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Abstract. Essential genes are subset of genes required by an organism for growth and sustenance of life 

and as well responsible for phenotypic changes when their activities are altered. They have been utilized as 

drug targets, disease control agent, etc. Essential genes have been widely identified especially in 

microorganisms, due to the extensive experimental studies on some of them such as Escherichia coli and 

Saccharomyces cerevisiae. Experimental approach has been a reliable method to identify essential genes. 

However, it is complex, costly, labour and time intensive. Therefore, computational approach has been 

developed to complement the experimental approach in order to minimize resources required for essentiality 

identification experiments. Machine learning approaches have been widely used to predict essential genes in 

model organisms using different categories of features with varying degrees of accuracy and performance. 

However, previous studies have not established the most important categories of features that provide the 

distinguishing power in machine learning essentiality predictions. Therefore, this study evaluates the 

discriminating strength of major categories of features used in essential gene prediction task as well as the 

factors responsible for effective computational prediction. Four categories of features were considered and k-

fold cross-validation machine learning technique was used to build the classification model. Our results show 

that ontology features with an AUROC score of 0.936 has the most discriminating power to classify essential 

and non-essential genes. This studyconcludes that more ontology related features will further improve the 

performance of machine learning approach and also sensitivity, precision and AUPRC are realistic measures 

of performance in essentiality prediction. 

Keywords: Essential genes, Essential proteins, Classification features, Machine-learning 

 

1.0 Introduction 

A gene is defined as an essential gene if its total loss of function results in a total loss of fitness 

of the organism[1]. The knowledge obtained from the discovery of essential genes accelerates 
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the discovery of drug targets [2,3], guides the engineering of new organisms, provides 

knowledge about the basic requirements for a cell and proffers insights to the correlations 

between genotype and phenotype. For instance, deleting just one gene that codes for an essential 

function in an organism is sufficient to cause lethality or infertility[4]. In comparison to non-

essential genes, essential genes are expected to be conserved in biological evolution[3,5,6], e.g. 

genes found in bacteria such as, dnaB, rpoA, and dcd etc.[7]. Due to the time consumption and 

costly nature of experimental analysis, only few microorganisms have been extensively studied, 

and their essential and non-essential genesets have become models for poorly or under studied 

organisms. Some of the model organisms include Escherichia coli, Saccharomyces cerevisiae, 

Drosophila melanogaster, Pseudomonas, and Bacillus subtilis. In view of the complexities and 

drawbacks of the in vitro approach, computational techniques have been developed to predict 

gene essentiality [8–10]with the approach gaining huge popularity in recent years [11–13]. 

From peer reviewed publications, there are three major computational approaches 

available for gene essentiality prediction, these are homology mapping[14,15], constraint-

based[16,17]and machine learning approach[13,18]. A computational prediction is especially 

useful when the organism is either unculturable, such as Pneumocystis carinii, or difficult to 

perform gene disruption on, such as Aspergillus fumigatus [19]. 

 

1.1 Computational Approaches for Predicting essential genes 

Homology mapping is the earliest computational approach used to determine essential genes 

[14]. This requires comparison between sequences of two organisms (a model and a target) to 

determine their similarity based on defined percentage identity threshold (e-value). If a sequence 

from target organism shows high similarity to a sequence of essential gene from a model 

organism, then the target sequence is labelled to be essential. This is premised on the biological 

theory that states that “structure determines function and vice versa”. 

The comparative genomic analysis includes the use of homology properties such as gene-

duplication data and phyletic gene age to predict essential genes. This approach has been used to 

predict essential genes in bacterial species such as Mycoplasma [20], Liberibacter[21], also in P. 

falciparum [22]and Brucella spp. [15]. 

Constraint Based approach uses Genome-scale metabolic network to elucidate the 

biology of metabolic pathways within an organism. The properties of the metabolic network can 

be analyzed using constraint-based methods such as flux balance analysis (FBA), which predicts 

the fluxes of metabolites at a steady state by applying mass balance constraints to a 
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stoichiometric model [23–26]. The concept of predicting essential genes using FBA is to 

simulate the knockout of a gene and evaluate the effect or impact on the network [27]. The use of 

FBA is better suited for studying conditional essential genes because a condition can be 

represented as an objective function and the significance of a gene can be determined by in silico 

deletion of the gene and the lethality is determined if there is optimal production of predefined 

biosynthetic precursors. Conditional essential genes are genes that are only essential in a given 

context. An example is immune response condition in an organism, genes responsible for 

immune response might not be essential if there is no disease condition in the organism. 

