
 

 

 

DOCTORAL THESIS 

2021 

 

 

SEDIMENT FINGERPRINTING AND HYDRO-
SEDIMENTARY MONITORING AS TOOLS FOR 

CATCHMENT MANAGEMENT IN MEDITERRANEAN 
ENVIRONMENTS 

 

 

 

 

 

Julián García Comendador 





                    

 

DOCTORAL THESIS 

2021 

 

Doctoral Programme of History, History of Art and Geography 

 

SEDIMENT FINGERPRINTING AND HYDRO-
SEDIMENTARY MONITORING AS TOOLS FOR 

CATCHMENT MANAGEMENT IN MEDITERRANEAN 
ENVIRONMENTS 

 

Julián García Comendador 

 

 

 

Supervisor and Tutor: Dr. Joan Estrany Bertos 

Co-supervisor: Dr. Núria Martínez Carreras 

 

Doctor by the Universitat de les Illes Balears 





Note: 

This file contains scientific articles that have been revised and modified according to 
the comments made by recognized referees. Despite some slight modifications have 
been made in order to correct spelling or other small errors, as well as to homogenise 
the style of the text and the numbering of tables and figures, no changes have been 
made to the published contents and results. 

No part of this document may be reproduced by any means, or transmitted into a 
machine language without the written permission of the author. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Agradecimientos: 

Hace diez años era una persona muy diferente a la que soy ahora. Era impresor, oficial 

offset de 3ª. Mi trayectoria académica había sido un fracaso absoluto, ni me planteaba 

poner un pie en la universidad. Hoy estoy redactando los agradecimientos de mi tesis 

doctoral, mi tesis doctoral. Esta tesis es el reflejo de más de diez años de cambios 

drásticos en mi vida. 

Quiero agradecerle a mi director de tesis, Joan Estrany, su confianza en mí. El darme la 

oportunidad de vivir una aventura de semejante envergadura.  Enseñarme qué es la 

ciencia, el valor del esfuerzo y que el trabajo bien hecho es una recompensa en sí 

mismo. Empecé a trabajar contigo como alumno colaborador en 2012. Desde entonces 

han pasado 9 años geniales. He podido viajar por el mundo, exponer en congresos, 

publicar en revistas científicas, trabajar en el Atlas, la inundación de Sant Llorenç des 

Cardassar, el incendio de Andratx, he impartido clases en la universidad y, finalmente, 

redactado una tesis. Por todo ello, muchísimas gracias Joan. 

Agradecer Núria Martínez Carreras, mi codirectora de tesis, su esfuerzo, dedicación y 

paciencia. Me acogiste en Luxemburgo y me enseñaste una manera muy diferente de 

trabajar. Ir siempre un poco más allá, la relevancia de la reflexión antes de escribir la 

primera línea, el cómo plantearse preguntas clave y como plasmar ideas en papel. 

Muchísimas gracias Núria. 

Quiero extender los agradecimientos a todos los que me han acompañado o apoyado 

durante este viaje. A Josep Fortesa, Aleix Calsamiglia y Jaume Company. Hemos 

compartido muchísimas horas en el despacho y el campo. Tengo muchos momentos 

grabados en la memoria, instalando sondas, recogiendo muestras, saltado vallas, 

metiéndonos en los torrentes, empujando el todoterreno... No me olvidaré nunca de 

nuestras surrealistas aventuras en Tánger, las asistencias a congresos, vuelos de drone 

y cafés en el bar. Ha sido un placer estar a vuestro lado. También a todos los miembros 

y colaboradores del equipo MEDhyCON, Tomeu Alorda, Maurici Ruíz, Xurxo Gago, José 

A. López Tarazón, Adolfo Calvo Cases, Bartomeu Sastre, Hannane Reddad, Manuel E. 

Lucas Borja, Laura Ferrer, Jérôme Latron, Monserrat Ferrer, Raquel Vaquer y Miquel 

Tomàs. Muchas gracias. 



Gracias también a los miembros del Laboratorio de Radiología Ambiental de la UIB. 

Toni Borràs, Edwin Palacio y de nuevo Laura Ferrer por su trabajo imprescindible para 

esta tesis y su amabilidad. A Joana María Petrus por sus consejos y asesoramiento. A 

todo el equipo del Catchment and Eco-Hydrology Research Group (CAT) del 

Luxembourg Institute of Science and Technology (LIST) por acogerme y permitirme 

usar sus instalaciones. A los miembros del Laboratorio de Paisaje y Geografía Física de 

la Université Sultan Moulay Slimane, gracias Hanane Reddad, Hassan Ouakhir, Nadia 

Ennaji, Abdelatif Essanbri y Mohamed Kharize, gracias. 

Gracias a mis amigos, especialmente a los que me han acompañado en tantas horas de 

ensayo y conciertos. Ha sido mi terapia psicológica durante todos estos años. Gracias 

Albert, Javi, Narci, Chano, Miki, Alex, Sanse, Edu y Cardo. Nos queda aún mucho rock 

and roll. Gracias a Alex Molins, Albert Santos Y Marina Torrens por los buenos 

momentos que hemos pasado todos estos años. 

Muchísimas gracias a Narcís Rodrígez y a Alexandre Coll por el diseño y collage de la 

portada. 

Finalmente, quiero agradecerle de todo corazón a mi pareja su confianza, sus 

constantes palabras de ánimo y por supuesto su paciencia durante la etapa de 

doctorado. Susana Soto, sin tu apoyo y consejo nunca habría llegado hasta aquí. Por 

supuesto también a nuestros hijos, Marc y Ariadna, por hacerme la persona más feliz 

del mundo. Os quiero. 

 

 

 

 

 

 

 

 



 

Funding of the thesis 

This thesis was supported through the pre-doctoral contract (FPU15/05239) funded by 

the Spanish Ministry of Education and Vocational Training and by the research project 

CGL2017-88200-R “Functional hydrological and sediment connectivity at 

Mediterranean catchments: global change scenarios –MEDhyCON2” funded by the 

Spanish Ministry of Science and Innovation, the Spanish Agency of Research (AEI) and 

the European Regional Development Funds (ERDF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



Thesis as compendium of research papers 

Published: 

García‐Comendador, J., Fortesa, J., Calsamiglia, A., Calvo‐Cases, A., Estrany, J. 2017. 
Post‐fire hydrological response and suspended sediment transport of a terraced 
Mediterranean catchment. Earth Surf. Process. Landforms, 42: 2254– 2265. doi: 
10.1002/esp.4181. 

García-Comendador, J., Fortesa, J., Calsamiglia, A., Garcias, F., Estrany, J. 2017. Source 
ascription in bed sediments of a Mediterranean temporary stream after the first 
post-fire flush. J Soils Sediments 17, 2582–2595. doi: 10.1007/s11368-017-1806-1. 

García-Comendador, J., Martínez-Carreras, N., Fortesa, J., Borràs, A., Calsamiglia, A., 
Estrany, J. 2020. Analysis of post-fire suspended sediment sources by using colour 
parameters. Geoderma, 379, 114638. doi: 10.1016/j.geoderma.2020.114638. 

 

Unpublished: 

García-Comendador, J., Martínez-Carreras, N., Fortesa, J., Company, J., Borràs, A., 
Estrany, J. 2021. Combining sediment fingerprinting and hydro-sedimentary 
monitoring to assess suspended sediment provenance in a mid-mountainous 
Mediterranean catchment. Journal of Environmental Management. Under 
review. 

 

Preliminary results: 

In-channel alterations of the most common soil properties used as tracers in sediment 
fingerprinting studies. Paper in preparation. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I 

 

Contents 

List of figures VII 

List of tables XV 

List of acronyms XVII 

Abstract XIX 

Resumen XXI 

Resum XXIII 

1. Introduction 1 

1.1. Soil erosion and sediment transport processes in drainage catchments 1 

1.2. Sediment delivery in Mediterranean catchments 6 

1.3. Catchment hydro-sedimentary monitoring 8 

1.4. Sediment source fingerprinting 10 

1.5. Sediment fingerprinting and hydro-sedimentary monitoring as tools for 

catchment management 16 

1.6. Hypothesis and objectives 17 

1.7. Thesis structure 19 

1.8. References 22 

2. Study areas 37 

2.1. Overview 37 

2.2. Sa Font de la Vila River catchment 39 

2.3. Es Fangar Creek catchment 41 

2.4. References 44 

3. Methodology 45 

3.1. Overview 45 

3.2. Continuous water and sediment monitoring 45 



II 

 

3.2.1. Field measurements and data computation 48 

3.3. Sediment source fingerprinting 49 

3.3.1. Soil and sediment sampling 49 

3.3.2. Laboratory treatment and analysis 50 

3.3.3. Particle size correction 52 

3.3.4. Tracers accuracy 53 

3.3.5. Source apportionment of sediment sources 54 

3.3.6. Experiment on conservative behaviour of sediment properties 56 

3.4. References 58 

4. Post‐fire hydrological response and suspended sediment transport of a 

terraced Mediterranean catchment 61 

4.1. Introduction 62 

4.2. Study area 64 

4.3. Material and Methods 66 

4.3.1. Continuous monitoring network 66 

4.3.2. Field measurements and data computation 67 

4.4. Results 68 

4.4.1. Rainfall 68 

4.4.2. Streamflow 70 

4.4.3. Suspended sediment concentrations and yields 72 

4.4.4. Nestedness and wildfire effects on runoff and suspended sediment 

dynamics 73 

4.5. Discussion 76 

4.5.1. Landscape response to wildfire 76 



III 

 

4.5.2. Post-fire suspended sediment yield at catchment scale 79 

4.5.3. Nestedness effects on post-fire hydrosedimentary response 81 

4.6. Conclusions 82 

4.7. References 85 

4.8. Supplementary material 91 

5. Source ascription in bed sediments of a Mediterranean temporary 

stream after the first post-fire flush 93 

5.1. Introduction 95 

5.2. Material and Methods 97 

5.2.1. Study area 97 

5.2.2. Monitoring hydro-sedimentary dynamics after the 2013 wildfire 100 

5.2.3. Field sampling 100 

5.2.4. Laboratory work 103 

5.2.5. Particle size correction 104 

5.2.6. Source apportionment of suspended sediment sources 105 

5.3. Results 107 

5.4. Discussion 112 

5.5. Conclusions 115 

5.6. References 118 

5.7. Supplementary material 123 

6. Analysis of post-fire suspended sediment sources by using colour 

parameters 125 

6.1. Introduction 127 

6.2. Study area 130 

6.3. Materials and methods 132 



IV 

 

6.3.1. Water and sediment monitoring programme 132 

6.3.2. Soil, ash and sediment sampling 132 

6.3.3. Laboratory treatment and analysis 134 

6.3.4. Artificial laboratory mixtures 135 

6.3.5. Accuracy of colour tracers 136 

6.3.6. Suspended sediment fingerprinting and unmixing of artificial mixtures136 

6.4. Results 138 

6.4.1. Artificial laboratory mixtures and ash influence 138 

6.4.2. Colour, particle size, organic matter content and FRN activity of sources, 

ash and suspended sediment samples 142 

6.4.3. Suspended sediment fingerprinting 148 

6.5. Discussion 151 

6.5.1. On the use of colour to trace suspended sediment sources in burned 

Mediterranean catchments 151 

6.5.2. Suspended sediment origin after a wildfire in a Mediterranean catchment 

  156 

6.6. Conclusions 159 

6.7. References 162 

6.8. Supplementary material 168 

7. Combining sediment fingerprinting and hydro-sedimentary monitoring 

to assess the suspended sediment provenance in a mid-mountainous 

Mediterranean catchment 179 

7.1. Introduction 180 

7.2. Study area 183 

7.3. Material and methods 185 



V 

 

7.3.1. Source and sediment sampling 185 

7.3.2. Laboratory analysis 186 

7.3.3. Tracer accuracy 187 

7.3.4. Suspended sediment fingerprinting 187 

7.3.5. Catchment hydro-sedimentary response, hysteresis loops analysis and 

cluster classification of selected floods 189 

7.4. Results 191 

7.4.1. Tracer accuracy and selection 191 

7.4.2. Unmixing of the artificial mixtures 194 

7.4.3. Particle size, C and N content 194 

7.4.4. Sediment fingerprinting 195 

7.4.5. Hydro-sedimentary response 198 

7.5. Discussion 201 

7.5.1. Comparison between sediment fingerprinting approaches 201 

7.5.2. Catchment hydro-sedimentary response and suspended sediment 

sources  202 

7.5.3. Catchment management implications 205 

7.6. Conclusions 206 

7.7. References 209 

7.8. Supplementary material 216 

8. In-channel alterations of soil properties used as tracers in sediment 

fingerprinting studies 227 

8.1. Introduction 228 

8.2. Study area 232 

8.3. Material and methods 234 



VI 

 

8.3.1. Hydrological monitoring 234 

8.3.2. Soil sampling, pre-treatment and field experiment 234 

8.3.3. Laboratory analysis 238 

8.3.4. Evaluation of changes in sediment properties 239 

8.4. Results 240 

8.4.1. Variability of soil properties in submersed samples 240 

8.4.2. Correlation of soil properties with grain size and carbon content 245 

8.5. Discussion 246 

8.5.1. Conservative behaviour of soil properties 246 

8.5.2. Limitations of the experiment and Implications for sediment 

fingerprinting 248 

8.6. Conclusions 250 

8.7. References 252 

8.8. Supplementary material 258 

9. Discussion and conclusions 259 

9.1. Sa Font de la Vila and Es Fangar hydro-sedimentary dynamics 259 

9.2. Thesis contributions to the sediment fingerprinting framework 263 

9.3. Sediment fingerprinting and hydro-sedimentary monitoring as tools for 

catchment management in Mediterranean environments 270 

9.4. Limitations and future perspectives 273 

9.5. Conclusions 275 

9.6. References 278 

 

 

 



VII 

 

List of figures 

Figure 1.1. A simplified conceptual model of the sediment source fingerprinting 

technique based in 3 different surface sources (A, B and C; e.g. land uses, lithology) 

and one subsurface source (D; channel banks). ............................................................. 11 

Figure 1.2. General four key steps in the application of sediment source fingerprinting

 ........................................................................................................................................ 13 

Figure 1.3. Links between chapters that compose the thesis paper compendium. The 

chapter titles have been shortened for clarity in the figure. ......................................... 21 

Figure 2.1. (A) Location of Mallorca Island in the Western Mediterranean Sea basin. (B) 

Physical characteristics of Mallorca Island and Tramuntana Range location (C) 

Tramnuntana Range lithology (D) rainfall distribution and (E) land use distribution. ... 38 

Figure 2.2. Location of the Mallorca Island within the Mediterranean Sea (A); location 

of the Sa Font de la Vila catchment, the area affected by the July 2013 wildfire, the 

B'12 S'Alqueria meteorological station and the village of Llucmajor (B); lithology (C) 

land uses and soil conservation practices (D) of the Sa Font de la Vila catchment 

(downstream site) and Sa Murtera sub-catchment (upstream site); and 1994 and 2013 

wildfire affected areas as well as severity of the 2013 wildfire and 2016 sampling area 

(E). Channel bank and surface sampling points indicated as blue dots and orange 

squares, respectively ...................................................................................................... 40 

Figure 2.3. (A) Map showing the location of Mallorca in the Western Mediterranean. 

(B) Location of Es Fangar catchment within Mallorca island. Drainage network and 

terraced areas over (C) land use and (D) lithology maps. .............................................. 42 

Figure 3.1. Methodological workflow encompassing main methodologies used for (A) 

continuous monitoring of water and sediment, (b) Sediment source Fingerprinting and 

(C) experiment on the conservative behaviour of sediment properties. Inside the red 

square are listed the methods applied in Sa Font the la Vila catchment and inside the 

black square the methods applied in Es Fangar catchment. .......................................... 46 

Figure 3.2. Left, Map of Sa Font the la Vila catchment with the area affected by the July 

2013 wildfire, the delimitation of Sa Murtera sub-catchment and the gauge stations 



VIII 

 

locations. (A) Upstream view of Sa Murtera cross section and gauge station. (B) 

Upstream view of Sa Font de la Vila cross section and gauge station. .......................... 47 

Figure 3.3. Left, Map of Es Fangar catchment with main land uses and the gauge 

stations location. Right, Upstream view Es Fangar cross section and gauge station. ... 48 

Figure 4.1. (a) Map of the location of Mallorca in the Mediterranean Sea; (b) location 

of the area affected by the July 2013 wildfire in Pariatge County; (c) land uses and soil 

conservation practices; (d) 1994 and 2013 wildfire-affected areas, as well as severity of 

2013 wildfire; (e) lithology; and (f) gradient slope of the Sa Font de la Vila catchment.

 ........................................................................................................................................ 65 

Figure 4.2. (A) Rainfall, runoff and suspended sediment yield for the US-Sa Murtera 

(2014-2016); and (B) rainfall, runoff and suspended sediment yield for the DS-Sa Font 

de la Vila station (2013-2016). ....................................................................................... 69 

Figure 4.3. Hydrograph, sedigraph, hyetograph and SSC-Q frequency based on 15-

minute recordings at the US-Sa Murtera (A-B) during the study period 2014-2016 and 

at the DS-Sa Font de la Vila (C-D) during the study periods 2013-2016 and 2014-2016 

for better comparison. ................................................................................................... 71 

Figure 4.4. Total cumulative sediment load duration curve, 2013-2016, at DS-Font de la 

Vila and 2014-2016 at the US-Sa Murtera and DS-Sa Font de la Vila gauging stations. 73 

Figure 5.1. (A) Map showing the location of Mallorca in the Mediterranean Sea; (B) 

location of the Sa Font de la Vila catchment and the area affected by the July 2013 

wildfire in Pariatge County; (C) lithology; (D) gradient slope; (E) land uses and soil 

conservation practices; and (F) 1994 and 2013 wildfire-affected areas and severity of 

2013 wildfire. .................................................................................................................. 99 

Figure 5.2. Map of the Sa Font de la Vila catchment showing the monitoring network 

and sediment source sampling points. The wildfire recurrence effect is also shown, 

together with the post-fire treatment carried out after the 2013 wildfire. ................ 102 

Figure 5.3. 137Cs and 210Pbex activity concentrations (Bq kg-1) of source and bed 

sediment samples for (A) MS-middle stream source samples defined in terms of 

burned soil surface and burned channel bank material and (B) DS-downstream source 



IX 

 

samples defined in terms of burned and unburned soil surface and burned and 

unburned channel bank. ............................................................................................... 110 

Figure 5.4. Source relative contribution to the bed sediments of (A) MS-middle stream 

sites and (B) DS-downstream site. Potential outliers are plotted as points. ............... 111 

Figure 6.1. Location of the Mallorca Island within the Mediterranean Sea (A); location 

of the Sa Font de la Vila catchment, the area affected by the July 2013 wildfire, the 

B'12 S'Alqueria meteorological station and the village of Llucmajor (B); lithology (C) 

land uses and soil conservation practices (D) of the Sa Font de la Vila catchment 

(downstream site) and Sa Murtera sub-catchment (upstream site); and 1994 and 2013 

wildfire affected areas as well as severity of the 2013 wildfire and 2016 sampling area 

(E). Channel bank and surface sampling points indicated as blue dots and orange 

squares, respectively. ................................................................................................... 131 

Figure 6.2. Normalized root mean square error (nRMSE) between estimated and 

measured spectrometer-based (A) and scanner-based colour parameters (B). Note that 

nRMSE results are shown when including samples containing black ashes (BA; i.e. ‘2 

samples mixt. BA’, ‘3 samples mixt. BA’ and ‘4 samples mixt. BA’) and excluding them 

from the mixtures (i.e., ‘2 samples mixt.’, ‘3 samples mixt.’ and ‘4 samples mixt.’). Note 

that accuracy increase in the latest case. Scatter plot showing estimated versus 

measured cie x spectrometer-based parameter (C) and cie x scanner-based parameter 

(D) when mixing 2, 3 and 4 samples. ............................................................................ 139 

Figure 6.3. Scatter plots showing estimated versus measured cie x (A), cie y (B) and cie 

yy (C) spectrometer-based colour parameter when adding increasing proportions of 

ash (black and grey ash; 0–100%) to a suspended sediment sample. (D) Normalized 

root mean square error (nRMSE) between estimated and measured spectrometer-

based cie x, cie y, cie yy, red, green and blue colour parameters of the artificial 

sediment-ash mixtures. (E) Scanned images of the sediment-ash artificial mixtures 

when increasing the ash proportion (grey and black ash mixtures). (F) correlation 

between grey and (G) black ash % and redness index measured in the artificial 

mixtures. (H) scatter plot between total C and cie x and (I) between total N and cie x of 



X 

 

the sediment-ash artificial mixtures, the US4 suspended sediment sample (US4 SS), 

and black and grey ash. ................................................................................................ 141 

Figure 6.4. Box plots of cie x, cie y and cie yy reflectance-based colour parameters 

measured in source and suspended sediment samples at the Sa Murtera sub-

catchment (upstream site; A, B and C) and at the Font de la Vila catchment 

(downstream site; D, E and F). Values measured on grey and black ashes are plotted 

for comparison. ............................................................................................................ 143 

Figure 6.5. (A) Boxplots showing the spectrometer-based redness index distribution 

values measured in sediment sources and suspended sediment samples from the 

downstream site; (B) evolution of the redness index values in suspended sediment 

samples trough time (x axis represents the chronological order of the events; see Table 

6.3). ............................................................................................................................... 143 

Figure 6.6. Bi-plot showing the first and second discriminant functions for the 

spectrometer- (A) and scanner-based colour parameters (B) measured on the different 

source types of Sa Font de la Vila catchment (downstream site). Tracers used are listed 

in Table 6.2. .................................................................................................................. 144 

Figure 6.7. Average particle size distributions of the different source types of Sa Font 

de la Vila catchment (downstream site) and suspended sediment samples. .............. 145 

Figure 6.8. Scatter plots between suspended sediment, source samples, black ash and 

grey ash chromatic coordinate cie x and Total C (A), and Total N (B). R2 linear 

correlation coefficients for the source and sediment samples. ................................... 145 

Figure 6.9. Hydrograph, suspended sediment concentration (SSC) and hyetograph at 

the Sa Murtera sub-catchment (middle plot; upstream site) and the Sa Font de la Vila 

catchment (lower plot; downstream site) during the study period. Average cie x colour 

parameter values for each potential suspended sediment sources type (unburned 

surface (US), burned surface (BS) and channel bank (CB), grey and black ashes (GA and 

BA, respectively) represented as dotted lines. Cie x colour parameter values measured 

on the suspended sediment (SS) samples represented as orange dots. Pie charts show 

suspended sediment average source ascription at both sampling sites together with a 



XI 

 

picture of the suspended sediment collected with the time-integrated sampler during 

each event. ................................................................................................................... 146 

Figure 6.10. (A) Box plots of cie x and cie y scanner-based colour parameters measured 

in 2013 burned source samples, 2016 burned source samples and 2013 unburned 

source samples; (B) Box plots of red, green, blue scanner-based colour parameters 

measured in 2013 burned source samples, 2016 burned source samples and 2013 

unburned source samples; (C) Average MixSIAR source apportionment results using 

2013 burned surface scanner-based colour parameters; (D) Average MixSIAR source 

apportionment results using 2016 burned surface scanner-based colour parameters.

 ...................................................................................................................................... 150 

Figure 6.11. Scatter plots showing suspended sediment samples, grey ash and 

sediment artificial mixtures and black ash and sediment artificial mixtures relationship 

of cie x values and Total C (A), and Total N (B). Arrows indicate ash content increase in 

the artificial mixtures.................................................................................................... 153 

Figure 7.1. (A) Map showing the location of Mallorca in the Western Mediterranean 

Sea. (B) Location of the Es Fangar catchment within the island of Mallorca. Drainage 

network, terraced areas, soil and sediment sampling points over (C) lithology and (D) 

land use maps. .............................................................................................................. 184 

Figure 7.2. Hydrograph, suspended sediment concentration (SSC) and hyetograph at 

the Es Fangar creek during the study period.  Time intervals encompassed by every 

integrated suspended sediment samples (S1 to S13) were represented as black lines 

and sample collection data as green dots plotted in relation with the x axis (time). The 

inset table contains the main hydro-sedimentary variables for the 34 flood events: 

total rainfall (Rtot), rainfall maximum intensity in 30 minutes (Imax-30), total water 

volume (Wvol), maximum peak discharge (Qmax), mean discharge (Qmean), total 

suspended sediment load (SSload), maximum suspended sediment concentration peak 

(SSCmax), mean suspended sediment concentration (SSC mean) one-day (AR1d), three 

days (AR3d) and seven days (AR3d) antecedent rainfall and Zuecco et al. (2016) h index 

values (h index). ............................................................................................................ 190 



XII 

 

Figure 7.3. Normalized root mean square error (nRMSE) between estimated and 

measured colour tracers for the artificial mixtures created with 2 (blue), 3 (orange) and 

4 (green) different source samples. ............................................................................. 192 

Figure 7.4. Boxplots showing the distribution of the (A) Cie x, (b) Cie y, (C) Cie yy, (D) 

Red, (E) Green, (F) Blue, (G) 137Cs and (H) 210Pbex values measured in the suspended 

sediment and source samples. ..................................................................................... 193 

Figure 7.5. Principal Component Analysis with Varimax rotation performed with 

suspended sediment values of Cie y, Cie yy, Red, Green, Blue, 137Cs and 210Pbex ....... 193 

Figure 7.6. Total carbon and total nitrogen content in source and sediment samples.

 ...................................................................................................................................... 195 

Figure 7.7. MixSIAR source apportionment predictions using colour parameters and 

137Cs considering two potential sources: channel-crop and forest-scrubland. The 

numbers in the upper right of each plot indicate the sample number (Figure 7.2). ... 196 

Figure 7.8. MixSIAR source apportionment predictions using colour parameters and 

considering three potential sources: channel bank, crops soil and forest-scrubland. The 

numbers in the upper right of each plot indicate the sample number (Figure 7.2). ... 197 

Figure 7.9. U1–U2 mixing diagram of suspended sediment tracer data (grey dots). 

Number identify sediment samples (Figure 7.2). Sources tracer data were grouped into 

two (Figure A) and three (B) end-members and the interquartile ranges of each end-

member were projected into the mixing space (U space). .......................................... 198 

Figure 8.1. (A) Map showing the location of Mallorca in the Western Mediterranean. 

(B) Location of Es Fangar creek catchment within Mallorca island. (C) Sampling points, 

gauge station, drainage network and terraced areas over land uses map. ................. 233 

Figure 8.2. Pictures of (A) 20 g subsamples bags over the larger piece of mesh, (B) 

sealed samples with the three subsamples bags inside, (C) location inside the channel 

and distance between samples and time-integrated sediment samplers, (D) upstream 

view of Es Fangar stream with the samples nailed to the bed channel and diagram of 

the plan (E) and transverse (F) proportions of the cross section in the Es Fangar outlet

 ...................................................................................................................................... 237 



XIII 

 

Figure 8.3. Water level, hyetograph and sedigraph at the Es Fangar station during the 

study period, November 2018-November 2019. Points indicate sample collection dates 

(in-channel samples in red, TIS samples in yellow) and the green discontinued line the 

submersion limit of the in-channel samples. ............................................................... 237 

Figure 8.4. Particle size distribution of (A) forest, (B) crop, (C) scrubland, (D) TIS 

samples and (E) SSA at the different sampling times (E). ............................................ 240 

Figure 8.5. Coefficient of variation of soil properties measured on the in-channel 

samples during four different periods: (A) the seven first days of submersion, (B) the 

wet period, (C) the dry period and (D) the whole year. ............................................... 241 

Figure 8.6. (A) Coefficient of variation of FRNs activity and colour properties measured 

in the catchment source samples (Chapter 7), and (B) coefficient of variation of soil 

properties measured on the in-channel samples collected in crop fields and TIS 

samples. ........................................................................................................................ 242 

Figure 8.7. Temporal variability of N, C, S (%), 137Cs, 210Pbex (Bq kg-1) red, green, blue, 

cie x, cie y and cie Y tracer values measured on the in-channel samples. ................... 243 

Figure 8.8. In-channel temporal variability of As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Na Fe, Ca, 

K, Mg measured on the in-channel samples ................................................................ 244 

Figure 8.9. (A) Pearson correlation coefficient between C (orange) and SSA (purple) and 

the rest of soil parameters analysed. (B) Spearman correlation coefficient between C 

(orange) and SSA (purple) and the rest of soil parameters analysed .......................... 245 



XIV 

 



XV 

 

List of tables 

Table 1.1. Title, keywords, journal and status of the research articles of the thesis. ... 19 

Table 4.1. Suspended sediment yield comparison between burned catchments in 

different environments and unburned catchments in Mediterranean environments 

with the values reported in this study (adapted from Smith et al. 2011; Owens et al. 

2013). .............................................................................................................................. 70 

Table 5.1. Basic statistics and p-values derived from the discrimination analysis of the 

specific surface area (m2 g-1) between source materials and bed sediment samples. 108 

Table 5.2. Effects of the particle-size correction factor on the 137Cs and 210Pbex activity 

concentrations of source and sediment materials. ...................................................... 108 

Table 5.3. 137Cs and 210Pbex activity concentrations of source and bed sediment 

materials. ...................................................................................................................... 109 

Table 6.1. Summary table of the type and number of artificial mixtures created in the 

laboratory. Average absolute error between real and estimated proportions using 

spectrometer-based colour parameter in MixSIAR. Real and estimated proportions of 

samples mixed are listed in Supplementary table 6.3, Table 6.4, Table 6.5. ............... 140 

Table 6.2. Tracers with a linear additivity behaviour. .................................................. 140 

Table 6.3. List of events sampled in the upstream site (Sa Murtera) and downstream 

site (Sa Font de la Vila). Total rainfall (P.tot.); maximum rainfall intensity in 30 min 

(IPmax-30); total sediment load (Load); maximum sediment concentration (SS peak), 

and the cie x, cie y and cie yy spectrometer-based colour parameters measured in the 

suspended sediment samples. DS1a and DS1b were sampled simultaneously in the 

same event. .................................................................................................................. 147 

Table 6.4. Average Fallout radionuclide (FRNs) activity (Bq kg−1) in the different source 

and sediment sample groups. ...................................................................................... 148 

Table 6.5. MixSIAR source apportionment using spectrometer-based colour 

parameters, scanner-based colour parameters and fallout radionuclides activity (FRNs) 

for the suspended sediment samples collected at the upstream and downstream sites. 



XVI 

 

It should be note that unburned surface and channel bank sources were joined for 

FRNs at the downstream site. ...................................................................................... 149 

Table 7.1. Individual efficiency of colour parameters to discriminate 2 (channel-crop 

and forest-scrubland) and 3 sources (i.e. channel bank, crop and forest-scrubland). 194 

Table 7.2. Summary of the seasonal distribution, predicted main sediment sources 

(MixSIAR model), hysteretic class (h class) of each flood, and average and standard 

deviation h index values per flood cluster. .................................................................. 200 

Table 7.3. Average and standard deviation values per cluster of the following variables: 

total rainfall (Rtot), rainfall maximum intensity in 30 minutes (Imax-30), total water 

volume (Wvol), maximum discharge peak (Qmax), average discharge (Qmean), total 

suspended sediment load (SSload), maximum suspended sediment concentration 

(SSCmax), mean suspended sediment concentration (SSCmean) and one-day 

antecedent rainfall (AR1d). .......................................................................................... 201 

Table 8.1. List of samples used in the conservativeness experiment. Highlighted in 

green the samples extracted during the wet period, and in yellow samples extracted 

during the dry period. TIS refers to the fact that samplers were introduced inside a 

time-integrated sediment sampler. ‘Days submersed’ and ‘Days dry’ refer to the total 

number of days that the samples were immersed and outside the water, respectively.

 ...................................................................................................................................... 236 

 

 

 

 

 

 

 

 



XVII 

 

List of acronyms 

AR1d - One-day  

AR3d - Three days antecedent rainfall 

AR7d - Seven days antecedent rainfall 

BNDVI - Blue Normalized Difference Vegetation Index 

CV - Coefficient of variation 

DEM - Digital Elevation Model 

DFA - Discriminant Function Analysis 

dNBR - differenced Normalized Burn Ratio 

DOD - DEM of Difference 

DS - Downstream Site 

DTM - Digital Terrain Model 

EMMA - End Member Mixing Models 

FRNs - Fallout Radionuclides 

GOF – Goodness of Fit 

I30 – Rainfall intensity in 30 minutes 

IPmax-30 - Maximum rainfall intensity in 30 min 

LFF - Large Forest Fires 

LIST - Luxembourg Institute of Science and Technology 

Load - Total sediment load 

nRMSE - normalized Root Mean Square Error  

P.tot - Total rainfall  

PCA - Principal Component Analysis 

PSD - Particle Size Distribution 

Q - Stream discharge 

Qmax - Maximum discharge peak 

Qmean - average discharge 

Rtot – Total rainfall  

SfM - Structure from Motion 



XVIII 

 

SS - Suspended Sediment 

SS peak - Maximum Sediment Concentration 

SSA – Specific Surface Area 

SSC - Suspended Sediment Concentrations 

SSCmax - Maximum suspended sediment concentration 

SSCmean - Mean suspended sediment concentration 

SSload - Total suspended sediment load 

US - Upstream Site 

Wvol - Total water volume  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIX 

 

Abstract 

Soil erosion is a natural process that encompasses weathering, transport and 
deposition of soil particles. These processes are essential in terrestrial geochemical 
cycles. However, the on- and off-site erosion effects are considered to be one of the 
most important causes of terrestrial and aquatic ecosystems degradation. The 
characteristics of the Mediterranean region are marked by complex relationships 
between natural, human, biotic and abiotic variables. In addition, an irregular rainfall 
distribution, strong seasonality and the physiographic landscape characteristics 
promote divergent responses in erosion rates and sediment yields. In this context, the 
Mediterranean basin has the highest sediment yields in all of Europe. In addition, it is 
emerging as a hot spot point in Global Change dynamics, especially with reference to 
climate and land use change, which could generate an increase in erosive and 
sediment transport processes. At the catchment scale, sediment transfer occurs in hill 
slopes, between hill slopes and channels or within channels. Information on the nature 
and relative contribution of sediment sources is a key aspect with regard to designing 
and implementing erosion control strategies in catchments. 

The main objective of this thesis is to identify erosion and sediment transport 
processes in two Mediterranean catchments affected by different global change 
processes at different spatio-temporal scales, improving current techniques for 
sediment origin determination (i.e., reducing uncertainties, time and cost) so it can 
better implemented in catchment management plans. For this purpose, the hydro-
sedimentary dynamics and the origin of the sediments has been investigated on the 
island of Mallorca (Spain), in two small catchments; the Sa Font de la Vila catchment -
4.8 km2, affected by wildfires - and the Es Fangar catchment (3.4 km2), affected by land 
use changes. The combination of sediment fingerprinting and hydro-sedimentary 
monitoring made it possible to assess its hydro-sedimentary dynamics during the study 
period. In Sa Font de la Vila, results showed a gradual decrease in contribution from 
burned sources over time, while in Es Fangar the contributions from crops dominated 
throughout the study period, without substantial changes. Sediment yields were 6.3 t 
km2 yr-1 and 4.5 t km2 yr-1 for Sa Font de la Vila and Es Fangar respectively, low results 
in comparison with other Mediterranean catchments. This was mainly attributed to 
the calcareous lithology, land uses (in Es Fangar catchment), vegetation recovery (in Sa 
Font de la Vila catchment) and agricultural terraces. 

The use of soil colour parameters as tracers was successfully evaluated in the two 
catchments, confirming its suitability as a fast and inexpensive tracer, even in fire-
affected catchments. Furthermore, the strong correlations between the 
measurements made with a spectro-radiometer and a scanner make colour even more 
accessible for its implementation in catchment management plans. The experiment on 
tracer conservatism confirmed that in-channel changes suffered by all the analysed 
tracers (coefficient of variation x ̄ 8.1 ± 8.8%) were generally lower than their spatial 
variability within the catchment (coefficient of variation x ̄16.3 ± 18.5%). Furthermore, 
the colour parameters were the least variable tracers (i.e. the most conservative).  
with a coefficient of variation of 2.6 ± 2.2%. 



XX 

 

Finally, it was not possible to identify the activation patterns of different sediment 
sources combining hydro-sedimentary monitoring and sediment fingerprinting. This 
was probably caused by Es Fangar's catchment stability in terms of the origin of the 
suspended sediment. Es Fangar catchment sediment source stability is attributed to 
lithological characteristics, land uses and the presence of agricultural terraces in the 
study area. However, events of higher magnitude could exceed the sedimentary 
(dis)connectivity thresholds of the rest of the sources, promoting a sediment cascade 
effect. 

The results presented in this thesis are relevant and represent an advance in the 
optimization of the sediment fingerprinting technique. Despite some limitations that 
need to be further investigated, hydro-sedimentary monitoring and sediment 
fingerprinting used in combination was shown to be very useful for integrated 
catchment management plans in Mediterranean environments. 

Key words: Sediment fingerprinting, Mediterranean catchments, hydro-sedimentary 
monitoring, catchment management. 
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Resumen 

La erosión es un proceso natural que comprende la meteorización, transporte y 
depósito de partículas del suelo. Estos procesos son esenciales dentro de los ciclos 
geoquímicos terrestres. Sin embargo, los efectos in situ y ex situ de la erosión se 
consideran una de las causas más importantes de la degradación de la calidad en 
ecosistemas terrestres y acuáticos. Las características de la región mediterránea están 
marcadas por relaciones complejas entre variables naturales, humanas, bióticas y 
abióticas. Además, una distribución irregular de las lluvias, una marcada estacionalidad 
y las características fisiográficas del paisaje promueven respuestas divergentes en las 
tasas de erosión y producción de sedimentos. En este contexto, la cuenca 
Mediterránea presenta los rendimientos de sedimento más altos de toda Europa. 
Además, se perfila como un punto crítico de la dinámica del Cambio Global, 
especialmente en lo que respecta al Cambio Climático y de uso del suelo, lo que podría 
generar un aumento de los procesos erosivos y de transporte de sedimento. A escala 
de cuenca de drenaje, la transferencia de sedimentos ocurre en laderas, entre laderas 
y canales o dentro de canales. La información sobre la naturaleza y contribución 
relativa de las fuentes de sedimento es un aspecto clave para diseñar e implementar 
estrategias de control de la erosión en cuencas de drenaje.  

El objetivo principal de esta tesis es identificar procesos de erosión y transporte de 
sedimentos en dos cuencas mediterráneas afectadas por diferentes procesos de 
cambio global a diferentes escalas espacio-temporales, mejorando las técnicas 
actuales para la determinación del origen de los sedimentos (es decir, reducir 
incertidumbres, tiempo y costo) para su mejor implementación en planes de gestión 
de cuencas de drenaje. Para ello, se investigó la dinámica hidro-sedimentaria y el 
origen de los sedimentos en dos pequeñas cuencas de drenaje de la isla de Mallorca 
(España); Sa Font de la Vila -4,8 km2, afectada por incendios forestales - y Es Fangar 
(3,4 km2), afectada por cambios de usos del suelo. La combinación de la técnica 
sediment fingerprinting y monitoreo hidro-sedimentario continuo permitió evaluar su 
dinámica hidro-sedimentaria durante el período de estudio. En Sa Font de la Vila, los 
resultados mostraron una disminución paulatina de las aportaciones de fuentes 
quemadas a lo largo del tiempo, mientras que en Es Fangar las aportaciones de las 
zonas de cultivos dominaron durante todo el período de estudio sin cambios 
sustanciales. Los rendimientos de sedimentos fueron 6,3 t km2 a-1 y 4,5 t km2 a-1 para 
Sa Font de la Vila y Es Fangar respectivamente, bajos en comparación con otras 
cuencas mediterráneas. Esto se atribuyó principalmente a la litología calcárea de las 
cuencas, los usos del suelo (en Es Fangar), la recuperación de la vegetación (en Sa Font 
de la Vila) y la presencia de terrazas agrícolas. 

El uso de parámetros de color como trazadores se evaluó con éxito en las dos cuencas, 
lo que confirma su idoneidad para su uso como un trazador rápido y económico, 
incluso en cuencas afectadas por incendios. Además, las fuertes correlaciones entre las 
medidas tomadas con un espectro-radiómetro y un escáner, hacen del color un 
trazador muy accesible para su implementación en planes gestión. El experimento 
sobre conservación de las propiedades de los trazadores mostró variaciones bajas en la 
mayoría de los trazadores analizados (coeficiente de variación x ̄ 8,1 ± 8,8%). Estas 
fueron generalmente menores que su propia variabilidad espacial dentro de la cuenca 
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(coeficiente de variación x ̄16,3 ± 18,5%). Además, los parámetros de color fueron los 
trazadores menos variables (i.e. más conservadores) con un coeficiente de variación de 
2,6 ± 2,2%. 

Finalmente, no fue posible identificar los patrones de activación de diferentes fuentes 
de sedimentos combinando el monitoreo hidro-sedimentario y sediment 
fingerprinting. Esto fue causado principalmente por la estabilidad de la cuenca de Es 
Fangar en términos de origen de sedimentos en suspensión. La estabilidad de las 
fuentes de sedimentos se atribuyó a las características litológicas, usos del suelo y la 
presencia de terrazas agrícolas en el área de estudio. Sin embargo, eventos de mayor 
magnitud podrían superar los umbrales de (des)conectividad sedimentaria del resto de 
fuentes consideradas y activarlas. 

Los resultados que presenta esta tesis son relevantes y suponen un avance en la 
optimización de la técnica sediment fingerprinting. Pese a algunas limitaciones que se 
han de seguir investigando, se demostró que la combinación de monitoreo hidro-
sedimentario y sediment fingerprinting es de gran utilidad para los planes de gestión 
integrada de cuencas de drenaje Mediterráneas. 

Palabras clave: Sediment fingerprinting, Cuencas mediterráneas, monitoreo hidro-
sedimentario, Gestión de cuencas de drenaje. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XXIII 

 

Resum 

L'erosió és un procés natural que comprèn la meteorització, transport i dipòsit de 
partícules sòl. Aquests processos són essencials dins dels cicles geoquímics terrestres. 
No obstant això, els efectes in situ i ex situ de l'erosió es consideren una de les causes 
més importants de la degradació de la qualitat en ecosistemes terrestres i aquàtics. Les 
característiques de la regió mediterrània estan marcades per relacions complexes 
entre variables naturals, humanes, biòtiques i abiòtiques. A més, una distribució 
irregular de les pluges, una marcada estacionalitat i les característiques fisiogràfiques 
del paisatge promouen respostes divergents en les taxes d'erosió i la producció de 
sediments. En aquest context, la conca Mediterrània presenta els rendiments de 
sediment més alts de tot Europa. A més, es perfila com un punt crític de la dinàmica 
del Canvi Global, especialment pel que fa a el Canvi Climàtic i usos del sòl, la qual cosa 
podria generar un augment dels processos erosius i de transport de sediment. A escala 
de conca de drenatge, la transferència de sediments es dona en vessants, entre 
vessants i canals o dins els canals. La informació sobre la naturalesa i contribució 
relativa de les fonts de sediment és un aspecte clau per dissenyar i implementar 
estratègies de control de l'erosió en conques de drenatge. 

L'objectiu principal d'aquesta tesi és identificar processos d'erosió i transport de 
sediments en dues conques mediterrànies afectades per diferents processos de Canvi 
Global a diferents escales espai-temporals, millorant les tècniques actuals per a la 
determinació de l'origen dels sediments (és a dir, reduir incerteses, temps i cost) per a 
la seva millor implementació en plans de gestió de conques de drenatge. Per a això, es 
va investigar la dinàmica hidro-sedimentària i l'origen dels sediments en dos petites 
conques de drenatge de l’illa de Mallorca (Espanya); Sa Font de la Vila -4,8 km2, 
afectada per incendis forestals - i Es Fangar (3,4 km2), afectada per canvis d'usos del 
sòl. La combinació de la tècnica sediment fingerprinting i monitoratge hidro-
sedimentari va permetre avaluar la seva dinàmica hidro-sedimentària durant el 
període d'estudi. A Sa Font de la Vila, els resultats van mostrar una disminució gradual 
de les aportacions de fonts cremades al llarg del temps, mentre que a Es Fangar les 
aportacions de fonts de cultius van dominar durant tot el període d'estudi sense canvis 
substancials. Els rendiments de sediments van ser 6,3 t km2 a-1 i 4,5 t km2 a-1 per a Sa 
Font de la Vila i Es Fangar respectivament, baixos en comparació amb altres conques 
mediterrànies. Això es va atribuir principalment a la litologia calcària de les conques 
hidrogràfiques, els usos de terra (a Es Fangar), la recuperació de la vegetació (a Sa Font 
de la Vila) i la presència de terrasses agrícoles. 

L'ús de paràmetres de color com a traçadors es va avaluar amb èxit en les dues 
conques, la qual cosa confirma la seva idoneïtat per al seu ús com un traçador ràpid i 
econòmic, fins i tot en conques afectades per incendis. A més, les fortes correlacions 
entre les mesures preses amb un espectre-radiòmetre i un escàner, fan del color un 
traçador molt accessible per a la seva implementació en plans gestió. L'experiment 
sobre conservació de les propietats dels traçadors, va mostrar variacions baixes en la 
majoria dels traçadors analitzats (coeficient de variació x ̄8,1 ± 8,8%). Aquestes van ser 
generalment menors que la seva pròpia variabilitat espacial dins de la conca (coeficient 
de variació x ̄16,3 ± 18,5%). A més, els paràmetres de color van ser els traçadors menys 
variables (i.e. més conservadors) amb un coeficient de variació de 2,6 ± 2,2%. 
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Finalment, no va ser possible identificar els patrons d'activació de diferents fonts de 
sediments combinant el monitoratge hidro-sedimentari i sediment fingerprinting. Això 
va ser causa principalment a l'estabilitat de la conca d'Es Fangar en termes d'origen de 
sediments en suspensió. L'estabilitat de les fonts de sediments s'atribueix a les 
característiques litològiques, usos de sòl i la presència de terrasses agrícoles en l'àrea 
d'estudi. No obstant això, esdeveniments de major magnitud podrien superar els 
llindars de (des)connectivitat sedimentària de la resta de fonts considerades i activar-
les. 

Els resultats que presenta aquesta tesi són rellevants i suposen un avanç en 
l'optimització de la tècnica sediment fingerprinting. Malgrat algunes limitacions que 
s'han de seguir investigant, es va demostrar que la combinació de monitorització 
hidro-sedimentari i sediment fingerprinting és de gran utilitat per als plans de gestió 
integrada de conques de drenatge Mediterrànies. 

Paraules clau: Sediment fingerprinting, conques mediterrànies, monitorització hidro-
sedimentària, gestió de conques de drenatge. 
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1. Introduction 

1.1. Soil erosion and sediment transport processes in 
drainage catchments 

Soil erosion is a natural process that encompasses the detachment, transport and 

deposition of soil particles driven by a specific force (i.e. water, wind, etc.). Thus, soil 

erosion plays a key role in the geological cycle (e.g. Garrels and Mackenzie, 1971; Wold 

and Hay, 1990), terrestrial geochemical cycles (e.g. Berhe et al., 2007; López-

Bermúdez, 1990; Ludwig and Probst, 1996), aquatic ecosystems (e.g. Kjelland et al., 

2015; Newcombe and Macdonald, 1991) as well as coastal areas and delta evolution 

(e.g. McLaughlin et al., 2003). However, erosion on-site effects are considered to be 

one of the most significant causes of soil quality degradation in natural, agricultural, 

and forest ecosystems and, therefore, in crop yield reduction (Pimentel and Kounang, 

1998). Erosion global predictions, based in high spatial resolution Revised Universal 

Soil Loss Equation (RUSLE)-based semi-empirical modelling approach (GloSEM), 

determined global erosion in potential soil erosion rates of  Pg yr-1 for 2015 

(Borrelli et al., 2020). In addition, climatic predictions indicate an evolution of the 

hydrological cycle that can promote an increase of global water erosion processes 

around 30 to 66% (Borrelli et al., 2020). These trends in terrestrial systems, combined 

with an accelerated population growth, point erosion as a serious worldwide 

environmental and a human health issue (Pimentel, 2006). 

The term Catchment is used in British English as a synonym for a river basin, whereas 

watershed is more associated with the line dividing two river basins. Therefore, a 

catchment is a topographical unit delimited by drainage divide watershed that isolates 

a stream system. All the surface area of a catchment drains to the same point, and it 

works as a “hydrological response unit, a biophysical unit, and a holistic ecosystem in 

terms of the materials, energy, and information that flow through it” (Wang et al., 

2016). Drainage catchments integrate all aspects of the hydrological cycle as well as 

erosion and sediment transport processes from sources to sinks within a defined area 

(Sivapalan, 2005). Therefore, catchments are the fundamental landscape unit when it 
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comes to the study of the cycling of water, sediments, and dissolved geochemical and 

biogeochemical constituents. 

The sediment connectivity concept was defined by Bracken et al. (2015) as “the 

connected transfer of sediment from a source to a sink in a system via sediment 

detachment and sediment transport, which is controlled by how the sediment moves 

between all geomorphic zones: on hill slopes, between hill slopes and channels and 

within channels”. Sediment connectivity is ruled by catchment structural features (i.e. 

structural connectivity), determined by its physical characteristics (e.g. morphology) 

and functional features, related with how the structural features interact through 

runoff processes (e.g. runoff generation, sediment transference between catchment 

compartments; i.e. functional connectivity) (Bracken et al., 2015; Najafi et al., 2021; 

Turnbull et al., 2008; Wainwright et al., 2011). Structural connectivity can be assessed 

by applying contiguity indexes, as indices of connectivity (e.g. Borselli et al., 2008; 

Cavalli et al., 2013; Heckmann et al., 2018). However, functional connectivity (or 

process-based connectivity; Bracken et al., 2015) is generally more difficult to measure 

(Calsamiglia et al., 2020; Wainwright et al., 2011). The complexity of the latter lies in 

the fact that it is dependent on the characteristics of the processes that connect the 

different structural catchment units, and therefore, on the magnitude of the events 

and their spatio-temporal distribution. An effective hillslope-to-channel connectivity 

generates a transference of eroded soil particles to the river network, introducing 

sediment into the river system. Size, mass and shape of the sediment particles, in 

combination with flow characteristics determine its transport. Within the channel 

system, coarse sediment particles (i.e. boulders to sand fraction) are transported in the 

lower part of the water column through rolling or saltation mechanisms, whereas, 

finer fractions (i.e. clay and silt) and dissolved sediment are transported in suspension 

within the turbulent flow (Hjulström, 1936). Fluxes altered by fine sediment particles 

transported downstream might modify physical, chemical and biotic processes in 

water bodies as, for example, altering light penetration and temperature, inducing 

siltation processes or increasing concentrations of nutrient, heavy metals or pesticides 

(Bilotta and Brazier, 2008; Collins and Walling, 2007). Similarly, altered fluxes can 

negatively affect aquatic ecosystems status (Newcombe and Macdonald, 1991; Verkaik 
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et al., 2013), water quality (Horowitz et al., 2007), induce dam siltation and reduce the 

capacity of water reservoirs (Navas et al., 2004; Vörösmarty et al., 2003). 

It is estimated that 95% of the sediment reaching oceans is transported by rivers 

(Syvitski, 2003) and suspended sediment equals 70% of the of the total sediment load 

(Morgan, 2005). Suspended sediment in many rivers normally encompass <2 mm 

fraction, with most of the load being <63 µm (Droppo, 2001; Phillips and Walling, 1995; 

Walling et al., 2000; Walling and Moorehead, 1989). The latest fraction (i.e. <63 µm) is 

considered the most chemically active component of the whole solid load (Foster and 

Charlesworth, 1996; Horowitz et al., 1993). In addition, suspended sediment is mainly 

transported in aggregate/flocculate form (Droppo et al., 1997; Droppo and Ongley, 

1994). Flocs represent a complex interaction between water, inorganic particles, 

organic particles and pores that can exhibit heterogeneous behaviour. Therefore, 

flocculation, with autonomous and interactive physical, chemical and biological 

complex reactions, has significant implications for sediment and sediment-associated 

contaminants transport (Droppo, 2001). Accordingly, increase in the knowledge 

related to the fine sediment transportation related processes is essential to the overall 

understanding of sediment transport and its consequences, and therefore, to attempts 

to mitigate the negative effects derived therefrom. 

Catchment sediment yield (t km-2 yr-1) is “the integrated result of all erosion and 

sediment transporting processes operating in a catchment” (Vanmaercke et al., 

2011b). However, the extrapolation of soil erosion rates to catchment sediment yields 

does not accurately represent the complexity and spatial variations between upstream 

erosive processes and sediment mobilization through hillslopes and channels (de 

Vente et al., 2007; Vanmaercke et al., 2011a; Walling, 1983). The difficulties of linking 

on-site erosion processes with sediment loss through catchment outlet was defined by 

Walling (1983) as the sediment delivery problem. Only a fraction of the upstream 

reaches the outlet in sediment form.  

 



Chapter 1. Introduction 

4 

 

The sediment delivery ratio, is the proportion of sediment that reaches the catchment 

outlet (sediment yield) in relation to the quantified erosion within the catchment 

(gross erosion; t km2 yr-1) (de Vente et al., 2007; Maner, 1958; Walling, 1983) as: 

 

 

Nevertheless, the nature of the catchment, i.e. sediment source location, 

topographical features, channel condition and drainage patterns, vegetation type 

status, land use and soil texture influence the sediment delivery ratio. The influence 

differs for every individual catchment and results in temporal discontinuity and spatial 

heterogeneity in sediment transfer, generating discrepancies between the amount of 

soil eroded and exported at the catchment outlet. This in turn hinders the conception 

of a simple relationship between sediment yield and gross erosion, because the spatial 

and temporal lumping and its black box nature prevent the generation of generally 

applicable predictive rules (Walling, 1983). Technical advances (e.g. sediment tracing, 

connectivity indexes) in the study of geomorphological processes made possible a 

better understanding of source-sink relationships, the role of catchment configuration 

and the influence of natural (e.g. vegetation, soil texture) and human (e.g. agricultural 

terraces, land uses) features. For instance, sediment tracing techniques (e.g. sediment 

fingerprinting) and soil redistribution investigations using environmental radionuclides 

(e.g. 137Cs, 210Pbex and 7Be) used in combination with traditional hydro-sedimentary 

monitoring can be used to establish integrated sediment budgets (Collins et al., 2001; 

Navas et al., 2014; Porto et al., 2011; Walling, 1999; Walling and Collins, 2008). 

