ−α
4(λ− ξ)2dξ (4.62)

Thus, the dimensionless form of the elastic energies of Eqs. 4.61 and 4.62 are:

ÛAB(α) =
b lch2kn
P̄ 2

UAB(α) and ÛBC(α) =
b lch2kn
P̄ 2

UBC(α) (4.63)

The energy dissipated at this abrupt formation of a new crack and the total

dissipated energy including the formation of the new crack along the interface is the

same than under displacement control Eq. (4.44).

In order to calculate the work produced by the loads in the system (W = 2P̄ u(P̄ )),

the load applied at the end of the beams (P̄ ) and the displacement produced by these

loads at the same point (u(P̄ )) are needed. To get the displacement, the procedure

represented in Fig. 4.2 is used, substituting adequately Eq. 4.7 in each definition of

w(x). Therefore the system work can be expressed as:

W (α) = 2P̄ u(P̄ ) =
2P̄ 2

b lch2kn

(
σ̂(λ− α, α) + α

δσ̂(ξ, α)

δξ

∣∣∣∣
λ−α

+
4

3
α3

)

with Ŵ (α) =
b lch2kn
P̄ 2

W (α)

(4.64)

W

(α)

2 U

(α)

0 10 20 30 40 50
0

200 000

400 000

600 000

800 000

α

2U

(α
),W


(α
)

Figure 4.19: Relationshio between W and 2U .

Note that according to Clapeyron’s Theorem (Lamé, 1852; Fosdick and Truski-

novsky, 2003), as the system of study has a linear elastic behaviour, it can be stated
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that the total elastic energy of the system is equal to half of the work of the external

loads that have originated the deformation process, i.e. W = 2U .

Fig. 4.19 shows the non-dimensional functions of work (Ŵ (α)) and twice the elastic

energy (Û(α) = ÛAB(α)+ ÛBC(α)). It can be seen that both curves overlap perfectly.

Clayperon’s theorem allows in this test a simpler formulation to express the energy

function to be minimized:

U(α)−W (α) +R(α) =
P̄ 2

b lch2kn

(
ÛAB(α) + ÛBC(α)− Ŵ (α)

)
+ b lchGIcα

= b lchGIc

(
P̄ 2

b2 l2chµσ
2
c

(
ÛAB(α) + ÛBC(α)− Ŵ (α))

)
+ α

)
= b lchGIc

(
− P̄ 2

2 b2 l2chµσ
2
c

Ŵ (α) + α

)
(4.65)

Therefore, the dimensionless form of this function becomes:

− Û(α) + R̂(α) = (−U(a) +R(a))
1

b lchGIc
=

(
− P̄ 2

2 b2 l2chµσ
2
c

Ŵ (α) + α

)
(4.66)

Equation (4.66) is independent of the initial pre-crack (α0). Because the pre-crack

would only affect the term α, which only causes a change of the evaluation interval

of the function α0 < α < λ.

If Eq. (4.66) is applied to the parameters defined in Table 4.1 for different imposed

loads at the ends of the beams, the curves plotted in Fig. 4.20 are obtained. This
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Figure 4.20: Functions Û(α) + R̂(α) for a specific dimensionless boundary condition in load P̄
b lchσc

.
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figure shows that the different curves provided by the energy balance are concave and

U +R→ −∞. Therefore the global minimum will coincide with the upper endpoint

of the function, i.e. the greatest lower bound. Therefore, the interface failure is only

possible if the stresses are high enough to satisfy the stress criterion. At least, in the

zone where a crack onset by tunneling through the total energy barrier is allowed,

that is, in the zone from α = 0 to the intersection point with the horizontal lines.

This situation is possible because ∆U(a) + ∆R(a) ≤ 0 is consistent. Notice that, in

this scenario, it is not necessary to calculate the minimum energy function. Moreover,

when the applied load increases, the zone needed to satisfy the stress criterion for

tunneling decreases, making easier the failure.

4.4.2.2 Application of the PMTE-SC to a specific case and comparison

between methods.

In order to explain the procedure of the CCFFM+LEBIM by PMTE-SC for this

test, Fig. 4.67 shows the function Π̂(α) + R̂(α) for the geometrical and mechanical

characteristics described in the Table 4.2 and with a µ = 8. As in the DCB under

displacement control, eleven different P̄
b lchσc

values are used, ranging from 0.5 to 1.47,

in intervals of 0.097. The ratio P̄
b lchσc

represents the load imposed at the ends of the

beam for the same σc along the interface. Results show that when P̄
b lchσc

values

increases, the beginning of the curves and their maximums decrease.

In this test, the possible interface failure is determined by the zone that satisfies

the stress criterion. Since tunneling is possible for a given α only if every points

between 0 and α fulfill the stress criterion. The interface zone that satisfies the stress

criterion can be obtained by checking the following expression, for each ξ point of the

undamaged interface:

P̄

b lchσc
≥ 1

σ̂(ξ, α)
then 1 ≥ σc

σ(ξ, α)
, (4.67)

This expression is similar to Eq. 4.58 in the curve methodology.

The interface zone that satisfies Eq. (4.67) is represented in Fig. 4.21 by dashed

lines. It should be noticed that,as P̄
b lchσc

increases, the zone that fulfills the stress

criterion also increases, from the first curve, where no point verifies Eq. (4.67), to the

last curve, which has the largest zone where failure is possible. Although this zone

increases with the applied load, it can be seen that in the first six curves the interface

failure can not occur, since ∆Π(a) + ∆R(a) > 0. However, the load of the seventh

curve (light blue) allows a crack onset by tunneling through the total energy barrier

because ∆Π(∆acrit) + ∆R(∆acrit) = 0. In the last four curves, the applied loads

allow the damage due to tunneling through the total energy barrier and subsequent

unstable crack growth, because ∆Π(∆acrit) + ∆R(∆acrit) < 0. It is interesting to

notice that this figure includes most of the possible cases described by Mantič (2014)

and revisited in Section 3.3.

For a better understanding of the obtained results by the PMTE-SC methodology

included Fig. 4.21, a comparison with the CCFFM+LEBIM by the curves method-

ology developed in Section 4.4.1 is carried out. Fig. 4.22 plots the curves s(∆α) and√
µ g(∆α) for µ = 8, exactly as in the Section 4.4.1. Also, eleven horizontal lines have
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The discontinuous part within a line represent the region of length α that satisfies the stress criteria.
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Figure 4.22: Comparison of the ∆α value predicted using PMTE-SC and the curves methodology.
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included in Fig. 4.21.
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been added which coincide with the P̄
b lchσc

values and colours used in Fig. 4.21. The

intersection of the horizontal lines with the curve s(∆α) is represented with points

of the same colour as the horizontal lines. These points define, for each P̄
b lchσc

value,

the length of the region ∆α that satisfies the stress criterion. These points coincide

perfectly with the end of the dashed lines in Fig. 4.21. It is interesting to note, that

from the seventh point (light blue) the horizontal lines also intercept the curve of the

energy criterion. This light blue point defines the minimum load that satisfies both

criteria. However, the rest of the loads, greater than this, produce an excess of energy

that provoke an unstable growth of the interface crack.

4.4.3 Numerical simulation.

This section presents a comparison of the numerical results obtained with both

CCFFM+LEBIM methodologies described in Section 3.1 for the DCB test under

load control.

For this test, the algorithms developed in Section 3.2.1 (based on the definition

of the curves of the energy and stress criteria) and the one developed in Section 3.3.1

(based on the PMTE-SC) are used. Both algorithms have been developed to be

used together with the FEM-based commercial code ABAQUS. This fact allows that

the mesh and the boundary conditions used in both cases to be exactly the same.

These are described in Fig. 4.23. Unlike the displacement control test, in this test a

new condition has been added at the non-loaded end of the upper beam in order to

eliminate rigid body motions. The mechanical and geometrical characteristics of the

model described in Table 4.2 are used, in order to be able to compare the analytical

and numerical results.

l = 237mm 13mm

P 

h = 1.5mm

h = 1.5mm
h = 0.01mma

Interface

kn=300MPa/mm 

σc =7.5MPa 
GIc=750 J/m2 

μ  = 8  

1896 elements CPE4

Beams

E =135GPa
ν = 0.3  

  

24000 elements CPE4
Isotropic
b = 1mm

Figure 4.23: DCB boundary conditions used in the numerical model under load control.

The numerical code of the CCFFM+LEBIM by curves uses as input parameters

the mechanical model in Fig. 4.23, and gets as output parameter the load P̄ that must

be imposed at the ends of the beam to obtain a finite segment of interface crack growth
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at each step. This implementation calculates each crack growth independently, so it

is able to capture possible instabilities of the system.

As in the previous section, a numerical and analytical comparison of the PMTE-

SC is done. For this test a load P̄ = close to the value that “breaks” the first

element using the original LEBIM is imposed but without reaching the breakage of

any element. The search for the load that produces the failure of an element is

conducted automatically by the code. Subsequently, in each k step, the imposed load

is increased (0.5N is used in this example) until a finite fracture along the interface is

produced. In order to capture the snap-through instability of the problem, only one

iteration of the m step is allowed. Therefore, at each finite fracture jump, the applied

load is reset again, taking a load value close to the one that will cause damage in

the next element using the original LEBIM. Consequently, after each k step in which

the interface damage is produced, the potential energy variation plus the energy

dissipation, between one step and the subsequent must be minimized.
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Figure 4.24: Functions Π(a) + ∆R(a) for a specific dimensionless boundary condition in load P̄ .
Discontinuous lines are the region which satisfies the stress criteria. The dots are the minimum of
a curve obtained by the numerical code. The asterisks are the minimum of a curve obtained by
Eq. (4.67).

Fig. 4.24 includes the Π(a) + ∆R(a) curves of the first fourteen steps. As in the

curves of the previous section, the discontinuous zone of the lines corresponds to the

interface length that satisfies the stress criterion and the continuous line correspond

to the interface zone that does not. These curves are calculated by the Eq. (4.66) and

(4.55). As in the previous test, the curves are plotted using the analytical solution

provided by Eqs. (4.66) and (4.67). The dots and asterisks represent the interface

failure (if exists) at each step, calculated numerically and analytically, respectively.

It should be noted, that the total potential energy of the system Π for each crack
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length a has been chosen to be represented in the curves. This choice do not affect the

solution and is used for an easier interpretation of the analytical solution. Morever,

Fig. 4.24 shows that for the first seven load steps the imposed load is not high enough

to cause that the stress field along the interface allows tunneling. However, in the

eighth step the tunnelling does take place allowing the crack growth until a crack

length a, indicated by the yellow dot. Starting from this yellow point, the system

is loaded again, step by step, until the next failure, indicated by the purple dot, is

obtained.

Finally, Fig. 4.24 shows the load-displacement curve the DCB test under load

control. This figure presents the results of both codes used. Both curves are present

a horizontal sawtooth wave behaviour due to the system is under load control. It

is interesting to note that there are smaller differences between both methods in

the present load control test than in the previous displacement control test. This is

because it is more difficult to numerically adjust the applied load in systems where

there are less damaged elements in each load step. As reference, in the load control

test, the first steps damage seventeen to nineteen elements at each step, but as the

curve progresses the damage stabilizes leading to a failure of fourteen elements.
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Figure 4.25: Load-displacement curves for the DCB test under load control.





CHAPTER5
The double pull-push shear

test

5.1 Introduction

Adhesive joints between adherents were intensively studied in the last decades. In-

vestigations were mainly focused on the used materials (for both adherents and adhe-

sives) and the models used to get the stress field in the joints that were used to apply

a failure criterion. Thus, the models that analyse the failure of adhesive joints can

be divided into two groups: (i) analytical (closed-form), and (ii) numerical models.

The choice of the model is not an easy task and it depends on the final objective

(attempting to optimize the used resources), see da Silva et al. (2009) and Budhe

et al. (2017) for an extensive review of existing models.

The evaluation of shear strength in adhesive joints has proven to be important

issue, that is why several types of tests, aiming to characterize it, were proposed, e.g.

Single Lap Joint (SLP) and Double Lap Joint (DLJ) tests (Hart-Smith, 1973a,b).

Among the different types of adhesive joints, it is remarkable the bonding of Fibre-

reinforced polymer (FRP) sheets as one of the most common ways to repair and

strengthen civil engineering structures (Hollaway, 2010). Specifically the use of car-

bon fiber reinforced polymer (CFRP) laminates are one the most popular choice for

concrete strengthening.

An adequate interface characterization of this kind of joints is quite relevant be-

cause the system failure usually occurs due to loss of adhesion between the adherents

(J.G.Teng, 2001; Mazzotti et al., 2016). For this reason, a large number of publi-

cations have studied the behaviour of these kind of joints by different experimental

set-ups. A review of different methods used to characterize the bond-slip behaviour

can be found in Mazzotti et al. (2016) and Vaculik et al. (2018).

The Pull-Push Shear Test (PPST) is an experimental test configuration used to

characterize the failure of the joint between a FRP laminate and a concrete surface.

Specifically, this configuration is one of the most popular test methods for determining

79
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Figure 5.1: Side view of (a) double and (b) single pull-push shear tests. (c) Top view of both PSST
set-ups.

the shear load transfer in the bond between two solids due to its simplicity (J.Yao

et al., 2005). Two different PPST set-ups can be used: double and single PPST, see

Figure 5.1 (a) and (b), respectively. The single PPST is the most common, due to from

an experimental point of view it is the easiest to perform, since keeping a symmetrical

configuration regarding the debond growth is difficult to control. However, as the

bending moment produced in the single PPST is very small, the results obtained for

both set-ups are approximately the same (Cornetti and Carpinteri, 2011; L.H.Sneed

et al., 2015; T.D’Antino et al., 2016). For this reason and also because the double

PPST is simpler to model, it is commonly used for analytical studies and their results

compared with those from the single PPST. Figure 5.1 shows both PPST schemes,

where the external load is applied to the reinforcement sheets at the same time that

a pushing load is applied to the concrete block.

One of the aims of the present investigation is to determine the load that originates

a debond along a weak interface in a Double Pull Push Shear (DPPS) specimen

including a reinforcement adhesively bonded to a concrete block. Furhermore, the

study includes the effect of different parameters acting on the debond.

Since Hillerborg et al. (1976) proposed the Cohesive Zone Model(CZM) to model

fracture in concrete structures, it has been used by numerous authors (e.g. Wu

et al. (2002); Yuan et al. (2004); Cornetti and Carpinteri (2011); Carrara and Ferretti

(2013)). CZMs often provide accurate predictions of damage propagation in concrete

thanks to suitably fitted cohesive softening functions. However, there are still some

difficulties in fitting these softening functions with the behaviour of the material,

specially under mixed mode conditions of fracture to achieve an adequate energy

interpretation of the fracture path (Park and Paulino, 2011), and also in achieving

a satisfactory computational efficiency and to guarantee the convergence of FEM
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computations using CZMs (Cornetti et al., 2019). For these reasons, the CCFFM

applied to LEBIM could open an alternative way to CZMs for predicting the onset and

propagation of debonds along interfaces including concrete as an adherent, whereas

CZMs remain as a reference model in this field. In fact, recently several comparisons

of the CCFFM vs. CZM for different problems were published (e.g. Henninger et al.

(2007); Garćıa et al. (2014); Távara et al. (2016); Cornetti et al. (2016); Martin et al.

(2016); Cornetti et al. (2019)), as was indicated in the Section 2.

In Cornetti et al. (2012) the debond onset in the DPPS was studied using the

CCFFM but considering only shear stresses along the interface. Thus, in the present

investigation, DPPS is analysed by means of the CCFFM but taking into account both

normal and shear stresses along the interface, in a similar way as done in Bigwood

and Crocombe (1989); Bennati et al. (2009); Goglio and Rossetto (2011) and Dimitri

et al. (2018) for other test configurations.

This chapter is organized into four parts. In Section 5.2, an analytical solution

for the normal and shear stress fields along the interface between two solids in the

DPPS test is developed, using the Winkler’s beam on elastic foundation solution.

In Section 5.3, the analytical solution described in Section 5.2 is compared to the

solution for a shear lag model which are not able to transfer normal stresses. The

Section 5.4 develops the analytical approach of the CCFFM+LEBIM for the DPPS

test with the solution obtained in Section 5.2. In Section 5.5 some numerical models

of the DPPS test used in the BEM code exposed in Section 3.2.1 are described and

their convergences are studied. Finally, the Section 5.6 compares the experimental

data from two different test campaigns found in the bibliography with the analytical

and numerical results of the CCFFM+LEBIM developed in this chapter.

5.2 Analytical models for the interfacial normal and

shear stress fields in the Double Pull-Push Shear

test

The DPPS test, see Figure 5.2, can be considered as a modified version of the DLJ

test including different boundary conditions. As mentioned above, the DPPS test is

widely used to investigate the adhesion between a CFRP laminate and a concrete

block or clay brick (Vaculik et al., 2018).

Although normal (peeling) stresses are neglected in several models, some investi-

gations have shown that normal stresses along the interface may play an important

role in the debond onset and propagation (Martinelli et al., 2011; Carrara et al., 2011;

Carrara and Ferretti, 2013), especially for small overlap lengths. Moreover, some ex-

perimental results of Czaderski et al. (2010) showed that the assumption that the

stress field in bonded joints include shear stresses only is not correct as the normal

stresses are also involved and their contribution may not be neglected.

Also, the stress field in the interface is sensitive to the position of the reinforce-

ment along the specimen, see Mazzotti et al. (2008). Is is noticeable that if the

reinforcement is bonded until reaching the loaded end as shown in Figure 5.2(a), very

high tensile stresses occur along this portion of the interface, and consequently an

early fracture typically occurs in the concrete block in the form of triangular section.
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Figure 5.2: Double Pull-Push Shear (DPPS) test (a) with the CFRP laminate bonded starting from
the right (loaded) side of the concrete block, and (b) with the CFRP laminate bonded relatively far
from the right (loaded) side of the concrete block.

For this reason, in most test, the reinforcement is bonded starting from a certain

distance from the loaded edge of the concrete block, as shown in Figure 5.2(b). This

zone is normally called “unbonded zone” or “free zone”.

In this study, the normal stress distribution has been taken into account and the

both described scenarios have been studied:

• The reinforcement is joined until reaching the loaded end, Figure 5.2(a), i.e.

without unbonded zone.

• The reinforcement is joined without reaching the loaded end, Figure 5.2(b), i.e.

including an unbonded zone.

5.2.1 Stress distribution when the joint reaches the loaded end

The model developed in this section (Figure 5.3) uses a simplified geometry that

includes symmetry boundary conditions along the midplane of the concrete block

and it is studied under the following main assumptions:

• The adherents are modelled as Timoshenko beams. Due to symmetry condi-

tions, the concrete block is subjected to normal stresses and is able to deform

along the longitudinal axis, while the outer CFRP laminates are subjected to

tension, bending and shear (and are able deform accordingly).

• The adhesive is modelled as an elastic interface of negligible thickness, i.e. a

continuum spring distribution able to transfer normal and shear stresses. These

values are assumed to be representative of the stress field in the mid-thickness

plane of the adhesive layer, the remaining stress components in the adhesive

are neglected.

• Plane strain hypothesis and a linear-elastic behaviour of the adherents are con-

sidered, the reinforcement being orthotropic and the block isotropic.

• The width of the adherents and the adhesive are equal, i.e. tr=tb.
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Figure 5.3: Boundary conditions of the DPPS test when the joint reaches the loaded end.

5.2.1.1 Governing equations

Referring to the free-body diagram of an element of length dx represented in Figure

5.4, the following equilibrium equations can be written for the CFRP laminate:
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Figure 5.4: Equilibrium of an infinitesimal element of the beams system.

dNr
dx
− τ = 0 (5.1)

dVr
dx

+ σ = 0 (5.2)

dMr

dx
− Vr −

hr
2
τ = 0 (5.3)
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where, Nr, Vr and Mr are the axial force, the shear force and the bending moment

per unit width, respectively; τ and σ are the shear and normal stresses along the

adhesive; and hr is the thickness of the CFRP laminate.

