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Abstract

Emotion recognition consists of a series of processes to detect human emotions from
facial human expressions. Humans interact with each other primarily through speech,
but also through body gestures to emphasize a certain part of the conversation and ex-
hibit emotions. The automatic recognition of a person’s emotional state has become a
very active research �eld that involves scientists specialized in di�erent areas such as
arti�cial intelligence, computer vision or psychology, among others. Our main objec-
tive in this work is to develop a novel approach, based on topological data analysis, for
the recognition and classi�cation of emotions that combines features extracted from
videos and audios, in their respective spaces of representation, of people expressing
emotions.





Resumen

El área de reconocimiento de emociones consiste en una serie de procesos para de-
tectar emociones humanas a partir de expresiones faciales. Los humanos interactua-
mos entre nosotros utilizando el habla, pero también a través de los gestos corpo-
rales para así enfatizar una cierta parte de la conversación y exhibir emociones. El
reconocimiento automático del estado emocional de una persona se ha convertido en
un campo activo de investigación que involucra cientí�cos especializados en diferen-
tes áreas tales como la inteligencia arti�cial, la visión por ordenador o la psicología,
entre otras. Nuestro principal objetivo en este trabajo es desarrollar un novedoso en-
foque, basado en el análisis topológico de datos, para el reconocimiento y clasi�cación
de emociones que combine características extraídas de videos y audios, en sus respec-
tivos espacios de representación, de personas expresando emociones.





1 Introduction

When a person communicates with others, they are constantly sending and receiving
nonverbal cues, expressed through body gesture, voice, facial expressions, and phys-
iological changes. If some nonverbal cues coincide with the words that a person says
at the moment, they can increase trust, clarity, rapport, and reveal more information
than the person’s spoken words. If you want to understand people better, it is impor-
tant to become more sensitive to their body language and nonverbal cues. A particular
emotional state produces certain verbal and non-verbal signals, so emotions convey
the information regarding personal feelings.

Nowadays, computers are part of our life, but the relationship between a human
and a machine is limited. It becomes necessary to know the emotional state of the
user to achieve better human-machine cooperation. This way, emotion recognition
becomes an important area of research in the �elds of computer vision and arti�cial
intelligence due to its important academic potential and social impact application. So
far, di�erent approaches have been explored. See, for example [125].

In general, people infer the emotional state of others (such as joy, sadness, or
anger) using facial expressions and vocal tones. Assisting in human interaction, as
done in the H2020 KRISTINA project1 (where emotion recognition is applied to help in
the interaction between health professionals and migrated patients), allows overcom-
ing linguistic barriers that make communication di�cult in healthcare and primary
assistance environment. One of the most relevant conclusions that the KRISTINA
project reached was that the combination of visual and audio features can develop
better predictions than using them separately.

1http://kristina-project.eu/en/
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In addition to KRISTINA project, other European projects working on the recogni-
tion of emotions are H2020 VocEmoApI project2 and H2020 MixedEmotions project3.

Works related to emotion recognition have focused on the utilization of various
input types such as facial expressions [92, 117, 128], speech [100, 106, 65, 91, 5] and
physical signals [57]. Several other emotion classi�cation techniques have been pro-
posed in [131]. Some of them employ prosody contours information of speech to rec-
ognize emotions using di�erent classi�cation methods such as, for example, arti�cial
neural networks, the multi-channel hidden Markov model, and the mixture of hidden
Markov models. For a further approximation to para-linguistic theory see [108].

A previous work of our group in the �eld of emotion recognition, [44], developed
an approach using only audio signals. Suchwork constitutes the starting point for
this master thesis. Speci�cally, in [44], a model based on topology was developed to
obtain a single value for each audio signal. These data were used as input of a sup-
port vector machine to classify audio signals into eight di�erent emotions, namely,
neutral, calm, happy, sad, angry, fearful, disgust, and surprised. The results
obtained were close to the existing accuracy for some methods with a greater scope
such as [67, 132]. More speci�cally, speech signals were processed as piece-wise linear
functions. Then, a recent tool in the area of Topological Data Analysis (TDA) called
persistent entropy, that is the Shannon entropy of persistence barcodes considered as
probability distributions [20], was computed from the lower-star �ltration obtained
from these functions. Such persistent entropy tool summarizes the features that ap-
pear in raw signals, as of intensity and intonation. The stability theorem for persis-
tent entropy computed from lower-star �ltration [105] obtained from these functions
guarantees fair comparison between signals and robustness against noise. Finally, a
support vector machine was used to classify emotions via persistent entropy values.

Additionally, it is interesting to analyze how ingredients from TDA as homology,
�ltration, and persistence that will be explained in the thesis could show up a di�erent
vision about data taken from measures of lower dimensions, such as time series. It is
not obvious how the data from the time series is transformed into a cloud of higher
dimensions. Time-delay embedding proposes to reconstruct the state and dynamics
of an unknown dynamical system from measurement or observations of that system
taken over time. We refer the reader to the standard text by Kantz and Schreiber
[60] for further details. This idea has been employed in a wide variety of contexts
including time series modeling [51], closure modeling [96] and applications in pattern

2https://cordis.europa.eu/project/rcn/199804_es.html
3https://cordis.europa.eu/project/rcn/194226_es.html
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recognition, for example in gait recognition [35]. The objective of this method is to
use the tools o�ered by Topological Data Analysis for the sake of decreasing the noise,
measure fault, and non-stationary signals’ parameters.

In this work, we build a model supported by the TDA theory to extract topological
information from image sequences obtained from videos of people expressing emo-
tions. The idea is to stack images and compute a 3D simplicial complex. We extract
eight di�erent features from a video �le considering, respectively, the distance to eight
�xed planes (2 horizontal, 2 vertical, 2 oblique and 2 depth planes) in order to com-
pletely capture the movement in emotion sequence. For each plane � the persistence
diagram is calculated as it has been previously done in [68, 69] to gait classi�cation.
What is new in this thesis is that we obtain the persistence entropy associated. Putting
together all this information, we built a vector associated with each emotional video
sequence. This methodology is evaluated using the Video-Dataset from the Ryerson
Audio-Visual Database of Emotional Speech and Song (RAVDESS) [74].

We also propose a method alternative to [44] for representing audio signals ob-
tained from videos of people expressing emotions, by adopting techniques from non-
linear time series analysis [60]. The idea is to extract features from time series and
use them as input for a classi�er. A novelty of our method is the use of Takens’ de-
lay embedding to obtain topological information from the audio signals. As we will
see in this thesis, the system requires very little parameter tuning and can be trained
with small amounts of data. This methodology is evaluated using the Audio-Dataset
extracted from RAVDESS.

Finally, we develop a methodology to combine both topological data computed for
the two respective channels (images and audios) obtained from the videos. We then
will obtain a topological signature to train a machine learning procedure to classify
emotions and will demonstrate that our results outperform state-of-the-art methods.

The thesis is structured in the introduction and six more chapters. Basic emotion
theory is introduced in Chapter 2. In Chapter 3, the principal concepts from computa-
tional topology, topological data analysis of time series, and machine learning knowl-
edge required for the model are explained. In Chapter 4, the methodology followed
on experiments is developed. Results obtained from di�erent training approaches are
shown in Chapter 5 together with comparisons with state-of-the-art methods. The
chapter 6 focuses on explaining the use of di�erent programming languages and the
di�erent libraries applied, as well as discussing the implementation of the completed
method. Finally, Section 7 provides conclusions and future work ideas.





2 Biometrics for emotion recogni-
tion

Biometrics are biological measurements or physical characteristics used to generate
mathematical models of physical (e.g. hand geometry, iris, �ngerprints, gait, and so
on) and behavioral (e.g. signal, patterns) features to recognize patterns for identi�-
cation. The biometric details that are di�erent for each person are used as distinct
biometric data.

A person’s emotional state can in�uence concentration, task solving, and decision-
making skills. Emotional communication occurs through non-verbal channels, like
body movements, the tone and pitch of the voice, gestures displayed through body
language, and physical distance between the peoples speaking. Expressing and rec-
ognizing emotions help us understand the intentions of others, build better relation-
ships, avoid or resolve con�icts better, and move past di�cult mental and physical
states more easily.

Facial expressions, eye contact, hand gestures, and other cues can transmit more
information than just words or language. It can emphasize a message, distract and
redirect your attention to highlight details, and in�uence the course of your actions.
Among the non-verbal components that have emotional meaning, facial expressions
are one of the main information channels in interpersonal communication. Then, it
is natural that research devoted to facial emotion has been increasing attention over
the last years with applications not only in cognitive sciences but also in arti�cial
intelligence.

The recognition of people and the identi�cation of their corresponding emotions
allow better interaction with computers, systems, and environments. Emotion recog-
nition plays an important role in the prediction of social behavior [77], in emotional
intelligence as an ability [78], and the experience of empathy [38].
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Biometric patterns are categorized in physiological characteristics and behavioral
characteristics. Whereas a biometric system based on physiological characteristics
is more reliable, behavioral characteristics may be easier to integrate within certain
speci�c applications. Examples of physiological characteristics include �ngerprint,
face recognition, palmprint, hand geometry, iris recognition, and retina. Behavioral
characteristics are related to the pattern of behavior of a person including gait and
voice.

This chapter addresses aspects of human emotion from a biometric point of view
for the classi�cation of emotion tasks. Speci�cally, emotions will be seen as a hidden
biometric related to physiological and behavioral characteristics. Section 2.1 focuses
on explaining the biometric foundations of emotional state and the motivation of its
use against other techniques. The three principal approaches for modeling emotions
we use will be explained. The idea of why topology is a useful tool to model emotion
will be explained in Section 2.2. Finally, the state-of-the-art of the main approaches
for emotion recognition existing in the literature is detailed in Section 2.3.

2.1 Emotions

Emotions are a vital part of humans, playing a valuable role in how a person perceives
and understands the environment. Emotions can be seen as a kind of information to
guide us to interact with the world. They can restrict or expand our behavior accord-
ing to the situation. As emotions are so important, physiologists have formed several
theories about how the emotions are generated and how important is the information
they contain. Then, researchers have studied emotions and their theoretical develop-
ment. The ever-growing theory raises several important questions that researchers
must address as they bring emotion to their �eld [47]. For example:

1. Is it the physiological or the cognitive aspect of an emotional experience that
primarily determine which emotion is being experienced?

2. Are emotions culturally speci�c or shared across cultures?
3. Are either emotions themselves or the causes that elicit them?

To answer these questions, we can say that our emotional states are combinations
of physiological arousal, psychological appraisal, and subjective experiences.
We de�ned them as the components of one emotion. Two people who faced the same
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conjuncture could have a di�erent emotion. Over time, di�erent theories of emotion
have been developed to explain how the various components of emotion interact with
each other.

In the last decade, methods and algorithms have increased to facilitate emotion
analysis; starting with manual methods using questionnaires made mostly by psy-
chologists, continuing with complex methods involving computational algorithms.
At present, emotion recognition through computers has a lot of application and it has
been constantly developed by researchers.

2.1.1 Emotion modeling

Summing up, researchers have distinguished three principal approaches for modeling
emotions [46]:

• Categorical approach: Based on the idea that only a small number of emotions
exist, divided into six basic emotions: happiness, sadness, anger, fear, surprise,
and disgust [48].

• Dimensional approach: Based on the idea that emotional states are not inde-
pendent. On the contrary, they are related in a systematic way [48], covering
the variability in three dimensions:

1. Valence: how positive or negative emotion is.
2. Arousal: how excited or apathetic an emotion is.
3. Dominance:the degree of power.

• Appraisal approach: Based on the appraisal theory [25], it emphasizes the dis-
tinct components of emotions, and is often denominated componential view.
This theory assumes that one emotion contains di�erent emotional components
including the subjective experience of the emotion itself, and it is given by a sit-
uational context. The occurrence of such emotional components can vary across
di�erent situations. For example, emotion based on a person’s experience, op-
portunities for action goals, motivation, feelings, and reactions.

Emotions can be represented with a limited number of independent a�ective di-
mensions, modeled spatially in a circle, being arousal and valence their main charac-
teristic features. See Figure 2.1 where the eight emotions considered in this thesis are
placed regarding their arousal and valence. As we can see in Figure 2.1, the arousal
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dimension is related to activity in both our mind and body, indicating the intensity
of feeling along a single dimension ranging from sleep to frantic excitement. It links
to attributes such as stimulated-relaxed, excited-calm, and wide awake-sleepy to de-
�ne arousal [6]. The organs are stimulated with perception and the in�uence of the
stimulation is related with arousal dimension. For example, when people are stimu-
lated, they become aroused. Thus, it indicates how calming, soothing or exciting this
stimulus is. The valence is usually represented in the horizontal axis and indicates the
degree of pleasantness. It also indicates the emotional value that is associated with
a certain stimulus and it is used to categorize emotions. It refers to the positive and
negative character of emotions or some of its aspects.

Figure 2.1: The eight emotions considered in this thesis placed spatially depending on
their arousal and valence.

2.2 Topology to model emotions

Data analysis technologies including machine learning are based on statistical anal-
ysis that, until nowadays, has usually been the main technique of any research. Sta-
tistical analysis makes assumptions such as the data follows a normal distribution, so
it is known that expected performance cannot be obtained if the data does not follow
well-known distributions.
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Topological Data Analysis (TDA) has emerged as an important approach for char-
acterizing the behavior of datasets using techniques from topology. Tools from TDA,
speci�cally persistent homology, allow assigning shape descriptors to large and noisy
data across a range of spatial scales. Unlike deep learning, this technique does not rely
on any label data training. TDA focuses on measuring topological summaries (e.g.,
connected components, loops, and voids) of the resulting patterns obtained from the
data analyzed.

Learning high-level features from emotional utterances and creating a hierarchical
representation of the signal is our main purpose. To address the problem, we will use
TDA as a data analysis method that can capture in detail features and information by
focusing on the shape of the data without using any statistical technique.

2.3 State-of-the-art approaches for emotion recog-
nition

Emotion recognition has been an important topic for researchers where several ma-
chine learning techniques have been used. The three main theories that can be dis-
tinguished are discrete theory for categorical models, dimensional theory for dimen-
sional models, and appraisal theory.

Discrete models describe an emotional state as discrete labels using basic emotions
such as: sad and happy. In this way, complex a�ective emotions cannot be expressed.
Dimensional models consider an emotional state as a point in a continuous space mod-
eling more complicated emotions. Typically, an emotional state is covered by three
dimensions: arousal (level of a�ective activation), valence (pleasure), and dominance
(a measure of power or control), these dimensions describe many emotional states.
Appraisal theory [101] focuses on detailing the mental processes underlying the in-
citement of emotions. An emotional state is interpreted as a control set of stimulus
evaluations.

While emotions can be expressed in di�erent ways, automatic recognition has
mainly focused on facial expressions and speech [102]. There are a few articles about
body gestures and posture on emotional recognition summarized in [91]. Neverthe-
less, the most intuitive model is to detect facial expressions and analyze the emotion
later. This is very useful in the case of a short distance from the person.
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Recognizing emotion from facial expressions has several advantages (+) and dis-
advantages (-) such as:

+ There are many datasets available for facial expressions.
+ The tools created for other purposes on facial recognition can be used.
+ It is considered the natural way to identify the emotional states.
- It is determinant to have a high quality of the video and a good segmentation.
- Actors can fake the movements involved in facial emotions.
- The information of the context is not provided, thus sometimes the outputs are

misleading.

Data is sequences of images together with audio signals that can represent the
temporal characteristics of emotion. Usually, in the process, it is necessary to enhance
the quality of the image, for example, by changing the contrast and brightness or
removing the noise.

In the literature, there are several algorithms to solve illumination problems. Be-
sides, it is required to extract the face from the video to apply later a detection face
algorithm, where the most famous is the Viola-Jones algorithm. One relevant anal-
ysis of this approach is found in [130]. Another step is to extract features from the
video: geometric features, appearance features or a mix of geometric and appearance
features are the principal ones.

Geometric features focus on the relationship between facial components. Features
based on the position and angle of landmark facial points [39] will be used in this
work. The appearance features are extracted from the global face region or from the
analysis of regions containing di�erent types of information [118]. Principal compo-
nent analysis, Gavor-wavelets features, and local binary pattern histogram are the
principal methodologies implemented in time real for this approach. The hybrid fea-
tures bring better results in certain cases; the strength of both approaches generates
an approach with fewer weaknesses [56].