Integrated sediment budgets are represented in the form of flow diagrams that 

represent the eroded input/output of sediment from different defined catchment 

compartments to try to elucidate where the sediment is coming from, its transport 

pathways and transported and stored storage zones (e.g. Dietrich and Dunne, 1978; 

Estrany et al., 2012; Slaymaker, 2003). River systems act as “jerky conveyor belts” 

(Ferguson, 1981), where sediment transfer from sources to sinks is irregular over time 

and space. Sediment may be lost and stored in a sink or new eroded sediment may be 
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added to the transfer process. The sediment budget construction requires a deep 

understanding of the four main parts of the conveyor belt: (1) sediment delivered from 

sources, (2) entrainment at critical shear stress, (3) transport downstream, and (4) 

deposition in temporary or permanent sinks (Fryirs, 2013). However, although 

integrated sediment budgets have been proved useful to understand 

erosion/deposition dynamics within catchments, they also have some limitations, as 

the temporal and spatial lumping of sediments (Fryirs, 2013; Walling, 1983). In a 

nutshell, the temporal lumping problem refers to the time resolution of the sediment 

balance. If the sediment budget is constructed using a long time period dataset, results 

integrating sediment delivery processes occurred during different events of different 

magnitude. It is thus not possible to elucidate if the activation of sediment transfer 

within a catchment is associated with low frequency and high magnitude rainfall 

events that cause huge erosive processes (e.g. rill gully erosion) or by lower magnitude 

rain events with a lesser energy processes but continuous, i.e. sheet erosion. 

Conversely, spatial lumping refers to the fact that total erosion and storage processes 

are expressed using a single number (i.e. the sediment delivery ratio). Hence, sediment 

budgets do not account for spatial heterogeneity in a catchment's physical 

configuration, which results in significantly different sediment delivery responses 

within a catchment (i.e. inputs, outputs and storage). Therefore, each sediment source 

has a unique delivery potential, and its position relative to the channel and catchment 

division determines the probability that the sediment contained by a specific source 

will be delivered to the river system.  

In this context, different sediment sources within a catchment can be activated 

depending on predominant hydro-sedimentary drivers (Misset et al., 2019). For 

example, channel actuates as the main sediment source in a catchment when slope-to-

channel connectivity is not effective. The reactivation of fine sediment deposited in 

riverbeds, sediment bars or channel banks is governed by flow rate, shear stress, or 

stream power (Park and Hunt, 2017). Conversely, sediment transfer can also control 

erosion processes on catchment hillslopes. The precipitation intensity, runoff, or mass 

movements drive its effectiveness. However, vegetation changes, mass movements, 

sediment supply exhaustion or human disturbances (e.g. check dams, agricultural 
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terraces) can drastically alter sediment origin (Belmont et al., 2011; Grabowski and 

Gurnell, 2016; Vanmaercke et al., 2017). 

Identification of dominant sediment sources, quantification of their relative 

contributions to suspended sediment loads, as well as the determination of the 

resistance thresholds on the driving forces that activate them, can be an essential part 

of assessing the factors controlling suspended sediment transport as a surrogate of 

erosion problems in river catchments. 

1.2. Sediment delivery in Mediterranean catchments 

In Europe, crop yield reduction caused by soil erosion is estimated as non-significant in 

global terms (Bakker et al., 2007). However, results presented considerable spatial 

variability between northern and southern Europe, the Mediterranean Region being 

considered as the most vulnerable area (Bakker et al., 2007). The Mediterranean 

Region has unique characteristics worldwide, strongly marked by complex 

relationships between natural and human, biotic and abiotic variables (Wainwright, 

2009). An irregular distribution of rainfall and the hot and dry character of summers, in 

combination with lithological, and physiographic characteristics promote divergent 

responses in erosion rates and sediment yields over time and space (García-Ruiz et al., 

2013; Kosmas et al., 1997; Peña-Angulo et al., 2019).  In this context, a compilation of 

sediment yield data from 1,794 different locations throughout Europe showed that ca. 

85% of the data from the Mediterranean region exceeded 40 t km−2 yr−1, and more 

than 50% exceeded 200 t km−2 yr−1, these being the highest rates in Europe together 

with those of mountainous areas (Vanmaercke et al., 2011b). 

The Mediterranean region has been singled out as a hotspot of Global Change 

dynamics, especially referring to the climate and land-use change (Gates and Ließ, 

2001; Paeth et al., 2017). Climate change and land-use change are stated to be the 

major potential drivers of erosion processes through a more intense hydrological cycle 

(Borrelli et al., 2020; Luetzenburg et al., 2020; O’Neal et al., 2005). Climate projections 

for southern Europe predict decreases in rainfall amounts, in combination with rising 

temperatures and high intensity rainfall episodes (Giorgi and Lionello, 2008; Stojković 



Chapter 1. Introduction 

 

7 

 

et al., 2014). It is estimated that rainfall erosivity is more closely related to rainfall 

intensity than to rainfall volume (Borrelli et al., 2020). A change in rainfall amounts, 

combined with dryer conditions and an increase of the intermittency and magnitude of 

rainfall episodes and floods associated can eventually disturb ecosystem equilibrium. 

As a result, geomorphological cycles could be altered, probably increasing erosive and 

land degradation processes (Favis-Mortlock and Guerra, 1999; Olesen and Bindi, 2002). 

As a result of depth economic changes, land cover changes in Mediterranean Europe 

are marked principally by a dichotomous increase of urban and forested areas (Catalán 

et al., 2008; Gates and Ließ, 2001; Pons and Rullan, 2014; Tomaz et al., 2013). 

Urbanization results in a reduction of soil permeability, often resulting in increased 

runoff ratios, higher discharge peaks and lower lag times (Sala and Inbar, 1992). 

Conversely, the increase in forest coverage could lead to opposite effects. Forests 

mainly appeared in abandoned and marginal croplands and agricultural areas, which 

are more prone to high erosion rates (Poesen and Hooke, 1997; Serrat and Ludwig, 

2004). The growth of forest cover generates major soil protection, increasing the 

infiltration capacity, decreasing surface runoff generation and erosive processes 

(Hooke, 2006). However, the combination of forest mass growth, rising temperatures, 

high intensity storms and a lack of forest management can intensify wildfire risk, one 

of the major causes of erosion and soil degradation in Mediterranean environments 

(Shakesby, 2011). Denser vegetation cover and fuel accumulation can produce 

flammable connectivity patches in large areas along the landscapes (Moreira et al., 

2011), with higher occurrence risk of Large Forest Fires (i.e. >500 ha) in fire-prone 

environments. The Mediterranean basin is a fire-prone environment (Pausas et al., 

2008), as evidenced by the strong forest fire regime during the mid and late Holocene 

(Carrión et al., 2003). The climate, characterized by a hot dry summer season, is the 

main control factor of the pyrogeography of the Mediterranean landscapes. The native 

vegetation was adapted to a particular fire regime through mechanisms of regrowth 

and germination (Pausas and Verdú, 2005). Furthermore, some characteristics (e.g. 

volatile compounds, branch and leaves accumulation) of many Mediterranean 

pyrophyte species (e.g. Pinus halepensis) promote the fast spreading of wildfires to 

ensure their community permanence against non-adapted species (Pausas and Verdú, 

2005). 
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The complete or partial removal of the vegetation and litter cover cause a reduction in 

the interception, infiltration, evapotranspiration and sediment trapping. This combined 

with the alteration of some physicochemical soil properties such as water repellence, 

structure stability, texture and particle size distribution (Certini, 2005) can disrupt 

channel-slope connectivity, overland flow generation and sediment yields. Many 

studies have also documented the increase of overland flow generation in post-fire 

environments (Cosandey et al., 2005; Ferreira et al., 2005; Scott and Van Wyk, 1990; 

Stoof et al., 2015). This is caused mainly by the reduction in vegetation cover and the 

increasing of soil hydrophobicity which drastically reduces the response time during 

rainfall-runoff events, especially during the first post-fire year (Candela et al., 2005). 

This scenario, together with a lower aggregate stability, increases the sediment yield in 

hillslopes, as well as the sediment delivery to, and sediment fluxes within river 

channels, which can result in irreversible soil degradation.  

Under the current context of Global Change, it becomes important to implement 

catchment management plans so as to protect this vulnerable environment and 

prevent or diminish modification of its geomorphological cycles. To this end, it is 

necessary to monitor erosive processes and sediment transport, as well as to detect 

erosion hotspots. 

1.3. Catchment hydro-sedimentary monitoring 

Continuous monitoring of water and sediment at catchment scale makes possible the 

quantification of sediment loads, sediment yields, stationary patterns and assessment 

flood event response to different driving forces thresholds or natural and human 

perturbations. At catchment scale, on-site erosion effects have a measurable off-site 

response (i.e. sediment and water yields). Therefore, reliable long- and short-term 

data is essential to assess on- and off-site effects of different erosion processes 

(Phillips, 2010; Walling, 1983). 

Traditionally, manual sampling strategies were used to estimate sediment yields. 

However, continuous electronic monitoring to collect high-resolution and long term 

data replaced these traditional techniques, allowing a more accurate characterization 
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of hydro-sedimentary dynamics (Walling, 1988; Wass and Leeks, 1999). The continuous 

water and sediment monitoring makes possible the analysis of hysteretic patterns in 

the relationship between discharge (Q) and suspended sediment concentrations (SSC). 

Hysteresis in geomorphic systems is defined as a loop-like non-linear behaviour where 

at least two values of a dependent variable are associated with a single value of an 

independent variable (Phillips, 2003; Zuecco et al., 2016). A non-linear behaviour 

between Q and SSC is normally related with runoff generation process at hillslope and 

catchment scales (Camporese et al., 2014; Dooge, 2005). Hysteretic patterns change 

when a driving variable (e.g. rainfall, soil moisture) exceed a certain threshold. As a 

result, abrupt changes can occur in a response variable (e.g. Q, SSC) because different 

hydrological processes may become dominant. Therefore “hysteresis is the 

dependence of a response variable not only on the current value of a driving variable 

but on its past history as well” (Camporese et al., 2014). Many works analyse the 

hysteretic relations between two variables in hydrology: discharge is related with 

rainfall (e.g. Andermann et al., 2012), groundwater (e.g. Fovet et al., 2015), soil 

moisture (e.g. Fortesa et al., 2020), solute concentrations (e.g. Burt et al., 2015), water 

temperature (e.g. Blaen et al., 2012) and suspended sediment concentrations (e.g. 

Fortesa et al., 2021). Between Q and SSC, hysteretic analysis can reveal different 

patterns on sediment connectivity, indicating the activation of different catchment 

compartments and relating it to driving force thresholds. Likewise, changes in 

sediment sources can be performed in the relationship Q and SSC, providing 

information about its foreseeable distance from the measurement point according to 

the rotation direction, the shape of the loop and its area (Williams, 1989). Hysteretic 

clockwise loops are associated with the activation of sediment sources that are close 

to the measurement point, while counter-clockwise loops are associated to sediment 

mobilization from remote sites within a catchment (Giménez et al., 2012; López-

Tarazón and Estrany, 2017; Rovira and Batalla, 2006). Several quantitative indexes 

have been developed to improve hysteretic classification (e.g. Aich et al., 2014; 

Langlois et al., 2005; Lawler et al., 2006; Lloyd et al., 2016). These indexes provide 

quantitative data about hysteretic loops features, allowing the comparisons at 

different spatio-temporal scales, detection in pattern changes, as well as correlation 

with other hydro-meteorological variables such as rainfall, discharge or suspended 
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sediment concentration. However, the evaluation of hysteretic behaviour between Q 

and SSC has been scarcely integrated in catchment management strategies, partially 

due to the differential relationship between sediment and runoff depending on the 

scale of study (de Boer and Campbell, 1989) and the difficult interpretation of complex 

hysteretic loop patterns (Sherriff et al., 2016). 

1.4. Sediment source fingerprinting 

To reduce the negative on- and off-site effects derived from erosion and sediment 

transport processes and apply correct management practices, it is necessary to detect 

erosion hotspots within a catchment. The EU Water Framework Directive (European 

Community, 2000) developed an implicit assumption about the relevance of sediment 

monitoring to assess the role of sediments in the ecological status of water bodies 

(Collins and Anthony, 2008; Perks et al., 2017). Therefore, information on the nature 

and relative contribution of sediment sources in river systems is emerging as a key 

aspect when designing and implementing specific erosion control strategies. 

A methodology for determining the sediment origin that has become very relevant in 

the last 20 years is the sediment source fingerprinting approach also known simply as 

sediment fingerprinting. It has been applied at different temporal scales: from the 

flood event (Gaspar et al., 2019; Martínez-Carreras et al., 2010b) up to determining the 

origin of historically deposited sediments (e.g. over the last ca. 100 years; Pulley et al., 

2018). The first references using tracers to quantify and model sediment origin in 

catchments date back to the 1970s (Klages and Hsieh, 1975; Wall and Wilding, 1976; 

Walling et al., 1979). However, the incorporation of new statistic methodologies, the 

implementation of un-mixing models to quantify the sediment apportion and the use 

of new tracers has increased its use, which is reflected in the increasing number of 

publications every year (Collins et al., 2020; Davis and Fox, 2009; Walling, 2013). 

The technique relies on the comparison of different soil properties (i.e. tracers) 

between samples collected in potential erosion areas and targeted suspended 

sediment samples collected within the fluvial network (Figure 1.1; Haddadchi et al., 

2013; Walling, 2013). In an idealized conceptual framework, (1) soil particles –
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comprising potential source areas within a catchment– are detached and transported 

during rainfall events, (2) the eroded particles are mixed during subsequent 

transportation to and through the fluvial system, (3) the resultant mixture is 

transported by rivers in form of sediment load, (4) the soil properties used as sediment 

tracers reflect the spatio-temporal variations of eroding source sediment contributions 

and (5) source and sediment tracers can be compared in order to quantitatively 

estimate the apportionment of sediment provenance. Thus, a required consideration 

when it comes to correctly apply sediment fingerprinting is that soil and sediment 

properties used as tracers should be representative of the main erosion sources, must 

be measurable and remain stable or vary in a predictable way over time and space 

(Motha et al., 2002). 

 

Figure 1.1. A simplified conceptual model of the sediment source fingerprinting technique based in 3 different 
surface sources (A, B and C; e.g. land uses, lithology) and one subsurface source (D; channel banks). 

Tracers can be categorized in three different groups: (1) geochemical (e.g. inorganic 

elements, radionuclides and mineral magnetism), (2) biochemical (e.g. organic 

elements, stable isotopes, biomarkers, organic chemicals and DNA) and (3) physical 

(e.g. spectrometry, particle size characteristic) (Koiter et al., 2013). Therefore, several 



Chapter 1. Introduction 

12 

 

properties have been used as sediment tracers (Collins et al., 2017; Haddadchi et al., 

2013), including colour parameters (e.g. Barthod et al., 2015; Grimshaw and Lewin, 

1980; Martínez-Carreras et al., 2010a), grain size distribution (e.g. Kurashige and 

Fusejima, 1997; Weltje and Prins, 2007), clay mineralogy (e.g. Eberl, 2004; Gingele and 

De Deckker, 2005), mineral magnetic properties (e.g. Pulley and Collins, 2018; Yu and 

Oldfield, 1993), geochemistry (e.g. Chen et al., 2019; Collins and Walling, 2002), fallout 

radionuclide activities (e.g. Estrany et al., 2016; Evrard et al., 2020; Evrard et al., 2016;  

Wallbrink and Murray, 1993), cosmogenic radionuclides (e.g. Perg et al., 2003), stable 

isotopes (e.g. Fox and Papanicolaou, 2008), biomarkers (e.g. Reiffarth et al., 2016), 

pollen (e.g. Brown, 1985); and enzymatic activity (Nosrati et al., 2011). 

In general, there are four key stages in the application of the sediment fingerprinting 

approach (Figure 1.2). The first step, sampling, encompasses the source classification 

and the source and design of the sediment sampling strategy (Figure 1.2A). There is no 

general protocol for soil and sediment sampling. However, a prior knowledge is 

required of the catchment through field observation, sediment connectivity indexes, 

interviews with local people or aerial photographs analysis to define erosion problem 

areas (Koiter et al., 2013; Krause et al., 2003; Paolo et al., 2004; Upadhayay et al., 

2020). Source classification is normally done according to spatial provenance (e.g. 

tributary sub catchments or geological units) or source typology (e.g. surface vs. 

subsurface sources, land uses) depending on the objectives (Collins et al., 2017). 

Usually, sediment source sampling is carried out following a stratified strategy in a 

single field campaign. Here, it is important to collect representative samples of the 

source groups in areas showing evidence of slope-to-channel connectivity or erosion 

scars for channel bank sampling. On the other hand, the target sediment sampling for 

contemporary studies is usually based on suspended sediment (e.g. Navratil et al., 

2012) or bed sediment (e.g. Collins and Walling, 2007) sampling. Many methods have 

been used to collect suspended sediment samples at the catchment outlets. 

Submersible pumps, auto samplers, portable continuous-flow centrifuge or manual 

sampling using bottles were the most common for sediment sampling during flood 

events (Collins et al., 2017; Davis and Fox, 2009). However, in numerous studies 

(Ankers et al., 2003; Estrany et al., 2016; Evans et al., 2006; Koiter et al., 2013; Laceby 
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et al., 2015; Martínez-Carreras et al., 2010c) the authors opted to collect time-

integrated sediment samples using time-integrated sediment traps (Phillips et al., 

2000). For bed sediment sampling, re-suspension techniques were the most common 

(Duerdoth et al., 2015; Estrany et al., 2011; Lambert and Walling, 1988). Conversely, 

for long-term scales or historical sediment sampling, authors usually extract sediment 

cores from depositional zones, floodplains, reservoirs, wetlands or lake deposits 

(Foster et al., 2006; Li et al., 2020; Miller et al., 2005; Navas et al., 2011; Pulley et al., 

2015). 

 

Figure 1.2. General four key steps in the application of sediment source fingerprinting 

The second step is the pre-processing of sediment and source samples and tracer 

measurements (Figure 1.2B). Samples might be treated to eventually solve some issues 

that influence a tracer’s conservativeness (e.g. sieving at different fractions). In this 

stage, researches largely addressed the influence of particle size and organic matter on 
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tracer values (e.g. Crockford and Olley, 1998; Hill et al., 1998; Koiter et al., 2018; 

Laceby et al., 2017). Several ways to address particle size and organic matter 

differences between sources and sediment are: sieving to a specific size (e.g. He and 

Walling, 1996), removing the organic content (e.g. Pulley and Rowntree, 2016) and 

using correction factors (e.g. Collins et al., 1997). However, there may be processes 

relevant to a tracer’s concentration stability that are independent of particle size or 

organic content, which need to be further investigated. Measurement techniques 

depend on the budget available and the tracer set selection. Although the technique 

has evolved with advances in computing technology and the inclusion of new tracers, 

some of the most used methods are the following: gamma spectrometry to measure 

fallout radionuclides activity (e.g. Owens and Walling., 1996), microwave digestion 

coupled with inductively coupled plasma mass spectrometry (ICP-MS) analysis for 

geochemical elements (e.g. Estrany et al., 2011), magnetic susceptibility sensors for 

mineral magnetics (e.g. Ramon et al., 2020) and diffuse reflectance spectrometers for 

colour measurements (e.g. Martínez-Carreras et al., 2010c). 

At the third stage, tracer accuracy analysis (Figure 1.2C), is mainly focused on tracer 

conservative behaviour and its ability to discriminate between source categories. To 

deal with these two issues, the statistical procedure used most often was described by 

Collins and Walling (2002). This two-step process involves the performing of a Kruskal-

Wallis H test to assess if the selected tracers discriminate between the different source 

categories, and a Discriminant Function Analysis (DFA) so as to select the optimum 

tracer set. However, other static procedures have been used such as Principal 

Component Analysis (PCA; e.g. Walling, 2005), the Mann–Whitney U test (e.g. Carter et 

al., 2003), Wilcoxon rank-sum test (e.g. Juracek and Ziegler, 2009), the Tukey test (e.g. 

Motha et al., 2003), t test (e.g. Hancock and Revill, 2013), conservativeness index and a 

ranking based on consensus (Lizaga et al., 2020a) or tracer-particle size relationships 

and source mixing polygons (Smith et al., 2018). More recently, the use of artificial 

mixtures with known source proportions has been introduced in fingerprint researches 

(e.g. Brosinsky et al., 2014) to investigate the linear additivity behaviour of tracers by 

comparing measured and predicted values using a mass balance approach. 
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Finally, step 4 is the sediment source ascription (Figure 1.2D). Quantitative estimations 

of the relative contributions of each source to sediment samples are assessed 

mathematically by using unmixing models (Collins et al., 1997; Walling and Woodward, 

1995; Yu and Oldfield, 1993, 1989). Recently, Lizaga et al. (2020b) developed the 

FingerPro mixing model as R package, incorporating statistical and graphical tools for 

the selection of unmixing dataset to optimize results. Frequentist linear mixing models 

are normally based on the solving of a system of linear equations based on chemical 

mass conservation. Models are normally constrained as source type contributions sum 

to unity. Solutions are usually obtained by minimizing the errors associated with the 

system of equations, so that the differences between estimated and measured tracer 

values in the target samples are minimised. Additionally, other types of statistical 

models have expanded greatly. Bayesian mixing models (e.g. Abban et al., 2016; Blake 

et al., 2018; Massoudieh et al., 2013; Nosrati et al., 2014; Stock et al., 2018; Stock and 

Semmens, 2016), which allow a better representation of the natural variability in 

sources and sediment data due to their flexible likelihood-based structure. To a lesser 

extent, End Member Mixing Models (EMMA; Mukundan et al., 2010; Rose et al., 2018) 

based on performing a principal component analysis (PCA) with the tracer data 

measured on the sediment samples collected at the outlet, have also been used. 

Despite the constant evolution and improvement of the sediment source 

fingerprinting approach, there are still a number of challenges to be addressed to 

reduce the uncertainties inherent in the technique. These uncertainties are mainly 

associated with sampling methodologies (e.g. Manjoro et al., 2017), spatial variability 

of source material properties (e.g. Du and Walling, 2017), statistical models selection 

and optimization (e.g. Haddadchi et al., 2014; Nosrati et al., 2014; Palazón and Navas, 

2017), and alteration of soil properties during conveyance or temporal deposition 

within the river channel (e.g. Koiter et al., 2013). These aspects warrant further 

research in order to assess the degree to which the assumptions of the sediment 

fingerprinting approach are met. Similarly, land-use managers/regulators have a 

relatively poor understanding of fingerprinting techniques, and therefore do not 

necessarily understand the benefits of incorporating such methods into their 

management framework (Miller et al., 2015). In this respect, the development of 
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economic and rapid methodologies might be essential for its application as a 

catchment management tool. 

1.5. Sediment fingerprinting and hydro-sedimentary 
monitoring as tools for catchment management 

Catchment/watershed management involves all human actions aimed at the 

manipulation of resources so as to provide goods and services without adversely 

affecting the ecosystem status (FAO, 1998). Catchment management has evolved into 

integrated catchment management, which assimilates social, technical and 

institutional dimensions. It can be defined as a “process that recognises the catchment 

as the appropriate organising unit for understanding and managing ecosystem 

processes in a context that includes social, economic and political considerations, and 

guides communities towards an agreed vision of sustainable natural resource 

management in their catchment” (Fenemor et al., 2011). 

Earth science research is essential for catchment management. The best management 

practices require an understanding of how the different elements of the landscape 

(e.g. soil, water, land uses, human structures) interact, and recognition of the linkages 

between upstream and downstream processes. Source control practices are essential 

in catchment management. The empirically-based Universal Soil Loss Equation (USLE) 

and other related models (i.e. Revised Universal Soil Loss Equation [RUSLE], Modified 

Universal Soil Loss Equation [MUSLE], Chemicals, Runoff, and Erosion from Agricultural 

Management Systems [CREAMS], Groundwater Loading Effects of Agricultural 

Management Systems [GLEAMS] and the Water Erosion Prediction Project [WEPP]) are 

often used to predict erosion (Drake and Hogan, 2013). However, despite the 

usefulness of models, a good understanding of physical processes occurring on the soil 

surface and interactions between the different catchment components and sediment 

delivery driving forces is crucial for the development and application of the optimal 

erosion control measures. Therefore, it is necessary to collect reliable information 

about sediment mobilization through hillslopes and within the channel, and 

downstream sediment yields. However, a widespread adoption of standard 

methodologies to evaluate sediment transport dynamics and identify major sediment 
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production areas is still missing (Du and Walling, 2017; McCarney-Castle et al., 2017; 

Walling and Collins, 2008). Information about spatiotemporal variation in suspended 

sediment sources, concentrations and loads can be assessed by a combined approach 

of continuous monitoring of water and sediment fluxes with sediment sources 

fingerprinting. In a highly variable environment such as the Mediterranean Region, 

collecting constant information about sediment delivery throughout the year should 

be considered. Furthermore, long datasets (e.g. several years) are needed in order to 

compute past trends and eventually account for global change. In addition, this 

information is essential for the development of sediment transport models that 

integrate information on sediment origin (Owens et al., 2005; Perks et al., 2017; 

Vercruysse et al., 2019). 

1.6. Hypothesis and objectives 

The working hypothesis of this thesis are: 

H1: Optimization of the sediment fingerprinting technique through research on the 

conservative behaviour of soil parameters and the use of low-cost and fast-to-

measure tracers allowing evaluation of some of the assumptions underlying the 

technique, improvement of its applicability and the reduction of uncertainties. 

 

H2: Hydro-sedimentary monitoring combined with sediment fingerprinting makes 

possible a better identification of the activation patterns of the different sediment 

sources within a catchment, resulting in a useful tool for catchment management. 

 

One general objective is proposed: 

GO1: To identify erosion and sediment transport processes (functional connectivity) 

in two Mediterranean catchments affected by different global change processes at 

different spatio-temporal scales, by improving current techniques for sediment origin 

determination (i.e., reducing uncertainties, time and cost) for its better 

implementation in catchment management plans. 
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The general objective is developed within the five core chapters through the following 

specific objectives: 

SO1: To assess the water and suspended sediment yields and their dynamics in a 

Mediterranean catchment representative of terraced landscapes affected by 

afforestation and recurrent wildfires during the first three post-fire hydrological 

years (2013–2016. 

SO2: To use 137Cs and 210Pbex radioisotopes as tracers to recognise the effect of fire 

on sediment sources during the first post-fire flush in a Mediterranean temporary 

stream three months after a severe wildfire. 

SO3: To evaluate sediment colour parameters for predicting relative contributions of 

burned and unburned sources in fire-affected catchments. 

SO4: To analyse and link sediment sources contributions with the hydro-sedimentary 

response of a catchment, thus determining the main factors regulating sediment 

source contributions and evaluating the potential of hydro-sedimentary monitoring 

combined with sediment fingerprinting as a catchment management tool. 

SO5: To investigate eventual changes occurring within the most common soil 

properties used as tracers in sediment fingerprinting studies due to submersion and 

in-channel storage. 
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1.7. Thesis structure 

The thesis corpus is composed of a paper compendium divided into 9 chapters. 

Chapters 4, 5, and 6 correspond to research articles published in scientific journals, 

Chapter 7 to a manuscript under review for publication, and Chapter 8 to a manuscript 

in preparation for submission (Table 1.1, Figure 1.3.). 

Table 1.1. Title, keywords, journal and status of the research articles of the thesis. 

Chapter Title Keywords Journal Status 

Chapter 4 

Post‐fire hydrological 
response and suspended 
sediment transport of a 
terraced Mediterranean 
catchment 

Sediment delivery 
processes, wildfires, 
terraces, nested 
catchments, 
Mediterranean fluvial 
systems 

Earth Surface 
Processes and 
Landforms 

Published 

Chapter 5 

Source ascription in bed 
sediments of a 
Mediterranean temporary 
stream after the first post-
fire flush 

First flush sediment 
sources, wildfire 
disturbances, 
fingerprinting technique, 
fallout radionuclides, 
Mediterranean fluvial 
systems   

Journal of 
Soils and 
Sediments 

Published 

Chapter 6 
Analysis of post-fire 
suspended sediment sources 
by using colour parameters 

Sediment fingerprinting, 
colour, fallout 
radionuclides, wildfire, 
ash, suspended 
sediment sources 

Geoderma Published 

Chapter 7 

Combining sediment 
fingerprinting and hydro-
sedimentary monitoring to 
assess suspended sediment 
provenance in a mid-
mountainous Mediterranean 
catchment 

Sediment fingerprinting, 
End Member Mixing 
Analysis, hysteresis, 
hydro-sedimentary 
dynamics, sediment 
sources, Mediterranean 
catchments 

Journal of 
Environmental 
Management 

Under 
review 

Chapter 8 

Preliminary results: In-
channel alterations of soil 
properties used as tracers in 
sediment fingerprinting 
studies 

- - 
In 
preparation 
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Chapter 1 is a general introduction that briefly reviews the state of the art of erosion 

processes, the role of hydro-sedimentary monitoring and sediment fingerprinting to 

mitigate negative impacts promoted by the soil loss and sediment transport and their 

potential as management tools. 

Chapter 2 is an overall description of the thesis study areas. 

Chapter 3 details the methods mainly used to achieve the established scientific 

objectives. 

Chapter 4 is related to the specific objective 1. Runoff and suspended sediment 

transport dynamics and its post-fire evolution are analysed in a fire affected 

Mediterranean catchment. 

Chapter 5 is related to the specific objective 2. In this chapter 137Cs and 210Pbex were 

used to quantify the relative contribution of different sediment sources to the fine bed 

sediment temporarily stored on the riverbed surface during the first post-fire flush. 

Chapter 6 is related to the specific objective 3. Here, sediment colour and fallout 

radionuclides are used to distinguish between burned and unburned sources in a fire 

affected catchment. 

Chapter 7 is related to the specific objective 4. In this chapter, two different source 

apportion models were evaluated. After that, changes in source contributions were 

linked to the hydro-sedimentary response of different magnitude flood events to 

determine the main factors regulating sediment contributions. 

Chapter 8 is related to the specific objective 5. Here the conservative behaviour of 

different properties of the sediment was evaluated after a one-year experiment. 

Chapter 9 contains a general discussion and conclusions. 
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Figure 1.3. Links between chapters that compose the thesis paper compendium. The chapter titles have been 
shortened for clarity in the figure. 
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2. Study areas 

2.1. Overview 

Located in the western Mediterranean Sea, Mallorca is the largest island of the 

Balearic archipelago with an area of 3620 km2 (Figure 2.1A). The island's morphological 

structure was determined by its genesis, generated by the compressive stresses which 

occurred during Alpine orogeny in the Upper Cretaceous. Materials from the 

Carboniferous to the Middle Miocene were raised above sea level forming the 

principal mountainous reliefs, while Pliocene and Quaternary materials filled the 

distensile trenches of the Central Plain and the south-eastern coast (Álvaro et al., 

1989). As a consequence, the island is dominated by a SE to NW horst-graben structure 

that compose its principal structural units: the Llevant Ranges, the Campos and 

Manacor basins, the Central Ranges, the Palma, Inca and Sa Pobla basins, and the 

Tramuntana Range (Figure 2.1B). 

This thesis is focused on two small catchments < 5 km2 (the Sa Font de la Vila and Es 

Fangar creek catchments) located in the Tramuntana Range. The study areas are 

representative of the natural and human Mediterranean mountainous landscapes, 

where the complex reliefs strongly determined human occupation, land uses and land 

management practices. In addition, the Sa Font de la Vila catchment was affected 

recurrently by forest fires, including the largest fire registered in the Balearic Islands. 

The Tramuntana Range is the most abrupt horst of the island of Mallorca. It is located 

along the NW coast of the island, in a SE-NW direction (Figure 2.1B). It has a total 

length of ca. 90 km and a maximum width of ca. 20 km, occupying approximately an 

area of 1,000 km2. Its highest point is the Puig Major peak with an altitude of 1,445 

m.a.s.l. The Tramuntana Range structure is mainly composed of Mesozoic materials in 

the form of thrusts on Tertiary deposits. The predominant lithologies were Jurassic 

micrite limestone’s, limestone conglomerates and calcarenites of the Lower Miocene 

superimposed on clays of the Upper Triassic (Keuper; Figure 2.1C). According to the 

Emberger classification, the southern part of the Tramuntana Range shows a 

Mediterranean warm sub-humid climate, while the central and eastern parts were 
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classified as Mediterranean humid and super-humid (Guijarro, 1986). Average annual 

rainfall ranges from 1,200 mm yr-1 to 700 mm yr-1 (Figure 2.1D) with a maximum 

rainfall in 24 hours for a return period of 25 years from 110mm in the western part to 

250 mm in central areas. 

 

Figure 2.1. (A) Location of Mallorca Island in the Western Mediterranean Sea basin. (B) Physical characteristics of 
Mallorca Island and Tramuntana Range location (C) Tramnuntana Range lithology (D) rainfall distribution and (E) 
land use distribution. 

The Tramuntana Range was occupied and exploited by humans during centuries. The 

landscape has been modified for agricultural use through the construction of dry stone 

agricultural terraces, check dam terraces and other human structures. However, the 

economic changes which occurred during the second half of the 20th century caused 

the depopulation of rural areas and a gradual abandonment of an agriculture-based 

economy. As a consequence, afforestation processes in former croplands caused an 

increase of the forest area estimated in Mallorca at 79% between 1971 and 2010 

(MAGRAMA, 2012). Land use distribution according to Corine Land Cover 2018 
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(European Evironment Agency-EEA, 2018) were 72% forest and semi natural areas, 

23.4% agricultural areas, 3.4% artificial surface and 0.6% water bodies (Figure 2.1E). 

2.2. Sa Font de la Vila River catchment 

The Sa Font de la Vila River is a Mediterranean catchment of 4.8 km2 located in the 

Andratx municipality (western Mallorca, Spain; Figure 2.2A and 2.2B), which is affected 

by extensive afforestation of former agricultural land and recurrent wildfires. 

Catchment lithology in bottom valleys consists mainly of Upper Triassic (Keuper) clays 

and loams on gentle slopes (ca. < 10 degrees). Rhaetian dolomite and Lias limestone 

predominate in the upper parts with steeper slopes > 30% (Figure 2.2C). Soils are 

classified as BK45-2bc, corresponding to Calcic Cambisols (Jahn et al., 2006). The fluvial 

network consists of two main streams: (a) Sa Coma Freda (east, 2.3 km2), which has a 

significant groundwater influence with several karstic springs; and (b) Can Cabrit (west, 

2.08 km2), which is not affected by this groundwater influence due to the reduced 

presence of impervious materials. In addition, a check-dam was built at Can Cabrit in 

2007 (5 m high and 16 m long; Figure 2.2D). 

The climate is classified as Mediterranean temperate sub-humid at headwaters and 

warm sub-humid at the outlet (Emberger climatic classification; Guijarro, 1986). The 

average temperature is 16.5°C. The mean annual rainfall is 518 mm yr-1, with an inter-

annual coefficient of variation of 29%. High-intensity rainstorms with a recurrence 

period of 10 years may reach 85 mm in 24 hours (1974-2010; data from the B118 

S'Alqueria meteorological station of the Spanish State Meteorological Agency (AEMET); 

Figure 2.2B). 

In recent decades, the Sa Font de la Vila catchment has been affected by major 

wildfires in 1994 and 2013 (Figure 2.2E). Before the 2013 wildfire, the catchment was 

mainly covered by natural vegetation (84%; Figure 2.2C): 51% forest and 33% 

scrubland. The rest of the catchment was covered by rain-fed tree crops (12%), rain-

fed herbaceous crops (1%) and urban uses (3%). Traditional soil and water 

conservation structures (i.e., hillslope and valley-bottom terraces) cover 37% of the 

total surface area (Figure 2.2D). 
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Figure 2.2. Location of the Mallorca Island within the Mediterranean Sea (A); location of the Sa Font de la Vila 
catchment, the area affected by the July 2013 wildfire, the B'12 S'Alqueria meteorological station and the village of 
Llucmajor (B); lithology (C) land uses and soil conservation practices (D) of the Sa Font de la Vila catchment 
(downstream site) and Sa Murtera sub-catchment (upstream site); and 1994 and 2013 wildfire affected areas as 
well as severity of the 2013 wildfire and 2016 sampling area (E). Channel bank and surface sampling points indicated 
as blue dots and orange squares, respectively 
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Its abandonment and degradation, involving the collapse of dry-stone walls, increased 

the sensitivity of the catchment (Calsamiglia et al., 2017). Collapses were higher on 

those abandoned terraces affected by recurrent fires due to soil degradation (Lucas-

Borja et al., 2018). 

The 1994 fire affected 45% of the catchment surface, whereas the 2013 one reached 

71% (more than half of it had already been burned in 1994). A severity assessment 

with the Normalized Burn Ratio (Escuin et al., 2008) and Landsat 8 images for the 2013 

wildfire assigned high and moderate severity to 24% and 47% of the catchment, 

respectively (Bauzà, 2014. Figure 2.2E). In addition, after the 2013 wildfire the Balearic 

Islands Department of the Environment (Conselleria de Medi Ambient, Agricultura i 

Pesca) implemented a series of post-fire strategies to prevent soil loss and 

degradation, which included mulching, tree planting and the creation of log barriers 

with dead biomass. 

2.3. Es Fangar Creek catchment 

Es Fangar catchment (3.4 km2; Figure 2.3A and B) is located at the north-east side of 

the Tramuntana mountain range in Mallorca (Spain). Altitudes range between 404 

m.a.s.l. and 72 m.a.s.l. with an average slope of 26%. The lithology is composed of 

massive calcareous and dolomite materials from lower Jurassic and dolomite and marls 

formations from the Triassic (Rhaetian) in the upper parts, being Jurassic and 

Cretaceous marl-limestone’s in the valley bottoms (Figure 2.3C). As a consequence of 

its geologic structure, and the high water availability at field capacity of the valley soils, 

the catchment has had an intensive agricultural activity in the past. The stream 

network is natural at the upper parts, however, at the valley bottom the main channel 

was diverted and constricted by dry stone walls for better agricultural land 

exploitation. Check-dam and agricultural terraces were built to control torrential 

floods and avoid soil erosion (Figure 2.3C and D). In addition, subsurface tile drains 

were built in crop lands to promote drainage, avoiding soil saturation during the wet 

season. 16% of the catchment is occupied by soil and water conservation structures, 

which means 32.4 km of dry stone walls. Nowadays, land use occupation is forest 

(47%), rainfed herbaceous crops fields (36%) and scrubland (17%).  
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Figure 2.3. (A) Map showing the location of Mallorca in the Western Mediterranean. (B) Location of Es Fangar 
catchment within Mallorca island. Drainage network and terraced areas over (C) land use and (D) lithology maps. 
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Since the 1950s, as a consequence of an economic transition from the primary to the 

tertiary sector, the agricultural area was reduced by a ca. 17%. Afforestation processes 

have occurred in abandoned fields currently being covered by forests. According to the 

Emberger classification, the climate is Mediterranean temperate sub-humid (Guijarro, 

1986). Mean annual rainfall is 926 mm yr-1 (1964-2017, Biniatró AEMET station, 1.1 km 

west from the study area) with a 23% coefficient of variation and the average annual 

temperature is 15.7 °C. Rainfall amount estimation of 180 mm in 24 hours in a 

recurrence period of 25 years. The hydrological regime is categorized as intermittent 

flashy (49% of zero days; Fortesa et al., 2020a). The annual runoff coefficient ranged 

from 2.9% to 14.2% (average of 10.4%) and quick flow contribution from 9.9% to 45% 

(average of 33%) illustrating a huge intra-annual variability of the rainfall-runoff 

relationship (Fortesa et al., 2020a). 80% of the sediment load is exported during 

autumn and winter, with an annual average sediment yield of 5.38 t km-2 y-1. 
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3. Methodology 

3.1. Overview 

In this chapter it is presented a summary of the main methods used in Chapters 4, 5, 6, 

7 and 8. It is possible to divide in three different groups the principal methodologies 

used to reach the scientific objectives proposed (Figure 3.1). First group, continuous 

water and sediment monitoring (Figure 3.1A), encompass all methods related to 

hydro-sedimentary data acquisition and treatment, hysteretic loop analysis and 

detection of the main driving forces that control suspended sediment transport on the 

study areas (see section 3.2). Second and third groups are related with Sediment 

source fingerprinting. Within the second group are listed (Figure 3.1B) all steps 

followed to recognize main sediment sources in the study areas, including different 

source categories consideration, tracer’s sets, tracer accuracy tests and statistical 

apportion models (see Chapter 3.3). Finally, the third group (Figure 3.1C) explain the 

methodology followed in Chapter 8 to perform the experiment on sediment properties 

conservative behaviour (see section 3.4). 

3.2. Continuous water and sediment monitoring 

Gauge stations were installed in the outlets of the two study areas (i.e. Sa Font de la 

Vila and Es Fangar catchments) to continuously monitor water and suspended 

sediment fluxes (Figure 3.2 and 3.3).  

In Sa Font de la Vila catchment (Chapter 4, 5 and 6), a continuous water and sediment 

yield monitoring programme was implemented by instrumenting two nested gauging 

stations (Figure 3.2), Sa Murtera (an upstream sub-catchment; 1.1 km2) and Sa Font de 

la Vila (closing 4.8 km2). Sa Murtera gauging station is located in the northeast 

headwater area of the Sa Font de la Vila catchment (Figure 3.2A). The monitoring 

station was installed in a place where channel banks consist of dry-stone walls working 

as a control section for higher discharges and another smaller section built for 

measuring base flow. 
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Figure 3.1. Methodological workflow encompassing main methodologies used for (A) continuous monitoring of 
water and sediment, (b) Sediment source Fingerprinting and (C) experiment on the conservative behaviour of 
sediment properties. Inside the red square are listed the methods applied in Sa Font the la Vila catchment and 
inside the black square the methods applied in Es Fangar catchment. 

The gauging station was equipped with a Campbell Scientific CR200X data logger that 

stored the average values of water surface level and turbidity, based on 1-minute 

readings at 15-minute intervals collected by a Campbell Scientific CS451-L pressure 

probe and a OBS-3+ turbidimeter with a double measurement range of 0-1,000/1,000-

4,000 NTU. Additionally, a rising-stage sampler modified from Schick (1967), with 

seven sampling bottles, was installed to provide more information on suspended 

sediment concentrations (SSCs). There is a 12 cm height gap between each bottle, 

totalling a 100 cm stage, with the first bottle located 21 cm above the riverbed. 

Additionally, a Casella tipping bucket rain gauge was installed. 

The Sa Font de la Vila catchment gauging station was also installed in a place where 

channel banks consist of dry-stone walls working as a control section (Figure 3.2B). The 

instruments were the same as for the Sa Murtera gauging station. However, the rising-

stage sampler was set up with twelve bottles, totalling a 200 cm stage. 
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Figure 3.2. Left, Map of Sa Font the la Vila catchment with the area affected by the July 2013 wildfire, the 
delimitation of Sa Murtera sub-catchment and the gauge stations locations. (A) Upstream view of Sa Murtera cross 
section and gauge station. (B) Upstream view of Sa Font de la Vila cross section and gauge station. 

In Es Fangar Creek catchment, a gauging station was installed in 2012 to continuously 

monitor water and suspended sediment fluxes (Figure 3.3). The station was equipped 

with a Campbell CS451 pressure probe and an OBS-3+ turbidimeter with a double 

measurement range of 0-1,000/1,000-4,000 NTU. Campbell CR200X logger stored 15-

minutes average values of water stage and turbidity (based on 1-minute readings). In 

addition, in October 2014 a tipping bucket pluviometer was installed at 500 m.a.s.l. 

and located ca. 2.5 km away from the Es Fangar gauging station. The rain gauge was 

installed 1 m above the ground and connected to a HOBO Pendant G Data Logger - UA-

004-64 recording rainfall at 0.2 mm resolution. 
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Figure 3.3. Left, Map of Es Fangar catchment with main land uses and the gauge stations location. Right, Upstream view Es Fangar 
cross section and gauge station. 

3.2.1. Field measurements and data computation  

In the three gauge stations, stream discharge was measured by an OTT MF pro 

inductive magnetic flow meter, with a measuring range of 0 to 6 m s-1 ± 2% accuracy, 

to develop and fit stage/discharge rating curves. 

Manual depth-integrated suspended sediment samples were consistently collected (n= 

55) during storm events and low flows. Samples were collected at the same sections 

on which turbidity probes and rising-stage samplers were installed. All the water 

samples were filtered by 0.45 µm cellulose esters; the filters were subsequently dried 

at room temperature and weighed on high-precision scales to determine the 

suspended sediment concentrations. 

Turbidity probes were calibrated with commercial turbidity standards to check their 

long-term stability. The turbidity data were converted to a continuous record of SSCs 

by a site-specific concentration/turbidity calibration relationship. The SSCs used for 

calibration were measured in samples collected both manually and by rising-stage 
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samplers. Suspended sediment loads were calculated by combining the records of SSCs 

provided by the turbidity sensors with the continuous records of water discharge. 

The kinetic rainfall energy was calculated by the equation described by Brown and 

Foster (1987): 

 

 

where e is the kinetic energy of 1 mm of rainfall expressed in Mj ha-1 mm, and i is the 

rainfall intensity expressed in mm hr-1. The rainfall erosivity (R) was determined by 

multiplying the kinetic energy of each event and the maximum intensity attained in 30 

minutes (I30). The results were expressed in MJ mm ha-1 h-1. 

 

 

Finally, the spatio-temporal relationship between discharge and sediment transport at 

the event scale was analysed by means of hysteresis loops applying analysis applying 

the classification developed by Williams in Chapter 4 (Williams, 1989) and the h index 

developed by Zuecco et al. (2016) in Chapter 7. 

3.3. Sediment source fingerprinting 

3.3.1. Soil and sediment sampling 

A stratified sampling strategy after field observation and GIS analysis was planned in 

the Sa Font de la Vila and Es Fangar catchments to collect soil samples from main 

sediment sources. 

In Sa Font de la Vila source categories were burned surface soil surface (n= 31), 

unburned surface soil (n= 9) and channel banks (n= 20). However, in Es Fangar 

catchment main land uses were considered as main sources (i.e. forest (n= 5), crop (n= 

6), scrubland soils (n=5) and channel banks (n= 16)). All samples were collected in 

areas with visual evidence of erosion. Surface soil samples were composed by four 

subsamples (0-2 cm depth) collected inside a ca. 3 m radius circular area in order to 
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include the spatial variability of the soil properties, whereas each channel bank sample 

was composed by three subsamples collected in a 10 m transect. 

In addition, five bed sediment samples were collected along the main channel bed 

stem only in Sa Font de la Vila. The samples were collected a week after of high 

intensity storm occurred in 29th October 2013, considering the topographical 

characteristics of the main stem (see longitudinal profile of inlet in Figure 5.2, Chapter 

5) and the wildfire’s effects. During the bed sediment sampling campaign all main 

system channel was completely dry. Each sample consisted of two integrated 

subsamples, collected in the most superficial layer (ca. 5 mm) inside a heterogeneous 

circular area, depending on the surface of each pool. 

Two parallel time integrated sediment trap samplers (Phillips et al., 2000) were 

installed over the channel bed in every gauge station (i.e. Sa Font de la Vila, Sa Murtera 

and Es Fangar) to collect time integrated suspended sediment samples, n= 4 in Sa 

Murtera, n= 5 in Sa Font de la Vila and n= 13 in Es Fangar. 

3.3.2. Laboratory treatment and analysis 

Soil and sediment samples were oven-dried at 40°C, disaggregated using a pestle and a 

mortar and sieved to <63 µm to minimize the differences in particle size composition 

between source/target samples (Walling et al., 1993). The particle size distribution and 

the specific surface area in source and sediment samples were determined using a 

Malvern Mastersizer 2000 (Chapters 5 and 6) and 3000 (Chapters 7 and 8). The 

Shapiro-Wilk (p < 0.05) normality test, Mann-Whitney U test and the Wilcoxon signed-

rank test were applied to determine the particle size distribution similarity between 

each source group (soil samples) and target samples (bed and suspended sediment 

samples). 

After the pre-treatment, each sample was closed tightly and left for more than 21 days 

before activity measurement, to ensure that secular equilibrium had been reached. The 

atmospherically-derived 210Pbex concentration was determined by subtracting the 226Ra-

supported 210Pb concentration from the total 210Pb concentration, as [210Pbex] = [210Pb] – 

0.8 [226Ra], including a commonly used value for the reduction factor to take into account 

the radon emanation coefficient of soils. The 137Cs, 226Ra (via 214Bi at 609.3 keV) and total 210Pb 
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activity concentrations (Bq kg-1) were measured by gamma spectrometry at the 

Environmental Radioactivity Laboratory of the University of the Balearic Islands using a 

high-purity coaxial intrinsic germanium (HPGe) detector, cooled by liquid nitrogen, 

shielded by 15 cm of low-background iron and equipped with high-voltage power supply, 

preamplifier, amplifier and multichannel analyser as an interface to a PC-type computer. 

The system was calibrated by a soil standard containing 210Pb provided by Exeter University 

and a CG2-standard (241Am, 109Cd, 139Ce, 57Co, 60Co, 137Cs, 113Sn, 85Sr and 88Y) prepared and 

certified by the Centre for Energy, Environment and Technology Research (CIEMAT, the 

Spanish National reference for nuclear physics magnitudes), thus achieving a useful energy 

range from 25 keV to 10 MeV with a resolution of 5 keV and a detection efficiency of 

0.99% for 137Cs, 1.10% for 226Ra and 4.63% for 210Pb. The minimum detectable activities have 

been of the order of 1 Bq kg-1 for 137Cs, 2 Bq kg-1 for 226Ra and 12 Bq kg-1 for 210Pb, and the 

uncertainties of the measurements less than 10%. As the same geometry was used for the 

standards and samples (less than 100 g in a vessel wide enough to assume that there are 

no self-absorption effects), there was no need to apply any correction factor.  

Total carbon (C) and nitrogen (N) were measured by high-temperature combustion 

using a TruSpec CHNS, LECO. Diffuse reflectance was measured in a dark room by a 

spectroradiometer (ASD FieldSpect-II) at 1 µm steps over the 400-2500 µm range. The 

spectrometer was located in a tripod perpendicular to a flat surface, at 10 cm from the 

reference standard panel of known reflectivity (Spectralon). The soil and sediment 

samples were placed in transparent P.V.C. round petri dishes (4.7 cm diameter; Pall 

Corporation) and carefully smoothed with a spatula to minimize micro shadow effects 

due to surface roughness. The samples and the Spectralon were illuminated at an 

angle of 30º by a 50-w quartz halogen lamp placed at ca. 30 cm of distance. Following 

the International Commission on Illumination (CIE, 1931), CIE xyY colour coefficients 

were computed (i.e. cie x, cie y and cie yy) from the spectra reflectance measurements 

and the RGB colour values (i.e. red, green and blue). Then, the ColoSol software, 

developed by Viscarra Rossel et al. (2006), was used to estimate the Munsell HVC (i.e. 

Munsell H, Munsell V and Munsell C), CIE XYZ (i.e. cie X, cie Y and cie Z), CIE LAB (cie L, 

cie a* and cie b*), CIELUB (i.e. cie L, cie u* and cie v*), CIELHC (i.e. cie L, cie H and cie 

C) and decorrelated RGB (i.e. HRGB, IRGB and SRGB) colour parameters, as well as the 

redness index (i.e. RI) and Helmholtz chromaticity coordinates (i.e. DW nm, Pe %). 
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In addition, samples were placed in transparent plastic bags (7 * 5 cm) and scanned 

with an office scanner (Konika Minolta bizhub C554e; e.g. Krein et al., 2003; Pulley and 

Rowntree, 2016). The instrument was not calibrated. Red, green and blue colour 

parameters (i.e. RGB model) were extracted from the scanned images using GIMP 2 

open-source image-editing software. Then, the procedure using ColoSol software 

described in the previous paragraph was applied to convert the red, green and blue 

into other colour parameters. 

Samples were digested according to the microwave digestion USEPA 3051A method, as 

follows: Pulverized soil samples (0.5 g) were transferred into polytetrafluoroethylene 

tubes, where 9 ml of HNO3 and 3 ml of HCI, of high analytical purity, were added. 

Samples were placed in a microwave oven (Multiwave GO, Anton Paar, Austria) for 5 

minutes on the temperature ramp, the necessary time to reach 175 °C; then this 

temperature was maintained for an additional 10 minutes. After digestion, all extracts 

were transferred to 100 ml flasks, filling with ultrapure water (Millipore Direct-Q 

System) and were filtered through 0,45 µm nylon filters (Labbox Labware, S.L). High- 

purity acids were used in the analyses (PamReac ApplyChem, SLU). Glassware was 

cleaned and decontaminated in a 10% nitric acid solution for 24 hours and then rinsed 

with distilled water. Calibration curves for metals determination were prepared from 

standard 1,000 mg l-1 (Sharlau, Spain). The concentrations of metals in the extracts 

were determined by ICP-AES (DV Optima5300, Perkin Elmer®, Inc.) equipped with a 

GemCone pneumatic nebulizer for viscous solutions and solutions with high content of 

dissolved solids (Waltham, MA, USA). 

3.3.3. Particle size correction 

Particle size can affect tracer concentrations on soil and sediment samples (Laceby et 

al., 2017). For 137Cs and 210Pbex, higher activity concentrations were observed in the 

fine particle size fractions (He and Walling, 1996) due to the increasing of the specific 

surface area (hereafter SSA, m2 g-1) in these fractions (Horowitz, 1991; Rawlins et al., 

2010). In Chapter 5, to minimize the possible element concentration variations 

generated as a result of particle-size distribution between source and target sediment 

samples, size fractionation to 63 µm was combined with correction procedures. 
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Particle-size correction factor applied in Chapter 5 was:  

 

 

where C is the measured mean property concentration in source material, CC the 

property concentration corrected for particle size using SSA, Sx the SSA of suspended 

or deposited sediment collected at each location x, and SS is the mean SSA of the 

source to be corrected. Accordingly, the particle-size correction factor was applied to 

those source sample groups that showed significant statistical differences with each 

other and with the targeted bed sediments, to avoid errors in tracer concentrations 

caused by the differential tracer adsorption of the finest particles (Smith and Blake, 

2014). 

3.3.4. Tracers accuracy 

Artificial mixtures were made from 2, 3 and 4 different source samples (Chapter 6 and 

7). In addition, and to investigate ash influence on the colour parameters in Chapter 6, 

18 artificial samples were created mixing suspended sediment and ash (black and grey) 

in different proportions. The ash proportion was gradually modified from 10% to 90% 

to observe the influence of ash on sediment colour variation. 

The individual accuracy and linear additivity behaviour of some tracers were assessed 

by comparing measured values and predicted values by means of a mass balance 

approach in artificial mixtures (i.e. tracer values in the mixture are equal to the sum of 

contributions from each artificially mixed sample; Chapter 6 and 7). 

Kruskal-Wallis H tests were performed to assess source discrimination potential of the 

selected tracer’s. Discriminant Function Analysis (DFA) checked the discriminatory 

potential of each tracer group (taking selected tracers as independent variables) and 

calculated the percentage of correctly classified samples (leave-on-out cross-

validation). 

Range tests were used to exclude potentially non-conservative tracers in each 

individual suspended sediment sample. Therefore, the tracers in suspended sediment 
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and artificial mixtures that showed values outside minimum and maximum source 

range values were discarded. 