Regarding the concrete block, due to the symmetry conditions, the only non-trivial

equilibrium equation is
dNb
dx

+ 2τ = 0, (5.4)

Then, the kinematic equations for the CFRP laminate are

εr =
dur
dx

(5.5)

χr =
dϕr
dx

(5.6)

γr =
dwr
dx

+ ϕr (5.7)

where ur, εr, ϕr, χr, wr, and γr are the longitudinal displacement, longitudinal

membrane strain, rotation, curvature, transverse displacement and shear strain, re-

spectively. Due to the symmetry condition, the only significant kinematic equation

for the concrete block is

εb =
dub
dx

(5.8)

where ub and εb are the longitudinal displacement and axial strain, respectively.

Assuming an orthotropic CFRP laminate whose material symmetry axis 1 co-

incides with the reinforcement direction, the material plane 23 becomes a material

symmetry plane. Then, constitutive equations can be deduced, in a similar way as

in Távara et al. (2010), from the strain-stress law for a generalized plane strain state

(Lekhnitskii, 1981; Ting, 1996) ε1

ε2

ε6

 =

 s′11 s′12 0

s′12 s′22 0

0 0 s′66

 ·
 σ1

σ2

σ6

 , s′IJ = sIJ −
sI3s3J

s33
(5.9)

where s′IJ are the reduced elastic compliances, in this case material axis 3 is the

direction where plane strain conditions apply. Hence, the reduced elastic compliances

used in this work are:

s′11 =
1− ν13ν31

E1
=

1

E′r
and s′66 =

1

G12
=

1

Gr
(5.10)

where, E′r is the elastic modulus for plane strain conditions and Gr is the in-plane

shear modulus. Let the material axes 1, 2 and 3 correspond to the (geometric) beam

axes x, z and y, respectively. Then, the constitutive equations for the CFRP laminate

become

εr =
Nr
E′rhr

(5.11)

χr =
12Mr

E′rh
3
1

(5.12)

γr = Kz
Vr
Grhr

(5.13)
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Kz being the shear factor of a Timoshenko beam (6/5, for a rectangular section).

Additionally, the only constitutive equation for the concrete block is

εb =
Nb

2E′bhb
(5.14)

where, E′b = Eb
(1−ν2

b )
is the elastic modulus for plane strain conditions for an isotropic

material.

As the model developed is one-dimensional, the quantities do not vary along the

thickness direction. Therefore, it is assumed the adherent and adhesive thicknesses

are large enough to achieve plane strain conditions, see (5.10) and (5.14). Addition-

aly, due to the thinness of the considered reinforcement in the DPPS test, its shear

deformability could be neglected. However, as stated above, the analytical model is

expected to be applied also to thick outer adherents and, therefore, (5.13) is consid-

ered for the sake of generality.

As the adhesive layer is modelled by a spring distribution, then the normal and

shear stresses are directly related to their respective relative displacements, δn and δt,

between the adherents. Then, the Timoshenko beam kinematical assumption yields

τ = ktδt = kt

(
ur + ϕr

hr
2
− ub

)
(5.15)

σ = knδn = −knwr (5.16)

where kn and kt represent, the normal and tangential stiffness of the adhesive layer

or in a broader view the stiffness of the bonded joint.

5.2.1.2 Stress distribution along the interface and boundary conditions

Differentiating Eq. (5.15) and accounting for the constitutive Eqs. (5.11), (5.12)

and (5.14) we obtain

dτ

dx
= kt

(
εr + χr

hr
2
− εb

)
= kt

(
Nr
E′rhr

+
6Mr

E′rh
2
r

− Nb
2E′bhb

)
(5.17)

By differentiating again and accounting for the axial and rotational equilibrium

Eqs. (5.1), (5.3) and (5.4) we get

d2τ

dx2
= kt

[(
1

E′bhb
+

4

E′rhr

)
τ +

6Vr
E′rh

2
r

]
(5.18)

A third differentiation, accounting for the transverse equilibrium (5.2), that relates

shear stresses to the normal stress distribution as follows

d3τ

dx3
= kt

[(
1

E′bhb
+

4

E′rhr

)
dτ

dx
− 6

E′rh
2
r

σ

]
(5.19)

Considering now Eq. (5.16), differentiating and accounting for the kinematics in

Eq. (5.7) and the constitutive relation in Eq. (5.13), gives

dσ

dx
= −kn

dwr
dx

= kn (ϕr − γr) = kn

(
ϕr −Kz

Vr
Grhr

)
(5.20)
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Further differentiations up to the third order and the use of the kinematics Eq. (5.6),

the constitutive relation Eq. (5.12), the transverse equilibrium Eq. (5.2), and the

rotational equilibrium Eq. (5.3) lead to

d2σ

dx2
= kn

(
χr +

Kz

Grhr
σ

)
= kn

(
12Mr

E′rh
3
r

+
Kz

Grhr
σ

)
(5.21)

d3σ

dx3
= kn

(
12Vr
E′rh

3
r

+
6

E′rh
2
r

τ +
Kz

Grhr

dσ

dx

)
(5.22)

By extracting Vr from Eq. (5.18) and σ from Eq. (5.19), and replacing each of them

into Eq. (5.22), the following sixth order differential equation in τ is obtained after

some algebraic manipulations:

d6τ

dx6
− kn
E′rhr

[
kt
kn

(
E′rhr
E′bhb

+ 4

)
+Kz

E′r
Gr

]
d4τ

dx4

+
kn
E′rh

2
r

[
12

hr
+
ktKz

Gr

(
E′rhr
E′bhb

+ 4

)]
d2τ

dx2
− 12knkt

E′2
r h

4
r

(
E′rhr
E′bhb

+ 1

)
τ = 0 (5.23)

Using similar hypotheses, other authors developed a similar solution but obtaining

a seventh order differential equation for the shear stress field evaluation (Bigwood

and Crocombe, 1990; Dimitri et al., 2018; Goglio and Rossetto, 2011). It is worth to

mention that in Martinelli et al. (2011) a sixth order differential was also obtained

but using a Bernoulli beam model and assuming that the concrete block is a rigid

solid.

Table 5.1: Dimensionless variables and parameters.

ξ = x
lch

τ̂ = τ
P/lch

σ̂ = σ
P/lch

λ = l
lch

η = hr
lch

ζ =
E′
r

Gr
ρ =

E′
rhr

E′
b
hb

κ = kt
kn

In order to get a dimensionless expression, the characteristic length parameter lch
is defined as lch =

E′
r

kn
. It relates the stiffness of the laminate (reinforcement) to that

of the interface. The applied axial force in the reinforcement P is defined in Figure

5.2. Then, Eq. (5.23) can be rewritten in terms of the dimensionless parameters

defined in Table 5.1 as

τ̂vi − 1

η
[κ (4 + ρ) +Kzζ] τ̂ iv

+
12

η3

[
1 + (4 + ρ)

κηζKz

12

]
τ̂ ′′ − 12κ

η4
(1 + ρ) τ̂ = 0 (5.24)

where the derivatives are now taken with respect to ξ. To solve (5.24), first its

characteristic (sixth-order) equation is written as

q6 −D4q
4 +D2q

2 −D0 = 0 (5.25)

where D4, D2 and D0 are the absolute values of the multipliers of the fourth, second

and zero order derivatives, respectively, in Eq. (5.24). Rewriting the sixth-order
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polynomial in Eq. (5.25) considering q2 as an independent variable, we get a cubic

equation in terms of q2. Thus, it is possible to obtain all the roots of Eq. (5.25) in a

closed form because all of the roots of the cubic equation can be found algebraically.

For the specific case of DPPS test, the obtained cubic equation has, in general, one

real positive and two complex conjugate roots. Hence, the sixth-order equation has

two opposite real roots and two pairs of complex conjugate roots. Especially, the six

roots of Eq. (5.25) can be expressed as

q1,2 = ±m, q3,4 = n1 ± in2, q5,6 = −n1 ± in2, (5.26)

where m, n1 and n2 are positive real numbers as defined in Bigwood and Crocombe

(1989) and Goglio and Rossetto (2011) and given in terms of the coefficients D0, D2

and D4 of the characteristic equation:

m =

√
3
√
C

3 3
√

2
+
D4

3
−

3
√

2(3D2 −D2
4)

3 3
√
C

(5.27)

n1 =
4
√
X2 + Y 2 cos

(
1

2
arccos

(
X√

X2 + Y 2

))
(5.28)

n2 =
4
√
X2 + Y 2 sin

(
1

2
arccos

(
X√

X2 + Y 2

))
(5.29)

where C, X and Y are:

C = 2D3
4 − 9D4D2 + 27D0+√

−4 (D2
4 − 3D2)

3
+ (2D3

4 − 9D4D2 + 27D0)
2

(5.30)

X =
− 3
√

(2C)2 + 4 3
√
CD4 − 3

√
24D2

4 + 6 3
√

2D2

12 3
√
C

(5.31)

Y =
3
√

2C2 − 2D2
4 + 6D2√

3
3
√

25C
(5.32)

Finally, the dimensionless shear stress τ̂ can be expressed as

τ̂ = C1e
mξ + C2e

−mξ + C3e
n1ξ cos (n2ξ) + C4e

n1ξ sin (n2ξ)

+ C5e
−n1ξ cos (n2ξ) + C6e

−n1ξ sin (n2ξ) (5.33)

where C1, . . . , C6 are integration constants to be determined from the boundary con-

ditions.

Then, from Eqs. (5.19) and (5.33) the following expression of the dimensionless

normal stress σ̂ is obtained:
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σ̂ = −η
6

[ η
κ
τ̂ ′′′ − (4 + ρ) τ̂ ′

]
=

− C1
ηmemξ

6κ

[
ηm2

1 − κ(ρ+ 4)
]

+ C2
ηme−mξ

6κ

[
ηm2

1 − κ(ρ+ 4)
]

− C3
ηen1ξ

6κ

[
n2 sin(ξn2)

[
κ(ρ+ 4)− 3ηn2

1 + ηn2
2

]
− n1 cos(ξn2)

[
κ(ρ+ 4)− ηn2

1 + 3ηn2
2

]]
+ C4

ηen1ξ

6κ

[
n2 cos(ξn2)

[
κ(ρ+ 4)− 3ηn2

1 + ηn2
2

]
+ n1 sin(ξn2)

[
κ(ρ+ 4)− ηn2

1 + 3ηn2
2

]]
− C5

ηe−n1ξ

6κ

[
n2 sin(ξn2)

[
κ(ρ+ 4)− 3ηn2

1 + ηn2
2

]
+ n1 cos(ξn2)

[
κ(ρ+ 4)− ηn2

1 + 3ηn2
2

]]
+C6

ηe−n1ξ

6κ

[
n2 cos(ξn2)

[
κ(ρ+ 4)− 3ηn2

1 + ηn2
2

]
− n1 sin(ξn2)

[
κ(ρ+ 4)− ηn2

1 + 3ηn2
2

]]
(5.34)

 hb

 hr

2

 

Nr

 

 
Mr

 

 Vr=0

=0
=P

 

Nr

 Mr
 

 Vr=0

=0
=0

Nb=-2PNb  =0

l

x

Figure 5.5: Boundary conditions used to model the DPPS test.

The six boundary conditions are obtained by substituting the values of the ax-

ial force, shear force and bending moment into the expressions of the lower order

derivatives of the adhesive shear and normal stresses in Eqs. (5.17), (5.18) and (5.21),

evaluated at the extremes (see Figure 5.5). To write these boundary conditions in

dimensionless form, suitable dimensionless forces and bending moment are defined as

follows: N̂r = Nr
P , N̂b = Nb

P , V̂r = Vr
P , M̂r = Mr

Plch
.

Thus, the first two boundary conditions are given by evaluating Eq. (5.17) at the

extremes

τ̂ ′(0) =
κ

η

(
N̂r(0) +

6

η
M̂r(0)− ρ

2
N̂b(0)

)
(5.35)

τ̂ ′(λ) =
κ

η

(
N̂r(λ) +

6

η
M̂r(λ)− ρ

2
N̂b(λ)

)
(5.36)

The third and fourth boundary conditions are obtained from Eq. (5.18)

τ̂ ′′(0)− κ

η
(4 + ρ)τ̂(0) =

6κ

η2
V̂r(0) (5.37)

τ̂ ′′(λ)− κ

η
(4 + ρ)τ̂(λ) =

6κ

η2
V̂r(λ) (5.38)
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Finally, Eq. (5.21) provides the fifth and sixth boundary conditions

σ̂′′(0)− ζKz

η
σ̂(0) =

12

η3
M̂r(0) (5.39)

σ̂′′(λ)− ζKz

η
σ̂(λ) =

12

η3
M̂r(λ) (5.40)

This group of the six static boundary conditions forms a system of six linear

equations for (dimensionless) unknown constants C1, . . . , C6, which can be solved in a

closed form, although very lengthy expressions obtained are omitted here, for the sake

of brevity. Then, the values of these constants suitably substituted into Eqs. (5.33)

and (5.34) allow to obtain the interface shear and normal stresses, correspondingly.

Noteworthy, this method to obtain the stress distribution at a interface is valid

for double lap joints under any loading type. Just the edge loads applied at the ends

should be properly set. For the present case this loads are: Nr = Vr = Mr = 0 and

Nb = 0 at x = 0; and Vr = Mr = 0, Nr = P and Nb = −2P at x = l. Therefore, in

the present case this linear system is reduced to

τ̂ ′(0) = 0 (5.41)

τ̂ ′(λ) =
κ

η
(1 + ρ)

τ̂ ′′(0)− κ

η
(4 + ρ)τ̂(0) = 0

τ̂ ′′(λ)− κ

η
(4 + ρ)τ̂(λ) = 0

σ̂′′(0)− ζKz

η
σ̂(0) = 0

σ̂′′(λ)− ζKz

η
σ̂(λ) = 0

5.2.2 Interfacial stress distribution with an unbonded zone at

the loaded end including receding contact

The model developed in this section uses the same simplified geometry and the same

main assumptions as those described in section 5.2.1. Figure 5.6 represents a scheme

of the studied model. An important variation with respect to the model included in

the previous section is that the present model includes two different zones:

• S1, undamaged interface zone.

• S2, adhesive-free zone, including contact conditions if necessary.

The free-body diagram of an element of length dx is different for each studied zone,

represented in Figure 5.4 (a) for S1 zone and in Figure 5.4 (b) for S2 zone. Note that

the S1 zone has exactly the same free-body diagram and governing equations than

those included in the previous section model, where the interface is able to transfer

shear and normal stresses. Therefore, the stress fields for S1 zone are defined above

in Eqs. (5.33) and (5.34), and in this section they are renamed as σ̂S1 and τ̂S1,

correspondingly. However, the S2 zone is only able to transfer compressive normal
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Figure 5.6: Boundary conditions of the PPST test with an unbonded zone at the loaded end including
receding contact.

stresses(σ̂S2), and they are obtained in this section. Moreover, the continuity of

displacements on the reinforcement at the intersection point between the two zones

is imposed using adequate boundary conditions.
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Figure 5.7: Equilibrium of an infinitesimal element of the beams system for (a) S1 zone and (b) S2
zone.
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5.2.2.1 Governing equations for zone where there is not adhesive but

could have contact

The equilibrium equations which govern the reinforcement in S2 zone are very similar

to those in zone S1, with the difference that in this zone there are not tangential stress.

Therefore, the equilibrium equations are written following the same nomenclature

than section 5.2.1.1:
dNr
dx

= 0 (5.42)

dVr
dx

+ σ = 0 (5.43)

dMr

dx
− Vr = 0 (5.44)

and the only equilibrium equation in the concrete block is:

dNb
dx

= 0, (5.45)

The kinematic and constitutive equations for this S2 zone are exactly the same

that for the S1 zone, both for reinforcement and for concrete block: from the Eq. (5.5)

to the Eq. (5.14). However, since there are only normal stresses at the interface in

S2 zone, the behaviour is:

τS2 = 0 (5.46)

σS2 = knδn = −knwr (5.47)

5.2.2.2 Stress distributions along the interface and boundary conditions

Similarly to the development of the Section 5.2.1.2, the expression (5.48) is obtained

differentiating the Eq. (5.47) and taking into account the kinematic behaviour of the

Eq.(5.7) kinematic behaviour of the Eq. (5.13):

dσS2

dx
= −kn

dwr
dx

= kn (ϕr − γr) = kn

(
ϕr −Kz

Vr
Grhr

)
(5.48)

By differentiating two more times and accounting constitutive Eq. (5.12) and

equilibrium Eq. (5.44):

d2σS2

dx2
= kn

(
χr +

Kz

Grhr
σS2

)
= kn

(
12Mr

E′rh
3
r

+
Kz

Grhr
σS2

)
(5.49)

d3σS2

dx3
= kn

(
12Vr
E′rh

3
r

+
Kz

Grhr

dσS2

dx

)
(5.50)

And differentiating one last time and replacing the Eq. (5.43):

d4σS2

dx3
= kn

(
−12σS2

E′rh
3
r

+
Kz

Grhr

d2σS2

dx2

)
(5.51)

Then, Eq. (5.51) can be rewritten in terms of the dimensionless parameters defined

in Table 5.1 as:
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σ̂iv
S2 −

Kzζ

η
σ̂′′S2 +

12

η3
σ̂S2 = 0, (5.52)

And, as in the previous section, the derivatives are taken with respect to ξ. The

characteristic fourth-order equation is written as:

q4 − F2q
2 + F0 = 0, (5.53)

where F2 and F0 are the absolute values of the multipliers of the second and zero

order derivatives, respectively, in Eq. (5.52). Rewriting the fourth-order polynomial

in Eq. (5.53) considering q2 as an independent variable, we get a quadratic equation

in terms of q2. For the specific case of DPPS test, the discriminant of this quadratic

equation is normally negative. Hence, the fourth-order equation has a pair of complex

conjugate roots:

q1,2 = p1 ± ip2, q3,4 = −p1 ± ip2 (5.54)

p1 and p2 are positive real numbers given in terms of the dimensionless parameters

of problem defined in 5.1:

p1 =

√
F2

4
+

√
F0

4
=

√
ζKz

4η
+

√
3

η3
(5.55)

p2 =

√
−F2

4
+

√
F0

4
=

√
−ζKz

4η
+

√
3

η3
(5.56)

Finally, the dimensionless normal stress σ̂S2 can be expressed as:

σ̂S2 = C7e
q1ξ cos (q2ξ) + C8e

q1ξ sin (q2ξ)

+ C9e
−q1ξ cos (q2ξ) + C10e

−q1ξ sin (q2ξ), (5.57)

where C7, . . . , C10 are integration constants appertaining to zone S2 and these must

be added to the integration constant of zone S1 (C1, . . . , C6), which are part of σ̂S1

and τ̂S1 (Eqs. (5.34) and (5.33) respectively). The boundary conditions must be able

to determinate all of them and to define the stresses field in the whole interface.

The ten boundary conditions are obtained by substituting the values of the axial

force, shear force and bending moment into the expressions of the lower order deriva-

tives of the shear and normal stresses at S1 and S2 zones. And as in the previous

section, suitable dimensionless forces and bending moment (N̂r = Nr
P , N̂b = Nb

P , V̂r =
Vr
P , M̂r = Mr

Plch
) are used to write these boundary conditions in dimensionless form.