Another approach is to recognize emotions using text whose solution is useful
in di�erent �elds as data mining, information �ltering systems, human-computer in-
teraction, and psychology. As we see in [2], the solution to this problem is based on
identifying keywords and assigning emotion to a text selected from a set of prede-
�ned emotion labels. Emotion recognition in the text is one of the di�cult tasks in
natural language processing and is very important as the principal medium of human-
computer interactions through emails, chats, messages, forums, blogs, and other social
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platforms. There are di�erent levels of complexity. For example, one emotion can be
expressed through the meaning of words and their relations or could be expressed by
metaphors, irony, or sarcasm.

Another important branch focuses on the study of some parameters from the au-
dio signal, such as a voice tone or prosody, highlighting the verbal communication.
The features extracted from audio signals are used as input to emotion classi�cation
algorithms. Recall that a speech signal is the principal way of communication between
humans. There exist e�cient methods based on speech for machines to recognize hu-
man voices. However, we are still far from having a natural interaction between hu-
mans and machines because understanding the emotional state of the speaker is still
an ongoing goal. This fact has motivated a recent research �eld namely speech emo-
tion recognition. It is very useful for application webs and computer tutorials where
the response of these systems to the user depends on the detected emotion [109], such
as a diagnostic tool for the therapist [34] used in call center applications and mobile
communication [75].

Speech emotion recognition task is very challenging because it is not clear which
features are more distinguishable between emotions. There also exist other problems
like variability, introduced by the existence of di�erent sentences, speakers, speaking
styles, and rates. Another issue is how a certain emotion is expressed. Generally, it
depends on the speaker, his culture, and the environment or if he/she is speaking in
his/her mother tongue. Although there are few works about multi-lingual classi�ca-
tion [53], most work has focused on mono-lingual classi�cation assuming there is no
cultural di�erence among speakers.

Emotion does not have a common theoretical de�nition, people know the emo-
tion when they feel them. Nevertheless, researchers were able to study and de�ne
di�erent aspects of emotion. This approach has a variety of applications, and it can
be redirected to the voice recognition �eld, call center, or customer services.

The approach to design a system for emotion recognition based on speech primar-
ily includes two phases known as the feature extraction phase and features classi�ca-
tion phase. The election of features for speech representation is needed to design an
appropriate classi�cation scheme and to choice, a useful speech database for evaluat-
ing the algorithm developed.

There are many reviews on speech emotion recognition such as [125, 32] survey-
ing the speech features and the classi�cation techniques used in this task. In the works
of this area, it is common to divide the speech signal into frames, within each frame
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the signal is considered stationary. Later, local or global features are extracted from
each frame. Local features, as pitch and energy, are extracted from each frame. Global
features are computed as statistics from all speech features obtained.

There are a lot of di�erent opinions in the literature about which local or global
features are more suitable for emotion recognition. Top papers addressing global fea-
tures [114, 54] agreed that they are superior to local features in terms of classi�cation
accuracy and performance. However, researchers have asserted that global features
are e�cient only to distinguish between the emotion of high arousal versus lower
arousal, failing on the classi�cation of emotions with similar arousal such as, for ex-
ample, anger versus joy. Another disadvantage is given by the loss of temporal in-
formation on the signal. Ayadi et. al. [32] exposed the idea that it is unreliable to
use complex classi�ers such as the hidden Markov model and the support vector ma-
chine with global features since the number of training vectors may not be su�cient
for reliably estimating model parameters.

A third approach for feature extraction is based on segmentation speech signals
and later computation of a feature vector for each phoneme segmented, observing
the variation in the spectral shapes of the same phoneme under di�erent emotions
[71]. The poor performance of phoneme segmentation algorithms is a problem in
this approach. An alternative method is to analyze the voiced segment (caused by
vibrations of the vocal cord and are oscillatory) rather than each phoneme since it is
easier to implement and feasible.

In the literature, many speech features have been applied. They can be grouped
into four categories:

1. Continuous features: pitch, energy, formants.
2. Qualitative features: voice quality, harsh, tense, breathy.
3. Spectral features: ordinary linear predictor coe�cients, short-time coherence

method, least-squares modi�ed Yule-Walker equations and others.
4. Features based on the Teager energy operator.

On the categorical approach, the states are limited to a �xed number and could be
hard to focus on a complex emotional state. Nevertheless, these types of emotions are
included in the dimensional approach. Some researchers address the pros and cons
of each feature but, until now, no one can identify which category is the best one.
In the last years, speech signal processing has been engaged by deep learning to a
signi�cant degree achieving competitive results in several applications. For example,
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Zhao in [134] constructed two convolutional neural networks and long short-term
memory (CNN LSTM) networks: one 1D CNN LSTM network and one 2D CNN LSTM
network, to learn local and global emotion-related features from speech and "logmel"
spectrogram, respectively.

Most of the existing approaches are designed for speci�c databases, that make the
full solution to this problem still tough. While the system is trained on a particular
database, it continues facing di�erent issues as ethnicity, appearance, culture, sex, age
contextual meaning of sentences, and noise of background in the signal. According
to this, the algorithm implemented in [72] does not work well when dealing with
the natural environment. To recognize emotional states in a natural environment is
challenging due sometimes we have to manage large volumes of unsegmented, non-
prototypical, and non-preselected data. A model that allows us to work with di�erent
kinds of information into it is essential.

Then, to increase the performance of emotion recognition, there are lines of re-
search mixing multimodal approaches in that audio feature with facial features and
body gestures that overcome the performance of the mono-modal approaches.

This problem has been approached, analyzing audio features such as spectral or
voice quality and video features including local phase quantization. This problem has
been approached, analyzing audio features such as spectral or voice quality and video
features including local phase quantization. For example, Nicole et al. [90] developed
a system that performs emotion recognition based on multi-modal features as facial
appearance, head movements of speakers, and spectral features from audio combined
via a regression classi�er. Deep learning has been used in audio-visual emotion recog-
nition to improve the linear relationship between the features by capturing complex
non-linear feature interactions in multimodal data [64].

According to what is discussed in this chapter, Topology Data Analysis opens its
door to set the problem of classifying emotional state. It will be necessary to �nd a
topological signature for emotions.





3 An overview of tools from TDA

We will assume a basic knowledge of computational topology. In [50] and [30], readers
interested in the topic can address it in greater depth. In this chapter, we present some
results that are not common in standard courses.

Topological Data Analysis (TDA) consists of measuring topological features of
shapes and functions. The tools used for such measuring are usually borrowed from
the �eld of computational topology. Homology is one of such tools, and for TDA
purposes, it is computed on a �ltered space or, equivalently, on a sequence of sub-
level sets of a real-valued function on this space.

3.1 Simplicial complexes

To introduce objects in the computers it is common to use a scanner 3D which gen-
erates a point cloud of the edge surface of objects and later obtains a triangulation.
This way of representing objects on computers is known as simplicial complexes and
their elements, vertices, edges and triangles, as simplices. A d-simplex is a geometric
object with (d + 1) vertices ("corners") that lives in a d-dimensional space.

De�nition 3.1 (d-simplex). A d-simplex is the convex hull of d + 1 a�nely inde-
pendents points S = {v0, v1,⋯ , vd}. The points of S are the vertices of the simplex:

[v0, v1,⋯ , vd] =

{

u |
d
∑

i=0
�ivi = u,

d
∑

i=0
�i = 1, �i ≥ 0 ∀i

}

.

All possible convex combinations
∑d

i=0 �ivi are in the convex hull of the set S =
{v0, v1,⋯ , vd}. For example, in Figure 3.1, the point P is a convex combination of
the three points V1, V2, V3, i.e., P = �1V1 + �2V2 + �3V3, where

∑

�i = 1 and �i ≥
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0,∀i. All points that are in the shaded region, bounded by the edges of the triangle,
are convex combinations of {V1, V2, V3} and constitute the convex hull of {V1, V2, V3}
which coincides with a 2-simplex in ℝ2. On the other hand, the point Q is not part of
the convex hull.

Figure 3.1: The point P is a convex combination of the three points V1, V2, V3 and the
point Q is not a convex combination of these points.

The �rst low dimensional simplices have their own names: 0-simplex, 1-simplex,
2-simplex and 3-simplex are also called vertex, edge, triangle and tetrahedron, re-
spectively. Figure 3.2 shows them. The idea is easy: one vertex generates a point,
two vertices generate a segment by connecting the two points, three vertices gener-
ate a triangle by connecting every pair of points with segments and �lling the space
between, and so on. Notice how d + 1 vertices are needed to generate an object of
dimension d. This way, all possibles convex combinations of points in a given set
S = {v0, v1,⋯ , vd+1} are in the convex hull of S . For example, in Figure 3.1, the point
P is a convex combination of the three points V1, V2, V3, i.e., P = �1V1 + �2V2 + �3V3,
where

∑

�i = 1 and �i ≥ 0,∀i. All points that are in the shaded region, bounded
by the edges of the triangle, are convex combinations of {V1, V2, V3} and constitute
the convex hull of {V1, V2, V3} which coincides with a 2-simplex in ℝ2. On the other
hand, the point Q is not part of the convex hull.

De�nition 3.2 (face). Any non-empty subset T of the point set S = {v0, v1,⋯ , vd}
spans a simplex �T ⊆ � called a face of � and denoted �T ≤ �. If T is a proper subset of
S , then �T is called a proper face of �. The boundary of �, denoted as )�, is the union of
all proper faces of �.
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Figure 3.2: From left to right: vertex, edge, triangle, and tetrahedron.

Then, a simplicial complex is de�ned as follows.

De�nition 3.3 (simplicial complex). A simplicial complexK is a set of simplices
such that:

• � ∈ K , � ≤ � → � ∈ K .
• �, �′ ∈ K → � ∩ �′ ≤ �, �′.

The dimension of the simplicial complex is given by the largest dimension of its
simplices according to dim(K) = max{dim(�) | � ∈ K}.

De�nition 3.4 (subcomplex). A subcomplex of K is a subset K ′ ⊂ K which itself
is still a simplicial complex.

Finally, the n-skeleton of a simplicial complex K (n) is the subcomplex of K con-
sisting of the restriction of the latter to its simplices of degree at most n, i.e., K (n) =
{� ∈ K|dim(�) ≤ n}.

3.2 From point cloud to simplicial complexes

In TDA, it is assumed that the data are sampled from an underlying space X, and the
aim is to recover the topology of X. Generally, the process follows these steps:

1. Find an approximation of X using a combinatorial structure such as simplicial
complexes.

2. Use techniques from algebraic topology such as persistent homology to com-
pute topological invariant of such structure.



22 análisis topológico de datos: aplicación al reconocimiento de emociones

There are several methods to complete the �rst step of the analysis. We can divide
them into geometric and algebraic. The Czech complex and the Vietoris-Rips complex
[116] are the most common algebraic methods. The Czech complex is computationally
expensive in high dimensional analysis, being Vietoris-Rips a more e�cient approx-
imation technique.

Other e�cient methods have been introduced in order to reduce the computa-
tional cost such as alpha complexes [31] and �ow complexes [42]. They have the
advantage of being fast and relatively small, but unfortunately, they depend on the
Delaunay complexes [124].

Although the Delaunay triangulation produces a result in shape more interesting
that the convex hull, it exhibits a dense partition of the space and, in particular, to
recover the topological information from the shape as connected components, holes,
and voids are very di�cult tasks. Topics related to the two most used methods built
on random points are addressed below, where points are embedded in an Euclidean
space ℝd .

Figure 3.3: Left: a point cloud. Right: the union of balls centered at the points in the
point cloud.

The main problem when using tools from simplicial homology to study a dataset
X = {xi}mi=1 ⊂ ℝn is that there is not a simple structure to describe the data. Finding
a simplicial complex from X could be di�cult. The �rst strategy is to consider the
homology of the spaces X� = ∪mi=1B(xi, �), where the ball of radius � is computed
around each point of X. Then, the union of balls, X� , constitutes a good combinatorial
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descriptor (see Figure 3.3). The spaces X� with � > 0 are known as level sets which
are induced by a function, in this case, the one de�ned by the enlargement of the
balls. The level sets of a function in a �nite point cloud X are also �nite (although
the parameter � is continuous). Then, a �ltration is a sequence of level sets which is
a sequence of simplicial complexes satisfying that K1 ⊂ K2 ⊂ ⋯ ⊂ Kr. An example
of a �ltration is shown in Figure 3.4.

Figure 3.4: Example of a �ltration.

3.2.1 Algebraic methods to compute filtrations

Two algebraic approaches to compute �ltrations from point clouds are Czech com-
plexes and Vietoris-Rips complexes.

Czech complexes

The Czech complex generated by a set of points X is a simplicial complex formed
by vertices, edges, triangles, and faces of higher dimension. Although the general
de�nition is quite wide, most articles reviewed work on a special case developed using
the intersection of enough Euclidean balls.

De�nition 3.5 (Czech complex). LetX = {x1, x2,⋯ , xn} be a collection of points
in ℝd and let � > 0. The Czech complex is de�ned as follows:

1. Its 0-simplices are the points in X.
2. A k-simplex [xi0 ,⋯ , xik] is in Ĉ�(X) if ∩

k
n=0B�(xin) ≠ ∅.
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A paradigm on TDA is to create an estimation Û�(X) of any underlying subman-
ifold,  ⊂ ℝd , from which X is the sample and then consider its homology, through
what is known as persistence homology or through Betti numbers as it is addressed
(see [95]). Readers interested in homology theory may refer to [52, 50]. An important
result in this area is the Nerve Lemma [9], which establishes that the Czech complex
and the neighborhood set Û�(X) are homotopically equivalent and, in particular, they
have the same homology groups. However, since the de�nition of the Czech Complex
is essentially combinatorial, the Czech complex is computationally more accessible
and therefore more widely used in applications than the neighborhood set. The inter-
est in working with the Czech complexes is since it is primarily a high-dimensional
complex analogous to a geometric graph. For an extensive study on geometric ran-
dom graphs, we can cite [98]. The Czech topology is closely related to the topology of
the alpha complex. However, when the dimension is greater than three its calculation
becomes impractical.

Figure 3.5: The Czech complex Ĉ�(X) for X = {x1, x2,⋯ , x6} and � > 0. The complex
contains six vertices, two edges and one triangle.

Many times, there is not feasible to compute the Czech complex and the alpha
complex can be applied only on dimension three or less. Another method use to com-
pute �ltrations, closely related to the previous one and easier to compute, is explained
below.

Vietoris-Rips complexes

The Vietoris-Rips complex was introduced by Vietoris in [126] to extend the simplicial
homology to a theory of homology of spaces in more general metrics. Although they
are generally not as fast as alpha complexes at low dimensions, its calculation can be
e�cient in high dimensions.
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De�nition 3.6 (Vietoris-Rips complex). Let X = {x1, x2,⋯ , xn} be a collection
of points in ℝd and let � > 0. The complex R̂�(X) is de�ned as:

� = {x1, x2,⋯ , xk} ∈ R̂�(X)←→ ||xi − xj|| ≤ � ∀i, j ∈ {1,⋯ , k}.

The de�nitions of the Czech and Vietoris-Rips complexes are not limited only to
the case of the Euclidean space, they can be de�ned for a set of points in any metric
space [17]. They satisfy the following property that plays an important role in TDA.

Lemma 3.1 ([26]). Let X be a �nite set of points in ℝd and let � ≥ 0. Then there is a
chain of inclusion maps:

R̂�(X)→ Ĉ√

2�(X)→ R̂√

2�(X).

This means that a topological property that persists under the inclusion R̂�(X)→
R̂�′(X) with �′ ≥

√

2� is a topological feature of Ĉ�′(X). The main idea is that the
information about the topological features which persist under the previous inclusion
reveal more information than if the same information is considered separately.

In [40], from a computational point of view, it is analyzed that the Vietoris-Rips
complex is computationally less expensive than the corresponding Czech complex,
despite having more simplices.

An unsatisfactory aspect of the previous results is the dependence on a priory
knowledge of �. One way to make a good choice of � is to consider homological in-
variant multi-scale that encode changes in the shape of homology when � changes.
In [93], it is presented how to select the parameter �; for enough small �, the complex
is a discrete set and for higher �, the complex has a high dimension.

3.2.2 Geometric methods

A persistent problem in the methods presented above is that the simplices can have
very high dimensions. Then, we address below some complexes exposed in [10, 70]
that arise from computational geometry techniques to approach the problem.
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Delaunay complex

To avoid the computational problems of Czech complexes and Vietoris-Rips com-
plexes, it becomes necessary to limit the number of simplices in high dimensions.
Delaunay complexes yield geometric tools to achieve this task and, nowadays, most
of the simplicial complexes used are based on variations of Delaunay complexes.

