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Abstract
The current paper is about the investigation of a new integral transform introduced
recently by Jafari. Specifically, we explore the applicability of this integral transform on
Atangana–Baleanu derivative and the associated fractional integral. It is shown that
by applying specific conditions on this integral transform, other integral transforms
are deduced. We provide examples to reinforce the applicability of this new integral
transform.
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1 Introduction
Fractional calculus is regarded as an extension of integer calculus in the sense that it per-
mits the order of the derivative or integral to be a fraction. The idea of having a fractional
order derivative did not make practical sense in the real world, thus the subject of frac-
tional calculus was mainly reserved for mathematicians for a long time since its discovery
[1–3].

However, researchers have come to realise that models constructed from fractional cal-
culus can successfully represent real world problems and sometimes yield better results
compared to models from the integer calculus. Some useful results from fractional calcu-
lus models appear in engineering, physics, biology and economics [1–14].

The definition of the fractional derivative is in itself a developing concept. Numerous
definitions have been suggested for the fractional derivative, with almost each definition
possessing some form of deficiency. It is generally believed that the choice of the derivative
used is dictated by the situation that is being modelled.

Since it was discovered that the fractional derivative can be successfully applied to prac-
tical problems, it is the Caputo derivative that has been used the most. The only short-
coming of the Caputo derivative is the singularity issue. Other fractional derivatives that
have this singularity problem are Riemann–Liouville, Caputo–Hadamard, and Riesz (see
[1–3, 15, 16]). In a bid to address the singularity concern, the Caputo–Fabrizio deriva-
tive was proposed [17, 18], this derivative eliminated the singularity problem through the
use of an exponential kernel. Atangana and Baleanu replaced the exponential kernel by
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the Mittag-Leffler function to create another non-singular kernel derivative called the
Atangana–Baleanu derivative. More detailed discussions encompassing both theory and
applications of the non-singular derivatives are found in [19–24]. In [5, 25–28], the authors
discuss the uniqueness and existence of fractional differential equations.

To fully harness the capability of fractional differential equations in modelling problems
that arise in the real world, it is imperative that we have methods of solutions that are
computationally inexpensive, easily accessible and highly accurate. Integral transforms are
some of the techniques that have proven their worth, as they are regarded to be easy to
implement and demand reasonable labour in terms of computations.

Integral transforms offer an alternative to integration in the solution of differential equa-
tions. The integral transform maps the domain of the original problem into a different do-
main consisting of an algebraic equation that is normally easy to manipulate. Taking the
inverse of the new domain results in the solution of the original problem [29].

There are different types of integral transforms that are used in the solution of differen-
tial equations, but it is the Laplace transform that is mostly applied. Most of the integral
transforms that have been suggested are extensions of the Laplace transform. Some of the
integral transforms that are closely related to the Laplace transform are the Elzaki trans-
form, Sumudu transform, Shehu transform, etc. [30–34].

Recently, a more generalized integral transform has been introduced by the second au-
thor [35]. Imposing specific conditions on this integral transform yields other integral
transforms, for example, the Laplace transform, natural transform, Elzaki transform and
Sawi transform [35]. To get a deeper insight into the properties and applications of this
new general integral transform, we refer the reader to [35].

Our main intention in this research is to investigate the application of this new general-
ized integral transform in the solution of differential equations involving the Atangana–
Baleanu derivative.

We structure the rest of our work in the following manner. In the next section, we pro-
vide some important mathematical concepts that will form the basis for our research. We
then follow by presenting the main results of the research in section three. To reinforce the
theoretical aspects of our work, we provide applications in the fourth section. A concise
summary of our research findings is provided in the last section.

2 Preliminaries
Throughout, set

A =
{

f (t) : ∃M > 0, k > 0,
∣∣f (t)

∣∣ ≤ Mekt , if t ≥ 0
}

,

and suppose that f (t) is an integrable function defined on the set A.

Definition 1 ([35]) Consider the functions ϕ(s),ψ(s) : R+ −→R
+ such that ϕ(s) �= 0 for all

s ∈R
+. The new general integral transform of the function f (t) denoted by FJ(s) is defined

by

T
{

f (t), s
}

= FJ(s) = ϕ(s)
∫ ∞

0
f (t)e–ψ(s)t dt, (1)
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with the corresponding inverse,

F–1
J (s) = T–1

{
ϕ(s)

∫ ∞

0
f (t)e–ψ(s)t dt

}
= f (t).