Thus, the first three boundary conditions are evaluated at ξ = 0, i.e. at un-

loaded end of the reinforcement, for this raison they are evaluated at the S1 zone by

Eqs. (5.17), (5.18) and (5.21):
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τ̂ ′S1(0) =
κ

η

(
N̂r(0) +

6

η
M̂r(0)− ρ

2
N̂b(0)

)
(5.58)

τ̂ ′′S1(0)− κ

η
(4 + ρ)τ̂S1(0) =

6κ

η2
V̂r(0) (5.59)

σ̂′′S1(0)− ζKz

η
σ̂S1(0) =

12

η3
M̂r(0) (5.60)

(5.61)

The two next boundary condition are evaluated at ξ = λ, i.e. at loaded end of

the reinforcement, thus they are evaluated at the S2 zone by Eqs. (5.49) and (5.50):

σ̂′′S2(λ)− ζKz

η
σ̂S2(λ) =

12

η3
M̂r(λ) (5.62)

σ̂′′′S2(λ)− ζKz

η
σ̂′S2(λ) =

12

η3
V̂r(λ) (5.63)

(5.64)

The rest of the five boundary conditions are evaluated at the intersection between

the two zones S1 and S2, at ξ = λ1−2. The first one evaluates the transverse dis-

placement by the equations of the zone S1 and the equations of the zone S2, since

wr(S1)(λ1−2) = wr(S2)(λ1−2). Thus, if the Eq. (5.16) is equal to Eq. (5.47) the sixth

boundary condition is expressed as:

σ̂S1(λ1−2)− σ̂S2(λ1−2) = 0 (5.65)

Additionally, at intersection of the two zones, ϕr(S1)(λ1−2) = ϕr(S2)(λ1−2) and

V̂r(S1)(λ1−2) = V̂r(S2)(λ1−2) must be fulfilled. Therefore, the seventh boundary con-

dition is obtained by the Eqs. (5.20) and (5.48).

σ̂′S1(λ1−2)− σ̂′S2(λ1−2) = 0 (5.66)

By extracting V̂r(S1)(λ1−2) from Eq. (5.18) and replacing into Eqs. (5.50), the

next boundary condition is written:

τ̂ ′′S1(λ1−2)− κ

η
(4 + ρ)τ̂S1(λ1−2)− ηκ

2
σ̂′′′S2(λ1−2) +

ζκKz

2
σ̂′S2(λ1−2) = 0 (5.67)

As M̂r(S1)(λ1−2) = M̂r(S2)(λ1−2) is imposed. If M̂r(S2)(λ1−2) is extracted from

Eq. (5.49) and replaced into Eqs. (5.17), the next boundary conditions is:

τ̂ ′S1(λ1−2)− ηκ

2
σ̂′′S2(λ1−2) +

ζκKz

2
σ̂S2(λ1−2) =

κ

η

(
N̂r(λ1−2)− ρ

2
N̂b(λ1−2)

)
(5.68)

Finally, since M̂r(S1)(λ1−2) = M̂r(S2)(λ1−2) and σ̂S1(λ1−2) = σ̂S2(λ1−2) at the

intersection of the two zone, the last boundary conditions is defined by Eqs. (5.21)

and (5.49):
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σ̂′′S1(λ1−2)− σ̂′′S2(λ1−2) = 0 (5.69)

This group of the ten static boundary conditions forms a system of ten linear

equations for (dimensionless) unknown constants C1, . . . , C10, which can be solved

in closed form, as the previous section. Then, the values of these constants suitably

substituted into Eqs. (5.33), (5.34) and (5.57) allow to define the interface shear and

normal stresses for S1 zone and normal stresses for S2 zone.

The system proposed is a general system for double lap joints under any loading

type. If the loads applied at the ends and at the intersection between two zones are

the same which in the Figure 5.8, this system solves the specific problem of the DPP

test.
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Figure 5.8: Boundary conditions used to model the DPPS test.

Therefore, in the present case this linear system is reduced to

τ̂ ′S1(0) = 0 (5.70)

τ̂ ′′S1(0)− κ

η
(4 + ρ)τ̂S1(0) = 0

σ̂′′S1(0)− ζKz

η
σ̂S1(0) = 0

σ̂′′S2(λ)− ζKz

η
σ̂S2(λ) = 0

σ̂′′′S2(λ)− ζKz

η
σ̂′S2(λ) = 0

σ̂S1(λ1−2)− σ̂S2(λ1−2) = 0

σ̂′S1(λ1−2)− σ̂′S2(λ1−2) = 0

τ̂ ′′S1(λ1−2)− κ

η
(4 + ρ)τ̂S1(λ1−2)− ηκ

2
σ̂′′′S2(λ1−2) +

ζκKz

2
σ̂′S2(λ1−2) = 0

τ̂ ′S1(λ1−2)− ηκ

2
σ̂′′S2(λ1−2) +

ζκKz

2
σ̂S2(λ1−2) =

κ

η
(1 + ρ)

σ̂′′S1(λ1−2)− σ̂′′S2(λ1−2) = 0
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5.2.3 Stresses distribution with different bonded and unbonded

lengths including receding contact

In order to know the behaviour of the solutions of the stress field obtained in the

previous sections, the data in Table 5.2 are taken to represent graphically the normal

and shear stresses in a specific interface. Mazzotti et al. (2016) provide ranges for all

geometrical and mechanical characteristics of the DPPS test taken in the available

bibliography. Thus, all the chosen parameters are within these ranges. The obtained

values of the dimensionless parameters defined in Table 5.1 are also presented in

Table 5.2.

Table 5.2: Default mechanical and geometrical characteristics used for the debond analysis in the
DPPS test.

lb(mm) hb(mm) Eb(GPa) νb Gb
Concrete block 100 50 30.0 0.20 12.5

lr(mm) hr(mm) E1(GPa) ν13 G12

Reinforcement 100 1.5 135.0 0.30 5

kn(MPa/µm) kt(MPa/µm)
Adhesive 0.72 0.18

Characteristic length and reinforcement stiffness:
lch=206.04mm E′r=148.35GPa

Dimensionless
λ=0.485 η = 0.00728 ρ = 0.142 κ = 0.25 ζ = 29.67

parameters

Figure 5.9 depicts the solution of stresses field obtained in Section 5.2.1.2 where

the reinforcement is bonded to whole interface, from unloaded end to loaded end.

Note that, the distributions of stresses represented in mentioned figure show that the

largest normal and shear stress values are obtained at the right end of the interface

(loaded end), coinciding with the zone where loads are applied over the concrete

block and laminate, see Figure 5.5. Regarding the normal stress distribution, it is

interesting to notice that a large increase of compressions appear at the right end but

also tensions appear in a neighbour small zone. Moreover, tensions also occur at the

opposite (left) end, free end in Figure 5.5.

Also, the data in Table 5.2 are taken to represent graphically the solution of

the stresses field obtained in Section 5.2.2.2. In this occasion, the reinforcement is

positioned at a certain distance from the edge of the concrete block (lu), and therefore

the bonded region is la = l − lu, as Figure 5.8 represents. Figure 5.10 depicts the

normal and shear stresses for two different cases which present different unbonded

zone lengths. The continuous lines represent an unbonded region smaller than the

case represented by the dashed line. Regarding the normal stress distribution, it is

important to highlight that at the unbonded zone occurs a contact zone, where the

normal stress peak decreases with increasing contact area. Be that as it may, Figure

5.10 shows that the contact zone does not change from the unloaded system to the

loaded system. This type of contact is called conforming (Garrido et al., 1988, 1997).



96 Chapter 5

0.0 0.1 0.2 0.3 0.4 0.5
ξ

ξ

P

P

-2.0

0.0

2.0

4.0

6.0
σ(

ξ)
, τ
(ξ
)

ξ=0.485

σ(ξ)
τ(ξ)

Figure 5.9: Dimensionless normal and shear stress distributions along the interface in the DPPS
test.
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Figure 5.10: Dimensionless normal and shear stress distributions along the interface in the
DPPS test with λ=0.485 and two different adhesive zones lengths: λa=0.477(la=98mm) and
λa=0.447(la=92mm).
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However, a lifting of the loaded end is produced if the unbonded zone increases.

An example of this case is presented in Figure 5.11, where the bonded zone is shorter

than the previous cases. Figure 5.11 (b) shows a small tension zone which does not

warrant properly the equilibrium in the whole interface. Actually, it is produced

because of a positive relative displacement between reinforcement and concrete is

not taken into account. These cases where the contact zone diminishes after the

application of the load are called receding contact, which leads to the need to use

numerical iterations to predict the exact size of the contact zone(Garrido et al., 1988,

1997).
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Figure 5.11: Dimensionless normal and shear stress distributions along the interface in the DPPS
test with λ=0.485 and λa=0.388 (la=80mm).

Note that the linear system obtained in 5.2.2.2 evaluates two boundary condition

at loaded end of the reinforcement, ξ = λ. Nevertheless, in the receding contact cases,

these boundary conditions should be evaluated at the point where positive relative

displacement between reinforcement and concrete starts. To obtain this point a simple

loop has been used, and the Algorithm 5.1 show its pseudocode. The problem is

initiated assuming the contact zone as the initial unbonded region λuc = λu, where

λuc is updated at each step of the loop and it is always within the unbonded region.

Therefore, in each step, the point ξ = λ where the boundary conditions mentioned

above are evaluated can be defined as λ = λa +λuc. This point is where the lifting of

the reinforcement stars. In each step, the linear system is solved for these variables

and the zone where tension appear are considered for the next step free of contact.

Once the correct size of contact zone has been determined the the right stresses

field can be defined. Figure 5.12 shows five different case with different λa and solve

with the algorithm 5.1.
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Algorithm 5.1: Loop to define the receding contact size.

data : Define geometry and material properties in terms of the dimensionless
parameters defined in Table5.1

input : Initialize λ=λr and λuc=λu
output: Final λ and λuc

for every step do

Solve the system of of ten linear equations for unknown constants C1 − C10;

Find root ξr of σ̂S2(ξ)=0 for λa ≥ ξ ≥ λa + λuc;

if ξr 6= ∅ then
λ = ξr and λuc = λ− λa;

else
λ and λuc remain unchanged;
Break;
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Figure 5.12: Dimensionless normal and shear stress distributions along the interface in the DPPS
test with λ=0.485 and five different adhesive zones lengths: λa=λ=0.485 (la=100mm), λa=0.437
(la=90mm), λa=0.340 (la=70mm), λa=0.243 (la=50mm) and λa=0.146 (la=30mm).
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5.3 Comparison of the solutions of models with and

without normal interfacial stresses

It is worth recalling the solution provided by the simpler shear lag (SL) model in-

troduced in Cornetti et al. (2012). Accordingly, the adhesive is modelled as a bed

of tangential springs, which are not able to transfer normal stresses (kn = 0); thus,

neither peeling stresses nor compressions in the adhesive layer are present in the SL

model. Moreover, the adherents are assumed to withstand only axial forces. Regard-

ing the shear stresses at the interface, the SL solution (Cornetti et al., 2012) , using

the dimensionless quantities defined above, yields

τ̂SL =

√
κ(1 + ρ)

η

cosh

(
ξ
√

κ(1+ρ)
η

)
sinh

(
λ
√

κ(1+ρ)
η

) (5.71)

Note that the SL model is not a particular case of the present one, i.e. it cannot

be achieved by setting kn = 0 into the present developed model (for instance, the

rotational equilibrium given by Eq. (5.3) would never be satisfied). Nevertheless, the

shear stress field provided by the SL model, Eq. (5.71), agrees very well with the one

provided by Eq. (5.33).

The differences obtained between both models will be analysed in detail in this

section for several characteristic parameters of the DPPS test. Specifically, the influ-

ence of the parameters on the stress distributions and the dimensionless parameters

defined in Table 5.1 are analysed using Eqs. (5.33) and (5.34). Additionally, the SL

solution given by Eq. (5.71) will also be depicted for comparison purposes. In the

following analyses, the values presented in Table 5.2 will be used except for the pa-

rameter to be analysed in each case, which will vary in the range defined in each

figure. Specifically, the influence of the parameters on the stress distributions and

the dimensionless parameters defined in Table 5.1 are analysed using Eqs. (5.33) and

(5.34). Additionally, the SL solution given by Eq. (5.71) will also be depicted for

comparison purposes. In the following analyses, the values presented in Table 5.2 will

be used except for the parameter to be analysed in each case, which will vary in the

range defined in each figure.

The first analysed parameter is λ, representing the length of the bonded joint

(overlap length), Figures 5.13 and 5.14, show shear and normal stress distributions

for several overlap lengths λ. Small differences are shown for τ̂ values obtained using

the present model and using the SL model in Cornetti et al. (2012) for all analysed

values of λ. It is noticeable that the highest differences occur at the right (loaded)

end of the interface, which is the zone where the debond onset is expected to take

place.

It is interesting to recall the importance of the normal stress distribution, see

Figure 5.14, especially for small overlap lengths, where large tension values appear in

the left end with traction free boundary conditions. Interestingly, the size of the zone

under traction is independent of the overlap lenght, as highlighted in Figure 5.14(b).

These results are in accordance with previous investigations (Martinelli et al., 2011;

Carrara et al., 2011; Carrara and Ferretti, 2013; Czaderski et al., 2010).
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Figure 5.13: (a) Dimensionless shear stress distribution along the interface for different λ values,
with η = 0.00728, ρ = 0.142, κ = 0.25 and ζ = 29.67 (b) Zoom at the right (loaded) end of the
interface for λ=0.25.
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Figure 5.14: (a) Dimensionless normal stress distribution along the interface for different λ values,
with η = 0.00728, ρ = 0.142, κ = 0.25 and ζ = 29.67. (b) Zoom at the left (free) end of the interface.
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The second parameter to be analysed is η = hr
lch

which is directly related to the

laminate (reinforcement) thickness. Also here shear stress distributions obtained by

the present model and by the SL model present small differences, see Figure 5.15.

The larger differences are obtained at the loaded end, where these differences slightly

increase for larger values of the laminate thickness.
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Figure 5.15: (a) Dimensionless shear stress distribution along the interface for different η values,
with λ = 0.485, ρ = 0.142, κ = 0.25 and ζ = 29.67. (b) Zoom at the loaded end.
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Figure 5.16: (a) Dimensionless normal stress distribution along the interface for different η values,
with λ = 0.485, ρ = 0.142, κ = 0.25 and ζ = 29.67. (b) Zoom at the loaded end. (c) Zoom at the
traction free end.
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Figure 5.16 presents the influence of η on the normal stress distribution. Results

show that the zone of tensions and the maximum tension value at the left (free)

end increase with increasing values of laminate thickness, whereas, at the opposite

(loaded) end, a decrease of the maximum compression value occurs for larger laminate

thickness although the zone of compressions is larger. The behaviour associated

with η shows that, for larger laminate thickness, shear stresses are more uniformly

distributed, while compressions at the loaded end are balanced (at least partially, in

view of another intermediate zone of moderate tensions) by tensions at the free end.

This fact may cause, for some geometries, debond onset at the free end.

It should be noted that although several η values are used in Figures 5.15 and

5.16. The comparison is made at constant relative axial stiffness between block and

reinforcement, i.e. at constant ρ =
E′
rhr

E′
bhb

.

Then, the influence of the parameter ρ is analysed in Figures 5.17 and 5.18. Results

show that a decrease of the block axial stiffness raises the shear stress peak in the

loaded end as depicted in Figure 5.17.

Additionally, compressions in the loaded end increase while tensions decrease in

the traction free end, as shown in Figure 5.18. It is noteworthy that this behaviour

is the opposite as the one observed when η increases.
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Figure 5.17: (a) Dimensionless shear stress distribution along the interface for different ρ values,
with λ = 0.485, η = 0.00728, κ = 0.25 and ζ = 29.67. (b) Zoom at the loaded end.

Finally, Figures 5.19 and 5.20 show stress distribution for different κ = kt
kn

values.

It is interesting to notice, as indicated Mantič et al. (2015) and Távara et al. (2011),

that κ < 0.50 for isotropic adhesive layers while κ > 0.50 values may be associated

to orthotropic adhesive layers.

In the DPPS test, stresses along the interface are mainly dominated by shear

stresses. Thus, for smaller κ values, the stress distribution along the interface is

more uniform. As can be expected, this effect is more pronounced for shear stresses.
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Figure 5.18: Dimensionless normal stress distribution along the interface for different ρ values, with
λ = 0.485, η = 0.00728, κ = 0.25 and ζ = 29.67. (b) Zoom at the loaded end. (c) Zoom at the
traction free end.

Nevertheless, it is noticeable that compressions almost disappear in the traction free

end for larger κ values. This behaviour is very similar to the one obtained for η.
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Figure 5.19: (a) Dimensionless shear stress distribution along the interface for different κ values,
with λ = 0.485, η = 0.00728, ρ = 0.142 and ζ = 29.67. (b) Zoom at the loaded end.
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Figure 5.20: (a) Dimensionless normal stress distribution along the interface for different κ values,
with λ = 0.485, η = 0.00728, ρ = 0.142 and ζ = 29.67. (b) Zoom at the loaded end. (c) Zoom at
the traction free end.

5.4 Analytical study about the Coupled Criterion of

Finite Fracture Mechanics (CCFFM) applied to

linear-elastic interfaces in the DPPS test

In this section, the CCFFM applied to LEBIM based on stress and energy crite-

ria curve is used to predict the critical load which generates the crack onset in the

interface in the DPPS test. This analytical application will follow the development

presented in Section 3.2 but with nomenclature and dimensionless parameter adapted

to this problem. As discussed in Section 3.2, the CCFFM uses both the stress and in-

cremental energy criteria, predicting the onset of a crack with a finite (dimensionless)

length ∆λ when both criteria are simultaneously fulfilled.

As explained in the previous section, the linear elastic behaviour of an undamaged

spring, located at an interface point x, is given by relations σ(x) = knδn(x) and

τ(x) = ktδt(x), defined for this problem in Eqs. (5.15) and (5.16). Following the

development of the LEBIM of Section 2.4, the Energy Release Rate (ERR) due to

an interface fracture is actually given by the energy stored in the spring (per unit

area) before fracture. Thus, the ERR at an interface point can be expressed by

the interface tension and shear stresses acting there, as define in (2.16), (2.17a) and

(2.17b) Consequently, the ERR at an interface part under compression is associated

to pure mode II, i.e. G(x) = GII(x).

If the dimensionless variables and parameters defined in Table 5.1 are used, also

a suitable dimensionless ERR can be defined in terms of the dimensionless stresses,

τ̂(ξ) and σ̂(ξ), obtained in the previous section, (cf. Mantič (2009); Mantič and Garćıa
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(2012)),

Ĝ(ξ) =
2ktl

2
ch

P 2
G(ξ) = ĜI(ξ) + ĜII(ξ) = κ〈σ̂(ξ)〉2+ + τ̂2(ξ) (5.72)

Then, the definition of the energy based fracture-mode-mixity angle ψ(ξ), orig-

inally given in terms of the ERR components as tan2 ψ = ĜII(ξ)

ĜI(ξ)
for a positive

GI(ξ) > 0, can be extended to cover the whole angle range as follows Mantič et al.

(2015)

tanψ(ξ) =
√
κ−1

(
τ̂(ξ)

σ̂(ξ)

)
, for − π ≤ ψ(ξ) ≤ π (5.73)

The plot of the fracture-mode-mixity angle ψ(ξ) at undamaged points ξ, for the DPPS

test model with the parameters given in Table 5.2, is shown in Figure 5.21. As can be

observed, significant compressions appear in the loaded end while significant tensions

occur in the free end.

ψ 
(ξ

)º 

0.0 0.1 0.2 0.3 0.4 0.5
75

80

85

90

95

100

105

110

ψ (λ    =0.00)HSa

ψ (λ    =0.12)HSa

ψ (λ    =0.20)HSa

ψ (ξ)º 

ξ

ξ= 0.485

Figure 5.21: Fracture-mode-mixity angle ψ(ξ) in degrees computed along the undamaged interface,
for the parameters shown in Table 5.2. Additionally, ψa defined in (5.4.1) is indicated for several
values of λHS.

In the following, the CCFFM will be applied to the DPPS test considering the

parameter values defined in Table 5.2.