De�nition 3.7 (Voronoi diagram and Delaunay complex). Let S be a set of
points in ℝd . De�ne Vs as the set of points of ℝd that is closest to s ∈ S than to any of
the points of S . That is, for s ∈ S , let us de�ne:

Vs = {x ∈ ℝd
| d(x, s) ≤ d(x, s′) ∀s′ ∈ S}.

The collection of the sets Vs is a cover forℝd and it is called the Voronoi decomposition of
ℝd concerning S . The nerve of this cover is called the Delaunay complex of S , denoted
by Del(S;ℝd).

The construction of this complex is costly in high dimensions, although e�cient
algorithms for the computation of Delaunay complexes for d = 2 and d = 3 have been
developed. See [120] for more details on Voronoi diagrams and Delaunay complexes.

3.3 Homology

The n-dimensional homology group of a topological space represents the n-dimen-
sional holes of the space. Intuitively, a 0-dimensional hole is a connected compo-
nent, a 1-dimensional hole is a tunnel and a 2-dimensional hole is a cavity. Higher-
dimensional homology groups do not have so clear intuition on the space but classical
results ensure that n-dimensional homology groups are topological invariant, that is,
they are invariant under homeomorphisms1.

For each integer n > 0, the n-dimensional homology group of a topological space
can be computed as follows. Suppose we have a topological space structured as a
cell complex, being an n-dimensional cell a topological space homeomorphic to an
n-dimensional ball. A 0-dimensional ball is a point(vertex), a 1-dimensional curve
(edge). A 2-dimensional ball is homeomorphic to a disk and so on.

A cell complex K is then a collection of cells constructed inductively:
1A homeomorphism is a bicontinuous and bijective function between two topological spaces.
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(1) The 0-skeletonK (0) ofK (i.e., the set of 0-cells) are a set of points in an ambient
d-dimensional space ℝd .

(2) Inductively, form the n-skeleton K (n) of K from the (n − 1)-skeleton K (n−1) by
attaching n-cells via homeomorphisms.

The boundary of an n-cell � can be informally de�ned as the (n − 1)-cells in the
(n−1)-skeletonK (n−1) ofK used to attach the n-cell �. This way, if two cells intersect,
they intersect at their boundaries. If a cell is in K , then the cells in its boundary are
in K , where, for example, the boundary of an edge is its two endpoints (vertices).
By abuse of language, we will say that a vertex is in the boundary of an n-cell if the
vertex was one of the cells in K (n−1) needed to attach the n-cell �. A maximal cell of
K is a cell that is not in the boundary of any other cell of K . The dimension of K is
the dimension of the cell of a higher dimension in K . From now on, we will assume
that K has a �nite number of cells.

We can formally sum cells of same dimension n to obtain the n-dimensional chain
group Cn(K), for each n. Moreover, the boundary operator is extended to a linear
map )n from Cn(K) to Cn−1(K) in the obvious way: the boundary of an edge is the
alternative sum of its endpoints, and so on. Since the boundary of the boundary of a
cell is always zero, then the image Bn(K) of )n+1 is a subgroup of the kernelZn(K) of
)n and then, the n-dimensional homology group of K is the quotient group Hn(K) =
Bn(K)∕Zn(K). An element � of Hn(K) is called an n-dimensional homology class of
K .

The rank �p of Hp(X) is called the p-th Betti number where, in the case of the
three �rst dimensions, an intuitive meaning exists since �0 is the number of connected
components, �1 the number of holes and �2 the number of voids [33].

Simplicial complexes can be seen as particular cases of cell complexes. Simplicial
homology consists of the homology groups of simplicial complexes and it is used to
summarise the global connectivity of a topological spaceX decomposed as a simplicial
complex, associating it with a sequence of abelian groups.

3.4 Persistent homology

The concept of homology is not useful in practice due to its lack of discrimination.
This is why Edelsbrunner et al., in [30], introduced a more discriminating tool based
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Figure 3.6: The circumference has one connected component and one hole (�0 =
1, �1 = 1). The sphere has one connected component and one void (�0 = 1, �1 =
0, �2 = 1). The torus has one connected component, two holes and one void (�0 =
1, �1 = 2, �2 = 1).

on homology, called persistent homology, together with an e�cient algorithm for
computing it. Later, Carlsson et al., in [135], reformulated and extended the initial
de�nition.

Persistent homology applied to a �ltration of a simplicial complex is in charge
of keeping track of the moment i where a homology class is born and the moment
j where the same class is died leading to topological descriptors as persistence dia-
grams or barcodes. Speci�cally, given a real-valued function f ∶ X → ℝ de�ned for
a triangulable subspace of ℝD, persistence homology describes the variation in the
topology of the lower level sets f−1(−∞, t] when t increases from −∞ to +∞. For
example considering the lower level sets Lt = {x ∈ X ∶ f (x) ≤ t}, the index tmeans
a scale parameter that leads the subspace �ltration {Lt} such that Lt ⊆ Ls,∀t ≤ s.
The �ltration leads a family {H(Lt) ∶ t ∈ ℝ} of homology groups and the inclusion
Lt → Ls leads a family of homomorphisms H(Lt)→ H(Ls).

Filtering functions

Given a cell complexK , persistent homology measures homology by �ltration during
a time, obtaining births and deaths of each homology class. Concretely, recall that a
�ltration is a �nite increasing sequence of simplicial complexes:

∅ = K0 ⊂ K1 ⊂ K2 ⊂⋯ ⊂ Kn = K

Assuming that the vertices of a simplicial complex are points in the d-dimensional
space ℝd , then a �ltration can be derived from a real-valued map ℎ on the set V of



3. an overview of tools from tda 29

Figure 3.7: Top: Example of a �ltration obtained using the height function on its ver-
tices. Bottom: Associated 1-dimensional persistent homology.

vertices ofK . In fact, there are several ways to obtain a �ltration from ℎ. For example,
the one used in [44] for developing an emotion recognition method was the lower-
star �ltration. The one used in the �rst part of this work is di�erent and de�ned as
follows:
For each maximal simplex � in K the ℎ-value of � is de�ned as:

ℎ(�) =
m
∑

i=1
ℎ(vi)

assuming that {v1,… , vm} are the vertices in the boundary of �. Then, the �ltration
is:

∅ = Kℎ[0] ⊂ Kℎ[l1] ⊂ Kℎ[l2] ⊂⋯ ⊂ Kℎ[ln] = K.

where Kℎ[li] is composed by the maximal simplices of K with ℎ-value less or equal
to li and all the simplices in their boundary, 0 < l1 < l2 < ⋯ < ln and ln being
large enough such that ℎ−1(−∞,ln] = K . See Figure 3.7.

Working over a �eld as the ground ring, persistent homology captures homology
variations throughout a �ltration. Assuming we have a �ltration of the form:

∅ = K0 ⊂ K1 ⊂ K2 ⊂ ⋯ ⊂ Kn = K,

for each t and n in ℤ, the n-dimensional homology groupHn(Kt) is a vector space. For
every a ≤ b and n, consider the linear maps va,bn ∶ Hn(Ka) → Hn(Kb) induced by the
inclusionKa → Kb. The family of vector spaces

(

Hn(Kt)
)

t∈ℤ together with the linear
maps

(

va,bn
)

a≤b is called the n-dimensional persistent homology of the given �ltration.



30 análisis topológico de datos: aplicación al reconocimiento de emociones

To compute the persistent homology of a cell complex, the notion of AT-model
[45] is used in this work. We assume that the ground ring is ℤ2. See Algorithm 1 in
page 50.

3.4.1 Persistence diagrams

Based on what was stated in the previous section, considering that the homology
class � was born in Hn(Kt) and died in Hn(Ks), set that b(�) = t and d(�) = s.
Representing every class � by a point (b(�), d(�)) results a multi-set of points in ℝ2

with the corresponding horizontal axis at the birth of the class and the vertical axis at
death. The persistence of � is the di�erence pers(�) = d(�)−b(�), where in a general
context, the set of points with in�nity persistence corresponds to points of the form
(t,+∞).

De�nition 3.8 (persistence diagram). Apersistence diagram is amultiset of points
in ℝ2 with the diagonal

Δ = {(t, s) ∈ ℝ2
|t = s},

where every point on the diagonal has in�nite multiplicity.
Each point in the persistence diagram corresponds to a pair of birth and death time of
a homology class. That is, if a point (t, s) belongs to a persistence diagram representing
the persistent homology associated to a �ltration, then there is a homology class � that
was born inHn(Kt) and dies enteringHn(Ks).
When the pairs [t, s] represent intervals in the real plane then the set of such intervals is
called persistence barcode.

De�nition 3.9 (total persistence degree). The total persistence of degree p of a
persistence diagram d is de�ned as:

Persp(d) =
∑

x∈d
(pers(x))p.

Note that the persistence diagram is included in the half-plane above the diagonal
Δ since deaths always occur after births. In [16], it is shown how these diagrams are
well de�ned for any metric space and in particular for any compact metric space. The
features of higher persistence are represented by the points furthest from the diagonal
while nearby points to the diagonal may be interpreted as topological noise.

Persistence diagrams are stable since a small change in the input function pro-
duces a small change in the diagram. There are di�erent choices of metrics in the
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space of persistence diagrams, analogous to the variety of metrics in the space of
functions. In a general way, a metric distance is interpreted as a distance Lp in the
function space of a discrete space. A natural family of metrics is discussed in [121].

Approaches to study the persistence diagrams from a probabilistic and statistical
point of view are presented in [122, 103, 89, 18]. To use the persistence diagrams as a
true statistic tool, natural questions about these summaries arise:

• Is it possible to de�ne probability measures on these summaries?
• Can we establish relationships between the sampling distribution of the data

and the distribution in the topological summary?
• Can we compute the mean and variance?

There is a variety of reasons for characterizing the statistical properties of dia-
grams. For example, given a point cloud S , it is advantageous to work with subsam-
pling of the data which produce point clouds smaller and later to calculate the mean
and variance of the persistence diagram set. In statistic terms, it consists of calculating
a bootstrap estimation of a persistence diagram from data [18]. But these procedures
require a good de�nition of the mean and variance. In the literature, some progress
has been developed. In [84], Mileyko proved that the space of diagrams (Dgmp,Wp)
is a Polish space (with complete and separable metric), and therefore it is possible to
de�ne the Frechet mean. In particular, it has been proven that the Frechet measure of
a �nite set of persistence diagrams always exists but is not necessarily unique.

3.4.2 Distances between persistence diagrams

Let us de�ne several distances between persistence diagrams for pairwise comparison
between them.

De�nition 3.10 (Wasserstein distance). The Wasserstein distance between two
persistence diagrams, d1 and d2 is de�ned as:

Wp(d1, d2) = (inf
∑

x∈d1

||x − (x)||p∞)
1
p

where  is a set of all bijections between d1 and d2, it is not-empty due the diagonal.

Particular case: For p = ∞, the bottleneck distance is de�ned as follows:
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B∞(d1, d2) = inf supt∈d1
||t − (t)||∞.

The empty persistence diagram is denoted by d∅, and is the diagram which in-
cludes only the diagonal; note that Persp(d) = 2p(Wp(d, d∅))p for t ∈ d.

The metric Wp is used to de�ne the following persistence diagram space [84]:

Dp = {d |Wp(d, d∅) <∞} = {d | Persp(d) <∞}; p ≥ 1.

The bottleneck distance is the most used metric to compare persistence diagrams
due to its optimal properties and stability [29]. An intuitive idea of this distance is
shown in Figure 3.8.

Figure 3.8: Part a) shows two persistence diagrams, part b) shows the match given
by choosing the bijection which minimises the sum of the distances. Note that one
corner-point represented as triangle is matched with its projection on the diagonal.

Now, let us describe several stability results on persistent homology, supporting
the idea that an algorithm designed using persistent homology tools will produce
“similar” outputs for “similar” inputs.
Theorem 3.1 ([22]). Let f, g ∶ X → ℝ be two tame 2 Lipschitz function on ametric

space X whose triangulation grows polynomially with constant exponent j ≥ 1. Then,
there are constants c > 1 and k ≥ j such that the p-th Wasserstein distance between
their corresponding persistence diagrams, denoted by df and dg , satis�es:

Wp(df , dg) ≤ c||f − g||1−k∕p∞ , ∀p ≥ k.
2A function is tame if there is a �nite number of elements in the set {Hm(f−1(−∞, a]} and such

set consists of homology groups whose ranks are �nite, for a ∈ ℝ and m ≥ 0 being integer.
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When p = ∞, the constant c is not longer necessary, obtaining the following most
commonly used simpli�ed version.

Corollary 3.1 ([30] p. 183). Let K be a simplicial complex, and let f, g ∶ K → ℝ be
two monotonic functions If df and dg denote the corresponding persistence diagrams
obtained from f and g, then:

B∞(df , dg) ≤ ||f − g||∞.

As a consequences of the previous theorem, the following theorem is guaranteed.
Theorem 3.2 ([15]). Consider two �nite metric spaces X and Y . Let df , dg be the

two persistence diagrams obtained, respectively, from Vietoris-Rips �ltration. Then,

B∞(df , dg) ≤ GH(X, Y )

where GH denotes the Gromov-Hausdor� distance.

Due to these results, we can assert that stability results are simpler when using
the bottleneck distance than when using the Wasserstein distance. Given the above
intuitive idea and the notation, the stability of the persistence diagram is de�ned as:
Theorem 3.3 (Stability Theorem [30]). For a triangulable space X, two contin-

uous and tame functions f, g ∶ X → ℝ, and any dimension p ≥ 0, the bottleneck
distance of the two p-dimensional persistence diagrams df and dg is bounded by the
distance between the functions:

B∞(df , dg) ≤ ||f − g||∞

The proof of this result is very technical and uses commutative diagrams of vector
spaces of homology classes. It can be consulted in [21].

3.4.3 Persistent entropy

Due to the number of applications based on TDA, there are numerous available soft-
ware packages to calculate and represent the persistent homology in almost all coding
languages. A nice study of the performance of software packages is available in [93].

Persistence diagrams, persistence barcodes, and, more recently, persistence land-
scapes constitute a compact way to represent the information obtained from per-
sistent homology. Although these topological summaries are metric spaces used to
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compare persistent homology of the dataset based on the techniques described pre-
viously, they do not work properly for statistical analysis. For example, they fail to
have a unique mean.

Let us see how it is possible to summarize the information described by persis-
tent homology as a number. The Shannon entropy [115] of a probability distribution
obtained from persistent homology is a natural candidate to describe persistent ho-
mology as a number. It is known as persistent entropy. There are a lot of applications
of this concept in pattern recognition of signals [83, 105], complex systems [8], bio-
logical images [3], and clustering [129].

The key to persistent entropy is based on the idea that signi�cant topological
attributes should have long lifetimes, and features with short times of life are consid-
ered noise. The concept of k-signi�cant intervals was introduced in [43], where �xing
k > 0, an interval [a, b) means k-signi�cant if k < b − a and persistence barcodes
associated with di�erent �ltration could be compared using the signi�cant interval as
a measure. Nevertheless, another form of comparison between persistence barcodes
or diagrams can be obtained in terms of entropy, lending out special attention to in-
tervals that persist to in�nity. There are di�erent ways to analyze the end of the �lter
denoted by (a,∞). In this work, this term is denoted by (a, n + 1), where n is a �xed
big positive integer. This way, all points in the persistence diagram have �nite coor-
dinates. The set of persistence barcodes with intervals of �nite length only will be
denoted by F .
De�nition 3.11 (persistent entropy [20]). Given a �lter F and the corresponding

persistence diagram B = {[aj , bj] ∶ j ∈ J} ∈ F , the persistent entropy of F is de�ned
as:

E(F ) = −
∑

j∈J
pj ⋅ log(pj) (3.1)

where, pj =
lj
L
, lj = bj − aj , and L =

∑

j∈J lj .

Observe that Formula 3.1 can also be written as follows:

E(F ) = log(L) − 1
L
∑

j∈J
lj ⋅ log(lj).

The persistent entropy has been implemented as a method in Gudhi library3,
scikit-TDA library4 and Giotto library5.

3https://github.com/GUDHI/gudhi-devel/tree/master/src/python/gudhi/representations/vectormethods.py
4https://github.com/scikit-tda/persim
5https://github.com/giotto-ai/giotto-tda/blob/master/giotto/diagrams/features.py
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In previous sections, we have analyzed the stability of persistence barcodes and
diagrams. Now, we are going to show under which conditions persistent entropy is
stable, that is, uniformly continuous or, in other words, the noise produced by data
has practically no e�ect in the computation of persistent entropy.