However, they become essential when the organism is in a diseased condition. 

The ability of a computer system to use statistical technique to “learn” and “improve” 

with data in order to accurately predict outcomes without being explicitly programmed is known 

as Machine learning[28]. This approach involves constructing and training one or more 

classifiers with training data which is composed of features of known essential genes and non-

essential genes. The trained classifier is then applied to predict the essentiality of genes in the 

target organism. For instance, Yu et al. [29] generated fractal features from genomic sequence of 

different 27 bacteria species and applied them to five classifiers to predict essential genes. It can 

be inferred that making accurate predictions requires “good” data and efficient machine learning 

technique. Machine learning techniques can be supervised, unsupervised or reinforcement 

learning. However, for essential gene prediction it often requires classification which is one of 

the supervised learning methods. A simple illustration of the process flow of collecting raw 

heterogeneous data from different sources to generate relevant features used to train a classifier 

and subsequently make predictions is shown in Figure 1. 

 

 

Figure 1. Simple illustration of application of machine learning to predict essential genes. 
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Data mining tools and machine learning (ML) algorithms have been used for classification. Open 

source tools such as RapidMiner, WEKA, R, and Orange provide rich functionality for data 

analysis and visualization.   

2.0 Materials and Methods 

Our comprehensive assembly of essential gene information for both S. cerevisiae and 

Schizosaccharomyces pombe was obtained from Database of Essential Genes (DEG) [30]and 

Online GEne Essentiality (OGEE) databases [31]. A total of 1037 essential genes and 4543 non-

essential were obtained for S. cerevisiae and 1346 essential genes and 3689 non-essential 

obtained for S. pombe. This leads to an imbalance dataset available for the classification model 

development 

 

2.1. Feature Generation 

A large set of initial features was generated based on four different categories including protein 

sequence, gene sequence, topological features derived from protein interaction and gene sets 

enrichment from Gene Ontology, shown in Figure 2.  

 

 

Figure 2. Multiple features were extracted from the four categories of features for gene 

essentiality prediction. DNA sequence category has highest number of features.  

 

Protein and DNA sequences were obtained from Ensemble database using Biomart tool 

[32]. The protein and gene sequence features were encoded in various numerical representations 
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characterizing the nucleotide and amino acid sequences and compositions of the query genes 

were calculated using seqinR[33],protr[34], CodonW[35]and rDNAse[36].  

With seqinR the number and fraction of individual amino acids and other simple protein 

sequence information including the number of residues, the percentage of physico-chemical 

classes and the theoretical isoelectric point were calculated. Most protein sequence features were 

obtained using protr including autocorrelation, CTD, conjoint triad, quasi-sequence order and 

pseudo amino acid composition. CodonW was used to calculate simple gene characteristics like 

length and GC content but also frequency of optimal codons and effective number of codons. 

With rDNAse, gene descriptors like auto covariance or pseudo nucleotide composition and kmer 

frequencies (n=2-7) were calculated. To predict the subcellular localization of the query protein, 

Deeploc[37], a tool that predictsthe probability of a gene being expressed in all the twelve 

subcellular compartments described for eukaryotic cells (Membrane, Nucleus, Cytoplasm, 

Extracellular, Mitochondrion, Cell membrane, Endoplasmic reticulum, Plastid, Golgi apparatus, 

Lysosome/Vacuole and Peroxisome) was used. Interproscanprovides functional analysis of 

proteins by scanning sequences against Interpro’s predictive models, provided by several 

different databases thereby classifying them into families and predicting domains [38].  