5.4.1 Energy based criterion

Similarly as in Mantič (2009); Mantič and Garćıa (2012), the incremental energy

criterion under mixed mode is satisfied when∫ λ

λ−∆λ

G(λ′) dλ′ ≥
∫ λ

λ−∆λ

Gc(ψ(ξ)) dξ, (5.74)
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where, according to Figure 5.22, ∆λ is a finite crack advance and G(λ′) is the ERR at

the tip of a virtual interface crack of length ∆λ′ computed by (5.72). Gc(ψ(ξ)) is the

fracture energy associated to an undamaged interface point ξ before the debonding

propagation. It is given as a function of the fracture-mode-mixity angle ψ(ξ) defined

in Eq. (5.73), which is coherent with the main hypothesis of FFM assuming an abrupt

onset of a crack of a finite size, see Garćıa and Leguillon (2012) for a discussion. Figure

5.22 shows the way how λ′ is associated to a virtual-interface-crack tip, and ξ to a

point in an initially undamaged segment ∆λ of the interface.

λ

ξ

λ−∆λ

λ’ 

∆λ

∆λ’

Figure 5.22: Finite crack advance description and coordinates for the incremental energy criterion.

Figs. 5.23 and 5.24, respectively, show the plots of dimensionless stresses τ̂(λ′)

and σ̂(λ′) at the tip of the virtual interface crack of length ∆λ′ and overlap length

λ′, with λ−∆λ ≤ λ′ ≤ λ. These stresses are referred to the crack tip, assuming that

the debond onset will occur at the loaded end. These stress values will be used to

compute the ERR associated with the debond onset.

It can be observed that both shear and normal stresses, τ̂(λ′) and σ̂(λ′), tend to

infinity when the overlap length λ′ is small. Moreover, the shear stresses computed

using the present model and the SL model have very similar behaviour.

Regarding the normal stress evolution, depicted in Figure 5.24, compressions ap-

pear in a small zone ahead of the interface crack tip, thus, Ĝ(λ′) = ĜII(λ
′). Thus,

ERR will be a function of τ̂(λ′) only, similarly as in the solution obtained by the SL

model (Cornetti et al., 2012). Nevertheless, there are only small differences between

both shear stress evolutions, see Figure 5.23(b). Consequently, there are also small

differences between Ĝ(λ′) values obtained from both solutions, see Figure 5.25.

For this particular study of the DPPS test, it is convenient expressing the ERR

in terms of the dimensionless ERR function Ĝ(λ′) defined previously in Eq. (5.72),

but in this occasion it is associated to the virtual interface crack tip,

G(λ′) =
(σrx)

2
η2

2kt
Ĝ(λ′), (5.75)

where σrx is the tension per unit width applied in the laminate (reinforcement). Note

that, σrx and kt fulfill the function of σnom and kch defined in Section 3.1.



M.M.Muñoz-Reja Moreno 107

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

λ’= 0.485

τ(
λ’

)

λ’
0.20 0.25 0.30 0.35 0.40 0.45

6.0

6.2

6.4

6.6

6.8

7.0

τ(
λ’

)
λ’

(a) (b)

τ  (λ’) [8]
τ(λ’)

SL

Figure 5.23: Shear stress values computed at an interface crack tip at a position λ′, for the parameter
values given in Table 5.2.
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Figure 5.25: Dimensionless ERR function Ĝ(λ′), for the parameter values shown in the Table 5.2.

Similarly, Gc(ψ(ξ)) can be defined in terms of a dimensionless fracture energy

function

Gc(ψ(ξ)) = ḠIIcĜc(ψ(ξ)), (5.76)

where the ḠIIc =
τ̄2
max

2kt
is the fracture energy for pure mode II, with τ̄max denoting

the maximum shear stress associated to the energy criterion (Cornetti et al., 2012).

The dimensionless function Ĝc(ψ(ξ)), used in this study, is similar to that pro-

posed by Hutchinson and Suo (1992) and defined in (2.26), but using the fracture

energy in mode II because the present problem has a predominant fracture behaviour

in this mode,

Ĝc(ψ(ξ)) = sin2
(
λHS

π

2

) (
1 + tan2(1− λHS)ψ(ξ)

)
, (5.77)

with |ψ| < ψ̄a(λHS), 0 ≤ λHS ≤ 1,

where ψ̄a(λHS) = min{ψa(λHS), π} and ψa(λHS) =
π

2(1− λHS)
.

For the specific case of the DPPS test, a large λHS value seems to be adequate

considering that fracture mode II is dominant in this test. The asymptotic values

ψa(λHS) for several λHS are shown in Figure 5.21. Notice that interface damage

cannot be produced at those points ξ where ψa(λHS) < |ψ(ξ)|, see Mantič et al.

(2015). This is especially evident in the limit case of λHS = 0, where an interface

failure under compressions is not possible. Therefore, a λHS ≥ 0.12 must be selected

in the present case to allow interface fracture at any position.

In Figure 5.26, Ĝc(ψ(ξ)) in the DPPS test is plotted for several values of λHS.

As can be observed, the fracture energy strongly increases at the loaded end of the

interface as λHS decreases. In order to take into account the dominant fracture mode

II λHS = 0.5 is used in some of the following calculations.
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Figure 5.26: Dimensionless fracture energy function Ĝc(ψ(ξ)) using the parameters included in
Table 5.2 and for different λHS values.

Following the procedure introduced in Section 3.2 (see (3.22)) and in view of (5.75)

and (5.76), the dimensionless function characterizing the ratio of the dissipated and

released energies due to the debond onset

g(λ−∆λ) =

∫ λ
λ−∆λ

Ĝc(ψ(ξ)) dξ∫ λ
λ−∆λ

Ĝ(λ′) dλ′
(5.78)

allows us to rewrite the incremental energy criterion (5.74) as

(σrx)2η2

2ktḠIIc
≥ g(λ−∆λ) (5.79)

Energy criterion curves obtained for several values of λHS are plotted in Figure

5.27. The curve obtained by the SL model introduced in Cornetti et al. (2012) is also

plotted for comparison purposes. g is represented as a function of (λ−∆λ) to relate

it easily with the specimen geometry and especially the interface crack configuration.

As can be observed, the energy criterion is strongly sensitive to λHS values close to

the loaded end due to high compressions acting there.

5.4.2 Stress based criterion

To predict debond onset and propagation, in addition to the energy criterion (5.74),

also a stress criterion must be fulfilled along an undamaged finite segment from ξ = λ

to ξ = λ−∆λ, making possible a finite crack advance ∆λ > 0, see Figure 5.28.

The pointwise stress criterion, originally proposed in Leguillon (2002) for mode

I crack onset, can be generalized to mixed mode fracture using the modulus of the

interface traction vector t(ξ) and its critical value tc(ψ(ξ)), as indicate in (3.1),
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Figure 5.28: Finite crack advance in the stress based criterion.

t(ξ)

tc(ψ(ξ))
≥ 1, for all ξ, λ−∆λ ≤ ξ ≤ λ (5.80)

where

t(ξ) =
√
σ2(ξ) + τ2(ξ) and tc(ψ(ξ)) =

√
σ2
c (ψ(ξ)) + τ2

c (ψ(ξ)) (5.81)

The normal and shear critical tractions, σc(ψ) and τc(ψ), respectively, used in the

last equation can be expressed in terms of the critical shear traction for pure mode II

τ̄c and a dimensionless function (Mantič et al., 2015; Távara et al., 2011). Similarly

as in (2.25), the mixed mode stress criterion is chosen coherently with the energy
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criterion, leading to the following expressions, cf. Mantič et al. (2015):

σc(ψ(ξ)) = τ̄c
√
κ−1

√
Ĝc(ψ(ξ)) ·

{
cosψ(ξ), |ψ| ≤ π

2 ,

−| cotψ(ξ)|, |ψ| ≥ π
2 ,

(5.82)

τc(ψ(ξ)) = τ̄c

√
Ĝc(ψ(ξ)) ·

{
sinψ(ξ), |ψ| ≤ π

2 ,

signψ(ξ), |ψ| ≥ π
2 .

(5.83)

As in the energy criterion, the stress criterion can also be written in terms of a

dimensionless function by expressing the modulus of the traction vector t(ξ) and its

critical value tc(ψ(ξ)) in terms of two dimensionless functions

t(ξ) = σrxη
√
σ̂2(ξ) + τ̂2(ξ) = σrxηt̂(ξ), (5.84)

tc(ψ(ξ)) = τ̄ct̂c(ψ(ξ)). (5.85)

Notice that both the modulus of the critical traction vector tc(ψ(ξ)) as well as

the previously defined fracture energy Gc(ψ(ξ)) depend on the same fracture-mode-

mixity angle ψ(ξ) evaluated at a considered undamaged point ξ before the debond

onset, see Figure 5.21. If the Hutchinson-Suo empirical law (5.4.1) is assumed for

Ĝc(ψ), then, similarly as in the energy criterion, interface fracture at a point ξ is

allowed only if |ψ(ξ)| < ψ̄a(λHS).
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Figure 5.29: Dimensionless modulus of tractions t̂(ξ), for the parameter values given in Table 5.2.

Figure 5.29 shows distributions of t̂(ξ) for the present model and the SL model.

Noteworthy, the behavior of t̂(ξ) is very similar for both models except for the end

zones of the interface, as could be expected from the plots of tractions shown in

Section 5.3.

Distributions of t̂c(ξ) for several values of λHS are presented in Figure 5.30. As

could be expected, smaller values of λHS lead to higher differences in the very end

zones of the interface.
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Figure 5.30: Dimensionless critical modulus of traction t̂c(ξ), for the parameter values given in
Table 5.2.

Then, the stress criterion in Eq. (5.80) for a finite crack advance ∆λ from the

loaded end of the interface can be expressed in terms of the dimensionless function

s(ξ) =
t̂c(ψ(ξ))

t̂(ξ)
(5.86)

as
σrx
τ̄c
≥ s(ξ)

η
for all ξ, λ−∆λ ≤ ξ ≤ λ (5.87)

or as
σrx
τ̄c
≥ s̄(λ−∆λ)

η
, where s̄(λ−∆λ) = max

λ−∆λ≤ξ≤λ
s(ξ) (5.88)

is a monotonous function.

Function s(ξ) is shown in Figure 5.31 for several λHS values. This function char-

acterizes the load factor (LF) required to produce the debond onset according to the

stress criterion. Noteworthy, a local minimum of the function s(ξ) in the neighbour-

hood of the loaded end indicates a highly stressed region there. This observation

agrees with the experimental data in Czaderski et al. (2010), where small cracks are

observed in this zone prior to the failure.

5.4.3 Coupled criterion

A way to characterize the predictions of the coupled criterion of FFM + LEBIM,

applied in the present study, is to use the dimensionless characteristic parameter µ,

defined in (3.12), using parameters for pure fracture mode II, as

µ =
2ktḠIIc

τ̄2
c

=
τ2
max

τ̄2
c

, (5.89)
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Figure 5.31: Dimensionless function of the stress criterion s(ξ), for the parameter values shown in
Table 5.2.

where τmax and τ̄c are the maximum and critical shear stresses associated to the

energy and stress criteria, respectively. As can be seen from the previous sections,

the fracture energy and the strength of the interface are independent data in the

present FFM+LEBIM approach. Recall that in the original LEBIM these variables

were directly related by an equality including the interface stiffness (Mantič et al.,

2015; Távara et al., 2011).

To combine both criteria in Eq. (5.79) and Eq. (5.88), the energy criterion is

rewritten in a form similar to that of the stress criterion

σrx
τ̄c
≥
√
µ

η

√
g(λ−∆λ). (5.90)

Then, by combining Eqs. (5.88) and (5.90), the CCFFM+LEBIM, can be ex-

pressed in the present case as

σrx
τ̄c
≥ σrcrit

τ̄c
= min

∆λ
max

{
s̄(λ−∆λ)

η
,

√
µ

η

√
g(λ−∆λ)

}
, (5.91)

where the minimum is achieved at ∆λ = λcrit and σrcrit is the critical values of σrx.

Figure 5.32 shows failure curves for the energy and stress criteria obtained with

the present model and the SL model, using the parameters given in Table 5.2 and

λHS = 0.5. The figure includes the solutions for several values of µ. It can be observed

that both criteria coincide for µ = 1, predicting an infinitesimal crack initiation with

λcrit = 0, but for increasing µ values, λcrit and the failure load increase as well. For

the chosen value λHS the differences between the developed model and the SL model

are quite small, however, for smaller values of λHS they can become quite large.

Finally, debond growth (crack propagation) is presented in Figure 5.33 for µ = 8

and µ = 4. The intersection of both (energy and stress based) criteria allows to obtain

the load factor (fFFM) required to produce a debond onset or growth with a finite
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length λcrit. Then, for each debond a “new” overlap length, λ′ = λ− λcrit, is used in

the coupled criterion. To be consistent with the non-local method used, horizontal

lines are represented for each fFFM with its corresponding λcrit, thus a stepped graph

representing a series of finite crack advances is obtained. From a physical point of

view, these results show that fracture is actually unstable under load-control and the

first fFFM will produce a complete debond of the interface. Hence, the jumps included

in the stepped graph are associated to a kind of hypothetical fFFM.

It should be mentioned that for small overlap lengths also another debond might

occur in the opposite (free) end. This alternative failure mechanism is not studied in

the present investigation, assuming that the unstable character of the crack growth

will produce a one-way debond advancing.

5.5 Convergence study in BEM for DPPS test

In order to check the adequacy of the implementation of the criterion proposed above,

in the next sections, two different experimental tests of the bibliography will be

compared with the numerical and analytical solutions presented in previous sections.

However, caution should be exercised in some configurations studied by numerical

LEBIM.

As mentioned above, the CCFFM approach has been incorporated into LEBIM

in order to characterize adequately thin adhesive layers with a high stiffness. Never-

theless, because of the CCFFM requires the evaluation of the energy released at the

crack tip, in a numerical model of an adhesive joint, the high stiffness of a thin ad-

hesive layer may cause difficulties in convergence of the traction solution in the crack

tip, which may lead to large errors in crack onset and propagation predictions. Since,

Lenci (2001) showed that there is a singularity of the stress gradient at the crack tip

in the interface modelled by a spring distribution (LEBIM), leading to a steep peak of

tractions there, which is particularly sharp for stiff interfaces. Notice that although

stresses along the interface are bonded in LEBIM, they locally follow an asymptotic

law in the zone close to the crack tip. Thus, stresses tend to the Griffith solution (for

perfect interface) as the weak interface becomes stiffer.

To overcome this issue, i.e. the singularity of stress gradients close to the crack

tip, very refined meshes are needed to obtain the maximum stress values with an

acceptable discretization error. Therefore, a mesh convergence analysis should be

done in every problem under study. The simplified numerical model used for this

convergence study is presented in Figure 5.34. Note that the interface mesh is more

refined than the rest of model because is in the interface where the singularity of the

stress gradient is appear. Also, a finer mesh is needed for thin reinforcement layer to

adequately model its bending and to allow an accurate computation of the stresses

along the interface.

It should be noted that, as shown in Figure 5.43, the interface is modelled by a

continuous spring distribution (zero thickness interface). Actually, the LEBIM con-

stitutive law is established considering the equilibrium and compatibility conditions

along the interface between both the solids. A detailed explanation of the LEBIM

implementation in the 2D BEM code is presented in Mantič et al. (2015) and Távara

et al. (2010, 2011, 2019).
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Five different meshes are used, where the only difference is the size of boundary

elements along the interface: m1–0.0667mm, m2– 0.10mm, m3–0.20mm, m4–0.40mm

and m5–1.00 mm.
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Figure 5.34: (a) Shear stresses along the interface. (b) Normal stresses along the interface.

The mechanical and geometrical characteristics used for the concrete block are:

Eb=30GPa, νb=0.20 and hb=50mm; and for the reinforcement: Er=160GPa, νr=0.30

and hr=2mm. The bonded zone length between the solids is l=190mm. Finally, to

study the influence of the adhesive stiffness on the mesh convergence, the follow-

ing values are used: kt=4GPa/m, kt=180GPa/m and kt=720GPa/m, using a ratio

kn/kt=4 for every case.
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Figure 5.35: (a) Shear stresses along the interface. (b) Normal stresses along the interface.

Figures 5.35 (a) and (b) show the shear and normal stress distribution for the

different stiffness values used and for the model m1 (finest mesh). It should also be

remarked that the differences between the different meshes are negligible except in a

zone close to the crack tip. It can also be noticed that both normal and shear stresses
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have an asymptotic behaviour close to the crack tip (right part of the curves). That

is why, a mesh refinement is needed when stiff interfaces are intended to be modelled.
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Figure 5.36: (a) Dimensionless shear stresses at the crack tip. (b) Dimensionless normal stresses at
the crack tip

The convergence analysis of the 5 used meshes as function of the interface stiffness

is presented in Figures 5.36 (c) and (d). These curves show the dimensionless normal

and shear stress values at the crack tip versus the element size along the interface.

Dimensionless values are obtained dividing the stress values in the different models

by their corresponding value in the model m1 (finest mesh).

Once the convergence study is done, the model with the finest mesh (m1) is chosen

to apply the coupled criterion using different stiffness along the interface, while the

other parameters remain constant. With this, the influence of the interface stiffness

on the results predicted by the present procedure can be analysed for the conclusions

of this study. Thus, chosen fracture parameters are: GIc=8.62J/m2, GIIc=41.80J/m2,

σ̄c=1.76MPa, τ̄c=1.94MPa and kn/kt. Thus, for kt=180GPa/m and kt=720GPa/m

values, µ=4 and µ=16 are obtained respectively.

Figure 5.37 shows the critical applied load in the reinforcement, σcrit, needed to

produce the debond onset. As defined above, the curves representing the energy cri-

terion (g(∆a)) and stress criterion (s(∆a)) are depicted in the figure. As is explained

in Section 3.2, the intersection of both curves represents the first point where both

criteria are fulfilled, i.e. a debond onset with size acrit is caused by a critical load

σcrit. Results indicate that stiffer interfaces need a slightly higher critical loads (σcrit)

while the initial crack advance (acrit) is smaller.

In Figures 5.38 (a) and (b) the first two increment of the crack are very similar for

each interface stiffness value. This debond length can be defined as a characteristic

overlap length in the DPPS test, this length depends on the characteristics of the

materials (Cornetti et al., 2012).

It can be concluded that in the DPPS test the new tool is able to accurately

predict debond onset and growth even for stiff interfaces, but a mesh refinement is
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Figure 5.38: Crack onset and propagation for two different stiffness

needed at least in the zone close to the crack tip when this kind of the interfaces are

modelled.
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5.6 Comparison with experimental results

This section aims to compare the predictions obtained by the presented procedure

and some experimental data available in literature, where numerous types of shear

test can be found, see Mazzotti et al. (2016) and Zhang et al. (2018) for a review. In

this chapter two different tests will be compared whit the analytical and numerical

results for the CCFFM + LEBIM.

The first comparative study will show the results by Carrara et al. (2011) and the

solutions of the analytical procedure developed in Section 5.4. The second study will

compare the experimental data by Yuan et al. (2019a) with a numerical study made

with the algorithm 3.1 and implemented in the BEM code mentioned above.

In every case, the results obtained depend on the laboratory test setup, the me-

chanical properties of materials and the type of control during the tests. Thus, for an

adequate comparison, the mechanical and geometrical characteristics of the concrete

block and reinforcement are necessary. Moreover, it is well known that the failure of

the joint between the reinforcement and the concrete block is normally produced in

a zone within the concrete close to the adhesive layer. This zone can be considered

as part of the joint. However, the mechanical and geometrical properties of this zone

oscillate for each type of joint. Therefore the joint quality depends on several factors

including the mechanical properties of the reinforcement and the concrete surface

(Mazzotti et al., 2016; Yuan et al., 2019; I.Iovinella et al., 2013). This is the reason

why it is difficult to determine the parameters kt, kn, ḠIIc, τ̄c and λHS. Therefore an

inverse analysis is an attractive option to obtain these parameters, cf. Martin et al.

(2018) and Távara et al. (2019b); however a large number of test is required. As the

objective of this investigation is not a complete interface characterization, a simplified

inverse analysis, providing only the fracture toughness and the critical shear stress,

is applied.