Theorem 3.4 (Stability of persistent entropy [4]). Let A,B ∈ F . Let us as-
sume that rp(A,B) ≤

1
4
. Then:

|E(A) − E(B)| ≤ 2rp(A,B)(log(na + nb) − log(2rp(A,B))),

where rp(A,B) with 1 ≤ p ≤∞ is the relative error de�ned as:

rp(A,B) =
2(np)

1− 1
p

Lmax
dp(A,B),

and np denotes the cardinality of the bijection where dp(A,B) is reached.

3.4.4 Time-varying systems

A time-varying system can be interpreted as a series of relevant geometric and topo-
logical events. Persistent homology is usually applied to static point clouds and shapes
by supplying a topological description of the analyzed space. It provides a represen-
tation in which the features obtained are ordered by relevance. These topological
features help to identify interesting patterns in the data clustering in time series and
spatial data [99]. This way, persistent homology has been generalized by [23] to time-
varying systems considering continuous representation, or introducing statistics, to
evaluate the evolution in time of the analyzed system [122].

De�nition 3.12 (time-varying system). A time-varying system is a system (X, t)
whose dynamics change over time. Its output response depends on the moment of obser-
vation as well as the moment of the input signal. Then, a time delay or time advance of
input leads not only to an appropriate time shift in the output signal but also to changes
in other parameters of the output signals [19].

A time series is simply a series of data points ordered in time where the time is of-
ten the independent variable and, usually, the goal is to make a forecast for the future.
Time series data-mining arises from the necessity to codify the natural capacity of hu-
mans to visualize the shape of data and extract all meaningful knowledge from that
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shape. The principal time series related tasks include query by content, anomaly de-
tection, motif discovery, prediction, clustering, classi�cation, and segmentation sup-
ported by a strong theoretical framework. A summary of these terms can be consulted
in [62].

De�nition 3.13 (time series). A time series T is an ordered sequence of n real-
valued variables

T = (t1,… , tn), ti ∈ ℝ.

De�nition 3.14 (Subsequence of a time series). Given a time series T = (t1,… ,
tn) of length n, a subsequence S of T is a series of length m ≤ n consisting of contiguous
time instants from T :

S = (tk, tk+1,… , tk+m−1)

with 1 ≤ k ≤ n − m + 1. The set of all sub-sequences of length m from T is called Sm
T .

If the geometry of the shape that we are analyzing changes then its persistence
diagram should be updated, encoding the signi�cance of that variation in time with
respect to the �lter function applied.

The generalization of persistent homology to time-varying systems was intro-
duced by Edelsbrunner et al. in [21]. The principal idea is the following:
If we have a function that changes continuously, according to the Stability Theorem,
its persistence diagram also changes continuously. Then, it is necessary to understand
the changes and observe how the points move, and analyze the patterns. One possi-
bility to study these patterns is stacking up the persistence diagrams, analyzing the
trace of each point as a curve in the space.

Speci�cally, Edelsbrunner et al. in [21] considered the homotopy F (x, t) ∶ X ×
[0, 1] → ℝ, where X de�nes a based space, and ft(x) = F (x, t) denotes a frame at
a given time-slice. Assuming every ft is tame, a p-dimensional persistence diagram
Dgmp(ft) for every t and p is de�ned and the relation among persistence diagrams
is given by the stability theorem. The points o�-diagonal in Dgmp(ft) moves in time,
forming a curve with its trace, referred to as a vine.

For example, a homotopy of piecewise linear functions arises when the frame f0
and f1 of the function F (x, t) are interpolated. If the vertices follow a straight-line ho-
motopy ft(v) = �f1(v)+(1−�)f0(v), then the order of the simplices in the lower-star
�ltration is determined by function ft(�) = maxv∈� ft(v) [86]. TDA applied for time
series is relatively new and fast-growing, with many existing applications in several
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di�erent domains. For example, the 1-homology groups o�ered via Takens’ embed-
ding in windows of a time series is computed by Khasawneh [63] in order to track the
stability of signals. As a way to quantify the periodicity of time series, Seversky et al.
[111] used the maximum persistence of homology groups. Other authors have used
the features from persistent homology to cluster [99] and as inputs in convolutional
neural networks for classi�cation of time series [123]. Applying TDA on �nancial
time series has converted an important issue nowadays [41].

This thesis suggests combining techniques from TDA as persistent homology and
time series in order to characterize them from a topological point of view and to
analyze which are the bene�ts of such representation and how to distinguish between
relevant and noisy signals.

3.5 Persistence time series

Given a time-varying system (X, t), the vineyards encode how homological critical
values change around time by a given �lter function. It is considered by researchers
powerful tools for describing time-varying systems. But, to interpret this tool is very
di�cult and until now there is no general technique to compare vineyards associated
with two time-varying systems [7]. Let, T be a topological space, f ∶ T × I → ℝ
a tame function for every t ∈ I , and t = {t0, t1,… , tn} a set of n + 1 spaced points.
Then, a p-dimensional persistence diagramDgmp(T , f )i is associated with every ti ∈
t and the collection of these p-persistence diagrams is a time series Dgmp,n(T , f ) =
{Dgmp(T , f )i}ni=0 ⊂ Dgm∞ where (Dgm∞, dB) is the space of persistence diagram
with the associated bottleneck distance.

In the literature, there exist many methods to evaluate the dissimilarity of two-
time series. The dynamic time warping [110] is considered in this work because it is a
powerful technique that can be applied across many di�erent domains and it is useful
to compare the similarity between two-time series with di�erent length.

3.5.1 Dynamic time warping

Intuitively the dynamic time warping (DTW) algorithm compares the similarity or,
in other words, calculates the distance between two arrays or time-series under cer-
tain restrictions. This method has been used to compare di�erent speech patterns



38 análisis topológico de datos: aplicación al reconocimiento de emociones

in automatic speech recognition. Such technique will be used in this work with the
same purpose but with a di�erent work�ow. Let two time-independent sequences
X ∶= {x1, x2,… , xn} of length n ∈ ℕ and Y ∶= {y1, y2,… , ym} of length m ∈ ℕ.
These sequences may be discrete signal, in our case time-series or, more generally,
feature sequences sampled at equidistant point in time. If we �x a feature space  , to
compare two di�erent features x, y ∈  , a dissimilarity function or cost function is
needed, denoted as c ∶ x → ℝ, such that:

• c(x, y) ≥ 0, ∀x, y ∈  ,
• c(x, y) = 0 if and only if x = y.

Note that the cost function is not necessarily a metric. Intuitively, if c(x, y) is small,
x and y are similar to each other, and otherwise, if c(x, y) is large, it means high cost.
Evaluating the local cost measure for each pair of element of both time series, the cost
matrix C ∈ ℝnxm can be obtained, whose entries are de�ned as Cij ∶= c(xi, yj).

A warping path [7] � = (�1, �2,… , �l) is a sequence or pairs of indices �k = (ik, jk),
where ik ∈ {1,… , n}, jk ∈ {1,… , m} and k ∈ {1,… , l} holding the next conditions:

1. The starting and ending point of two time series have to be aligned.
2. Given �k = (ik, jk), and �k+1 = (ik+1, jk+1), then ik ≤ ik+1 and jk ≤ jk+1 holds,

means that the natural ordered induced by the time is preserved.
3. The size of the shifts in time to align the two time series is constrained (di�er-

ence between two paths �k+1 − �k ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} )

Then, the total cost is de�ned by:

c�(X, Y ) ∶=
l

∑

k=1
c(xik , yjk).

The optimal warping path will be the minimum total cost, then the DTW distance
is de�ned as:

DTW (X, Y ) ∶= min
{

c�(X, Y ) | � is a (n, m)-warping path
}

where the minimum always exists because the set is �nite.

If we consider persistence time series then the bottleneck distance will be used as
a cost function.
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De�nition 3.15 (dynamic timewarping (DTW)). LetDk,n(X, f ) andDk,m(Y , g)
be two k-dimensional persistence time series. Then, the dynamic time warping is de�ned
as:

DTW (Dk,n(X, f ), Dk,m(Y , g))
= min

{

dB� (Dk,n(X, f ), Dk,m(Y , g)) | � is a (n, m)-warping path
}

.

The cost matrix will be:

A(n, m) = DTW (Dk,n(X, f ), Dk,m(Y , g)).

Note that DTW is well de�ned even if there are several warping paths of the
minimal total cost. Besides, DTW is symmetric since the local cost is symmetric.

In this work, our goal is to extract, from the time series, topological information
not available in standard form. Takens’ embedding theorem is used to extract the
attractor of the series and then do the analysis on it, guaranteeing the preservation
of topological properties of time series.

Takens’ embedding theorem [119] presents conditions under which a discrete-
time dynamical system can be reconstructed from scalar-valued partial measurements
of internal states. In other words, it is possible to reconstruct a time series considering
time delays. The approach consists of converting a time series {xt, t = 1, 2,… , T },
into its phase space, that is a point cloud

{

{xi, xi+� ,… , xi+d�}, i = 1, 2,… , T − d�
}

,

where � is a delay parameter and d speci�es the dimension of the point cloud.

Theorem 3.5 (Takens’ embedding theorem [119]). LetM be anm-dimensional
compact manifold. For any pair (�.y) with � ∈ Dif 2(M) and y ∈ C2(Mℝ), then the
map '(�, y) is an embedding.

A series {x0, x1,… , xn−1} can be reconstructed in phase space as

xn(m, �) = (xn, xn+� ,… , xn−(m−1)�)

wherem is the embedding dimension and � the time delay. Thus, instead of analyzing
the series along time, we will study its trajectory as a set of states in anm-dimensional
Euclidean space.
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In order to analyze the evolution of a system in time as a collection of observa-
tions, windowing is de�ned as a uniform partition of the composition according to its
subdivision in bars.

3.5.2 Embedding delay parameter selection

Time-delay embedding is a uniform subsampling of the original time series data ac-
cording to an embedding parameter � . It has been considered primarily in the context
of analyzing dynamical system [119], where a time-delay embedding of time series
data was used to recover the underlying dynamics of a system. In order to perform
the phase space reconstruction, it is very important to select an appropriate pair of
embedding dimension m and � . The precision of these parameters is directly related
to the characteristics of the attractors in phase space reconstruction. Aiming to obtain
these values, there are two di�erent approaches to the literature. The �rst one is that �
and m are not correlated with each other; that is, both can be selected independently.
Then, di�erent criteria can be used for both parameters. For time delay � there are
three di�erent approaches:

1. Multiple auto-correlation and non-bias multiple auto-correlation [58].
2. Series auto-correlation such as auto-correlation, mutual information [36], high-

order correlations [1].
3. Phase space extension, e.g., �ll factor [12], wavering product [11], average dis-

placement [104] and others.

Another approach more practical consists of using thatm and � are closely related
since the time series data is not in�nitely long and it is di�cult to avoid noise. A
lot of experiments done by researchers indicate that m and � are related with time
window tw = (m − 1)� for the reconstruction of the phase space. From a practical
point of view, this is more reasonable and the combination algorithm for dimensional
embedding and delay time have become an important line of analysis in the category
of the chaotic time series analysis.

3.6 Machine learning background

Machine learning usually refers to changes in systems that perform tasks associated
with arti�cial intelligence. Such changes might be either improvement to already per-
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forming systems or initial synthesis of new systems. Such tasks involve recognition,
classi�cation, planning, prediction, and others. Learning is a spectrum very wide. The
�eld of machine learning has been divided into several sub�elds focusing on di�erent
types of learning tasks. In order to provide an idea of this wide �eld, we summarize
the four parameters existing along which learning paradigms can be classi�ed [113].

1. Supervised versus unsupervised: Learning involves an interaction between
learner and the environment, then we can divide it according to this kind of
interaction. The �rst one is the di�erence between supervised and unsupervised
learning. On supervised learning, we know the values of the function f for
the n samples in the training set. Then, to assume that there is a hypothesis
that matches the function for the elements of the training set involves that the
hypothesis will be a good guess for f . In the unsupervised case, a training set
of vectors without function values is provided. Then, the problem here is to
partition the training set into subsets in some appropriate way. This setting is
very useful in taxonomic problems in which it is desired to research ways to
classify data into meaningful categories.

2. Active versus passive: An active learner interacts with the environment at
training time for example performing experiments. On another side, the passive
learner only observes the information provides by the environment.

3. Online versus batch learning protocol: The distinction between environ-
ments in which a learner has to respond online, along with her learning process
and the environment in which the learner applies experience acquired after had
the opportunity to process a large amount of data.

4. "Helpfulness of the teacher": When a scientist learns about the nature of
the data, the environment plays the role of the teacher. To model such learning
scenarios, we assert that the training data (or learning experience) is generated
by some random process. Then, learning happens when the learner’s input is
given by an adversarial called the teacher.

Nowadays, machine learning techniques are widely applied to solve classi�cation
problems. A classi�cation technique will use a training dataset:

D =
{

(v⃗i, ci) | v⃗i ∈ ℝn, ci ∈ {0,… , k}, i ∈ {1,… , m}
}

where the values ci are the di�erent k possibles classes that can exists, v⃗i vectors of
dimension n that we are going to use in the classi�cation. Through this dataset, the
classi�cation algorithm will produce a classi�cation model.
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The di�erent existing settings in machine learning o�ers very useful tools; one
of these is the Support Vector Machine (SVM) paradigm for learning linear predic-
tors in high dimensional feature spaces. The high dimensionality of the feature space
establishes a challenge given by sample complexity and computational complexity.

A SVM is a supervised learning technique that construct a hyperplane, driven by
a linear function

b +
m
∑

i=1
�iv⃗i

T v⃗i,

or a set of them that can be used to classify data. When this data is not linearly sep-
arable, a kernel trick is applied. The space is mapped to higher dimensions using a
kernel function,

k(v⃗, v⃗′) = �(v⃗) ⋅ �(v⃗′).

Therefore, a support vector machine just creates hyperplanes that work as decision
boundaries for classi�cation after applying a deformation of the dataset to get a lin-
early separable representation. Then, formally, a SVM within a kernel makes predic-
tions using the following function:

f (v⃗) = b +
m
∑

i=1
�ik(v⃗, v⃗i).

SVM techniques were originally conceived as e�cient methods for pattern recog-
nition and classi�cation. Researchers have used these settings in several linear and
nonlinear applications such as speech recognition, image processing, array process-
ing, communication systems. discriminant analysis, clustering, and many other ap-
plications.

3.6.1 Machine learning with KNN Algorithms

What are KNN algorithms?

K-Nearest-Neighbor (KNN) algorithms are supervised learning machine methods used
in classi�cation and regression task. It assumes that similar features exist in close
proximity. In other words, similar things are near to each other. Its main goal is cap-
tures the idea of similarity, that can be de�ned as distance, proximity, or closeness.
The idea is easy to use, and does not make assumptions about the data. Its accuracy
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depends on the quality of the data, and in the algorithm should �nd the optimal num-
ber of nearest neighbors (K-value) [82].

How do KNN algorithms work?

• INPUT: (x1, y1),⋯ , (xn, yn) ∈ XxY (having X as the input space and Y their
class labels)

• Load the dataset.
• Select the optimal value K of the neighbors.
• Calculate di = d(x, xi); i = 1, 2,⋯ , n, where d denotes the distance de�ned.
• Sort in ascending order the collection of distances and indices.
• Take the �rst K distances from this sorted list.
• Get the labels of the selected K entries.
• In case of regression, return the mean of theK labels, and in classi�cation return

the mode.
• OUTPUT: DK

x assigning x to its most frequent class

Choosing the right value for K

To select the right K for the speci�c dataset in analysis, the KNN algorithm runs
several times with di�erent values ofK , and selects theK that reduces the number of
errors found, while keeping the ability of the algorithm to accurately make predictions
with data than it has not seen before.

3.6.2 Performance metrics

After knowing how to implement a machine learning model and get outputs in form
of a probability or a class, the �rst model is rarely the best one. Then, it is needed
to evaluate the quality of our machine learning model in order to improve the model
until it performs as best as it can. In the literature, di�erent performance metrics have
been used to evaluate these algorithms. Basically, in this work, we will focus on the
classi�cation problem. Thus, we will use classi�cation performance metrics such as
accuracy, the area under the curve, precision, etc.

When conducting an experiment, the metric is chosen to evaluate the model is
very important. Choosing the metric involves how the performance of the algorithm
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is measured and compared. Next, let us see the most used metrics and the metric
chosen in this work.