3.3.5. Source apportionment of sediment sources 

The relative contributions of the different sediment sources were determined by using 

different methodologies as shown in the different chapters.  

In Chapter 5, it was used a frequentist multivariate mixing model proposed by Collins 

et al.  (1997). The model solves a linear equations system, based in a conservative 

mass balance, multiplying different proportions of each of the sources and the sum 

between them. Results always reach a hypothetical sample that totals 100%. The 

procedure iterates a defined number of times until the options that are closest to the 

proportion of the target sample are determined.  

Robustness of the solutions were assessed by a mean goodness of fit (GOF, modified 

from Motha et al. 2003): 

 

 

where bi is the value of tracer property i (i = 1 to n) in the bed sediment sample, ai,j is 

the value of tracer property i in source type j (j = 1 to m), xj is the unknown relative 

contribution of source type j to the bed sediment sample, m is the number of source 

types, and n is the number of tracer properties.  

In Chapters 6 and 7 the MixSIAR Bayesian tracer mixing model framework (Stock et al., 

2018), implemented by Stock and Semmens (2016) as an open-source R package, was 

used to estimate the relative contribution of each source to the suspended sediment 

samples and the artificial mixtures. 

The fundamental mixing equation of a mixing model is: 
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where bi is the tracer property i (i = 1 to n) measured in a suspended sediment sample, 

ai,j is the value of the tracer property i in each source sample j (j = 1 to m), wj is the 

unknown relative contribution of each source j to the suspended sediment sample. 

MixSIAR accounts for variability in the source and mixture tracer data with the ability 

to incorporate covariance data to explain variability in the mixture proportions via 

fixed and random effects (Stock and Semmens, 2016; Stock et al., 2018). This is 

especially useful in this study because of the collinearity between colour parameters of 

the different chromaticity coordinates. Hence, a discriminant function was not used to 

select an optimum group of tracers, as weak tracers can only improve model 

representation. MixSIAR was formulated by using sediment type as a factor and an 

uninformative prior (Blake et al., 2018). The Markov Chain Monte Carlo parameters 

were set as very long: chain length = 1,000,000, burn = 700,000, thin = 300, chains = 3. 

Convergence of the models was evaluated by the Gelman-Rubin diagnosis.  

Finally, the End Member Mixing Analysis (EMMA) approach (Christophersen and 

Hooper, 1992; Hooper, 2003) was applied in Chapter 7. Source categories were 

considered as end members with a fixed composition, conservative and distinguishable 

between them, while sediment samples were a mixture of these end members. We 

apply the diagnostic tools described by Hooper (2003). First, a bi-variable scatter plots 

were performed to identify if the tracers behave linearly conservative in the sediment 

samples. The tracers suggested linearly conservative mixing when had at least a linear 

trend of “r2> 0.5, p-value <0.01” with at least one of the other tracers used (James and 

Roulet, 2006). Then, a principal component analysis (PCA) was performed on the 

standardized values of the correlation matrix. The values were standardized by 

subtracting the average concentration of each tracer and dividing it by its standard 

deviation. Residuals were defined subtracting the original value from its orthogonal 

projection. 
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3.3.6. Experiment on conservative behaviour of sediment 
properties  

In Chapter 8, twenty-seven representative samples of potential sediment sources were 

introduced within the channel of Es Fangar catchment during a whole year to 

investigate the conservative behaviour of sediment properties (i.e. total C, N, S, 137Cs, 

210Pbex, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Zn, Na, Fe, Ca, K and Mg and colour 

properties) 

Samples were introduced in 5*7 cm white polyamide bag with a 25 μm diameter mesh 

and were sealed using cable ties. Sealed samples were placed inside a piece of the 

same mesh and were sealed again with cable ties. The double layer of polyamide mesh 

allowed water to flow avoiding an excessive material loss. 

Samples were placed near the gauging station that close Es Fangar creek catchment 

(Figure 3.3). In this point the channel has a cross-section with a rectangular broad-

crested weir for low water stages (see dimensions in Figure 8.2E and F, Chapter 8). 

Samples were located 70 cm downstream from the wide-crested weir concrete 

structure. Eight iron bars (70 cm each) were nailed in to the channel bed (ca. 30 cm) 

and samples were fixed to the metal bars using cable ties. In addition, four samples, 

were introduced inside a time-integrated sediment sampler (Phillips et al., 2000) fixed 

at 5 cm from the channel bed (Figure 8.2C, Chapter 8). After that, eight time intervals 

were stablished to collect the samples throughout the year (i.e. 7, 30, 60, 90, 150, 210, 

270, 365 days). Sample properties and analysis were exposed in section 3.3.2. 

laboratory treatment and analysis. 

Coefficients of variation expressed in % (i.e. dividing the sample standard deviation by 

the mean and multiplying it by 100) were calculated for all soil properties considered. 

Thus, the relative dispersion of every soil parameter data set can be determined and 

compared with data sets belonging to different soil parameters.  

Coefficient of variation (CV) was calculated to measure samples time (samples 

introduced within the channel in different time intervals) and spatial variability. Time 

CV was also divided in four time intervals. The time intervals considered were the 

following: initial submersion (i.e. 0- days), the period with constant flow (wet period, 
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7-90 days), the period without flow (dry period, 150-270 days) and the whole year. To 

identify the spatial variability of the different soil parameters within the catchment, it 

has been used data from forest (n= 6), crop (n= 5) and scrubland (n= 5) source samples 

from Chapter 7. In addition, a Pearson and spearman correlation coefficients were 

performed to observe correlations between the different soil properties and grain size 

(expressed as SSA; m2 kg-1), and between soil properties and total C content in 

percentage, as an approximation to organic matter content. 
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4. Post‐fire hydrological response and suspended 
sediment transport of a terraced 
Mediterranean catchment 

Abstract 

In July 2013, a wildfire severely affected the western part of the island of Mallorca 
(Spain). During the first three post-fire hydrological years, when the window of 
disturbance tends to be more open, the hydrological and sediment delivery processes 
and dynamics were assessed in a representative catchment intensively shaped by 
terracing that covered 37% of its surface area. A nested approach was applied with 
two gauging stations (covering 1.2 km2 and 4.8 km2) built in September 2013 that took 
continuous measurements of rainfall, water and sediment yield. Average Suspended 
Sediment Concentration (1,503 mg l-1) and the maximum peak (33,618 mg l-1) were 
two orders of magnitude higher than those obtained in non-burned terraced 
catchments of Mallorca. This factor may be related to changes in soils and the massive 
incorporation of ash into the Suspended Sediment flux during the most extreme post-
fire event; 50 mm of rainfall in 15 minutes, reaching an erosivity of 2,886 MJ mm ha-1 
h-1. Moreover, hysteretic counter-clockwise loops were predominant (60%), probably 
related to the increased sensitivity of the landscape after wildfire perturbation. Though 
the study period was average in terms of total annual precipitation (even higher in 
intensities), minimal runoff (2%) and low sediment yield (6.3 t km2 y-1) illustrated how 
the intrinsic characteristics of the catchment, i.e. calcareous soils, terraces and the 
application of post-fire measures, limited the hydrosedimentary response despite the 
wildfire impact. 

 

Keywords: Sediment delivery processes; wildfires; terraces; nested catchments; 
Mediterranean fluvial systems 
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4.1. Introduction 

Wildfires seriously disturb the dynamics and processes of natural environments, 

causing severe changes in the hydrological and geomorphological cycles of fire-prone 

landscapes (Shakesby and Doerr, 2006). The modification or complete removal of the 

vegetation and litter cover, which reduces interception, infiltration, evapotranspiration 

and sediment trapping following a wildfire, and the alteration of important 

physicochemical soil properties, such as water repellence, structure stability, texture 

and particle size distribution (Boix-Fayos, 1997; Úbeda and Outeiro, 2009), can change 

the channel-slope connectivity scenario, the overland flow rates and the sediment 

yield during the window of disturbance, as originally described by Prosser and Williams 

(1998). Many studies have documented an increase in overland flow generation (Scott 

et al., 1998; Cerdà and Doerr, 2005) and the reduction of the rainfall-runoff response 

time (Candela et al., 2005), especially during the first post-fire year. This scenario 

increases the sediment yield on hillslopes, as well as sediment delivery to river 

channels and sediment fluxes within them, which can lead to irreversible soil 

degradation (Castillo et al., 1997). 

The Mediterranean basin is a fire-prone environment. The climate, characterized by a 

warm, dry summer season, is the primary factor that controls the pyrogeography of its 

landscapes, in which the irregular rainfall regime with torrential events substantially 

increases the risk of post-fire erosion. Furthermore, human land use during the last 

millennium has led to extensive changes in Mediterranean landscapes (Hooke, 2006). 

Deforestation and terracing of marginal lands for agricultural purposes changed the 

natural fire regime for centuries, providing soil stability and substantially reducing 

slope-to-channel sediment connectivity. Since the second half of the 20th century, the 

abandonment of these traditional agricultural lands –resulting from rural depopulation 

and the outsourcing of the economy– has generated afforestation processes in those 

areas previously occupied by crops (Grimalt et al., 1992; Tomaz et al., 2013). The 

colonization of these areas by natural vegetation in combination with a lack of 

management makes them a potential source of sediments that can be abruptly 

released after wall collapse (Lesschen et al., 2008; Calsamiglia et al., 2017). In addition, 

few appropriate fire prevention measures are taken. These measures, together with 



Chapter 4. Post‐fire hydrological response and suspended sediment transport of a terraced Mediterranean 

catchment 

 

63 

 

the effective fire suppression policies implemented in recent years, have promoted an 

increase of fuel loads in the Mediterranean forests. As an example, in the Balearic 

Islands (archipelago located in the Western Mediterranean), forest fuel loads 

increased by 19% between 1999 and 2010 (MAGRAMA 2012). This process intensifies 

the risk of Large Forest Fires (LFF; i.e. > 500 ha) that may result in several changes in 

hydrological and geomorphological processes in the affected catchments.  

Water and sediment flux monitoring at the catchment scale can provide more 

knowledge of the spatial and temporal evolution of these burned areas. Their role in 

delivering sediment and associated chemicals (e.g., nutrients and contaminants) to 

downstream water bodies, with associated consequences for water resources and 

aquatic habitats, can be defined (Smith et al. 2011a; Owens et al. 2013). In a nested 

catchment approach, spatial variations in the sediment delivery processes can be 

assessed, leading to greater understanding of the relationship between the catchment 

area and the sediment yield (Ferreira et al., 2008; Lane et al., 2011 and 2012). 

Although wildfires tend to increase sediment delivery and sediment fluxes within river 

channels, recent studies have emphasized that there is considerable variation in 

hydrological and sediment transport processes at different temporal and spatial scales, 

even within the same catchment (Mayor et al., 2007; Owens et al., 2013; Vieira et al., 

2015). Therefore, the nested catchment approach is a reliable method for evaluating 

runoff generation and sediment transport and their evolution over time at catchment 

scale in burned landscapes. 

The aim of this paper is to assess the water and suspended sediment (SS) yields and 

their dynamics in a small catchment (i.e. < 5 km2) during the first three hydrological 

years (2013-2016) after the largest wildfire in the Balearic Islands (2,450 ha in July-

August 2013), using the nested catchment approach (i.e. 1 and 5 km2) during the 

period in which the window of disturbance is precisely most open. The specific 

objectives were to (a) analyse the runoff and SS transport dynamics and their post-fire 

evolution and (b) determine the different hydrological and sediment dynamics along 

the main channel system in a representative catchment of terraced landscapes 

affected by afforestation and recurrent wildfires. 
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4.2. Study area 

Sa Font de la Vila (Figure 4.1A and 4.1B) is a 4.8 km2 catchment located in Pariatge 

County (Andratx, western part of Mallorca Island). It is characterized by the 

afforestation of former agricultural land and has been affected by recurrent wildfires. 

The lithology is mainly composed of Upper Triassic (Keuper) clays and loams in the 

valley bottoms with gentle gradient slopes (ca. <10%), which –together with the high 

water availability at field capacity of the soils– facilitate agricultural development. 

Raethian dolomites and Lias limestones predominate in the upper parts of the 

catchment (Figure 4.1E). The average gradient of the Sa Font de la Vila catchment is 

38% (Figure 4.1F), although 50% of the surface area features gradients less than 15%. 

The soils are classified as BK45-2bc, corresponding to Calcic cambisols (FAO, 2006). The 

fluvial network consists of two main catchments: Sa Coma Freda (2.3 km2) and Can 

Cabrit (2.08 km2) rivers. The Sa Coma Freda fluvial regime is characterized by 

substantial groundwater influence, with several karstic springs. The Can Cabrit 

catchment is not affected by this groundwater influence, as there are fewer 

impervious materials that minimize groundwater upwelling. In addition, the Can Cabrit 

River is also constricted by a check dam, built in 2007. This is 5 m high and 16 m long 

(Figure 4.1C) and retains most of the fluxes before they reach the downstream part of 

the Sa Font de la Vila catchment. Sediment deposits of up to ≈ 40 cm on the bottom 

behind the dam were observed during fieldwork in January 2016. 

The climate is classified on the Emberger climate scale (Guijarro, 1986) as 

Mediterranean temperate sub-humid at the catchment headwaters and warm sub-

humid at the outlet. The average temperature is 16.5°C (1974-2010, data from AEMET 

–the Spanish Meteorological Agency). The mean annual rainfall is 531.7 mm y-1 (1974-

2010, data from B118 s’Alqueria d’Andratx AEMET station, see location in Figure 4.1B), 

with an inter-annual coefficient of variation of 23%. High-intensity rainstorms with a 

recurrence period of 10 years may generate 85 mm of rainfall in 24 hours. Before the 

wildfire in 2013, the Sa Font de la Vila catchment was mainly covered by natural 

vegetation (71%; i.e. 52% forest and 19% scrubland, Figure 4.1C). The rest of the 

catchment was covered by rain-fed trees (23%) and herbaceous crops (6%). As a result 

of past intensive farming, agricultural terraces (i.e. terraced fields, step terraces and 
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check dam terraces) occupy 37% of the area (179 ha) with a total length of 147 km of 

dry-stone walls (Figure 4.1C), of which 75.1 ha are well-maintained and 103.7 ha 

abandoned, with an average collapse point density of 12 collapses km-1 and 55 

collapses km-1, respectively (Calsamiglia et al., 2017). 

 

Figure 4.1. (a) Map of the location of Mallorca in the Mediterranean Sea; (b) location of the area affected by the 
July 2013 wildfire in Pariatge County; (c) land uses and soil conservation practices; (d) 1994 and 2013 wildfire-
affected areas, as well as severity of 2013 wildfire; (e) lithology; and (f) gradient slope of the Sa Font de la Vila 
catchment. 
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The catchment has been affected by two major wildfires in the last twenty years, as 

depicted in Figure 4.1D. In 1994 25% of the catchment area was burned, while in 2013 

the fire reached 71% of its surface, 30% of which had already burned in 1994. In the 

2013 wildfire, the results of a burn severity assessment that followed the Normalized 

Burn Ratio approach (Escuín et al., 2008) and used Landsat 8 images indicated extreme 

fire severity for 24% of the catchment and moderate fire severity for 47% (Bauzà, 

2014). 

4.3. Material and Methods 

4.3.1. Continuous monitoring network 

In September 2013, one month after the wildfire, gauging stations were installed at 

the outlet of two nested catchments, i.e. Sa Murtera (the upstream site; hereafter the 

US, 1.1 km2) and Sa Font de la Vila (the downstream site; hereafter the DS, 4.8 km2), 

for use in a nested approach for the continuous measurement of water and sediment 

yields.  

The US gauging station is located in the northeast headwater area of the Sa Font de la 

Vila catchment at an elevation of 185 m (Figure 4.1). It was installed in a place where 

channel banks consist of dry-stone walls working as a control section for higher 

discharges and another smaller section built for measuring baseflow. Its sub-

catchment is characterized by an average gradient slope of 36% and the same lithology 

as the entire Sa Font de la Vila catchment. Land use previous to the 2013 wildfire was 

forest (66%), followed by scrubland (14%), rain-fed tree crops (14%), urban areas (4%) 

and rain-fed herbaceous crops (2%). Abandoned and active agricultural terraces cover 

65% of its area. The 1994 wildfire event burned 17% of the area. In 2013, the wildfire 

burned 85% of the sub-catchment area, with 25% extreme burn severity and 60% 

moderate burn severity (Figure 4.1D). The gauging station was equipped with a 

Campbell Scientific CR200X data logger that stored the average values of water surface 

level and turbidity, based on 1 minute readings at 15 minute intervals collected by a 

Campbell Scientific CS451-L pressure probe and a OBS-3+ turbidimeter with a double 

measurement range of 0-1.000/1.000-4.000 NTU. Where instantaneous turbidity peaks 
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were known to be spurious, manual manipulation and interpolation were used to 

correct the data (Wass and Leeks, 1999). Additionally, a rising-stage sampler modified 

from Schick (1967), with seven sampling bottles, was installed to provide more 

information on suspended sediment concentrations (SSCs). The bottles were 12 cm 

apart, totalling a 100 cm stage, with the first bottle located 21 cm above the riverbed.  

The DS gauging station was also installed in a place where channel banks consist of 

dry-stone walls working as a control section. The instruments were the same as for the 

US. However, the rising-stage sampler was set up with twelve bottles, totalling a 200 

cm stage. 

A Casella tipping bucket rain gauge was also installed at US. This instrument was fixed 

1 m above the ground and connected to a HOBO UA-003-64 Pendant Temp/Event data 

logger that recorded precipitation in 0.2 mm increments. 

4.3.2. Field measurements and data computation  

Stream discharge (Q) was measured by an OTT MF pro inductive magnetic flow meter, 

with a measuring range of 0 to 6 m s-1 and ±2% accuracy, to develop and fit 

stage/discharge rating curves. 

Manual depth-integrated SS samples were consistently collected during storm events 

and every week during low flows, at both the US and DS sites. They were collected at 

the same sections on which turbidity probes and rising-stage samplers were installed. 

Differences may exist between data collected at manual and rising-stage sampling 

points; previous studies in large rivers have reported differences between 10 and 20% 

(e.g., Batalla, 1993). However, direct observations indicate that water flows are 

notably turbulent through the sections of the channels at the US and the DS; any 

spatial difference of SS Concentrations (SSCs) within the sections is considered 

negligible. All the water samples were filtered by 0.45-µm cellulose esters; the filters 

were subsequently dried at room temperature and weighed on high-precision scales to 

determine the SSCs (Estrany, 2009). 

Turbidity probes were calibrated with commercial turbidity standards to check their 

long-term stability. The turbidity data were converted to a continuous record of SSCs 
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by a site-specific concentration/turbidity calibration relationship. The SSCs used for 

calibration were measured in samples collected both manually and by rising-stage 

samplers. Suspended sediment loads were calculated by combining the records of SSCs 

provided by the turbidity sensors with the continuous records of water discharge. 

The analysis of the relationship between rainfall intensity and kinetic energy and its 

variations in time and space are important for erosion prediction (van Dijk et al., 2002). 

The kinetic rainfall energy was calculated by the equation described by Brown and 

Foster (1987): 

  

 

where e is the kinetic energy of 1 mm of rainfall expressed in Mj ha-1 mm, and i is the 

rainfall intensity expressed in mm h-1. The rainfall erosivity (R) was determined by 

multiplying the kinetic energy of each event and the maximum intensity attained in 30 

minutes (I30). The results were expressed in MJ mm ha-1 h-1. 

 

 

Finally, the spatio-temporal relationship between discharge and sediment transport at 

the event scale was analysed by means of the hysteresis loop classification developed 

by Williams (1989). Because of monitoring problems at the US, the results of the first 

post-fire year (2013-2014) were only available at the DS. 

4.4. Results 

4.4.1. Rainfall 

Rainfall during the study period can be considered representative of the catchment. 

The long-term dynamics (period 1974-2010) were compared with records of 517 mm 

in 2013-2014, 578 mm in 2014-2015 and 309 mm in 2015-2016 (Figure 4.2) with a 20% 

coefficient of variation. Four rainfall events with runoff response were recorded in 

2013-2014, five in 2014-2015, and one in 2015-2016. During the first two hydrological 
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years the rainiest season was autumn, with 359 mm in 2013-2014 and 227 mm in 

2014-2015. In the third year, winter was the season with the highest rainfall value (125 

mm). 

 

Figure 4.2. (A) Rainfall, runoff and suspended sediment yield for the US-Sa Murtera (2014-2016); and (B) rainfall, 
runoff and suspended sediment yield for the DS-Sa Font de la Vila station (2013-2016). 

The maximum amounts of daily rainfall during the study period were 61 mm on 20th 

January 2015 (T = 2.7 years) and 57 mm on 29th October 2013 (T = 2.3 years). The 29th 

October 2013 storm was the first with runoff generation occurring after the 2013 

wildfire. Most of the rain (50 of the 57 mm) fell in only 15 minutes, reaching an 

intensity (I30) of 100 mm h-1 and rainfall erosivity (R) of 2,886 MJ mm ha-1 h-1. 

Hereafter, rainfall I30 intensities were lower during the entire study period, with no 

event exceeding 30 mm h-1. Excluding this first event, the average rainfall I30 was 12 

mm h-1. I30 for the 2013-2014 storms was between 10 and 100 mm h-1, with an R 

average of 861 MJ mm ha-1 h-1. In 2014-2015, the storms’ I30 was between 0.4 and 30 

mm h-1, with an R average of 158 MJ mm ha-1 h-1. Finally, in 2015-2016, only one event 

was recorded, showing I30 of 11 mm h-1, with R of 118 MJ mm ha-1 h-1. For further 

details, see Supplementary table 4.1. 

The long-term rainfall intensity data series recorded at the Palma (1964-2001) and 

Alfàbia (1994-2001) AEMET rain gauges (20 km and 32 km, respectively, from the Sa 

Font de la Vila catchment, see Figure 4.1B) confirmed that the maximum annual I30 for 

the entire study period of 2013-2016 was representative of the long-term record, 

except for the extreme event of October 2013. Thus, the average maximum annual I30 

at these reference sites was 30.6 ±12.9 mm h-1 at Palma and 24.9 ± 9.2 mm h-1 at 

Alfàbia (YACU 2002), whereas the average for the study period was 47 mm h-1. 
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However, if the October 2013 event was not included in the statistics, the average 

decreased to 19.6 mm h-1. 

Table 4.1. Suspended sediment yield comparison between burned catchments in different environments and 
unburned catchments in Mediterranean environments with the values reported in this study (adapted from Smith 
et al. 2011; Owens et al. 2013). 

  
  

Location 
  

Catchment 
area 

Average 
rainfall 

Average sediment 
yield 

Study reference 

(km2) (mm yr-1) (t km-2 yr-1)     
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Xortà Range, Spain 0.02 658 65 Mayor et al. (2007)  

Mount Carmel, Israel  1.1 750 36 Inbar et al. (1998)  

Sa Murtera, Spain 1.1 444* 1.6* This study (2017) 

Sa Font de la Vila, Spain 4.8 468 6.3 This study (2017) 

N
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n
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e
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d
 Slippery Rock Creek, 

Australia 
1.4 1,800 122 Lane et al. (2006)  

Springs Creek, Australia 2.4 1,800 61 Lane et al. (2006)  

Cerro Grande, USA 16.6 650 354 Reneau et al. (2007) 

Colorado Front Range, 
USA 

46.9 440 5,000 Moody & Martin (2001, 2009)  

Fishtrap Creek, Canada 135.0 487 3 Owens et al. (2013)  

Little River, Australia 183.0 1,000 62 Wilkinson et al. (2009)  

M
e

d
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e
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e
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Valdivia, Chile 0.9 2,170 90 Iroumé (1990)  

Araguás, Spain 0.5 720 15,300 Nadal-Romero et al. (2008)  

Vernegà, Spain 2.4 646 8 Pacheco et al. (2011) 

Jasenica, Serbia 96.0 760 32 Djorovic (1992) 

Silaro, Italia 138.0 942 732 Pavanelli & Pagliarini (2002) 

Na Borges, Spain 319.0 572 0.3 Estrany et al. (2009) 

Tordera, Spain 785.0 1,000 50 Rovira & Batalla (2006) 

(*) Only computed during 2014-2015 and 2015-2016 hydrological years 

   

4.4.2. Streamflow 

At US, 6 flood events were recorded during 2014-2015 and 1 in 2015-2016, while at DS 

there were 4 events during 2013-2014, 5 in 2014-2015 and 1 in 2015-2016 (Figure 4.3A 

and 4.3C). 
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Figure 4.3. Hydrograph, sedigraph, hyetograph and SSC-Q frequency based on 15-minute recordings at the US-Sa 
Murtera (A-B) during the study period 2014-2016 and at the DS-Sa Font de la Vila (C-D) during the study periods 
2013-2016 and 2014-2016 for better comparison. 

At US (Figure 4.2A), 131 mm of runoff were measured in 2014-2015 and 25 mm in 

2015-2016. In 2014-2015, a notable presence of baseflow was observed during the wet 

season, influenced by the karstic sources that maintained an influent regime in the 

upper catchment. Floods showed Q peaks ranging from 0.01 to 0.20 m3 s-1, an average 

discharge of 0.005 m3 s-1 and a specific contribution of 4.2 m3 s-1 km-2. The annual 

runoff coefficient was 23%. In 2015-2016, the very low precipitation recorded (309 

mm) was not sufficient to maintain the baseflow. The only flood that occurred in 2015-

2016 reached a Q peak of 0.07 m3 s-1, average of 0.03 m3 s-1 and a specific contribution 

of 0.8 m3 s-1 km-2. The annual runoff coefficient was 8%.  

At the larger catchment (DS), 5 mm of runoff was recorded in the first post-fire year, 

24 mm in the second and 3 mm in the third (Figure 4.2B). During 2013-2014, 4 events 

occurred, with Q peaks ranging from 0.09 to 1.5 m3 s-1. Under a shorter-term 

intermittent fluvial regime, the annual average discharge was 0.001 m3 s-1, while the 

specific contribution was 0.170 m3 s-1 km-2. In 2014-2015 the Q peaks for the 5 floods 
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ranged between 0.07 and 0.50 m3 s-1. The average discharge was 0.004 m3 s-1, with a 

specific contribution of 0.727 m3 s-1 km-2. Finally, in 2015-2016 only one flood was 

recorded, with a Q peak of 0.10 m3 s-1 (average of 0.05 m3 s-1). The mean annual 

discharge was 0.001 m3 s-1, reaching a specific contribution of 0.810 m3 s-1 km-2. The 

annual runoff coefficient was 1% for the first post-fire year, 4% for the second and 

0.8% for the third, resulting in an average of 2%. 

4.4.3. Suspended sediment concentrations and yields 

At US, in 2014-2015, the 6 flood events averaged an SSC of 309.5 mg l-1, with maximum 

peaks ranging between 133.7 and 5,244.7 mg l-1. The annual SS yield was 3.2 t km2, 

with autumn the season with the highest SS yield (1.6 t), representing 50% of the total 

SS load exported. In 2015-2016 the only recorded flood reached an SSC peak of 91 mg 

l-1, averaging 7.2 mg l-1. The highest sediment load was recorded in spring, reaching 

0.063 t. The annual SS yield was only 0.071 t km-2 (Figure 4.2A). 

At DS, in 2013-14, the first flood after the wildfire (29th October 2013) reached an SSC 

peak of 33,618 mg l-1 (average of 17,000 mg l-1). Ninety-two percent (92%) of the SS 

load during the three years was released from the catchment in this first flood. For the 

other three floods, the SSC peaks were substantially lower, ranging from 2,300 to 

12,000 mg l-1 and averaging 160 mg l-1. 99% of the SS load was released in autumn, 

which showed clearly both maximum soil erodibility after the fire and an exhaustion 

process. The SS yield for this first post-fire year was 19 t km-2 (Figure 4.2B). During 

2014-2015, the SSC average for the five recorded floods was 22 mg l-1, with maximum 

SSC peaks ranging between 62 and 285 mg l-1. The maximum SS load (1,630 kg) was 

recorded in winter, representing 90% of the annual load and concentrated mainly in 

the 20th January 2015 event (1,099 kg). The SS yield was then reduced in this second 

post-fire year to ca. 0.5 t km-2 (Figure 4.2B). Finally, in the third post-fire year, the SS 

yield was the lowest recorded during the study period with 0.07 t km-2 (Figure 4.2B). 

The only flood occurring (March 29th) reached an SSC peak of 285 mg l-1 (average 22 

mg l-1). Winter was the season when 0.3 t of the SS load were released, which 

represented 99% of the annual SS load. The average SS yield for the whole study 
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period was 6.3 t yr-1 km-2. For further details, Supplementary table 4.1 provides specific 

data on the event scale. 

The dynamics show how 99% of the total SS transport occurred in only 1% of the time 

at DS during 2013-2016 (Figure 4.4). However, if only the period 2014-2016 is 

computed, at US 90% of the SS load was released in 10% of the time, whilst at DS the 

same relative value of load was released in 20% of the time. 

 

Figure 4.4. Total cumulative sediment load duration curve, 2013-2016, at DS-Font de la Vila and 2014-2016 at the 
US-Sa Murtera and DS-Sa Font de la Vila gauging stations. 

4.4.4. Nestedness and wildfire effects on runoff and suspended 
sediment dynamics  

Comparing the Q and SSC frequency curves for both stations during the two monitored 

years in common (2014-2015 and 2015-2016; Figure 4.3B and 4.3D) allows a first 

approach to the nestedness. At US, the Q was present 32% of the time, 19% longer 

than at DS (13%) due to karstic springs at headwaters and downstream transmission 
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losses along the main channel. The SSC values showed an extremely ephemeral 

transport during floods at both stations, exceeding 50 mg l-1 for only 0.46% of the time 

at US and 0.07% at DS (Figure 4.3B and 4.3D). For 2014-2015, a runoff and SS load 

downstream reduction between stations of 27% and 53%, respectively, was observed. 

For 2015-2016, runoff showed again a downstream reduction of 60%, but the SS load 

increased by 73%. 

A hysteretic analysis was carried out for each individual flood event at both stations to 

characterize the hydrosedimentary post-fire dynamics (Figure 4.5). For the whole study 

period, the percentage distribution was 43% (US; two monitored years) and 40% (DS; 

three monitored years) for clockwise loops, against 57% (US) and 60% (DS) for counter-

clockwise loops (Supplementary table 4.1). The high percentage of counter-clockwise 

loops and their irregular distribution within the wet season (Supplementary table 4.1) 

may indicate the influence of fire on these dynamics. On the annual scale, in US, the 

observed hysteresis in 2014-2015 (all occurring in the wet period; i.e. autumn and 

winter) were 3 clockwise and 3 counter-clockwise loops (Supplementary table 1). In 

2015-2016, the sole event occurring drew a counter-clockwise loop. This was in spring 

after 50 mm of rain fell at low intensity (I30 11.2 mm h-1) under dry preceding 

conditions and did not reach the DS station. At DS the 4 floods occurring in 2013-14 -

only in the autumn- were all counter-clockwise loops (Supplementary table 4.1). The 

first flood after the wildfire (29th October 2013) was a flash flood generated by a 50 

mm high-intensity rainfall (I30 of 100 mm h-1) under dry preceding conditions, reaching 

Q and SSC peaks of 1.5 m3 s-1 and 33,618 mg l-1, respectively. The next two floods 

(17/11/2013 and 01/12/13) had wet preceding conditions, with 78 and 30 mm of 

precipitation, respectively, seven days before. The last event was provoked by a 69 

mm low-intensity storm (I30 10 mm h-1) under dry conditions. In 2014-2015, one event 

was in autumn and four in winter. Three of them had a clockwise hysteresis loop; and 

two, multi-peak counter-clockwise loops. The preceding conditions were dry in all 

cases. Only on 20th January, 2015 was there rainfall: 12 mm seven days before. Finally, 

in 2015-2016, one flood was generated in winter under dry preceding conditions by a 

50 mm storm with a low I30 (11 mm h-1), drawing a clockwise loop hysteresis. 
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Figure 4.5. Hysteretic behaviour types for the first post-fire flood event at DS-Sa Font de la Vila gauging station (A- 
29/10/2013) and for coinciding flood events (B- 15/12/14; C- 20/01/15) at the US-Sa Murtera and DS-Sa Font de la 
Vila gauging stations. 
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4.5. Discussion 

4.5.1. Landscape response to wildfire 

During the first few years after a wildfire, landscapes are prone to intensified soil 

erosion and sediment transport dynamics (e.g. Shakesby and Doerr, 2006). Therefore, 

higher SS yields should be interpreted as indicators of erosion processes in a 

catchment affected by a severe wildfire, especially in a highly energetic environment 

such as the Mediterranean (García-Ruiz et al., 2013). However, the very low results 

obtained in the Sa Font de la Vila catchment during the first three post-fire years 

indicate that other factors were involved in the hydrosedimentary response. 

The landscape response to a fire disturbance is basically determined by the fire’s 

severity when torrential rains occur after fires (De Luís et al., 2003). However, when 

rainfall intensity is not torrential, then the intrinsic characteristics of the rainfall event 

has more influence on the erosional soil response than the severity of the fire has 

(Gimeno-García et al., 2007). Accordingly, Moody and Martin (2009) and Smith et al. 

(2011b) suggested that magnitude, intensity and frequency of rainfall and derived 

flood events are the main drivers of erosion and sediment delivery in many burned 

catchments. They stress that rainfall patterns explain the large variation in post-fire SS 

yields in contrasted environments and catchment sizes. Therefore, the limited 

response in terms of SS fluxes in burned catchments can be ascribed to a lack of a 

driving force for such rainfall intensity (Owens et al., 2012). During the entire study 

period of 2013-2016, rainfall intensities in the Sa Font de la Vila catchment were 

representative of the long-term record, although the high-energy Mediterranean 

environment may lead to flash floods caused by high-intensity rainfall (Estrany and 

Grimalt, 2014). This process only occurred in October 2013 with the highest intensity 

and erosivity of the study period. It caused the transport of 92% of the total load. 

Sa Font de la Vila is a highly modified catchment because of its traditional agricultural 

use in such marginal lands. The massive presence of terraces (Figure 4.1) involved a 

general decoupling effect and showed the anthropogenic control of resistance forces 

in reducing the water and sediment yields of river systems (e.g. Walling, 1999; Estrany 

et al., 2010). In addition, Arnáez et al. (2015) suggested that runoff coefficients for 
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abandoned terraces are, at the hillslope scale, between 20% and 40% in 

Mediterranean areas, depending on the percentage of plant cover or the grazing 

pressure. In turn, Calsamiglia et al. (2017), applying the morphometric Index of 

Connectivity (IC) in our studied catchment, observed important decoupling effects. 

Results of this study showed that 62% of the area covered by terraces had lower IC 

values than the average of the catchment. Similarly, the abandonment of agriculture 

during the 1960s promoted forest transition processes on these terraced fields. In 

addition to the buffer effect of these fields, vegetation growth may also lead to decline 

in runoff and SS transport rates (Morán-Tejeda et al., 2010; Buendia et al., 2015) at the 

catchment scale. Estrany et al. (2017) calculated –using the blue normalized difference 

vegetation index (BNDVI)– 11.5% recovery of vegetation cover in two representative 

micro-catchments of the Sa Font de la Vila catchment, 14 months after the wildfire 

(October 2014). In addition, an aerial image analysis showed that the recovery had 

increased to 26% by April 2015. 

Moreover, the parent material may play a significant role in the hydrosedimentary 

response. Calvo-Cases et al. (2003 and 2005) obtained low erosion rates and high 

infiltration capacities in several study areas with calcareous soils after rainfall 

simulation experiments and in erosion plots. They concluded that this behaviour is 

related to the bedrock cracks, stoniness, thickness, soil organic matter content, bulk 

density and vegetation typical of these soils, generating patches of runoff and re-

infiltration at hillslopes as modelled in Arnau-Rosalén et al. (2008). Our results indicate 

an average runoff coefficient ca. 2% for the entire catchment (1% in the first post-fire 

year, 4.2% in the second and 0.8% in the third), probably caused by the combination of 

terraces and calcareous lithology. This process is comparable to similar Mediterranean 

catchments, in which notable transmission losses are mainly caused by lithological 

variations in permeability (Tzoraki and Nikolaidis, 2007; Estrany et al., 2009). Finally, 

the post-fire management actions implemented during the first year after the fire (i.e. 

log barriers, mulching and tree removal) to control and reduce runoff and SS delivery 

from hillslopes to the fluvial channels can also be related to these very low SS 

transport rates (Robichaud et al., 2013). 
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Terraces disturb hydrological and sediment connectivity, imposing large rainfall 

thresholds for the generation of runoff and SS transport (Lasanta et al., 2001; 

Cammeraat, 2004). Nevertheless, if the magnitude of future rainfall intensities and 

derived flood events exceeds the threshold capacities of these structures, a general 

collapse can occur, which accelerates erosion processes and associated damage 

(Estrany and Grimalt, 2014; Tarolli et al., 2014). Moreover, wildfire may be an added 

factor directly affecting the dynamics of these terraced lands (Dunjó et al., 2003), as 

erosion of abandoned terraces is directly related to the amount of plant cover, soil 

characteristics, environmental conditions and the time terraces had been abandoned 

(Arnáez et al., 2015). Accordingly, land abandonment and wildfire recurrence illustrate 

abrupt changes along the sediment pathways caused by wall failures within those 

much-decoupled terraced areas (Calsamiglia et al., 2017). The general collapse of these 

structures has been measured in the Tramuntana Range since the 1960s. They 

occurred during rainy years and were caused by either soil expansion or the direct 

action of overflowing drainage ditches (Grimalt et al., 1992). Additionally, since these 

collapses were primarily produced without the impact of wildfires, it must be 

emphasized that shallow landslides and other mass movement events are often more 

frequent between 5 and 20 years after a wildfire due to the time required for the 

complete decay of the root systems of burned vegetation (Meyer et al., 2001). The 

recurrence of forest fires, even to the limited extent that occurs under traditional 

management systems, periodically enhances soil erosion and steadily reduces the 

potential for plant recolonization (Ruiz-Flaño et al., 1992), which results in the 

acceleration of the collapse processes for these structures. 

Calsamiglia et al. (2015) developed an assessment of the erosional processes after the 

fire by using a drone for generate a High-Resolution DTM (5 cm px-1) derived from 

automated digital photogrammetry (SfM; Structure from Motion algorithms) in a 

micro-catchment (3 ha) located in the upstream part of the Sa Font de la Vila 

catchment. Two flights in October 2014 and April 2015 were used for build both HR-

DTM. Applying the DEM of Difference (DoD) technique, no significant erosion or 

deposition processes were detected in this micro-catchment because geomorphic 

change detection in any case exceeded the minimum level of detection (≈12 cm, p 
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95%). These results were also corroborated by field observations. Therefore, despite 

the lack of protection and the vulnerability of the soil after the wildfire, field 

observations did not show relevant erosive and depositional processes on hillslopes. 

4.5.2. Post-fire suspended sediment yield at catchment scale 

To the best of our knowledge, only two studies (Inbar et al., 1998; Mayor et al., 2007) 

have reported SS yield data (i.e. 36 and 65 t ha-1 yr-1, respectively) from other burned 

Mediterranean environments at catchment scale during the window of disturbance 

period. In the case of Mayor et al. (2007), these higher SS yield values correlated 

directly with torrential storms during the first years after the fires, since 75% of the SS 

yield during the study period (7 years) was generated in only one storm with a peak of 

98 mm h-1 during 15 minutes. Moreover, Inbar et al. (1998) indicate that the low 

rainfall intensity in the two post-fire years included in their study was the dominant 

factor for explaining the low sediment yield and erosion records. In addition, for a 

Californian fire-prone chaparral, Warrick et al. (2012) determined that low rainfall 

intensity results in the detachment of loose soil and dry gravel talus after a wildfire, 

whereas heavy rainfall generates overland flow at rates that cut rills and gullies into 

the soil and may generate debris flows. 

It is therefore difficult to assess whether the minimal SS yield data reported in the 

literature are typical. It should also be remembered that most of the research was 

developed at the plot and hillslope scale, in which the derived results cannot be 

directly scaled to catchments (Shakesby, 2011). However, a comparison with other 

similar unburned Mediterranean catchments can be established. For comparison, the 

observed high variability between years at Sa Font de la Vila catchment indicated a SS 

yield of 19 t km-2 yr-1 in 2013-2014, but the SS decreased sharply to 0.5 t km-2 yr-1 in 

2014-2015 and 0.07 t km-2 yr-1 in 2015-2016. As a result, the mean annual SS yield was 

6.3 t yr-1 km-2, a value that can be considered low for Mediterranean Europe 

(Vanmaercke et al., 2011). Conversely, this indicates that the SS yield for the entire 

study period is very similar to the values recorded in unburned Mediterranean 

catchments characterized by analogous driving factors (i.e. catchment area and 

climate; Table 4.1). The studies focusing on non-Mediterranean burned catchments, 
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developed in Australia and North America (Table 4.1), reported how intensity of 

rainfall is also the key driver (Smith et al., 2011b). Therefore, especially during the first 

post-fire year, the magnitude of SS yields (ranging from 8.6 to 2,524 t km-2 yr-1) in 

these catchments fluctuates considerably because the sediment response also 

depends on the occurrence of torrential storms. Other factors such as lithology (the 

catchments studied rested mainly on igneous and metamorphic terrains) and land uses 

(i.e. mainly without terraces) do not reflect a different pattern from Mediterranean 

burned catchments (ranging from 1.6 to 456 t km-2 yr-1). The few studies that have 

analysed the hydrological and geomorphological responses to wildfire at catchment 

scale require further research to provide more comprehensive insights into wildfire 

impact on magnitude, spatial variation and temporal patterns. 

As Figure 4.4 shows, SS transport was extremely ephemeral in comparison with other 

Mediterranean unburned catchments (Gallart et al., 2013; Buendía et al. 2015; De 

Girolamo et al., 2015). These notably short-lived dynamics of the sediment transfer 

are, however, comparable with other studies conducted in catchments largely 

modified by terraces with underlying carbonate lithology in Mallorca (Estrany et al., 

2009). It should be noted that the increase of two orders of magnitude of SSC reported 

in the first event (October 2013) –compared with the average values measured during 

the study period– was probably caused by changes in soil water repellence, hillslope 

surface roughness and the massive incorporation of ash in the SS flux during this first 

post-fire event (Smith et al., 2011b), combined with high-intensity rainfall. The ash 

deposits were incorporated into the soil through infiltration because between the 

wildfire and first flood 107 mm of rain under low-intensity conditions fell (data from 

B118 s’Alqueria d’Andratx AEMET station, Figure 4.1B). In addition, a post-fire 

sediment source ascription analysis carried out by García-Comendador et al. (2017) 

observed higher concentrations of 137Cs and 210Pbex in the hillslope source samples 

collected in those fire-affected areas, indicating the fire’s impact on the soil (Smith et 

al. 2013). 

The reported SS yield confirms that higher rainfall intensities are required in order to 

generate an effective slope-to-channel sediment delivery response. Accordingly, the 

intrinsic characteristics of the catchment –such as the stoniness and thickness of the 
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soils, the terraces and the application of post-fire measures– limited the sediment 

response to a certain rainfall threshold able to connect runoff along the hillslopes by 

means of sink saturation (see Calvo-Cases et al., 2003). 

4.5.3. Nestedness effects on post-fire hydrosedimentary 
response 

The nested catchment approach enabled the sediment conveyance losses along the 

main channel of the Sa Font de la Vila catchment to be identified, taking into account 

that the increased stormflow response to rainfall events that may occur after a wildfire 

also decreases with post-fire recovery, thereby potentially reducing the capacity of 

subsequent flows to remove stored sediment and increasing residence times (Moody 

and Martin 2001). The downstream reduction of 27% in runoff and 53% in SS load 

during 2014-2015 indicated that water percolation and sediment deposition were the 

primary processes that were active between the two nested catchments. As a result, 

the driving forces during the post-fire study period did not allow any effective 

downstream sediment release, which caused an accumulation along the main channel 

that required a major flood event to mobilize the stored sediment (Estrany et al., 

2011). In 2015-2016, runoff showed again a reduction between US and DS of 60%. 

However, the SS load increased by 73%, but with negligible records (85 kg at US and 

310 kg at DS).  

For the hysteretic analysis, Sa Font de la Vila showed a predominance of counter-

clockwise loops (60%) for the three post-fire years, indicating that the main sediment 

sources were located at a certain distance from the channel (Oeurng et al., 2010). This 

percentage of counter-clockwise loops is higher than in other studies of non-burned 

Mediterranean catchments (Seeger et al., 2004; Rovira & Batalla 2006; Oeurng et al., 

2010; López-Tarazón and Estrany, 2017), which is probably related to the increased 

sensitivity of the landscape after wildfire perturbations. It should be noted that 67% of 

the counter-clockwise loops in DS occurred during the first post-fire year (2013-2014), 

when the highest annual sediment yield was recorded. During the following years, this 

percentage –as well as the sediment yield– decreased significantly, which may be 
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related to vegetation cover conditions on the burnt hillslopes (Lane et al. 2006; Smith 

et al. 2011b). 

The same hysteresis behaviour only occurred in 40% of the floods that coincided 

between US and DS (Supplementary table 4.1). Counter-clockwise loops predominated 

in US and clockwise loops in DS, which was indicative of the mobilization of sediment 

deposited along the river channel and its adjacent areas (Klein 1984). These distinct 

patterns can be attributed to the sediment conveyance losses and storage along the 

channel between stations, the size characteristics and the buffering effect of the 

nested catchments. 

4.6. Conclusions 

The immediate installation of two nested monitoring stations after a severe wildfire in 

a terraced Mediterranean catchment facilitated the study of hydrological and 

sediment delivery dynamics during the three hydrological years following the wildfire, 

when the window of disturbance period is expected to be more active. 

The low values of post-fire suspended sediment delivery –especially compared to 

those reported in other burned catchments for similar environments– can be 

explained by the calcareous soils and the massive presence of terraces. In addition, 

these same driving factors caused very low runoff coefficients (<5%) under average 

rainfall intensity consistent with long-term records. However, high-intensity rainfall 

proved essential to attaining effective slope-to-channel sediment connectivity. The 

storm that occurred on 29th October 2013 generated a SS yield of 17 t km2 yr-1 in only 

15 minutes at the catchment outlet, which was 92% of the sediment load measured 

during the study period.  

Although the probable divergence between hillslope erosion and sediment delivery 

responses to wildfire may encompass detailed information on individual components 

of a suspended sediment budget, the nested approach has increased understanding of 

post-fire hydrological responses and sediment transport dynamics at the catchment 

scale. This approach is particularly effective in Mediterranean environments, where 

there are large areas of permeable lithology (i.e. limestone) that cause the interaction 
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of influent and effluent processes along the channel systems. In addition, the old and 

new terraces contribute to an increase in water storage on the hillslopes and an 

increase in runoff and sediment disconnectivity. Finally, if fire affects the ecosystem’s 

resilience, a delayed response of the landscape must be hypothesized. Further analysis 

of the medium- and long-term impacts would explain better when and how fire 

disturbances act. Thus, the need for long-term monitoring programmes should be 

emphasized. 
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4.8. Supplementary material 

Supplementary table 4.1. Description of the rainfall-derived runoff and sediment transport-derived variables 
analysed for all the floods recorded at US-Sa Murtera and DS-Sa Font de la Vila gauging stations. 

Flood Ptot (mm) Imax30 (mm h-1) 
Erosivity  

(Mj*mm/ha*h) 
P1d (mm) P7d (mm) 

29/10/2013 50.00 100.00 2,885.93 3.00 3.02 

17/11/2013 65.80 18.00 310.71 17.00 77.80 

01/12/2013 29.00 10.00 80.10 3.40 30.20 

19/12/2013 69.00 10.00 167.78 0.20 1.00 

01/12/2014 25.60 21.20 179.22 19.60 35.40 

15/12/2014 29.60 29.60 430.26 0.00 0.20 

20/01/2015 61.80 10.80 178.29 4.80 11.80 

04/02/2015 8.20 0.40 0.55 1.00 4.00 

17/02/2015 2.60 0.40 0.16 0.20 0.40 

25/03/2015 N/D N/D N/D N/D N/D 

29/03/2016 N/D N/D N/D N/D N/D 

01/04/2016 49.60 11.2 118.15 0 0.2 

Flood 
Dur. (min) Volume (m3) Q peak (m3 s-1) 

US DS US DS US DS 

29/10/2013 N/D 105.00 N/D 3,898.10 N/D 1.50 

17/11/2013 N/D 3,915.00 N/D 3,819.14 N/D 0.10 

01/12/2013 N/D 2,610.00 N/D 4,536.82 N/D 0.15 

19/12/2013 N/D 3,210.00 N/D 5,725.80 N/D 0.09 

01/12/2014 450.00 - 168.55 0.00 0.01 0.00 

15/12/2014 435.00 510.00 856.00 1,443.38 0.10 0.19 

20/01/2015 1,815.00 1,635.00 4,850.75 18,018.17 0.18 0.50 

04/02/2015 1,800.00 1,845.00 1,760.20 6572.82 0.03 0.17 

17/02/2015 2,970.00 4,425.00 2,324.95 4,478.51 0.02 0.07 

25/03/2015 2,235.00 1,845.00 5,007.88 6,544.27 0.06 0.08 

29/03/2016 - 2,595.00 0.00 8,516.54 0.00 0.10 

01/04/2016 2,175.00 - 1,375.64 0.00 0.07 0.00 

Flood 
Q mean (m3 s-1) Qb (m3 s-1) Runoff ratio (mm) 

US DS US DS US DS 

29/10/2013 N/D 0.61 N/D 0.00 N/D 0.81 

17/11/2013 N/D 0.02 N/D 0.00 N/D 0.79 

01/12/2013 N/D 0.03 N/D 0.00 N/D 0.94 

19/12/2013 N/D 0.03 N/D 0.00 N/D 1.19 

01/12/2014 0.01 0.00 0.00 0.00 0.14 0.00 

15/12/2014 0.03 0.05 0.01 0.00 0.72 0.30 

20/01/2015 0.05 0.18 0.00 0.00 4.07 3.75 

04/02/2015 0.02 0.06 0.01 0.00 1.48 1.37 

17/02/2015 0.01 0.02 0.00 0.00 1.95 0.93 

25/03/2015 0.06 0.06 0.01 0.01 4.20 1.36 



Chapter 4. Post-fire hydrological response and suspended sediment transport of a terraced Mediterranean 

catchment 

92 

 

29/03/2016 0.00 0.05 0.00 0.00 0.00 1.77 

01/04/2016 0.03 0.00 0.00 0.00 1.15 0.00 

Flood 
Runoff coefficient (%) Sediment load (kg) Sediment yield (t km-2) 

US DS US DS US DS 

29/10/2013 N/D 1.62 N/D 84,098.74 N/D 17.44 

17/11/2013 N/D 1.21 N/D 3,176.93 N/D 0.66 

01/12/2013 N/D 3.25 N/D 1,803.48 N/D 0.38 

19/12/2013 N/D 1.73 N/D 649.48 N/D 0.14 

01/12/2014 0.55 0.00 131.38 0.00 131.38 0.00 

15/12/2014 2.42 1.01 770.50 137.66 700.45 0.03 

20/01/2015 6.58 6.07 745.76 1,099.95 677.96 0.23 

04/02/2015 18.00 16.68 408.43 72.41 371.30 0.02 

17/02/2015 74.97 35.84 256.36 37.62 233.05 0.01 

25/03/2015 N/D N/D 91.39 96.17 83.08 0.02 

29/03/2016 N/D N/D 0.00 295.40 0.00 0.06 

01/04/2016 2.33 0.00 5.64 0.00 5.13 0.00 

Flood 
Average SSC (mg l-1) SSC peak (mg l-1) Hysteresis loop 

US DS US DS US DS 

29/10/2013 N/D 17,417.25 N/D 33,617.98 N/D Counterclokwise 

17/11/2013 N/D 261.34 N/D 11,848.27 N/D Counterclokwise* 

01/12/2013 N/D 161.00 N/D 3,178.72 N/D Counterclokwise* 

19/12/2013 N/D 67.33 N/D 2,259.93 N/D Counterclokwise* 

01/12/2014 587.53 0.00 5,244.72 0.00 Clockwise* - 

15/12/2014 834.34 48.80 4,556.95 215.18 Counterclokwise Clockwise 

20/01/2015 87.90 32.30 1,124.69 285.13 Clockwise* Clockwise 

04/02/2015 223.51 8.40 2,299.74 56.48 Counterclokwise* Counterclokwise* 

17/02/2015 104.91 8.60 2,074.77 107.34 Counterclokwise* Clockwise 

25/03/2015 18.67 13.30 133.79 61.78 Clockwise* Counterclokwise* 

29/03/2016 0.00 21.64 0.00 285.13 - Clockwise 

01/04/2016 7.23 0.00 91.14 0.00 Counterclokwise* - 

          * Multipeack floods 
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5. Source ascription in bed sediments of a 
Mediterranean temporary stream after the first 
post-fire flush 

Abstract 

Purpose: First flushes can be crucial to sediment transport in fluvial systems of 
drylands, as temporary streams are a characteristic feature of Mediterranean basins. 
After a wildfire, storm flows may enhance runoff delivery to channels, so increasing 
the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first 
post-fire flush effect on the source ascription of bed sediments temporarily stored in a 
Mediterranean temporary stream severely affected by a wildfire. 

Materials and Methods: Thirty sediment source samples were collected along one of 
the tributaries of a catchment (4.8 km2) located in Mallorca during a field campaign 
some weeks after the wildfire. The sample collection took into account effects of the 
wildfire and distinguished between soil surface and channel bank. To measure the 
source contribution temporarily stored with the bed sediment, five sediment samples 
–deposited during the first storm, occurring three months after the wildfire– were 
collected from the bed stream of the main channel. The 137Cs and 210Pbex 

concentrations were measured by gamma spectrometry. Then, a linear mixing model 
was used to establish the contribution of each source type to the bed sediments along 
the main stream. 

Results and Discussion: Post-fire first-flush effect was generated by a torrential event 
with a suspended-sediment concentration peak of 33,618 mg L-1, although 
transmission losses under a very low runoff coefficient (1%) promoted sediment 
deposition. Significant differences were observed in fallout radionuclide 
concentrations between burned surface soil and burned channel bank samples (p < 
0.05), as well as between burned and unburned sources in the downstream part of the 
catchment (p < 0.01). The radioactivity concentrations in bed sediment samples were 
statistically similar (p > 0.05). Source ascription in bed sediments upstream shows that 
67% was generated from burned hillslopes, reaching 75% in the downstream part 
because downstream propagation of the sediment derived from the burned area.  

Conclusions: Bed sediments were mostly generated on burned surface soils because of 
the fire’s effect on soil and sediment availability, high-intensity rainfall and the limited 
contribution of channel banks, because these are fixed by dry-stone walls. This hydro-
sedimentary response indicates an association between these factors driving erosion 
and sediment delivery, generating effective slope-to-channel sediment connectivity. 
The integration of the short-response with the medium and long term analysis will 
allow the analysis of the catchment sediment sources evolution in future studies, 
determining if fire modifies the catchment sensitivity to that specific disturbance.  