5.6.1 Comparison with the tests of Carrara et al. (2011)

The experimental results by Carrara et al. (2011), studying a shear test for different

reinforcement lengths shorter than the effective anchorage length, are used to compare

with the present theoretical predictions. Note that for the reinforcement lengths

longer than the effective anchorage length, the values of λcrit and σrcrit (the critical

values of σrx) are always the same. For this reason, these tests are a good option for

an inverse analysis, since the only parameter which significantly varies is the length

of the joint.

Four different tests in Carrara et al. (2011) are used for this comparison, namely

30B, 60C, 90B and 120B. In Table 5.3, the mechanical and geometrical characteristics

of the concrete block and reinforcement used in Carrara et al. (2011) are indicated.

As no further information was found, the reinforcements are considered homogeneous

and isotropic.

In Table 5.4, the interface properties used in the present procedure are shown.

Additionally, λHS = 0.5 (Hutchinson and Suo, 1992) is assumed since the shear test

was carried out in a predominant fracture mode II. The kt value is calibrated in

order to fit the slopes of the load-displacement curves for every test. The relation
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Table 5.3: Geometrical and elastic properties of the different tests obtained from Carrara et al.
(2011).

Concrete block lb(mm) hb(mm) tb(mm) Eb(GPa) νb
300 90 150 28.7 0.20

Reinforcements lr(mm) hr(mm) tr(mm) E1(GPa) ν13

30B 31 1.32 30.5 168.5 0.248
60C 61 1.33 30.3 168.5 0.248
90B 91 1.31 29.3 168.5 0.248
120B 121 1.22 29.8 168.5 0.248

κ = kt
kn

= 0.25 is taken assuming an isotropic behaviour of the interface. Finally, to

determine ḠIIc and τ̄c a simplified inverse analysis with the four tests is performed.

Table 5.4: Interface properties of the different tests used in the procedure presents in Section 5.4.

Specimens kt(MPa/mm) κ = kt
kn

ḠIIc(N/mm) τ̄c(MPa) λHS

30B 280 0.25 0.42 5.8 0.5

60C 90 0.25 0.42 5.8 0.5

90B 340 0.25 0.42 5.8 0.5

120B 65 0.25 0.42 5.8 0.5

In Figure 5.39, the load-displacement predictions are presented. P is the load

applied on the reinforcement and the ”slip” is the relative tangential displacement (δt)

produced between the loaded edge of the reinforcement and the concrete block. The

thick lines represent the solutions obtained by the procedure presents in Section 5.4

and the thin lines are the experimental results in Carrara et al. (2011) for the different

configurations. Recall that in the present model, only the debond onset is predicted

since the boundary conditions include a load control. In this sense, the arrow size is

associated to the first finite debond-size produced in the debond onset, whereas the

subsequent unstable debond propagation is indicated by the dashed line. However,

the tests are driven under displacement control and are able to capture even a snap-

back behaviour, which was one of the aims in Carrara et al. (2011). Except for

this difference, an good agreement between the experimental response and the model

predictions is observed.

Noteworthy, the debonds are not always produced at the loaded edge of the re-

inforcement. For the shorter joints, the debonds are produced at the free edge, as

described in Carrara et al. (2011). The procedure presented is this work is also able

to predict the variation of the debonding onset location, since the load necessary to

produce the debond at the free end for specimens 30B and 60C is smaller than load

necessary to originate the failure at the loaded edge. For the prediction of the load at

the free edge one simply has to change the reference system for finite crack advance

description or to switch the boundary conditions between the free and loaded edges.

Although the difference between these two loads is not large in specimen 60C, this

difference is sufficient for the present procedure to predict the debond at the free edge

using the interface properties in Table 5.4.
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Figure 5.39: Experimental load vs. displacement plots obtained from Carrara et al. (2011) compared
with the failure load predictions by the procedure presents in Section 5.4. F.E. and L.E. mean the
free end and loaded end, respectively.

Table 5.5: Comparison of the maximum load for every specimen.

Specimens Experimental tests Analytical CZM Carrara
Carrara et al.(2011) Procedure and Ferretti(2013)

30B 5.5kN at F.E. 4.5kN at F.E. 5.8kN at F.E.

60C 10.0kN at F.E. 10.1kN at F.E. 10.6kN at F.E.

90B 12.6kN at L.E. 12.9kN at L.E. 13.8kN at L.E.

120B 12.8kN at L.E. 11.8kN at L.E. 15.3kN at L.E.

It should be noted that only a few CZMs are able to model adequately the tests

by Carrara et al. (2011). This is because a mixed mode fracture model, similar to

that proposed by Carrara and Ferretti (2013), is necessary to predict the phenomenon

of the free edge failure. In Table 5.5, the results in Carrara and Ferretti (2013) are

compared with the predictions obtained by the present procedure. This table shows

an excellent agreement between the maximum load achieved in the tests and the

predictions by the present procedure and by Carrara and Ferretti (2013). Note that

in Carrara and Ferretti (2013) the stiffnesses of the interface (kt and kn) are taken

from the Italian standards. A discussion about a quite wide range of admissible values

for these parameters can be found in that work.

5.6.2 Comparison with the tests of Yuan et al. (2019a)

Recently, Yuan et al. (2019a,b) carried out several test campaigns to study the effects

of some characteristics on this type of joints. Three experimental tests described
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in Yuan et al. (2019a) are used in this investigation for comparison with the present

numerical results. In the mentioned study, the interfacial behaviour between hybrid

FRP (carbon and basalt) and concrete blocks are evaluated. Yuan’s results show the

effects of FRP stacking sequence and the mechanical properties of FRP on the joint

behaviour.

The three types of specimens used keep the same geometry and mechanical proper-

ties, except for the reinforcements, which differ in the composition of their laminates.

The reinforcement laminates of the chosen specimens from Yuan et al. (2019a) are

(keeping their names):

• 2C with two Carbon FRP layers (named 2C).

• 1C4B with one Carbon FRP layer (named 1C) bonded to the concrete block

and four layers of Basalt FRP (named 4B) attached to the top of 1C.

• 4B1C with four Basalt FRP layers (named 4B) bonded to the concrete block

and one Carbon FRP layer (named 1C) attached to the top of 4B.

The geometrical and mechanical characteristics of the solids used in the experi-

mental tests are shown in Table 5.6. All the characteristics were obtained from Yuan

et al. (2019a), with the exception of Eb, νb and νr, which have been estimated within

the usual range of properties (fib special activity group et al., 2013; Mazzotti et al.,

2016).

Table 5.6: Geometrical and mechanical characteristics of the solids used in the PPST (Yuan et al.,
2019a).

Concrete block lb(mm) tb(mm) hb(mm) Eb(GPa) νb
350 350 150 30 0.2

Reinforcements lu(mm) la(mm) tr(mm) hr(mm) Er(GPa) νr
2C 50 200 40 0.334 191 0.30
1C4B 50 200 40 0.647 85 0.30
4B1C 50 200 40 0.647 85 0.30

Moreover, as mentioned above, the mechanical behaviour of the interface depends

not only on the adhesive but also on the concrete block characteristics and the bonding

process. This is due to the experimentally observed fact that the debond surface is

typically produced in a thin layer of concrete close to the reinforcement laminate. For

this reason, a simplified inverse analysis is proposed in this investigation with the aim

to characterize the interface of the experimental tests of Yuan et al. (2019a). This

analysis is described in the following subsection.

5.6.2.1 Inverse analysis applied to the PPST

Several authors used inverse analyses to calibrate the FRP–Concrete behaviour by

means of interface laws, e.g. M.Savoia et al. (2009); Woo and Lee (2010) and Y.Li

et al. (2018). Some authors obtained fracture mechanics parameters within the frame-

work of CCFFM (Martin et al., 2018) or LEBIM (Távara et al., 2019) using an inverse
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analysis. Using analytical solutions for PPST obtained in Section 5.4, an inverse anal-

ysis will be developed to determine two parameters needed for the present procedure:

ḠIIc and τ̄c.

It should be recalled that the failure along the interface using the CCFFM applied

to LEBIM is characterised by three independent parameters: Gc,ch, σc,ch and kch. In

the problem under study, these parameters are: ḠIIc, τ̄c and kt, respectively. In the

experimental tests studied (Yuan et al., 2019a), kt can be obtained from the load-

displacement curves in a straightforward way. This is possible because the first part

of these curves shows that the displacements are proportional to the load, therefore,

this part will depend only on the elastic parameters of the system (Cornetti and

Carpinteri, 2011; Cottone and Giambanco, 2009; Carrara and Ferretti, 2013). As,

in this case, the elastic parameters of the concrete and the reinforcement are set

through specific experimental tests defined in Yuan et al. (2019a), the stiffness of the

interface in the numerical model can be fitted by comparison with the slope of the

corresponding experimental load-displacement curve before debond occurs. Values of

kt used for each type of specimen are shown in Table 5.7.

In order to obtain the other two parameters mentioned above by means of the

inverse analysis, at least two different tests with the same geometrical and mechanical

properties (except for different values of a governing parameter relevant for the failure

load of the interface) are required.

Thus, a failure surface σrcrit(ḠIIc, τ̄c) can be obtained for each test configuration,

and it can be compared with the σrcrit,exp value taken directly from the experimental

tests. In this study, three different tests have been used to obtain a pair of adequate

values of ḠIIc and τ̄c, and the considered governing parameter is the stiffness of

different reinforcements described in Table 5.6.

In Yuan et al. (2019a) three specimens were tested for each configuration. Thus,

they obtained three debond loads for each type of reinforcement (2C, 1C4B and

4B1C), which are also shown in Table 5.7. This loads correspond to the first peak

in the load-displacement curves. In the present investigation, σrcri,exp was established

for each reinforcement using the arithmetic mean of the three loads provided by Yuan

et al. (2019a).

Table 5.7: Debonding loads and the used interface stiffnesses extracted from the experimental data
in Yuan et al. (2019a).

2C 1C4B 4B1C

Debond load 1 (kN) 12.50 12.50 16.09
Debond load 2 (kN) 13.13 14.38 17.97
Debond load 3 (kN) 13.43 11.88 17.40

σrcrit,exp (MPa) (mean value) 974.55 499.23 662.80

kt (MPa/mm) 3.6 4.7 7.0

Although the failure surfaces σrcrit(ḠIIc, τ̄c) can be obtained from the numerical

solutions of the problem for several pairs of ḠIIc and τ̄c values, the analytical solution

for the double pull push shear test presented in Section 5.4 has been used for the sake

of simplicity. The points that generate the failure surface for each configuration are
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obtained applying (2.3). Then, the load applied at the end of the reinforcement that

produces the debond along the interface, σrcrit, can be written in terms of acrit:

σrcrit = τ̄c s (acrit (µ)) = τ̄c s

(
acrit

(
2ḠIIckt
τ̄2
c
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Figure 5.40: Intersections between the failure surfaces and the planes σrcrit,exp for the configurations:

(a)2C, (b) 1C4B and (c)4B1C.
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To create the failure surface 5000 points of σrcrit(ḠIIc, τ̄c) were computed for each

test. The ranges of values used for ḠIIc and τ̄c are 0.0015-11.5 N/mm and 0.1-2.5 MPa,

respectively.

In Figure 5.40, the intersections between the failure surface and the plane defined

by σrcrit,exp for each of the three studied configurations are presented. These inter-

sections provide isolines that represent every pairs of values, ḠIIc and τ̄c, leading to

predicted σrcrit(ḠIIc, τ̄c) = σrcrit,exp. Although Figure 5.40 focuses on the intersection

curves with the plane given by the mean value σrcrit,exp, a range of values is actually

taken. This range goes from the minimum to the maximum load obtained experi-

mentally for each test, these values being indicated in Table 5.7. In Figure 5.41, the

isolines given by the intersections of surfaces and planes plotted in Figure 5.40 are

presented by dashed lines, and continuous lines represent the isolines obtained using

the minimum and the maximum experimental load for each test.

2C
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4C1B

τ c
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Pa
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Figure 5.41: Experimental failure zone for each test configuration. The line that limits each zone
represents the isolines obtained with the minimum and maximum debond load values and the dashed
lines are obtained using σrcrit,exp for each test configuration.

The selected pair of values are estimated in a zone close to the three failure

zones. Specifically, the chosen values for the following numerical and analytical cal-

culations for the fracture toughness and critical shear stress are GIIc=2.2 N/mm and

τc=1.20 MPa. They are represented with a dot in Fig. 5.41,

5.6.2.2 Details of models

The geometry and boundary conditions considered in the numerical model used to

simulate the experimental tests presented in Yuan et al. (2019a), are shown in Figure

5.42. The model includes two isotropic solids, representing as accurate as possible

the properties provided by Yuan et al. (2019a), although the code able to model

orthotropic materials. The properties of these two solids are indicated in Table 5.6.
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The algorithm described in 3.2.1 and implemented in the BEM code mentioned above

has been used in this work; hence, only the boundary of both solids are meshed.

 h
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 hr
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P/h =r

Figure 5.42: Geometry and boundary conditions in the numerical model of the double pull-push
shear test.

The concrete block includes 2587 linear boundary elements, with 2500 elements

used in a uniform mesh discretizing the interface boundary (bonded or unbonded

with possible contact conditions with the reinforcement(i.e. the zone indicated by

lr). Thus, the element size along the interface is 0.1 mm. The remaining 87 elements

are distributed over the other boundaries of the concrete block with variable element

size and using a spacing ratio lower than 1.2.

The high mesh density along the interface is due to the need to adequately model

the stress distributions ahead the virtual-crack tip when it moves along the interface.

Because, as shown in Section 5.5 a, fine mesh is also needed due to the presence of a

stress peak with a logarithmic singularity in the stress gradient at the crack tip.

On the other hand, the mesh for the reinforcement includes 3343 linear boundary

elements. As mentioned above, a finer mesh was needed for this thin reinforcement

layer to adequately model its bending behaviour and to allow an accurate computation

of the stresses along the interface. The interface boundary of the reinforcement is also

discretized with 2500 elements. Thus, a conforming mesh along the interface is used

for this study.

The mesh used for some configurations is shown in Figure 5.43, specifically this

mesh is used for 1C4B and 4B1C. For the case of the 2C configuration, the used mesh

is the same; but the thickness of the reinforcement is different.

The obtained characteristics described in the previous section (kt, ḠIIc and τ̄c)

are used to model the interface. In the zone close to the loaded end, there are large

compressive stresses due to the bending strain of the reinforcement as is described

in Section 5.3. Therefore, it is important to study the effect that the adhesive-zone

free (or already debonded), lu, existing in this test may have. Previous investigations

(Martinelli et al., 2011) showed that compressive stresses close to the loaded end

appear at part or the whole adhesive-free zone (depending on the value of lu). Since

the debond propagation increases this zone, this effect may be significant and that is

why two numerical calculations are performed in this study:
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zoom x40

Figure 5.43: Boundary element mesh used for the double pull-push shear test model.

• In the first model, penetrations between solids are allowed in every element of

the adhesive-free zone once the interface failure occurred. This option is referred

to as “non-contact” (NC) in the following figures.

• In the second numerical model, compressions in the adhesive-free zone are taken

into account as the debond zone increases. The results of this calculation are

referred to as frictionless contact (C) in all figures. A penalty contact condition

is considered in this case.

0.023
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 hr
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Figure 5.44: Deformed mesh (actual scale) of the 1C4B configuration for (a) the non-contact and
(b) the penalty contact numerical models.

As an example, the deformed meshes (in actual scale) of the configuration 1C4B

obtained at the beginning of the first step are shown in Figure 5.44, for the non-

contact and the contact models. Only the loaded end zone is represented in order to

visualize the difference between both numerical results.

Even though the aim of this section is the comparison of the numerical results

with the experimental data, by these two calculations, a comparison between the

analytical and numerical results is also possible in order to check the solutions of the

code described in Section 3.2.1. In addition, the influence of compressions on the

solution in the adhesive-free zone is studied for these specific configurations. The

fracture mode mixity computed using both formulations described in Section 3.2 is

also plotted to observe their influence on the predictions for the present test.
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5.6.2.3 Comparison between the numerical and analytical results

In this section the analytical results obtained using the solution proposed in Sec-

tion 5.4 and the numerical result obtained by the code presented in Section 3.2.1

are shown. The penetration between solids is allowed in the adhesive-free zone, as

in the analytical model in Section 5.4, thus a possible effect of compressions in the

adhesive-free zone is not considered. For the sake of brevity, only one of the three

studied in this investigation is considered in this section, specifically the 1C4B. It

should be recalled that the target of this section is only to assess the accuracy of the

numerical code.

In Figure 5.45 (a) the dimensionless stresses obtained by the numerical (NP)

and the analytical (AP) procedures are shown. Both curves present a very good

agreement.
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Figure 5.45: (a) Dimensionless stresses along the interface obtained by the numerical (NP) and

analytical (AP) procedures. (b) s(∆a) and
√
µ g(∆a) curves and their intersections for the two

different fracture mode mixity definitions and NP and AP.

In Figure 5.45(b) the intersection between s(∆a) and
√
µ g(∆a) is also presented

for both definitions of the fracture mode mixity, ψ1 and ψ2, as provided in Section 3.2.

No relevant differences between the curves obtained by the energy criterion using ψ1

and ψ2 are observed (see Table 5.8, where the results associated to the growth of the

first finite segment of the crack for each model and the two mode mixity angles are

presented).

5.6.2.4 Comparison between the numerical models

The principal target of this section is the comparison between the numerical model

with compressions in the adhesive-free zone (denoted as C - contact) and the numerical

model that allows penetrations between solids in that zone (denoted as NC - non

contact). When penetrations into the adhesion-free zone behind the crack tip are
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allowed, the solution can be affected by an error. By this comparison, the magnitude

of this error is assessed for PSST tests.

As in the previous figure, the stress distributions along the interface and the

energetic and stress criteria curves are represented in Figure 5.46 for the 1C4B test.

Note that in Figure 5.46 (b) only small differences between the two energy criterion

curves are observed again.
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Figure 5.46: (a) Dimensionless stresses along the interface obtained by the numerical procedure
including contact in the adhesive-free zone (C) and non-contact condition in the same zone (NC). (b)

s(∆a) and
√
µ g(∆a) curves for the two different fracture mode mixity formulations and intersections

of these curves for C and NC models.

Although these small differences continue in the debond propagation, the differ-

ences between g(∆a) curves in Figure 5.46 (b) are small. In this case, the energy

criterion curves evaluated by ψ1 are almost coincident for the models C and NC,

however, there is a perceptible difference between the energy criterion curves evalu-

ated by ψ2 for the models C and NC. This is due to the fact that ψ2 is evaluated at

the virtual advancing crack tip, while ψ1 is taken from the stresses at the undamaged

interface, and the difference between C and NC models is especially notable at the

crack tip. It should be noticed that the error obtained by not considering the contact

in the adhesive-free zone for these tests is small.

As mentioned previously, Table 5.8 shows the results of the first finite advance of

the crack at the interface for each specimen, calculated for several models including

contact or not and also different fracture mode mixity angles ψ1 and ψ2. No significant

differences are observed between the different models.