1. Confusionmatrix: It is a very intuitive metric and used to �nd the correctness
and accuracy of the model. It is useful if we need to classify the data into two or
more types of classes. This technique itself is not a performance measure, but
almost all metrics are based on it. In this case, we will de�ne confusion matrix
as a table with two dimensions (“Actual” and “Predicted”), and sets of “classes”
in both dimensions. Usually, each column of the matrix represents the instances
of the predicted class by the model applied, while each row the instance of the
actual class in other words the class observed. Then, diagonal elements indicate
correct predictions, while the o�-diagonals represent incorrect predictions.

Actual

Predicted
Positive (1) Negative (0)

Positive (1) TP FP
Negative (0) FN TN

The terms associated with the confusion matrix are:
• True Positive (TP): the actual and predicted classes of the data point are

true.
• True Negative (TN): both classes are negative.
• False Positive (TP): the model predicts incorrectly, the actual class is false

and the prediction class is true.
• False Negative (FN): the actual class of the data point is true, and the model

predicts it is false.
It depends on the problem and the context if we need to minimize the false
negatives or positives.

2. Accuracy in the classi�cation problem: it is considered as the percentage of
well-classi�ed data in a dataset:

Accuracy = m
n

wherem is the number of well-classi�ed data and n is the size of the full dataset
used in the test. Accuracy is a good measure when the target variable classes in
the data are nearly balanced. The “target variable” is the variable whose values
are to be modeled and predicted by other variables (analogous to the dependent
variable in linear regression). It should never be used if the target variable in
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the data belong to one class. Let see one example, to understand better these
terms.
In our happy emotion detection task with 200 videos of people expressing emo-
tions, but only 10 people express happiness. Let’s say our model is very bad
and predicts every video of emotions as no expressing happiness. In doing so,
it has classi�ed those 190 non-happy emotions videos correctly and 10 happi-
ness video as Non-happy. Then even though the model is terrible at predicting
happy emotion, the accuracy of such a bad model is also 95%.

3. Precision: It is a measure that evaluates how close a measurement comes to
another measurement.

4. Sensitivity: It measures how often the test captures the cases correctly. For
example, positive results in the test for a person who has the disease.

5. Speci�city: It measures the ability to correctly generate a negative result. For
example, if a person does not have the condition that is being tested for it.

3.6.3 Statistical tools

The correlation coe�cient of two random variables is a measure of their linear de-
pendence. One correlation coe�cient largely known and applied is the Pearson cor-
relation coe�cient.

�(A,B) =
cov(A,B)
�A�B

where cov(A,B) is the covariance and � the standard deviation.

This chapter demonstrates, the all theory that proceeds of Topology Data Analysis
is useful for developing algorithms based on it and get promising results in the task
of emotion classi�cation.

We started de�ning simplicial complexes as a set of simplices that satis�es certain
conditions. This concept de�nes an approximation to the underlying space X (point
cloud). To complete this step, we studied the most common algebraic and geometric
methods existing. The n-dimensional homology group of a topological space and the
persistent homology to work with the lack of discrimination of the homology theory
were introduced. Given a complex K the persistent homology measures homology
by �ltration during a time, so we explained some �ltration techniques and the algo-
rithm applied in this thesis to calculate it. To summarise the information, we faced the
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persistence diagrams techniques and their approaches to study from a probabilistic
and statistical point. To get a description of the persistent homology as a number, the
entropy persistent technique is tackled in this chapter.

A time-varying system was de�ned and how to combine the techniques from TDA
as persistent homology and time series. To calculate the distance between time-series
under certain restrictions, we introduced the Dynamic time warping technique. For
extracting topological information from time-series, we studied Takens’ embedding
theorem and its conditions. By last, this chapter developed a background in Machine
learning techniques and the di�erent techniques that later we will apply in the ex-
perimentation chapter.

Once the background needed to understand the rest of the thesis is given, let us
explain, in the next chapter, the �ow work composed by di�erent algorithms that this
thesis follows.



4 Topological audio-visual emotion
recognition

In this chapter, we develop an e�cient method for emotion recognition, combining
facial landmark points from video signal and voice from audio signal, using persistent
homology tools and machine learning techniques. In order to get an e�cient combi-
nation, we set a topological model to get competitive accuracy in classi�cation task
using video from emotions. Later, another topological model is built to face the clas-
si�cation task in audio signals of emotions. Finally, we combine both audio and video
signals and propose a method that follows the strategies One-vs-Rest and One-vs-One
for multi-class classi�cation.

4.1 A topological model for video signals

In this section, we introduce the construction of the cell complexK which represents
the input video (i.e., the image sequence) with a person expressing emotions. For that,
we will concatenate the topological information computed from the video signals
mentioned in the section above.

We start the procedure by extracting the landmark points on the face in each frame
of the input video sequence as it is shown in Figure 4.1. With the intention of a fair
comparison with other state-of-the-art methods, we will use the videos provided in
the RAVDESS dataset [74].

Secondly, using the spatial positions of the landmark points in one frame, a cell
complex, with vertices being the landmark points, is computed. In this thesis, this cell
complex is computed from a Delaunay triangulation with vertices being the landmark
points.
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Figure 4.1: Example of computation of the landmark points of a face in one frame of
an image sequence obtained from a video of the RAVDESS dataset.

Thirdly, landmark points with the same label in consecutive frames are joined
by an edge. A 2-dimensional cell is obtained when the two endpoints of an edge are
joined to the two endpoints of the corresponding edge in the neighbor frame. A 3-
dimensional cell is obtained when the vertices of a triangle are joined with the vertices
of the corresponding triangle in the neighbor frame. See Figure 4.2, where the cells of
the 3-dimensional cell complex K are pictured all in the same frame.

Figure 4.2: Cells of the 3-dimensional cell complex K obtained from an input video
with set of vertices drawn in the same frame.
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4.1.1 Filtration of the cell complex

The next step in this process is to sort the cells ofK in order to obtain a �ltration. The
partial ordering of these cells is dictated by a function f ∶ K → ℝ, satisfying that if
a cell � is a face of another cell �′ in K then f (�) ≤ f (�′) (i.e., � appears before or at
the same time that �′) in the ordering.

In this work, eight di�erent �ltrations (two horizontal, two vertical, and four
obliques) are used to obtain eight di�erent persistence barcodes similar to the method
explained in [68, 69]. This way, all the small movements of the landmark points
through the video sequence will be captured in the persistence barcodes. For each
plane �, it de�nes the �lter function f� ∶ K → ℝ which assigns to each vertex of
K its distance to the plane �, and to any other cell of K , the biggest distance of its
vertices to �. Ordering its cells according to the values of the function, the �ltration
K� for K associated with the plane � is computed.

Lamar et. al. [68, 69] presented a version of the same procedure for gait recognition
where a bunch of simplices is added to the �ltration, all the simplices of )K(I) with
equal distance to the reference plane. The method is robust to variation in the number
of simplices, thanks to this way in which the di�erent times de�ne sets of simplices
with di�erent cardinalities, and it is robust to noise.

4.1.2 Persistent homology and topological signature

The topological signature of the landmark- point face videos is obtained by computing
the persistent entropy of each �ltration. Let us notice that if pj ≤ 1, then log(pj) ≤ 0
and the entropy of a persistence barcode is always positive. Intuitively, the entropy
measures how di�erent intervals of the barcodes are in length.

The algorithm to compute the persistent homology is described in Algorithm 1.

Intuitive idea of Algorithm 1: The output of Algorithm 1 is the persistence diagram
and, for that, the �ltration of the complex is represented in the following way: A
vertex, where two or more line segments meet is de�ned by a numerical value. The
edges and triangles are de�ned by the index position of the face which forms it in the
�ltration used.

Let us describe an example of the complex formed by a triangle 1, 2, 3 denoted by
123 and let us consider the �ltration de�ned as:

{

1, 2, 3, 12, 13, 23, 123
}

. The index 3
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Algorithm 1: Computing persistent homology (Algorithm 2 of [45]).
Input: An ordering of the cells of a cell complex K respecting a given

�ltration ∅ = K0 ⊂ K1 ⊂ K2 ⊂⋯ ⊂ Kn = K and boundary relations
being index(�i) the largest index in the �ltration satisfying that
�i ∈ Kindex(�i).

Output: The persistence barcode B.

Initialize H ← ∅ and f (�i)← 0, for 1 ≤ i ≤ m, and B ← ∅.
for i = 1 to m do

if f)(�i) = 0 then
H ← H ∪ {�i} (a new homology class was born) f (�i)← �i;
B ← B ∪ {(index(�i),∞)} ;

if f)(�i) ≠ 0 then
Let �j ∈ f)(�i) such that j = max{index(�) ∶ � ∈ f)(�i)};
H ← H ⧵ {�j} (an old homology class died);
foreach x ∈ K such that �j ∈ f (x) do

f (x)← f (x) + f)(�i).
B ← B ⧵ {(index(�j),∞)} ∪ {(index(�j), index(�i))}

is the edge with a numerical value of 12 represented by one vertex of numerical value
1 in the index position 0 and another vertex of numerical value 2 in the index position
1. See Table 4.1. To obtain this representation used the function, complex2matrix.m1

that we described above, which has as input one of the 8 �ltrations used on this thesis.

Finally, the topological signatures are used to feed a matching learning process
(such as a support vector machine) to predict emotions. The full methodology is il-
lustrated in Figure 4.3.

4.2 A topological model for audio signals

Topological data analysis has been shown to be a powerful tool for analyzing a com-
plex data set. Tools such as persistent homology have accomplished a new method
to explore the topological features and the shape of data. This method is motivated

1The code developed can be found in https://github.com/Cimagroup/TFM_
AudioVisual-EmotionRecognitionthroughTDA

https://github.com/Cimagroup/TFM_AudioVisual-EmotionRecognitionthroughTDA
https://github.com/Cimagroup/TFM_AudioVisual-EmotionRecognitionthroughTDA
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Index Filtration
0 1 1
1 2 2
2 3 3
3 12 0 1
4 13 0 2
5 23 1 2
6 123 3 4 5

Table 4.1: An example of how the faces of a simplex are indexed in the �ltration.

Figure 4.3: Scheme of the methodology followed.

by the development of e�cient computational techniques, where consider larger and
more realistic data-sets is possible. For example, methods which develop linear-size
approximations of Vietoris-Rips �ltration and e�cient construction of the persistence
diagrams [116]. A recent tool in this area called persistent entropy has been success-
fully applied to distinguish discrete piecewise-linear functions [105]. There is a lot of
researches focus on exploring how topological information can be used to train rep-
resentations enriched with geometry and topology for machine learning [94]. Thanks
to these advances, TDA has been converted into a very challenging setting in the con-
text of time-series analysis. Our goal is to explore topological features with respect to
optimal delay-embedding, approximations, and time-series learning tasks.
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Figure 4.4: Left: An example of the audio signals considered for emotion recognition.
Right: The persistence barcode obtained from the lower-star �ltration of the simplicial
complex computed from the audio signal by which persistent entropy is computed.

Recently, in [44], the authors developed a �rst topological approach to emotion
recognition using just audio signals to model arousal (i.e., emotional state), consider-
ing the audio signals of di�erent actors recorded pretending di�erent emotions. Such
approach is provided based on computing persistent entropy of the persistence ho-
mology obtained from the lower-star �ltration of the signals. See Figure 4.4. Then,
persistent entropy is computed to obtain a single value for each signal. Within these
values, the authors applied a support vector machine to the emotion classi�cation
problem and predict emotions. According to the literature studied, no topology ap-
proaches had been previously applied to emotion recognition. This previous work
[44], constitutes our starting point to face the audio emotional recognition task from
a topological point of view in order to increase its accuracy. Let us now explain in
detail how such methodology works:

• Subsample the signal: The size of each signal is reduced in order to face the
complexity of the persistent homology algorithm.

• Embed time series into a point cloud and construct sliding on a window.
• Use Vietoris-Rips �ltration on the window to have a structure encoding the

geometrical shape of each window.
• Extract the relevant features of this window using persistent homology.
• Use persistence diagram to gather the information extracted
• Apply persistent entropy to summary the information.
• Support vector machine classi�cation: This step consists of the application of

several support vector machines with di�erent kernels in order to obtain results
and to develop a classi�cation predictor for emotions. The di�erent possible
kernels are tested and the one with better accuracy is chosen.
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In the case of audio signals, in this thesis, we will focus on de�ning how to spread
out the points relative to each others concerning a "distance" previously de�ned. This
set focuses on the connectivity between points based on the numerical value at each
point. Similar to the analysis about 0-persistent homology, where increasing a thresh-
old, we track the connected components, now the analysis focuses on the horizontal
distribution between points. Intuitively, it is like scanning a line up over the signal.
See Figure 4.5.

Figure 4.5: Left: example of a signal. Right: the corresponding persistence diagram.

We can think of persistent homology as a pattern of a static object. Persistent ho-
mology has been applied to time-varying systems considering continuous represen-
tations [23], or introducing statistics evaluating in time the system developed [122].
In this work, we combine persistent homology and the notion of time series, to char-
acterize the evolution of a variable geometry space in time.

A time series is a collection of data obtained from di�erent observations in time.
According to their generality and �exibility, time series are very useful, applications
such as classi�cation and segmentation are supported by a theoretical framework. The
idea is to capture changes of a variable-geometry space as a time series of persistence
diagrams, and later compare these time series by using dynamic time warping.
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4.2.1 Time series as point clouds

The usual setting in TDA is to generate a simplicial complex from a point cloud. Now,
we are facing a time series. Let us see how we can obtain that point clouds. We as-
sume that the audio signal is a discrete-time series, visualized as scatter plots in two
dimensions. It is easy to analyze the local behavior of time series with the technique
developed in this �eld like discrete Fourier transform to know if the signal in a win-
dow arises as to the sum of few simple periodical signals.

In this work, a di�erent way to encode a time-evolving process is presented in
order to analyze the e�ects of its dynamics, based on the idea that these occur in
higher dimensions. The idea is to represent the time series as a set of vectors in a
Euclidean space of arbitrary dimension. To proceed, we need to choose two integers
m and � . Then, for each time ti ∈ (t0, t1,…), the values of the variable y at m di�erent
times are collected, evenly spaced by � and starting with ti, forming a vector with m
entries:

Yti = (yti , yti+� ,… , yti+(m−1)�).

The result is a set of vectors in an m-dimensional space; as we described in the pre-
vious sections, the technique used is Takens’ embedding, where, m is the embedding
dimension and � the time delay parameter. Finally, using this procedure, we obtain a
time series of points clouds with interesting topology features inside, ready to study.
The optimal selection of these parameters for the dataset used will be described in
Chapter 5.

4.2.2 From point clouds to persistence diagrams

After generating time series from point clouds, it is needed to obtain information from
them. Persistent homology is applied in order to extract the topological features that
persist over time, providing a concise description of the topological changes overall
scales of the data. This information is obtained through a �ltration previously de-
�ned on the data that captures the birth and death of the topological features across
dimensions such as connected components, tunnels, voids. We used the Vietoris-Rips
�ltration to generate a linear size �ltration, which is used in the computation of the
persistence diagrams [116]. Expressly, we focus on exploring the 1-dimensional per-
sistence diagrams, which provides the information of the 1-dimensional topological
features found in the data, interpreted as cycles, in order to characterize periodicity
and repetitive patterns located in time series data.
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Then, given two windows and their corresponding persistence diagrams, it is pos-
sible to calculate a variety of distance metrics in order to compare them with respect
to topological similarity. The distance metrics for persistence diagrams a�ords relate
the topology of the dataset in topological terms.

4.3 An audio-visual combination topological model

Once the topological models for each kind of information have been de�ned, it is
overriding to develop a methodology to combine them. As we see in the previous
sections, both models are focused on the obtention of persistent entropy value for
each �ltration de�ned. These values will be used to build a vector of features. The
�rst eight features are associated with the �ltrations de�ned in each direction from
the video signals, and the last one is obtained from the audio topological model.

Figure 4.6: Construction of a 9-dimensional fusion feature vector. Position 1 of the
vector is associated with the persistent entropy obtained from the lower-star �ltration
[105] of the raw audio signal. The rest of the positions are associated with the eight
�ltrations obtained from the eight �xed planes.

Speci�cally, the eight persistent entropy values associated with the eight �ltra-
tions together with the persistent entropy previously computed for the audio signals
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from the topological signature of the input video which consists of a vector in the
9-dimensional space ℝ9 (see Figure 4.6).

In the literature, there are di�erent approaches to tackle the multi-classi�cation
problems. To split the multi-class classi�cation dataset into multiple binary classi�-
cation datasets and set a binary classi�cation model on each we will follow the next
two strategies: "One-vs-Rest" and "One-vs-One". Consult the next chapter to deepen
in knowledge about these methods.