The integral transform (1) exists for all ψ(s) > k. It is simple to check that the new general
integral transform is a linear operator and has many properties that are similar to other
integral transforms, more detailed discussion on this can be found in [35].

Theorem 1 The integral transform FJ(s) of the derivative of f (t) is given as [35],

T
{

f (n)(t), s
}

= ψn(s)FJ(s) – ϕ(s)
n–1∑

k=0

ψn–1–k(s)f (k)(0), ϕ(s),ψ(s) > 0 ∀n ∈N. (2)

Theorem 2 If FJ(s) and HJ(s) are general integral transforms of f (t) and h(t), respectively,
then

T{f ∗ h} =
1

ϕ(s)
FJ(s) ·HJ(s).

Moreover,

T–1{f · h} = ϕ(s)T–1{f } ∗ T–1{h}.

Proof We have

f ∗ h =
∫ ∞

0
f (τ )h(t – τ ) dτ .

Using the new general transform and the Leibniz theorem, we obtain

T{f ∗ h} = T
{∫ ∞

0
f (τ )h(t – τ ) dτ

}
= ϕ(s)

∫ ∞

0

[∫ ∞

0
f (τ )h(t – τ ) dτ

]
e–ψ(s)t dt

= ϕ(s)
∫ ∞

0
f (τ )

[∫ ∞

0
h(t – τ )e–ψ(s)t dt

]
dτ ,

by setting u = t – τ , we get

T{f ∗ h} = ϕ(s)
∫ ∞

0
f (τ )e–ψ(s)τ

[∫ ∞

0
h(u)e–ψ(s)u dt

]
dτ

= ϕ(s)
∫ ∞

0
f (τ )e–ψ(s)τ dτ × 1

ϕ(s)
HJ(s)

=
1

ϕ(s)
FJ(s) ·HJ(s).

Furthermore, the convolution of the inverse transform is

T
{

T–1{f } ∗ T–1{h}} =
1

ϕ(s)
f · h.
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Table 1 Integral transform of some basic functions

f (t) T{f (t), s} =FJ(s)

c ϕ(s)
ψ (s) c, c ∈ R

t ϕ(s)
ψ (s)2

tα �(α+1)ϕ(s)
ψ (s)α+1

, α > 0

sin t ϕ(s)
ψ (s)2+1

cos t ϕ(s)ψ (s)
ψ (s)2+1

Hence,

T–1{f · h} = ϕ(s)T–1{f } ∗ T–1{h}. �

Table 1 shows the general integral transforms of some basic functions.
The two parameter Mittag-Leffler function is stated as [3]

Eη,σ (t) =
∞∑

k=0

zk

�(ηk + σ )
, z ∈C, Re(η) > 0 and Re(σ ) > 0.

A variant of the Mittag-Leffler function is given by Prabhakar as [36]

Eγ
η,σ (z) =

∞∑

k=0

γk

�(ηk + σ )
zk

k!
, z ∈C, Re(η) > 0, Re(σ ) > 0 and Re(γ ) > 0,

γk is the Pochhammer symbol.

Definition 2 ([19, 22]) The Atangana–Baleanu fractional derivative is defined by

ABC
a Dη

t
(
f (t)

)
=
K(η)
1 – η

∫ t

a
f ′(x)Eη

(
η

η – 1
(t – x)η

)
dx, (3)

another version of the Atangana–Baleanu derivative is stated as

ABR
a Dη

t
(
f (t)

)
=
K(η)
1 – η

d
dt

∫ t

a
f (x)Eη

(
η

η – 1
(t – x)η

)
dx, (4)

where η ∈ (0, 1) and K(η) represents the normalization function with the property K(0) =
K(1) = 1.

Definition 3 ([19, 22]) The fractional integral associate to the fractional derivative of
Atangana–Baleanu is defined by

AB
a Iη

t
(
f (t)

)
=

1 – η

K(η)
f (t) +

η

K(η)�(η)

∫ t

a
f (x)(t – x)η–1 dx. (5)

When η = 0 we recover the initial function, and if η = 1, we obtain the ordinary integral.
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3 New general transform for Atangana–Baleanu fractional derivatives
We present the main results of our research in this section.