 



Chapter 5. Source ascription in bed sediments of a Mediterranean temporary stream after the first post-

fire flush 

94 

 

Keywords: First flush sediment sources, Wildfire disturbances, Fingerprinting 
technique, Fallout radionuclides, Mediterranean fluvial systems   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference 

García-Comendador, J., Fortesa, J., Calsamiglia, A., Garcias, F., and Estrany, J. 2017. 
Source ascription in bed sediments of a Mediterranean temporary stream after the 
first post-fire flush. J Soils Sediments 17, 2582–2595. doi: 10.1007/s11368-017-1806-1 



Chapter 5. Source ascription in bed sediments of a Mediterranean temporary stream after the first post-

fire flush 

 

95 

 

5.1. Introduction 

Processes not seen in perennial flow characterize the hydrological response of 

catchments in arid or semi-arid ecosystems. Rivers under perennial regimes are 

regularly fed by water from contiguous compartments. In contrast, water-flow 

pathways in semi-arid river catchments are disrupted for longer periods of months or 

even years. In this context, a significant amount of water is lost through the river bed 

or by evaporation, leading to the complete drying up of the river in many cases. First 

flushes are of great importance for particulate and dissolved transport in dryland 

fluvial systems in Mediterranean basins, where temporary streams are very common 

(Bull and Kirkby, 2002). The term “first flush effect” refers to rapid changes in water 

quality (concentration or load) within a distinct flood event (Obermann et al., 2009). 

These occur frequently after early-season rains with a previous accumulation of mass. 

Sediments and other accumulated organic particles on the riverbed are remobilized 

and can be flushed out into the streams. In-channel sediment storage is favoured in 

temporary rivers, because precipitation or other sources are insufficient to produce 

uninterrupted discharge into the entire length of the river. In humid temperate rivers 

characterised by relatively stable hydrological regimes, these temporarily stored 

sediments are often flushed annually (Walling et al., 1998). However, in Mediterranean 

temporary rivers, sediment may be accumulated steadily over several hydrological 

years until a major flood event evacuates the stored sediment (Estrany et al., 2011).  

After a wildfire, many complex variables are involved in erosion processes in 

catchments. Vegetation status, slope, soil type, severity of effect, heavy rainfall, 

presence of soil and water conservation structures (i.e. hillslope and valley-bottom 

terraces) and post-fire management are some of the most important. All these cause 

divergent responses by varying erosion rates and sediment yields (Shakesby and Doerr, 

2006; Moody et al., 2013). Nevertheless, the overall hydrological impact of wildfire at 

catchment scale is related to the increase of overland flow (Shakesby and Doerr, 2006), 

either by infiltration-excess or by saturation. Complete or partial removal of the 

vegetation and litter cover as well as the formation of surface ash deposits generally 

lead to higher percentages of rainfall available for overland flow (Bochet et al., 2002; 
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Candela et al., 2005). As a result, post-fire storm flows may enhance runoff delivery to 

channels, thus increasing the first-flush effect. Specifically, low-intensity rainfall may 

promote the integration of ash deposits into the soil through infiltration. However, 

under intense rainfall, the ash layer is removed and released to the fluvial network, 

with significant repercussions on calculation of hillslope surface source contributions 

to post-fire catchment sediment exports (Smith et al., 2011a). Shakesby (2011) 

highlighted the distinctive characteristics of wildfire impacts on hydrology, soil 

properties and soil erosion by water in Mediterranean landscapes due to intricate 

land-use patterns, abandoned terraces and tracks interrupting slopes. The integrated 

catchment perspective is then required to understand how wildfire perturbations 

affect the internal dynamics of catchment sediment cascades (Fryirs et al., 2013), i.e. 

the downstream sediment delivery to a basin outlet. In addition, fine sediment plays a 

significant role in the transfer and fate of nutrients (Horowitz et al., 2007), a process 

enhanced after wildfire (Smith et al. 2011a). However, hydrological responses to 

wildfire at the catchment scale have received much less attention than at smaller 

scales at both Mediterranean and world-wide locations, mainly because of the greater 

practical difficulties and expense involved when monitoring at this scale (Shakesby and 

Doerr, 2006).  

Therefore, information on the nature and relative contributions of the different 

sources of sediment in fluvial systems may be a key factor in the design and 

implementation of specific strategies for post-fire erosion control. Sediment 

fingerprinting approaches continue to be used to determine sediment sources, 

providing spatiotemporal data on the main production areas and their quantitative 

contributions to the fluvial network at the catchment scale (Walling, 2013; Haddadchi 

et al., 2013; Owens et al., 2016). The implementation of this technique still involves 

several uncertainties (Pulley et al., 2015), due to variability of potential sources (Du 

and Walling, 2017), the possible alteration of sediment properties during transport 

(Poulenard et al., 2012) and the methods of sampling (Manjoro et al., 2017), analysis 

and statistics (Haddadchi et al. 2014; Palazón and Navas 2017). In addition, a wide 

variety of different tracers has been employed in the published literature, as Collins et 

al. (2017) recently reviewed. However, most of these focus on natural and burn-
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related variability, in order to distinguish burned and unburned sources (Smith et al., 

2013).  

To date, fallout radionuclide tracers (hereafter FRN) provide the best available fine-

sediment tracers for surface soil and channel source discrimination following a wildfire 

(Smith et al., 2011b; Owens et al., 2012; Zhang et al., 2016) and for evaluating the 

spatial provenance of sediment in terms of burned and unburned areas (Stone et al., 

2014; Estrany et al., 2016). The activity concentrations of both radionuclides in burned 

landscapes tend to increase – especially for 210Pbex- due to soil mass reduction by 

organic matter combustion and radionuclide transfer and redistribution from burned 

vegetation to the soil (Johansen et al., 2003; Wilkinson et al., 2009). Consequently, 

these FRN provide quality information about distribution and discrimination of 

sediment sources in catchments affected by wildfires (Smith et al., 2013). However, to 

date their use has been limited to North America (Moody and Martin, 2001; Owens et 

al., 2012), Australia (Blake et al., 2009; Wilkinson et al., 2009; Smith et al., 2011b) and, 

to a lesser extent, the European Mediterranean region (Estrany et al., 2016), even 

though wildfire is a significant agent in shaping hydrological and geomorphological 

dynamics (Shakesby, 2011). 

The aim of this study was to use 137Cs and 210Pbex radioisotopes as tracers to recognize 

the effect of fire on the catchment’s sediment source response during the first post-

fire flush along the main stem of a Mediterranean temporary stream three months 

after a severe wildfire that occurred in July 2013. Specific objectives focused on (i) 

quantifying the relative contributions of hillslopes and channel banks within the fine 

bed sediment temporarily stored on the riverbed surface during the first post-fire 

flush; and (ii) determining the contribution of burned and unburned material to 

sediment in the downstream part of the catchment. 

5.2. Material and Methods 

5.2.1. Study area 

The Sa Font de la Vila is a Mediterranean catchment of 4.8 km2, located in Pariatge 

County (Andratx, western part of Mallorca; Figure 5.1A and 5.1B), characterized by 
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afforestation of former agricultural land and the effects of recurrent wildfires. The 

catchment’s morphology is complex, with height ranging between 63 and 517 m.a.s.l. 

and a mean gradient slope of 38% (Figure 5.1D); although 50% of the surface area has 

gradients lower than 15%. Currently, agricultural activities are restricted to the valley 

bottoms, where the slope is less pronounced (<10%). Lithology (Figure 5.1C) consists 

mainly of Upper Triassic (Keuper) clays and loams. In the upper parts, where Triassic 

(Rhaetian) dolomites and Lower Jurassic limestone predominate, the slope gradients 

are steeper than 30%. Under the Soil Taxonomy System, the soils can be classified as 

Entisols at the catchment headwaters and Alfisols in the lower parts.  The fluvial 

network consists of two main sub-catchments: Sa Coma Freda (2.3 km2) and Can Cabrit 

(2.1 km2) rivers. The former is characterized by an intermittent regime maintained by 

several karstic springs, whilst the latter is ephemeral. Can Cabrit River is also 

constricted by a check dam built in 2007 (Figure 5.1E), which retained most of the 

post-fire fluxes before they reached the downstream part of the Sa Font de la Vila 

mainstream. 

Under the Emberger climate classification, the climate is Mediterranean temperate 

sub-humid at headwaters and warm sub-humid at the outlet (Guijarro, 1986). The 

average temperature is 16.5 °C and the mean annual rainfall 517.8 mm yr-1 with an 

interannual coefficient of variation of 29%. High-intensity rainstorms with a recurrence 

period of 10 years may reach 85 mm in 24 hours following the statistics of the 1974-

2010 period in the B118 S’Alqueria station (see location in Figure 5.1B) of the Spanish 

Meteorological Agency – AEMET. This meteorological station is located 4 km from the 

Sa Font de la Vila River catchment within the same daily rainfall affinity area in 

Mallorca (Sumner et al., 1993). 

Before the 2013 wildfire, the Sa Font de la Vila catchment was mainly covered by 

natural vegetation (71%, with 52% forest and 19% scrubland; Figure 5.1E). The rest of 

the catchment was covered by tree crops (23%) and herbaceous (6%) rain-fed crops. 

There is also a massive presence of traditional soil and water conservation structures 

(i.e. hillslope and valley-bottom terraces), occupying 37% of the total surface area and 

a linear length of 147 km (Figure 5.1E), of which 75.1 ha are well-maintained and 103.7 
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ha abandoned, with an average collapse point density of 12 collapses km-1 and 55 

collapses km-1, respectively (Calsamiglia et al., 2017). 

 

Figure 5.1. (A) Map showing the location of Mallorca in the Mediterranean Sea; (B) location of the Sa Font de la Vila 
catchment and the area affected by the July 2013 wildfire in Pariatge County; (C) lithology; (D) gradient slope; (E) 
land uses and soil conservation practices; and (F) 1994 and 2013 wildfire-affected areas and severity of 2013 
wildfire. 
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The catchment has been affected by two major wildfires in the last twenty years. The 

first, occurring in 1994, affected 25% of the catchment area. In the second one, 

occurring in July 2013, 71% of its surface area was burned. 30% of this affected area 

had already burned in 1994 (Figure 5.1F). Using Landsat 8 images, the burn severity 

assessment of the most recent wildfire –applying the Normalized Burn Ratio pre-/post-

fire difference values (dNBR; Escuín et al., 2008)– depicted extreme severity in 24% of 

the catchment and moderate severity in 47% (Bauzà, 2014). 

5.2.2. Monitoring hydro-sedimentary dynamics after the 2013 
wildfire 

In September 2013 a programme of continuous water and sediment yield 

measurements was implemented by instruments at two nested gauging stations 

(Figure 5.1), Sa Murtera (the upstream site, hereafter US; 1.1 km2) and Sa Font de la 

Vila (the downstream site, hereafter DS; 4.8 km2). Campbell CR200 loggers stored the 

average values of water stage and turbidity, based on 1-minute readings at 15-minute 

intervals collected by a Campbell Scientific CS451-L pressure probe and an OBS-3+ 

turbidimeter with a double measurement range of 0-1,000/1,000-4,000 NTU. 

Additionally, a Casella tipping bucket rain gauge was installed at US for analysing the 

rainfall dynamics within the catchment. For deeper comprehension, García-

Comendador et al. (2017) provide a detailed analysis of the instruments as well as the 

hydro-sedimentary response of the catchment during the 2013-2016 period, in which 

calcareous soils, terraces and the application of post-fire measures limited this 

response despite the wildfire’s impact. 

The analysis of bed sediment temporarily stored in the channel is based on the first 

erosive storm after the wildfire (Supplementary figure 5.1), which only affected the Sa 

Coma Freda River. 

5.2.3. Field sampling 

Although a wider sediment source monitoring programme was developed in the whole 

Sa Font de la Vila catchment, this study only used those sediment source samples (30) 
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collected along the Sa Coma Freda River (Figure 5.2) because the first flush only 

affected this sub-catchment, as explained in section 5.2.2. The field campaign was 

carried out in September 2013, only a few weeks after the wildfire. There was low-

intensity precipitation of 107 mm between the wildfire and the campaign without 

runoff generation (data from B118 S’Alqueria AEMET station, see location in Figure 

5.1B), which caused the incorporation of part of the ash deposits into the soil through 

infiltration. The contribution of ash to the change in FRN concentrations in burned 

surface soils allows the differentiation of surface and sub-surface (e.g. channel bank) 

sources of sediment due to differences in activity concentrations at soil depths and to 

estimates of burned vs. unburned source contributions (Smith et al., 2013). 

Accordingly, sample collection was designed (Supplementary figure 5.2) to take into 

account the effects of the wildfire and to distinguish between surface soil (from 

hillslopes) and channel bank, with the number of samples approximately proportional 

to the area occupied by each source (Figure 5.2). Samples were collected from surface 

soils (0-2 cm depth) on hillslopes with active slope-to-channel connectivity and from 

actively eroding channel banks (most of them constrained by dry-stone walls), ranging 

in height from ca. 0.3 to 2.0 m with vertical faces. Each sample consisted of three 

integrated subsamples, collected inside a circular area with a radius of ca. 10 m, in 

order to include the spatial variability of the sediment’s properties. At sites with an 

intense presence of ash, the surface ash layer was carefully removed so as not to 

modify the intrinsic sediment properties. In the case of surface soil samples collected 

from the area affected by the wildfire, material was collected from the upper soil 

layers likely to have been modified by the fire (i.e. exposed, charred soil material in 

areas devoid of vegetation). 

To estimate the relative source contribution to the bed sediment temporarily stored 

within the Sa Coma Freda River, five samples of the sediment deposited during the first 

storm after the wildfire were collected along the main channel bed stem. The samples 

were collected a week after the storm, with the topographical characteristics of the 

main stem (see longitudinal profile of inlet in Figure 5.2) and the wildfire’s effects 

taken into account. 
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Figure 5.2. Map of the Sa Font de la Vila catchment showing the monitoring network and sediment source sampling 
points. The wildfire recurrence effect is also shown, together with the post-fire treatment carried out after the 2013 
wildfire. 
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The type and spatial sequence of source, transfer and accumulation zones in any given 

catchment constitute a complex process mostly dependent on the potential of flows 

for activating the functions of different zones within a catchment (Thompson et al., 

2015). In this way, topography is both a resisting and disturbing force (Brunsden, 

2001). The longitudinal section was divided into four topographical sections shown in 

the inlet longitudinal profile in Figure 5.2. Therefore, five samples were collected in the 

accumulation pools of both the upstream and downstream parts of the main channel. 

All the main system channel –also the pools– was completely dry with high 

transmission losses under effluent dynamics. Each sample consisted of two integrated 

subsamples, collected in the most superficial layer (ca. 5 mm) inside a heterogeneous 

circular area, depending on the surface of each pool. Specifically, four samples were 

collected on the US-accumulation reach. However, only one sample was collected on 

the DS-accumulation reach of the Sa Coma Freda River because it is only 200 m long. 

Since the most upstream part of the catchment (US-source reach in Figure 5.2B) was 

severely affected by the wildfire (Figure 5.1F), sediment source discrimination focused 

on 17 soil surface and 5 channel bank samples, involving 4 targeted bed sediment 

channels (B1 to B4) collected in the US-accumulation reach (Figure 5.2B). In the DS-

accumulation reach, the analysis encompassed the 17 soil surface and 5 channel bank 

samples previously described, as well as 5 soil surface and 3 channel bank samples 

collected in the unburned DS part of the Sa Coma Freda sub-catchment, totalling 30 

potential source samples for 1 targeted bed sediment channel (B5). Thus, at DS it was 

possible to distinguish between soil surface and channel bank as sediment source, as 

well as the effect of fire in terms of unburned or burned materials.  

5.2.4. Laboratory work 

Source and targeted sediment samples were oven-dried at 40°C, carefully 

disaggregated using a pestle and a mortar and sieved to < 63 µm to ensure direct 

comparison. The absolute grain size and the specific surface area were determined by 

using a Malvern Mastersizer 2000 at the Institute of Environmental Assessment and 

Water Research (IDAEA-CSIC). The samples were previously treated with 

chemical/ultrasonic dispersion and hydrogen peroxide (H2O2) to remove the organic 



Chapter 5. Source ascription in bed sediments of a Mediterranean temporary stream after the first post-

fire flush 

104 

 

fraction. After the pre-treatment, each sample was closed tightly and left for more 

than 21 days before activity measurement, to ensure that secular equilibrium had 

been reached. The atmospherically-derived 210Pbex concentration was determined by 

subtracting the 226Ra-supported 210Pb concentration from the total 210Pb 

concentration, as [210Pbex] = [210Pb] – 0.8 [226Ra], including a commonly used value for 

the reduction factor to take into account the radon emanation coefficient of soils. The 

137Cs, 226Ra (via 214Bi at 609.3 keV) and total 210Pb activity concentrations (Bq kg-1) were 

measured by gamma spectrometry at the Environmental Radioactivity Laboratory of 

the University of the Balearic Islands using a high-purity coaxial intrinsic germanium 

(HPGe) detector, cooled by liquid nitrogen, shielded by 15 cm of low-background iron 

and equipped with high-voltage power supply, preamplifier, amplifier and 

multichannel analyser as an interface to a PC-type computer. The system was 

calibrated by a soil standard containing 210Pb provided by Exeter University and a CG2-

standard (241Am, 109Cd, 139Ce, 57Co, 60Co, 137Cs, 113Sn, 85Sr and 88Y) prepared and 

certified by the Centre for Energy, Environment and Technology Research (CIEMAT, the 

Spanish National reference for nuclear physics magnitudes), thus achieving a useful 

energy range from 25 keV to 10 MeV with a resolution of 5 keV and a detection 

efficiency of 0.99% for 137Cs, 1.10% for 226Ra and 4.63% for 210Pb. The minimum 

detectable activities have been of the order of 1 Bq kg-1 for 137Cs, 2 Bq kg-1 for 226Ra 

and 12 Bq kg-1 for 210Pb, and the uncertainties of the measurements less than 10%. As 

the same geometry was used for the standards and samples (less than 100 g in a vessel 

wide enough to assume that there are no self-absorption effects), there was no need 

to apply any correction factor. 

5.2.5. Particle size correction 

The particle size can affect the concentration values of the tracers selected to the 

source sediment adscription (Laceby et al., 2017). For 137Cs and 210Pbex, higher activity 

concentrations were observed in the fine particle size fractions (He and Walling, 1996) 

due to the increasing of the specific surface area (hereafter SSA, m2 g-1) in these 

fractions (Horowitz, 1991; Rawlins et al., 2010). Accordingly, to minimize the possible 

element concentration variations generated as a result of particle-size distribution 
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between source and target sediment samples, in this research was combined the size 

fractionation of the samples and the use of correction procedures. 

As explained in section 5.2.4 Laboratory work all the material was sieved to < 63 µm -. 

This fraction was selected for their representativeness of the suspended material 

transported preferentially by riverine systems (Laceby et al., 2017). In addition, the SSA 

was used as a metric to specify the existence of significant differences between sample 

groups. These sample groups were established in terms of spatial provenance (burned 

vs. unburned) and source type (soil surface vs. channel bank) at accumulation reaches 

in the upstream and downstream stems of the Sa Coma Freda River. To determine the 

presence of significant differences, the SSA values for sediment and source samples 

were compared with the Kruskal-Wallis test. Particle-size correction was applied when 

statistical differences (p-value < 0.05) were observed between sample groups (He and 

Walling, 1996): 

 

 

where C is the measured mean property concentration in source material, CC the 

property concentration corrected for particle size using SSA, Sx the SSA of suspended 

or deposited sediment collected at each location x, and SS is the mean SSA of the 

source to be corrected. Accordingly, the particle-size correction factor was applied to 

those source sample groups that showed significant statistical differences with each 

other and with the targeted bed sediments, to avoid errors in tracer concentrations 

caused by the differential tracer adsorption of the finest particles (Smith and Blake, 

2014). 

5.2.6. Source apportionment of suspended sediment sources 

The relative contributions of the different sediment sources were determined for the 

bed sediment samples located in the accumulation reaches of the Sa Coma Freda main 

stem. First, the Mann-Whitney U test was used to define whether the FRN as tracers 

were suitable to distinguish the sources (using SPSS computer software package). 
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Then, a linear mixing model was used to establish the relative contribution of each 

source to the individual bed sediment samples. The model minimizes the sum of 

squares of the relative errors between FRN-measured mean activity concentrations in 

source and bed sediment samples (Walden et al., 1997; Collins et al., 1997). The Monte 

Carlo simulation technique was used with 1,000 iterations to calculate the model 

uncertainties associated with the tracer’s spatial variability values (Martinez-Carreras 

et al. 2008) for each bed sediment sample and to compute mean (50th percentile) 

source contributions and uncertainty ranges (10th and 90th percentiles). Negative 

tracer values were discarded and mixing diagrams included bed sediment values in 

each run. These linear mixing models with uncertainty evaluations used Matlab 

software. This uncertainty reflects equifinality in the mixing model solution. Therefore, 

the robustness of the source ascription solutions was assessed by a mean goodness of 

fit (GOF, modified from Motha et al., 2003): 

 

 

where bi is the value of tracer property i (i = 1 to n) in the bed sediment sample, ai,j is 

the value of tracer property i in source type j (j = 1 to m), xj is the unknown relative 

contribution of source type j to the bed sediment sample, m is the number of source 

types, and n is the number of tracer properties.  

Source contribution uncertainty depends not only on the spatial variability of the 

tracers associated with an individual source, but also on the tracer property values for 

the bed sediment, since the location of the tracer values therein will also constrain the 

output uncertainty (Martínez-Carreras et al., 2008). The most certain source 

ascriptions (lower uncertainty ranges) were obtained, not when the contributions of 

the individual potential sources were similar, but rather when the bed sediment tracer 

values were close to the values for the source that has lower tracer variabilities and 

when that source dominates (Joerin et al., 2002). Note that the centroid of the 

likelihood-weighted confidence intervals was used as a measurement of modal 

behaviour (Beven and Binley, 1992). 



Chapter 5. Source ascription in bed sediments of a Mediterranean temporary stream after the first post-

fire flush 

 

107 

 

5.3. Results  

The 29 October 2013 convective storm was the first with runoff generation occurring 

after the 2013 wildfire, in which 50 mm accumulated in only 15 minutes with an 

intensity of 200 mm h-1. Following the method and the classification developed by 

Brown and Foster (1987), the rainfall erosivity of this event was 2,886 MJ mm ha-1 h-1, 

rated as medium. As a result, this storm generated a flow response with a peak 

discharge of 1.5 m3 s-1 and a maximum suspended sediment concentration (SSC) of 

33,618 mg l-1, recorded at the Sa Font de la Vila gauging station. The suspended 

sediment load was ca. 110 t and yielded 23 t km-2. This value represented 99% of the 

sediment exported during the first post-fire hydrological year (2013-2014). Although 

wildfire reduces the catchment’s erosion threshold by enhancing the erosional 

response to high-intensity rainfall (Moody and Martin, 2001) –such as occurred in the 

Sa Font de la Vila catchment–, flow was not sufficient to completely transfer the 

sediment released into the main stem, which caused sediment deposition on the 

riverbed surface. Pervious materials and dry preceding conditions in the main stem 

during summer –intensified by wildfire– resulted in a very low runoff coefficient (i.e. 1 

%) and deposition dynamics during this first post-fire flush. Romero et al. (2014) 

provide an observational characterization of this storm in the Balearic Islands based on 

surface reports, remote sensing products, radio soundings and synoptic information. 

The variations of SSA in river fine sediment could be largely ascribed to differences 

between sources, meaning that particle-size differences between sample groups must 

be carefully assessed (Smith and Blake, 2014). This assessment resulted in significant 

differences (p-value < 0.05; Table 5.1) in particle size between source and bed 

sediment samples in the US-accumulation reach as well as between bed sediment and 

both burned and unburned sources in the DS-accumulation reach. Accordingly, 

particle-size corrections were only applied on these sources. The use of these 

corrections caused a reduction of FRN concentration values for all the source samples 

located in both the US- and DS-accumulation reaches (Table 5.2). 
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Table 5.1. Basic statistics and p-values derived from the discrimination analysis of the specific surface area (m2 g-1) 
between source materials and bed sediment samples. 

Site Type N Minimum Maximum Average St. Dev. p-value 

US-
accumulation 

reach 

1. Sources 22 0.71 2.02 1.48 0.36 
0.040 

2. Bed sediment 4 0.77 1.21 1.00 0.22 

DS-
accumulation 

reach 

1. Sources 30 0.71 2.41 1.58 0.38 
0.154 

2. Bed sediment 1 0.91 0.91 0.91 - 

US-
accumulation 

reach 

1. Burned soil surface 
17

* 
0.71 2.02 1.45 0.37 

0.095 2. Burned channel bank 5* 1.36 1.99 1.64 0.32 

3. Bed sediment 4 0.77 1.21 1.00 0.22 

DS-
accumulation 

reach 

1. Burned sources 
22

* 
0.71 2.02 1.48 0.36 

0.039 2. Unburned sources 8 1.50 2.41 1.83 0.32 

3. Bed sediment 1 0.91 0.91 0.91 - 

DS-
accumulation 

reach 

1. Unburned soil surface 5 1.50 2.41 1.81 0.36 

0.145 

2. Unburned channel bank 3 1.66 2.19 1.84 0.30 

3. Burned soil surface 
17

* 
0.71 2.02 1.45 0.37 

4. Burned channel bank 5* 1.36 1.99 1.64 0.32 

5. Bed sediment 1 0.91 0.91 0.91 - 

p-values in bold are significant * Burned source samples are the same at US and DS  

 

 

Table 5.2. Effects of the particle-size correction factor on the 137Cs and 210Pbex activity concentrations of source and 
sediment materials. 

      137Cs (Bq kg-1) 210Pbex (Bq kg-1) 

  

 
  Uncorrected Corrected Uncorrected Corrected 

Site Type N Average 
St. 

Dev. 
Average 

St. 
Dev. 

Average 
St. 

Dev. 
Average 

St. 
Dev. 

US-
accumulatio

n reach 

1. Sources 22 28.8 21.0 20.2 14.8 218.1 110.7 153.1 77.9 

2. Bed 
sediment 

4 17.1 10.6 - - 202.9 107.7 - - 

DS-
accumulatio

n reach 

1. Burned 
sources 

22 28.8 21.0 16.8 13.6 218.1 110.7 127.4 75.9 

2. Unburned 
sources 

8 7.8 6.1 4.6 3.4 70.4 54.3 42.4 29.6 

3. Bed 
sediment 

1 25.6 - - - 218.6 - - - 
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Table 5.3. 137Cs and 210Pbex activity concentrations of source and bed sediment materials. 

      
137Cs (Bq kg-1) 210Pbex (Bq kg-1) 

Site Type n Min. Max. Avg. St. Dev. Min. Max. Avg. St. Dev. 

US-
accumulation 
reach 

1. Burned soil surface 17* 13.5 90.1 32.8 20.2 129.5 518.1 240.6 102.7 

2. Burned channel 
bank 

5* 2.7 12.7 6.3 5.5 44.8 157.7 91.0 59.2 

3. Bed sediment 4 1.4 25.1 17.1 10.6 48.9 282.1 202.9 107.7 

P-value < 0.01 < 0.05 

DS-
accumulation 
reach 

1. Burned sources 22* 2.7 90.1 28.8 21.0 44.8 518.1 218.1 110.7 

2. Unburned sources 8 3.8 21.4 7.8 6.1 24.9 194.3 70.4 54.3 

3. Bed sediment 1 25.6 25.6 25.6 - 218.6 218.6 218.6 - 

P-value < 0.01 < 0.01 

DS-
accumulation 
reach 

1. Unburned soil 
surface 

5 3.9 21.4 8.5 7.3 47.1 194.3 87.7 63.3 

2. Unburned channel 
bank 

3 3.8 11.9 6.7 4.5 24.9 59.3 41.6 17.3 

3. Burned soil surface 17* 13.5 90.1 32.8 20.2 129.5 518.1 240.6 102.7 

4. Burned channel 
bank 

5* 2.7 12.7 6.3 5.5 44.8 157.7 91.0 59.2 

5. Bed sediment 1 25.6 25.6 25.6 - 218.6 218.6 218.6 - 

P-value > 0.05 > 0.05 

* Burned source samples at US and DS are the same 

Significant differences were observed in 137Cs activity concentrations (p < 0.01) 

between burned surface soil and burned channel bank samples collected upstream of 

the bed sediments of the US-accumulation reach. Concentrations were higher in 

burned soil surface material, with an average of 32.8 Bq kg-1 against 6.3 Bq kg-1 in 

burned channel banks (Table 5.3 and Figure 5.3A). For 210Pbex, differences in activity 

concentrations between sources (p < 0.05) were also higher in burned soil surface 

material, with a mean value of 240.6 Bq kg-1 vs. 91.0 Bq kg-1 in burned channel banks. 

FRN concentration patterns between burned and unburned sources at DS-

accumulation reach (Table 5.3 and Figure 5.3B) were very different (p < 0.01) both in 

137Cs and 210Pbex, being significantly higher in the fire-affected samples (mean values of 

28.8 Bq kg-1 for 137Cs and 218.0 Bq kg-1 for 210Pbex) than in unburned samples (mean 

values of 7.8 Bq kg-1 for 137Cs and 70.4 Bq kg-1 for 210Pbex). However, when the source 
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grouping is a combination of spatial (i.e. burned vs unburned) and source types (i.e. 

surface soil vs. channel bank), FRNs could not significantly discriminate sources at DS-

accumulation reach due to concentrations being similar (p > 0.05) for both 

radioisotopes (8.5 Bq kg-1 of 137Cs and 87.7 Bq kg-1 of 210Pbex for unburned surface soils, 

6.7 Bq kg-1 of 137Cs and 41.6 Bq kg-1 of 210Pbex for unburned channel bank samples, 32.8 

Bq kg-1 of 137Cs and 240.6 Bq kg-1 of 210Pbex burned surface soil samples, and 6.3 Bq kg-1 

of 137Cs and 91 Bq kg-1 of 210Pbex for burned channel bank material).  

 

Figure 5.3. 137Cs and 210Pbex activity concentrations (Bq kg-1) of source and bed sediment samples for (A) MS-middle 
stream source samples defined in terms of burned soil surface and burned channel bank material and (B) DS-
downstream source samples defined in terms of burned and unburned soil surface and burned and unburned 
channel bank. 

FRN concentrations in bed sediments for the accumulation reaches in US and DS 

samples were statistically similar (p > 0.05), with mean 137Cs concentrations of 17.1 

and 25.6 Bq kg-1, whilst the 210Pbex figures were 202.9 and 218.6 Bq kg-1, respectively 

(Table 5.3).  

Figure 5.4 illustrates the predicted relative contribution in bed sediment samples of 

each source in both sections of the Sa Coma Freda River. For the US-accumulation 

reach, sediment sources were distinguished in terms of burned surface soils and 

burned channel bank material, as the flush was generated in the upstream catchment 

area highly affected by the 2013 wildfire. Surface soils were the main origin within the 

bed sediments along the US-accumulation reach. At the B1, B2 and B4 sites, the soil 

surface contributions were 86%, 91% and 84%, respectively (average of 87 %). 
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However, at the B3 site, the channel bank contribution was clearly predominant (ca. 

96%; Figure 5.4A). In the DS-accumulation reach sample (B5), the post-fire sediment 

source contributions within the bed sediment were distinguished through both source 

type (i.e. surface soil and channel banks) and burned or unburned material (Figure 

5.4B).  

 

Figure 5.4. Source relative contribution to the bed sediments of (A) MS-middle stream sites and (B) DS-downstream 
site. Potential outliers are plotted as points. 

This design allows the assessment of the sediment transfer along the fluvial network 

downstream from the burned area in terms of source type, despite the low level of 

significance discriminating sources. The contribution from the burned area were 75% 

for soil surface material and 13% for channel banks. From the unburned areas 7 % of 

the contribution was soil surface material and 5% channel banks. To provide 

robustness to the source ascription, sources and targeted bed sediments were 

compared only by distinguishing unburned vs. burned materials. The result was that 

burned sources predominated, with an average contribution of 92% (Figure 5.4B). The 

sediment source dynamics observed in the DS-accumulation reach were then similar to 
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those observed in the US-accumulation reach, confirming a downstream propagation 

of sediment derived from the burned area. 

5.4. Discussion 

Fallout radionuclides (137Cs and 210Pbex) were used as tracers to determine the relative 

contributions of sediment sources in terms of spatial provenance (burned vs. 

unburned) and source type (soil surface vs. channel bank) in bed sediments 

temporarily stored along the main stem of a Mediterranean catchment severely 

affected by a wildfire. Pervious materials and dry preceding conditions –with an 

absence of baseflow– promoted the deposition of sediments on the riverbed surface 

along the main stem due to transmission losses. The differences between source 

sample groups at both accumulation reaches (i.e. burned soil surface vs. burned 

channel bank materials at US and burned vs. unburned sources at DS; Table 5.3) were 

detected by increased FRN concentrations in areas affected by fire (Wilkinson et al., 

2009), due to fire causing the loss of surface soil organic mass (Smith et al., 2013). The 

similar values obtained in the targeted bed sediment samples (i.e. US and DS), as well 

as the high SSC and suspended sediment load recorded at the Sa Font de la Vila 

gauging station, indicate that the energy of the storm was uniformly distributed along 

the main stem to release sediment, whereas the influent conditions within the stream 

promoted bed deposition by transmission losses.  

Despite the solutions from the mixing model obtained high GOF, these findings may be 

involved by some uncertainties associated with measurement error, the particle-size 

correction factor and the mixing model application. Haddadchi et al. (2013, 2014) 

compared several mixing models and optimization methods at two catchment datasets 

by using artificial mixtures of sediments from different sources observing important 

differences depending on the used mixing model. Nevertheless, to achieve a complete 

understanding of the sediment sources in the burned Sa Font de la Vila River, the 

measurement of artificial mixtures composed by representative source material will be 

applied in future studies to reduce uncertainties related to mixing model selection 

(Laceby and Olley, 2015; Palazón et al., 2015). Despite this, the results indicate clearly 

that the wildfire affected sediment redistribution along the main stem of the 
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catchment, with a high contribution from hillslope burned areas. Therefore, bed 

sediments deposited during the first flush after the wildfire were mostly generated on 

hillslopes due to vegetation loss and the increased sediment availability caused by the 

fire alterations. In addition, channel bank contributions are limited by soil conservation 

practices, i.e. dry-stone walls to prevent erosion. This is a common practice in the 

bottom valleys, where the natural stream is systematically diverted to a margin of the 

floodplain, which provides further fertile agricultural land and avoids erosion because 

slope and channel are not connected. However, this action involves increased flow 

velocity, promoted by stream banks being fixed by dry-stone walls, which also avoids 

erosion (Estrany and Grimalt, 2014). Thus, the channel bank contribution was only 

predominant (ca. 96%) at one bed sampling site (B3), which was probably caused by a 

local collapse of these dry-stone walls releasing sediment from the river channel bank. 

The significant hillslope contribution may be caused by a reduction in 

evapotranspiration, infiltration, interception and sediment trapping –promoted by the 

modification of vegetation and litter cover– and the alteration of physicochemical soil 

properties such as structure stability, texture and particle-size distribution and water 

repellence (Úbeda and Outeiro, 2009). Furthermore, the predominance of soil surface 

origin in the sediments temporarily stored in the riverbed along the main stem 

indicates a significant first-flush effect generated by a short-duration rainfall event (i.e. 

15 mins.). In fact, the most damaging events are related to short high-intensity rainfall 

events, because of the changes in the rainfall-runoff processes caused by burning 

(Shakesby and Doerr, 2006; Moody and Martin 2009). These changes are mainly 

characterized by the increase in overland flow and soil erosion during the most active 

period of the window of disturbance after a wildfire (Prosser and Williams, 1998; Scott 

et al., 1998; Cerdà and Doerr, 2005), especially during the first post-fire year (Candela 

et al., 2005). Accordingly, the first heavy rainfall after the dry season was a high-energy 

torrential storm that generated a great slope-to-channel sediment delivery favoured 

by the landscape’s post-fire conditions.  

The first flush, occurring three months after the wildfire (October 29th), involved a 

significant increase in the concentration of suspended matter from the first runoff 

event after the summer under post-fire conditions. The SSC peak recorded (i.e. 33,618 
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mg l-1) demonstrated the post-fire first-flush effect. Since delivery processes are 

limited by the historical contingency of geomorphic responses and by low runoff 

coefficients of Mediterranean areas (Estrany, 2009), the SSC peak measured was three 

orders of magnitude higher than the SSC peaks recorded in the 2013-2014 hydrological 

year in similar Mallorcan catchments (Calsamiglia et al., 2016). Likewise, other 

worldwide studies of post-fire hydrosedimentary dynamics at the catchment scale 

have documented increases of between one and three orders of magnitude in SSC 

values (Smith et al., 2011a). Moreover, 99% of the suspended sediment load of the 

2013-2014 hydrological year was exported during this event. Nevertheless, the 

absence of baseflow promoted sediment deposition along the main stem due to 

transmission losses with a very low runoff coefficient (1%) of this event. In this way, 

deposition of sediment in the channels was more important than transport, until a 

major flood event (return period ≈ 5 years) evacuates the stored sediment in 

Mediterranean temporary rivers (Estrany et al., 2011). 

A catchment’s sediment source response to wildfire –in terms of source type; i.e. soil 

surface vs. channel bank– is highly dependent on its biogeoclimatic setting (Smith et 

al., 2013). Post-fire sediment sourcing studies have mainly focused on North America 

and Australia, illustrating different responses. In the forested highlands of south-

eastern Australia, hillslope sediment contribution was predominant in both small 

(Smith et al., 2011b) and medium-size catchments (Wilkinson et al., 2009) despite 

differences in geology, topography soils and forest type. However, studies from 

western North America reported channel source dominance in conifer forest 

environments (Moody and Martin, 2001; Owens et al., 2012), probably caused by a 

loss of root strength (Eaton et al., 2010). As far as the authors are aware, only Estrany 

et al. (2016) have developed comparable research of catchment sediment sources by 

using FRN concentrations (137Cs and 210Pbex) as tracers in a Mediterranean temporary 

stream partially affected by wildfire. In this study, the post-fire dynamics were 

characterized by a small contribution, only 12% on average, from the burned area to 

the bed sediments, after a single low flood event (i.e. return period <1 year). The 

smaller burned area and the subsequent lower availability of burned sediment 

combined with the absence of heavy rainfall, limited the activation of the sediment 
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cascade. As pointed out previously, Smith et al. (2011b) determined that the hillslope 

contribution declined with gradual post-fire landscape recuperation in a burned 

Australian catchment during the first 4 post-fire years. These landscape dynamics seem 

to match the results obtained in the Sa Coma Freda catchment, where most of the 

sediment of the first flush was generated on burned hillslopes under heavy rainfall 

conditions. García-Comendador et al. (2017) analysed the spatio-temporal relationship 

between discharge and sediment transport at the event scale during the first three 

post-fire years at the Sa Font de la Vila gauging station by means of hysteresis loop 

classification. The results showed how 67% of the counter-clockwise loops occurred 

during the first post-fire year (2013-2014), which indicated that the main sediment 

sources were located at a certain distance from the channel. During the following 

years, this percentage –as well as the sediment yield– decreased significantly, which 

may be related to vegetation cover conditions on the burnt hillslopes (Lane et al., 

2006; Smith et al., 2011a). Nevertheless, the adjustment in the catchment sediment 

source response requires long-term monitoring because differences in the distribution 

of land uses and land cover may determine how much different sediment sources 

contribute (Palazón et al., 2015; Estrany et al., 2016). 

5.5. Conclusions 

The findings of this study provide valuable insight into the short-term response of 

catchment sediment sources in a Mediterranean temporary river during the first post-

fire flush. Despite the uncertainties related with the application of the sediment source 

fingerprinting technique, the contributions from different sediment sources to bed 

sediments lead to the following conclusions: (i) the main contribution to the bed 

sediments (both US-upper stream and DS-downstream accumulation reaches) was 

delivered from burned hillslopes due to the fire’s physicochemical alterations 

promoting bare soils and sediment availability; and (ii) high-intensity rainfall (high-

energy storm) is clarified as the main factor driving effective slope-to-channel 

sediment connectivity. In the Sa Font de la Vila catchment, this short-term response 

indicates a direct association between these post-fire runoff and sediment generation 

factors and sediment cascade activation at catchment scale. However, the distinctive 
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characteristics of wildfire impact on Mediterranean ecosystems involve uncertainties 

on the most effective period of the disturbance window, as the resilience capacity of 

these highly modified ecosystems may alter their response. There is clearly a need for 

extending over time the programme monitoring catchment sediment sources, in order 

to determine how Sa Coma Freda will respond to the severe wildfire of summer 2013 

in the medium and long terms. 
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5.7. Supplementary material 

 

Supplementary figure 5.1. Hydrograph, sedigraph and hyetograph for the hydrological year 2013-2014 at the Sa 
Font de la Vila gauging station. 
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Supplementary figure 5.2. Experimental design, including the hydrograph, sedigraph and hyetograph for 29th 
October 2013 at the Sa Font de la Vila gauging station. 
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6. Analysis of post-fire suspended sediment 
sources by using colour parameters 

Abstract 

After a wildfire, total or partial removal of vegetal biomass and changes in 
physicochemical soil properties lead to an increase in overland flow and sediment 
yield. Eventual damage must be counteracted urgently by identifying erosion hotspots 
and by implementing post-fire management programmes and sampling campaigns. In 
this context, the sediment source fingerprinting technique is widely used to determine 
the origin of suspended sediments in catchments and to evaluate the effectiveness of 
sediment management programmes. It traditionally relies on the use of physical, 
biochemical and geochemical properties as tracers. However, measuring these tracers 
in the laboratory is often expensive and time-consuming. Colour tracers have been 
shown to greatly reduce time and cost, especially if a normal office scanner is used for 
measurements. Here we explored whether colour parameters can be used to 
investigate suspended sediment origin in burned catchments. To this end, sediment 
and ash were mixed artificially to verify colour linear additivity and ash influence on 
colour parameters. Colour parameters were then used for source ascription of 
suspended sediment samples (n=9) collected during two years after a fire in a small 
Mediterranean catchment (Mallorca, Spain). In addition, reflectance-derived colour 
parameters were compared with those obtained using a normal office scanner. The 
close correlation between most chromatic indexes (obtained using both methods; p < 
0.01) suggested that scanning is a good alternative for measuring soil and sediment 
colour. A Bayesian tracer mixing model (MixSIAR) determined the relative contribution 
of each source. The type of mixing model enables appropriate representation of 
natural and sampling uncertainty in tracer data. During the first events, suspended 
sediment originated mainly in burned surfaces, whereas the contribution of these 
decreased throughout the study period. Tracing results obtained using colour 
parameters were compared with calculations using 137Cs and 210Pbex, as recognized 
tracers to discriminate between surface and subsurface sediment sources after 
wildfires. Estimated source ascriptions with both methods (i.e. reflectance-derived 
colour parameters and radionuclides) coincided in predicting the dominant source in 7 
of the 9 samples measured. Colour tracers proved useful in discriminating between 
burned and unburned sources, making them suitable for suspended sediment source 
ascription and monitoring as part of post-fire management strategies. 

 

Keywords: Sediment fingerprinting, colour, fallout radionuclides, wildfire, ash, 
suspended sediment sources 
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6.1. Introduction 

Wildfires greatly change the hydrological response and sediment dynamics of river 

systems (Moody et al., 2013; Shakesby, 2011; Shakesby and Doerr, 2006). The 

reduction or elimination of vegetation cover (Candela et al., 2005) and the alteration 

of physicochemical soil characteristics (Úbeda and Outeiro, 2009) normally increase 

overland flow and sediment yield from hillslopes and reduce the rainfall-runoff 

response time, especially during the first post-fire year (Candela et al., 2005; Scott et 

al., 1998). Other variables that affect the increase in erosion and sediment yield after a 

fire are the fire’s severity (Keeley, 2009), post-fire rainfall patterns (Warrick et al., 

2012), lithology and the presence of agricultural terraces (García-Comendador et al., 

2017a), and post-fire management (Spanos et al., 2005). In addition, the increase in 

slope-to-channel sediment connectivity may generate downstream impacts related to 

fine sediment transport and its associated pollutants (Collins et al., 2017), such as dam 

siltation (Navas et al., 2004), decreased water quality (Horowitz et al., 2007; Smith et 

al., 2011a) and the contamination of aquatic ecosystems (Newcombe and Macdonald, 

1991; Verkaik et al., 2013).  

Fire transforms biomass, necromass and soil organic matter into ash, consisting of 

mineral materials and charred organic components (Bodí et al., 2014). A non-

homogenous ash layer covers the soil surface immediately after a wildfire creating a 

two-layer system (Nyman et al., 2014), influencing soil wettability (Balfour and Woods, 

2013; Bodí et al., 2014; Cerdà and Doerr, 2008) and altering its hydrological behaviour 

(Brook et al., 2018). Nevertheless, ash does not remain on the soil surface for very 

long, but is redistributed or removed in days or weeks after a fire (Cerdà and Doerr, 

2008; Pereira et al., 2015), is transported in the river in combination with fine 

sediment (Reneau et al., 2007) and/or migrates downward into the soil (Pereira et al., 

2015). However, little is known about how ash reaches the stream network after a fire 

and its progressive wash-out as suspended sediment, as this process is highly 

dependent on ash properties, terrain features and meteorological conditions (Bodí et 

al., 2014). Accurate identification of the suspended sediment sources contributing to 

sediment load after a wildfire and of routine monitoring programmes are needed to 
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correctly design and evaluate post-fire management strategies, which are crucial in 

fire-prone, human-modified environments.  

In river catchments, fingerprinting and unmixing techniques are often used to calculate 

the different pre-defined sources in a downstream suspended sediment mixture (Davis 

and Fox, 2009; Walling et al., 1993). Traditionally, physical, biochemical and 

geochemical sediment properties are used as tracers (Walling, 2013). Sediment 

fingerprinting assumes that tracer properties are measurable, conservative and 

representative, which needs to be carefully scrutinized (Collins et al., 2017; Smith and 

Blake, 2014). In addition, the tracers must behave in a linearly additive way during the 

mixing process (Lees, 1997). Previous studies have shown that the use of some of 

these tracers is not appropriate in burned catchments. For example, susceptibility to 

the variation of soil geochemical properties after a fire hinders the distinction between 

burned and unburned areas (Smith et al., 2013). On the contrary, the fallout 

radionuclides (FRNs), caesium-137 (137Cs) and excess lead-210 (210Pbex), normally 

increase their activity in soils after a wildfire due to soil mass reduction by organic 

matter combustion and to radionuclide transfer and redistribution from burned 

vegetation to the soil (Wilkinson et al., 2009), which discriminates between burned 

and unburned areas (Estrany et al., 2016; García-Comendador et al., 2017b). In 

addition, their exposure to atmospheric precipitation discriminates between surface 

and subsurface sources (Owens et al., 2012; Wilkinson et al., 2009), which has led to 

their extensive use in burned catchments. However, catchment vulnerability to erosion 

processes during the first post-fire year highlights the need to define and apply cost-

effective and fast post-fire management strategies, whereas FRN counting times in 

samples with relatively low activity are rather long. 

Soil and sediment colour can also be used for tracing, the main advantage being that 

this can be measured by fast, cheap and non-destructive methods. Colour coefficients 

use as tracers for source ascription has increased in the last decade (Evrard et al., 

2019; Martínez-Carreras et al., 2010b; Pulley et al., 2018; Tiecher et al., 2015), as the 

results obtained were found to be comparable to those obtained with classical tracers 

(i.e. radionuclides, geochemistry and organic compounds) in small catchments 

(Martínez-Carreras et al., 2010a, 2010c). Pulley et al. (2018) found high consistency 
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between estimates based on mineral magnetic tracers and ones based on colour 

coefficients in clarifying the sediment sources of historically deposited sediments. 

However, special attention should be paid to how changes in organic matter content, 

particle size distribution and moisture alter colour properties (Pulley and Rowntree, 

2016). These parameters may affect the probabilistic distributions calculated by mixing 

models, which may in turn lead to wrong conclusions. Nonetheless, the elimination of 

organic matter or the use of particle size correction factors may not be suitable in all 

cases and may even reduce the discriminative potential of colour tracers (Pulley et al., 

2018; Pulley and Rowntree, 2016). 

Previous studies used ash colour (Úbeda et al., 2009) and changes in soil colour 

(D’Haen et al., 2013; Ketterings and Bigham, 2000; Pérez-Bejarano and Guerrero, 2018) 

to determine the temperature reached during a fire. Normally, black ashes appear at 

low temperatures (ca. 250 °C) because of the residual carbon content derived from the 

incomplete combustion of the organic matter; and grey ashes, at temperatures above 

ca. 450ºC due to the mineral residue after complete combustion (Lentile et al., 2006; 

Smith et al., 2005; Úbeda et al., 2009). The presence of black ash after fire tends to 

decrease visible and near-infrared reflectance. In contrast, the silica mineral present in 

grey ash tends to increase it greatly (Lentile et al., 2006). Furthermore, soil tends to 

become redder when temperature reaches a range between 200-500°C. This is due to 

the transformation of iron oxides hydrated first into maghemite and then hematite 

(Terefe et al., 2008). These features help to distinguish sediment origin when using 

colour tracers after a fire. 

This paper puts forward the proposition that suspended sediment colour shows the 

relative contributions of burned and unburned surfaces in river catchments. Artificial 

mixtures of sediment and ash were created to verify linear additivity and ash influence 

on colour parameters. Suspended sediment tracing results obtained by colour 

parameters calculated from reflectance diffuse spectrometry were compared, in order 

to investigate the sediment’s consistency, with those obtained (i) using an ordinary 

office scanner and (ii) fallout radionuclides. 
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6.2. Study area 

The Sa Font de la Vila River is a Mediterranean catchment of 4.8 km2 located in the 

Andratx municipality (western Mallorca, Spain; Figure 6.1A and 6.1B), which is affected 

by extensive afforestation of former agricultural land and recurrent wildfires. The 

lithology of the catchment’s bottom valleys consists mainly of Upper Triassic (Keuper) 

clays and loams on gentle slopes (ca. < 10 degrees). Rhaetian dolomite and Lias 

limestone predominate in the upper parts of the catchment with steeper slopes > 30% 

(Figure 6.1C). Soils are classified as BK45-2bc, corresponding to Calcic Cambisols (Jahn 

et al., 2006). The fluvial network consists of two main streams: (a) Sa Coma Freda 

(east, 2.3 km2), which has a significant groundwater influence with several karstic 

springs; and (b) Can Cabrit (west, 2.08 km2), not affected by this groundwater influence 

due to the reduced presence of impervious materials. In addition, a check-dam was 

built at Can Cabrit in 2007 (5 m high and 16 m long; Figure 6.1D). 

The climate is Mediterranean temperate sub-humid at headwaters and warm sub-

humid at the outlet (Emberger climatic classification; Guijarro, 1986). The average 

temperature is 16.5 °C. The mean annual rainfall is 518 mm yr-1, with an inter-annual 

coefficient of variation of 29%. High-intensity rainstorms with a recurrence period of 

10 years may reach 85 mm in 24 hours (1974-2010; data from the B118 S'Alqueria 

meteorological station of the Spanish State Meteorological Agency (AEMET); Figure 

6.1B). 

In the last twenty years, the Sa Font de la Vila catchment has been affected by major 

wildfires in 1994 and 2013 (Figure 6.1E). Before the 2013 wildfire, the catchment was 

mainly covered by natural vegetation (84%; Figure 6.1C): 51% forest and 33% 

scrubland. The rest of the catchment was covered by rain-fed tree crops (12%), rain-

fed herbaceous crops (1%) and urban uses (3%). Traditional soil and water 

conservation structures (i.e., hillslope and valley-bottom terraces) cover 37% of the 

total surface area (Figure 6.1D). Their abandonment and degradation, involving the 

collapse of dry-stone walls, increased the sensitivity of the catchment (Calsamiglia et 

al., 2017). Collapses were higher on those abandoned terraces affected by recurrent 

fires due to soil degradation (Lucas-Borja et al., 2018).  
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Figure 6.1. Location of the Mallorca Island within the Mediterranean Sea (A); location of the Sa Font de la Vila catchment, the area 
affected by the July 2013 wildfire, the B'12 S'Alqueria meteorological station and the village of Llucmajor (B); lithology (C) land 
uses and soil conservation practices (D) of the Sa Font de la Vila catchment (downstream site) and Sa Murtera sub-catchment 
(upstream site); and 1994 and 2013 wildfire affected areas as well as severity of the 2013 wildfire and 2016 sampling area (E). 
Channel bank and surface sampling points indicated as blue dots and orange squares, respectively. 

The 1994 fire affected 45% of the catchment surface, whereas the 2013 one reached 

71% (more than half of it had already been burned in 1994). A severity assessment 

with the Normalized Burn Ratio (Escuin et al., 2008) and Landsat 8 images for the 2013 
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wildfire assigned high and moderate severity to 24% and 47% of the catchment, 

respectively (Bauzà, 2014. Figure 6.1E). In addition, after the 2013 wildfire the Balearic 

Islands Department of the Environment (Conselleria de Medi Ambient, Agricultura i 

Pesca) implemented a series of post-fire strategies to prevent soil loss and 

degradation, which included mulching, tree planting and the creation of log barriers 

with dead biomass.  

6.3. Materials and methods 

6.3.1. Water and sediment monitoring programme 

Two nested gauging stations were installed in Sa Font de la Vila catchment to record 

continuous water and suspended sediment fluxes, one at the Sa Murtera sub-

catchment (1.1 km2; upstream site) and one at the outlet of the catchment (4.8 km2; 

downstream site; Figure 6.1). As the upstream site gauging station was not set up till 

September 2014, hydrological data are not available for the first post-fire year. Both 

stations were equipped with Campbell Scientific CS451-L pressure probes and OBS-3+ 

turbidimeters with a double measurement range of 0-1,000 and 1,000-4,000 NTU. 

Campbell CR200 loggers recorded 15-min average values of water stage and turbidity 

(based on 1-minute readings). In addition, a Casella tipping bucket rain gauge was 

installed at the upstream site.  

6.3.2. Soil, ash and sediment sampling 

After careful examination of the site, samples of potential sediment sources were 

collected immediately after the last wildfire (September 2013; Figure 6.1) on soil 

hillslopes with an apparently active sediment slope-to-channel connectivity (0-2 cm 

depth; n = 40) and potential erodible channel banks (n = 20). To encompass the spatial 

variability of the soil properties, each surface soil sample consisted of three integrated 

subsamples collected inside a ca. 10 m-radius circular area; and each channel bank 

sample, of three subsamples collected along a 10 m transect. The fire impact was 

taken into account when designing the surface sample collection strategy. Thirty-one 

surface samples were collected from burned areas (burned surface samples) and 9 
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from unburned areas (unburned surface samples; Figure 6.1E). For the upstream site 

only 4 channel bank samples and 15 burned surface samples were collected. The 

unburned surface category was not included as a potential suspended sediment source 

in the upstream site because of its small area (i.e. 19% of total catchment area) and its 

very limited hydrological connectivity with the stream network. This latter factor is due 

to the presence of well-maintained agricultural terraces (cf. Calsamiglia et al., 2017) 

and a road that isolates most of the unburned area (Figure 6.1E), acting as an artificial 

longitudinal buffer against the fire and directing most runoff outside the catchment. 