5.6.2.5 Comparison between the numerical and experimental results

This section compares the numerical results obtained by the developed code and the

experimental data by Yuan et al. (2019a). Results for the three chosen configurations

to check the CCFFM + LEBIM procedure are represented in Fig. 5.47. As described

in Section 5.6.2, three specimens have been tested for each configuration. The data
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Table 5.8: Critical stress that produces a crack onset and the first finite advance of the debond for
each specimen, using the numerical and analytical models and for ψ1 and ψ2.

acri(ψ1) acri(ψ2) σrcrit(ψ1) σrcrit(ψ2)
(mm) (mm) (MPa) (MPa)

Analytical model 2C 158.25 160.26 951.89 955.85
no contact 1C4B 152.90 156.31 549.81 556.29

4B1C 147.65 151.46 632.37 645.50

Numerical model 2C 158.14 159.50 950.30 952.94
no contact 1C4B 152.89 155.87 548.30 553.74

4B1C 147.90 151.24 629.57 640.65

Numerical model 2C 157.93 158.20 951.07 951.60
with contact 1C4B 152.68 153.48 547.94 549.43

4B1C 147.65 148.54 628.77 631.80

of these tests are represented in grayscale lines. Together with experimental data,

the numerical results of the two described models and for the two possible energy

criteria evaluated with different fracture mode mixities are shown. These figures

represent, for each test, the applied load versus the relative displacement between

the reinforcement loaded edge and the concrete edge. Therefore, the displacement

includes both the shear slip of the bonded part and the elongation of the unbonded

part of FRP laminates.

Note that, under load control, when the critical load is reached the whole interface

fails. Although the finite crack growth takes place under a constant load, the CCFFM

provides a snap-back as occurs in experiments under displacement control (Yuan

et al., 2004; Carrara et al., 2011) or in cohesive zone model simulations (Cornetti and

Carpinteri, 2011). Fig. 5.47 shows that the relative displacement presents a snap-back

behaviour predicted by the CCFFM. Figs. 5.45 and 5.46 show that the first finite

segment of the crack is produced in large part of the interface. After this step, the

stress distribution increases in the zone close to the free end, therefore in the next

steps the interface close to the free end, close to the loaded end (Muñoz Reja et al.,

2020b; Carrara et al., 2011) or simultaneously at both zones (l’Armée and Becker,

2019; Risso, 2018)) could be damaged.
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The grayscale lines are the data of  
the three specimens for each 
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Figure 5.47: Comparison between experimental results and numerical predictions for the double
PPST.

5.7 Concluding remarks

One of the goals of this study was the development of an analytical model able

to characterize the crack onset and propagation along the interface between two

adherents of any thickness/stiffness in double joints. Therefore, the present model is

based on the Timoshenko beam theory and the linear elastic interface model.

As an application, the crack onset and propagation along the interface in the

Double Pull-Push Shear (DPPS) test is studied using this original analytical solution.

The peeling stresses in the the shear tests keep the discussion about the fracture

energy still open (Carrara and Ferretti, 2013; Mazzotti et al., 2016; Martinelli et al.,

2011). The fracture energy in Mode I in the interface is significantly lower than the

fracture energy in Mode II for these tests, therefore, even a small increase in the peel-
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ing stress could reduce the bearing capacity of the interface (Mazzotti et al., 2016).

For this reason, the expressions for the normal and shear stresses in the adhesive layer

are deduced for the DPPS test in a suitable dimensionless form, pointing out the role

of the main characteristic variables and parameters of this test. Several parametric

studies are carried out to analyse the influence of the geometry and material (adher-

ents and adhesive) characteristics on the stress distributions. The obtained results

show that:

• Normal stresses at the loaded end are important for reinforcement stiffness

larger than the block stiffness (i.e., large values of ρ), relatively small values

of the reinforcement thickness (i.e., small values of η), and for adhesives whose

shear stiffness is larger than the normal stiffness (i.e., for large values of κ).

• The normal stresses become more important for small overlap lengths because

these stresses increase their presence throughout the interface.

• Tensions at the free end can increase achieving relevant values although com-

pressions at loaded end decrease, e.g. when the laminate (reinforcement) thick-

ness increases (i.e., for large values of η or for small overlap lengths).

• When tensions become relevant at the free end, the shear stresses present a

quasi-uniform distribution Carrara and Ferretti (2013) (i.e., for large values of

η and small values of ρ).

In general, these results are in agreement with some experimental data in the liter-

ature Carrara and Ferretti (2013); Czaderski et al. (2010); Martinelli et al. (2011).

Specially, the present procedure is compared with the experimental data by Carrara

et al. (2011), a satisfactory agreement being obtained. Thus, we can conclude that

in general the interface normal stresses can not be neglected a priori in a DPPS test

analysis, as assumed in the simple Shear Lag (SL) model.

Using the computed interface stress distributions, the Coupled Criterion of Finite

Fracture Mechanics (CCFFM) covering mixed mode fracture is applied to predict

failure loads for debond onset and propagation in this test. As expected, the results

obtained by the present analytical model and by the SL model show some differences

which could become significant for some parameter values, for example, for small

overlap lengths, for which the damage could even start by the free end. Thus, the

present work allows assessing the accuracy and range of validity of the predictions

obtained by the SL model.

Moreover, the results of two numerical models have been compared with the results

of experimental tests, showing a good agreement. For the characterization of the

interface failure, a simple inverse analysis has been used to fit ḠIIc and τ̄c by exploiting

the results from three different test configurations.

A discussion about two possible ways of defining the fracture mode mixity to be

used in the energy criterion within the CCFFM was also provided. Numerical and

analytical predictions have been calculated accordingly. However, specifically for the

PPST (where mode II is dominant), the choice of the mode mixity definition does

not affect significantly the results.
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The proposed numerical tool is therefore suitable for predicting the failure of an

interface with a relatively short computational time. As a future task, we remark

that, in order to increase the efficiency of computations using LEBIM, a complete

knowledge about the singular stress field near the crack tip growing along the elastic

interface is necessary; its proper inclusion in the discretization procedure will avoid

the use of highly refined meshes close to the crack tip.





CHAPTER6
Failure initiation in long-fiber

reinfonced composites under

transverse loads

A frequent failure mechanism in composites is associated to the presence of debonds

along the interfaces between fibres and matrix in a unidirectional composite lamina

under transverse loads. For this reason, an adequate modelling of the interface be-

havior is required. This problem has been widely studied, for quite extensive reviews

of works studying this problem see Paŕıs et al. (2007); Mantič (2009) and Távara

et al. (2011).

LEBIM has proven that can be used to model the fracture process at a weak

interface between two solids. It has been shown, see Távara et al. (2010, 2011);

Mantič et al. (2015) and numerous references therein, that LEBIM can adequately

describe the interface crack onset and growth in this kind of interfaces. Lenci (2001)

compared the weak and perfect (strong) interface models, showing that the latter

may provide (possibly non-conservative) predictions of higher failure load values.

Nevertheless, when the actual interface becomes stiffer the LEBIM may produce

inaccurate predictions.

This drawback of the original LEBIM formulation motivated Cornetti et al. (2012)

and Weißgraeber and Becker (2013), among others, to apply the Couple Criterion of

Finite Fracture Mechanics (CCFFM) (Leguillon, 2002; Cornetti et al., 2006) to linear

elastic interfaces in a pure mode II and mixed mode of fracture, respectively.

In the present chapter the original mixed mode LEBIM proposal is coupled with

the CCFFM criterion, following the previously Chapter 3. The CCFFM+LEBIM

code based in curves (Section 3.2.1) is used. Fist, the micromechanical problem under

study, i.e. a single-fibre subjected to biaxial remote transverse loads, is presented in

Section 6.1, defining the geometry, materials and loads for all studied cases.

Subsequently, in Section 6.2, the CCFFM approach applied to the LEBIM in its

specific form for the present problem is presented and also the parameters and equa-
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tions used in the computational code are briefly described. Two different interface

failure criteria are employed: the interface fracture criterion proposed by Hutchin-

son and Suo (1992), and the well-known quadratic stress criterion as expressed in

Brewer and Lagace (1988), cf. Hashin (1980). Each criterion is adopted to be used

in both the stress and energy conditions of CCFFM in separate way, as presented in

Section 2.4.1.

In view of the logarithmic stress singularity at a linear-elastic-interface crack tip

(Erdogan, 1997; Lenci, 2001; Távara et al., 2010) the (local) maximum of tractions

therein, which in particular determines the Energy Release Rate (ERR), may be

highly ill-defined. Thus, the convergence of the ERR and also of interface stress

distributions (both used in the coupled criterion of CCFFM) with h-refinement of

the BEM mesh is studied Section 6.3.

In Section 6.4, the numerical results of the parametric study carried out are ana-

lyzed and compared to some previous results using other procedures.

The Section 6.5 studies the appearance of one debond (non-symmetrical configu-

ration) or two debonds (symmetrical configuration) in the fibre-matrix interface, and

the results are compared with the results obtained by Garćıa et al. (2015) for perfect

interfaces.

Finally, in Section 6.6 the capacity of CCFFM+LEBIM to study a multifibre

geometry, specifically two fibres is checked.

6.1 Single cylindrical inclusion under biaxial trans-

verse loads

A plane strain problem of a fibre embedded in a very large matrix cell is considered,

which represents an approximation of a dilute fibre packing where fibre interactions

can be neglected. The fibre-matrix interface is initially considered as undamaged.

The fibre-matrix system is subjected to a biaxial remote loading. Fibre radius a =

7.5 10−6m and a 2H side square matrix with H/a = 200/3 are used, see Fig. 6.1.

Both inclusion and matrix are considered to be isotropic linear elastic materials,

whose characteristics are presented in Table 6.1. LEBIM is used to model the in-

terface as a continuum spring distribution, with kn and kt given in Table 6.2, which

corresponds to µ = 1. For larger values of µ, kn increases proportionally.

Table 6.1: Properties of the constituents used for the bimaterial systems (f, fiber; m, matrix).

Em(GPa) νm Ef (GPa) νf rf (µm)

glass-epoxy 2.79 0.33 70.8 0.22 7.5
carbon-epoxy 2.79 0.33 13.0 0.20 7.5

θd is defined as the debond angle which defines the crack size in each step. When

a crack propagation occurs springs placed within the angle θd lose the capability of

transmit the load between solids (stiffness becomes zero). Then, the springs located

at the ends of the interface part determined by θd represent the crack tips.
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Figure 6.1: Inclusion problem configuration under biaxial remote transverse loads (a) without and
(b) with a partial debond.

Table 6.2: Interface properties (kn value is for µ = 1 case)

ḠIc (Jm−2) σ̄c(MPa) kn (MPa/µm) kt/kn

interface 2 90 2025 0.25

The applied remote loads, σ∞x and σ∞y with σ∞x ≥ σ∞y , are shown in Fig. 6.1.

The following general load-biaxiality parameter, introduced by Mantič et al. (2015),

is used to represent the biaxiality relation between the applied remote loads:

χ =
σ∞x + σ∞y

2max{|σ∞x | ,
∣∣σ∞y ∣∣} , −1 ≤ χ ≤ 1, (6.1)

Although, the problem has a symmetrical configuration, the properties chosen

for the interface may lead to produce crack onset in a position different from the

symmetry axes x or y, see Mantič et al. (2015). The position where the crack onset

occurs is denoted by the polar angle θo, defining the diameter AB, see Fig. 6.1(b).

6.2 CCFFM applied to LEBIM formulation for a

fibre-matrix system

In the present investigation, the couple criterion must be fulfilled following the formu-

lation developed in Section 3.1.2. However, here a suitable formulation is proposed

for the problem to be studied.

For this particular problem, G(a) and Gc(ψ(a)) can be written in terms of two di-

mensionless functions (Mantič, 2009; Mantič and Garćıa, 2012), Ĝ(θd) and Ĝc(ψ(θd)),

correspondingly.
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G(a) =
(σ∞x )2r

E∗
Ĝ(θd), (6.2)

Gc(ψ(a)) = ḠIcĜc(ψ(θd)), (6.3)

where, in (6.2), E? is defined as the harmonic mean of the effective elastic moduli of

fibre and matrix, and r is the fibre radius (see Mantič (2009)). In (6.3), ḠIc =
σ2
max

2kn
is

the fracture toughness for the pure mode I and σmax is the maximum normal tension

associated to the energy based criterion (Cornetti et al., 2012).

Two dimensionless functions Ĝc(ψ(θd)) are used herein, the first one is similar

to that proposed by Hutchinson and Suo (1992), defined in Section 2.4.1.1 with

λ = 0.3 and the second one is related to well-known quadratic criterion, defined

in Section 2.4.1.2.

Hence, the energy criterion can be written in terms of the dimensionless function

g(∆θ):

g(∆θ) =

∫∆θ

0
Ĝc(ψ(θd)) dθd∫∆θ

0
Ĝ(θd) dθd

(6.4)

in the following form:
(σ∞x )2r

ḠIcE∗
≥ g(∆θ) (6.5)

Besides the energy based criterion defined in (6.5), the stress based criterion must

be fulfilled along an undamaged finite (circular arc) segment from x = 0 to x = ∆a,

thus the crack growth is produced by a finite advance ∆a > 0.

Like the energy criterion, the stress condition can also be written in terms of a

dimensionless function by expressing the modulus of the traction vector t(x) and of

the critical traction vector tc(ψ(x)) in terms of two dimensionless functions:

t(x) = σ∞x t̂(θd), (6.6)

tc(ψ(x)) = σ̄ct̂c(ψ(θd)). (6.7)

So that, the stress criterion for a finite crack advance given by ∆θ can be expressed

as
σ∞x
σ̄c
≥ s(∆θ) =

t̂c(ψ(∆θ))

t̂(∆θ)
, (6.8)

where the fact that, in the present case, the function s(∆θ) is an increasing function

was taken into account.

6.2.1 The coupled criterion

A way to characterize the coupled CCFFM+LEBIM criterion applied in the present

study is to use a suitably defined dimensionless characteristic parameter µ defined in

Section 3.1.3. Remember that, this parameter for pure fracture mode I is defined as

µ =
2knḠIc
σ̄2
c

=
σ2

max

σ̄2
c

, (6.9)

where σmax and σ̄c are the maximum and critical tensions associated to the energy

and stress criteria, respectively.
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As can be seen from Section 3.1.3 the fracture toughness, strength and stiffness

of the interface are independent in the present CCFFM + LEBIM approach.

In order to rewrite the energy criterion (6.5) in a form similar to the stress criterion

(6.8), a suitable structural parameter referred to as brittleness number(Mantič, 2009)

is defined as

γ =
1

σ̄c

√
ḠIcE∗

r
. (6.10)

Then, the energy criterion (6.5) takes the form

σ∞x
σ̄c
≥ γ

√
g(∆θ). (6.11)

By combining (6.8) and (6.11), the coupled criterion of FFM can be expressed, in

the present case, as

σ∞x
σ̄c
≥ σ∞c

σ̄c
= min

∆θ
max

{
s(∆θ), γ

√
g(∆θ)

}
, (6.12)

where the minimum is achieved at ∆θ = θc.

It is interesting to introduce the relation between µ and γ when CCFFM+LEBIM

is applied. From equations (6.9) and (6.10) the subsequent relation can be obtained:

µ =
2knr

E∗
γ2. (6.13)

Thus, for a fixed value of the dimensionless ratio of the interface and bulk stiffness

including also a characteristic geometric size, knr/E
∗, considered, µ is directly pro-

portional to γ2.

6.3 CCFFM result by a 2D BEM code

The formulation of CCFFM+LEBIM under fracture mixed mode introduced above

has been implemented in a computational code based on 2D BEM, which has been

applied to analyse the onset and propagation of a debond in the single fibre prob-

lem described in the previous section. The computational procedure propagates the

interface crack in a discrete way, depending on the boundary element discretization

of the interface. In each step, to define the finite crack advance a limited number of

linear solutions is carried out for possible lengths of the next crack extension at one

of its ends, defined by ∆θd.

On one hand, the energy and fracture toughness at critical points (position where

the crack initiates or crack tips when the crack already exists) are computed and

the minimum remote loads necessary to produce a crack onset or growth according

to the energy based criterion, for a given ∆θd, are predicted. On the other hand,

the computational procedure also computes the minimum remote load necessary to

produce a crack onset or growth in the same zone defined by ∆θd but considering an

undamaged interface and the stress based criterion.

Finally, the load necessary to produce or propagate a crack by a ∆θd advance is

defined by the intersection of both criteria, which defines the new crack size to be

considered in the next step. This procedure is illustrated in Fig. 6.2(a).
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Figure 6.2: Two steps of the present crack-advancing-procedure for a cylindrical inclusion embedded
in a matrix under a transverse tension for µ =4 and χ =0.5 (uniaxial case). The crack advance is
defined by the minimum load fulfilling both criteria which is given by (a) the intersection of the two
criteria curves or (b) the minimum of the energy criterion curve (actually plot (b) is computed for
a different and much coarser mesh, making in this way the crack advances visible in the two steps
shown).

Typically, once the crack has a certain size, it may occur that the minimum load

necessary to produce a crack propagation is not defined by the intersection of both

criteria but it is defined by the minimum load given by just one of these criteria,

usually the energetic one, because the stress criterion is then automatically fulfilled.

This situation can be observed in Fig. 6.2(b), where the energy based criterion for

the first step defines the minimum necessary load to cause a crack propagation.

For the sake of implementation simplicity and computational efficiency, the pro-

cedure implemented herein allows a crack propagation only in one direction starting

from one critical point, i.e. a traction concentration point or crack tip. A more

general approach would require a suitable optimization procedure to be implemented

in order to avoid a huge number of BEM analyses for every possible crack advance

without differentiating between them.

6.3.1 Convergence study of the BEM mesh in the problem

under study

The proposed procedure in the present work requires the evaluation of the energy at

a crack tip in each step during the crack propagation analysis. This fact may lead

to numerical errors if the mesh used is not sufficiently refined. Although interface

tractions in LEBIM are bounded at the crack tip, the gradient of local tractions

in the zone close to the interface crack tip is singular (Távara et al., 2010; Lenci,

2001), leading to a traction peak whose accurate value is difficult to be computed.

Therefore, some errors may arise in crack propagation prediction in particular when

the fibre-matrix interface becomes stiffer because stresses at such an interface crack

tip converge to the perfect interface solution with singular stresses at the crack tip.



M.M.Muñoz-Reja Moreno 141

(º)

0 50 100 150

G
 E

0

1

2

3

4

5

x
σ

a
,

G
 E x

σ
a

,
I

G
  

E
x

σ
a

II
 

θd

*
*

*
mesh 0.10 º
mesh 0.16 º
mesh 0.50 º
mesh 1.50 º

G

GII

GI

(a) µ = 1

(º)

50 100 150

G
 E

0

1

2

3

4

5

x
σ

a
,

G
 E x

σ
a

,
I

G
  

E
x

σ
a

II
 

θd

0

mesh 0.10 º
mesh 0.16 º
mesh 0.50 º
mesh 1.50 º

*
*

*

GI

GII

G

(b) µ = 2

(º)

50 100 150

G
 E

0

1

2

3

4

5

x
σ

a
,

G
 E x

σ
a

,
I

G
  

E
x

σ
a

II
 

θd

0

*
*

*

mesh 0.10 º
mesh 0.16 º
mesh 0.50 º
mesh 1.50 º

G

GII

GI

(c) µ = 4

(º)

50 100 150

G
 E

0

1

2

3

4

5

x
σ

a
,

G
 E x

σ
a

,
I

G
  

E
x

σ
a

II
 

θd

0

*
*

*
mesh 0.10 º
mesh 0.16 º
mesh 0.50 º
mesh 1.50 º

G

GII
GI

(d) µ = 8

Figure 6.3: ERRs for different crack sizes (different θd values) with χ =0.5 (uniaxial case) for different
mesh sizes and (a) µ =1, (b) µ =2, (c) µ =4 and (d) µ =8.

The solved numerical examples of the single fibre problem, see Fig. 6.1, model the

interface by a distribution of springs between the nodes along the fibre and matrix.

Linear and continuous boundary elements are used. Thus, each element has two

geometrical nodes (one at each extreme). Then, when a spring fails, forming a new

portion of an interface crack, the minimum ∆θd size is restricted by the boundary

element size.

Due to the facts mentioned above, before studying closely the considered problem,

a convergence study for the used mesh is necessary. Several single fibre problems for

a glass-epoxy system with χ = 0.5 (uniaxial tension with σ∞y = 0), for different values

of µ (1, 2, 4 and 8) are solved. As the solution of this problem is symmetric, for this

convergence study a symmetry plane coincident with the x-axis is considered. Thus,

a strong mesh refinement is feasible keeping the computational time reduced.