Topology features were computed from protein-protein interaction (PPI), however, there 

are other sources of data where topology features can be extracted such as transcription profiles 

and metabolic pathways. The PPI network was assembled for both S. cerevisiae and S. pombe 

using the PPI information from STRING database [39]. An undirected graph was generated and 

topology features (including degree, degree distribution, betweenness, closeness and clustering 

coefficient) were calculated using Networkx[40]and graphrole[41,42]packages in python.  

The Ontology category comprises gene ontology terms and orthology features such as 

KEGG orthologyamong others. They provide information about the enrichment of a given gene 

or gene set in a pathway or genome. In this study, 8846 and 8974 Gene Ontology (GO) terms 

were collected for Saccharomyces cerevisiae and S. pombe respectively, including biological 

process, cellular localization and molecular function from gProfiler[43]. To numerically encode 

the GO terms, an enrichment test was performed employing Fisher’s exact test and the log of 

the P-values from the test represents the score for each gene per GO term. 

 

2.2. Data normalization and feature selection 

The numerical representation of each feature category was z-score transformed separately. 

ElasticNetCV, a cross-validation version of ElasticNet which iteratively cross validates the 



4th International Conference on Science and Sustainable Development (ICSSD 2020)
IOP Conf. Series: Earth and Environmental Science 655 (2021) 012019

IOP Publishing
doi:10.1088/1755-1315/655/1/012019

6

 

partitioned data to select the optimal parameters for feature selection. The major parameters 

optimized are the alpha and l1 ratio with value range of 0 ≤ alpha|li_ratio ≤ 1. The l1_ratio 

parameter corresponds to alpha in the glmnet R package while parameter alpha corresponds to 

the lambda parameter in glmnet. ElasticNet uses a modification of Least Absolute Shrinkage and 

Selection Operator (LASSO) by adding Ridge regression into the optimization criterion. 

ElasticNet was used from the “sklearn” package in Python [44]. 

 

2.3. Sub-sampling, Machine Learning training and performance evaluation 

To overcome class imbalances when training the classifiers, Synthetic Minority Over-sampling 

Technique (SMOTE) was applied. SMOTE creates synthetic, non-duplicated samples of the 

minority class balancing the total number of samples of the two classes [45]. For each sample of 

the minority class, SMOTE calculates the k nearest neighbors of the same class and randomly 

creates multiple synthetic samples between the observation and the nearest neighbors depending 

on the number of additional samples needed. Random Forests (RF), Artificial Neural Networks 

(NNET) and Extreme Gradient Boosting (XGB) from the sklearn package [44]were used as 

classification algorithms. Default parameters were used for the methods except for RF where the 

n_estimator parameter was set to 300. Stratified randomized 5-fold cross validation (CV) was 

performed to improve generalizability; where 80% of the data was used for feature selection and 

training of the classifiers, and 20% for testing. 

In this study, four evaluation metrics were used to estimate the performance of the 

classification models, the metrics include; Precision, Sensitivity, Area under the receiver 

operating characteristic curve (AUROC)and Area under precision recall curve (AUPRC). 

Precision computes the rate of positive predicted value which estimates the reliability of the 

positive predictions of the model, also AUPRC estimates precision over the range of all possible 

values of recall. Similarly, sensitivity estimates the quality of positive prediction from the total 

predictions made by the model and AUROC quantifies True Positive rate over the range of all 

possible False Positive rates. These two metrics are important for essentiality predictions which 

aim to mainly identify or distinguish positive samples. 

 

3. Results and Discussion 

3.1 Gene Ontology features outperforms other categories of features 

A total of 48535 features that spans across four categories were generated, namely; DNA 

sequence (27727 features), Protein sequence (11937 features), Network topology (25 features) 
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and Ontology (8846 features).  Essential gene information was obtained from DEG and OGEE 

databases. Feature selection was performed to reduce the complexity of the model and a 5-fold 

cross-validation ML protocol was applied in which the imbalances in the class labels were 

corrected based on training data. Finally, the overall performance was estimated using the 

validation dataset.  