Lemma 1 Let 0 < η < 1 and λ ∈ R such that ψ(s) < |λ| 1
η , then

T
{

tσ–1Eγ
η,σ

(
λtη

)
, s

}
=

ϕ(s)
ψ(s)σ

1
(1 – λ

ψ(s)η )γ
, ψ(s) > 0. (6)

Proof The new general integral transform of the function tσ–1Eγ
η,σ (λtη) yields

T
{

tσ–1Eγ
η,σ

(
λtη

)
, s

}
= ϕ(s)

∫ ∞

0
tσ–1Eγ

η,σ
(
λtη

)
e–ψ(s)t dt

= ϕ(s)
∫ ∞

0
tσ–1

∞∑

k=0

γk

�(ηk + σ )
(λtη)k

k!
e–ψ(s)t dt

=
∞∑

k=0

γk

�(ηk + σ )
λk

k!
ϕ(s)

∫ ∞

0
tηk+σ–1e–ψ(s)t dt

=
∞∑

k=0

γk

�(ηk + σ )
λk

k!
T

{
tηk+σ–1},

thus,

T
{

tσ–1Eγ
η,σ

(
λtη

)
, s

}
=

∞∑

k=0

γk

�(ηk + σ )
λk

k!
T

{
tηk+σ–1}

=
∞∑

k=0

γk

�(ηk + σ )
λk

k!
�(ηk + σ )ϕ(s)

ψ(s)ηk+σ

=
ϕ(s)

ψ(s)σ

∞∑

k=0

γk

k!

(
λ

ψ(s)η

)k

,

since q(s) < |λ| 1
η , it follows that

T
{

tσ–1Eγ
η,σ

(
λtη

)
, s

}
=

ϕ(s)
ψ(s)σ

1
(1 – λ

ψ(s)η )γ
. �

Corollary 1 Under the same conditions of Lemma (1), we have the new general transform
of the function Eη(λtη) as

T
{

Eη

(
λtη

)}
=

ϕ(s)
ψ(s)

ψ(s)η

ψ(s)η – λ
,

and the new general transform of the function tσ–1Eη(λtη) as

T
{

tσ–1Eη

(
λtη

)}
=

ϕ(s)ψ(s)η–σ

ψ(s)η – λ
.
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Proof We have

T
{

Eη

(
λtη

)}
= T

{
E1

η,1
(
λtη

)
, s

}
=

ϕ(s)
ψ(s)

1
1 – λ

ψ(s)η

and

T
{

tσ–1Eη

(
λtη

)}
= T

{
tσ–1E1

η,σ
(
λtη

)
, s

}
=

ϕ(s)ψ(s)η–σ

ψ(s)η – λ
. �

Remark 1 Lemma (1) generalizes the results obtained in [37] for the Sumudu transform
and in [38] for the Shehu transform of the function tσ–1Eγ

η,σ (λtη). Indeed, when ϕ(s) = 1
s

and ψ(s) = 1
s the Sumudu transform is

S
{

tσ–1Eγ
η,σ

(
λtη

)}
=

1
s

( 1
s )σ

1
(1 – λ

( 1
s )η

)γ
= sσ–1(1 – λsη

)–γ ,

for ϕ(s) = 1 and ψ(s) = s
u , we obtain the Shehu transform,

SH
{

tσ–1Eγ
η,σ

(
λtη

)}
=

1
( s

u )σ
1

(1 – λ

( s
u )η )γ

=
(

u
s

)σ (
1 – λ

(
u
s

)η)–γ

.

Obviously, when γ = 1, we get the Sumudu and Shehu transform of the function
tσ–1Eη,σ (λtη).

Henceforth, we suppose that the function f (t) ∈ A ∩ H1(a, b) such that H1(a, b) is a
Sobolev space of order one defined by

H1(a, b) =
{

f ∈ L2(a, b) : f ′ ∈ L2(a, b)
}

.

Theorem 3 The new general integral transform of the Atangana–Baleanu derivative
stated in (3) is given as

T
{ABC

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

[
FJ(s) –

ϕ(s)
ψ(s)

f (0)
]

.

Proof Let FJ(s) be the new general transform of the function f (t). Let us observe that in
definition (3) we have a convolution integral,

∫ t

0
f ′(x)Eη

(
η

η – 1
(t – x)η

)
dx = f ′(t) ∗ Eη

(
η

η – 1
tη

)

then one has

T
{ABC

0 Dη
t
(
f (t)

)}
= T

{K(η)
1 – η

∫ t

0
f ′(x)Eη

(
η

η – 1
(t – x)η

)
dx

}

=
K(η)
1 – η

T
{

f ′(t) ∗ Eη

(
η

η – 1
tη

)}
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=
K(η)
1 – η

1
ϕ(s)

T
{

f ′(t)
} · T

{
Eη

(
η

η – 1
tη

)}
.