The total ERR and mode I and II contributions are depicted in Fig. 6.3 for different
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Figure 6.4: Normal and shear stress along the interface for a specific crack size (θd value) with
χ =0.5 (uniaxial case) for different mesh sizes and (a) µ =1 (b) µ =2, (c) µ =4 and (d) µ =8.

crack sizes (θd). Four mesh refinements are considered for the fibre-matrix interface

with element sizes defined by the polar angles 0.10◦, 0.16◦, 0.50◦ and 1.50◦. It can

be seen that when the interface becomes stiffer, i.e. µ is increasing, the solution

convergence is slower. Thus, in order to get an accurate value of the ERR for a stiff

interface a very fine mesh is required.

This fact is a consequence of the difficulty in the approximation of tractions at a

crack tip when using linear elements in the BEM code, due to the traction gradient

singularity therein. The distribution of normal and shear stresses for a specific crack

size (θd) is represented in Fig. 6.4. The crack size chosen for each value of µ, is the one

with the largest differences in the plots of ERR in Fig. 6.3. In Fig. 6.4, different slopes

of the solution are observed for different µ values. A large µ value (stiff interface) has

a steep slope in the zone close to the crack tip. Then, in order to obtain an accurate

approximation of tractions in that zone, a fine mesh is necessary.

From the results obtained in this convergence study a slight mesh dependence is
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observed. Thus, in order to get reliable results for the model under study, a mesh

size with a polar angle of 0.15◦ and µ = 4 is used in the following.

6.4 CCFFM+LEBIM numerical results for a single

inclusion under biaxial transverse loads

In this section the results obtained for the single fibre problem, introduced in Section

3, for different interface stiffnesses and different biaxial loading configurations are

presented and discussed.

6.4.1 Effect of the interface criterion used and interface stiff-

ness

Using as reference the steps depicted in Fig. 6.2(a), and analysing also the subsequent

steps, the interface crack propagation is shown in Fig. 6.5, where the crack angle θd
is plotted versus the necessary remote applied load in the x-direction that causes

the onset or propagation of the interface crack. Specifically, the plots in Fig. 6.5

represent the solutions for the single fibre problem in a glass-epoxy system, under a

biaxial tension with χ = 0.75. The Hutchinson and Suo based criterion (HS-criterion)

is used for these plots in its point-wise form in Fig. 6.5(a) and in its average form in

Fig. 6.5 (b), see (2.4.1.1).

According to these plots, after the onset of a crack of polar angle θc, referred to as

critical angle, and assuming load control, the crack is expected to continue growing

along the interface in an unstable manner up to a certain arrest angle denoted as θa.

As follows from Fig. 6.5(a), the solution for the coupled criterion introduced in

this paper for µ = 1 is similar to the solution obtained with the original LEBIM

formulation. In Fig. 6.5(b), the solution for µ = 1 does not coincide exactly with the

LEBIM solution, since the crack increment does not vanish (as it theoretically should)

but it is equal to the mesh size (boundary element length), although the differences

are negligible.

A slight decrease of the critical loads obtained as the interface becomes stiffer is

noteworthy. This effect may be caused by the influence of the increase of stiffness on

the mode mixity angle; actually a detailed study showed that when µ increases the

mode mixity angle changes in all undamaged fibre-matrix interface points.

In general, only a quite small influence of the interface stiffness in the present single

fibre problem solution is observed in Fig. 6.5. In particular, this can be shown in very

close predicted values of the arrest angle θa. Thus, very similar results for interface

stiffness larger than 4kn (i.e. µ > 4 and GIc=2Jm−2 and σ̄c=90MPa) are expected.

To prove this hypothesis, the results obtained for the critical remote load in the x-

direction (σ∞c , load necessary to produce crack onset) and the critical angle (θc, initial

crack size produced in the crack onset) for the interface stiffness 8kn are compared

in Table 3 with the results obtained for the perfect interface case, corresponding

to µ = ∞, by Mantič (2009). Two well-known composite systems glass-epoxy and

carbon-epoxy are studied. In both cases two different values of the interface fracture

toughness and critical stress found in literature are used. Notice that different lambda
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Figure 6.5: The remote applied load σ∞x with respect to the debond angle θd, for χ=0.75 and
different µ values using the HS-criterion and (a) the point-wise and (b) the average form.

are used for the energetic and the stress criteria only for comparison purposes. Due

to HS-criterion with lambda = 0 leads to a similar criterion as the normal tension

criterion, as Mantič (2009) used. It is noticeable that, although the results were

obtained by different procedures the differences observed are very small.

Table 6.3: Comparison of the results obtained in the present work (CCFFM+LEBIM using the
HS-criterion with λ = 0.3 and 0, respectively for the energetic and stress criterion) for χ = 0.5,
and results obtained by CCFFM (using the HS-criterion with λ = 0.3 and normal tension criterion)
applied to the perfect interface case in Mantič (2009).

σ̄c ḠIc γ θc(
◦) σ∞c /σ̄c(MPa) (Jm−2)

60 10 1.49
78 1.2 Mantič (2009)

glass/ 79.46 1.259 CCFFM+LEBIM with µ = 8
epoxy

90 2 0.44
14.8 0.7 Mantič (2009)
13.04 0.696 CCFFM+LEBIM with µ = 8

60 10 1.37
71.4 1.2 Mantič (2009)

carbon/ 75.22 1.285 CCFFM+LEBIM with µ = 8
epoxy

90 2 0.41
12.2 0.8 Mantič (2009)
11.26 0.763 CCFFM+LEBIM with µ = 8

Fig. 6.6 show plots analogous to those in Fig. 6.5 but obtained using the quadratic

interface failure criterion. It is noticeable that the results obtained by HS and

quadratic criteria are quite similar. A small influence of the interface stiffness is

observed in Fig. 6.6 again. In both figures, the slope tendency of the solution for

stiffer interfaces changes at the end of the curves, when θd exceeds 180◦, this fact

being more pronounced for the quadratic criterion. This effect is due to the contact

between crack faces at the crack tip when the interface crack achieves a certain size.

Recall here that in the present model the crack is able to propagate even in presence

of compressions at the closed crack tip.
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Figure 6.6: The remote applied load σ∞x with respect to the debond angle θd, for χ=0.75 and
different µ values using the quadratic criterion and (a) the point-wise and (b) the average stress
based criterion.

6.4.2 Effect of the load biaxiality

In Fig. 6.7 the crack size θd is plotted versus the remote applied load σ∞x , for µ =

4, and for different configurations of the biaxial loading defined by χ (6.1): χ =

0.75 stands for a biaxial tension, χ = 0.50 for the uniaxial tension, and χ = 0 and

χ = −0.25 for two biaxial tension-compression cases. From the predictions by both

interface failure criteria, it can be seen that a compressive remote load acting as a

secondary load makes easier crack onset (i.e. a lower critical load is necessary to

produce crack onset). Moreover, the arrest angle θa in these cases is smaller than

when a tension is acting as a secondary load. This can be explained on one hand

by the lower critical load originating the crack onset, and on the other hand by the

presence of compressions at the crack tip which may lead to the closure of the interface

crack tip once the crack reaches a certain size.

Table 6.4: The arrest angle θa for different biaxial loading configurations defined by χ and the
HS-criterion and quadratic criterion.

χ = 0.75 χ = 0.50 χ = 0 χ = −0.25 χ = −0.50

HS-C. 186.30◦ 143.99◦ 118.94◦ 112.98◦ 104.25◦

Q. C. 183.06◦ 156.42◦ 139.09◦ 132.65◦ 102.6◦

In Table 6.4, the arrest angles θa for different biaxial loading configurations and

both criteria used are presented. In most of the cases, the quadratic criterion leads

to slightly larger angles than the HS-criterion.

A different way to study the global behaviour of the fibre-matrix system is rep-

resented in Fig. 6.8, where the applied remote load is plotted against the averaged

longitudinal strain, εAB , along the segment defined by the matrix points A and B,

(see Fig. 6.1). This strain is formed by the strain due to the purely elastic behaviour

of the system (with no interface damage) and the strain due to the interface debond
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Figure 6.7: The normalized remote applied load in the x-direction with respect to the debond angle
θd, for different biaxial load combinations using (a) the HS-criterion and (b) the quadratic criterion.
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Figure 6.8: The normalized remote applied load in the x-direction with respect to the longitudinal
strain εAB (see Fig. 6.1 for A and B locations), for different biaxial load combinations using (a) the
HS-criterion and (b) the quadratic criterion.

propagation, thus εAB = εeAB + εdAB . It is noteworthy that some of the curves shown

in Fig. 6.8 present an unstable behaviour known as snap-back.

In Figs. 6.7 (b) and 6.8(b) corresponding to the quadratic criterion, an abrupt

change in the slope of some curves, including inflexion points and a kind of plateau,

is observed, this effect being more pronounced in the tension-compression cases with

χ = 0 and χ = −0.25. This is essentially due to form of the curve of the quadratic

criterion shown in Fig. 3.2(b) which has an inflexion point and a kind of plateau

in the region where tensions switch to compressions. Notice that the curve of the

HS-criterion in Fig. 3.2(a) is convex.
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6.4.3 Position of the crack onset

In Mantič et al. (2015) it is shown that the position where crack onset takes place

(defined by the angle θo) depends on the dimensionless parameters: χ, λ (for the

HS-criterion), ξ, and a structural parameter γ (see Eq. 6.10).

Table 6.5: The onset angle θo for different values of µ and biaxial loading configurations.

χ = 0.75 χ = 0.50 χ = 0 χ = −0.25 χ = −0.50

µ = 1 0.00◦ 0.00◦ 0.00◦ 0.00◦ 13.20◦

µ = 2 0.00◦ 0.00◦ 0.00◦ 6.00◦ 17.85◦

µ = 4 0.00◦ 0.00◦ 9.15◦ 16.05◦ 20.55◦

In the present approach, another independent parameter which governs the inter-

face stiffness is defined: µ. Thus, in the present approach if the interface stiffness

increases the position where the crack onset is produced may change too, in agreement

with the previous results presented in Mantič et al. (2015).

According to Table 6.5, increasing secondary compressive load as well as the inter-

face stiffness lead to nonzero values of the onset angle θo. In these cases, after a first

step which produces a non-symmetric crack, the subsequent steps make the interface

crack to growth tending to form a symmetric crack. This behaviour is observed for

both the HS-criterion and quadratic criterion.

6.4.4 Failure curves

Fig. 6.9 shows the failure curve representing the normalized biaxial remote loads

which cause a debond at an initially undamaged fibre-matrix interface with µ = 4.

The curve is compared with the analytical curve obtained by LEBIM with µ = 1 in

Mantič et al. (2015) using Gao’s elastic solution (Gao, 1995). Surprisingly only small

differences are observed in the results when the interface stiffness is increased, while

the tendencies in both curves are the same.

The relatively small difference between CCFFM+LEBIM and LEBIM predictions

is somewhat analogous to that observed in Cohesive Crack Modelling, where the

effect of the cohesive law shape is relatively weak once we fix the fracture energy and

tensile strength, provided that the process zone is sufficiently smaller than the other

geometrical lengths, see Wang (2013). In the same way, CCFFM+LEBIM models

with different stiffness are expected to provide similar failure stresses if the crack

extension is sufficiently small.

The failure curves show that a secondary compressive load makes easier the debond

onset originated by a primary tensional load. Both HS and quadratic criterion lead to

very similar results for tension-tension biaxial states, whereas for compression-tension

biaxial states little differences appear.
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Figure 6.9: Failure curves for a glass fibre embedded in a large epoxy matrix under biaxial transverse
loads.

6.5 CCFFM+LEBIM predictions regarding the sym-

metrical or non-symmetrical debonds onset along

a fibre-matrix interface

Garćıa et al. (2015) studied the appearance of one debond (non-symmetrical config-

uration) or two debonds (symmetrical configuration) along fibre-matrix interfaces. A

failure criterion based on the CCFFM hypothesis and a coupling of the (incremental)

energy and stress criteria considering a perfect fibre-matrix interface was applied to

study this problem (Mantič, 2009; Mantič and Garćıa, 2012). In this Section, the

same problem is studied using CCFFM + LEBIM and the results are compared with

the results obtained by Garćıa et al. (2015) for perfect interfaces.

A single fibre configuration under uniaxial transverse loads is considered in the

present investigation, see Fig. 6.10. A plane strain state is assumed. In the initial

state, a fully undamaged interface is considered. Then, the matrix is loaded by

a uniaxial remote tension, σ∞x , in the x-direction. Typically one of two following

possibilities may occur: either one debond or two debonds appear, as showed in

Fig. 6.10.

As all configurations are symmetric with respect to the x-axis, only the upper-half

of the geometry is considered for the one debond configuration whereas one quarter of

the geometry is considered for the two debond configuration. Hence, the polar angle

θd (debond semiangle) and also other angles are defined as θ ≥ 0.

A glass fibre-epoxy matrix system is used with the isotropic linear elastic proper-

ties for the fibre and matrix shown in Table 6.1, exactly the same than those used in

Garćıa et al. (2015).



M.M.Muñoz-Reja Moreno 149

y

x
xx d xx

y

x
dd

2H

2H

y

x
xx r

              1 debond               2 debonds

Initial state

Figure 6.10: Description of debonds that may be produced in a single fibre problem.

Several stiffness interface configurations were used in the present study. Recalling

that, for µ = 1 the present model reverts to the original LEBIM, and when µ value

increases, for a fixed ḠIc and σ̄c, the interface becomes stiffer, and for µ→∞ a perfect

(rigid) interface is obtained. The interface properties needed for the CCFFM+LEBIM

model are shown in Table 6.6. Notice that the above defined dimensionless numbers

µ and γ are also included in this table. According to (6.12), γ modulates the influence

of the stress and energy criteria governing the transition from brittle configurations

(for small values of γ) to tough configurations (for large values of γ).

Table 6.6: Interface properties.

σ̄c (MPa) ḠIc (J/m2) kn(MPa/µm) kt/kn µ γ

25 10 16200 0.25 518.4 3.58
30 10 16200 0.25 360 2.98
35 10 16200 0.25 264.5 2.56
60 10 16200 0.25 90 1.49
200 10 16200 0.25 8.1 0.45

6.5.1 Numerical results

The model is defined by a fibre radius r =7.5µm and a rectangular matrix of vertical

side length 2H with H/r=200/3. Then, taking into account the symmetries used in



150 Chapter 6

the numerical model, 230 (or 220) elements are used to model the matrix boundary,

200 uniform elements for the fibre boundary where the symmetry is applied, and

1800 (or 900) uniform elements are used for each fibre-matrix interface side, for the

one debond (or two debonds) configuration, respectively. The element size at the

interface is defined by the polar angle 0.1◦.

Initially, the energy and stress criteria are studied in an independent way in Figs.

6.11 and 6.12.
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Figure 6.11: (a) Dimensionless function g (6.4) of resistance against the debond onset due to the
energy criterion as a function of debond advance ∆θ, and (b) is a detail view of the plot in (a).

First, the energy criterion is considered through the dimensionless function g(∆θ, n)

defined in (6.4), which can be interpreted as the resistance against the debond onset

when this criterion is applied. In the present problem, g(∆θ, n) is the function of

the crack advance in terms of the debond semiangle ∆θ and the number of debonds

(n = 1, 2). g(∆θ, n) functions are plotted in Fig. 6.11, which shows that g(∆θ, 1)

is smaller than g(∆θ, 2). The differences between their values increases with ∆θ,

which can be explained by the increasing shielding effect in the case of two debonds

for larger debonds. This figure also includes previous results considering perfect in-

terfaces (dashed lines), as in Garćıa et al. (2015). Blue lines are associated to one

debond configuration while red lines are associated to the two debond configuration.

For both configurations, g(∆θ, n) is decreasing with ∆θ up to minimum values at

θEmin, which are very similar to those obtained for a perfect interface in Garćıa et al.

(2015).

It should be noticed that the results obtained using elastic interfaces are very

similar to those using perfect interfaces for intermediate values of ∆θ, but differ for

small and large values of ∆θ. These differences may be explained, for small values

of ∆θ, due to the fact that elastic interfaces allow openings and slidings in the zone

ahead of the crack tip, however this behaviour is not allowed for perfect interfaces.

Moreover, g(∆θ) → ∞ for ∆θ → 0, in the case of perfect interfaces, whereas it
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Figure 6.12: Graphical representation of the stress criterion.

approaches a finite value for elastic interfaces, see Fig. 6.11 (b). On the other hand,

for large values of ∆θ, the matrix and the fibre are in contact. Then, differences

arise due to the fact that contact conditions are modelled in a different way for each

case. Signorini (perfect) contact condition is used for the perfect interface case while

a penalty contact condition is used for the elastic interface case.

Second, the function s(∆θ) which gives a minimum remote tension necessary to

originate the debond according to the stress criterion is plotted in Fig. 6.12. As the

stress criterion is based on the initial elastic state, both configurations, with one and

two debonds, are equivalent when this criterion is only used. As mentioned before,

for both failure configurations, the function s(∆θ) is increasing with ∆θ.

Then, when the fulfillment of both criteria is required, a critical remote tension

σ∞c originating a finite debond onset/growth and the size of this debond given by

θc are predicted, as shown in (6.12). The critical value σ∞c is the minimum remote

tension σ∞ for which both criteria are fulfilled which is achieved for the value of

∆θ = θc.

In the plane (∆θ, σ∞/σc) for ∆θ < θEmin, the two curves given by these criteria

have either one or none at all intersection point, s(∆θ) = γ
√
g(∆θ, n). Then, the

following two scenarios may occur as in Garćıa et al. (2015); Mantič (2009); Mantič

and Garćıa (2012):

• Scenario C (coupled): If the two curves have one intersection point for ∆θ <

θEmin, the minimum remote tension fulfilling both criteria for the debond onset

σ∞c is given by this intersection point (θc, s(θc) = γ
√
g(θc, n)), see Fig. 6.13.

• Scenario E (energetic): If the two curves have none intersection point for ∆θ <

θEmin, the remote tension fulfilling both criteria for the debond onset σ∞c is given
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Figure 6.13: Scenario C for σ̄c =60(MPa), ḠIc =10(J/m2), µ =90 and γ =1.49.

by the minimum value of g(∆θ), see Fig. 6.14.
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Figure 6.14: Scenario E for σ̄c =25(MPa), ḠIc =10(J/m2), µ =518.4 and γ =3.58.
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The critical semiangle θc is defined as the semiangle of the debond produced in

its instantaneous onset, while the arrest semiangle θa is the semiangle of the debond

after its subsequent unstable growth (Mantič and Garćıa, 2012). Actually, θa defines

the end of this unstable debond growth. If after a debond onset, such an unstable

debond growth does not exist, then θa = θc.

The critical and arrest semiangles, θc and θa, respectively, for perfect and elastic

interfaces are plotted in Fig. 6.15 as functions of γ and the failure configuration.

In this figure, the lines (both continuous and dashed), represent results for perfect

interfaces (Mantič et al., 2015), while dots represent results for linear elastic interfaces,

see Table 6.6. The continuous lines are associated to critical semiangles, while dashed

lines represent arrest semiangles. The blue lines and dots correspond to the one-

debond configuration, while the red ones correspond to the two-debond configuration.

It is interesting to notice that the results for the critical angles using linear elastic
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Figure 6.15: Critical and arrest semiangles, θc and θa.

interfaces are very similar to those for perfect interfaces. Regarding the arrest angle,

results for linear elastic interfaces differ from those for perfect interfaces when γ

values are small, while they are very similar for increasing γ values. Moreover, if we

increase the interface stiffness we observe the results become closer to those obtained

for the perfect interface. Therefore with this method we can adjust the stiffness of

the interface to the real one.