The catchment’s hydrological dynamics between the wildfire and the sampling 

campaign resulted in the accumulation of 107 mm of low-intensity precipitation, which 

did not generate surface runoff at the catchment outlet (precipitation data from B118 

S’Alqueria AEMET station, Figure 6.1B). Visual evidence during the sampling campaign 

suggested incorporation of part of the ash deposits in the soil profile through 

infiltration (see ash cover in photos taken during the sampling campaign; 

Supplementary figure 6.1). For a few samples, the remaining ash cover was carefully 

removed to collect representative samples of the soil surface and minimise alteration 

of intrinsic soil properties.  

Suspended sediment samples (n=9) were collected during the hydrological years 

between 2013 and 2015 at both sampling sites (i.e. upstream site and downstream 

site), using time-integrated samplers (Phillips et al., 2000; two samplers per site). Ash 

was not collected at the study site. However, ash samples were collected from a fire-

affected area in August 2018 in the municipality of Llucmajor (southwest Mallorca; 

Figure 6.1B). This burned site had similar soil types, climate and vegetation patterns.  

Representative ashes with a wide spectrum of colours (white, grey and black) were 

collected, avoiding the inclusion of the underlying soil layer (Bodí et al., 2014). In a 

simplified procedure, the samples were combined in two groups representing the 

overall gradient of ash colours, namely the black ashes (n=10), i.e. the darker samples, 

and the grey ashes (n=9), the lighter samples. Although the ash sampling area and the 

study area encompass similar characteristics, collecting ash samples in the study area 

just after the 2013 wildfire have been preferable. Thereby, even incorporating ashes 
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with a large range of colours in the analysis, eventual difference between ashes from 

both sites remain unknown 

6.3.3. Laboratory treatment and analysis 

The source and target sediment samples were oven-dried at 40 °C, disaggregated using 

a pestle and a mortar and sieved to <63 µm to minimize the differences in particle size 

composition between source/target samples (Walling et al., 1993). The particle size 

distribution (PSD) and the specific surface area (SSA) of all source samples and 3 

suspended sediment samples were determined after sieving by using a Malvern 

Mastersizer 2000 at the Institute of Environmental Assessment and Water Research 

(IDAEA-CSIC, Spain). The Shapiro-Wilk (p < 0.05) normality test and the Mann-Whitney 

U test checked the similarity in the PSD of each source group and target sample. 137Cs 

and 210Pbex activity concentrations (Bq·kg-1) were measured by gamma spectrometry at 

the Environmental Radioactivity Laboratory of the University of the Balearic Islands 

(Mallorca, Spain), using a high-purity coaxial intrinsic germanium (HPGe) detector. 

Total C and N were measured by high-temperature combustion using a TruSpec CHNS, 

LECO at the Luxembourg Institute of Science and Technology (LIST, Luxembourg).  

Diffuse reflectance was measured in a dark room by a spectroradiometer (ASD 

FieldSpect-II) at 1 µm steps over the 400-2500 µm range. The spectrometer was 

located in a tripod perpendicular to a flat surface, at 10 cm from the reference 

standard panel of known reflectivity (Spectralon). The soil and sediment samples were 

placed in transparent P.V.C. round petri dishes (4.7 cm diameter; Pall Corporation) and 

carefully smoothed with a spatula to minimize micro shadow effects due to surface 

roughness. The samples and the Spectralon were illuminated at an angle of 30° by a 

50-w quartz halogen lamp placed at ca. 30 cm of distance. Following the International 

Commission on Illumination (CIE, 1931), CIE xyY colour coefficients were computed 

(i.e. cie x, cie y and cie yy) from the spectra reflectance measurements and the RGB 

colour values (i.e. red, green and blue). Then, the ColoSol software, developed by 

Viscarra Rossel et al. (2006), was used to estimate the Munsell HVC (i.e. Munsell H, 

Munsell V and Munsell C), CIE XYZ (i.e. cie X, cie Y and cie Z), CIE LAB ( cie L, cie a* and 

cie b*), CIELUB (i.e. cie L, cie u* and cie v*), CIELHC (i.e. cie L, cie H and cie C) and 
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decorrelated RGB (i.e. HRGB, IRGB and SRGB) colour parameters, as well as the 

redness index (i.e. RI) and Helmoltz chromaticity coordinates (i.e. DW nm, Pe %). 

All the samples were placed in transparent plastic bags (7 * 5 cm) and scanned with an 

office scanner (Konika Minolta bizhub C554e; e.g. Krein et al., 2003; Pulley and 

Rowntree, 2016). The instrument was not calibrated. Red, green and blue colour 

parameters (i.e. RGB model) were extracted from the scanned images by the GIMP 2 

open-source image-editing software. Then, the procedure described in the previous 

paragraph was applied to convert the red, green and blue colour parameters into the 

other colour parameters. This allowed us to determine whether colour parameters 

calculated from diffuse reflectance (hereafter referred to as spectrometer-based 

colour parameters) and with an ordinary office scanner (hereafter referred to as 

scanner-based colour parameters) were consistent.  

Ash exhaustion and soil recovery over time could alter source colour values, resulting 

in larger source ascription uncertainties in the medium to long term after the fire. 

However, sources were only sampled once (1 month after the fire). To partially 

mitigate this limitation, we made use of 24 soil samples collected in 2016 (29 months 

after the fire) from a headwater field on the study site (Figure 6.1E). Samples were 

collected following the same methodology as in 2013 and scanned to measure their 

colour parameters. The samples were originally collected to analyse soil quality 

parameters after a wildfire (Calsamiglia et al., 2017 and Lucas-Borja et al., 2018). 

6.3.4. Artificial laboratory mixtures 

Thirty artificial mixtures of 2, 3 and 4 different source samples, ash and suspended 

sediment were created (Table 6.1 and Supplementary table 6.1). Mixtures of different 

sample types and a reduced number of mixtures with two or three samples of the 

same source were created. In the latter case, as all samples were considered as 

different sources, they permitted the uncertainty assessment when source tracer 

signatures were less distant. In addition, and to investigate ash influence on the colour 

parameters, 18 artificial samples mixing suspended sediment (collected at the 

upstream site in 2015) and ash (black and grey) in different proportions were created 

(Table 6.1 and Supplementary table 6.2). The ash proportion was gradually modified 
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from 10% to 90% to observe the influence of ash on sediment colour variation. Colour 

parameters of all the artificial mixtures were measured with the spectrometer and the 

scanner following the methodology described in Section 6.3.3. 

6.3.5. Accuracy of colour tracers 

The individual accuracy and linear additivity behaviour of colour tracers were assessed 

by comparing measured values (i.e. spectrometer- and colour-based ones) and 

predicted values by means of a mass balance approach (i.e. tracer values in the 

mixture are equal to the sum of contributions from each artificially mixed sample). To 

compare colour tracers with different scales, the normalized root mean square error 

(nRMSE) was calculated by dividing the RMSE by the mean of the measured data. The 

nRMSE was expressed as a percentage. The tracers with a nRMSE >15% were 

discarded. 

A Kruskal-Wallis H test was performed to find how well the colour tracers 

discriminated between source groups. Then, a Discriminant Function Analysis (DFA) 

checked the discriminatory potential of each tracer group (taking selected tracers as 

independent variables) and calculated the percentage of correctly classified samples 

(leave-on-out cross-validation). 

6.3.6. Suspended sediment fingerprinting and unmixing of 
artificial mixtures 

A range test was used to exclude potentially non-conservative tracers in each 

individual suspended sediment sample. Therefore, the tracers in suspended sediment 

and artificial mixtures that showed values outside minimum and maximum source 

range values were discarded. 

The MixSIAR Bayesian tracer mixing model framework (Stock et al., 2018), 

implemented by Stock and Semmens (2016) as an open-source R package, was used to 

estimate the relative contribution of each source to the suspended sediment samples 

and the artificial mixtures. Previous studies using Bayesian mixing models to unmix 

sediment sources include Abban et al., 2016; Blake et al., 2018; Massoudieh et al., 

2013; and Nosrati et al., 2014. 



Chapter 6. Analysis of post-fire suspended sediment sources by using colour parameters 

137 

 

The fundamental mixing equation of a mixing model is: 

 

 

where bi is the tracer property i (i = 1 to n) measured in a suspended sediment sample, 

ai,j is the value of the tracer property i in each source sample j (j = 1 to m), wj is the 

unknown relative contribution of each source j to the suspended sediment sample. 

MixSIAR accounts for variability in the source and mixture tracer data with the ability 

to incorporate covariance data to explain variability in the mixture proportions via 

fixed and random effects (Stock and Semmens, 2016; Stock et al., 2018). This is 

especially useful in this study because of the collinearity between colour parameters of 

the different chromaticity coordinates. Hence, a discriminant function was not used to 

select an optimum group of tracers, as weak tracers can only improve model 

representation. In this study, MixSIAR was formulated by using sediment type as a 

factor and an uninformative prior (Blake et al., 2018). The Markov Chain Monte Carlo 

parameters were set as very long: chain length = 1,000,000, burn = 700,000, thin = 300, 

chains = 3. Convergence of the models was evaluated by the Gelman-Rubin diagnosis.  

MixSIAR was used to unmix the artificial mixtures (see Section 6.3.4) and ultimately to 

evaluate and compare the performance of the two different colour tracer groups and 

FRNs. A constant residual error of 5% in the mixed samples was taken as creating the 

artificial mixtures to account for potential variability (e.g. measurement error). It 

should be noted that tracers that showed no individual discriminatory accuracy were 

excluded from the model (see Section 6.3.5). Accuracy in predicting the source 

contribution of each tracer group was evaluated by computing absolute errors (i.e. 

absolute value of the difference between the real proportions in the mixture and the 

estimated contributions; AE). 
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6.4. Results  

6.4.1. Artificial laboratory mixtures and ash influence 

Colour parameters showed individual contrasting performance to predict the colour of 

artificial mixtures (Figure 6.2; Table 6.1). Chromatic coordinates cie x and cie y showed 

a maximum nRMSE between estimated and predicted values of 2% and 5% for the 

spectrometer-based (Figures 6.2A and 6.2C) and scanner-based (Figures 6.2B and 6.2D) 

parameters, respectively. Regardless of the measurement technique, cie x and cie y 

had lower nRMSE than red, green and blue colour parameters. In contrast, cie yy 

(brightness) had larger errors. The spectrometer-based cie yy parameter showed a 

minimum of 21% nRMSE (Figure 6.2A); and the cie yy scanner-based one, a minimum 

of 15% (Figure 6.2B). Thus, as Cie yy performance was low, it was not considered a 

linearly additive tracer. Figures 6.2A and 6.2B also show that the divergence between 

estimated and measured cie yy, red, green and blue (i.e. nRMSE values) decreased 

when discarding one artificial mixture with black ash (n=9; Figure 6.2A and 6.2B). For 

instance, the average spectrometer- and scanner-based cie yy, red, green and blue 

nRMSEs decreased to 13%, 6%, 4% and 5%, respectively. Linear additivity tests were 

performed for all other spectrometer- and scanner-based colour parameters to discard 

non-linearly additive tracers. The remaining colour parameters were used to predict 

suspended sediment sources (Table 6.2). 

The average nRMSE between estimated and predicted values was slightly higher for 

the 3-sample mixtures than for the 2-sample ones, for both the spectrometer- (4.2% 

higher) and the scanner-based (1.1% higher) colour parameters (Figure 6.2). The 4-

sample mixtures’ average nRMSE was lower than the 2-sample mixtures’ average 

nRMSE for both the spectrometer-based (1.3% lower) and the scanner-based (2.4% 

lower) colour parameters. 

Accuracy of spectrometer- and scanner-based colour parameters was similar. 

Accordingly, colour parameters calculated using the two independent techniques 

correlated closely (n = 24; confidence limit 99%; P < 0.01) (see Supplementary figure 

6.2). Despite this, the relationship between colour parameters calculated with the two 

techniques does not always follow the identity line. 
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Figure 6.2. Normalized root mean square error (nRMSE) between estimated and measured spectrometer-based (A) 
and scanner-based colour parameters (B). Note that nRMSE results are shown when including samples containing 
black ashes (BA; i.e. ‘2 samples mixt. BA’, ‘3 samples mixt. BA’ and ‘4 samples mixt. BA’) and excluding them from 
the mixtures (i.e., ‘2 samples mixt.’, ‘3 samples mixt.’ and ‘4 samples mixt.’). Note that accuracy increase in the 
latest case. Scatter plot showing estimated versus measured cie x spectrometer-based parameter (C) and cie x 
scanner-based parameter (D) when mixing 2, 3 and 4 samples. 

Figure 6.3 shows the estimated vs measured spectrometer-based colour parameters of 

the artificial sediment-ash mixtures (cie x, cie y and cie yy; Figures 6.3A-C) and the 

nRMSE (cie x, cie y, cie yy, red, green and blue; Figure 6.3D). Colour parameters 

changed clearly when regular proportions of ash were added to a suspended sediment 

sample (i.e., from 10 to 90%). For all colour parameters except green, the real 

measurements are over-estimated when a mass-balance approach is used (data not 

shown). Cie x and cie y parameters’ nRMSE values were relatively low (i.e. < 3%) for 

both grey and black ash mixtures. However, cie yy showed a larger nRMSE (i.e. 10% for 

grey ash mixtures and 74% for black ash mixtures), confirming that it did not behave as 

a linearly additive tracer. 

The nRMSE values were higher on the RGB chromatic scale than on cie x and cie y. 

Mixtures with black ash showed larger errors than grey ash mixtures. Grey ash 

mixtures’ nRMSEs for red, green and blue were < 10% (Figure 6.3D). On the contrary, 

nRMSEs for black ash mixtures were > 10%. Errors were lower with a large contribution 
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of one of the samples to the mixture (i.e. less deviation from the identity line in Figures 

6.3A-C), whereas errors increased if the proportion of both samples mixed was similar. 

In addition, and for comparison, analysis of the redness index evolution in black and 

grey artificial mixtures showed close positive correlation with R2 > 0.9 in both cases 

(Figure 6.3F and 6.3G). 

Table 6.1. Summary table of the type and number of artificial mixtures created in the laboratory. Average absolute 
error between real and estimated proportions using spectrometer-based colour parameter in MixSIAR. Real and 
estimated proportions of samples mixed are listed in Supplementary table 6.3, Table 6.4, Table 6.5. 

Samples 
Number of samples mixed 
(n-sources) 

Number of mixtures 
(n) 

Average 
absolute 
error (%) 

Type of samples mixed 

2-samples mixtures 2 10 12.3 
Channel bank, surface 
unburned, surface burned, 
grey ash, black ash 

3-samples mixtures 3 10 12.3 
Channel bank, surface 
unburned, surface burned, 
grey ash, black ash 

4-samples mixtures 4 10 10.1 
Channel bank, surface 
unburned, surface burned, 
grey ash, black ash 

Black ash mixtures 2 9 - Ash and suspended sediment 

Grey ash mixtures 2 9 - Ash and suspended sediment 

 

Table 6.2. Tracers with a linear additivity behaviour. 

  Spectrometer-based parameters Scanner-based parameters 

Linear additivity test:   

Colour parameters with nRMSE 
< 15%  

cie x, cie y, red, green, blue, HRGB, IRGB, 
cie L, cie H, Munsell H, Munsell V, DW 
nm, Pe % 

cie x, cie y, green, blue, IRGB, cie L, 
Munsell V, DW nm 

 

In addition, increases in total C and total N were observed when the proportion of ash 

in the mixtures increased (Figures 6.3H and 6.3I). On average, total C content increased 

by 0.6% and 6.4% for each 10% increase in grey and black ash content, respectively. 

Total N average increase was 0.01% and 0.04% for grey and black ash mixtures, 

respectively. 

The MixSIAR Bayesian tracer mixing model framework was used to calculate the 

contribution of each sample to the artificial laboratory mixtures and to evaluate the 

overall unmixing performance of the colour tracers (using parameters showing a 

nRMSE < 15% on passing a range test for each mixture; unmixing results shown in  
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Figure 6.3. Scatter plots showing estimated versus measured cie x (A), cie y (B) and cie yy (C) spectrometer-based 
colour parameter when adding increasing proportions of ash (black and grey ash; 0–100%) to a suspended sediment 
sample. (D) Normalized root mean square error (nRMSE) between estimated and measured spectrometer-based cie 
x, cie y, cie yy, red, green and blue colour parameters of the artificial sediment-ash mixtures. (E) Scanned images of 
the sediment-ash artificial mixtures when increasing the ash proportion (grey and black ash mixtures). (F) 
correlation between grey and (G) black ash % and redness index measured in the artificial mixtures. (H) scatter plot 
between total C and cie x and (I) between total N and cie x of the sediment-ash artificial mixtures, the US4 
suspended sediment sample (US4 SS), and black and grey ash. 
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Supplementary tables 6.3, 6.4 and 6.5 for 2, 3 and 4 samples mixed, respectively). 

MixSIAR predictions were compared with the real proportions mixed. The average 

absolute error when mixing 2, 3 and 4 samples ranged between 10.1 and 12.3% (Table 

6.1). When unmixing 2 samples and one of the samples contributed more than 60% to 

the mixture, MixSIAR was able to identify the dominant sample in 4 of 6 cases. For 3-

sample mixtures, MixSIAR was able to identify the dominant source in the 2 artificial 

samples when one of the samples contributed more than 60% to the mixture. Finally, 

when unmixing 4-sample mixtures, MixSIAR correctly identified the sample with a 

contribution > 40% to the mixture in 4 of 6 samples. In addition, some samples showed 

widespread distribution in the solutions of the model (e.g. mix2-m7), though the 

distribution did not include the real mixed sample proportion (e.g. mix2-m2). 

6.4.2. Colour, particle size, organic matter content and FRN 
activity of sources, ash and suspended sediment samples 

Samples collected at the downstream site from distinct sources had distinct colour 

values (Figure 6.4; p < 0.05, K-Wallis test at 95% confidence interval; Supplementary 

table 6.6). The unburned surface samples showed the highest values of all measured 

colour parameters, followed by the channel bank and the burned surface samples. 

Suspended sediment colour measurements fall within the limits of the sources, with no 

evidence of missed sources seen. The values of suspended sediments were usually 

medium-low and similar to the values measured in the burned surface and channel 

bank samples. Black ash samples showed the lowest colour values. However, grey ash 

samples showed very low values for cie x and cie y, but notably higher values for cie yy. 

At the downstream site, burned surface samples showed the highest redness index 

values, followed by channel banks and unburned surfaces (Figure 6.5A). Accordingly, 

suspended sediment samples showed a higher redness index during the first event, 

which decreased over time at both sampling sites (Figure 6.5B). 

The discriminant function analysis showed that the selected spectrometer- and 

scanner-based parameters (Table 6.2) correctly classified 80% and 78.3% of the source 

samples, respectively, and that the selected tracers were able to distinguish sediment 

sources (Figure 6.6). 
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Figure 6.4. Box plots of cie x, cie y and cie yy reflectance-based colour parameters measured in source and 
suspended sediment samples at the Sa Murtera sub-catchment (upstream site; A, B and C) and at the Font de la Vila 
catchment (downstream site; D, E and F). Values measured on grey and black ashes are plotted for comparison. 

 

Figure 6.5. (A) Boxplots showing the spectrometer-based redness index distribution values measured in sediment 
sources and suspended sediment samples from the downstream site; (B) evolution of the redness index values in 
suspended sediment samples trough time (x axis represents the chronological order of the events; see Table 6.3). 
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Figure 6.6. Bi-plot showing the first and second discriminant functions for the spectrometer- (A) and scanner-based 
colour parameters (B) measured on the different source types of Sa Font de la Vila catchment (downstream site). 
Tracers used are listed in Table 6.2. 

Particle size distribution between source groups and suspended sediment samples was 

not normal (Shapiro-Wilk, p <0.05). When applying the Mann-Whitney U test, all 

source sample groups showed statistical similarity with the suspended sediment 

samples (channel bank: U = 2281, p=0.894; burned surface: U = 2280, p = 0.890; 

unburned surface: U = 2267, p = 0.846; Figure 6.7). 

Total C and N measured in source, suspended sediment and ash samples are shown in 

Figure 6.8. Total C and N measured in suspended sediment and source samples 

showed significant inverse correlation with spectrometer-based cie x (R = 0.71 for both 

total C and N, n = 67, p < 0.05; Figure 6.8) and cie y colour parameters (R = 0.72 and 

0.77, for total C and N, respectively, n = 67, p < 0.05; data not shown).  
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Figure 6.7. Average particle size distributions of the different source types of Sa Font de la Vila catchment 
(downstream site) and suspended sediment samples. 

 

Figure 6.8. Scatter plots between suspended sediment, source samples, black ash and grey ash chromatic 
coordinate cie x and Total C (A), and Total N (B). R2 linear correlation coefficients for the source and sediment 
samples. 



Chapter 6. Analysis of post-fire suspended sediment sources by using colour parameters 

146 

 

 

Figure 6.9. Hydrograph, suspended sediment concentration (SSC) and hyetograph at the Sa Murtera sub-catchment 
(middle plot; upstream site) and the Sa Font de la Vila catchment (lower plot; downstream site) during the study 
period. Average cie x colour parameter values for each potential suspended sediment sources type (unburned 
surface (US), burned surface (BS) and channel bank (CB), grey and black ashes (GA and BA, respectively) represented 
as dotted lines. Cie x colour parameter values measured on the suspended sediment (SS) samples represented as 
orange dots. Pie charts show suspended sediment average source ascription at both sampling sites together with a 
picture of the suspended sediment collected with the time-integrated sampler during each event. 

Suspended sediment samples from the upstream and downstream sites were collected 

for (i) two events occurring in the first post-fire hydrological year and (ii) two events in 

the second post-fire hydrological year (Figure 6.9). Table 6.3 summarizes the 

hydrological and sediment transport dynamics of the events. It is of note that during 

the 29/10/2013 event, when precipitation intensity was ca. 5 times higher than the 

average of the rest of events, discharge and suspended sediment concentration peaks 

were an order of magnitude higher. At both sites, suspended sediment collected 

during the first event had the lowest colour values for cie x, cie y and cie yy, whereas 

values tended to increase in consecutive events (Table 6.3). However, it is the last 

event that shows the highest values at the upstream site. At the downstream site, the 

highest values were measured during the 15/12/2014 event, followed by the last 

event. 
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Burned surface samples showed the highest average activity values for 137Cs and 

210Pbex (Table 4). Channel bank and unburned surface samples had very similar average 

FRN activities. These samples did not pass the K-Wallis distribution test (p > 0.05) and 

were grouped into a single source (i.e. referred to as unburned-channel). 

Table 6.3. List of events sampled in the upstream site (Sa Murtera) and downstream site (Sa Font de la Vila). Total 
rainfall (P.tot.); maximum rainfall intensity in 30 min (IPmax-30); total sediment load (Load); maximum sediment 
concentration (SS peak), and the cie x, cie y and cie yy spectrometer-based colour parameters measured in the 
suspended sediment samples. DS1a and DS1b were sampled simultaneously in the same event. 

Site SS Samples Date P.tot. IPmax-30 Q peak Load SS peak Colour parameters 

   (mm) (mm·h-1) (m3·s-1) (t) (mg·l-1) Cie x Cie y Cie yy 

Upstream site 

US1 29/10/2013 51 100 - - - 0.3829 0.3617 12.0399 

US2 17/11/2013 66 18 - - - 0.3848 0.3624 12.6789 

US3 15/12/2014 30 29.6 0.1 0.8 4.557 0.3897 0.3654 14.1313 

US4 20/01/2015 62 10.8 0.2 0.7 11.245 0.3968 0.3687 21.1625 

Downstream site 

DS1a* 
29/10/2013 51 100 1.5 84 36.030 0.3785 0.3592 10.5616 

DS1b* 
29/10/2013 51 100 1.5 84 36.030 0.3772 0.3582 10.3677 

DS2 17/11/2013 66 18 0.1 3 11.848 0.3861 0.3633 13.7114 

DS3 15/12/2014 30 29.6 0.2 0.1 215 0.388 0.3665 19.3448 

DS4 20/01/2015 62 10.8 0.5 1.1 285 0.3851 0.3639 15.0774 

* Samples DS1a and DS1b were collected during the same event using two time-integrated suspended sediment 

samplers. 

Similar FRNs activities in unburned surface and channel bank samples can be explained 

as a consequence of a patchy fire effect within some streams. Flame turbulent 

processes can patchily influence the combustion in channel banks of intermittent 

streams, particularly considering those constrained by dry stone walls. However, some 

samples collected in unburned areas also showed high 137Cs and 210Pbex activities 

(Supplementary figure 6.3A). The low energy conditions at the lower Sa Font de la Vila 

River (i.e. low gradient of the main channel) together with the dry conditions 

promoted sediment deposition in the mainstream. As most of the channel banks in this 

lowest reach were completely constrained by dry-stone walls, the samples were 

collected in the most bottom part of the channel banks. The sediment released from 

burned areas just after the first effective event (29th October 2013) were deposited 

within the channel bed and also affecting the bottom part of channel banks, thus 

promoting the increase of FRNs concentrations (Supplementary figure 6.3B). 
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Both FRNs passed the K-Wallis test when two sources instead of three were 

considered: burned surface and unburned-channel. Suspended sediment samples’ FRN 

values fell within the range of activities measured on the sources. 

Table 6.4. Average Fallout radionuclide (FRNs) activity (Bq kg−1) in the different source and sediment sample groups. 

Tracers Sample groups 
Mean 
(Bq kg−1) 

Sta.Dev. 

210Pbex 

Channel bank 46.377 40.814 

Burned surface 204.138 98.312 

Unburned surface 42.045 52.376 

Suspended sediment 177.835 102.389 

137Cs 

Channel bank 6.260 3.803 

Burned surface 28.665 16.076 

Unburned surface 5.811 6.118 

Suspended sediment 20.800 8.754 

6.4.3. Suspended sediment fingerprinting 

All colour tracers that surpassed the linear additive test also passed the range test 

(spectrometer- and scanner-based colour parameters, Table 6.2) for the first two 

suspended sediment samples collected at the upstream site (i.e. US1 and US2). 

However, some colour parameters did not pass the test for the US3 samples (i.e. blue 

with scanner-based colour parameters) and US4 (green, blue, cie L, Munsell V with 

scanner and red, green, blue, IRGB, cie L, Munsell V with spectrometer-based colour 

parameters). For the suspended sediment samples collected at the downstream site, 

all tracers passing the linear additive test also passed the range test (spectrometer- 

and scanner-based colour parameters). Both 137Cs and 210Pbex passed the range test. 

When using spectrometer-based colour parameters at the upstream site, mixing 

models predicted that burned soil contributed to the largest extent to the suspended 

sediment samples US1 and US2 (Table 6.5); whereas predictions for the US3 and US4 

suspended sediment samples determined channel bank as the dominant source. At the 

downstream site, predicted suspended sediment sources changed over time. DS1a and 

DS1b were collected in parallel during the same event and predicted similar 

contributions (the first post-fire flush 29/10/2013). The mixing models predicted a 

dominant contribution of burned soil over the other sources (Table 6.5). The 

predominant source was still burned soil for the next sample collected (DS2), but the 
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predicted predominant source changed towards unburned soil for the DS3 sample. 

Finally, for the DS4 sample, the mixing models predicted that the main suspended 

sediment source was again burned soil, followed by unburned soil. 

Table 6.5. MixSIAR source apportionment using spectrometer-based colour parameters, scanner-based colour 
parameters and fallout radionuclides activity (FRNs) for the suspended sediment samples collected at the upstream 
and downstream sites. It should be note that unburned surface and channel bank sources were joined for FRNs at 
the downstream site. 

    Spectrometer Scanner FRNs 

SS 
sample 

Sources 
Average 
(%) 

Quantile 
distribution 
2.5% - 97.5% 

Average 
(%) 

Quantile 
distribution 
2.5% - 97.5% 

Average 
(%) 

Quantile 
distribution 
2.5% - 97.5% 

Upstream site 

US1 
Burned surface 61.3 ± 10.3 43.5 - 83.9 39 ± 10.4 21.3 - 66.2 83.3 ± 12.3 52.2 -99.3 

Channel bank 38.7 ± 10.3 16.1 - 56.5 61 ± 10.4 37.8 - 78.7 16.7 ± 12.3 0.7 - 44.8 

US2 
Burned surface 51.4 ± 9.1 36.1 - 71.9 31.6 ± 12.3 8.3 - 58.4 55.1 ± 20.3 20.4 - 96.1 

Channel bank 48.6 ± 9.1 28.1 - 63.9 68.4 ± 12.3 41.6 - 91.7 44.9 ± 20.3 3.9 - 79.6 

US3 
Burned surface 31.4 ± 9.4 11.7 - 50.1 8 ± 8.7 0.2 - 29.2 27.9 ± 19.5 2.5 - 80.3 

Channel bank 68.6 ± 9.4 49.9 - 88.3 92 ± 8.7 70.8 - 99.8 72.1 ± 19.5 19.7 - 97.5 

US4 
Burned surface 18.1 ± 11.2 1.2 - 43.7 21.2 ± 2.2 0.6 - 85.8 21.3 ± 18.8 0.9 - 75.5 

Channel bank 81.9 ± 11.2 56.3 - 98.8 78.8 ± 2.2 14.2 - 99.4 78.7 ± 18.8 24.5 - 99.1 

Downstream site 

DS1a 

Burned surface 84.6 ± 6.4 70.9 - 96 88.4 ± 5.7 75.2 - 97.5 85.8 ± 10.3 62.4 - 99.5 

Unburned surface 5.7 ± 4.2 0.3 -15.9 4.4 ± 3.4 0.2 - 12.8 
14.2 ± 10.3 0.5 - 37.6 

Channel bank 9.7 ± 6.8 0.4 - 25.5 7.2 ± 5.8 0.2- 21.8 

DS1b 

Burned surface 86.2 ± 6.1 73.3 - 96.7 81.3 ± 7.5 65.3 - 94.8 70.3 ± 16 40 - 97.8 

Unburned surface 5.1 ± 3.9 0.2 - 14.6 6.5 ± 4.7 0.3 - 17.2 
29.7 ± 16 2.2 - 60 

Channel bank 8.7 ± 6.2 0.4 - 23 12.2 ± 8.4 0.5 - 30.4 

DS2 

Burned surface 53.8 ± 8.7 36.8 - 70.3 53 ± 10.2 31.7 - 70.9 72.7 ± 15.3 43.5 - 98.1 

Unburned surface 19.8 ± 10 1.6 - 38 19 ± 10 1.4 - 38.1 
27.3 ± 15.3 1.9 - 56.5 

Channel bank 26.4 ± 15.7 1.9 - 58.3 27.9 ± 17.2 1.4 - 63.1 

DS3 

Burned surface 20.3 ± 9.5 2.1 - 38.2 8.6 ± 7.1 0.2 - 26 - - 

Unburned surface 65 ± 10.5 45 - 84.2 65.9 ± 17.4 21.2 - 91.3 
- - 

Channel bank 14.7 ± 12.9 0.5 - 44.9 25.4 ± 20 1 - 75.1 

DS4 

Burned surface 49 ± 7.9 32.7 - 63.3 28.4 ± 15.4 3 - 56.5 38.4 ± 19.8 7.9 - 86.4 

Unburned surface 34.4 ± 9.7 9.8 - 50.4 19.6 ± 162 0.5 - 52 
61.6 ± 19.8 13.6 - 92.1 

Channel bank 16.6 ± 13.8 0.6 - 52.9 52.1 ± 29.1 1.6 - 91.8 
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Figure 6.10. (A) Box plots of cie x and cie y scanner-based colour parameters measured in 2013 burned source 
samples, 2016 burned source samples and 2013 unburned source samples; (B) Box plots of red, green, blue scanner-
based colour parameters measured in 2013 burned source samples, 2016 burned source samples and 2013 
unburned source samples; (C) Average MixSIAR source apportionment results using 2013 burned surface scanner-
based colour parameters; (D) Average MixSIAR source apportionment results using 2016 burned surface scanner-
based colour parameters. 

When comparing the MixSIAR predictions obtained using different groups of tracers 

(i.e. spectrometer- and scanner-based colour parameters and FRNs), the three tracer 

groups predicted the same dominant source in all samples except three (US1, US2 and 

DS4; Table 6.5). When only comparing the spectrometer colour-based parameters and 

the FRN results, the two groups always identified the same dominant source (Table 

6.5) except for the DS4 sample. 

The source samples collected in 2016 showed scanner-based colour values that range 

between the burned soil and the unburned soil samples (Figure 6.10A and 6.10B). To 

verify eventual ash exhaustion impact on our results, we determined suspended 

sediment sources by using MixSIAR and the colour parameters measured in the 2016 

soil samples as burned sources (i.e. instead of the samples collected in 2013). The 

results did not substantially change, with an average absolute error of 5.7 ± 6.6% 

(Figure 6.10B and 6.10C). 
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6.5. Discussion 

6.5.1. On the use of colour to trace suspended sediment 
sources in burned Mediterranean catchments 

The presence of ash after a wildfire tends to change the soil’s visible reflectance 

(Lentile et al., 2006) and its carbon content (Bodí et al., 2014) and, in consequence, the 

colour of the upper soil layer. Results illustrated how colour parameters estimated 

from diffuse reflectance laboratory measurements discriminate between burned 

surface soil, unburned surface soil and channel bank sources. Artificial mixtures 

showed that most colour parameters were linear additive and, individually, were able 

to predict the colour of the mixtures by using a mass balance approach. The highest 

errors were observed for the cie yy, SRGB, cie X, cie Z, cie a*, cie b*, cie u*, cie v*, cie C, 

Munsell C and redness index parameters (nRMSE>15%). Therefore, they were 

discarded as reliable sediment tracers. Once the non-conservative tracers were 

discarded, the average nRMSE was equal to 5.1% ± 2.9. Errors were comparable with 

values reported in the literature. Martínez-Carreras et al. (2010c) reported errors <5% 

for 75% of their artificial mixtures using cie x, cie y and cie yy colour parameters, whilst 

the nRMSE ranged between 0.2 and 6.3% when 15 colour coefficients were used by 

Uber et al. (Uber et al., 2019) and between 0.4 and 5.6% by Gaspar et al. (2019) with 

geochemical tracers. 

Furthermore, the presence of black ash in the artificial mixtures resulted in increased 

nRMSEs for some colour coefficients (e.g. cie yy; Figure 6.2), suggesting that (i) these 

tracers should be discarded and (ii) colour tracers should be evaluated locally and 

carefully when source and sediment tracers contain black ashes. The differences in cie 

yy nRMSE obtained in artificial samples containing grey and black ashes may be due to 

different optical absorption. Black ashes had a lower reflectance with an average 

brightness (i.e. cie yy) of 2.8 ± 0.4, while grey ashes showed an average of 17.3 ± 3.8 

(spectrometer-based colour data). However, other parameters (e.g. cie x and cie y) 

were not significantly affected when black ash was added to the artificial mixtures 

(nRMSE always < 4%). These were the most reliable colour tracers.  
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Cie x and cie y values decreased when the ash proportion in the artificial mixtures 

increased (Figure 6.3), whereas total C and N content increased. The average increase 

in the sediment total C content caused for each increase of 10% in the proportion of 

black ash is 10 times higher than for each increase of grey ash. Suspended sediment 

samples collected at the upstream and downstream sites and the grey ash sediment 

mixtures have similar proportions of C (i.e. ranging from 7.2 to 15.3%). However, even 

with similar total C content, the suspended sediment samples had higher cie x and cie y 

colour values than the grey ash artificial mixtures did (Figure 6.11). This, together with 

the results of the mixing experiments, suggests that most of the suspended sediment 

samples contained < 20% of black ash (92.5% of the samples showed values higher 

than those of the samples containing 20% of black ash; Figure 6.11) or < 30% of grey 

ash (Figure 6.11). Thus, colour parameters can be used to calculate the ash content of 

soil and sediment samples. For instance, a gradual increase in the cie x and cie y colour 

values was observed in the suspended sediment samples collected at the upstream 

and downstream sites during subsequent events (Figure 6.9), suggesting a decrease in 

their ash content. Likewise, Reneau et al. (2007) used 137C activity to demonstrate that 

the proportion of ash in suspended sediment steadily decreased through the first rainy 

post-fire season and was lower in the second one. 

The apparent decrease in ash content in suspended sediment samples over time 

(Figure 6.11) could be associated, not only with a variation in the main source of 

sediment (i.e. burned surface), but also with ash exhaustion on the hillslopes. The 

latter is informed by the redness index, which correlates closely with the percentage of 

grey and black ash in the artificial mixtures (Figure 6.3F and G). Hence, the ash 

experiments showed that the amount of ash also alters the redness index regardless of 

the temperature reached during the fire. Therefore, even if the redness index steadily 

decreases over time at both the upstream and downstream sites (Figure 6.5B), it alone 

cannot confirm that there were contributions from sources affected by fire, 

irrespective of the ash content in sediment. 
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Figure 6.11. Scatter plots showing suspended sediment samples, grey ash and sediment artificial mixtures and black 
ash and sediment artificial mixtures relationship of cie x values and Total C (A), and Total N (B). Arrows indicate ash 
content increase in the artificial mixtures. 

Some studies report changes in the clay-sized material in sediments after a fire by the 

fusion of the finest particles, generating coarser aggregates (Blake et al., 2007; Dyrness 

and Youngberg, 1957; Ternan and Neller, 1999). However, García-Corona et al. (2004) 

found no significant changes in aggregate size distribution in burned soils during a 

laboratory experiment. In this study, even if there were differences in particle size 

distribution between suspended sediment and source samples (Figure 6.5), they were 

not statistically significant. Nevertheless, samples were not sieved at different 

fractions and the influence of PSD on colour parameters was not addressed and should 

be further explored. Pulley and Rowntree (2016) found that the intensity of red, green 

and blue light reflected from the < 32 µm fraction of the sediment was significantly 
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higher than that of coarser particles (i.e. 63-32 µm and 125-63 µm fractions). When 

these authors, working in the Karoo region of the Eastern Cape of South Africa, 

separated the < 32 µm fraction of the sources and sediments from the > 32 µm 

fraction, there was less tracing uncertainty. Even though the Karoo region covers a 

much larger area (> 150 km2) where in-stream transformations are more likely to occur 

than at our study site (< 5 km2), the extent of suspended sediment colour changes as a 

function of suspended sediment PSD and catchment size remains unknown and site-

dependent.  

Organic matter content also modifies the effectiveness of colour tracers to 

discriminate sediment sources if suspended sediment content increases during 

transport due to in-stream transformation. In non-burned catchments, Ankers et al. 

(2003) found C concentrations ranging from 4.5 to 12.2% in suspended sediment 

collected at 60 different catchments. In burned catchments, soil C content 

substantially increases when organic-rich ashes are incorporated into the soils at low 

combustion completeness (typically T < 450°C), with organic C content as the main 

component (Bodí et al., 2014). However, lower C content is expected in burned soils at 

high combustion completeness (typically T > 450°C), as most organic carbon is 

volatized. At our study site, the average total C content of burned soils was 2.3% 

higher than that of unburned soils, and 2.1% higher than in channel banks, which 

suggests the incorporation of low-combustion ashes. We argue that changes in total C 

content associated with ash incorporation and/or soil transformation after a wildfire, 

when low-combustion ashes are incorporated, are much larger than eventual changes 

due to in-stream transformation in small catchments. In this study, on average, total C 

increased by 0.6% ± 0.2 and 6.4% ± 2.5, respectively, when the proportion of grey and 

black ash in the artificial mixtures increased by 10% (Figure 6.11). Pulley and Rowntree 

(2016) used H2O2 to remove organic matter in their South Africa samples to evaluate 

the uncertainties associated with organic matter when using colour to trace suspended 

sediment sources. Their results showed that H2O2 treatment reduced source 

variability, homogenizing tracer values for each source and improving the 

discrimination capacity of colour tracers over untreated samples. However, the 

capacity of these tracers to discriminate between surface and subsurface sources was 
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reduced. The authors also artificially added organic matter to some mixtures and 

observed that it had very little impact on the precision of colour tracers when it was < 

30% of the sample mass. In later research, Pulley et al. (2018) detected that 

differences of 44% resulted when treating or not with H2O2 sediment and soil samples. 

When comparing these results with those provided by mineral magnetic tracers, the 

authors concluded that the errors were lower in the untreated samples, which means 

that the elimination of organic matter using H2O2 added more uncertainties to the 

unmixing process.  

The capacity of colour tracers to unmix artificial laboratory mixtures was evaluated by 

the MixSIAR software. The results of our study illustrated average absolute errors of 

12.3% ± 9.1, 12.3% ± 4.2 and 10.1% ± 4.2 for 2-, 3- and 4-source mixtures, respectively. 

These errors were of the same order of magnitude as errors obtained by other authors 

using other tracers. Haddadchi et al. (2014) applied four different models using 

geochemical tracers to 20 artificial mixtures and obtained mean absolute errors 

ranging from 10.8% to 28.7%. Lower errors were found by Brosinski et al. (2014), who 

used VNIR-SWIR spectral features to unmix 33 artificial samples and found errors < 

10% in practically all cases. Gaspar et al. (2019) also obtained similar results with 

RMSEs ranging between 0.4% and 5.9% when they unmixed 12 artificial mixtures (10 

replicas each) from 3 sets of different geochemical tracers. Nevertheless, Uber et al. 

(2019) demonstrated, using three different mixing models (i.e. NNLS, SIMMR and 

PLSR), that the choice of tracers generates a greater impact on the model results than 

the type of model used. However, other authors found that different results might also 

be associated with the mixing models used (Haddadchi et al., 2014). In addition, if 

colour signatures are relatively similar (e.g. mix4-m4, mix4-m5, Supplementary table 

6.5), colour tracer measurements are not precise enough to quantify source 

contributions accurately.  

Chromatic parameters calculated from the spectrometer in the laboratory and 

scanner-based colour parameters correlate closely (p < 0.01), which confirms that 

colour parameters provided by an office scanner are as reliable as colour tracers from 

a spectrophotometer. The differences in the absolute values obtained with the two 

techniques are related to (i) different measurement environments (i.e. dark room vs. 
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office) and (ii) a lack of scanner calibration. Pulley et al. (2016) demonstrated the 

reliability of an ordinary scanner in sediment fingerprinting research. They compared 

colour signatures with mineral magnetic signatures to trace bed and suspended 

sediment in the South African Karoo. The discriminatory efficiency of colour signatures 

ranged between 92.2% and 96.7% and were comparable to the results obtained using 

mineral magnetic signatures (i.e. 94%).  

6.5.2. Suspended sediment origin after a wildfire in a 
Mediterranean catchment 

The use of colour parameters to determine suspended sediment sources in the Sa 

Murtera (upstream site) and Sa Font de la Vila (downstream site) catchments, both 

affected by a wildfire in 2013, was assessed. Since errors associated with the unmixing 

of artificial samples might be high (see Section 6.5.1), the results using reflectance-

based and scanner-based colour parameters were compared with those obtained 

using radioisotopes (i.e. 137Cs and 210Pbex). It had been shown previously that the FRNs 

were able to recognize sediment sources in burned catchments (Wilkinson et al., 

2009). The use of multi-fingerprint techniques is crucial to detect and quantify 

potential biases between different tracer sets and obtain reliable and robust estimates 

(e.g. Uber et al., 2019). In general, results showed that the three tracer groups 

predicted the same dominant source (Table 6.5). Nevertheless, at the upstream site, 

tracing results for the first two samples (i.e. US1 and US2) obtained with the scanner-

based colour parameters indicated a different dominant source from the 

spectrometer-based colour parameters and the FRNs (Table 6.5). When looking at the 

tracer values’ distribution measured for both samples and sources (Supplementary 

figure 6.4), we can see that both the spectrometer- and scanner-based colour 

parameters show cie x and cie y values similar to the values measured on burned 

surfaces. However, green and blue tracer values are similar to the values measured in 

channel banks. We argue that these differences are the main cause of divergence in 

the source ascription results. Furthermore, the small number of channel bank samples 

(n = 4) could misrepresent the real colour tracer variability of this source and confuse 

the un-mixing results. The results obtained with FRNs help us to determine the main 

suspended sediment source for the US1 sample (burned soil with an average 
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contribution of 83.3 ± 12.3, Table 6.5). However, FRNs showed poor discrimination for 

US2, which does not allow clear determination of the main suspended sediment 

source contributing to this sample. Nevertheless, the main predicted source for the 4 

upstream site suspended sediment samples always coincides in both the 

spectrometer-based colour parameters and the radionuclides. However, the results for 

US2 (Table 6.5) are not very reliable because of the similar proportions of the two 

sources considered. At the downstream site, the main contributing source was the 

same for the three groups of tracers in all cases except for the 4th sample, in which 

scanner-based parameters and FRNs indicated dominance of the channel bank and 

unburned surface areas. The low suspended sediment concentration peak and the 

delivered load during the 4th event (Table 6.3) may indicate not only a low slope-to-

channel sediment mobilization, but also the activation of small or very specific 

sediment sources not well represented in the sampling. Limitations in the technique to 

identify sediment sources at low suspended sediment concentrations could be 

involved during these low magnitude events. Nevertheless, at both sites, results 

indicate that sediment contribution from burned surface sources dominated the first 

hydrological year, whereas unburned surface and channel banks dominated the 

second hydrological year. 

The samples collected in 2016 were used to validate the hypothesis that some ash 

remained in the burned soils two years after the fire. Thus, source samples collected 

after the fire were representative of the entire sediment sampling period. The cie x, cie 

y and RGB scanner-based colour value distribution (Figure 6.10A and 6.10B) suggested 

that, although there were colour changes after the fire, most probably due to ash 

wash, there was still ash influence in the soil colour parameters. Furthermore, 

sediment ascription results in both 2013 and 2016 burned surface samples (Figure 

6.10B and C) were similar. Even if the changes in soil colour properties caused by the 

fire still prevail today in some areas, the samples collected in 2016 are not 

representative of the entire catchment (see Section 6.3.2 for details). Catchment-wide 

representative sampling would have been needed to improve the robustness of the 

source ascription results for the 2014 and 2015 suspended sediment samples. 
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In this study, it is assumed that sediment and ash were transported in association on 

their way from the hillslopes to the stream and remained in association during 

eventual deposition. However, this was not investigated. Direct observations indicated 

that water flows are notably turbulent at the study sites, generating a relatively 

homogeneous mixture of suspended sediment within the water column. Nevertheless, 

the sediment originating at unburned areas could be influenced by the ash during in-

stream transport, generating erroneous source ascription results. Many authors have 

documented increased erosion rates, runoff coefficients and sediment delivery in 

burned areas (e.g. Shakesby and Doerr, 2006; Vieira et al., 2015). In addition, the 

incorporation of ash to runoff tends to increase its density, resulting in greater 

erosivity potential and enhancing its sediment transport capacity (Gabet and 

Sternberg, 2008). Even so, the transport mechanisms of ash and mineral particles 

should be further explored to determine whether they are transported together and 

what influence they have on colour parameters. This would improve the robustness of 

the technique. 

The main sediment sources in a burned catchment may vary according to catchment 

characteristics and the magnitude of post-fire rainfall events. Other studies of burned 

catchments also found temporal variations of the main sources of sediment. 

Distinguishing only between surface vs. subsurface sources and using radionuclides, 

Wilkinson et al. (2009) and Smith et al. (2011b) observed predominance of surface soil 

in two burned forested catchments in Australia, despite differences in fire severity 

patterns, size and geology characteristics. In addition, Smith et al. (2011b) found a 

gradual decrease of surface soil contributions during the first 4 years after the wildfire. 

However, Owens et al. (2012) found a predominance of subsurface/channel bank 

contributions in a semi-arid forested burned catchment in Canada, due to the low-

intensity rainfall that constrained sediment delivery from hillslopes. Estrany et al. 

(2016) used radionuclides to trace suspended sediment sources after a wildfire in a 

small Mediterranean catchment in Spain. The authors also quantified a small 

contribution from burned areas (12% on average) to bed-sediment samples during a 

flood event characterised by 69 mm of total rainfall in 24 hours. 
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Studies show divergences in landscape response after a wildfire. Predominant factors 

influencing erosive processes in burned catchments, besides fire, are the magnitude, 

frequency and intensity of post-fire rainfall and any associated floods (Moody and 

Martin, 2009; Smith et al., 2011b). The Mediterranean is a highly energetic 

environment with large inter-annual variability of rainfall, resulting in different 

sediment yields and sediment origin depending on seasonality, preceding wetness 

conditions and intrinsic characteristics of each event. In addition, the important 

presence of agricultural terraces in the Sa Font de la Vila catchment (Figure 6.1D) plays 

an important role in sediment connectivity, by decreasing water and sediment yield 

(Calsamiglia et al., 2018). García-Comendador et al. (2017a) analysed the hydrological 

dynamics and suspended sediment transport in the catchment during the first three 

post-fire years (2013-2016). The hysteresis analysis during this period concluded that 

67% of the counter-clockwise hysteresis (i.e. associated with distant sediment sources, 

potentially burned areas in this case) occurred during the first year after the fire, 

decreasing significantly in subsequent years together with sediment yield. During these 

three years, 92% of the sediment was exported during the first event (October 2013; 

samples US1, DS1a and DS1b). These results corroborate the tracing results obtained 

with the spectrometer-based colour tracers, showing a decrease over time in the 

contribution from distant areas (i.e. fire-affected hillslopes) and variations in the main 

sediment sources over time (Table 6.5). The decrease in the sediment contribution 

from burned hillslopes is related not only to partial vegetation recovery, but also to 

that rainfall events occurring during the second year after the fire did not exceed the 

intensity thresholds needed to generate effective slope-to-channel connectivity (Calvo-

Cases et al., 2003), resulting in disconnected burned hillslopes. 

6.6. Conclusions 

Colour tracers measured with a spectrometer and a scanner discriminate usefully 

between burned and unburned sediment sources. This is a result of the soil colour 

changes associated with the transformation of biomass, necromass and soil organic 

matter into ash during a fire. Colour parameters can be used in unmixing approaches 

to tracing suspended sediment sources after wildfires in small Mediterranean 
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catchments, as our results are consistent - for most of the samples - with tracing 

results obtained with well-established radionuclides. The main advantage of colour 

parameters is that they can be measured quickly and are cheap and non-destructive. 

Hence, they enable post-fire management strategies to be decided quickly and their 

success to be followed up easily. 

Nevertheless, results obtained using colour parameters must be carefully considered 

and cross-checked by use of other tracers. This might be even more important in 

burned catchments, where ash exhaustion and soil recovery during the disturbance 

period may affect colour parameters. Accordingly, variations in organic matter content 

and differences in particle size distribution need to be addressed.   

In the Sa Font de la Vila catchment, the contribution of burned hillslopes to suspended 

sediment gradually decreased. We hypothesise that this might be related to partial 

vegetation recovery. However, it appears that the relatively low rainfall intensities 

measured during the second year after the fire might not have reached the thresholds 

for generating effective slope-to-channel connectivity. Further research is necessary to 

evaluate the recovery of the catchment, a highly variable and changing ecosystem. 

Finally, the lack of standardized protocols for sampling sediment sources in burned 

catchments should not be forgotten. The values of not only soil colour parameters, but 

also other tracers, change on the incorporation of ashes. Therefore, the sampling 

protocol (e.g. incorporating the layer of ash partially or completely removing it to 

reach the soil surface) and the sampling time (e.g. immediately after the fire or a few 

days later) require further research. The use of a standardized sampling method will 

allow better comparison between studies of different sites, as it would take into 

account not only the fire and the characteristics of the study area, but also post-fire 

hydro-meteorological conditions. 
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6.8. Supplementary material 

 

Supplementary figure 6.1. Study area status in during the source sampling campaign 
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Supplementary figure 6.2. Correlations between measured reflectance-based colour parameters (y axis) and 
measured scanner colour parameters (x axis). 
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Supplementary figure 6.3. (A) Map of channel bank samples location within the Sa Font de la Vila River catchment. 
Inset table shows 210Pbex and 137Cs activities within the channel bank samples; (B) Longitudinal profile of the Sa Font 
de la Vila main stem (adapted from García-Comendador et al., 2017b). The intersection between DS- transfer reach 
and DS accumulation reach was approximately the C11 (before the B5 red point) and C20 (after B5 red point) 
sampling area. 
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Supplementary figure 6.4. Box plots showing (A) spectrometer-based cie x and cie y parameters of channel bank, 
burned surface and suspended sediment samples US1 and US2 (see Table 5); (B) scanner-based cie x and cie y 
parameters of channel bank, burned surface, US1 and US2; (C) spectrometer-based green and blue parameters of 
channel bank, burned surface, US1 and US2; (C) scanner-based green and blue parameters of channel bank, burned 
surface, US1 and US2. 
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Supplementary table 6.1. Proportion of mixed sources for each sediment artificial mixture created in the 
laboratory. 

Artificial 
mixtures     Source contribution %   

Mixtures n sources   
Channel 
Bank 

Surface 
Unburned Surface Burned 

White 
Ash 

Black 
Ash SS 

2 samples mixtures 

mix2-M1 2   100 0 0 0 0 0 

mix2-M2 2   100 0 0 0 0 0 

mix2-M3 2   0 80 20 0 0 0 

mix2-M4 2   0 20 80 0 0 0 

mix2-M5 2   0 50 50 0 0 0 

mix2-M6 2   50 0 50 0 0 0 

mix2-M7 2   50 0 50 0 0 0 

mix2-M8 2   0 50 50 0 0 0 

mix2-M9 2   0 60 0 40 0 0 

mix2-M10 2   0 60 0 0 40 0 

3 samples mixtures 

mix3-M1 3   40 0 60 0 0 0 

mix3-M2 3   30 40 30 0 0 0 

mix3-M3 3   0 20 80 0 0 0 

mix3-M4 3   40 30 30 0 0 0 

mix3-M5 3   100 0 0 0 0 0 

mix3-M6 3   100 0 0 0 0 0 

mix3-M7 3   20 0 80 0 0 0 

mix3-M8 3   100 0 0 0 0 0 

mix3-M9 3   0 60 0 40 0 0 

mix3-M10 3   0 60 0 0 40 0 

4 samples mixtures 

mix4-M1 4   50 25 25 0 0 0 

mix4-M2 4   60 20 20 0 0 0 

mix4-M3 4   40 20 40 0 0 0 

mix4-M4 4   0 45 55 0 0 0 

mix4-M5 4   70 0 30 0 0 0 

mix4-M6 4   60 0 40 0 0 0 

mix4-M7 4   33 0 67 0 0 0 

mix4-M8 4   40 0 60 0 0 0 

mix4-M9 4   0 30 40 30 0 0 

mix4-M10 4   30 0 40 0 30 0 
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Supplementary table 6.2. Proportion of mixed sources for each ash-sediment artificial mixture created in the 
laboratory (GAmixt: mixtures made of grey ash and SS; BAmixt: mixtures made of black ash and SS). 