In this chapter, we have explained the algorithms developed in this thesis with a
theoretical focus detailing some parameters that in the implementation are necessary
to research. The next chapter focuses on an aspect more practical of our work�ow,
with the results of the experimentation work.



5 Experimentation

In this chapter, the experiments that support the e�ectiveness of the use of topological
signatures on video and audio signals for the emotion recognition task are exposed.
Hereafter, Section 5.1 addresses the database used in the experiments. The protocol for
the experiments on the video-only dataset is explained in Section 5.2, and Section 5.3
focuses on the protocol for the experiments on the audio dataset. Finally, we explain
the con�guration followed for combining both datasets in Section 5.4.

5.1 Datasets description

For experimentation, the Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) is used [74]. This database contains the vocalization of two state-
ments in a neutral North American accent by 24 professional actors (12 female, 12
male). Each expression is produced at two levels of emotional intensity (normal, strong),
with an additional neutral expression. The intensity ful�ls an important role in emo-
tional theory [28, 107]. The strong intensity is useful when we are looking for clear
emotional examples. However, the normal intensity is used if we are interested in
providing classi�cation for daily life [59].

The RAVDESS database [74] is based on multi-modals inputs: physiological sen-
sors, video, depth sensors, and standard input devices, providing more information to
the recognition process. Because of the information it provides ,it is widely used in
emotion recognition.

The RAVDESS database is composed of 7356 �les. All actors produced 104 di�er-
ent vocalizations, consisting of 60 spoken expressions and 44 sung expressions. These
vocalizations are available in three formats: audio-video, video-only, and audio-only.
This produced 312 �les per actor forming 7356 �les with a total of 4320 speech record-
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ings and 3036 song recordings. For this thesis, we are going to work with the video-
only dataset and the audio-only dataset. Some examples of the RAVDESS database
can be seen in Figure 5.1.

5.1.1 Video-only dataset

The RAVDESS video dataset contains tracked facial landmark movements for all 2452
trials. The information o�ered includes facial landmark detection, head pose estima-
tion, facial action unit recognition, and eye-gaze estimation. All the information is
collected on 2452 CSV �les. Each actor has 104 tracked trials (60 speech, 44 song).

File naming convention

Each of the RAVDESS �les has a unique �lename describing di�erent features. The
�lename consists of a 7-part numerical identi�er. In the next experiments, we are
going to focus on the modality "video-only" represented by 02 in the �rst digits of the
identi�er. Then, in order, the identi�ers are the following:

• Modality (02 = video only)
• Vocal channel (01 = speech)
• Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 =

fearful, 07 = disgust, 08 = surprised.)
• Statement (01 = "Kids are talking by the door", 02 = "Dogs are sitting by the

door").
• Repetition (01 = 1st repetition, 02 = 2nd repetition).
• Actor (01 to 24) Odd numbered actors are male, even numbered actors are fe-

male.

Filename example: 02-01-04-01-02-13.CSV
Meaning the following:

02 Video-only
01 Speech
04 Sad
01 Statement "Kids are talking by the door."
02 Second Repetition
02 14th Actor Male, as the ID number is odd
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Figure 5.1: Example of the eight RAVDESS emotions of audio dataset (speech channel).

5.2 Experimentation on video-only dataset

The �rst experimentation consists of the computation of a simplicial complex from
the facial landmarks of nine frames of each video of the RAVDESS dataset. Here, we
hypothesize that summarising an emotion video by a set of a few key-frames in terms
of the variability of facial expressions will be enough to describe and e�ciently learn
the contained emotion. Then, we proceed with the application of Algorithm 1 in page
50 using eight di�erent �lter functions from which we can compute their persistent
entropy values. More details on the implementation can be consulted in Section 6.
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We focused on the 60 speech videos collected in the RAVDESS dataset. The to-
tal tracked �les used is 24 actors × 60 speech trials, i.e., a total of 1440 �les. In the
RAVDESS dataset, the tracking results are provided as individual CSV �les with values
separated by comma. The resolution of all input videos is 1280×720, the output units
are in pixels and their range of values goes from (0, 0) (top left corner) to (1280, 720)
(bottom right corner). Figure 5.2 shows the landmark points on a face.

Figure 5.2: Location of 2D landmark points.

5.2.1 Classifying emotions using the facial landmarks

This subsection focuses on the behavior of the 62 landmarks points of the face around
the video from one emotion. The �rst task in the experimentation topic is which clas-
si�er to select.

In the literature, several pattern classi�ers are explored for developing speech sys-
tems like speech recognition, speaker recognition, emotion classi�cation, speaker ver-
i�cation, and so on [27, 112]. Many researchers explored several classi�cation meth-
ods, such as neural networks [133], gaussian mixture model [13], kernel regression
[88], k-nearest neighbors [24] and support vector machines [73]. Each classi�er has
advantages and limitations over the others. In this thesis, after making some tests
with di�erent classi�ers and according to the characteristic of our database, we de-
cided to apply the k-nearest neighbor family of classi�ers which typically have good
predictive accuracy in low dimensions. Such classi�cation uses feature similarity to
predict the feature of new data points.
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A feature will be assigned to a new data point based on how closely it is from
the points in the training dataset. It is possible to use di�erent metrics to determine
that distance. Given a set of points X ∈ ℝn and a distance function, the k-nearest
neighbor (kNN) method �nds the k closest points in our dataset to a query point or
set of points. kNN-based algorithms are widely used as benchmark machine learning
rules 3.6.1. The classi�ers with better output for our data were Fine KNN, which
distinguishes �nely in detail between classes. The number of neighbors was set to
k = 1, which means that the feature is simply assigned to the class on the single
nearest neighbor.

Evaluation Procedure

1. We need two kinds of attributes in the data: the columns associated with the
features and one column with the label.

2. To understand the model performance, we divide the dataset into a training
set and test set.

3. Then, we build a KNN classi�er model forK = 1 using the library and functions
explained on 6.

4. We estimate how accurately the classi�er can predict the type of emotion.
5. Accuracy is computed by comparing actual test set values and predicted values.

The dataset was randomly split in 20% of the observations for the test set, and 80%
for the training set. In this experiment, each point of the dataset consists of a vector of
eight features obtained from the eight �ltrations applied to each video. These features
are the persistent entropy values previously calculated in the algorithm.

Table 5.1: Accuracy rates reached using the entropy values associated with one �ltra-
tion

Acurracy Filt1 Filt2 Filt3 Filt4 Filt5 Filt6 Filt7 Filt8
Training_Data 88,7% 81,3% 84,93% 89,7% 85,6% 87,3% 82,7% 85,4%
Test_Data 86,2% 79,0% 83,5% 88,3% 84% 86,2% 81,1% 83,4%
Total_Data 89,6% 80,7% 87,0% 89,9% 88,1% 86,1% 84,4% 87,0%

The �rst experiment focuses on classify the data using only the persistent en-
tropy values associated with one �ltration. Since we de�ned eight di�erent �ltrations,
we will have eight classi�cations associated with them. Table 5.1 o�ers the accuracy
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rates reached in both parts of the dataset, and the last row shows the accuracy of the
trained model on the 100% of the dataset.

The �rst direction Filt1, horizontal (axis X) going from bottom to top, and the
fourth one Filt4, going orthogonal to the third direction of view (45 degrees with X
and Y ) reach better accuracy than others. However, the classi�cation ranges in each
�ltration are quite similar with a mean of 86, 6% in the analysis of the full dataset.
Once this experiment is done, it allows to con�rm that every �ltration o�ers relevant
information for the emotion classi�cation. Then, a vector of eight dimension is built
that groups each persistent entropy value associated to each �ltration de�ned.

Figure 5.3: Confusion Matrix.

The second experiment on this dataset focuses on mixing the information of the
eight �ltrations. Then, the dataset comprises vectors of eight features with the same
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target (the type of emotion) as the �rst experiment. Figure 5.3 shows the confusion
matrix plot associated to the training set.

This matrix allows us to understand how the kNN Fine classi�er performed in each
class, identifying the areas where the classi�er has performed poorly. The numbers
mean emotions: 2 = calm, 3 = happy, 4 = sad, 5 = angry, 6 = fearful, 7 = disgust,
8 = surprised. As we can see, the happy emotion has a lower rate than the others.
Then, movements and gestures that people make when expressing happiness in the
video-dataset analyzed are less signi�cant to characterize such emotion.

Table 5.2: Accuracy rates reached on video signals.

Emotions Training Data Test Data Full Data
calm 98% 94% 99%
happy 92% 90% 95%
sad 98% 95% 99%
angry 96% 93% 98%
fearful 98% 96% 99%
disgust 96% 94% 97%
surprised 98% 97% 98%

Table 5.3: General Accuracy rates reached on video signals.

Total Training Dataset Test Dataset Full Dataset
General Accuracy 96,57% 94,14% 97,85%

On the training dataset, the accuracy was reached 96, 4%, re�ected on the matrix.
On test dataset, 94, 1% was reached. And, on the full dataset, 97, 8% was achieved.
These rates of accuracy allow us to claim that the topological information extracted
from the action in the video signals is relevant and decisive to classify emotions. Ta-
ble 5.2 and Table 5.3 shows a summary of this experiment with the accuracy achieved
in the video-only dataset.

5.3 Experimentation on audio dataset

The second experimentation is focused on analyzing raw signals of the audio dataset
from RAVDESS. In this case of audio signals, the dataset is composed of 24 actors
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interpreting 60 audios of di�erent emotions. Each person contains four audios repre-
senting neutral emotions and eight audios for each of the seven remaining emotions.

5.3.1 Experiment 1: audio dataset

Figure 5.4 shows examples of the raw signal from each emotion. We can see the dif-
ferences in intensity, amplitude, and information which contain each audio signal.

For the �rst experiment, we follow the next idea: For each audio, we partition
the raw signal into a series of segments and compute automatically the optimal de-
lay coordinate embedding. Each stage is totally con�gurable, where the segment size,
window size, delay parameters should be controlled. The choice of the embedding
dimension m and time delay � determine the number of points in the point cloud and
it is an important step in the algorithm (see subsection 5.3.1). For more information,
Section 6 includes the explanation of the codes for the computation of these parame-
ters.

How to choose the delay and the embedding dimension optimal for this dataset?
We do not know these parameters a priory. Consider two or three embedding plots
should be the more realistic case, but we need to formalize this. Ín the literature, we
found two measures that give an idea about which delay and dimension to choose.
Next, we will see the explanation and reference of these measures.

Choice of � and m

Mutual Information [127] is a measure of similarity between two labels of the same
data, where we need to calculate the minimum xmin and maximum xmax of the time-
series analyzed. Later, the interval [xmin, xmax] is divided into a greater number of
pieces. Uk denotes the probability of one element of the time series is in the k-th
piece and Uℎ,k(�) the probability that xi is in the k-th piece when xi+� is in the k-th
piece. Then the mutual information is formulated by:

I(�) = −
N
∑

ℎ=1

N
∑

k=1
Uℎ,k(�)log

Uℎ,k(�)
UℎUk

.

The �rst minimum of I(�) as a function of � gives the optimal delay, since there we
obtain the largest information by adding xi+� .
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Figure 5.4: Examples of the raw signal from each emotion.
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Then, we calculate the mutual information for each audio data. The number of
pieces chosen is 10 since we have 1000 data points obtained after applying a technique
of re-sampling, so we can expect to have around 100 points in each piece, and the
audios are approximated of 5 seconds.

Figure 5.5: Mutual Information.

As we see in Figure 5.5, the mutual information is calculated for the dataset given
� , and we get its �rst minimum. This gives us the optimal embedding delay; since the
plot of the mutual information has an increasing behave, the optimal delay selected
is 1. This plot should look di�erent if the data sample has a higher frequency or with
more data points. A su�ciently large time delay window is an important issue for a
time series predictor. If the window is too small, the attractor of the system would be
projected into a space of insu�cient dimension, in which the proximity is not related
to the actual proximity on the original attractor. Then, for that, it is important to
control this parameter [14].

To determine the correct embedding dimension, we are going to use the measure
known as false nearest neighbors, the most popular tool proposed by Kennel [61].
If we have a point mi with a neighbour mj (||mi − mj|| ≤ �) for � > 0 then we
analyzed the normalized distance Di for the next dimension. If Di exceeds a given
heuristic threshold Dj this point is marked as having a false nearest neighbor. Then,
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the embedding dimension is high enough if the points for which

Di =
||xi+� − xj+�||
||mi − mj||

> Dj

is zero, or su�ciently small. If this is true, then we have a false nearest neighbour.

Figure 5.6: Parameters Embedding.

In Figure 5.6, we see that false nearest neighbours decline to zero when the embed-
ding dimension is 4. Then, we decide to model the data with a system of 4 variables.
It is important to remark that previous plots describe the optimal embedding param-
eters for one speci�c audio signal. Thorough research threw us that the majority of
audios have the same behavior related to the selection of 4 variables for the embed-
ding. However, the algorithm implemented calculates automatically these parameters
in each iteration in the audio-signal dataset, for later applies the next steps of our
model in the embedding signal obtained. The 2D and 3D plots pictured in Figure 5.7
show a visualization of the embedded data with the optimal parameter for di�erent
emotions.

For this experiment, the Vietoris-Rips �ltration is applied to generate the persis-
tence diagrams associated with the signal. These diagrams allow us to explore the
behavior of the existing topological features. Finally, to explore the potential of the
topological information extracted, we compute the persistent entropy of the diagrams.
Then, each value of entropy obtained will be consider a point of a dataset.

We use, as the classi�cation technique, a support vector machine (SVM) with fold
cross-validation and the kernel that provides better accuracy from the ones explained
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Figure 5.7: Embedded data with the optimal parameters associated (from up to down:
example of one happy emotion audio signal, second surprised, third sad emotion and
last one the angry emotion).
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previously. In summary, an SVM classi�es data by �nding the best hyperplane that
separates data points of one class from those of the other class. The best hyperplane
for an SVM means the one with the largest margin between the two classes.

We tested in our dataset di�erent kernel functions to specify one. The kernel that
better results yielded was the Linear Kernel, making a simple linear separation be-
tween classes.

This experiment yields poor accuracy, where a 27, 4% is reached for all data set
and on the training set 21, 3%. Some conclusions similar to [44] can be marked from
this failed experiment: the emotion recognition problem is a multidimensional one,
in the sense that 1-dimensional value is not enough to obtain a good classi�cation.
Hence, from the topological point of view, emotions are re�ected more clearly in facial
expressions as compared to voice using.

5.3.2 Experiment 2: audio dataset

In this experiment, we make the same procedure as before, with one di�erence in
the classi�cation. Instead of comparing with a 1-dimensional value, "the persistent
entropy", and using the SVM classi�er, we applied the k-nearest neighbor classi�er.

The new idea is to calculate a distance matrix among the persistence diagrams, se-
lected the bottleneck distance for this comparison. This matrix contains the distances
that have been calculated between each pair of elements possible. We divided the dis-
tance matrix in training and test sets as we did for the Video Dataset experiment.
Table 5.4 displays the results for both sets. Following this technique, the accuracy
increases achieving a mean of 43%.

Table 5.4: Accuracy rates reached using the distance matrix.

Emotions Training Data Test Data
calm 38% 26%
happy 37% 42%
sad 41% 39%
angry 43% 41%
fearful 50% 48%
disgust 46% 41%
surprised 44% 32%
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Even having higher results than the previous algorithm, the accuracy keeps low.
This alerts us about the incorrect idea of our method based on the theorem of Takens’
Embedding. According to the theorem, the time series are expected to be driven by a
non-linear system and should be guaranteed that the resulting embedding is a faithful
reproduction of the original dynamics. In our case, the results display that, for our
data, this assumption is not satis�ed. One reason is given by these time series are not
homogeneous or cyclical.

To �nd a method that increases the results archived until now, we present the next
experiment.

5.3.3 Experiment 3: audio dataset

For this experiment, we follow the previous idea that generated a matrix distances
based on the bottleneck distance among the diagrams obtained from Vietoris-Rips
�ltration of the signal. For this experiment, we applied some variation to achieve
higher accuracy.

• Subsampling: The process of sampling a signal to face the complexity of the
persistent homology algorithm.

• Imperceptible noise: Signals are slightly perturbed to ful�ll the requirement
of lower-start �ltrations.

• Persistence diagram: The lower-star �ltration is applied to these signals, ob-
taining the associated persistence diagrams.

• Matrix distance: Bottleneck distance between each pair of diagrams possible.
• Classi�cation: This step consists of the application of k-nearest neighbors

with di�erent values of k in order to infer results and develop classi�cation pre-
dictors to emotions. The input of the KNN-algorithm will be the matrix distance
and the vector of the labels, each row of the matrix is the feature to classify.