Fig. 6.16 shows σ∞c /σ̄c as a function of γ for the two failure configurations. σ∞c
is quite constant for small γ values (scenario C), but it increases strongly for γ ≥ 1,

for both perfect and elastic interfaces (Garćıa et al., 2015); actually it is a linear

function of γ for sufficiently large values of γ (scenario E). As in the previous figures,



154 Chapter 6

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

2 debonds (García et al., 2015)
1 debond (García et al., 2015)

2 debonds (present work)
1 debond (present work)

r

Figure 6.16: Critical remote tension σ∞c for the two post-failure configurations.

the present results are very similar to those obtained for a perfect interface.

Thus, in view of Figs. 6.15 and 6.16, the non-symmetrical configuration is pref-

erential for a glass/epoxy system. The percentage difference between the critical

tensions predicted for the two configurations defined by

4σ∞c (%) = 100 · σ
∞
c (n = 2)− σ∞c (n = 1)

σ∞c (n = 1)
, (6.14)

is shown in Fig. 6.17. In this figure, it can be clearly seen that σ∞c (n = 2) > σ∞c (n =

1) for γ > 0. Due to the scale of this figure the differences between the results,

for perfect and elastic interfaces, are more remarkable. Finally, we can conclude

that the non-symmetrical configuration is preferential independently of γ, however,

the difference between the two post-failure configurations is very small for brittle

fibre-matrix system characterized by small values of γ < 1. Nevertheless, for tough

fibre-matrix systems, characterized by high values of γ & 2, the percentage difference

between the predicted critical tensions can achieve values more than 6%, for the cases

studied in the present work.
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Figure 6.17: Percentage difference between the critical remote tensions for the symmetrical and
non-symmetrical post-failure configurations.

6.6 CCFFM+LEBIM predictions under the pres-

ence of a secondary fibre

The purpose of this section is to check the capacity of the new approach to study a

multifibre geometry, specifically two fibres.

For this reason, a two-fibre configuration represented in Fig. 6.18 is briefly studied.

It includes two glass fibres embedded in a infinity epoxy matrix and subjected to a

remote loading transverse to the fibres. In order to analyze the fibre interaction, the

distance between the fibres d is varied, see Fig. 6.18. As in previous sections, inclusions

and matrix are considered isotropic linear elastic materials, whose characteristics are

presented in Table 6.1. The mechanical characteristics of the interfaces were also

previously described in Table. 6.2. The mesh used includes 1440 linear elements for

each interface face (matrix and fibre sides) with boundary elements whose polar angle

is 0.25◦.

The applied remote loads, σ∞x and σ∞y are shown in Figure 6.18. The position

where the crack onset occurs is denoted by the polar angle θo, measured from a

diameter parallel to the y-axis. The critical angle, θc, is the initial crack size produced

in the crack onset.

In the following subsections the influence of a second fibre will be analyzed and

also compared with the single fibre case, for four different loading conditions. The

crack onset position given by θo and the critical load (load necessary to produce the

debond onset) σ∞ will be determined for several distances between fibres and different
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Figure 6.18: Two-fibre configuration under biaxial remote transverse loads.

interface stiffnesses (obtained by varying µ).

6.6.1 Loading Case 1: σ∞x = 0 and σ∞y = σ∞

This case represents a uniaxial loading condition with the far field loads applied

parallel to the y-axis. σ∞ is defined as the load necessary to produce the fibre-matrix

debond. The influence of the distance d on the crack onset angle values θo and the

critical applied remote stress σ∞ are depicted in Figures 6.19(a) y (b), respectively.

Notice that this distance d increases up to the limit of the single fibre case, described

in the plots as d/a =∞.

(a) (b)

Figure 6.19: (a) The crack onset angle θo and (b) the critical remote applied load σ∞/σc versus the
distance between two fibers for σ∞x = 0 and σ∞y = σ∞.
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It can be seen in Figure 6.19(a) that the crack onset angle increases when the

fibres become closer and also when the interface stiffness increases. The deviation of

the onset position is produced in a similar manner for all the solved cases (as shown

in Figure 6.18). Results show that the crack onset is produced at the fibre-matrix

interface part distant from the other fibre (similarly as shown in Figure 6.18). Then,

the debond (interface crack) grows towards the interface part closer to the other fibre.

The initial crack size defined by the angle θc is the same for each µ value, indepen-

dently of the fibre distance d. The obtained θc values are: 5.75o for µ = 2, 8.75o for

µ = 3 and 11.00o for µ = 4. As it may be expected, the critical remote load increases

with increasing values of the interface stiffness. This critical load also increases with

decreasing the distance between fibres. Thus, higher loads are required to produce a

debond in the case of two neighbour fibres than in the single fibre case. However, all

these differences are quite small.

6.6.2 Loading Case 2: σ∞x = σ∞ and σ∞y = 0

This case represents a uniaxial loading condition with the remote loads applied par-

allel to the x-axis. As in the previous case σ∞ is the critical load value.

Figure 6.20: The critical remote applied load σ∞/σc versus the distance between two fibers for
σ∞x = σ∞ and σ∞y = 0.

In Figure 6.20, the influence of the distance between fibres on the critical applied

remote stress σ∞ is shown. It is noticeable that for this case the crack onset position

is always the same. In all the cases θo = 90◦, i.e. the crack onset takes place at the

interface point closest to the other fibre. Thus, no influence of the fibre proximity

nor the interface stiffness on θo is observed.

Regarding the critical crack size, θc is independent of the distance d, being 5.75o

for µ = 2, 8.75o for µ = 3 and 11.00o for µ = 4. Notice that these angles are equal to

those obtained in the loading case 1.

The single fibre case is again represented by d/a = ∞. It can also be observed

that a higher critical load is necessary when the fibres move away from each other,
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this effect is very significant. On the other hand the increase of the stiffness seems to

have only a very little influence.

6.6.3 Loading Case 3: σ∞x = −σ∞ and σ∞y = σ∞

A tension-compression biaxial state is considered herein because according to Távara

et al. (2016) it may be the most dangerous biaxial situation. Remote load σ∞ is

applied in both directions, as tensile stress parallel to the y-axis and as compressive

stress parallel to the x-axis.

(a) (b)

Figure 6.21: (a) The crack onset angle θo and (b) the critical remote applied load σ∞/σc versus the
distance between two fibers for σ∞x = −σ∞ and σ∞y = σ∞.

In Figure 6.21, the influence of d on θo and σ∞ is depicted. The tendencies shown

are similar to the loading case 1. Nevertheless, θo values are much higher for the

present loading case. Notice that θo may be different from 0o even for the single fibre

case. σ∞ values are considerably lower than for the loading case 1. Results confirm

that a transverse compression acting as secondary load makes the crack onset easier.

Finally, θc values are the same as for the previous loading cases.

6.6.4 Loading Case 4: σ∞x = σ∞ and σ∞y = −σ∞

A tension-compression biaxial state is considered herein. Remote load σ∞ is applied

in both directions, as tensile stress parallel to the x-axis and as compressive stress

parallel to the y-axis.

The results for the present loading case are shown in Figure 6.22. The critical load

evolution has a similar tendency as in the loading case 2, but with lower values (due

to the secondary compression effect). While the crack onset position for the single

fibre case changes, for the present two-fibre cases it keeps on 90◦. These results show

that the position of the crack onset is more influenced by the presence of a secondary

fibre rather than by a change of the interface stiffness. Once again the values obtained

for θc are the same as in the previous loading cases.
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(a) (b)

Figure 6.22: (a) The crack onset angle θo and (b) the critical remote applied load σ∞/σc versus the
distance between two fibers for σ∞x = σ∞ and σ∞y = −σ∞.

6.7 Concluding remarks

The CCFFM+LEBIM code described in Section 3.2.1 can be used together with dif-

ferent interface failure criteria. In the present chapter the quadratic and Hutchinson

and Suo criteria have been considered, although the formulation is prepared to be

used with any other interface failure criterion.

It is interesting to observe that for the present fibre-matrix system the predictions

of the crack onset and propagation obtained by CCFFM and LEBIM differ only

slightly from those obtained by the original LEBIM, which indicates only a moderate

dependence of these predictions on the interface stiffness.

It is noticeable that although the single-fibre problem is symmetric, the position

where the onset of the interface crack occurs may be quite away from the symmetry

plane. This effect is emphasized in the cases with a stiffer interface and where a

compressive remote load appears. A biaxiality effect is observed in the failure curves

obtained showing that the presence of a secondary compressive remote load makes

easier the debond onset.

Also, the same CCFFM+LEBIM code has been applied to model two aligned

fibres within a large matrix under four different loading cases varying the distance

between the fibres. The aim was to study the effect of a secondary fibre on the

position where the debond (interface crack) initiates, θo, the initial debond size, θc,

and the critical load (the load necessary to produce the debond), σ∞x .

Loading cases includes two uniaxial tensile loading cases and two biaxial tensile-

compressive loading cases. The obtained results show that θc is only influenced by the

interface stiffness used, being larger for larger values of the dimensionless parameter

µ (6.9).

Regarding the position where the debond initiates, it seems that θo values increase

when the distance between fibres decreases for loading cases where the maximum prin-

cipal remote stress is perpendicular to the line joining fibre centres (tension applied
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parallel to the y-axis in the present configuration). Nevertheless when the maximum

principal remote stress is parallel to the line joining fibre centres (tension applied

parallel to the x-axis) this position does not change, it being always placed in the

closest point between fibres.

The critical remote load increases for smaller distances between the fibres and

for higher values of µ when the maximum principal remote stress is perpendicular

to the line joining fibre centres. However, this critical remote load decreases for

smaller distances between the fibres when the maximum principal remote stress is

parallel to the line joining fibre centres. Thus, there is some shielding effect between

fibres, retarding the debond onset, in the former configurations, while in the latter

configurations, the second fibre makes easier the debond onset.

In general, the presence of a second fibre may have a great influence on the debond

onset and growth, specially regarding the critical remote load in the cases of the

maximum principal remote stress parallel to the line joining fibre centres.



CHAPTER7
Conclusions and future

developments

7.1 Conclusions

The work carried out in this thesis has been focused on the two research lines, cor-

responding to Part 2 and Part 3 of this thesis as defined in the Introduction, respec-

tively:

(i) The development and implementation of the Coupled Criterion of the Finite

Fracture Mechanics (CCFFM) applied to LEBIM (CCFFM + LEBIM). The

implementations developed are based on two different approaches: the definition

of the curves generated by the energy and stress criteria, and the principle of

Minimum Total Energy subject to a Stress Condition (PMTE-SC).

(ii) The numerical study of different damage mechanisms in fibre reinforced com-

posites and their joints at macro and micro scales, that may provide support in

the knowledge of the behaviour of the numerical and analytical tools developed,

while allowing to deepen the knowledge of damage mechanisms in composites.

In the following the main contributions of the present thesis grouped in the above

mentioned two research lines are detailed. In this sense, first, the contributions to the

developments of the models and numerical tools, and, then, to the analysis of some

damage mechanisms at composites are described.

7.1.1 Development of the coupled criteria applied to LEBIM

and numerical tools

Two computational procedures described in this thesis, which combine the CCFFM

and LEBIM formulations, have been developed and implemented in a 2D BEM code

and in code based in FEM. These procedures open new possibilities to study the onset

161
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and propagation of cracks along interfaces and adhesive layers. This is due to the use

of realistic values of strength, fracture toughness and in particular interface stiffness,

which can be significantly higher than in the original LEBIM, and are decoupled in the

present procedure. It is noticeable that when µ = 1 the present procedure essentially

reverts to the original LEBIM. Furthermore, this method predicts an instantaneous

crack generation without the need of an infinitesimal failure growth. This allows the

appearance of several fractures at the same time in the same problem.

The numerical codes have been successfully applied to several specific problems,

in part 3 of this thesis. It has been shown that the implementation of the procedures

leads to a very good agreement with analytical models and experimental tests.

A discussion about two possible ways of defining the fracture mode mixity needed

the energy criterion within the CCFFM was also provided. However, the choice of

the mode mixity definition is still an open debate.

The proposed numerical tools are therefore suitable for predicting the failure of

an interface with a relatively short computational time. As a future task, we remark

that, in order to increase the efficiency of computations using LEBIM, a complete

knowledge about the singular stress field near the crack tip growing along the elastic

interface is necessary; its proper inclusion in the discretization procedure will avoid

the use of highly refined meshes close to the crack tip or the convergence study for

each problem.

7.1.2 Studied cases of damage and failure in composite mate-

rials and their joints at macro and micro scale

Double cantilever beam:

The isotropic DCB test is studied under load and displacement control separately.

The aim of this study is to analyse the differences between the two approaches outlined

in the CCFFM + LEBIM. Four analytical solutions based on Bernoulli’s beam are

developed and compared with the numerical solution for each test.

The test under displacement control shows an infinitesimal crack growth along the

interface, so the numerical and analytical solution of the method based on the curves

leads to the solution of the original LEBIM. The analytical and numerical results of

the method based on the PMTE-SC also coincide with this infinitesimal propagation

of the interface failure. However, the increase in the load on the algorithm must be

adjusted so that this infinitesimal propagation is done correctly.

The behaviour of this test under load control is very different from the previous

one, since when the delamination load is reached the interface failure happen in an

unstable way. In this case, the two methods of CCFFM + LEBIM, either analytically

or numerically, predict the same failure load and the same interface damage. In

the code based on the PMTE-SC, the definition of the load at each step should be

readjusted, so that it is not always increasing, otherwise, it would not be able to

capture the snap-through instability of the problem.
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The double pull-push shear test:

The crack onset and propagation along the interface in the Double Pull-Push Shear

(DPPS) test is studied using an original analytical solution based on the Timoshenko

beam theory. This solution takes into account the normal stresses (peeling) that

appear in this test.

Although the normal stresses in the shear tests keep the discussion about the

fracture energy still open (Carrara and Ferretti, 2013; Mazzotti et al., 2016; Martinelli

et al., 2011), the solution provided can be used for any test between two adherents of

any thickness/stiffness in double joints. Also, in the shear tests, the fracture energy

in Mode I along the interface is significantly lower than the fracture energy in Mode

II, therefore, even a small increase in the normal stresses could reduce the bearing

capacity of the interface (Mazzotti et al., 2016). Therefore, a parametric study is

made to analyse the influence of geometry and material characteristics (adhesives

and adherents) on the stress distributions.

Using this analytical solution the Coupled Criterion of Finite Fracture Mechanics

(CCFFM) including fracture mixed mode is applied to predict failure loads for debond

onset and propagation in this test. The results obtained show some discrepancies for

some parameter values with previous studies that do not take into account normal

stresses. For example, for small overlap lengths, for which the damage could even

start by the free end. The results with small overlap lengths have been compared

with the experimental tests, showing a good agreement.

Moreover, the analytical solution is also compared with the numerical results and

with experimental tests found in literature, showing a good agreement between all

of them. For the characterization of the interface failure, a simple inverse analysis

has been used to fit ḠIIc and τ̄c by exploiting the results from three different test

configurations.

Failure initiation in long-fiber reinforced composites under transverse loads:

The micro-mechanical behavior of cracks between matrix and fibre under transver-

sal loads is studied in detail in Chapter 6. The CCFFM + LEBIM code described in

Section 3.2.1 can be used together with different interface failure criteria. Specifically,

the quadratic and Hutchinson and Suo criteria have been considered.

It is interesting to observe that for the present fiber-matrix study the predictions

of the crack onset and propagation obtained by CCFFM + LEBIM by curve method

differ only slightly from those obtained by the original LEBIM, which indicates only

a moderate dependence of these predictions on the interface stiffness. However, it

would be interesting to study this case with the PMTE-SC, in order to know the

predisposition of failure growth in several areas of the interface.

The same question arises about the approach of the CCFFM+LEBIM used, when

testing the fiber-matrix system to biaxial loads. Because, although the studied prob-

lem is symmetric, the position where the onset of the interface crack occurs may be

quite away from the symmetry plane. And, this effect is emphasized in the cases with

a stiffer interface and where a compressive remote load appears.

The results obtained on the interaction between two fibres positioned at a cer-

tain distance are interesting. The critical remote load increases for smaller distances

between the fibres and for higher values of µ when the maximum principal remote
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stress is perpendicular to the line joining fibre centres. However, this critical remote

load decreases for smaller distances between the fibres when the maximum principal

remote stress is parallel to the line joining fibre centres. Thus, there is some shielding

effect between fibres, retarding the debond onset, in the former configurations, while

in the latter configurations, the second fibre makes easier the debond onset.

It is also remarkable the study about the appearance of symmetrical or non-

symmetrical debond along a fibre-matrix interface which shows that a non-symmetrical

debond is preferential. Results shown that this effect is caused by the energy criterion,

which captures the shielding effect of the second debond for relatively large debond

angles. Furthermore, the code used showed good agreement with the results of the

study of the same problem carried out with a failure criterion based on the CCFFM

hypothesis and a coupling of the (incremental) energy and stress criteria considering

a perfect fibre-matrix interface.

7.2 Future developments.

The work carried out in the present thesis will further continue as a more extensive

study exploring the possibilities of the presented method based in the CCFFM applied

to LEBIM. The research developed in this thesis has answered many questions but

has opened up other interesting ones.

The efficiency of the method described in this work, which combines the finite

fracture mechanics criterion with the LEBIM, has been successfully demonstrated.

However, the codes developed need to be adjusted to increase their efficiency and a

better definition of the input parameters.

Except for the DCB test, the rest of the composite problems in the present thesis

have been solved using CCFFM+LEBIM by the curve method. All of them could be

solved with code based on PMTE-SC for comparison purposes. Such a comparison

will be very interesting to judge the adequacy of each method, and it will require

also some experimental results. The code based on curves provides the exact load

for the initiation of the interface failure and the finite segment damage that occurs

instantaneously. However, it is not able to explore the creation of several separate

damages at the same time, and location of damage initiation is still defined by the

original LEBIM. Therefore, for problems where the onset and behaviour of the damage

is known, this code can predict quite reliably the applied load that produces the

fracture and the size of that fracture.

However, it seems that the code based on the PMTE-SC is more versatile in

predicting the failure of complex interface damage problems. The location of the

interface failure initiation is not always defined by the maximum stress point, and

several separate areas of the problem may fail at the same time. This opens up

an important field in predicting the onset of interface failure. Therefore, it would

be interesting to explore the different configurations of damage initiation N for some

problems with known results. Driving to a global minimum from any N configuration

may not always be possible. An heuristic, e.g., based on the level sets given by the

stress criterion and/or the components of ΓC with nodes in Aσ, can be used to define

Dn leading to an approximation of the minimum of the total energy computed at

acceptable computational costs.
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The coupled criterion has given the LEBIM more versatility, but this model still

has a difficult problem to solve: the solution of the asymptotic stress field at the crack

tip. These are relevant for achieving a high accuracy in the computational modeling

of crack growth with a maximum algorithmic efficiency, minimizing the necessary

computing resources. For this, special finite elements could be developed, located

at the crack tip, whose special singular shape functions reproduce these asymptotic

elastic solutions. These special elements implemented in FEM and in BEM codes

could allow us to discretize solids with cracks without the need to use very refined

meshes or to do a convergence study.

The inclusion of the friction effect in the CCFFM + LEBIM could be also very

useful for some applications in composites. In particular, in tests where friction

between the solids in contact is important, such as the shear test to characterize the

interface in composite concrete reinforcements. Since, the bond capacity between

the FRP system and the concrete depends on the surface preparation methods, and

therefore, the anchorage length and the critical failure load also depends on this

preparation.

There is currently a UMAT subroutine developed by the GERM group, which

allows the 3D LEBIM in ABAQUS. So a future line of direct application of this thesis

would be to apply the PMTE-SC to LEBIM 3D. This could solve problems where 3D

effects should not be neglected.

By the definition of LEBIM this model is only used in the interfaces between

two solids, but recently a similar model has been used to reproduce the kink out of

the interface. It would be interesting to study the behaviour of this model and the

possibilities of applying the CCFFM by the PMTE-SC in order to obtain a numerical

tool capable of covering more applications.
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