Artificial 
mixtures     Source contribution %   

Mixtures n sources   Channel Bank Surface Unburned Surface Burned White Ash Black Ash SS 

Grey ash - sediment samples 

GAmixt-M1 2   0 0 0 10 0 90 

GAmixt-M2 2   0 0 0 20 0 80 

GAmixt-M3 2   0 0 0 30 0 70 

GAmixt-M4 2   0 0 0 40 0 60 

GAmixt-M5 2   0 0 0 50 0 50 

GAmixt-M6 2   0 0 0 60 0 40 

GAmixt-M7 2   0 0 0 70 0 30 

GAmixt-M8 2   0 0 0 80 0 20 

GAmixt-M9 2   0 0 0 90 0 10 

Black ash - sediment samples 

BAmixt-m1 2   0 0 0 0 10 90 

BAmixt -m2 2   0 0 0 0 20 80 

BAmixt -m3 2   0 0 0 0 30 70 

BAmixt -m4 2   0 0 0 0 40 60 

BAmixt -m5 2   0 0 0 0 50 50 

BAmixt -m6 2   0 0 0 0 60 40 

BAmixt -m7 2   0 0 0 0 70 30 

BAmixt -m8 2   0 0 0 0 80 20 

BAmixt -m9 2   0 0 0 0 90 10 
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Supplementary table 6.3. MixSIAR source apportionment, absolute error in comparison with real proportions and 
quantile 2.5% – 97.5% results distribution of the two sources artificial mixtures (CB: channel bank samples; BS: 
burned surface samples; US: unburned surface samples, GA: grey ash samples, BA: black ash samples). 

Samples Sources 
Real 
proportions 
(%) 

Estimated proportions and 
st. deviations(%) 

Quantile 
distributión 2.5 
% - 97.5 % 

Error 
(%) 

Average 
absolute 
error (%) 

2 samples 
mixtures 

mix2-M1 
CB (C1) 80 83.1 ± 0 61.2 - 93 3.4 

3.4 
CB (C10) 20 16.9 ± 0 7 - 38.8 3.4 

mix2-M2 
CB (C1) 20 43.2 ± 5.7 31.9 - 53.8 23.2 

23.2 
CB (C10) 80 56.8 ± 5.7 46.2 - 68.1 23.2 

mix2-M3 
US (S36) 80 67.7 ± 6.3 56.1 - 80.6 12.3 

12.3 
BS (S23) 20 32.3 ± 6.3 19.4 - 43.9 12.3 

mix2-M4 
US (S36) 20 20 ± 5.6 8.1 - 30.5 0.0 

0.0 
BS (S23) 80 80 ± 5.6 69.5 - 91.9 0.0 

mix2-M5 
US (S33) 50 41.1 ± 3.1 34.9 - 47.1 8.9 

8.9 
BS (S23) 50 58.9 ± 3.1 52.9 - 65.1 8.9 

mix2-M6 
CB (C20) 50 45.1 ± 10.2 24.5 - 65.5 4.9 

4.9 
BS (S24) 50 54.9 ± 10.2 34.5 - 75.5 4.9 

mix2-M7 
CB (C19) 50 34.4 ± 7.4 19.9 - 48.6 15.6 

15.6 
BS (S25) 50 65.6 ± 7.4 51.4 - 80.1 15.6 

mix2-M8 
US (S36) 50 41.4 ± 3.7 34.1 - 48.7 8.6 

8.6 
BS (S26) 50 58.6 ± 3.7 51.3 - 65.9 8.6 

mix2-M9 
US (S37) 60 42.7 ± 2.6 37.9 - 48 17.3 

17.3 
GA (A) 40 57.3 ± 2.6 52 - 62.1 17.3 

mix2-M10 
US (S38) 60 31.1 ± 13 28.6 - 33.7 28.9 

28.9 
BA (A) 40 68.9 ± 13 66.3 - 71.4 28.9 
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Supplementary table 6.4. MixSIAR source apportionment, absolute error in comparison with real proportions and 
quantile 2.5% – 97.5% results distribution of the three sources artificial mixtures (CB: channel bank samples; BS: 
burned surface samples; US: unburned surface samples, GA: grey ash samples, BA: black ash samples). 

Samples Sources 
Real 
proportions 
(%) 

Estimated 
proportions and st. 
deviations (%) 

Quantile 
distributión 2.5 % 
- 97.5 % 

Error 
(%) 

Eaverage 
absolute 
error (%) 

3 samples 
mixtures 

mix3-M1 

CB (C10) 20 9.4 ± 6.1 0.6 - 23.2 10.6 

7.1 CB (C14) 20 23.6 ± 5.4 12.2 - 32.8 3.6 

BS (S1) 60 67 ± 3.1 61.1 - 73 7.0 

mix3-M2 

CB (C11) 30 24.2 ± 13.9 1.6 - 52.1 5.8 

13.2 BS (S2) 30 49.9 ± 3.3 43.1 - 55.9 19.9 

US (S40) 40 26 ± 11.8 2.6 - 45.7 14.0 

mix3-M3 

BS (S3) 40 53.7 ± 4.8 44.3 - 63.2 13.7 

11.2 US (S39) 40 23.2 ± 2.4 18.4 - 27.9 16.8 

BS (S31) 20 223.1 ± 4.3 14.7 - 31.3 3.1 

mix3-M4 

BS (S29) 30 44.7 ± 6.5 31.5 - 57.1 14.7 

10.5 US (S32) 32 23.2 ± 5.6 12.1 - 34.2 8.8 

CB (C3) 40 32 ± 10.9 11.1 - 54 8.0 

mix3-M5 

CB (C20) 40 46.1 ± 9.7 26.9 - 65.3 6.1 

5.1 CB (C19) 30 22.4 ± 9 5.3 - 39.9 7.6 

CB (C17) 30 31.6 ± 7.6 16.7 - 46.8 1.6 

mix3-M6 

CB (C4) 20 39.5 ± 14.6 10 - 68.3 19.5 

13.0 CB (C5) 40 37.6 ± 14.6 10.2 - 67.9 2.4 

CB (C12) 40 22.8 ± 9.5 4.4 - 42 17.2 

mix3-M7 

BS (S5) 40 64 ± 0.5 62.4 - 65.4 24.0 

16.0 BS (S7) 40 31.3 ± 0.4 30.5 - 31.9 8.7 

CB (C5) 20 4.7 ± 0.5 3.8 - 5.5 15.3 

mix3-M8 

CB (C10) 20 10.9 ± 6.7 0.7 - 25 9.1 

12.2 CB (C11) 20 10.9 ± 7 0.5 - 25.9 9.1 

CB (C9) 60 78.3 ± 5.6 67.6 - 89.3 18.3 

mix3-M9 

US (S40) 30 16 ± 10.1 0.9 - 35.9 14.0 

15.1 US (S39) 30 21.3 ± 9.2 2 - 35.9 8.7 

GA (A) 40 62.7 ± 2.3 58 - 66.8 22.7 

mix3-M10 

US (S32) 30 19.7 ± 7.4 1 - 30.1 10.3 

19.9 US (S33) 30 10.5 ± 7.7 0.4 - 30.2 19.5 

BA (A) 40 69.8 ± 1.1 67.5 - 71.9 29.8 
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Supplementary table 6.5. MixSIAR source apportionment, absolute error in comparison with real proportions and 
quantile 2.5% – 97.5% results distribution of the four sources artificial mixtures. (CB: channel bank samples; BS: 
burned surface samples; US: unburned surface samples, GA: grey ash samples, BA: black ash samples). 

Samples Sources 
Real 
proportions 
(%) 

Estimated proportions 
and st. deviations (%) 

Quantile distributión 
2.5 % - 97.5 % 

Error 
(%) 

Eaverage 
absolute 
error (%) 

4 
samples 
mixtures 

mix4-M1 

CB (C7) 25 0.3 ± 0.2 0.1 - 30.9 24.7 

12.4 CB (C11) 25 26.3 ± 2.5 21.3 - 30.9 1.3 

BS (S31) 25 47.1 ± 0.8 45.6 - 48.6 22.1 

US (S39) 25 26.4 ± 1.7 23.2 - 29.7 1.4 

mix4-M2 

CB (C7) 40 20.2 ± 0.4 19.4 - 20.9 19.8 

11.8 
CB (C11) 20 16.3 ± 1.1 14.2 - 18.4 3.7 

BS (S31) 20 40.7 ± 0.4 39.9 - 41.6 20.7 

US (S39) 20 22.8 ± 0.8 21.2 - 24.4 2.8 

mix4-M3 

CB (C7) 20 12 ± 7.9 0.8 - 30.1 8.0 

5.6 
CB (C11) 20 17.4 ± 8.8 2 - 35.4 2.6 

BS (S31) 40 51.1 ± 4 42.8 - 58.8 11.1 

US (S39) 20 19.5 ± 5.5 8.4 - 30.1 0.5 

mix4-M4 

BS (S2) 60 72.8 ± 2.6 67.5 - 76.8 12.8 

10.1 
US (S32) 20 9.3 ± 5.7 0.5 - 19.2 10.7 

US (S33) 20 5.6 ± 4.3 0.2 - 14.1 14.4 

US (S40) 10 12.3 ± 7.4 0.8 - 25.1 2.3 

mix4-M5 

BS (S2) 30 46.4 ± 4.7 37 - 54.1 16.4 

9.3 CB (C17) 20 11.5 ± 7.2 0.6 - 24.2 8.5 

CB (C9) 20 10 ± 6.2 0.5 - 20.9 10.0 

CB (C20) 30 32.1 ± 9 14.2 - 47.2 2.1 

mix4-M6 

CB (C5) 20 8.1 ± 5.3 0.5 - 20.2 11.9 

7.9 
CB (C9) 40 36.7 ± 9.2 18.4 - 54.7 3.3 

BS (S5) 20 19.4 ± 7.9 3.3 - 34.9 0.6 

BS (S31) 20 35.8 ± 6.1 24.1 - 48.2 15.8 

mix4-M7 

BS (S3) 60 42.2 ± 7.4 26.5 - 56.4 17.8 

16.7 
BS (S7) 20 43.4 ± 9 25.6 - 61.5 23.4 

CB (C3) 20 8 ± 4.8 0.5 - 17.8 12.0 

CB (C4) 20 6.5 ± 4.1 0.3 - 15.2 13.5 

mix4-M8 

BS (S1) 20 30.6 ± 4.8 20.6 - 39.5 10.6 

5.3 
BS (S29) 40 38.4 ± 7.1 24.2 - 52.4 1.6 

CB (C12) 20 13.7 ± 6.5 1.7 - 25.8 6.3 

CB (C14) 20 17.3 ± 8.7 1.6 - 34.1 2.7 

mix4-M9 

BS (S2) 20 13 ± 7.5 0.9 - 27.7 7.0 

5.7 
BS (S26) 20 20.5 ± 10.9 10.9 - 40.3 0.5 

US (S37) 30 25.6 ± 4.6 25.6 - 34.3 4.4 

GA (A) 30 41 ± 3 35.2 - 47 11.0 

mix4-M10 

BS (S20) 30 2.5 ± 2.1 0.1 - 7.7 27.5 

16.7 
BS (S23) 10 4.1 ± 5.8 0.1 - 13.8 5.9 

BS (S24) 30 50.3 ± 7.2 38.2 - 58.9 20.3 

BA (A) 30 43.1 ± 2.4 38.3 - 47.6 13.1 
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Supplementary table 6.6. Summary statistics for all the spectrometer-based colour parameters measured for the three different 
source groups, channel bank (CB), burned surface (SB), unburned surface (SU) and K-wallis test results (95% confidence interval). 

Summary statistics for each tracer and source type   Kwallis-Htest 

Tracers Sources Min.  Median Mean Max. Sta.Dev.   p-value 
chi-
square 

Cie x 

CB 0.389 0.404 0.404 0.416 0.008   

2.00E-05 24.50 BS 0.364 0.394 0.393 0.416 0.013   

US 0.397 0.409 0.412 0.436 0.014   

Cie y 

CB 0.365 0.372 0.372 0.377 0.003   

7.20E-07 31.30 BS 0.350 0.367 0.366 0.380 0.007   

US 0.373 0.378 0.378 0.384 0.004   

Cie Y 

CB 11.250 14.880 15.190 24.600 3.149   

1.91E-09 43.50 BS 6.866 9.915 10.056 13.799 1.754   

US 14.110 23.870 21.790 26.190 4.482   

Red 

CB 119.900 137.200 137.600 169.100 12.074   

1.82E-09 43.60 BS 91.430 111.310 111.630 133.740 10.871   

US 135.000 170.800 163.400 175.700 14.567   

Green 

CB 86.010 99.870 100.010 127.160 9.729   

1.95E-09 43.50 BS 68.430 82.510 82.740 95.460 6.747   

US 96.650 125.760 118.150 131.520 13.069   

Blue 

CB 63.110 75.000 76.900 100.440 8.436   

2.50E-07 33.50 BS 55.120 66.120 66.200 75.840 4.799   

US 66.820 91.010 87.060 101.660 11.891   

HRGB 

CB 3.023 3.574 3.611 4.276 0.317   

1.77E-04 19.90 BS 2.613 3.013 3.091 4.443 0.406   

US 2.401 3.497 3.545 7.877 0.741   

IRGB 

CB 90.800 104.600 104.800 132.200 9.891   

3.80E-09 2.10 BS 72.660 86.410 86.860 100.780 6.912   

US 101.400 129.000 122.900 135.300 12.634   

SRGB 

CB 23.150 30.640 30.330 34.890 2.984   

6.77E-09 40.90 BS 13.310 23.070 22.720 31.030 4.633   

US 31.100 37.610 38.180 46.470 1.695   

cie X 

CB 12.310 16.090 16.480 26.320 3.339   

4.07E-09 42.00 BS 15.420 25.350 23.690 27.770 1.962   

US 10.920 14.570 14.610 20.480 4.617   

cie Z 

CB 6.235 8.738 9.163 9.986 2.081   

1.29E-07 34.90 BS 4.563 6.520 6.587 8.276 0.925   

US 7.322 13.254 12.173 16.076 2.197   

cie L 

CB 40.000 45.470 45.630 56.680 4.064   

3.68E-09 42.20 BS 31.500 37.690 37.760 43.940 3.157   

US 44.390 55.950 53.480 58.220 5.123   

cie a* 
CB 9.434 12.332 12.050 13.706 1.061   

2.67E-07 33.40 
BS 4.471 9.568 9.634 12.625 1.567   
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US 11.710 12.700 13.850 18.080 2.164   

cie b* 

CB 14.470 19.400 19.030 22.130 1.851   

1.21E-08 39.70 BS 7.788 14.814 14.335 20.613 3.245   

US 19.750 23.610 24.080 29.200 2.435   

cie u* 

CB 19.980 26.860 26.610 30.800 2.732   

9.04E-09 40.30 BS 11.690 19.890 19.760 27.130 4.011   

US 27.300 31.470 32.920 42.030 4.730   

cie v* 

CB 15.550 20.720 20.520 24.030 2.162   

8.40E-09 40.50 BS 7.926 15.393 14.863 21.259 3.451   

US 20.990 26.760 26.720 30.950 3.060   

cie C 

CB 17.270 23.040 22.520 26.030 2.107   

1.49E-08 39.30 BS 10.130 17.590 17.290 23.790 3.521   

US 23.320 26.810 27.790 34.340 3.536   

cie H 

CB 0.980 1.005 1.006 1.044 0.015   

5.56E-05 22.30 BS 0.878 0.979 0.972 1.048 0.046   

US 1.010 1.039 1.050 1.104 0.033   

RI 

CB 0.317 0.968 1.052 1.839 0.425   

4.70E-09 41.70 BS 1.163 2.485 2.811 6.361 1.362   

US 0.269 0.324 0.488 1.086 0.299   

Munsell 
H 

CB 16.240 16.860 16.840 17.480 0.308   

1.75E-03 15.10 BS 15.670 17.400 17.320 18.240 0.536   

US 15.990 17.070 17.040 18.080 0.676   

Munsell 
V 

CB 3.891 4.429 4.445 5.530 0.399   

3.68E-09 42.20 BS 3.057 3.664 3.672 4.279 0.310   

US 4.323 5.459 5.216 5.681 0.503   

Munsell 
C 

CB 2.917 3.882 3.803 4.382 0.356   

1.39E-08 39.50 BS 1.716 2.945 2.907 3.947 0.582   

US 3.924 4.500 4.673 5.801 0.600   

DW nm 

CB 558.900 589.800 589.700 590.500 0.376   

3.41E-04 18.50 BS 588.600 590.600 591.500 598.500 2.680   

US 587.900 589.200 589.100 590.000 0.635   

Pe % 

CB 29.710 36.010 36.000 41.260 3.264   

4.77E-04 17.80 BS 18.230 32.300 31.600 42.430 5.876   

US 33.690 38.190 39.810 48.150 5.264   

        

p<0.05, significant 
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7. Combining sediment fingerprinting and hydro-
sedimentary monitoring to assess the 
suspended sediment provenance in a mid-
mountainous Mediterranean catchment 

ABSTRACT 

Soil erosion and sediment transport are controlled by complex factors promoting 
variable responses in catchment’s erosion rates and sediment yields. To mitigate 
eventual negative effects derived from altered fluxes, integrated catchment 
management plans should assess the sediment cascade from upstream erosive 
processes, sediment mobilization through hillslopes and within the channel, up to 
downstream sediment yields. This study links hydro-sedimentary dynamics with 
sediment fingerprinting source ascription in a mid-mountainous Mediterranean 
catchment during five hydrological years (2013-2018). Soil colour parameters and 
fallout radionuclides were used as tracers within an integrated approach with (i) a 
Bayesian mixing model and (ii) an End Member Mixing Analysis in order to predict 
dominant suspended sediment sources. MixSIAR suggested that crops were the 
dominant sources. EMMA showed similar results, clustering all except one sediment 
samples close to the crop and channel bank signatures. In addition, a quantitative 
hysteresis index was calculated and floods were clustered in function of their hydro-
sedimentary characteristics. Despite different patterns were associated to each of the 
four identified clusters (e.g. different sediment loads and maximum suspended 
sediment concentrations), correlation between sediment origin and hydro-
sedimentary variables was not significant due to the little seasonal variation in the 
source contributions. Lithology, land uses (i.e. crop fields, scrubland and forest) and 
farm terraces might partially explain such low variability. Contrarily, monitored events 
showed variable hydro-sedimentary patterns, being a common feature in 
Mediterranean catchments.  

 

Keywords: Sediment fingerprinting, End Member Mixing Analysis, hysteresis, hydro-
sedimentary dynamics, sediment sources, Mediterranean catchments. 
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7.1. Introduction 

Soil erosion and sediment transport are relevant natural processes affecting terrestrial 

geochemical cycles (López-Bermúdez, 1990; Ludwig and Probst, 1996). They are driven 

by complex factors (e.g. climate, vegetation status, topography, soil type and human 

disturbances; de Vente et al., 2011), which may promote divergent responses in 

erosion rates and sediment yields over time and space (Haddadchi et al., 2013) in 

catchment systems. Soil erosion and sediment transport downstream can also result in 

soil degradation and off-site effects such as the reduction of soil productivity or 

desertification processes in vulnerable areas (Bu et al., 2008; Estrany et al., 2010b; 

Walling, 2006), dam siltation (Navas et al., 2004), decrease in water quality (Horowitz 

et al., 2007) and contamination of aquatic ecosystems (Newcombe and Macdonald, 

1991). Integrated catchment management plans to assess the sediment cascade 

between upstream erosive processes, sediment mobilization through hillslopes and 

within the channel, and downstream sediment yields are thus needed to mitigate as 

far as possible these negative effects. However, a widespread adoption of standard 

methodologies to evaluate sediment transport dynamics and identify major sediment 

production areas is still missing (Du and Walling, 2017; McCarney-Castle et al., 2017; 

Walling and Collins, 2008). 

The sediment source fingerprinting technique has been widely used in the last decades 

for determining the provenance of fine sediment at catchment scale (Collins et al., 

2020; Davis and Fox, 2009; Guzmán et al., 2013). It is applied at different temporal 

scales: from the flood event (García-Comendador et al., 2017) up to determining the 

origin of historically deposited sediments (e.g. over the last ca. 100 years; Pulley et al., 

2018). Physical, biochemical and geochemical properties of soils and sediments are 

normally used as tracers (Walling, 2013), although other parameters as colour have 

increased its relevance in recent years (Martínez-Carreras et al., 2010a; Pulley et al., 

2018; Tiecher et al., 2015). Their main advantage is the fast, cheap and non-destructive 

measurement methods (Barthod et al., 2015). Conversely, independently of the tracers 

used, fine sediment source ascription using the sediment fingerprinting technique is 

susceptible to several sources of uncertainties associated to sampling methodologies 

(Manjoro et al., 2017), spatial variability of source material properties (Du and Walling, 
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2017), alteration of the soil properties during conveyance within the river system 

(Poulenard et al., 2012) and sample analysis and un-mixing model statistics (Haddadchi 

et al., 2014; Nosrati et al., 2014; Palazón and Navas, 2017). Under this context, 

Bayesian mixing models have proven their worth in recent years (Abban et al., 2016; 

Stock et al., 2018). These models transform uncertainties into parameter probability 

distributions within a hierarchical framework (Cooper and Krueger, 2017), allowing a 

better representation of the natural variability in sources and sediment data due to 

their flexible likelihood-based structure (Blake et al., 2018; Cooper et al., 2015; Stock 

and Semmens, 2016). However, different tracer groups might result in ambiguous 

results due to its different discrimination potential (Collins et al., 2017). As a result, 

multi-tracer/multi-model ensemble predictions are needed as different mixing models 

and tracer groups respond differently to inherent sources of error (Uber et al., 2019). 

Another widespread tool to assess sediment source variations in river catchments is 

the analysis of hysteretic patterns in the relationship between discharge (Q) and 

suspended sediment concentrations (SSC). These patterns are often non-linear at 

event scale and can inform about the distance of sediment sources according to the 

rotation direction, the shape of the loop and its area (Williams, 1989). Hysteretic 

counter-clockwise loops are associated to sediment mobilization from remote sites 

within a catchment, whilst clockwise are related to a closer provenance (Giménez et 

al., 2012; López-Tarazón and Estrany, 2017; Rovira and Batalla, 2006). More recently, 

several quantitative indexes have been developed to improve hysteretic classification 

(Aich et al., 2014; Langlois et al., 2005; Lawler et al., 2006; Lloyd et al., 2016). 

Particularly, Zuecco et al. (2016) developed a quantitative index based on the 

normalization of input data and the computation of definite integrals at fixed intervals 

of the independent variable. The index classifies the hysteretic loops, allowing a 

precise comparison at different spatio-temporal scales, detection of changes in 

patterns, as well as the possibility to correlate it with other hydro-meteorological 

variables such as rainfall, discharge or suspended sediment concentration. Despite this 

recent progress, the evaluation of hysteretic behaviour between Q and SSC has been 

scarcely integrated in catchment management strategies due to the difficult 

interpretation of sediment origin when hysteretic loop patterns are complex (Sherriff 
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et al., 2016) and the differential relationship between sediment and runoff depending 

on the scale of study (de Boer and Campbell, 1989). 

The combination of sediment source fingerprinting and the analysis of river hydro-

sedimentary dynamics (i.e. hysteretic patterns) has been proven useful to assess the 

factors controlling suspended sediment transport as a surrogate of erosion problems 

in river catchments, but both techniques have been rarely used together. Previous 

research includes the works of Evrard et al. (2011) –using bed sediment samples- and 

Navratil et al. (2012) –using suspended sediment samples- in the Southern French Alps 

and Vercruysse and Grabowski (2019) in the River Aire in UK. Their results showed the 

difficulty to elucidate clear patterns linking sediment fingerprinting and hydro-

sedimentary behaviour in some catchments (Navratil et al., 2012). However, source 

variations in function of predominant hydro-meteorological drivers were found in 

others (Vercruysse and Grabowski, 2019). In the present study, the combined 

approach was applied in a mid-mountainous Mediterranean cathment. These 

environments are characterized by strong climate seasonality and are subject to high 

human pressure (García-Ruiz et al., 2013), resulting in complex and large 

spatiotemporal variations in sediment origin and hydro-sedimentary processes 

(Fortesa et al., 2020a; Merheb et al., 2016).  

We advance the proposition that a better understanding of the links between hydro-

sedimentary processes and sediment sources might shed some light on sediment 

transfer processes in Mediterranean catchments. For this purpose, we used a multi-

tracer/multi-model approach (Uber et al., 2019). Several tracer groups (colour 

parameters and radionuclides) and two different sediment fingerprinting approaches 

were tested: (i) a Bayesian mixing model (MIxSIAR, Stock et al., 2018; Stock and 

Semmens, 2016) and (ii) an End Member Mixing Analysis (EMMA; Christophersen and 

Hooper, 1992). The latest method has been extensively used in hydrograph separation 

studies, but its use to assess the ability of potential suspended sediment sources to 

describe the composite signal of the sediment collected at the catchment outlet has 

been limited to the works of Munkundan et al. (2010) and Rose et al. (2018). EMMA is 

based on performing a principal component analysis (PCA) with the tracer data 

measured on the sediment samples collected at the outlet. The source data is then 

projected into the PCA distribution area to determine relations between sediment and 
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sources. Since EMMA does not solve a mass-balance approach but rather informs 

about dominant sources, results might eventually provide valuable information to 

validate the predictions of the Bayesian mixing model. Furthermore, the quantitative 

hysteresis index proposed by Zuecco et al. (2016) was calculated and floods were 

clustered in function of their hydro-sedimentary characteristics as to identify patterns. 

To sum up, the main objectives of this study are to (i) analyse and link sediment 

sources contributions with the hydro-sedimentary response of the catchment, (ii) 

determine the main factors regulating sediment source contributions, and (iii) evaluate 

the potential of hydro-sedimentary monitoring combined with sediment fingerprinting 

as a sediment management tool in Mediterranean catchments. 

7.2. Study area 

The Es Fangar catchment (3.4 km2; Figures 7.1A and B) is located at the north-east side 

of the Tramuntana mountain range in Mallorca (Spain). Altitudes range between 72 

and 404 m.a.s.l., with an average slope of 26%. The lithology is composed by massive 

calcareous and dolomite materials from the lower Jurassic, and by dolomite and marls 

formations from the Triassic (Rhaetian) in the upper parts. Jurassic and Cretaceous 

marl-limestone’s fill the valley bottoms (Figure 7.1C). The catchment was intensively 

affected by agricultural activities in the past. Only at the upper parts, the stream 

network is natural, whilst in the valley bottom the main channel was diverted and 

constricted by dry stone walls for a better agricultural land exploitation. Check-dams 

and farm terraces were built to control torrential floods and avoid soil erosion (Figure 

7.1C and D). In addition, subsurface tile drains were built in crop lands to promote 

drainage, avoiding soil saturation during the wet season. The 16% of the catchment is 

occupied by soil and water conservation structures, resulting in 32.4 km of dry stone 

walls. Nowadays, land use occupation is forest (47%), rainfed herbaceous crops (36%) 

and scrubland (17%). Since the 1950s, as a consequence of the economic transition 

from the primary to the tertiary sector, the agricultural area has been reduced in a ca.  
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Figure 7.1. (A) Map showing the location of Mallorca in the Western Mediterranean Sea. (B) Location of the Es 
Fangar catchment within the island of Mallorca. Drainage network, terraced areas, soil and sediment sampling 
points over (C) lithology and (D) land use maps. 
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17%. Afforestation processes have occurred in abandoned agricultural fields being 

currently covered by forests, mostly located in the middle part of the catchment.  

According to the Emberger classification, the climate is Mediterranean temperate sub-

humid (Guijarro, 1986). The mean annual rainfall is 926 mm yr-1 (1964-2017, Biniatró 

AEMET station, 1.1 km west from the study area), with a 23% coefficient of variation. 

The average annual temperature is 15.7°C. The hydrological regime is categorized as 

intermittent flashy (49% of days with no flow; Fortesa et al., 2020a). The annual runoff 

coefficient ranged from 2.9% to 14.2% (average of 10.4%), whereas the quickflow 

contribution ranged from 9.9% to 45% (average of 33%), illustrating a huge inter-

annual variability in the rainfall-runoff relationship (Fortesa et al., 2020b). During 2012-

2017, the 80% of the sediment load was exported during autumn and winter, with an 

annual average sediment yield of 5.38 t km-2 y-1 (Fortesa et al., 2020a).  

7.3. Material and methods 

7.3.1. Source and sediment sampling 

In August 2015, a stratified sampling was carried out in the Es Fangar catchment. Three 

surface sources groups (i.e. forest, crop and scrubland soils) and a subsurface source 

(channel banks) were identified (Figure 7.1C and D) after GIS analysis and field 

observations. Thirty-two source samples were collected: 16 in channel banks, 6 in crop 

fields, 5 in forests and 5 in scrubland. All samples were collected in areas with visual 

evidence of erosion. Surface soil samples (0-2 cm depth) were composed by four 

subsamples collected inside a ca. 3 m radius circular area, whereas each channel bank 

sample was composed by three subsamples collected in a 10 m transect. Thirteen 

integrated suspended sediment samples (Figure 7.2) were collected between 2013 and 

2018 at the catchment outlet using two parallel time integrated sediment traps 

(Phillips et al., 2000) installed within the channel bed at the Es Fangar hydrometric 

station (see figure. 7.1C-D and further details on sub-section 7.3.5).  
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7.3.2. Laboratory analysis  

The soil and sediment samples were oven dried at 40°C, disaggregated using a pestle 

and a mortar, and sieved to < 63 µm to reduce the differences in particle size 

distribution between sediment and source samples (Walling, 2013). The specific 

surface area (SSA) and the particle size distribution (PSD) were measured in all samples 

using a Malvern Mastersizer 3000 (Malvern instruments, Ltd.) at the Luxembourg 

Institute of Science and Technology (LIST, Luxembourg). The Shapiro-Wilk (p < 0.05) 

normality test and the Wilkoxon signed-rank test were applied to determine the PSDs 

similarity between each source (soil samples) and target samples (suspended sediment 

samples). 137Cs and 210Pbex (FRNs) activity (Bq kg-1) were measured by gamma 

spectrometry using a high-purity coaxial intrinsic germanium (HPGe) detector at the 

Environmental Radioactivity Laboratory of the University of the Balearic Islands 

(Spain).  

Total C and total N were measured by high-temperature combustion (TruSpec CHNS, 

LECO) at LIST. Biochemical processes can alter sediment colour within channel by 

organic matter addition, increasing the errors in source discrimination. Despite this, 

organic matter removal may not be suitable in some cases because it can reduce the 

discriminative potential of colour tracers (e.g. Pulley et al., 2018). Accordingly, it was 

decided avoiding the organic matter removal in this study. 

Finally, diffuse reflectance measurements were taken with an ASD FieldSpect-II 

spectroradiometer in a dark room at 1 nm steps over the 400-2500 nm range. The soil 

and sediment samples were placed in transparent PVC round petri dishes (4.7 cm 

diameter; Pall Corporation) and smoothed with a spatula to homogenize the surface 

roughness and minimize micro shadow effects. The spectrometer optical lens was 

mounted in a tripod perpendicularly over a flat surface, at 10 cm of the reference 

standard panel of known reflectivity (spectralon). The samples and the spectralon 

were illuminated in an angle of 30º using a 50-w quartz halogen lamp placed at c.a. 30 

cm of distance. Following the International Commission on Illumination (CIE, 1931), the 

CIE xyY colour coefficients (i.e. cie x, cie y and cie yy) were computed from the spectra 

reflectance measurements as well as the RGB colour values (i.e. Red, Green and Blue). 
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7.3.3. Tracer accuracy 

The linear additivity of the tracers is an essential requirement to validate their use in 

sediment origin analysis (Lees, 1997). In order to assess it, we created 30 artificial 

mixtures of 2, 3, and 4 samples of different sources (i.e. forest, crop, scrubland soil and 

channel banks). Mixtures were made mixing different sample proportions 

(Supplementary table 7.1) using a precision balance and a PVC spatula. Mixtures were 

introduced in sterile tubes and mixed during 10 minutes before measurements. Due to 

economic and time constrains, the 137Cs and 210Pbex measurements were not 

performed on the artificial mixtures. A mass balance approach was used to predict the 

tracer values measured on the mixtures (i.e. tracer values in the mixtures are equal to 

the sum of the tracer values measured on the samples artificially mixed multiplied by 

their known contribution to the mixture). Predicted values were compared with those 

measured to determine the individual accuracy and linear additivity behaviour of each 

colour tracer. In order to compare colour values measured with different scales, we 

calculated the normalized root mean square error (nRMSE) by dividing the RMSE by 

the mean of the measured data. We expressed the nRMSE as a percentage. The 

Kruskal-Wallis H test (95% confidence interval) was used to check the capability of the 

tracers to differentiate the different sediment sources. A Principal Component Analysis 

(PCA) with a varimax rotation to simplify the factor structure was performed with SPSS 

(IBM Corp., Armonk, N.Y., USA) for analysing the tracer set variance. Furthermore, a 

Discriminant Function Analysis (DFA) was performed using SPSS with a leave-one-out 

cross-validation (considering selected tracers as independent variables) to determine 

the discriminating potential of each tracer group. Finally, we performed a range test 

for each individual sediment sample to exclude potential non-conservative tracers. 

7.3.4. Suspended sediment fingerprinting 

Two different approaches were used to estimate suspended sediment sources: (i) the 

Bayesian mixing model MixSIAR (Stock et al., 2018, Stock and Semmens, 2016) 

implemented as an R package (hereafter referred to as MixSIAR); and (ii) the End 

Member Mixing Analysis (EMMA; Christophersen and Hooper, 1992; Hooper, 2003). A 

result comparison on source predictions was carried out. For the un-mixing of artificial 
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mixtures, we used only colour tracers, the MixSIAR model, and every sample that 

composed the mixture was considered as a source. 

The fundamental mixing equation of the MixSIAR mixing model is: 

 

 

where bi is the tracer property i (i = 1 to n) measured in a suspended sediment sample, 

ai,j is the value of the tracer property i in each source sample j (j = 1 to m), wj is the 

unknown relative contribution of each source j to the suspended sediment sample.  

MixSIAR accounts for variability in the source and mixture tracer data and has the 

ability to incorporate covariance data to explain variability in the mixture proportions 

via fixed and random effects (Stock et al., 2018; Stock and Semmens, 2016). In this 

study, MixSIAR was formulated by using sediment type as a factor and an 

uninformative prior. The Markov Chain Monte Carlo parameters were set as very long: 

chain length = 1,000,000, burn = 500,000, thin = 500, chains = 3. Convergence of the 

models was evaluated using the Gelman-Rubin diagnostic. 

In EMMA, the different source categories were considered as end members with a 

fixed composition, conservative and distinguishable between them, while sediment 

samples were a mixture of these end members. We apply the diagnostic tools 

described by Hooper (2003). First, a bi-variable scatter plots were performed to 

identify if the tracers behave linearly conservative in the sediment samples. The 

tracers suggested linearly conservative mixing when had at least a linear trend of “r2> 

0.5, p-value <0.01” with at least one of the other tracers used (James and Roulet, 

2006). Then, a PCA was performed on the standardized values of the correlation 

matrix. The values were standardized by subtracting the average concentration of each 

tracer and dividing it by its standard deviation. Residuals were defined subtracting the 

original value from its orthogonal projection. 
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7.3.5. Catchment hydro-sedimentary response, hysteresis 
loops analysis and cluster classification of selected floods 

A gauging station was installed in 2012 in Es Fangar Creek to continuously monitor 

water and suspended sediment fluxes (Figure 7.1C-D). The station was equipped with a 

Campbell CS451 pressure probe and an OBS-3+ turbidimeter with a double 

measurement range of 0-1,000/1,000-4,000 NTU. Campbell CR200X logger stored 15-

minutes average values of water stage and turbidity (based on 1-minute readings). In 

addition, in October 2014 a tipping bucket pluviometer was installed at 500 m.a.s.l. 

and located ca. 2.5 km away from the Es Fangar gauging station. The rain gauge was 

installed 1 m above the ground and connected to a HOBO Pendant G Data Logger - UA-

004-64 recording rainfall at 0.2 mm resolution. 

The following variables were estimated for each of the 34 events occurred between 

2013 and 2018: total rainfall (Rtot), rainfall maximum intensity in 30 minutes (Imax-

30), total water volume (Wvol), maximum discharge peak (Qmax), average discharge 

(Qmean), total suspended sediment load (SSload), maximum suspended sediment 

concentration (SSCmax), mean suspended sediment concentration (SSCmean), one-day 

(AR1d), three days (AR3d) and seven days (AR7d) antecedent rainfall. The seasonal 

distribution of the flood events (i.e. percentage of events per season) was as follows: 

winter 58.8% (n = 20), spring 8.8% (n = 3), summer 5.9% (n = 2) and autumn 26.5% (n = 

9). The hydro-sedimentary response showed large variability (Figure 7.2). 

Discharge (Q; m3 s-1) and suspended sediment concentration (SSC; mg l-1) hysteretic 

analysis was performed using the h index developed by Zuecco et al. (2016). It provides 

information on the direction and magnitude of hysteresis loops. The h index computes 

definitive integrals on the rising and falling curve of the independent variable (Q) 

defining eight hysteresis classes.  
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Figure 7.2. Hydrograph, suspended sediment concentration (SSC) and hyetograph at the Es Fangar creek during the 
study period.  Time intervals encompassed by every integrated suspended sediment samples (S1 to S13) were 
represented as black lines and sample collection data as green dots plotted in relation with the x axis (time). The 
inset table contains the main hydro-sedimentary variables for the 34 flood events: total rainfall (Rtot), rainfall 
maximum intensity in 30 minutes (Imax-30), total water volume (Wvol), maximum peak discharge (Qmax), mean 
discharge (Qmean), total suspended sediment load (SSload), maximum suspended sediment concentration peak 
(SSCmax), mean suspended sediment concentration (SSC mean) one-day (AR1d), three days (AR3d) and seven days 
(AR3d) antecedent rainfall and Zuecco et al. (2016) h index values (h index). 
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Classes I and V encompass clockwise hysteresis; IV and VIII, anticlockwise; II and VI, 

eight shaped or more complex when the main direction is clockwise; whilst III and VII 

anticlockwise complex hysteresis. It was computed using a MATLAB script 

(MathWorks, Inc., Natick, MA, USA; Zuecco et al. 2016). 

In addition to the h class, information on the sum of integrals (h) was showed in the 

data. The h index value also gives information about the hysteresis size indicating a 

higher curve amplitude the farther it is from 0. Clockwise loops have an h>0 value, h<0 

for anticlockwise and h≈0 for symmetrical complex loops or no hysteresis. The 

dominant direction for the eight shaped and complex loops were defined by the 

relative size of the loops. To link main sediment sources and hysteretic loops in 

suspended sediment samples that encompass more than one flood, those that have 

contributed more to de sediment load will prevail. 

A clustering of the 34 selected flood events was carried out based on their main hydro-

sedimentary variables and the h index value. For this purpose, a hierarchical cluster 

analysis was performed with SPSS (IBM Corp., Armonk, N.Y., USA) using the Ward's 

method, based on the Euclidean squared distance (Murtagh and Legendre, 2014; 

Ward, 1963). Data was standardized using Z scores. A one-way ANOVA analysis was 

used to validate the significant difference between groups. To avoid inconsistent 

grouping, a Pearson correlation analysis was previously performed. Only the variables 

that showed significant p<0.01 correlations with another variable of different type, 

understanding rainfall (Rtot, Imax-30, AR1d, AR3d, AR3d), water (Wvol, Qmax, Qmean, h 

index), and sediment (SSload, SSCmax, SSC mean, h index) as the three different 

variable types, were included in the clustering.  

7.4. Results 

7.4.1. Tracer accuracy and selection 

After the mass balance approach performed over the artificial mixtures to check the 

linear additivity of colour tracers, all individual colour tracers showed very low 

nRMSE’s between measured and predicted values (Figure 7.3). Cie x and cie y showed 

the lowest difference in values. The error with cie yy (brightness) was slightly larger, 
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with an nRMSE of 4%. Average nRMSEs ranged between 1.3% and 1.9 for Red, Green 

and Blue. No trend was observed between the number of sources in the mixtures (i.e. 

2, 3 and 4) and the average nRMSE values (1.3% for 2 source mixtures, 2% for 3 source 

mixtures and 1.7% for the 4 source mixtures; Figure 7.3).  

 

Figure 7.3. Normalized root mean square error (nRMSE) between estimated and measured colour tracers for the 
artificial mixtures created with 2 (blue), 3 (orange) and 4 (green) different source samples. 

Cie x did not pass the Kruskal-Wallis H test (p > 0.05) (Figure 7.4 and Supplementary 

table 7.2) and was discarded. Cie y, Cie yy, Red, Green and Blue did not show 

significant differences between the forest soil and scrubland soil sources. In addition, 

results showed no significant differences in FRNs concentrations between channel 

bank vs crop soil, and forest soil vs scrubland soil. As a result, the number of sources 

was reduced to two by merging the channel bank and crop soil samples (hereafter 

referred to as channel-crop), and the forest soil and scrubland samples (hereafter 

referred to as forest-scrub). In a second stage, a source origin analysis was performed 

only using colour parameters to allow the discrimination between surface (i.e. crop soil 

and forest-scrubland) and subsurface (i.e. channel banks) source types. 

After Cie x was discarded, most of the target suspended sediment values were within 

crop and channel bank ranges for all tracers except 210Pbex (Figure 7.4). The 210Pbex 

activities measured in the SS samples fall within the range of forest and scrubland soil.  
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PCA showed how two components explained 83.2% of the variance (i.e. PC1 67.2% and 

PC2 15.9%; see Figure 7.5). All tracers except 210Pbex were associated with the 

Component 1, corroborating the unilaterality of 210Pbex. As a result, 210Pbex was 

discarded. 

 

Figure 7.4. Boxplots showing the distribution of the (A) Cie x, (b) Cie y, (C) Cie yy, (D) Red, (E) Green, (F) Blue, (G) 
137Cs and (H) 210Pbex values measured in the suspended sediment and source samples. 

 

Figure 7.5. Principal Component Analysis with Varimax rotation performed with suspended sediment values of Cie 
y, Cie yy, Red, Green, Blue, 137Cs and 210Pbex 
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Results of the DFA (Table 7.1) showed that 78.1% and 59.4% of the samples were 

correctly classified when considering two and three sources, respectively. The Blue 

colour parameter did not pass the tolerance threshold and was discarded.  

Table 7.1. Individual efficiency of colour parameters to discriminate 2 (channel-crop and forest-scrubland) and 3 
sources (i.e. channel bank, crop and forest-scrubland). 

DFA Correctly classified (%) 

Individual tracers Two sources  Three sources 

Cie y 78.1 62.5 

Cie yy 75.0 56.3 

Red 78.1 59.4 

Green 75.0 59.4 

Blue 68.8 53.1 

137Cs 75.0 - 

Independent variables together 

Correct classification (%) 78.1 59.4 

Tracers removed (failing 
tolerance test. 0.001) 

Blue Blue 

7.4.2. Unmixing of the artificial mixtures 

MixSIAR showed an absolute un-mixing error of 11.4 ± 10% in the 10 artificial mixtures 

of 2 samples, being able to identifying the dominant sample in 8 mixtures 

(Supplementary table 7.3). For three samples mixtures (Supplementary table 7.4) the 

absolute error increased up to 16.7 ± 8.1%, coinciding the main sample in 6 of the 10 

mixtures. Finally, in the 4 samples mixtures (Supplementary table 7.5), the error was 

13 ± 3.9%, being the sample contributing to a larger extent identified in 6 out of the 10 

samples. It should be noted that when forest and scrubland samples were grouped and 

considered as a unique source (see section 7.4.1), the dominant samples in the 

mixtures were correctly identified in 23 samples instead of 20.  

7.4.3. Particle size, C and N content 

Source and suspended sediment particle size distribution (Supplementary figure 7.1) 

did not show a normal distribution (Shapiro-Wilk, p <0.05). When applying the 

Wilkoxon signed-rank test, samples in all sources were statistically similar to 
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suspended sediment samples (p=0.44 for channel bank, p = 0.34 for crop soil, p = 0.63 

for forest soil and p= 0.59 for scrubland soil). 

Total C values of the different sample groups are showed in Figure 7.6. Suspended 

sediment showed the highest average total C values. However, all samples except one 

–collected during the event 2 and with a total C content of 16.5%– felt within the 

sources range values. Total N values are also shown in Figure 7.6, with the lowest 

values measured in the channel bank and crop soils, and the largest in the forest.  

 

Figure 7.6. Total carbon and total nitrogen content in source and sediment samples. 

7.4.4. Sediment fingerprinting 

Considering two sources and using the complete set of tracers that passed the tracer 

accuracy and selection tests (i.e. Cie y, Cie yy, Red, Green, and 137Cs; section 7.4.1), 

MixSIAR determined that channel-crop was the main sediment source in 12 of the 13 

sediment samples, with results ranging between 74% ± 16.7 and 90.8% ± 7.1 (Figure 

7.7 and Supplementary table 7.6). Source ascription for Sample 2 was 54.2% ± 21.5 for 

forest-scrub and 45.8% ± 21.5 for channel-crop. 

The source analysis with MixSIAR using only colour parameters (three sources) showed 

a predominance of crop source contributions in 12 of the 13 integrated samples, 

ranging from 38.5% ± 18.7 to 69.9% ± 18.1 (Figure 7.8 and Supplementary table 7.7). 

Nevertheless, forest-scrubland was the main source for Sample 2 with 55.2% ± 17. 
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Figure 7.7. MixSIAR source apportionment predictions using colour parameters and 137Cs considering two potential 
sources: channel-crop and forest-scrubland. The numbers in the upper right of each plot indicate the sample 
number (Figure 7.2). 
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Figure 7.8. MixSIAR source apportionment predictions using colour parameters and considering three potential 
sources: channel bank, crops soil and forest-scrubland. The numbers in the upper right of each plot indicate the 
sample number (Figure 7.2). 
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EMMA results are displayed in Figure 7.9. Correlations with at least one other tracer 

(i.e. r2 > 0.5, p value < 0.01) were found on all tracers except for 137Cs, which was kept 

in the analysis for consistency with the mixing model results. Suspended sediment 

samples always plotted within the mixing area defined by the endmembers. When 

considering two sources (Figure 7.9A), sediment samples tracer data was most similar 

to channel-crop source data. Only Sample 2 plotted at a major distance from the rest, 

suggesting a contribution from the forest-scrubland source. When considering three 

sources (Figure 7.10B), all sediment samples clustered in the crop soil and channel 

bank domains but Sample 2, which plots in an intermediate position between channel 

bank and forest-scrubland. 

 

Figure 7.9. U1–U2 mixing diagram of suspended sediment tracer data (grey dots). Number identify sediment 
samples (Figure 7.2). Sources tracer data were grouped into two (Figure A) and three (B) end-members and the 
interquartile ranges of each end-member were projected into the mixing space (U space). 

7.4.5. Hydro-sedimentary response 

The 34 floods were classified into six hysteresis types (Table 7.2; Figure 7.2). Eighteen 

floods showed clockwise patterns (Class I; h index between 0.04 to 0.58). Floods 1, 13 

and 18 drew eight-shaped clockwise loops (Class II; h index between 0.09 to 0.16). 

Seven floods were classified as eight-shaped anticlockwise loops (Class III; h index 

between 0.01 to 0.41). Four floods showed counter-clockwise patterns (Class IV; h 

index between 0.12 to 0.42), Flood 32 as eight-shaped clockwise direction complex 

loop (Class VI; h index 0.06) and Flood 2 as eight-shaped anticlockwise (Class VIII; h 
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index 0.25). The percentage distribution was 52.9% clockwise, 11.8% counter-

clockwise, 11.8% clockwise eight shaped and 23.5% eight-shaped anticlockwise. No 

clear patterns were found between hysteretic classes and dominant suspended 

sediment sources (as predicted by MixSIAR; Table 7.2) due to the low temporal 

variability in the tracing results. 

The variables Rtot, Imax-30, Wvol, Qmax, Qmean, SSload, SSCmax, SSCmean and AR1d 

were selected to perform a clustering analysis (Supplementary table 7.8). Floods were 

clustered into four groups, which passed an ANOVA test (all variables, p<0.05; Table 

7.2). Cluster 1 is the largest cluster and encloses 26 floods. Cluster 2 enclose 2 floods 

and clusters 3 and 4, 3 floods both. Cluster 1 showed in general lower average values 

for all variables in comparison with the other 3 clusters (Table 7.3). Cluster 2 showed 

more heterogeneous average values with the highest in Rtot, SSmean, and AR1d and 

the lowest in Wvol and Qmax. Cluster 3 performed the highest values in Wvol, Qmax 

and Qmean and the lowest in SSCmean. Finally, Cluster 4 floods obtained the highest 

average values in Imax-30, SSload and SSCmax. Despite all floods classified in clusters 2 

and 3 occurred during the wet season, no clear seasonal pattern emerged. Moreover, 

floods assigned to different hysteresis class were randomly distributed between 

clusters, and the large dispersion in loop’s amplitude values did not allow a robust 

classification. 

Finally, Supplementary table 7.9 (considering two sources) and Supplementary table 

7.10 (considering three sources) show the SSload in tons ascribed to each source in 

relation with its percentage using MixSIAR. In the integrated suspended sediment 

samples that encompass more than one flood event (marked in grey), the total SSload 

was the sum of all events. 
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Table 7.2. Summary of the seasonal distribution, predicted main sediment sources (MixSIAR model), hysteretic class 
(h class) of each flood, and average and standard deviation h index values per flood cluster. 

Clusters 
Integrated 
samples 

ID Season 
Main source   Main source            

h class 
Average h index 
absolute values and 
standard deviation (2 sources) (3 sources) 

Cluster 1 

S1 Flood 1 winter channel-crop Crop II 

0.24 ± 0.12 

S2 Flood 2 spring Forest-scrub Forest-scrub VII 

S3 Flood 3 spring channel-crop Crop IV 

S7 Flood 7 winter 

channel-crop Crop 

I 

S7 Flood 8 winter IV 

S7 Flood 9 winter I 

S8 Flood 10 summer channel-crop Crop I 

S9 Flood 11 autumn 

channel-crop Crop 

III 

S9 Flood 13 autumn II 

S9 Flood 14 winter I 

S9 Flood 16 winter I 

S9 Flood 17 winter III 

S9 Flood 18 winter II 

S9 Flood 19 winter IV 

S9 Flood 20 winter I 

S10 Flood 21 spring channel-crop Crop I 

S11 Flood 22 winter 

channel-crop Crop 

I 

S11 Flood 23 winter I 

S11 Flood 24 winter I 

S11 Flood 25 winter I 

S11 Flood 26 winter I 

S13 Flood 30 autumn 

channel-crop Crop 

III 

S13 Flood 31 autumn III 

S13 Flood 32 autumn VI 

S13 Flood 33 autumn I 

S13 Flood 34 autumn III 

Cluster 2 S12 
Flood 27 winter 

channel-crop Crop I 0.31 ± 0.22 
Flood 28 winter III 

Cluster 3 

S6 Flood 6 winter channel-crop Crop I 
0.25 ± 0.29 S9 Flood 12 autumn 

channel-crop Crop 
I 

S9 Flood 15 winter I 

Cluster 4 

S4 Flood 4 summer channel-crop Crop I 

0.17 ± 0.17 S5 Flood 5 winter channel-crop Crop IV 

S13 Flood 29 autumn channel-crop Crop III 
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Table 7.3. Average and standard deviation values per cluster of the following variables: total rainfall (Rtot), rainfall 
maximum intensity in 30 minutes (Imax-30), total water volume (Wvol), maximum discharge peak (Qmax), average 
discharge (Qmean), total suspended sediment load (SSload), maximum suspended sediment concentration 
(SSCmax), mean suspended sediment concentration (SSCmean) and one-day antecedent rainfall (AR1d). 

  Rtot  Imax-30  Wvol Qmax Qmean SSload SSCmax  SSCmean AR1d 

  (mm) (mm h-1)  (m3)  (m3 s-1)  (m3 s-1)  (t) (mg l-1) (mg l-1) (mm) 

Cluster 1 31.3 ± 19.4 7.9 ± 5.5 15856.8 ± 13753.9 0.8 ± 0.6 0.3 ± 0.3 1.6 ± 2 218.6 ± 203.9 86.9 ± 88.4 16.6 ± 23.9 

Cluster 2 120.6 ± 31.1 9 ± 0 5955.5 ± 3850.7 0.5 ± 0.2 0.3 ± 0.1 3.8 ± 2.8 841.5 ± 34.2 570.4 ± 118.1 106.8 ± 32.2 

Cluster 3 77.9 ± 36 11.5 ± 5.9 102294.9 ± 2662.4 2.9 ± 0.9 1.1 ± 0.5 10.1 ± 2.1 241.5 ± 53.1 85.5 ± 42.7 27.5 ± 6.9 

Cluster 4 53.5 ± 25.5 27.4 ± 25.1 29003.6 ± 25136.6 2.1 ± 0.2 0.4 ± 0.3 15.7 ± 4.1 2026.3 ± 669.7 276.8 ± 235.6 17.2 ± 11.9 

7.5. Discussion 

7.5.1. Comparison between sediment fingerprinting 
approaches 

The selection of tracers was problematic in this study. In a first attempt, sources were 

grouped into two sources based in the Kruskall-Wallis results (i.e. channel-crop and 

forest-scrub) to accommodate a larger number of tracers. This was decided because 

the reduction of tracers in the model may increase the probability that inappropriate 

or non-conservative tracers influence the results (e.g. Martínez-Carreras et al., 2010b). 

In this respect, MixSIAR optimally handles redundancy, so it works well with collinear 

tracers (i.e. colour parameters) (Blake et al., 2018). FRNs did not discriminate between 

channel bank and crop soils. This could be attributed to ploughing in the upper soil 

layers, resulting in the migration of the FRNs to deeper subsurface layers (Owens et al., 

1996). On the contrary, sources less exposed to human perturbations (i.e. forest and 

scrubland) showed 137Cs activities that allowed its differentiation from the other 

source categories. Similarly, colour tracers did not discriminate between forest and 

scrub sources (Supplementary table 7.2) and, even if channel bank and crop colour 

values differ (Section 7.4.1), their spectral signatures were relatively close (Figure 7.4). 

This may explain the errors in predicting the main sediment source in some the 

artificial mixtures.  

In the Es Fangar catchment, MixSIAR identified channel bank-crops soil as the 

dominant sources in the two source analysis and crop soils in the three source analysis. 