By this, the accuracy of the method showed in Table 5.5 for classi�cation by emo-
tions was obtained using the KNN-nearest neighbors with K = 5.

After the three experiments explained above, the last one indicates better results
for the task of audio emotion recognition. Considering other results in the literature
and the previous work of our group [44] in audio emotion classi�cation, we can con-
�rm that we reached better and promising results for this task. However, we are still
far from the accuracy reached on the emotional video classi�cation.
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Table 5.5: Accuracy rates reached using the KNN-nearest neighbors with K = 5.

Emotions Training Data Test Data Full Data
calm 76,3% 74% 77%
happy 72,4% 70,2% 73,4%
sad 83% 79,6% 84,2%
angry 82,4% 81% 83%
fearful 86,5% 82,3% 88%
disgust 80,3% 77% 81,5%
surprised 82,5% 80,4% 85%

5.4 Combination of datasets

With the aim of improving the results reached in the �rst approach (video-only emo-
tion recognition), one of the goals of this thesis is the idea to mix the information
obtained from the two approaches (video-only and audio-only emotion recognition).
The �rst approach was using the landmark points of the face to get the Delaunay
complex and applied the methodology explained before to the eight di�erent �ltra-
tions in order to collect all possible information from the face. This approach presents
a vector of dimension 8 with the eight persistent entropy values from each video. In
this experiment, we include, in the position 9 of each vector, the persistent entropy
value obtained from the process described for audios. Sadly, such experiment does
not o�er good results, and the bad results achieved in the experiment 5.3.1, greatly
a�ect the results achieved in this experiment combining audio with video signals.

Another approach is the following: After training classi�ers following di�erent
setups by using audio and video signal, we obtain the con�dence values for each
emotion in every dataset. Later, we decide to work with the setups that reached bet-
ter accuracy in each dataset: the second setup from the video dataset and the third
one from the audio dataset. Then, the con�dence value is fused to train a stacked
classi�er obtaining �nal emotion prediction with both signals. Next, we explain the
methodology followed to achieve a successful combination.

Multi-class classi�cation is not supported by some classi�cation predictive mod-
els. Algorithms such as Logistic Regression and Support Vector Machines were cre-
ated for binary classi�cation and they not support more than two classes. To use bi-
nary classi�cation algorithms for a multi-classi�cation task, one setup is to divide the
dataset into multiple binary classi�cation datasets and �t a binary classi�cation model
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on each [37]. There are two famous strategies for this approach: the One-vs-Rest and
One-vs-One.

One-vs-Rest: A heuristic method that involves dividing the multi-class dataset
into multiple binary classi�cation problems. Then, each binary classi�er will be trained
on each binary classi�cation problem and �nally, the predictions are made according
to the most con�dent model [85].

One-vs-One: A heuristic method that involves dividing the datasets into one
dataset for each class versus every other class. Then, this implies an increase in the
number of datasets due we will have one for each pair of classes. If the number of
classes is high, it is not recommendable to use this method in code e�ciency [85].

The library Skelarn has implemented the One-vs-Rest and One-vs-One setups to
make the multi-class classi�cation. Both setups were tested for the combination model
task and One-vs-Rest reached better results with respect to the One-vs-One approach,
one example of its application will be explained in 6.

Table 5.6: Accuracy rates reached by combining audio and video signals.

Emotions Training Data Test Data Full Data
calm 90,2% 86,5% 92%
happy 89,4% 87,6% 90,8%
sad 95% 93% 96%
angry 90% 88% 92,4%
fearful 93,3% 90,2% 95,3%
disgust 89% 87,5% 92,6%
surprised 88,5% 85,5% 90%

Table 5.6 displays the accuracy for the combination using One-vs-Rest setting.
The approach One-vs-Rest implemented for the mixed model of information makes
the predictions according to the most con�dent model. We can see that the previ-
ous accuracy obtained in the video-only dataset is a�ected by the introduction of
audio information, but this decrease in values of classi�cation is not so higher, and
we reached results promising and competitive in the area. In the training dataset, the
accuracy was reached 90, 7%; on test dataset, 88, 3% was reached. And, on the full
dataset, 92, 4% was achieved.
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5.5 Comparison with current papers

Lately, hybrid neural networks combining Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have become the state-of-art for emotion
recognition. As we argued in this thesis, audio-video emotion recognition is a chal-
lenging task. Deep learning has played an important role in most of the challenges
that exist in the biometrics recognition task.

Guo et al. [49] proposed an audiovisual-based hybrid network that combines the
predictions of �ve models for emotion recognition in the wild. The overall accuracy of
the proposed method achieves 55, 61 and 51, 15 classi�cation accuracy on the audio
and video-only dataset, respectively, while the challenge baseline is of accuracy 38, 81.
This paper uses a di�erent database (AFEW database [66]) but with the same amount
of emotions to analyze and with similar conditions.

Moskovin et al. [87] developed a method based on convolutional and recurrent
neural networks for real-time human emotion recognition by audio-visual data. Based
on a series of experiments, the optimal hyper-parameters of the neural network, as
well as parameters of data processing, were chosen. The results achieved for the emo-
tion classi�cation in working with the only audio channel is of 61%, with video chan-
nel 69%. To fuse the results of two neural networks is 73%, they showed the infor-
mation only in the full dataset. They use the Acted Facial Expressions from the Wild
Database [79].

Issa et al. [55] face only the audio emotion recognition task using a convolutional
neural network. Their baseline model includes one-dimensional convolutional layers
combined with dropout, batch normalization, and activation layer.

Table 5.7 shows how our method behaves with respects to principal papers from
state-of-art. The values showed are achieved on the training dataset to present the
results as the papers compared.

Table 5.7: Comparison of our method to start-of-the-art methods

Paper Audio dataset Video-only dataset Audio-video dataset
Guo et al. \[49] 55,61% 51,15% 38,81%
Moskovin et al. \[87] 61% 69% 73%
Issa et al. (Model E) [55] 86,1%
Our method 80,48% 96,6% 90,7%
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We can conclude that our method increases the previous better accuracy reached
in this area, except in the case of the audio signal, that we need to work on to increase
our results.

More information about the functions, library, software, and algorithms used in
this thesis is explained in the next section.



6 Design and Implementation

This chapter will explain the use of di�erent programming languages and certain li-
braries applied in this thesis, as well as discuss the implementation of the complete
system. The code can be consulted in https://github.com/Cimagroup/AudioVisual-
EmotionRecognitionUsingTDA.

6.1 Analysis of the implementation of the algoritm
for the video-only dataset

According to the �rst issue of the thesis, the useful functions existing, and the previous
works focused on this issue, we have chosen the language Matlab to code the �rst part.

The speech videos collected in the RAVDESS dataset are provided as individual
CSV �les with coordinates of the facial landmark points separated by a comma.

The �rst issue of the algorithm was to de�ne a point cloud {(xi, yi)} and ap-
ply the 2D Delaunay Triangulation, a function o�ered by Matlab. Each element in
DT.ConnectivityList is a vertex ID and each rows represents a triangle in the triangu-
lation. Then, we applied the function triangulation to create the 2D triangulation data
in matrix format.

1000 DT = d e l a u n a y T r i a n g u l a t i o n ( x , y )
% C o n n e c t i v i t y l i s t

1002 l i s t = DT . C o n n e c t i v i t y L i s t
# c r e a t e s a 2D or 3D t r i a n g u l a t i o n r e p r e s e n t a t i o n u s i n g the

t r i a n g u l a t i o n c o n n e c t i v i t y l i s t DT and the p o i n t s i n m a t r i x P .
1004 Delaunay_base = t r i a n g u l a t i o n ( l i s t , DT . p o i n t s )

Listing 6.1: Delaunay Triangulation.
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Now that our data is represented using triangulation, we can perform topological
and geometric queries. The algorithm uses this representation to built the topological
complex. It takes the landmark points with the same label in consecutive frames and
then joined by an edge (worked with 9 frames).

The next function de�ned in the thesis calculates the eight �ltration of the cell
complexes obtained from the four view directions (2 by each direction.)

1000 f u n c t i o n f i l t e r s = f i l t r a t i o n s ( complex )

1002 p t s _ c e n t r a l = [ ] ;
n= s i z e ( complex . p t s , 1 ) ;

1004 %n= max ( complex . cuad ( : , 4 ) )
f o r i = 1 : l e n ( complex )

1006 p t s _ c e n t r a l ( i , : ) = sum ( complex . p t s ( complex . cuad ( i , : ) , : ) ) / 4 ;
end

1008

maxP = max ( max ( abs ( complex . p t s ) ) ) + 1 0 0 0 0 ;
1010

% s o r t t r i a n g l e s
1012

[X , indX ] = s o r t r o w s ( p t s _ c e n t r a l ) ; %o r d e r i n g the p o i n t s by the
e l e m e n t s o f the f i r s t column

1014

l i s t P t s Y ( : , 1 ) = p t s _ c e n t r a l ( : , 2 ) ; % r e v e r s e the o r d e r o f x and y
1016 l i s t P t s Y ( : , 2 ) = p t s _ c e n t r a l ( : , 1 ) ;

1018

[X , indX ] = s o r t r o w s ( p t s _ c e n t r a l ) ;
1020 [ Y , indY ] = s o r t r o w s ( l i s t P t s Y ) ;

1022 Pt sD i s tXY = a r r a y f u n (@( x , y ) ( abs ( x+y ) ) , p t s _ c e n t r a l ( : , 1 ) ,
p t s _ c e n t r a l ( : , 2 ) ) ;

1024 tem = Pt sDi s tXY ;
tem ( : , 2 : 3 ) = p t s _ c e n t r a l ;

1026 [XY , indXY ] = s o r t r o w s ( tem ) ;

1028 Pt sD i s tYX = a r r a y f u n (@( x , y ) ( abs ( x−y + maxP ) / s q r t ( 2 ) ) ,
p t s _ c e n t r a l ( : , 1 ) , p t s _ c e n t r a l ( : , 2 ) ) ;

1030 tem = Pt sDi s tYX ;
tem ( : , 2 : 3 ) = p t s _ c e n t r a l ;

1032 [YX , indYX ] = s o r t r o w s ( tem ) ;

1034
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complexX = complex . cuad ( indX , : ) ;
1036 subcomplex = complexX ; %t o i n v e r t o r d e r

ind = [ s i z e ( subcomplex , 1 ) : − 1 : 1 ] ;
1038 subcomplex = subcomplex ( ind , : ) ;

complexX_inv = subcomplex ;
1040

complexY = complex . cuad ( indY , : ) ;
1042 subcomplex = complexY ;

ind = [ s i z e ( subcomplex , 1 ) : − 1 : 1 ] ;
1044 subcomplex = subcomplex ( ind , : ) ;

complexY_inv = subcomplex ;
1046

complexXY = complex . cuad ( indXY , : ) ;
1048 subcomplex = complexXY ;

ind = [ s i z e ( subcomplex , 1 ) : − 1 : 1 ] ;
1050 subcomplex = subcomplex ( ind , : ) ;

complexXY_inv = subcomplex ;
1052

complexYX = complex . cuad ( indYX , : ) ;
1054 subcomplex = complexYX ; % r e v e r s e o r d e r

ind = [ s i z e ( subcomplex , 1 ) : − 1 : 1 ] ;
1056 subcomplex = subcomplex ( ind , : ) ;

complexYX_inv = subcomplex ;
1058

f i l t e r s . complexX = unique ( complexX , ’ rows ’ , ’ s t a b l e ’ ) ;
1060 f i l t e r s . complexY = unique ( complexY , ’ rows ’ , ’ s t a b l e ’ ) ;

f i l t e r s . complexXY = unique ( complexXY , ’ rows ’ , ’ s t a b l e ’ ) ;
1062 f i l t e r s . complexYX = unique ( complexYX , ’ rows ’ , ’ s t a b l e ’ ) ;

1064 f i l t e r s . complexX_inv = unique ( complexX_inv , ’ rows ’ , ’ s t a b l e ’ ) ;
f i l t e r s . complexY_inv = unique ( complexY_inv , ’ rows ’ , ’ s t a b l e ’ ) ;

1066 f i l t e r s . complexXY_inv = unique ( complexXY_inv , ’ rows ’ , ’ s t a b l e ’ ) ;
f i l t e r s . complexYX_inv = unique ( complexYX_inv , ’ rows ’ , ’ s t a b l e ’ ) ;

1068 end

The next function is de�ned with the aim to split the cell complex obtained to see
the features which born and died 2-cell on the complex. Later, the components which
survived get the index where the square is.

1000

f u n c t i o n [ index_cuad , comple jo ] = complex_wtsquare ( comple jo )
1002

index_cuad = [ ] ;
1004 f o r i = 1 : l e n g t h ( comple jo )
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i f numel ( comple jo { i } ) ==4
1006 index_cuad = [ index_cuad i ] ;

end
1008 end

comple jo ( index_cuad ) = [ ] ;

After we get the eight �ltrations in each direction de�ned, we applied the next
function to convert the complex in a matrix way. Once we had the matrix, we apply
the Incremental Algorithm described in the previous section (see Algorithm 1 in page
50) to get the persistence intervals. The interval who has death equal to zero means
that never died.

1000

f u n c t i o n m a t r i x = complex2matr ix ( complex )
1002

s = c e l l f u n (@( x ) s i z e ( x , 2 ) , complex ) ;
1004 dim = unique ( s ) ;

m a t r i x = ones ( s i z e ( s , 2 ) , 3 ) ∗ −1 ;
1006

f o r i = 1 : s i z e ( complex , 2 )
1008 i f ( s ( i ) ==1)

m a t r i x ( i , 1 ) = complex { i } ;
1010 end

v = complex { i } ;
1012 f = 0 ;

i f ( s i z e ( v , 2 ) ==2)
1014 f = ( ~ i sempty ( f i n d ( v ==1) ) && ~ i sempty ( f i n d ( v ==37) ) ) ; end

i f ( s ( i ) ==2)
1016 v = complex { i } ;

i n 1 = 0 ; inn2 = 0 ;
1018 con = 0 ;

f o r j = i −1 : −1 :1
1020 i f ( s i z e ( complex { j } , 2 ) ==1 && v ( 1 , 1 ) == complex { j } )

m a t r i x ( i , 1 ) = j −1;
1022 con = con + 1 ;

end
1024 i f ( s i z e ( complex { j } , 2 ) ==1 && v ( 1 , 2 ) == complex { j } )

m a t r i x ( i , 2 ) = j −1;
1026 con = con + 1 ;

end
1028 i f ( con ==2)

con = 0 ;
1030 break ;
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end
1032

end
1034 end

1036 i f ( s ( i ) ==3)
v = complex { i } ;

1038 i n 1 = 0 ; inn2 = 0 ;
con = 0 ;

1040 f o r j = i −1 : −1 :1
i f ( s i z e ( complex { j } , 2 ) ==2 && ( ~ i sempty ( f i n d ( v ( 1 , 1 ) == complex { j

} ) ) && ~ i sempty ( f i n d ( v ( 1 , 2 ) == complex { j } ) ) ) )
1042 m a t r i x ( i , 1 ) = j −1;

con = con + 1 ;
1044 end

i f ( s i z e ( complex { j } , 2 ) ==2 && ( ~ i sempty ( f i n d ( v ( 1 , 1 ) == complex { j
} ) ) && ~ i sempty ( f i n d ( v ( 1 , 3 ) == complex { j } ) ) ) )

1046 m a t r i x ( i , 2 ) = j −1;
con = con + 1 ;

1048 end
i f ( s i z e ( complex { j } , 2 ) ==2 && ( ~ i sempty ( f i n d ( v ( 1 , 2 ) == complex { j

} ) ) && ~ i sempty ( f i n d ( v ( 1 , 3 ) == complex { j } ) ) ) )
1050 m a t r i x ( i , 3 ) = j −1;

con = con + 1 ;
1052 end

i f ( con ==3)
1054 con = 0 ;

break ;
1056 end

1058 end
end

1060 end

1062 end

The next code for our algorithm gets the persistence intervals, and later calculates
the persistent entropy based on these intervals.