Three ML algorithms were applied for the classification of essential genes i.e. a neural 

network (NNET), random forests (RF) and Extreme Gradient Boosting (XGB). In general, all 

three approaches yielded very similar performance results, but NNET performed slightly better 

than RF and XGB without model optimization (Figure 3). Gene ontology feature category 

outperformed other categories with AUROC of 0.936, AUPRC of 0.814 for S. cerevisiae and 

AUROC of 0.808, AUPRC of 0.633 for S. pombe. Followed by gene ontology is topology 

features with AUROC of 0.764, AUPRC of 0.470 for S. cerevisiae and AUROC of 0.715, 

AUPRC of 0.486 for S. pombe. DNA sequence category performs least with AUROC of 0.607, 

AUPRC of 0.261 for S. cerevisiae and AUROC of 0.549, AUPRC of 0.314 for S. pombeas shown 

in Table 1. DNA sequence category showed very weak ability to distinguish essential genes from 

non-essential genes.  

 

Table 1: Accuracy metrics for the performance evaluation of essential gene classification.  

 

 

Three ML approaches were used (neural network [NNET], Random Forests, [RF], and 

Extreme Gradient Boosting, [XGB]). Four performance metrics were used to evaluate the models 
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on two different organisms. The performance was measured for the test sets and ontology 

category distinctively has better results highlighted in bold border compared to the results from 

other categories. The result of the NNET machine is further presented in Figure3 where 

Ontology features has highest Area Under the Curve for both Receiver operating characteristic 

and Precision-Recallcurve. 

 

Figure 3: Receiver operating characteristic curve (A) and (B) for S. cerevisiae. and S. pombe 

respectively. Precision-Recall curve (C) and (D) for S. cerevisiae. and S. pombe respectively. 

 

3.2 Analysis of features with high discriminative power  

The 10 most important features and their correlation to essentiality are shown in Figure 4. All the 

top features in protein and topology categories are positively correlated to essentiality which 

implies that the higher the values of this features for a given gene the higher the probability of 

the gene to be an essential gene.Plaimaset al. [6] used network topology features to predict 

essential genes and reported similar trend as shown in Figure 4d. The positive correlation of 

ontology features to essentiality shown in Figure 4b implies that genes that are enriched (p value 
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< 0.05) in this ontology terms have high probability of being essential. The highest importance 

score in DNA (Figure 4a) and protein (Figure 4c) sequence categories are approximately 0.002 

and 0.007 respectively, which is abysmally poor compared to 0.12 importance provided by a 

derivative of degree centrality in topology category. Strikingly, a topology feature appears to 

have the highest importance more than any of the ontology features.  

 

 

Figure 4: Top tenfeatures that contributed substantially to the predictions from each category.  

 

Features were ranked based on their discriminative power. The blue bars represent the ranking 

while the green bars indicate the direction and correlation (positive or negative) of the feature to 

essentiality. 
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Previous studies have shown the informative power of ontology-based features. Zhang et 

al.[48] incorporated orthology information with network topology features and reported their 

method obtained about 66% improvements over the 5 traditional centrality measures 

(Betweenness centrality, closeness centrality (CC), eigenvector centrality (EC), and subgraph 

centrality and Degree centrality), which highlights the effect of ontology-based features in the 

model performance. Wei et al. [49] included orthology features with phylogeny features to 

develop a gene essentiality prediction tool (GETOP) that achieved AUROC of 0.918 intra-

organism prediction and AUROC scores between 0.569 and 0.959 in the cross-organism 

predictions for 19 organisms. Chen et al. [12] predicted essential genes using the 

information about enrichments of gene sets defined by Gene Ontology and KEGG 

Orthology to encode each gene into a vector in which each component represented the 

relationship between the gene and one GO term or KEGG pathway. They achieved 

Matthews correlation coefficient of 0.951. 

 

4. Conclusion 

Machine learning approach using several categories of features has significantly contributed to 

essentiality prediction in model organisms. However, no previous studies have identified the 

most effectual category which can provide discriminating power to classify essential genes in 

both model and non-model organisms. In this study, four major categories of features in S. 

cerevisiae and S. pombewere compared in order to determine the most informative feature 

category which can enhance ML prediction of essential genes. Gene ontology feature category 

outperforms other feature categories considered. This study hereby proposes that more numerical 

representation of functional (Gene Ontology) terms should be engineered such as the enrichment 

test, which will further improve prediction performance of essential genes. 
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