Comparing MixSIAR results between the two and three sources analysis (suspended 

sediment samples), the mean absolute error in the source apportion percentage 
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prediction was relatively low (1.2%) (i.e. summing crop and channel bank % results for 

the three source analysis), which denotes robustness in the model using the selected 

tracers set in both analyses. EMMA showed similar results. When plotting the sources 

tracer values in the U1–U2 mixing diagram of suspended sediment tracers it was 

possible to observe that sediment samples clustered close to the crop and channel 

bank signatures (Figure 7.9). Hence, results showed that the approach is able to 

determine the main sediment sources. Furthermore, coinciding with the MixSIAR 

results, sample 2 plotted closer to the forest and channel bank signatures. 

Lithology, land use, and the presence of agricultural terraces and stone walls might 

partially explain the low intra-annual sediment sources variability in the Es Fangar 

catchment. Scrubland and forest areas are located in the catchment headwaters, 

where the steepest slopes are covered with trees and scrubs, protecting the soil and 

reducing runoff and suspended sediment generation. Moreover, carbonate materials 

and karst features dominate in the upper part, characterized by low sediment 

availability and transmission losses (Calvo-Cases et al., 2003; Li et al., 2019), whereas 

crop fields dominate in the valley bottom, which are completely exposed during 

certain periods of the year (normally during the dry season). Furthermore, a large part 

of channel banks is constrained by dry stone walls, limiting channel bank sediment 

contributions. Therefore, the transference of significant amounts of sediment from the 

channel banks to the fluvial network only occurs when a dry stone wall collapses, what 

has been rarely observed in the catchment. Results highlight the relevant role of 

human structures in suspended sediment contributions. Check dams and terraces 

(Figures 7.1C and D) are located traditionally in erosion vulnerable areas laminating 

runoff, retaining soil particles and avoiding rill formation (Tarolli et al., 2014). And 

subsurface drains in flat areas reduce the soil saturation during wet season (Estrany et 

al., 2010). 

7.5.2. Catchment hydro-sedimentary response and suspended 
sediment sources  

The analysed flood events depicted a wide intra- and inter- annual variability. The 

85.3% of events occurred during the wet season and the 14.7% during dry season, 
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evidencing the strong seasonal distribution and coinciding with other studies 

performed in the same catchment (e.g. Fortesa et al., 2020a). In addition, the wide 

range of hydro-sedimentary responses ensured a good representativeness of the 

driving forces controlling sediment transport. Floods were grouped into four clusters 

with differentiate characteristic. However, despite the fact that different patterns 

were associated to each cluster (e.g. distinct sediment loads and maximum suspended 

sediment concentrations), it was not possible to establish a correlation between 

sediment origin and hydro-sedimentary variables.  

Sediment tracing results showed that in the Es Fangar catchment sediment mainly 

originates from crop fields all along the year (Sections 7.4.4 and 7.5.1). As in other 

Mediterranean catchments, no seasonal patterns or dominant source changes in 

function of flood patterns were observed (e.g. Uber et al., 2019). Sample 2, the only 

one showing fingerprints associated to forest-scrub surface soils, could not be related 

to any specific hydro-sedimentary variable either (Figure 7.1). Flood 2 was associated 

to a class VII hysteresis loop (eight-shaped anticlockwise loop; Table 7.3), suggesting 

contributions from various sediment sources and/or the activation of different erosion 

processes (Williams, 1989). However, samples 11 and 12 also drew eight-shaped 

anticlockwise loops and, on the contrary, were related to dominant sediment 

contribution from crop soils.  

Fortesa et al. (2020a) investigated hysteretic patterns for 45 floods occurred between 

2012 and 2017 in the same study area. Their results showed that 73% of the hysteresis 

responded to clockwise and linear loops. Accordingly, clockwise hysteresis loops 

predominated during the events analysed in this study (52.9%), what might indeed 

suggest that in-channel sediment remobilisation and erosion from near stream areas 

(i.e. crops) are the dominant processes in the catchment. Anti-clockwise or complex 

hysteresis patterns (47.1%) are sometimes related with the activation of different 

sediment sources (De Girolamo et al., 2015). However, this is not shown by the 

sediment fingerprinting results, suggesting that the analysis of hysteretic patterns 

might not always accurately inform about sediment origin (Smith and Dragovich, 2009; 

Vercruysse et al., 2017). 



Chapter 7. Combining sediment fingerprinting and hydro-sedimentary monitoring to assess the suspended 

sediment provenance in a mid-mountainous Mediterranean catchment 

204 

 

Few studies combined suspended sediment source assessment with the analysis of 

hydro-sedimentary response at catchments scale. Navratil et al. (2012) combined 

river/rainfall monitoring and sediment fingerprinting using FRNs and geochemistry in a 

905 km2 catchment located in the French Alps. The authors showed that ca. 80% of the 

catchment sediment load occurred during widespread and long rainfall events with 

low intensities, while shorter storms were associated to higher discharge peaks and 

suspended sediment concentrations. However, mobilized sediment did not usually 

reach the catchment outlet. A high intra‐ and inter‐flood variability was detected 

during 7 floods monitored between 2007 and 2009, but sediment sources remained 

relatively stable (black marls up to 70%). Vercruysse and Grabowski (2019) found 

relevant source variations in function of hydro-meteorological drivers in an 879 km2 

catchment in UK. Street dust and limestone grassland sources (located in the steepest 

area of the catchment) were strongly correlated with suspended sediment 

concentration, showing similar correlations with discharge and 1-day antecedent 

rainfall. Millstone and coals grassland sources, located in urban or gentle slope areas, 

were mainly correlated to antecedent hydro‐meteorological conditions (e.g. 

precipitation and discharge). Finally, riverbank material was poorly correlated to 

hydro‐meteorological factors, attributing their maximum contribution when a sudden 

collapse of a channel bank occurred. 

The area of the Es Fangar catchment is smaller, in comparison with the catchments 

studied in Navratil et al. (2012) and Vercruysse and Grabowski (2019). Hence, flow 

paths from the source areas to the catchment outlet are shorter, changing the hydro-

sedimentary processes. Even if the association between sediment fingerprinting and 

monitoring does not always outcomes clear patterns (e.g. this study and Navratil et al. 

2012), the approach helps to better understand sediment delivery processes. This is 

because sediment tracing results alone do not provide information on the total mass 

of sediment transported for each event, whereas the events exporting the largest 

sediment loads will influence the most the source predictions of the total load. 
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7.5.3. Catchment management implications 

Integrated catchment management plans need to assimilate information about the 

complex relationships between hydrological systems, land-uses, ecosystems human 

health and political aspects under an interdisciplinary optic to successfully address 

complex problematics (Bakker, 2012; Bunch et al., 2014; Wang et al., 2016). By 

definition, an integrated approach needs to account for as much information as 

possible. We argue that to reach a comprehensive understanding about erosion and 

sediment transport dynamics in catchments it is essential to develop effectively 

integrated management approaches (McCarney-Castle et al., 2017; Owens et al., 

2005). The methodology that we proposed is based on the combination of continuous 

monitoring of water and sediment with sediment fingerprinting (Evrard et al., 2020; 

Navratil et al., 2012; Vercruysse and Grabowski, 2019). The first informs about the 

spatiotemporal variation in suspended sediment concentrations and loads, what is 

relevant in highly variable environments such as the Mediterranean basin. Sampling 

during high and low flows throughout the year and extending the sampling over time is 

needed (Vercruysse and Grabowski, 2019) if we are to predict climate change impacts 

and account for nonstationary in management plans. Furthermore, this information is 

required to develop sediment transport models that integrate information on 

sediment origin (Owens et al., 2005; Perks et al., 2017; Vercruysse et al., 2019).  

No consensus has been reached about the best mixing model to predict suspended 

sediment sources. In this study we have tested two different prediction models, 

MixSIAR Bayesian mixing model and the EMMA approach. Results showed that the 

EMMA approach, which is not based on a mixing model but on a PCA of the tracer 

values measured in the sediment samples, can provide valuable insights to determine 

dominant sources. We argue that precise estimation of suspended sediment sources 

might not be always needed when implementing sediment management plans, but 

rather an accurate identification of dominant sources. In this respect, EMMA (which 

has been extensively use in hydrograph separation (Hooper, 2003) but rarely used in 

sediment fingerprinting) offers advantages as based on simplified procedures 

compared with sediment fingerprinting (e.g. MixSIAR), what could result in a larger 

implementation.  
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This study also pays attention to the fact that it is always desirable to include different 

types of tracers (e.g. geochemistry, FRNs, mineral magnetics) in order to create 

composite signatures to reduce possible discrimination uncertainties (Walling, 2013). 

However, the use of a heterogeneous set of tracers often entails significant costs of 

time and money. Therefore, the use of low cost tracers as colour seems to be a good 

option in this type of studies not only because of its low cost, but also because they are 

easy and quick to measure (Pulley and Rowntree, 2016), being their effectiveness 

comparable to more classical tracers (e.g. Martínez-Carreras et al., 2010a; Pulley et al., 

2018).  

The results obtained indicate that in the Es Fangar, sediment sources are relatively 

stable through the year. This is due, in part, to human modification associated to 

traditional soil conservation practices (Calsamiglia et al., 2018; Estrany et al., 2010a). It 

has also been previously recognised that the interactions between hydro-

meteorological factors and human disturbances determine the sediment origin and 

catchment-scale sediment flux in highly modified landscapes (Fryirs, 2017; Poeppl et 

al., 2020). Hence, the stability of the Es Fangar catchment geomorphic system depends 

to a certain extent on the maintenance and restoration of the elements that conform 

it, including soil conservation structures. Otherwise, a sudden change in its operation 

could eventually result in increased sediment yields, soil loss and degradation. 

7.6. Conclusions 

This study links hydro-sedimentary dynamics at event scale (n=34) with sediment 

fingerprinting source ascription (n=13) to better understand erosive processes in a 

Mediterranean catchment. Scrubland and forest sources were not differentiated using 

colour coefficients and 137Cs was not able to discriminate between channel and crop 

sources. Using only colour parameters and MixSIAR, crops were the main sediment 

source in 12 of the 13 integrated sediment samples. The EMMA analysis showed 

similar results, clustering all sediment samples close to crop land and channel bank 

signatures except one (Sample 2), coinciding with MixSIAR results. Our analysis 

suggests that the EMMA approach can be a good choice to identify dominant sources 
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of sediment using simplified procedures in comparison with mixing models. We argue 

that the use of this approach in sediment tracing studies needs to be further explored. 

Even if floods could be clustered in function of event-based variables (e.g. rainfall, 

discharge, suspended sediment concentration and hysteretic relationship between 

water and sediment), a clear relation with sediment source changes was not found. 

Lithology, land uses and the presence of agricultural terraces and dry stone walls might 

partially explain the low sediment source inter- and intra-annual variability in the Es 

Fangar catchment. Furthermore, the complexity and spatial variability of 

Mediterranean catchments complicates the definition of clear suspended sediment 

transport patterns and its link with sediment source ascription. Even if further research 

is necessary to reach a comprehensive understanding about erosion and sediment 

transport dynamics in Es Fangar catchment. The proposed approach and the results 

obtained can not only help managers in defining optimal intervention strategies, but 

also be used to create quantitative (in terms of amount) and qualitative (in terms of 

origin) sediment models to be integrated in catchment management plans. 
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7.8. Supplementary material 

 

Supplementary figure 7.1. Average particle size distributions of the different source and suspended sediment 
samples. 
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Supplementary table 7.1. Artificial mixtures in different proportions of channel bank (CB), crop soil (CS), forest soil 
(FS) and scrubland soil (SS). 

Number of sources ID Sources types used % proportion (respectively) 

2 sources 

mix2-1 CB + CS 80 + 20 

mix2-2 CB + FS 80 + 20 

mix2-3 SS + CB 80 + 20 

mix2-4 SS + FS 80 + 20 

mix2-5 FS + CB 80 + 20 

mix2-6 FS + SS 80 + 20 

mix2-7 FS + CS 80 + 20 

mix2-8 CS + FS 80 + 20 

mix2-9 CS + SS 80 + 20 

mix2-10 CS + CB 80 + 20 

3 sources 

mix3-1 CB + SS + FS 70 + 20 + 10 

mix3-2 CB + CS + SS 70 + 20 + 10 

mix3-3 SS + CB + FS 70 + 20 + 10 

mix3-4 SS + FS + CS 70 + 20 + 10 

mix3-5 FS + SS + CS 70 + 20 + 10 

mix3-6 FS + SS + CB 70 + 20 + 10 

mix3-7 FS + CB + CS 70 + 20 + 10 

mix3-8 CS + FS + CB 70 + 20 + 10 

mix3-9 CS + SS + FS 70 + 20 + 10 

mix3-10 CS + CB + SS 70 + 20 + 10 

4 sources 

mix4-1 CB + SS + FS + CS 60 + 20 + 10 + 10 

mix4-2 CB + CS + SS + FS 60 + 20 + 10 + 10 

mix4-3 SS + CB + FS + CS 60 + 20 + 10 + 10 

mix4-4 SS + FS + CS + CB 60 + 20 + 10 + 10 

mix4-5 FS + SS + CS + CB 60 + 20 + 10 + 10 

mix4-6 FS + SS + CB + CS 60 + 20 + 10 + 10 

mix4-7 FS + CB + CS + SS 60 + 20 + 10 + 10 

mix4-8 CS + FS + CB + SS 60 + 20 + 10 + 10 

mix4-9 CS + SS + FS + CB 60 + 20 + 10 + 10 

mix4-10 CS + CB + SS + FS 60 + 20 + 10 + 10 
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Supplementary table 7.2. Summary statistics for each tracer and source type. 

Tracers Sources Min.  Median Mean Max. Sta.Dev. 

Cie x 

Channel 0.348 0.354 0.355 0.367 0.005 

Crop 0.353 0.356 0.356 0.361 0.003 

Forest 0.345 0.353 0.352 0.362 0.007 

Scrubland 0.350 0.353 0.354 0.357 0.002 

Cie y 

Channel 0.336 0.342 0.343 0.349 0.003 

Crop 0.343 0.346 0.345 0.346 0.001 

Forest 0.333 0.337 0.338 0.344 0.005 

Scrubland 0.338 0.340 0.340 0.341 0.001 

Cie Y 

Channel 8.567 11.476 12.011 19.524 2.758 

Crop 9.753 13.324 14.086 19.028 3.129 

Forest 7.973 8.728 9.522 12.398 1.768 

Scrubland 9.013 9.665 9.504 9.724 0.298 

Red 

Channel 95.450 111.090 112.460 138.840 10.807 

Crop 104.800 118.800 120.600 137.800 11.145 

Forest 91.690 97.780 101.200 115.140 9.530 

Scrubland 98.290 102.500 101.490 103.220 1.984 

Green 

Channel 78.940 90.560 92.280 117.790 10.132 

Crop 83.200 97.760 99.840 116.370 11.103 

Forest 76.290 79.210 82.510 94.230 7.119 

Scrubland 80.830 83.200 82.780 83.760 1.189 

Blue 

Channel 76.050 84.440 86.030 110.620 9.078 

Crop 77.500 90.200 92.000 106.980 9.905 

Forest 74.720 76.470 78.550 87.530 5.157 

Scrubland 77.380 78.220 78.260 79.110 0.636 

137Cs 

Channel 1.200 5.450 6.831 20.800 5.765 

Crop 1.000 7.100 6.317 9.400 3.164 

Forest 9.000 17.200 16.700 26.700 6.692 

Scrubland 15.700 21.900 41.480 100.200 35.858 

210Pbex 

Channel 1.000 21.480 31.820 124.240 32.728 

Crop 13.340 23.690 24.070 36.520 8.183 

Forest 19.800 103.360 128.280 252.060 94.190 

Scrubland 11.700 100.140 111.580 200.100 80.627 
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Supplementary table 7.3. MixSIAR source apportionment and absolute error in comparison with real proportions 
for the two sources artificial mixtures. 

   

 

 
MixSIAR 

Samples Sources 

 

Real 
proportions (%) 

Estimated 
proportions (%) 

Absolute 
error (%) 

Average absolute 
error (%) 

2 samples 
mixtures 

mix2-M1 
Channel  80 75 ± 6.5 5.0 

5.0 
Crop  20 25 ± 6.5 5.0 

mix2-M2 
Channel  80 58.3 ± 17.3 21.7 

21.7 
Forest  20 41.7 ± 17.3 21.7 

mix2-M3 
Scrubland  80 49.9 ± 25.8 30.1 

30.1 
Channel  20 50.1 ± 25.8 30.1 

mix2-M4 
Scrubland  80 67.9 ± 21.4 12.1 

12.1 
Forest  20 32.1 ± 21.4 12.1 

mix2-M5 
Forest  80 76.5 ± 11.1 3.5 

3.5 
Channel  20 23.5 ± 11.1 3.5 

mix2-M6 
Forest  80 63.2 ± 15 16.8 

16.8 
scrubland  20 36.8 ± 15 16.8 

mix2-M7 
Forest  80 83.3 ± 6.8 3.3 

3.3 
Crop  20 16.7 ± 6.8 3.3 

mix2-M8 
Crop  80 61.4 ± 22.7 18.6 

18.6 
Forest  20 38.6 ± 22.7 18.6 

mix2-M9 
Crop  80 80.8± 9.7 0.8 

0.8 
scrubland  20 19.2 ± 9.7 0.8 

mix2-M10 
Crop  80 77.5 ± 5.5 2.5 

2.5 
Channel  20 22.5 ± 5.5 2.5 
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Supplementary table 7.4. MixSIAR source apportionment and absolute error in comparison with real proportions for 

the three sources artificial mixtures. 

    
MixSIAR 

Samples Sources 
Real proportions 
(%) 

Estimated 
proportions (%) 

Absolute 
error (%) 

Average absolute 
error (%) 

3 samples 
mixtures 

mix3-M1 

Channel 70 33.2 ± 21.5 36.8 

24.5 Scrubland 20 32.8 ± 21.7 12.8 

Forest 10 34 ± 21.5 24.0 

mix3-M2 

Channel 70 42.6 ± 21.9 27.4 

22.0 Crop 20 14.3 ± 7.4 5.7 

Scrubland 10 43 ± 22.9 33.0 

mix3-M3 

Scrubland 70 36.3 ± 21.7 33.7 

22.5 Channel 20 40.7 ± 18.1 20.7 

Forest 10 23 ± 14.1 13.0 

mix3-M4 

Scrubland 70 40 ± 22.4 30.0 

20.0 Forest 20 40.5 ± 15.8 20.5 

Crop 10 19.4 ± 8.9 9.4 

mix3-M5 

Forest 70 49.2 ± 21.6 20.8 

16.3 Scrubland 20 44.5 ± 23.4 24.5 

Crop 10 6.3 ± 3.4 3.7 

mix3-M6 

Forest 70 34.8 ± 13.6 35.2 

23.5 Scrubland 20 31.6 ± 17.6 11.6 

Channel 10 33.6 ± 19.9 23.6 

mix3-M7 

Forest 70 37.9 ± 21.6 32.1 

21.4 Channel 20 21.3 ± 11.6 1.3 

Crop 10 40.8 ± 17.9 30.8 

mix3-M8 

Crop 70 70.2 ± 7.8 0.2 

4.5 Forest 20 13.3 ± 8.6 6.7 

Channel 10 16.5 ±10.4 6.5 

mix3-M9 

Crop 70 65.8 ± 0.8 4.2 

3.1 Scrubland 20 19.6 ± 12 0.4 

Forest 10 14.6 ±9.4 4.6 

mix3-M10 

Crop 70 55.9 ± 4.8 14.1 

9.4 Channel 20 20.8 ± 11.9 0.8 

Scrubland 10 23.3 ± 13.5 13.3 
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Supplementary table 7.5. MixSIAR source apportionment and absolute error in comparison with real proportions 

for the four sources artificial mixtures 

    
MixSIAR 

Samples Sources 
Real proportions 
(%) 

Estimated 
proportions (%) 

Absolute error 
(%) 

Average absolute 
error (%) 

4 samples 
mixtures 

mix4-
M1 

Channel 60 28.4 ± 18.2 31.6 

15.8 
Scrubland 20 26.9 ± 17.1 6.9 

Forest 10 24.5 ± 14.2 14.5 

Crop 10 20.3 ± 9.1 10.3 

mix4-
M2 

Channel 60 33.8 ± 18.3 26.2 

15.9 
Crop 20 14.4 ± 9.3 5.6 

Scrubland 10 34.1 ± 19.5 24.1 

Forest 10 17.7 ± 11.3 7.7 

mix4-
M3 

Scrubland 60 31.5 ± 19.6 28.5 

15.4 Channel 20 29.4 ± 19 9.4 

Forest 10 31.4 ± 17.9 21.4 

Crop 10 7.6 ± 3.9 2.4 

mix4-
M4 

Scrubland 60 27.5 ± 18.6 32.5 

16.3 Forest 20 25.1 ± 15 5.1 

Crop 10 20.6 ± 7.7 10.6 

Channel 10 26.8 ± 17 16.8 

mix4-
M5 

Forest 60 32.3 ± 18.4 27.7 

16.1 Scrubland 20 30.9 ± 19.3 10.9 

Crop 10 5.4 ± 2.9 4.6 

Channel 10 31.1 ± 19.3 21.1 

mix4-
M6 

Forest 60 40.4 ± 15 19.6 

10.5 Scrubland 20 25 ± 16.7 5 

Channel 10 25.9 ± 17.6 15.9 

Crop 10 8.7 ± 17.6 1.3 

mix4-
M7 

Forest 60 30.8 ± 18.7 29.2 

14.7 
Channel 20 19.9 ± 13 0.1 

Crop 10 33.3 ± 14.9 23.3 

Scrubland 10 16 ± 10.4 6 

mix4-
M8 

Crop 60 57.3 ± .6 2.7 

5.5 Forest 20 11.8 ± 8.8 8.2 

Channel 10 14.6 ± 10.7 4.6 

Scrubland 10 16.3 ± 11.5 6.3 

mix4-
M9 

Crop 60 47.3 ± 9.7 12.7 

7.7 
Scrubland 20 17.4 ± 12.1 2.6 

Forest 10 13 ± 9.4 3 

Channel 10 22.4 ± 15.5 12.4 

mix4-
M10 

Crop 60 39.1 ± 7.4 20.9 

12.8 Channel 20 15 ± 10.5 5 

Scrubland 10 18.4 ± 12.2 8.4 

Forest 10 26.7 ± 17.7 16.7 
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Supplementary table 7.6. MixSIAR source apportionment considering two group sources (i.e. channel-crop and 
forest-scrub) using colour and 137Cs. 

    MixSIAR 

SS sample Sources Average (%) 
Quantile distribution 
5% - 95% 

Sample1 
channel-crop 83.8 ± 11.8 60.6 - 98.7 

Forest scrub 16.2 ± 11.8 1.3 - 39.4 

Sample2 
channel-crop 45.8 ± 21.5 13.5 - 86.9 

13.1 - 86.5 Forest scrub 54.2 ± 21.1 

Sample3 
channel-crop 90.7 ± 7.3 76.5 - 99.3 

0.7 - 23.5 Forest scrub 9.3 ± 7.3 

Sample4 
channel-crop 90.8 ± 7.1 76.9 - 99.4 

0.6 - 23.1 Forest scrub 9.2 ± 7.1 

Sample5 
channel-crop 82.1 ± 12.5 58.7 - 98.2 

1.8 - 41.3 Forest scrub 17.9 ± 12.5 

Sample6 
channel-crop 90.7 ± 0.7 75.5 - 99.4 

Forest scrub 9.3 ± 0.7 0.6 - 24.5 

Sample7 
channel-crop 90.2 ± 0.7 74.4 - 99.3 

0.7 - 25.6 Forest scrub 9.8 ± 0.7 

Sample8 
channel-crop 89.8 ± 7.7 75 - 99.2 

0.8 - 25 Forest scrub 10.2 ± 7.7 

Sample9 
channel-crop 74 ± 16.7 44.1 - 97.3 

2.7 - 61.6 Forest scrub 26 ± 16.7 

Sample10 
channel-crop 81.3 ± 13 56.9 - 98.4 

1.6 - 43.1 Forest scrub 18.7 ± 13 

Sample11 
channel-crop 76.7 ± 14.9 50.3 - 97.5 

2.5 - 49.7 Forest scrub 23.3 ± 14.9 

Sample12 
channel-crop 82.3 ± 12.6 58.5 - 92.6 

25.8 - 41.5 Forest scrub 17.7 ± 12.6 

Sample13 
channel-crop 82 ± 12.6 58 - 98.5 

Forest scrub 18 ± 12.6 1.5 - 42 
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Supplementary table 7.7. MIxSIAR source apportionment considering three group sources (i.e. channel bank, crop 
soil and forest-scrub) using colour parameters. 

    MixSIAR 

SS sample Sources Average (%) 
Quantile distribution 
5% - 95% 

Sample 1 

Channel 33.6 ± 21.6 0.37 - 74.1 

Crop 46.9 ± 18.7 11.4 - 75.2 

Forest-scrub 19.5 ± 11.9 2.5 - 40.4 

Sample 2 

Channel 27.1 ± 18.3 2.9 - 62.4 

Crop 17.6 ± 11.2 2 - 38 

Forest-scrub 55.2 ± 17 22.5 - 79.8 

Sample 3 

Channel 22.6 ± 19.1 1.7 - 63 

Crop 67.7 ± 18.5 30.6 - 91.5 

Forest-scrub 9.7 ± 7.7 0.6 - 24.6 

Sample 4 

Channel 21.1 ± 18.4 1.3 - 59.6 

Crop 69.9 ± 18.1 32.8 - 92.7 

Forest-scrub 0.8 ± 7.2 0.6 - 22.8 

Sample 5 

Channel 31.8 ± 20.3 3.7 - 69.8 

Crop 49 ± 19.1 14.8 - 78.7 

Forest-scrub 19.1 ± 11.9 2.5 - 41 

Sample 6 

Channel 25.1 ± 20.3 1.8 - 67.2 

Crop 65.4 ± 19.9 25.5 - 91.2 

Forest-scrub 9.5 ± 7.6 0.7 - 25 

Sample 7 

Channel 25.4 ± 19.5 2 - 64.7 

Crop 63.4 ± 18.7 27.7 - 89.2 

Forest-scrub 11.2 ± 8.3 0.9 - 26.6 

Sample 8 

Channel 23.2 ± 19.4 1.6 - 64.3 

Crop 66.6 ± 18.7 28.4 - 91.1 

Forest-scrub 10.1 ± 7.8 0.7 - 25.7 

Sample 9 

Channel 33.7 ± 20.5 4.3 - 70.6 

Crop 38.5 ± 18.7 8.1 - 70.6 

Forest-scrub 27.8 ± 15.3 4.2 - 53.6 

Sample 10 

Channel 33.4 ± 21.2 3.6 - 72.3 

Crop 46.5 ± 19.2 11.7 - 75.9 

Forest-scrub 21 ± 12.8 2.7 - 43.7 

Sample 11 

Channel 33.1 ± 20.5 4.2 - 70 

Crop 41.4 ± 18.1 9.4 - 70.5 

Forest-scrub 25.5 ± 14.3 3.7 - 50.6 

Sample 12 

Channel 34.2 ± 20.9 4.1 - 72.6 

Crop 45.7 ± 18.5 12.2 - 74.6 

Forest-scrub 20.1 ± 12.2 2.3 - 42.2 

Sample 13 

Channel 35.3 ± 21.9 3.9 - 75 

Crop 47 ± 21.2 9.9 - 81.4 

Forest-scrub 17.7 ± 13 1.4 - 42.4 
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Supplementary table 7.8. Pearson correlation coefficients between total rainfall (Rtot), rainfall maximum intensity 
in 30 minutes (Imax-30), total water volume (Wvol), maximum discharge peak (Qmax), suspended sediment load 
(SSload), maximum suspended sediment concentration (SSCmax), one-day antecedent rainfall (AP1d), three days’ 
antecedent rainfall (AP3d) and the hysteretic h index (h-index). p <0.01 significance in bold. 

  Rtot  Imax-30  Wvol Qmax Qmean SSload SSCmax  SSCmean AR1d AR3d AR7d h-index 

Rtot  1                       

Imax-30  0.22 1                     

Wvol 0.38 -0.02 1                   

Qmax 0.23 0.26 0.75 1                 

Qmean 0.21 -0.01 0.57 0.83 1               

SSload 0.38 0.36 0.56 0.78 0.55 1             

SSCmax  0.20 0.67 -0.05 0.37 0.11 0.67 1           

SSCmean 0.44 0.13 -0.12 0.11 0.20 0.37 0.62 1         

AR1d 0.52 -0.11 0.11 0.12 0.21 0.12 0.11 0.48 1       

AR3d 0.24 -0.25 0.06 0.15 0.36 0.09 0.01 0.30 0.76 1     

AR7d 0.21 -0.22 -0.01 -0.01 0.15 0.00 0.00 0.28 0.69 0.83 1   

h-index 0.05 -0.04 0.13 -0.06 -0.14 -0.20 -0.05 0.01 0.09 -0.15 -0.11 1 

p<0.01 correlations in bold 
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Supplementary table 7.9. Total suspended sediment load ascribed to each source using MixSIAR results and 
considering only two sources (i.e. channel-crop and Forest-scrub). 

2 sources ascription 

Integrated samples Total Ssload (t) Sources Source proportion (%) SSload (t) 

Sample1 0.26 
channel-crop 83.8 0.22 

forest-scrub 16.2 0.04 

Sample2 0.71 
channel-crop 45.8 0.33 

forest-scrub 54.2 0.38 

Sample3 0.11 
channel-crop 90.7 0.10 

forest-scrub 9.3 0.01 

Sample4 11.56 
channel-crop 90.8 10.50 

forest-scrub 9.2 1.06 

Sample5 19.66 
channel-crop 82.1 16.14 

forest-scrub 17.9 3.52 

Sample6 8.14 
channel-crop 90.7 7.38 

forest-scrub 9.3 0.76 

Sample7 2.81 
channel-crop 90.2 2.54 

forest-scrub 9.8 0.28 

Sample8 0.96 
channel-crop 89.8 0.86 

forest-scrub 10.2 0.10 

Sample9 30.42 
channel-crop 74 22.51 

forest-scrub 26 7.91 

Sample10 0.07 
channel-crop 81.3 0.06 

forest-scrub 18.7 0.01 

Sample11 11.69 
channel-crop 76.7 8.97 

forest-scrub 23.3 2.72 

Sample12 7.59 
channel-crop 82.3 6.24 

forest-scrub 17.7 1.34 

Sample13 31.51 
channel-crop 82 25.84 

forest-scrub 18 5.67 
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Supplementary table 7.10. Supp. Table 10. Total suspended sediment load ascribed to each source using MixSIAR 
results and considering three sources (i.e. channel, crop and Forest-scrub). 

3 sources ascription 

Integrated samples Total Ssload (t) Sources Source proportion (%) SSload (t) 

Sample 1 0.26 

channel 33.6 0.09 

crop 46.9 0.12 

forest-scrub 19.5 0.05 

Sample 2 0.71 

channel 27.1 0.19 

crop 17.6 0.12 

forest-scrub 55.2 0.39 

Sample 3 0.11 

channel 22.6 0.02 

crop 67.7 0.07 

forest-scrub 9.7 0.01 

Sample 4 11.56 

channel 21.1 2.44 

crop 69.9 8.08 

forest-scrub 0.8 0.09 

Sample 5 19.66 

channel 31.8 6.25 

crop 49 9.63 

forest-scrub 19.1 3.76 

Sample 6 8.14 

channel 25.1 2.04 

crop 65.4 5.32 

forest-scrub 9.5 0.77 

Sample 7 2.81 

channel 25.4 0.71 

crop 63.4 1.78 

forest-scrub 11.2 0.32 

Sample 8 0.96 

channel 23.2 0.22 

crop 66.6 0.64 

forest-scrub 10.1 0.10 

Sample 9 30.42 

channel 33.7 10.25 

crop 38.5 11.71 

forest-scrub 27.8 8.46 

Sample 10 0.07 

channel 33.4 0.02 

crop 46.5 0.03 

forest-scrub 21 0.01 

Sample 11 11.69 

channel 33.1 3.87 

crop 41.4 4.84 

forest-scrub 25.5 2.98 

Sample 12 7.59 

channel 34.2 2.59 

crop 45.7 3.47 

forest-scrub 20.1 1.53 

Sample 13 31.51 

channel 35.3 11.12 

crop 47 14.81 

forest-scrub 17.7 5.58 
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8. In-channel alterations of soil properties used as 
tracers in sediment fingerprinting studies 

ABSTRACT 

Soil properties conservativeness is an essential requirement in sediment fingerprinting 

studies. Soil properties need to remain stable or vary in a predictable way on their 

transfer from sources to sinks in order to compare suspended sediment and soil 

samples with reliability and accuracy. The attention on conservative behaviour of soil 

properties is focused on the effects produced by the differences in the particle size and 

organic matter. However, in-channel biochemical alterations can occur, being these 

possible variations usually ignored. An experiment on the in-channel soil properties 

variations was performed using the most commonly soil properties used as tracers (i.e. 

colour, fallout radionuclides and geochemical elements) in sediment fingerprinting 

studies. Twenty-eight soil samples composed from different land uses were introduced 

in an intermittent stream channel of a small Mediterranean mountainous catchment. 

Samples were extracted in different time intervals (i.e. 7, 30, 60, 90, 150, 210, 270, 365 

days) along one year. The experiment showed that changes on soil properties 

(coefficient of variation average 8.1 ± 8.8%) were generally lower than its spatial 

variability within the catchment (coefficient of variation average 16.3 ± 18.5%). 

Furthermore, the colour parameters were the most stable tracers with a coefficient of 

variation of 2.6 ± 2.2%. Finally, the general low variability observed in soil properties, 

and its strong correlations with the specific surface area and C further emphasize the 

role of particle size and organic matter in the conservative behaviour of soil properties. 

 

 

 

 

 

Preliminary results 

In-channel alterations of the most common soil properties used as tracers in sediment 

fingerprinting studies. Paper in preparation. 



Chapter 8. In-channel alterations of the most common soil properties used as tracers in sediment 

fingerprinting studies 

228 

 

8.1. Introduction 

Eroded soil particles can trigger alterations in their course over the sediment cycle in 

drainage catchments. These alterations can produce unknown effects on sediment 

tracing studies, leading to inaccurate results. Sediment fingerprinting is a standard 

methodology to trace suspended sediment origin (cf. Collins et al., 2020). The basis of 

its application is the comparison between different physical, geochemical and/or 

biochemical properties between soil samples collected in potential sediment source 

areas and sediment samples collected within the fluvial network (Collins et al., 1997; 

Klages and Hsieh, 1975; Wall and Wilding, 1976; Walling et al., 1979). However, the 

fingerprinting technique does not provide unequivocal source discrimination and 

results exhibit uncertainties. These uncertainties can be associated to sampling 

methodologies (e.g. Manjoro et al., 2017), spatial variability of source material 

properties (e.g. Du and Walling, 2017), statistical models (e.g. Haddadchi et al., 2014; 

Nosrati et al., 2014; Palazón and Navas, 2017) or due to alteration of soil properties 

during conveyance or temporal deposition within the river channel (e.g. Koiter et al., 

2013). Accordingly, despite soil and sediment tracer values can be representative of 

source areas and discriminate them, are measurable and presumably remain stable or 

vary in a predictable way (Motha et al., 2002), alteration processes during mobilization 

and mixing along hydrological pathways it is known that they can occur (Koiter et al., 

2013). The degree of alteration is, however, highly site-dependent, difficult to address, 

and often, not taken into consideration. 

It is widely known that particle size and organic matter influence the concentrations of 

certain soil properties, preventing direct comparison between source material and 

suspended sediment (e.g. Crockford and Olley, 1998; Hill et al., 1998; Horowitz and 

Elrick, 1987; Koiter et al., 2018; Laceby et al., 2017). Sediment specific surface area 

(SSA) affects the reactivity of sediment particles, where smaller fractions are more 

chemically active than coarser particles (Foster and Charlesworth, 1996; Horowitz et 

al., 1993). For example, fallout radionuclide activity (e.g. 210Pbex, 137Cs) is normally 

higher in fine particles, and usually shows a non-linear relationship with SSA in 

particles >1 m2 g-1 (Fan et al., 2014; He and Walling, 1996) as well as with some 
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geochemical elements (Russell et al., 2001). Conversely, organic matter content highly 

correlates with several soil elements under certain conditions, enriching humic and 

fulvic substances (Hirner et al., 1990) or altering colour properties (Ben-Dor and Banin, 

1995; Pulley and Rowntree, 2016). Differences between sources and sediment material 

were normally addressed by sieving to a specific particle size (e.g. He and Walling, 

1996), removing the organic content (e.g. Pulley and Rowntree, 2016) or using 

correction factors (Collins et al., 1997; Russell et al., 2001).  Limitations associated to 

tracer conservatism have also been solved by defining an optimal set of tracers for 

statistically discerning those with conservative behaviour. For instance, a widespread 

method is the use of a Discriminant Function Analysis (DFA) to select the optimum 

tracer set and range tests to exclude potentially non-conservative tracers (Collins and 

Walling, 2002; Collins et al., 1997; Walden et al., 1997; Wilkinson et al., 2013). 

However, other statistical procedures have been used in the sediment fingerprinting 

literature, such as Principal Component Analysis (PCA; e.g. Walling, 2005), Mann–

Whitney U test (e.g. Carter et al., 2003), Wilcoxon rank-sum test (e.g. Juracek and 

Ziegler, 2009), Tukey test (e.g. Motha et al., 2003), t test (e.g. Hancock and Revill, 

2013), linear trends between tracers using in bivariate scatterplots (James and Roulet, 

2006; Rose et al., 2018), conservativeness index and a ranking based on consensus 

(Lizaga et al., 2020) or using tracer-particle size relationships and source mixing 

polygons (Smith et al., 2018). 

Together with the effect of particle size and organic matter, other sediment alteration 

processes might occur, including chemical precipitation, diagenesis, or the addition of 

new atmospheric elements such as N, S and 210Pb (Koiter et al., 2013; Owens et al., 

2012; Wilkinson et al., 2009). Transformations can be remarkable during transport and 

in temporary sediment accumulation deposits (Koiter et al., 2013). Abrasion and 

disaggregation processes can alter the particle size and shape of sediment transferring 

iron oxide coats to smaller particles, influencing mineral magnetic properties 

(Crockford and Olley, 1998). Some sediment properties associated with highly reactive 

particulate carrier phases such as Fe and Mn oxyhydroxides, particulate organic 

matter, carbonates, and sulphides, can be dissolved reducing its concentration in the 

suspended load (Dabrin et al., 2021). Biochemical processes can also influence 
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elements like K (Withers and Jarvie, 2008). In addition, some metals and fallout 

radionuclides (e.g. 137Cs) can be released from sediment deposits to water flow (Foster 

et al., 2006; Hudson‐Edwards et al., 1998). 

As far as we know, few studies have been specifically designed to investigate the 

conservative behaviour of sediment tracers. Motha et al. (2002) studied the 

conservativeness of fallout radionuclides (i.e. 137Cs and 210Pbex), major elemental 

geochemistry and mineral magnetism of soil properties during the sediment 

generation process. These authors simulated three different rainfall conditions over 

five 200 m2 plots (south-west Australian) and compared the properties of source soil 

and mobilized sediment. They found differences in particles size and organic matter 

content between the eroded sediment and the soil samples analysed, deciding to use 

correction factors. After their use to address differences in particle size and organic 

matter it was stated that the major part of mineral magnetic, geochemistry elements 

and fallout radionuclides remained conservative in the mobilization processes. 

However, concentrations of Fe2O3, Al2O3, the sum of molecular proportions of CaO** 

(Ca in the silicate fractions), Na2O, K2O and Al2O3 and the magnetic properties IRM850 

and χ showed a non-conservative behaviour at least in one case. Koiter et al. (2018) 

studied the conservative behaviour of geochemical soil properties through the 

mobilisation process simulating rainfall over plots in two agricultural catchments in 

Canada. After the analysis of soil and mobilised material sieved at <63 µm, they found 

a fine-grain and organic material enrichment in the eroded samples. As a consequence, 

they applied particle size and organic matter correction factors to compare 

geochemical element concentrations between sources and eroded material. 

Corrections factors resulted in over-corrections for most elements, increasing the 

differences in concentrations between mobilized soil and source soil. In addition, they 

observed relations of SSA and soil organic carbon content with the concentration of 

different elements being specific for every individual element and catchment. To test 

the conservativeness of soil spectral signatures after in-channel submersion, Poulenard 

et al. (2012) introduced different sediment source samples sieved to <63 µm within a 

stream (French southern Alps). Samples were placed in microporous bags and 

remained submersed during different intervals of time (i.e. 1 day, 1 week and 2 
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weeks). After collection, samples were used for source ascription (Partial Least Square 

analysis). The authors concluded that differences in the results associated to different 

submersion times were between 5 and 15% for the dominant source, and considered 

that spectral signatures were sufficiently conservative to be used as tracers. The 

conservative experiment was replicated by Legout et al. (2013) in the same catchment 

in March 2009. Forty-five artificial samples sieved at <63 µm were introduced in 

double layer nylon porous bags with 20 µm mesh size after verifying that the double 

layer allowed the water renewal without the clogging by external suspended sediment 

with limited material loss. Samples were submersed and collected after 1, 7, 14, 35 

and 63 days. After collection, samples lost a mass average of 5%. Considering all 

different sources and submersion intervals, all spectrometric parameters 

experimented low variations (<10 %), being the marls and molasses samples more 

sensitive to changes than the limestone material. Finally, Uber et al. (2019) –following 

the same methodology described by Legout et al. (2013)– assessed the potential effect 

of biogeochemical alterations on spectrometric tracers after submersion times of 1, 3, 

7, and 22 days. Results showed variations <10% with an average < 4% for all 

parameters. 

Simulation of hypothetical natural conditions is difficult for observing possible changes 

in soil and sediment properties during in-channel transport and deposition. Main 

constraints can be associated to the rather large spectrum of control variables and 

driving forces of erosion, transport and deposition, the design of appropriate sampling 

strategies, and the large variability in soils and sediment tracer values across different 

study sites. As a consequence, results might vary in different catchments and regions. 

Submersion experiments to investigate in-channel alterations of soil properties have 

never been performed in Mediterranean catchments, mostly characterized by 

temporary regimes. In the case of intermittent rivers, the hydrological regime exhibits 

large inter-annual contrasts (Fortesa et al., 2020b). This current paper is based on the 

studies by Motha et al. (2002), Koiter et al. (2018), Poulenard et al. (2012), Legout et 

al. (2013) and Uber et al. (2019) with the aim to investigate eventual in-channel 

transformation of soil properties in a Mediterranean catchment. Special attention was 

paid to the fact that many Mediterranean streams are ephemeral and have an 
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intermittent regime (Estrany et al., 2011). Under this context, different soil samples 

were introduced in an intermittent stream channel of a small Mediterranean 

mountainous catchment (Es Fangar, Mallorca, Spain) during one year (i.e. November 

2018– 2019). Samples were exposed to natural and contrasted hydro-meteorological 

conditions to discern soil properties more prone to biochemical in-channel alteration. 

Tracers in-channel variability was compared with its spatial variability within the 

catchment, and variations were correlated with SSA and C content to evaluate the 

influence of particle size and organic matter. 

8.2. Study area 

The Es Fangar Creek catchment (3.4 km2; Figure 8.1A and B) is located at the northern 

part of the Mallorca Island (Western Mediterranean Sea, Spain), in the mountainous 

area of the Serra de Tramuntana. Climate is classified as Mediterranean temperate 

sub-humid according to the Emberger classification (Guijarro, 1986). Mean annual 

rainfall is 926 mm yr-1 (1964-2017; Biniatró AEMET station, located 1.1 km west from 

the study area) with a coefficient of variation ca. 23%. The average annual 

temperature is 15.7°C. The hydrological regime is intermittent flashy (49% of zero-flow 

days; Fortesa et al., 2020b). Annual runoff coefficients ranged from 2.9% to 14.2% 

(average of 10.4%) and quickflow from 9.9% to 45% (average of 33%). The 80% of the 

sediment load is exported during autumn and winter, with an annual average sediment 

yield of 5.38 t km-2 y-1 (Fortesa et al., 2020a). The lithology is mainly composed by 

massive calcareous and dolomite materials from the Lower Jurassic. Dolomite and 

marls formations from the Triassic (Rhaetian) dominate in the upper parts, whereas 

Jurassic limestones and Cretaceous marls are found in the valley bottoms. Altitudes 

range between 72 and 404 m.a.s.l., with an average slope of 26%. Land use occupation 

is forest (47%), rainfed herbaceous crops fields (36%) and scrubland (17%). In addition, 

16% of the catchment is covered by dry-stone agricultural terraces (Figure 8.1C). 



Chapter 8. In-channel alterations of the most common soil properties used as tracers in sediment 

fingerprinting studies 

233 

 

 

Figure 8.1. (A) Map showing the location of Mallorca in the Western Mediterranean. (B) Location of Es Fangar creek 
catchment within Mallorca island. (C) Sampling points, gauge station, drainage network and terraced areas over 
land uses map. 
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8.3. Material and methods 

8.3.1. Hydrological monitoring 

A gauging station to continuously monitor water and suspended sediment fluxes was 

installed in 2012 in the Es Fangar Creek (i.e. Figure. 8.1C). The station was equipped 

with a Campbell CS451 pressure probe and an OBS-3+ turbidimeter with a double 

measurement range (0-1,000 / 1,000-4,000 NTU) and a wipe system. A Campbell 

CR200X logger stored 15-minutes average values of water stage and turbidity (based 

on 1-minute readings). In addition, a tipping bucket pluviometer was installed in 

October 2014 at 500 m.a.s.l. and at ca. 2.5 km away from the Es Fangar gauging station 

(Figure 8.1C). It was positioned at 1 m above the ground and connected to a HOBO 

Pendant G Data Logger - UA-004-64 recording rainfall at 0.2 mm resolution. 

8.3.2. Soil sampling, pre-treatment and field experiment 

The sampling strategy was designed considering the three main catchment land use 

types (i.e. forest, crop fields and scrubland; Figure 8.1C) as potential surficial sediment 

sources. Vegetation cover and land uses are the most important driven factors in 

erosion hillslope processes (García-Ruiz, 2010; Kosmas et al., 1997; Thornes, 1990) 

being an optimal grouping for catchment management. Soil bulk samples were 

collected in March 2018 from 0 to 2 cm depth in six different plots (3 m2 each) 

encompassing every land use category. Sampling points (Figure 8.1C) were selected 

according to accessibility and soil availability on hillslopes with an active sediment 

slope-to-channel connectivity. Note that a first attempt was made to collect overland 

flow during rainfall simulation experiments (Garcia-Comendador et al., 2018). 

However, despite simulating >50 mm h-1 rainfall intensities, the amount of mobilised 

soil was insufficient to collect enough material to meet analytical requirements. 

Therefore, it was decided to collect surface soil samples, which are hereafter referred 

to as ‘in-channel samples’.  

Results of in-channel variations for each soil property were compared with tracer 

spatial variability within the catchment - as to address eventual impacts on suspended 

sediment fingerprinting results. Consequently, source tracer data collected across the 
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catchment (hereafter referred as ‘catchment source samples’) and presented in 

Chapter 7 was used.  

Bulk samples were oven dried at <40 °C and disaggregated using a pestle and a mortar. 

Samples were then homogenised per land use type and sieved to <63 µm fraction (ca. 

1 kg for every land use). The latest as to be able to compare results with the catchment 

source samples used in Chapter 7), which were sieved to <63 µm. In addition to the 

fact that sieving to this fraction size is widely used in sediment fingerprinting studies 

(e.g. Koiter et al., 2018), sieving to different fractions was discarded due to the large 

amount of soil used in the experiment. Thirty-one in-channel samples were generated 

in total: nine for each land use (60 g each), which were positioned in the stream 

channel, and four extra samples from the crop plots that were introduced inside a 

time-integrated sediment sampler (referred as ‘TIS samples’; Table 8.1). 

Each soil sample was split into three 20 g subsamples introduced in 5x7 cm white 

polyamide bags with a 25 μm mesh Ø, and sealed using cable ties (Figure 8.2A). 

Subsamples were placed inside a larger sealed bag of the same mesh (Figure 8.2B).  

Samples were then introduced into the stream channel ca. 2 m downstream the Es 

Fangar gauging station (Figure 8.1D), where a cross-section with a rectangular broad-

crested concrete weir was built for measuring low water stages (see dimensions in 

Figure 8.2E, F). Samples were located 70 cm downstream from the weir Eight 70 cm 

steel corrugated bars were nailed into the channel bed and sample bags were fixed to 

the metal bars using cable ties. Water height had to reach 17 cm at the pressure probe 

location to completely cover the samples. The TIS samples were introduced inside a 

time-integrated sediment sampler (Phillips et al., 2000) fixed at 5 cm from the channel 

bed (Figure 8.2C). The water flow reached the inlet hole at ca. 10 cm high. Therefore, 

TIS samples were not only in different conditions of moisture, temperature and 

insolation, but also affected by partial mobility inside the sampler. 
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Table 8.1. List of samples used in the conservativeness experiment. Highlighted in green the samples extracted 
during the wet period, and in yellow samples extracted during the dry period. TIS refers to the fact that samplers 
were introduced inside a time-integrated sediment sampler. ‘Days submersed’ and ‘Days dry’ refer to the total 
number of days that the samples were immersed and outside the water, respectively. 

Sample 
type 

ID 
Days in 
channel 

Days 
submersed 

Days 
dry 

Baseflow 
index (%) 

Initial 
mass (g) 

Mass at 
collection 
(g) 

Forest 

Forest 0 0 0 0 0 60 - 

Forest 1 7 7 0 89 60 58.14 

Forest 2 30 22 8 24 60 57.75 

Forest 3 60 29 31 12 60 57.54 

Forest 4 90 35 55 9 60 57.93 

Forest 5 150 35 115 8 60 58.3 

Forest 6 210 35 175 8 60 58.22 

Forest 7 270 35 235 8 60 59.01 

Forest 8 365 37 328 8 60 57.05 

Crop 

Crop 0 0 0 0 0 60 - 

Crop 1 7 7 0 89 60 57.18 

Crop 2 30 22 8 24 60 57.79 

Crop 3 60 29 31 12 60 57.17 

Crop 4 90 35 55 9 60 58 

Crop 5 150 35 115 8 60 57.55 

Crop 6 210 35 175 8 60 58.1 

Crop 7 270 35 235 8 60 57.23 

Crop 8 365 37 328 8 60 57.69 

Scrubland  

Scrubland 0 0 0 0 0 60 - 

Scrubland 1 7 7 0 89 60 58.17 

Scrubland 2 30 22 8 24 60 58.24 

Scrubland 3 60 29 31 12 60 57.76 

Scrubland 4 90 35 55 9 60 57.85 

Scrubland 5 150 35 115 8 60 58.14 

Scrubland 6 210 35 175 8 60 57.05 

Scrubland 7 270 35 235 8 60 57.87 

Scrubland 8 365 37 328 8 60 57.22 

TIS 
samples 

TIS 1 60 60 0 58 18.86 16.76 

TIS 2 210 108 102 60 31.73 29.83 

TIS 3 270 108 162 60 47.49 45.29 

TIS 4 365 111 254 58 59.48 57.48 

 

Eight time intervals were selected to extract the samples after starting the experiment 

at t=0 (i.e. 7, 30, 60, 90, 150, 210, 270, 365 days). Number of days within the channel 

and also submersion days for each sample are listed in Table 8.1. 

Total rainfall during the study period was 316.8 mm. Total water volume ca. 175,000 

m3, with a mean discharge of 0.01 m3 s-1, and a maximum peak of 1.31 m3 s-1 (Figure 

8.3). Total sediment load was 2.06 t, mean suspended sediment concentration of 1.19 

mg l-1 with a maximum peak of 321 mg l-1. Runoff was present 38% of the time. Soil 

samples were submerged between 7 to 37 days. The baseflow index (i.e. proportion of 

groundwater in relation to discharge; (Sear et al., 1999)) ranged between 89 to 8%, 
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whilst TIS samples were submersed between 60 to 111 days with a baseflow index 

ranging between 58 to 60% (Table 8.1). 

 

Figure 8.2. Pictures of (A) 20 g subsamples bags over the larger piece of mesh, (B) sealed samples with the three 
subsamples bags inside, (C) location inside the channel and distance between samples and time-integrated 
sediment samplers, (D) upstream view of Es Fangar stream with the samples nailed to the bed channel and diagram 
of the plan (E) and transverse (F) proportions of the cross section in the Es Fangar outlet 

 

Figure 8.3. Water level, hyetograph and sedigraph at the Es Fangar station during the study period, November 
2018-November 2019. Points indicate sample collection dates (in-channel samples in red, TIS samples in yellow) and 
the green discontinued line the submersion limit of the in-channel samples. 
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8.3.3. Laboratory analysis 

Particle size distribution and the SSA for all samples were measured using a Malvern 

Mastersizer 3000 (Malvern instruments, Ltd.) at the Luxembourg Institute of Science 

and Technology (LIST, Luxembourg). Total C and N were measured by high-

temperature combustion (Elementar vario MACRO cube, Hanau, Germany) at LIST. 

Using gamma spectrometry, 210Pbex and 137Cs activity (Bq·kg-1) was measured at the 

Environmental Radioactivity Laboratory of the University of the Balearic Islands (Spain) 

using a high-purity coaxial intrinsic germanium (HPGe) detector.  

Diffuse reflectance was measured with an ASD FieldSpect-II spectroradiometer in a 

dark room at 1 nm steps over the 400-2500 nm range. The soil and sediment samples 

were placed in transparent PVC round petri dishes (4.7 cm diameter; Pall Corporation) 

and smoothed with a spatula to homogenize the surface roughness avoiding micro 

shadow effects. The spectrometer optical lens was installed in a tripod perpendicularly 

over a flat surface, at 10 cm of the reference standard panel of known reflectivity 

(Spectralon). The samples and the spectralon were illuminated in an angle of 30° using 

a 50-w quartz halogen lamp placed at c.a. 30 cm of distance. Following the 

International Commission on Illumination (CIE, 1931), we computed the CIE xyY colour 

coefficients (i.e. cie x, cie y and cie yy) from the spectra reflectance measurements as 

well as the RGB colour values (i.e. red, green and blue). We then used the ColoSol 

software, developed by Viscarra Rossel (Viscarra Rossel et al., 2006), to estimate the 

Munsell HVC (i.e. Munsell H, Munsell V and Munsell C), CIE XYZ (i.e. cie X, cie Y and cie 

Z), CIE LAB (cie L, cie a* and cie b*), CIELUB (i.e. cie L, cie u* and cie v*), CIELHC (i.e. cie 

L, cie H and cie C), and decorrelated RGB (i.e. HRGB, IRGB and SRGB) colour 

parameters, as well as the redness index (hereinafter RI) and Helmoltz chromaticity 

coordinates (i.e. DW nm, Pe %). 