1000 m a t r i x = complex2matr ix ( Complejo { k } ) ;

1002 [ cc ]= P e r s i s t e n c e _ n e w ( m a t r i x ) ;
cc = s o r t r o w s ( cc , 1 ) ;

1004 a l l = 1 : l e n g t h ( m a t r i x ) ;
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m i s s i n g = s e t d i f f ( a l l , cc ( : , 1 ) ) ’ ;
1006 m i s s i n g ( : , 2 ) = 0 ;

dd= s o r t r o w s ( [ cc ; m i s s i n g ] , 1 ) ;
1008 i i = Index { k } ;

i i = [ 0 , i i ] ’ ;
1010 f o r h = 1 : l e n g t h ( dd )

dd ( h , 1 ) =max ( cumsum ( ( i i −dd ( h , 1 ) <0) ) ) ;
1012 dd ( h , 2 ) =max ( cumsum ( ( i i −dd ( h , 2 ) <0) ) ) ;

end
1014 dd ( dd ( : , 2 ) == 0 , : ) = [ ] ;

dd ( dd ( : , 1 ) == dd ( : , 2 ) , : ) = [ ] ;
1016 [ en t ropy ] = p e r _ e n t r o p y ( dd ) ;

d iagram { k }= dd ;
1018 en t { k }= en t ropy ;

To classify, we used the APP Classi�cation Learner which o�ers Matlab. Thanks
to that, it is possible to explore supervised machine learning using various classi�ers.
The automated training allows us to �nd the best classi�cation model, includes deci-
sion trees, discriminant analysis, support vector machines, logistic regression, nearest
neighbors, naive Bayes, and ensemble classi�cation.

The model uses a training dataset to train it and, later, it uses a validation dataset to
test it and get the accuracy of the model. After we export the model to the workspace
as trained_model (variable), we can predict the model with any sample.

1000

model= t r a i n e d M o d e l . p r e d i c t F c n ( Sample ) ;
1002

% d a t a s e t
1004 T = c v p a r t i t i o n ( Entropy \ _ p e r s i s t e n c e . l a b e l , ’ HoldOut ’ , 0 . 2 ) ; %20% use

f o r t e s t i n g d a t a
t r i i d x = t r a i n i n g ( T ) ;

1006 t e s t i n g = d a t a s e t ( ~ t r i i d x , : ) ;
t r a i n i n g = Entropy \ _ p e r s i s t e n c e ( t r i i d x , : ) ;

1008 %Use c l a s s i f i c a t i o n l e a r n i n g apps
% S e l e c t t r a i n i n g t o t r a i n and v a l i d a t e

1010 %Expor t Model
% C l a s s i f y the t e s t i n g d a t a s e t u s i n g t r a i n e d M o d e l

1012 model = t r a i n e d M o d e l . p r e d i c t F c n ( t e s t i n g ) ;
% Perform a c c u r a c y u s i n g f o r example , l o s s , accuracy , c o n f u s i o n . .
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6.2 Analysis of the implementation of the algoritm
for the audio dataset

Considering the context of the project and the existing software environment, the
language Python was chosen as the main programming language to implement the
second part. This is a trade-o� about to �nd a balance between the ease of implemen-
tation due to the language’s machine learning libraries, and the ease of use for future
developers.

Regarding the libraries, there are some used to work with audio signals. The �rst
one is the Librosa library [80], whose overall goal is to provide a set of functions nec-
essary to create audio information retrieval systems. Preprocessing of the audio signal
was done using Librosa. Another useful library applied is pandas [81] that provides
ways to store and organize data-sets e�ciently.

Based on the paradigm of scikit-learn library, the giotto-tda library arises to sim-
plify the principal items for topological machine learning. The library currently sup-
ports the application of persistent homology to graph and time-series data.

To calculate persistent homology, it is necessary to instantiate a Vietoris-Rips Per-
sistence transformer and calculate the persistence diagram for the collection of point
clouds. The topological features can be a connected component, 1D hole/loop, 2D cav-
ity, or more generally n-dimensional void that exists in the data at scales between its
birth and death values. The homology dimension of the feature is stored as the third
input in that triplet.

1000

from gtda . homology impor t V i e t o r i s R i p s P e r s i s t e n c e
1002 VR = V i e t o r i s R i p s P e r s i s t e n c e ( homology_dimensions = [ 0 , 1 , 2 ] ) #

Parameter e x p l a i n e d i n the t e x t
d iagrams = VR . f i t _ t r a n s f o r m ( p o i n t _ c l o u d s )

1004 d iagrams . shape

Listing 6.2: VietorisRipsPersistence

As we explained in the thesis, the Embedding Theorem is practical when we have
a time-series, which is expected to be guided by a non-linear system. The embedding
dimension d and time delay � can be choose manually. However, there are two tech-
niques that can be applied to get these parameter automatically. Mutual Information
to calculate � and False nearest neighbours to get d. The next two function show how
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this thesis implement both algorithms to calculate the optimal Embedding parameters
in the dataset used.
The function takensEmbedding returns the Takens embedding of data with delay into
dimension, delay ∗ dimension must be < len(data).

1000 d e f takensEmbedding ( data , de lay , d imens ion ) :
i f d e l a y ∗ dimens ion > l e n ( d a t a ) :

1002 r a i s e NameError ( ’ Delay t i m e s d imens ion exceed l e n g t h o f d a t a
! ’ )
embeddedData = np . a r r a y ( [ d a t a [ 0 : l e n ( d a t a )−d e l a y ∗ dimens ion ] ] )

1004 f o r i i n range ( 1 , d imens ion ) :
embeddedData = np . append ( embeddedData , [ d a t a [ i ∗ d e l a y : l e n (

d a t a ) − d e l a y ∗ ( d imens ion − i ) ] ] , a x i s =0 )
1006 r e t u r n embeddedData

Then, there are two measures which give the idea of which delay and dimension
parameters to chose. For the �rst one, mutual information is applied as follows.

1000

d e f m u t u a l I n f o r m a t i o n ( data , de lay , nBins ) :
1002 # " Th i s f u n c t i o n g e t s the mutual i n f o r m a t i o n "

I = 0
1004 xmax = max ( d a t a )

xmin = min ( d a t a )
1006 d e l a y D a t a = d a t a [ d e l a y : l e n ( d a t a ) ]

s h o r t D a t a = d a t a [ 0 : l e n ( d a t a ) − d e l a y ]
1008 s i z e B i n = abs ( xmax − xmin ) / nBins

1010 p r o b I n B i n = { }
c o n d i t i o n B i n = { }

1012 c o n d i t i o n D e l a y B i n = { }
f o r h i n range ( 0 , nBins ) :

1014 i f h not i n p r o b I n B i n :
c o n d i t i o n B i n . update ( { h : ( s h o r t D a t a >= ( xmin + h ∗

s i z e B i n ) ) & ( s h o r t D a t a < ( xmin + ( h + 1 ) ∗ s i z e B i n ) ) } )
1016 p r o b I n B i n . update ( { h : l e n ( s h o r t D a t a [ c o n d i t i o n B i n [ h ] ] ) /

l e n ( s h o r t D a t a ) } )
f o r k i n range ( 0 , nBins ) :

1018 i f k not i n p r o b I n B i n :
c o n d i t i o n B i n . update (

1020 { k : ( s h o r t D a t a >= ( xmin + k ∗ s i z e B i n ) ) & (
s h o r t D a t a < ( xmin + ( k + 1 ) ∗ s i z e B i n ) ) } )

p r o b I n B i n . update ( { k : l e n ( s h o r t D a t a [ c o n d i t i o n B i n [ k ] ] )
/ l e n ( s h o r t D a t a ) } )
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1022 i f k not i n c o n d i t i o n D e l a y B i n :
c o n d i t i o n D e l a y B i n . update (

1024 { k : ( d e l a y D a t a >= ( xmin + k ∗ s i z e B i n ) ) & (
d e l a y D a t a < ( xmin + ( k + 1 ) ∗ s i z e B i n ) ) } )

Phk = l e n ( s h o r t D a t a [ c o n d i t i o n B i n [ h ] & c o n d i t i o n D e l a y B i n [
k ] ] ) / l e n ( s h o r t D a t a )

1026 i f Phk != 0 and p r o b I n B i n [ h ] != 0 and p r o b I n B i n [ k ] != 0 :
I −= Phk ∗ math . l o g ( Phk / ( p r o b I n B i n [ h ] ∗ p r o b I n B i n [

k ] ) )
1028 r e t u r n I

After, we got the mutual information for each audio signal in dependence of � , the
algorithm choose the �rst minimum value into range of 21 moments. The number of
bins is choosen to be 10 since the audio signal has ∼1000 data points, then we expect
to have around 100 points in each bin.

1000 d a t D e l a y I n f o r m a t i o n = [ ]
f o r i i n range ( 1 , 2 1 ) :

1002 t r y :
d a t D e l a y I n f o r m a t i o n = np . append ( d a t D e l a y I n f o r m a t i o n , [

m u t u a l I n f o r m a t i o n ( S i g n a l , i , 1 0 ) ] )
1004 e x c e p t :

p a s s
1006 p l t . p l o t ( range ( 1 , 2 1 ) , d a t D e l a y I n f o r m a t i o n )

p l t . x l a b e l ( ’ d e l a y ’ )
1008 p l t . y l a b e l ( ’ mutual i n f o r m a t i o n ’ )

Persim is a Python library that includes many tools to analyze the persistence
diagrams obtained. From this library, we used the next function in order to perform
the persistent entropy values of the persistence diagrams, assuming that the diagrams
are �nite.

1000

p e r s i s t e n t _ e n t r o p y ( dgms [ , k e e p _ i n f , . . . ] )

The Gudhi library (Geometry Understanding in Higher Dimensions) [76] is a Python
module for Computational Topology and Topological Data Analysis. It provides easy
and e�cient implementations of algorithms and functions of this area. We used the
bottleneck distance between two persistence diagram �les.
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The function gudℎi.plot_persistence_diagram allows to plot the persistence di-
agram from persistence values list providing a np.array (of dimension N × 2) repre-
senting a diagram in a single homology dimension.

Scikit-learn library [97] is used in this context for some utilities such as splitting a
dataset into train validation and test sets. The pre-processing module provides a utility
class StandardScaler that computes the mean and standard deviation on a training
set to be able to later reapply the same transformation on the testing set. We use
some classi�ers o�ered by this library: speci�cally, the class KNeighborsClassi�er that
implemented the k-nearest neighbors’ vote where, by default, it uses the distance
metric Minkowski, but there is a list of available metrics.

In the third experiment, in order to compute the input for the classi�cation, the
metric was "precomputed" de�ning X as a square distance matrix with the bottleneck
distance between persistence diagrams.

The Sklearn library implements estimators to solve classi�cation problems of kind
multiclass or multilabel by decomposing such issues into a binary classi�cation prob-
lem. To mix the classi�cation in video signals and audio signals, two di�erent strate-
gies used in this approach were One-vs-Rest and One-vs-One. They have been taken
from this library.

The next example shows, the classi�er OneVsRes with a Logisitic Regression class
implemented as the binary classi�cation model.

1000 # l o g i s t i c r e g r e s s i o n f o r mul t i− c l a s s c l a s s i f i c a t i o n u s i n g a one−vs−
r e s t

from s k l e a r n . d a t a s e t s impor t m a k e _ c l a s s i f i c a t i o n
1002 from s k l e a r n . l i n e a r _ m o d e l impor t L o g i s t i c R e g r e s s i o n

from s k l e a r n . m u l t i c l a s s impor t O n e V s R e s t C l a s s i f i e r
1004 # d e f i n e d a t a s e t

X , y = m a k e _ c l a s s i f i c a t i o n ( n_samples =141 , n _ f e a t u r e s =9 ,
n _ i n f o r m a t i v e =3 , n_redundant =3 , n _ c l a s s e s =7 , r andom_s ta t e =1 )

1006 # d e f i n e model
model = L o g i s t i c R e g r e s s i o n ( )

1008 # d e f i n e the ovr s t r a t e g y
ovr = O n e V s R e s t C l a s s i f i e r ( model )

1010 # f i t model
ovr . f i t ( X , y )

1012 # make p r e d i c t i o n s
yhat = ovr . p r e d i c t (X )
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Similar to previous one, the library provides the OneVsOne strategy to be used with
any classi�er.

The function classi�cation_report o�ers a text report with the main classi�cation
metrics. Here, we see an example of one classi�cation from the thesis that we ex-
plained in the previous chapter.

1000 [ [ 8 4 10 10 13 13 8 9 ]
[ 2 5 69 11 12 10 10 7 ]

1002 [ 1 9 23 68 13 11 11 1 1 ]
[ 2 0 23 22 64 15 10 1 2 ]

1004 [ 2 0 20 13 17 72 11 3 ]
[ 2 9 23 20 15 6 58 6 ]

1006 [ 2 7 17 20 14 16 17 3 8 ] ]

The function confusion_matrix computes the confusion matrix to evaluate the ac-
curacy of a classi�cation with each row corresponding to the true class. By de�nition,
entry (p, q) in the matrix is the number of observations belongs to group p, but pre-
dicted to be in q. Here is an example of the accuracy output of the algorithm.

1000 p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

1002 2 . 0 0 . 3 8 0 . 5 7 0 . 4 5 147
3 . 0 0 . 3 7 0 . 4 8 0 . 4 2 144

1004 4 . 0 0 . 4 1 0 . 4 4 0 . 4 3 156
5 . 0 0 . 4 3 0 . 3 9 0 . 4 1 166

1006 6 . 0 0 . 5 0 0 . 4 6 0 . 4 8 156
7 . 0 0 . 4 6 0 . 3 7 0 . 4 1 157

1008 8 . 0 0 . 4 4 0 . 2 6 0 . 3 2 149

1010 a c c u r a c y 0 . 4 2 1075
macro avg 0 . 4 3 0 . 4 2 0 . 4 2 1075

1012 weighted avg 0 . 4 3 0 . 4 2 0 . 4 2 1075

1014





7 Conclusions and future works

In this thesis, we have developed an application of the persistent entropy to extract
information from the videos and solve a classi�cation problem for the emotions de-
scribed.

Regarding the video-only emotion recognition method developded in this thesis,
we can conclude that the application of the eight �ltrations in di�erent directions
to the landmark points of the face allows us to con�rm that each �ltration contains
relevant information for classifying. The results reached with the combination of each
�ltration yielded promising and competitive results.

Regarding the audio-signal emotion recognition approach proposed in this the-
sis, we have to say that since the Embedding Theorem is very useful in situations
where one has a time-series, our initial idea was to apply it to the audio signal. Later,
we constructed the complex on this embedding signal and calculate the persistent
entropy value expecting to have good results. Nevertheless, the persistent entropy
did not achieve a good classi�cation. According to the theorem, these time series are
expected to be driven by a non-linear system and should be guaranteed that the re-
sulting embedding is a faithful reproduction of the original dynamics. In our case,
that assertion did not seems to happen, one reason is given by these time series are
not homogeneous or cyclical.

Finally, based on the previous results given in [44] where a topological model was
applied to obtain a single real number from each raw signal using persistent entropy,
and the successful approach obtained in this thesis using video-signal only, we have
introduced here a new method for emotion recognition combining audio and video
signal obtaining very good results compared to state-of-the-art methods.

Speci�cally, we have followed several ideas to work where we have reached promis-
ing results. The second and third experiments in the audio dataset section evidence
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it. The idea was similar to the previous work of our group but, in this case, we use
a matrix distance based on the bottleneck distance of the persistence diagram as the
input of the classi�cation algorithm. This way, the accuracy increases. Nevertheless,
we think that more research on audio emotional recognition task can be done. The in-
clusion of other types of information that the audio o�ers, mix them, or the use of an
auxiliary neural network to achieve high-level features should improve the accuracy
of our model.

Furthermore, to get better results in the classi�cation of emotion task, we have
combined the topological information obtained from the video dataset with the topo-
logical information obtained from the audio dataset. The setting One-vs-Rest allowed
to achieve competitive results and be in concordance with one of the most relevant
conclusions of the KRISTINA project: "The combination of visual and audio features
can develop better predictions than using them separately".

The following future works are plan to be explored:

• To Expand to a n-dimensional feature vector of raw audio signals by extracting
other types of information.

• To divide the landmark points into di�erent subsets to determine regions or
pairs of regions that contain discriminative landmark points for each facial ex-
pression.

• To reduce dimension could be an important task in the future since introduc-
ing new subsets of landmark points, the dimension of the feature vector could
increase.

• To analyze 3D data of the video sequence. The RAVDESS dataset provides land-
marks points in the 3-dimensional space ℝ3. Taking advantage of the depth
information of the landmark points could be a challenging problem for the fu-
ture.

• Instead of only focus on the face, another interesting point is to consider the
silhouettes of the people that appear in the videos which include the face and the
shoulder movements and that could have relevant information for the emotion
recognition purpose.

• The temporal relation between audio and visual features is not well-explored
in the literature. In a future study, we will try to integrate this relation into our
proposed system.
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