Samples were digested according to the microwave digestion USEPA 3051A method, as 

follows. Initially, pulverized soil samples (0.5 g) were transferred into 

polytetrafluoroethylene tubes, where 9 ml of HNO3 and 3 ml of HCI (i.e. aqua regia), of 

high analytical purity, were added. Samples were placed in a microwave oven 

(Multiwave GO, Anton Paar, Austria) for 5 min on a temperature ramp, the necessary 
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time to reach 175 °C. Then, the temperature was maintained for an additional 10 

minutes. After digestion, all extracts were transferred to 100 ml flasks, filling with 

ultrapure water (Millipore Direct-Q System) and filtered through 0,45 µm nylon filters 

(Labbox Labware, S.L). High-purity acids were used in the analyses (PamReac 

ApplyChem, SLU). Glassware was cleaned and decontaminated in a 10% nitric acid 

solution for 24 hours and then rinsed with distilled water. Calibration curves for metals 

determination were prepared from standard 1,000 mg l-1 (Sharlau, Spain). The 

concentrations of metals in the extracts were determined by ICP-AES (DV Optima5300, 

Perkin Elmer®, Inc.) equipped with a GemCone pneumatic nebulizer for viscous 

solutions and solutions with high content of dissolved solids (Waltham, MA, USA). 

Following the recommendations by the United States Environmental Protection 

Agency (2000), values below the detection limits were assigned the detection limit 

value for each element. 

8.3.4. Evaluation of changes in sediment properties  

The Shapiro-Wilk (p < 0.05) normality test was performed to check the particle size 

distribution data. The Wilcoxon signed-rank test was used to check if particle size 

distributions changed during the experiment, by comparing original samples (t=0) and 

the samples deployed in the channel, for every source category. Coefficients of 

variation (CV) expressed in % were calculated for all soil properties. Data was also 

divided in four time intervals to identify when major changes occurred: initial 

submersion (i.e. 0-7 days), constant flow (wet period, 7-90 days), the period without 

flow (dry period, 150-270 days) and the whole year (Figure 8.3 and Table 8.1). In 

addition, catchment source tracer data from forest (n= 6), crop (n= 5) and scrubland 

(n= 5) (Chapter 7) were used to calculate the spatial variability of the investigated soil 

properties within the catchment. Pearson’s and Spearman’s correlation coefficients 

were computed to identify eventual linear or monotonic correlations between the 

different soil properties and (i) grain size (expressed as SSA; m2 kg-1), and (ii) C content 

in percentage as an approximation to organic matter content. 
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8.4. Results 

8.4.1. Variability of soil properties in submersed samples 

A mass loss was detected in all submerged samples (average of 2 ± 0.4 g, Table 8.1). 

However, no significant differences in particle size distribution were observed between 

the original samples (i.e. not submerged) and the rest (i.e. source and TIS samples; 

Figure 8.4). SSA CVs are < 10% for all samples during all the study period (Figure 8.4E 

and Figure 8.5D). On the other hand, the average spatial variability observed in the 

catchment source samples was of 19.8 ± 11.7% for the tree source types (Figure 8.6A). 

 

Figure 8.4. Particle size distribution of (A) forest, (B) crop, (C) scrubland, (D) TIS samples and (E) SSA at the different 
sampling times (E). 
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Figure 8.5. Coefficient of variation of soil properties measured on the in-channel samples during four different 
periods: (A) the seven first days of submersion, (B) the wet period, (C) the dry period and (D) the whole year. 
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Figure 8.6. (A) Coefficient of variation of FRNs activity and colour properties measured in the catchment source 
samples (Chapter 7), and (B) coefficient of variation of soil properties measured on the in-channel samples collected 
in crop fields and TIS samples. 

Nitrogen (N) and Carbon (C) CVs for all in-channel samples and the TIS samples were < 

20% (Figure 8.5D and Figure 8.7). Sulphur (S experimented a higher variability, 

especially in crop samples (Figure 8.5D). Changes occurred principally in the first 7 

days, with a crop CV of 76.1% between the original material and the first sample 

collection (Figure 8.5A and Figure 8.7). In addition, the crop CV of S when looking at all 

the study period (i.e. 43%) was higher in comparison with the CV observed in the TIS 

samples (18%, Figure 8.6B). S variability of in-channel crop samples was similar to 

spatial variability measured in the catchment source samples from crop lands (CV of 

45.5%, Figure 8.6A). 

137Cs and 210Pbex CVs measured on the in-channel samples for all the study period 

ranged between 10.4 and 31.4% (Figure 8.5D and Figure 8.7), being slightly higher in 

210Pbex. The variability was lower in comparison with the spatial variability measured 

on the catchment source samples for the three source types, with CVs ranging from 

40.1 to 86.5 % for 137Cs, and from 33.9 to 73.4% for 210Pbex (Figure 8.6A). 
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All colour parameters presented CVs <10% when looking at all the study period except 

Redness Index (RI) in forest (CV = 11.8%) and crop samples (CV = 10.2%, Figure 8.5, 8.7 

and Supplementary figure 8.1). Colour spatial variability within the catchment was also 

low, with an average CV of 10.3 ± 11.5% reaching a CV >40% only in the RI 

measurements for forest and crop samples (Figure 8.6A). 

 

Figure 8.7. Temporal variability of N, C, S (%), 137Cs, 210Pbex (Bq kg-1) red, green, blue, cie x, cie y and cie Y tracer 
values measured on the in-channel samples. 
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Geochemical properties showed more variability than colour properties. For all the 

study period, Ba, Cd, Co, Cr, Cu, Mn, Ni, Zn, Fe, Ca, K and Mg CVs of the in-channel 

samples were < 25% (Figure 8.5D and 8.8). However, As, Mo, Pb and Na showed CVs 

ranging between 25 and 40% at least in one of the in-channel source categories or TIS 

samples (Figure 8.5D and 8.8). 

 

Figure 8.8. In-channel temporal variability of As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Na Fe, Ca, K, Mg measured on the in-
channel samples 

No significant changes were observed in the variability of most of the soil properties 

depending on the channel conditions (i.e. wet and dry period; Figure 8.5). During the 

initial submersion (i.e. 0-7 days) S showed the highest CV (76% for crop samples), 

followed by Cd, Cr, Mo, Pb, Na and K with CVs between 25 and 40% in different in-

channel source categories (Figure 8.5A). Regarding the wet period, CVs between 25 

and 40% only were detected in Na for forest samples, 210Pbex, Mo and Pb for crop 
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samples and Co and Ni for scrubland samples (Figure 8.5B). Finally, during the dry 

period (Figure 8.5C), the highest CVs were detected in forest samples for AS (45%) and 

crop samples for Pb (51%). Looking at the overall period (i.e. 365 days), the highest 

average CVs considering all in-channel source types (i.e. forest, crop and scrubland) 

were measured in S (27 ± 15%), 210Pbex (26 ± 7%), As (32 ± 4%) and Mo (23 ± 7%). 

8.4.2. Correlation of soil properties with grain size and carbon 
content 

Pearson’s correlation coefficient showed a p<0.01 positive or negative C correlations 

with 10 and 24 parameters respectively (Figure 8.9A). The positive correlations R≥ 0.8 

were detected only with two parameters (i.e. Cie b* and DW nm). However, 10 soil 

parameters showed inverse correlations R≥ -0.8 with C (i.e. SRGB, Cie y, Cie v*, Cie C, 

Munsell C, Ni, Fe, Ca, K and Mg.  

 

Figure 8.9. (A) Pearson correlation coefficient between C (orange) and SSA (purple) and the rest of soil parameters 
analysed. (B) Spearman correlation coefficient between C (orange) and SSA (purple) and the rest of soil parameters 
analysed 

No significate correlations were detected between C and SSA, S, 137Cs, 210Pbex, Munsell 

H, Ba, CD and Mo. Moreover, SSA is correlated positively and negatively (p<0.01) with 

40 of the 46 soil parameters considered (Figure 8.9A). The positive correlations were 
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R≥ 0.8 with 11 soil parameters (i.e. Red, green, Blue, IRGB, Cie X, Cie Y, Cie Z, Cie L, 

Munsell H, Munsell V and Ba) and negative R≥ -0.8 with 12 (i.e. N, S, 137Cs, Cie x, Cie a*, 

RI, Pe%, Cr, Cu, Mn, Pb and Zn). No significate correlations were detected between SSA 

and C, Cie v*, Cie H and Mo. Applying the Spearman’s correlation coefficient, C had 

positive p<0.01 correlations with 10 soil parameters and negative with 24 (Figure 

8.9B). No positive correlations R≥ 0.8 were detected, and only cie V had a R≥ -0.8 

negative correlation with C. Regarding SSA, 12 parameters showed positive p<0.01 

correlations (9 with R≥ 0.8) and 25 parameters negative correlations (16 with R≥ -0.8; 

Figure 8.9B). 

8.5. Discussion 

8.5.1. Conservative behaviour of soil properties 

The low changes in particle size distributions and C content (average CV for all land 

uses and TIS samples of 2.1 ± 0.3%) allowed the direct comparison of in-channel soil 

properties without interferences of differential absorbance or organic matter. 

Similarly, most of the soil properties presented a low degree of alteration during the 

experiment, independently of source type (i.e. forest, crop and scrubland; average CV 

= 8.1 ± 8.8%). Variability values were lower than the average spatial variability 

measured on the catchment source soil properties (Figure 6A; average CV = 16.3 ± 

18.5%). For instance, the spatial variability of C, N and S content within the Es Fangar 

catchment was higher (average CV of 28.8 ± 12.8%, 37.9 ± 19.7% and 35.5 ± 21.1, 

respectively, for all land use types) than the in-channel variability (average in channel 

CVs for all land use types of 2.1 ± 0.4%, 8.1 ± 6% and 26.8 ± 14.9% for C, N and S, 

respectively). C and N content in sediment can suffer transformations in streams or 

riparian areas, which are often considered as hot spots of biochemical processes 

(Koiter et al., 2013). In this way, microbial transformations can cause denitrification, 

decomposition of organic matter or the release of organic C and N to stream waters 

(Vidon et al., 2010) or even transform inorganic elements in to organic forms (Thayer, 

2002). Despite not being able to decipher to which extent these processes occurred in 

the Es Fangar catchment, temporal changes observed were slightly different than the 

variability measured in top soil samples (0-2 cm) between June and July 2015 in a 1.8 
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ha SW England pasture field (Collins et al., 2019). The authors collected soil samples 4 

times and observed average CVs for C and N of 14.9 and 4.5%. 

Fallout radionuclides in-channel average CVs for all land use types were 19.4 ± 8.7 for 

137Cs and 25.7 ± 7.5 for 210Pbex. Here, a constant downward trend in 210Pbex activity in 

the scrubland samples was observed, which was more evident during the dry period. 

This trend could eventually be explained by losses towards the water column (Foster et 

al., 2006; Koiter et al., 2013). Radioactivity decay was discarded as a cause of soil 

210Pbex activity reduction due its long half live (22.3 years). Another cause could be 

important analytical errors. Measurements of 210Pbex activities are technically 

complicated. Estimated uncertainties for 210Pbex may be as high as ±30–50% (Mabit et 

al., 2008). This can generate errors in the determination of 210Pb supported in 

equilibrium with 226Ra, and these equilibrium differences will inevitably spread to the 

determination of 210Pbex
 (Mabit et al., 2014). However, the high decrease in activity 

registered in the last scrubland sample (i.e. 365 days) is also reflected in other 

parameters such as 137Cs, C or N (Figure 8.7). In addition, despite SSA and 210Pbex 

showed a negative linear correlation, these abrupt changes were not detected for the 

other land use types despite its higher SSA variability. We cannot be firmly state the 

cause of the variability in scrubland samples.  

Colour demonstrated to be the more stable tracers with in-channel average CVs of 2.6 

± 2.2%, with CVs above 10% only detected in forest and crop redness index (11.8 and 

10.2% respectively). This low variability in colour parameters coincides with Poulenard 

et al. (2012), Legout et al. (2013), and Uber et al. (2019). Poulenard et al. (2012), only 

detected errors ranging between 5% - 15% using submersed samples (1 day, 1 week 

and 2 weeks) to calculate the real proportions of the same samples before submersion 

using a Partial Least Square model. Legout et al. (2013) considering all submersion 

intervals from its experiment (i.e. 1, 7, 14, 35 and 63 days) describes changes in colour 

parameters <10%. Finally, Uber et al. (2019) detected changes <10% in all cases with 

average changes <4% after 1, 3, 7, and 22 days. 

Geochemical elements showed a more heterogeneous behaviour. The more stable 

elements during the study period were Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Fe, Ca, K and 
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Mg with in-channel average CVs for all land uses ranging from 5.4 to 16.9%. On the 

contrary, As, Mo and Na presented higher variability (average CVs from 22.6 to 32.2%). 

The results obtained can be seem unusual in some elements. For example, Ca, K and 

Mg are often considered non-conservative tracers because of its water solubility 

potential (Kraushaar et al., 2015), but they showed low variability in the Es Fangar 

catchment, even during the wet period (Figure 8.5). Na, is also usually considered a 

non-conservative tracer (Négrel et al., 2015). However, some studies have considered 

it as conservative because of its low reactivity to hydrochloric acid extraction as well as 

Ti, Al, Li, V, Cr, Ba, and As (Dabrin et al., 2021). On the contrary, here As showed the 

highest variability. 

In general, the three land use type showed similar variability in soil properties, 

although was slightly higher in crop samples (Figure 8.5). Comparing crop and TIS 

samples (average in-channel CV for all properties of 9.3 ± 0.1% and 8.6 ± 9.2% 

respectively) it can be stated that direct insolation deprivation and presumable 

differentiated humidity and temperature conditions did not have significant effects on 

soil properties in this specific case. 

The general low variability observed in soil properties, and its strongest correlations 

with SSA and C (Figure 8.9) further emphasize the role of particle size and organic 

matter in the conservative behaviour of soil properties (Koiter et al., 2018). 

8.5.2. Limitations of the experiment and implications for 
sediment fingerprinting  

Replication of the natural transport and deposition processes that sediment is difficult 

due to transport is affected by high variability in time and space from the catchment 

sources to the outlet. In this field experiment, soil samples were exposed to the hydro-

meteorological variability of a Mediterranean intermittent river (e.g. temperature, pH, 

moisture) as samples were in the channel during one year. Nonetheless, results must 

be carefully considered. In-channel samples were not affected by transport and 

deposition processes, but remaining in suspension due to the steadiness of the sample 

bags. The samples were placed in nylon bags to reduce the loss of particles with the 

aim of being able to decipher variations mainly associated with biochemical changes.  
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The nylon bags and the steel bars fixed into the bed channel were two external 

elements that could influence soil properties. The extension of this impact has not 

been addressed. However, the stability of Fe and C concentrations suggest a low 

influence on the soil property values. Similarly, the effect of temporary compaction of 

the sieved soil within the nylon bags remain unknown. 

Mediterranean fluvial systems have a singular complexity. Their heterogeneous 

hydrological regimes promote significant temporal and spatial differences in the 

hydrological response, accentuated by the relationships between natural and human-

induced variables (Fortesa et al., 2020b). The conjunction of these features can 

promote unique abiotic and biotic conditions on their streams –even in different 

points of the same channel– which might lead to distinctive alteration of sediment 

properties. In this study, samples were exposed to contrasting environmental 

conditions (i.e. dry and wet periods) where different processes (e.g. diagenesis, organic 

matter additions, loss of properties due to solubility) (Koiter et al., 2013) influencing 

sediment properties could occur. Furthermore, sediment transport is highly influenced 

by high intensity torrential floods triggering that > 80% of annual suspended sediment 

load is exported in <10% of the time (Estrany et al., 2009; Rovira and Batalla, 2006). In 

the Es Fangar catchment, previous research spanning 5 hydrological years, showed 

that 91% of the suspended sediment load was exported during 5% of the time (Fortesa 

et al., 2020a). Together with the small size of the catchment, this process suggests a 

rapid suspended sediment transit from sources to the catchment outlet, which could 

decrease the influence of biochemical changes on sediment properties. However, in-

channel discontinuities in the sediment conveyor belt generating reservoirs during 

prolonged time intervals can be produced. In addition, in-channel transformations only 

represent a part of the potential changes in properties during erosion and sediment 

delivery processes. Therefore, on-site processes (at hillslopes) that may alter soil 

properties should also be considered (Koiter et al., 2018; Motha et al., 2002).  

Notwithstanding the aforementioned challenges, results may be useful when assessing 

uncertainties associated with tracer selection and alteration in suspended sediment 

fingerprinting studies conducted in Mediterranean fluvial systems. In addition, 

alteration of emerging tracers in sediment fingerprinting studies –as compound-
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specific stable isotope (Mabit et al., 2018) or biomarkers (Collins et al., 2020)– during 

transport in Mediterranean environments should be further explored.  

8.6. Conclusions 

Most investigated soil properties in sediment fingerprinting studies showed a low 

variability during the experiment. The catchment spatial source variability was always 

higher than in-channel variability. In addition, no significate differences were observed 

between the different land use samples or collection intervals. SSA and C content also 

presented low variability over time, allowing the direct comparison between the 

original and the submerged samples. No differences were found either with crop and 

TIS samples, indicating low variability in soil properties even in different environmental 

conditions. Soil properties that showed higher in-channel CVs were S, 137Cs, 210Pbex, As, 

Mo and Na. Conversely, C and colour parameters were the most stable in time. Despite 

its limitations, this study can be basic for performing future suspended sediment 

fingerprinting studies in Mediterranean catchments as to better understand which 

sediment properties are more sensitive to in-channel biochemical transformation. 
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8.8. Supplementary material 

 

Supplementary figure 8.1. In-channel colour parameters evolution for forest, crop, scrubland and TIS samples. 
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9. Discussion and conclusions 

The preceding chapters of this thesis assessed the hydro-sedimentary dynamics in two 

Mediterranean catchments affected by Global Change processes, especially sediment 

transport and sediment source variability at different spatiotemporal scales. In this 

chapter, a brief synthesis is presented of the most relevant results of the thesis,  which 

are then discussed as a whole with a view to presenting a comprehensive 

interpretation of (i) the assessment of the hydro-sedimentary dynamics in the study 

areas (i.e. Sa Font the la Vila and Es Fangar), (ii) the sediment source fingerprinting 

results, in terms of improving applicability and reducing uncertainties, and (iii) 

estimating the role of hydro-sedimentary monitoring combined with sediment 

fingerprinting as tools for catchment management. Thus, the final objective of the 

overall analysis of the thesis body will serve to refute or validate the two hypotheses 

presented in Chapter 1. 

9.1. Sa Font de la Vila and Es Fangar hydro-sedimentary 
dynamics 

Chapters 4, 5 and 6 focus on the fire-affected catchment Sa Font de la Vila (4.8 km2). A 

nested catchment approach was used covering the 1.2 km2 Sa Murtera sub-catchment, 

and water and sediment yields were measured at the outlet of both sites. Sediment 

origin was investigated using sediment fingerprinting and 137Cs, 210Pbex and colour 

parameters as tracers. 

During the first three post-fire hydrological years (i.e. 2013-14 to 2015-16) the average 

sediment yields were 1.6 and 6.3 t km-2 yr-1 for Sa Murtera and Sa Font de la Vila 

respectively. These values can be considered rather low in comparison with other 

burned catchments (see Table 4.1 in Chapter 4). However, they are higher than those 

obtained in other non-burned terraced catchments of the island of Mallorca (Estrany 

et al., 2009; Fortesa et al., 2021). Water yield in Sa Font the la Vila was also extremely 

low, despite the fact that the annual precipitation totals did not significantly deviate 

from the long-term average totals (see section 4.4.1. in Chapter 4). Counter‐clockwise 

hysteretic loops between suspended sediment concentration and discharge dominated 
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in Sa Font the la Vila (60%) during the study period. Normally, this kind of loop shape is 

ascribed to relatively distanced sediment sources (Oeurng et al., 2010; Williams, 1989), 

which could be fire-affected hillslopes in the study area. The percentage of 

counter‐clockwise loops was higher during the first post-fire year (67%) coinciding with 

the highest annual sediment yield. Both values decreased over the following years. The 

percentage of counter‐clockwise loops percentage can be considered high in 

comparison with other non‐burned Mediterranean catchments (López-Tarazón and 

Estrany, 2017; Oeurng et al., 2010; Rovira and Batalla, 2006; Seeger et al., 2004), 

probably due to the wildfire perturbation. This hypothesis is reinforced by the results 

presented in Chapters 5 and 6. In the former, 137Cs and 210Pbex were used as tracers to 

evaluate bed sediments' source ascription during the first post-fire flush in Sa Coma 

Freda creek (the east sub-catchment of Sa Font de la Vila catchment; see figure 5.2A). 

Results showed an average source contribution from burned hillslopes in the upstream 

part of 67%, reaching 75% in the downstream part (see the different parts of the 

stream in Figure 5.2B). In addition, in Chapter 6 we analysed suspended sediment 

origin during 4 floods which occurred between 2013 and 2015, including the first post-

fire flush, in the Sa Murtera sub-catchment and the Sa Font de la Vila catchment. In 

general, tracing results using 137Cs, 210Pbex and colour parameters showed a larger 

relative contribution from burned hillslopes during the first flood events. A 

contribution that gradually decreased with time (see Chapter 6). This results coincide 

with the observed decrease in the relative contribution of sediment originating in 

burned sources in Chapters 4 and 5.  

As regards the prospect of increased erosion rates, runoff coefficients and sediment 

delivery in burned areas as documented by several authors (e.g. Shakesby and Doerr, 

2006; Vieira et al., 2015), the results presented in Chapters 4, 5 and 6 appear to be 

reliable. However, other studies showed remarkable divergences in landscape 

response after a wildfire (Estrany et al., 2016; Owens et al., 2012; Smith et al., 2011; 

Wilkinson et al., 2009) (see section 6.5.2. of Chapter 6). Here it is hypothesized that the 

gradual decrease in sediment contribution from burned areas was not only due to a 

partial vegetation recovery, but also to the fact that the rainfall intensity thresholds 

generating effective slope-to-channel connectivity were not reached during the second 
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post-fire hydrological year (Calvo-Cases et al., 2003; Li et al., 2019), resulting in partial 

sediment disconnexion of burned hillslopes. 

In the Chapter 7 hydro-sedimentary continuous monitoring was combined with 

sediment fingerprinting (using 137Cs, 210Pbex and colour parameters as tracers) to 

investigate suspended sediment origin in the Es Fangar catchment. Previous 

investigations determined that during the period 2012-2017 the annual runoff 

coefficient in the catchment ranged from 2.9% to 14.2% (average of 10.4%), whereas 

the quickflow contribution ranged from 9.9% to 45% (average of 33%), illustrating a 

huge inter-annual variability in the rainfall-runoff relationship (Fortesa et al., 2020b). 

During the same period, 80% of the sediment load was exported during autumn and 

winter, with an annual average sediment yield of 5.38 t km-2 y-1. Flood events depicted 

a wide intra- and inter-annual variability and a marked seasonality with 85.3% of 

events occurring during the wet season. Sediment tracing results from the MixSIAR 

unmixing model showed that sediment mainly originated from crop fields all along the 

study period (Sections 7.4.4 and 7.5.1 of Chapter 7), with no seasonal patterns or 

major source changes regarding flood hydro-sedimentary characteristics. A similar low 

variability in sediment origin was observed in other Mediterranean catchments (e.g. 

Uber et al., 2019). Clockwise hysteresis loops predominated in the Es Fangar (occurring 

during 52.9% of the monitored events), coinciding with the results by Fortesa et al. 

(2020a), what suggested in-channel sediment remobilisation and erosion from near 

stream areas (i.e. crops). On the contrary, anti-clockwise or complex hysteresis 

patterns (47.1% of the monitored events) are sometimes related with the activation of 

different sediment sources (De Girolamo et al., 2015). Nevertheless, the sediment 

fingerprinting results did not provide information about different sediment origin 

regarding hysteretic type, suggesting that the analysis of hysteretic patterns might not 

always accurately provide information about sediment origin (Smith and Dragovich, 

2009; Vercruysse et al., 2017).  In the Es Fangar catchment, the lithology, land uses and 

the presence of agricultural terraces and dry stone walls could partially explain the low 

sediment source variability during the studied period (Calsamiglia et al., 2018; Estrany 

et al., 2010). Scrubland and forest areas are located in the catchment headwaters, 

where vegetation protects the soils of the steepest hillslopes, reducing runoff and 
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suspended sediment generation. Moreover, carbonate materials characterized by low 

sediment availability and transmission losses (Calvo-Cases et al., 2003; Li et al., 2019) 

dominate in the upper parts of the catchment, whereas crop fields dominate in the 

valley bottom, which are completely exposed during certain periods of the year. 

Furthermore, a large part of the channel banks is constrained by dry stone walls, 

limiting channel bank sediment contributions. Therefore, the transference of 

significant amounts of sediment from the channel banks to the fluvial network would 

only occur when a dry stone wall collapses, which has been observed only rarely in the 

catchment.  

Climatic, geological, topographical and land cover features regulate the sediment 

delivery in catchments (Walling, 1983). Mediterranean catchments are characterized 

by high inter- and intra-annual rainfall variability, heterogeneous lithology and highly 

human modified land uses and landscape topographic features (Calsamiglia et al., 

2018; García-Ruiz and Lana-Renault, 2011; Yair, 1983; Zdruli, 2014). Mediterranean 

catchments show the highest sediment yields in Europe. Vanmaercke et al.  (2011) 

reviewed suspended sediment concentrations across Europe and concluded that 

concentrations exceeded 40 t km2 yr−1 in 85% of the revised data, and exceeded 200 t 

km2 yr−1in more than 50% of the values considered. In this context, Sa Font de la Vila 

and Es Fangar catchment average sediment yields, 6.3 t km2 yr-1 and 4.5 t km2 yr-1 

respectively, can be considered as low. This can be explained, in part, given the 

(dis)connectivity concept within the sediment connectivity framework, as “the degree 

to which any limiting factor constrains the efficiency of sediment transfer relationships” 

(Fryirs, 2013; Fryirs et al., 2007). The (dis)connectivity framework defines a conceptual 

model of relationships between sediment linkages -categorized as lateral, longitudinal 

or vertical linkages- and blockages -barriers, buffers and blankets (cf. Fryirs, 2013). The 

effectivity between the different linkages is generally determined by its spatial 

configuration, or the presence of disrupting blockages. The increase of landscape 

connectivity depends on the breaching of blockages. Here, Fryirs et al. (2013) interpret 

the blockages as switches that can be activated depending on the magnitude of the 

driving forces, which have to exceed the thresholds established for every blockage 

before connecting different landscape compartments. In the Sa Font de la Vila and Es 
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Fangar catchments, agricultural terraces are considered to be blockages, that 

disconnect the different catchment compartments even when the window of 

disturbance tends to be more open (Prosser and Williams, 1998), i.e. after a wildfire 

perturbation. Agricultural terraces are water and sediment decoupling structures that 

dramatically increase the activation thresholds. Therefore, terrace status and its spatial 

configuration are key factors that control the (dis)connectivity. This could explain the 

low sediment yields and source stability in Sa Font the la Vila and Es Fangar 

catchments. However, these thresholds can also be exceeded. This happened on 29th 

October 2013 in Sa Font de la Vila, when a high intensity storm generated a suspended 

sediment yield of 17 t km2 yr−1 in only 15 minutes, 92% of the sediment load measured 

during the first three post‐fire hydrological years. Therefore, interactions between 

hydro-meteorological factors and human disturbances determine the sediment origin 

and catchment-scale sediment flux in highly modified landscapes (Fryirs, 2017; Poeppl 

et al., 2020). The results obtained are associated to human modifications through 

traditional soil conservation practices (Calsamiglia et al., 2018; Estrany et al., 2010). 

Thus, the Sa Font de la Vila and Es Fangar geomorphic systems depend to a certain 

extent on the maintenance and restoration of the human structures that configure it, 

especially soil conservation structures. Otherwise, a rapid change in its operation could 

eventually result in increased sediment yields, soil loss and degradation, promoting a 

sediment cascade effect (Burt and Allison, 2009). 

9.2. Thesis contributions to the sediment fingerprinting 
framework 

In a recent review of the state of the art of the sediment sources fingerprinting 

technique, Collins et al. (2020) highlighted some emerging topics and outstanding 

issues related to the sediment fingerprinting research and application. Some of the 

most relevant issues have been discussed in this thesis, such as (I) the application of 

sediment fingerprinting to wildfire impacted landscapes (Chapters 5 and 6), (II) the 

combination of sediment fingerprinting with other approaches for catchment 

management (Chapter 7) and (III) the tracer conservatism issue (Chapter 8). 
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I. Application of sediment fingerprinting to wildfire impacted landscapes 

In Chapter 5, fallout radionuclides (137Cs and 210Pbex) were used as tracers in the 

eastern sub-catchment of the Sa Font de la Vila catchment (Sa Coma Freda) to 

determine the relative contributions of sediment sources in terms of spatial 

provenance (burned vs. unburned) and source type (soil surface vs. channel bank) in 

bed sediments. As regards this first approach, looking at the post-fire sediment source 

determination, results indicated that 67% of the upstream bed sediment contribution 

was generated from burned hillslopes, reaching 75% in the downstream part of the 

catchment due to the propagation of sediment delivered from burned areas (see figure 

5.2B to observe the stream different parts). 

In Chapter 6, the sediment origin in Sa Font de la Vila was further studied. Colour soil 

parameters measured with a spectrometer and a standard office scanner were used 

for the first time as tracers to effectively discriminate between burned and unburned 

sediment sources in the Sa Font de la Vila catchment and the Sa Murtera sub-

catchment. The main advantage of colour parameters is that they can be measured 

quickly, are cheap and the method is non-destructive. Hence, they might be used to 

take quick decisions on post-fire management, as well as to evaluate the success of 

these measures since they make it possible to follow up. The efficiency of soil colour 

parameters was evaluated by using unmixing artificial laboratory mixtures when 

applying the MixSIAR Bayesian tracer mixing model framework (Stock et al., 2018). The 

results showed average absolute errors of 12.3% ± 9.1, 12.3% ± 4.2 and 10.1% ± 4.2 for 

2-, 3- and 4-source mixtures, respectively. Errors were of the same order of magnitude 

as errors obtained by other authors using other types of tracers (Brosinsky et al., 2014; 

Gaspar et al., 2019; Haddadchi et al., 2014). However, when the colour signatures 

were similar (e.g. mix 4-m4, mix4-m5, Supplementary Table 6.5), colour tracer 

measurements are not reliable enough to quantify source contributions. The changes 

in the soil’s visible reflectance (Lentile et al., 2006) and its carbon content (Bodí et al., 

2014) caused by the presence of ash, triggered the change of the upper soil layer 

colour. As a result, colour parameters estimated from diffuse reflectance laboratory 

measurements were able to discriminate between burned surface soil, unburned 

surface soil and channel bank sources. Artificial mixtures showed that most colour 

parameters were linear additive and, individually, were able to predict the colour of 
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the mixtures by using a mass balance approach and, again, the errors were comparable 

with values reported in other studies (Gaspar et al., 2019; Martínez-Carreras et al., 

2010b; Uber et al., 2019). Chromatic parameters calculated from the spectrometer in 

the laboratory and scanner-based colour parameters correlated closely (p < 0.01), 

confirming that colour parameters obtained with an office scanner can be as reliable 

as colour tracers from a spectrophotometer. Scanner measured colour parameters 

were used in other fingerprinting research by Pulley et al. (2016). They compared 

colour and mineral magnetic signatures to trace bed and suspended sediment in the 

South African Karoo. The discriminatory efficiency of colour signatures ranged 

between 92.2% and 96.7% and were comparable to the results obtained using mineral 

magnetic signatures (i.e. 94%). In the Sa Font de la Vila catchment, colour parameters 

were compared with 137Cs and 210Pbex as tracers. Estimated source ascriptions with 

both methods matched when it came to predicting the dominant source in 7 of the 9 

samples measured. Thus, colour tracers proved to be useful in discriminating between 

burned and unburned sources. Therefore, it can be considered suitable for suspended 

sediment source ascription and monitoring as part of post-fire management strategies. 

After a wildfire, the hydro-sedimentary response in affected landscapes can be 

drastically altered (Moody et al., 2013; Shakesby, 2011; Shakesby and Doerr, 2006). In 

general, surface runoff and sediment yield from hillslopes is increased (Candela et al., 

2005; Scott et al., 1998), promoting erosion and a higher slope-to-channel sediment 

transfer that may generate downstream impacts related to fine sediment transport 

and its associated pollutants (Collins et al., 2017). Wildfires are one of the disturbances 

that can be increased as a result of global change processes (Huang et al., 2014) such 

as increased temperatures, variations in rainfall patterns and land use changes. The 

potential risks associated with wildfires can seriously impact the ecological status of 

the environment, and therefore are attracting increasing interest from researchers and 

landscape managers (Robinne et al., 2020; Smith et al., 2011; Wohl, 2018). Chapters 5 

and 6 are focused on research into the effects of wildfires on soil properties and 

hydrological and geomorphological processes by using the sediment fingerprinting 

technique. There are not many studies that discriminate between burned and 

unburned sources (e.g. Estrany et al., 2016), so the contributions in these chapters are 
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valuable in their own right. However, the greater novelty lies in the development of 

the use of colour coefficients to investigate changes in soil properties (i.e. 

incorporation of ash) and sediment sources following a wildfire. These colour 

fingerprints, in combination with fallout radionuclides, were used to understand 

geomorphological processes following the 2013 wildfire which occurred in the Sa Font 

de la Vila catchment. The results obtained may be relevant for future studies that use 

sediment fingerprinting to understand how catchments respond to natural and 

anthropogenic disturbances, especially wildfires. However, further investigation needs 

to be done on the application of sediment fingerprinting in fire affected landscapes, 

particularly in relation to the differential effects of fire on sediment properties (Collins 

et al., 2020) and its evolution over time. 

II. Combination of sediment fingerprinting with other approaches 

In Chapter 7, the hydro-sedimentary dynamics in Es Fangar Creek were linked with the 

uses of soil colour parameters and fallout radionuclides as tracers within an integrated 

approach to predict dominant suspended sediment sources. A Bayesian mixing model 

(MixSIAR; Stock et al., 2018) and an End Member Mixing Analysis (EMMA; 

Christophersen and Hooper, 1992) were applied. The selection of tracers was 

problematic. Fallout radionuclides did not discriminate between channel bank and 

crop soils, and colour parameters did not discriminate between forest and scrub 

sources. In addition, even though colour parameters discriminated between channel 

bank and crops their spectral signatures were relatively close (Figure 7.4). 

To combine fallout radionuclides and colour parameters in the same tracer set, 

sources were grouped into only two categories (i.e. channel-crop and forest-scrub) in a 

first un-mix to accommodate a larger number of tracers. The unmixing process was 

repeated using only colour parameters so as to be able to discriminate between three 

sources (i.e. channel bank, crop soil and forest-scrubland as a single source). MixSIAR 

identified channel bank-crops soil as the dominant sources in the two source analysis 

and crop soils in the three source analysis. In addition, comparing MixSIAR results 

between the two and three sources analysis, the mean absolute error in the source 

apportion percentage prediction was relatively low (1.2%) (i.e. adding up crop and 

channel bank % results for the three source analysis), which shows that the model is 
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robust using the selected tracers set in both analyses. EMMA showed similar results. 

The source tracer values plotted in the U1–U2 mixing diagram of suspended sediment 

tracers showed that it was possible to observe that sediment samples were clustered 

close to the crop and channel bank signatures (Figure 7.10). Hence, results revealed 

that the approach is able to determine the main sediment sources. Furthermore, as in 

the MixSIAR results, sample 2 was plotted closer to the forest and channel bank 

signatures. Our analysis suggests that the EMMA approach can be a good choice when 

it comes to identifying dominant sources of sediment using simplified procedures, in 

comparison with standard mixing models. 

In this Chapter 7, it was found that EMMA, a statistically simpler model compared to 

MixSIAR and rarely used in sediment fingerprinting (Munkundan et al., 2010; Rose et 

al., 2018), can robustly identify the main sediment sources. Therefore, its use may be 

appropriate in sediment fingerprinting analysis alone or as a complementary model to 

check the robustness of results obtained with other models. However, the main 

purpose was to combine hydro-sedimentary monitoring with sediment fingerprinting 

to determine the main factors regulating sediment source contributions. Although 

floods were grouped into four clusters based on its hydro-sedimentary characteristics 

and hysteretic loops analysis, it was not possible to establish a correlation between 

sediment origin and hydro-sedimentary variables, because sediment sources showed a 

low variability in the Es Fangar catchment during the study period. 

Few studies combined suspended sediment source assessment with the analysis of 

hydro-sedimentary response at the catchments scale. Navratil et al. (2012) combined 

river/rainfall monitoring and sediment fingerprinting using fallout radionuclides and 

geochemistry in a 905 km2 catchment located in the French Alps. They observed how 

the ca. 80% sediment load occurred during widespread and long rainfall events with 

low intensities, while shorter storms were associated with higher discharge peaks and 

suspended sediment concentrations. However, and despite the high intra‐ and 

inter‐flood variability of the analysed flood sediment sources remained relatively 

stable. On the contrary, Vercruysse and Grabowski (2019) found interesting source 

variations regarding hydro-meteorological drivers in an 879 km2 catchment in UK. On 

the one hand, street dust and limestone grassland sources were strongly correlated 
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with suspended sediment concentration, discharge and 1-day antecedent rainfall. On 

the other hand, millstone and coals grassland sources were mainly correlated to 

antecedent hydro‐meteorological conditions (e.g. precipitation and discharge). 

In the Es Fangar catchment, the association between fingerprinting and sediment 

monitoring did not show any pattern because the agroforestry terraced landscape 

mosaic over carbonate rocks combined with the lack of extreme flood events during 

the study period, avoided the activation of remote or inaccessible sediment sources 

during frequent floods. However, the combination of these different approaches could 

provide information on the activation thresholds for each of the sediment sources 

considered. A good knowledge of the relationships between hydro-sedimentary 

dynamics and the activation of different sediment sources can help managers to define 

optimal intervention strategies, but can also be used to create optimized quantitative 

(in terms of amount) and qualitative (in terms of origin) sediment models to be 

integrated in catchment management plans. Thus, further research is necessary to 

reach a comprehensive understanding about erosion and sediment transport dynamics 

in the Es Fangar catchment. 

III. Tracer conservatism 

Finally, in Chapter 8 an experiment was performed to investigate eventual in-channel 

changes occurring to the most common soil properties used as tracers in sediment 

fingerprinting studies. Preliminary results in the Es Fangar Creek catchment showed a 

low variability in sediment properties during the study period with an average in-

channel coefficient of variation of 8.1 ± 8.8% for all properties in different land uses 

(i.e. forest, crop and scrubland). The average spatial variability of sediment properties 

(16.3 ± 18.5) was higher in comparison with in-channel variation in the 90% of the 

comparable observations (i.e. all parameters for every land use except S, green, blue, 

cie X, cie Y, cie Z and cie L in scrubland samples). Colour properties were the most 

stable tracers with in-channel average CVs for 365 days of 2.6 ± 2.2%. This low 

variability in colour parameters was similar to that in other studies of shorter duration 

(Legout et al., 2013; Poulenard et al., 2012; Uber et al., 2019), confirming that colour 

parameters can be used as stable tracers (i.e. conservative) in sediment fingerprinting. 

Geochemical elements showed a more heterogeneous behaviour. The more stable 
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elements during the study period were Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Fe, Ca, K and 

Mg with in-channel average CVs for all land uses in 365 days ranging from 5.4 to 

16.9%. On the contrary, As, Mo and Na presented higher variability (CVs 22.6 to 

32.2%). C, N and S showed less in-channel variability (average in channel CVs for all 

land uses in 365 days of 2.1 ± 0.4% and 8.1 ± 6% and 26.8 ± 14.9% for C, N and S 

respectively) in comparison with its spatial variability (average CV of 28.8 ± 12.8% and 

37.9 ± 19.7% and 35.5 ± 21.1 respectively for all three land uses). Finally, fallout 

radionuclides in-channel average CVs for all land uses were 19.4 ± 8.7 for 137Cs and 

25.7 ± 7.5 for 210Pbex. In general, the three land use types showed similar variability in 

soil properties, being slightly higher in crop samples. Comparing crop and TIS samples 

(i.e. samples within time integrated suspended sediment traps; average in-channel CV 

for all properties for 365 days of 9.3 ± 0.1% and 8.6 ± 9.2% respectively), it can be 

stated that lack of direct insolation and likely differentiated humidity and temperature 

conditions did not have significant effects on soil properties. The general low variability 

observed in soil properties, and its strongest correlations with SSA and C further 

emphasizes the role of particle size and organic matter in the conservative behaviour 

of soil properties (Koiter et al., 2018). 

An increase in our knowledge of tracer conservativeness is one of the main issues as 

regards sediment fingerprinting (Collins et al., 2020; Koiter et al., 2013; Lizaga et al., 

2020). To use a soil property as a tracer it should be representative of main erosion 

sources, it must be able to differentiate between them, must be measurable and 

remain stable or vary in a predictable way over time and space (Motha et al., 2002). 

However, some alteration processes are known to occur during mobilization and 

mixing along hydrologic pathways. The degree of alteration depends on the stability of 

the marker and is highly site dependent. Therefore, this is difficult to address and is 

not often considered beyond defining the set of tracers with conservative behaviour by 

performing statistical analysis (e.g. Collins and Walling, 2002; Collins et al., 1997; Smith 

et al., 2018; Walden et al., 1997; Walling, 2005; Wilkinson et al., 2013). 

Few studies have investigated the conservative behaviour of soil properties (Koiter et 

al., 2018; Legout et al., 2013; Motha et al., 2002; Poulenard et al., 2012; Uber et al., 

2019). In Chapter 8 an investigation was conducted into eventual in-channel changes 
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occurring to the most common soil properties used as tracers in sediment 

fingerprinting studies. The novelty relies (I) in the characteristics of the study area (i.e. 

Es Fangar), a Mediterranean catchment with an intermittent flow regime with marked 

dry and wet seasons and (II) the duration of the experiment exposing the sediment 

over large time periods (i.e. one year) with different hydro-meteorological conditions. 

In the experiment, soil samples were exposed to natural variables (e.g. temperature, 

pH, moisture), covering the intra-annual hydro-meteorological variability in 

Mediterranean environments. Therefore, the conditions can be considered optimal 

when it comes to assessing possible changes over time in Mediterranean catchments 

or temporary rivers.  

Despite its limitations (Chapter 8, section 8.5.2), such a study under this time scale may 

be useful for evaluating the application of certain tracers in fingerprinting studies, 

especially in Mediterranean environments where hydro-meteorological conditions 

exhibit a great contrast throughout the year. However, it is necessary to continue 

iterating as regards the study of the tracers’ conservativeness, considering the possible 

transformations which occurred in hillslopes and channels, so as to reduce the 

uncertainties in sediment fingerprinting. 

9.3. Sediment fingerprinting and hydro-sedimentary 
monitoring as tools for catchment management in 
Mediterranean environments 

One of the most relevant aspects of scientific knowledge for society is its applicability. 

In this regard, applied geomorphology could be defined as the “branch of science 

within the broader discipline of geomorphology that focuses on geomorphological 

landforms and processes of societal concern” (Meitzen, 2017). Therefore, it is the 

usefulness of geomorphological scientific knowledge when it comes to solving socially 

relevant problems by helping, among others, landscape managers with decision-

making on numerous issues of social relevance. The general objective of the present 

thesis was “To identify erosion and sediment transport processes (functional 

connectivity) in two Mediterranean catchments affected by different global change 

processes at different spatio-temporal scales, by improving current techniques for 
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sediment origin determination (i.e., reducing uncertainties, time and cost) for its better 

implementation in catchment management plans”. Therefore, apart from a better 

hydro-sedimentary dynamic understanding of the study areas and the optimization of 

the sediment fingerprinting technique, results had to be useful for catchment 

management. 

Integrated catchment management plans need to reach a comprehensive 

understanding about erosion and sediment transport dynamics to effectively develop 

integrated management approaches (McCarney-Castle et al., 2017; Owens et al., 

2005). Therefore, one needs to assess the sediment cascade between upstream 

erosive processes, sediment mobilization through hillslopes and within the channel, 

and downstream sediment yields to mitigate its possible negative effects. Sediment 

fingerprinting and river hydro-sedimentary monitoring and analysis were useful 

approaches to monitoring and controlling sources of soil and sediment erosion for a 

variety of different land uses and environments. Here it is argued that the combination 

of sediment fingerprinting and river hydro-sedimentary monitoring improves our 

knowledge about all these processes and, therefore, are essential tools in 

management plans. 

Sediment source fingerprinting has been widely used in recent decades to detect fine 

sediment sources at catchment scale (Collins et al., 2020; Davis and Fox, 2009; Guzmán 

et al., 2013). Interesting methodological guides have been published aimed at end-

users as a basis for correctly applying the technique (Collins et al., 2017). During the 

development of this thesis, the use of economic tracers –in terms of time and 

economic cost– has been emphasized to simplify the application process of sediment 

fingerprinting technique. As in previous studies (e.g. Barthod et al., 2015; Martínez-

Carreras et al., 2010a), colour parameters have been shown to have a comparable 

efficacy in contrast with more established tracers (i.e. 137Cs and 210Pbex), even in 

wildfire affected landscapes (Chapter 6). In addition, there is the possibility of 

performing the measurements using a standard office scanner with good results 

(Pulley and Rowntree, 2016; Chapter 6) obtaining, on this occasion, correlations of 

p<0.01 with the measurements made with a laboratory spectroradiometer. Sediment 

tracing by using colour parameters allows rapid samplings and pre-treatments, 
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because of the low mass required to perform the measurements (ca. 1-2 g) and the 

possibility of using an office scanner to measure the samples. In addition, the probably 

low in-channel variability of colour tracers detected in comparison with the rest of the 

tracers evaluated in Chapter 8, highlighted colour parameters as a remarkable tracer 

for use in catchment management plans. Another interesting point investigated during 

the development of the thesis was the use of the EMMA approach, which is not based 

on a mixing model but on a principal component analysis of the data set (PCA). It is 

argued that a quantitative estimation of the sediment apportion of the different 

suspended sediment sources in a catchment might not always be needed when 

implementing sediment management plans, but rather an accurate identification of 

dominant sources. EMMA offers advantages based on simplified procedures in 

comparison with the more extended mixing models, what could result in easier 

implementation. 

Finally, the combination of sediment fingerprinting and continuous hydro-sedimentary 

monitoring was proposed, to assess the factors that control suspended sediment 

transport as a surrogate of erosion problems in river catchments. Despite being 

complementary, the integration of these approaches to detect activation patterns for 

different sediment sources or disconnected catchment compartments is not usual 

(Evrard et al., 2011; Navratil et al., 2012; Vercruysse and Grabowski, 2019). A detailed 

study about hydro-sedimentary characteristics of flood events, linked to the 

spatiotemporal variation of suspended sediment sources can allow the detection of 

the predominant sediment sources based on the flood hydro-sedimentary dynamics, 

as well as the (dis)connectivity thresholds that can activate it. The acquisition of this 

knowledge could be relevant to develop sediment transport models that integrate 

information on sediment origin (Owens et al., 2005; Perks et al., 2017; Vercruysse et 

al., 2019), and useful for detecting drastic changes in catchment geomorphological 

processes as well as predicting Global Change impacts. 

In Chapter 7, sediment fingerprinting and hydro-sedimentary monitoring were 

combined to determine the main factors regulating sediment source contributions, 

and evaluate the potential of hydro-sedimentary monitoring combined with sediment 

fingerprinting as a sediment management tool in Mediterranean catchments. The 
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stability of the Es Fangar catchment in terms of sediment source contributions made it 

impossible to find correlations between sediment origin and hydro-sedimentary 

variables. However, in other study areas it has been possible to establish correlation 

patterns (Vercruysse and Grabowski, 2019). Throughout, it is desirable to continue 

research into this issue, especially in highly variable environments such as the 

Mediterranean basin. 

9.4. Limitations and future perspectives 

Research in geomorphology encompasses a series of difficulties, which can sometimes 

turn into limitations. In this type of science, the laboratory is the field, so there are 

numerous factors that can interact, varying the initial planning of the research 

proposal. The methodological development of any experiment in catchment 

geomorphology involves considerable effort in an environment that cannot be 

controlled. 

The main limitations of the thesis are listed below, as well as some proposals for future 

work: 

Chapter 4:  One of the most evident limitations was the lack of data for the first post-

fire year in the Sa Murtera sub-catchment caused by technical problems with the 

turbidity probe into the gauging station. This problem did not make it possible to 

monitor the hydro-sedimentary processes in a part of the Sa Font de la Vila 

headwaters where the hillslope-channel coupling is higher and when the landscape 

was more vulnerable to erosion. In addition, a multivariate correlation analysis, a 

principal component analysis to group variables and the application of a quantitative 

hysteresis index (e.g. Zuecco et al., 2016) could have been carried out to achieve a 

better understanding of the hydro-sedimentary response of Sa Font de la Vila. 

Opportunely, the continuous water and sediment monitoring has continued over time. 

This will allow an exhaustive analysis of the evolution of a Mediterranean catchment 

after a fire for more than 7 years. These data, in conjunction with sediment origin 

analysis (i.e. sediment fingerprinting), could provide valuable information during the 
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medium and long-term for assessing geomorphological processes in fire-affected 

catchments. 

Chapter 5: The limitations in this chapter are mainly due to the lack of a larger set of 

tracers, the lack of artificial samples to check the reliability of the tracers when 

predicting source proportions in sediment samples, and not applying a complementary 

mixing model to contrast the results and the reduced number of samples from 

unburned sources compared to burned sources. However, all these limitations have 

been solved in later works as reflected in Chapter 6. 

Chapter 6:  The main limitations were the absence of an annual source resampling, to 

check tracer evolution and the use of ash from another catchment for an experiment 

on its influence on the colour tracers. However, these limitations were solved in part 

by using soil samples collected in a headwater micro-catchment in 2016 and by using 

the above-mentioned ash samples collected in a catchment with similar 

characteristics. Future work can involve the use of novel tracers (e.g. compound 

specific stable isotopes, biomarkers) in other sediment fingerprinting research, the 

combination of hydro-sedimentary data with sediment origin to identify the activation 

patterns for different sediment sources, the use of a different source categorization 

(e.g. land uses) or even by performing a tracer conservativeness experiment as in 

Chapter 8. 

Chapter 7:  It was not possible to establish patterns between flood event hydro-

sedimentary characteristics and sediment origin. Here a larger set of tracers might 

have helped to discriminate more robustly between source types. In addition, a 

resampling of the sources could have been proposed or a larger number of samples 

could have been included for each type of land use. Future work can be focused on 

solving the previously explained limitations by carrying out a source resampling or by 

including novel tracers in the sediment origin analysis. In addition, the continuous 

monitoring of water and sediment fluxes in the gauge station installed in Es Fangar, 

will make it possible to repeat the study and, perhaps, observe the activation of the 

different sediment sources in Es Fangar and link it with flood characteristics. 
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Chapter 8: The limitations were associated with the difficulty of conducting the 

experiment in natural conditions, as well as the large amount of time and resources 

that is required. The main limitations were the inability to integrate the physical 

effects on sediment particles derived from the transport in suspension (e.g. abrasion, 

aggregation), the possible influence of nylon bags and the steel bars on some soil 

properties, the absence of samples sieved to different particle sizes or the lack of 

different replicas for each sample. In addition, in-channel transformations only 

represent a part of the potential property changes during the erosion and sediment 

delivery processes. Therefore, in the evaluation of the conservative behaviour of a 

tracer, the processes generated on hillslopes should also be considered (Koiter et al., 

2018; Motha et al., 2002). Here, for future works on tracer conservativeness we will 

work with 15 artificial source mixtures with different known proportions generated 

and submerged during the experiment. The possibility of performing an analysis of the 

proportions of the artificial mixtures by using “sources” such as the original soil 

material exposed to different in-channel intervals with different hydrological 

conditions, will verify the reliability of the variability/stability results for all the tracers 

analysed. 

9.5. Conclusions 

The hydro-sedimentary dynamics and suspended sediment origin has been 

investigated in two Mediterranean catchments affected by different Global Change 

processes. Despite the limitations explained in section 9.4, the combination of 

sediment fingerprinting with continuous hydro-sedimentary monitoring made it 

possible to assess its hydro-sedimentary dynamics during the study period. In Sa Font 

de la Vila, results showed a gradual decrease from burned source contributions over 

time, while in Es Fangar the contributions from crops sources dominated throughout 

the study period without substantial changes. Sediment yields were 6.3 t km-2 yr-1 and 

4.5 t km-2 yr-1 for Sa Font de la Vila and Es Fangar respectively, being low in comparison 

with other Mediterranean catchments. This was mainly attributed to catchment 

lithology, land uses (in Es Fangar), vegetation recovery (in Sa Font de la Vila) and the 

presence of agricultural terraces and dry stone walls. 
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The use of soil colour parameters as tracers has been successfully proven in the two 

catchments, confirming its suitability for use in sediment fingerprinting as a rapid and 

economic tracer, even in fire-affected catchments. In addition, the strong correlations 

between the measures made with a laboratory spectroradiometer and a standard 

office scanner make colour parameters even easier to use in research and 

management plans. Moreover, the long duration tracer conservativeness experiment 

which was carried out, despite its limitations, confirmed that in-channel changes 

suffered by all the analysed tracers were generally lower than their own spatial 

variability within the catchment. Additionally, colour parameters were the most stable 

tracers. These statements contribute to the improvement of the sediment 

fingerprinting technique, so it can be said that hypothesis 1: “optimization of the 

sediment fingerprinting technique through research on the conservative behaviour of 

soil parameters and the use of low-cost and fast-to-measure tracers allowing 

evaluation of some of the assumptions underlying the technique, improvement of its 

applicability and the reduction of uncertainties” is confirmed. 

It was not possible to identify the activation patterns of different sediment sources by 

using a combination of hydro-sedimentary monitoring and sediment fingerprinting. 

This was caused mainly due to the Es Fangar catchment stability in terms of suspended 

sediment origin (mainly from crop sources). Like the low sediment yields recorded, the 

sediment source stability is attributed to lithological characteristics, land uses and the 

presence of agricultural terraces in the study area. However, events of higher 

magnitude could exceed the sedimentary (dis)connectivity thresholds of the rest of the 

sources considered, and activate them. Therefore, and despite the fact that in other 

similar studies it has been possible to establish links between the hydro-sedimentary 

behaviour and the origin of the sediment, in this case hypothesis 2: “hydro- 

sedimentary monitoring combined with sediment fingerprinting makes possible a 

better identification of the activation patterns of the different sediment sources within 

a catchment, resulting in a useful tool for catchment management” is partially refuted. 

The links between flood events characteristics and sediment origin could not be 

established. However, it has been proven that hydro-sedimentary monitoring and 
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sediment fingerprinting are useful tools for integrated catchment management plans 

in Mediterranean environments. 
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