Using Theorem 1 and applying the result obtained in Corollary 1, then

T
{ABC

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

1
ϕ(s)

[
ψ(s)FJ(s) – ϕ(s)f (0)

] ϕ(s)
ψ(s)

ψ(s)η

ψ(s)η + η

1–η

=
K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

[
FJ(s) –

ϕ(s)
ψ(s)

f (0)
]

. �

Corollary 2
• If ϕ(s) = 1 and ψ(s) = s, then this new transform gives the Laplace transform, see

[19, 20],

L
{ABC

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

× sη

sη + η

1–η

[
FJ(s) –

1
s

f (0)
]

=
K(η)
1 – η

sηFJ(s) – sη–1f (0)
sη + η

1–η

.

• If ϕ(s) = s and ψ(s) = 1
s , we have the Elzaki transform [39],

E
{ABR

0 Dη
t
(
u(t)

)}
=
K(η)
1 – η

( 1
s )η

( 1
s )η + η

1–η

[
FJ(s) –

s
1
s

f (0)
]

=
K(η)
1 – η

1
1 + η

1–η
sη

[
FJ(s) – s2f (0)

]
.

• If ϕ(s) = ψ(s) = 1
s , the new transform coincides with the Sumudu transform [40],

S
{ABC

0 Dη
t
(
u(t)

)}
=
K(η)
1 – η

1
sη

1
sη + η

1–η

[
FJ(s) – f (0)

]

=
K(η)
1 – η

1
1 + η

1–η
sη

[
FJ(s) – f (0)

]
.

• If ϕ(s) = 1 and ψ(s) = s
u , then the Shehu transform of the Atangana–Baleanu fractional

derivative in Caputo sense [40] is obtained,

SH
{ABC

0 Dη
t
(
u(t)

)}
=
K(η)
1 – η

( s
u )η

( s
u )η + η

1–η

[
FJ(s) –

1
s
u

f (0)
]

=
K(η)
1 – η

( s
u )ηFJ(s) – ( s

u )η–1f (0)
( s

u )η + η

1–η

.

Theorem 4 The new general integral transform of the Atangana–Baleanu derivative
stated in (4) is given as

T
{ABR

0 Dη
t
(
u(t)

)}
=
K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

FJ(s).



Meddahi et al. Advances in Difference Equations        (2021) 2021:385 Page 8 of 14

Proof Let FJ(s) be the generalized transform of the function f (t). We have

T
{ABR

0 Dη
t
(
f (t)

)}
= T

{K(η)
1 – η

d
dt

∫ t

a
f (x)Eη

(
η

η – 1
(t – x)η

)
dx

}

=
K(η)
1 – η

T
{

d
dt

[
f (t) ∗ Eη

(
η

η – 1
tη

)]}

=
K(η)
1 – η

[
ψ(s)T

{
f (t) ∗ Eη

(
η

η – 1
tη

)}
– ϕ(s)T

{
f (0) ∗ Eη(0)

}]
,

hence,

T
{ABR

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

FJ(s). �

Corollary 3
• If ϕ(s) = 1 and ψ(s) = s, then the Laplace transform is given by [19, 20]

L
{ABR

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

sη

sη + η

1–η

FJ(s).

• If ϕ(s) = s and ψ(s) = 1
s , we have the Elzaki transform [39],

E
{ABC

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

1
1 + η

1–η
sη
FJ(s).

• If ϕ(s) = ψ(s) = 1
s , we get the Sumudu transform as follows [40]:

S
{ABC

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

( 1
s )η

( 1
s )η + η

1–η

FJ(s).

• If ϕ(s) = 1 and ψ(s) = s
u , then the Shehu transform of the Atangana–Baleanu fractional

derivative in Riemann–Liouville sense [40] is given as

SH
{ABC

0 Dη
t
(
f (t)

)}
=
K(η)
1 – η

( s
u )η

( s
u )η + η

1–η

FJ(s).

Lemma 2 The new general integral transform of the function tη–1 is given as

T
{

tη–1} =
�(η)ϕ(s)
ψ(s)η

, η > 0.

Proof Applying the new general integral transform of the function tη–1, we get

T
{

tη–1} = ϕ(s)
∫ ∞

0
tη–1e–ψ(s)t dt.

Let �(η) be the Gamma function defined by

�(η) =
∫ ∞

0
uη–1e–u du.
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Setting u = ψ(s)t implies du = ψ(s) dt, then

�(η) =
∫ ∞

0

(
ψ(s)t

)η–1e–ψ(s)tψ(s) dt = ψ(s)η
∫ ∞

0
tη–1e–ψ(s)t dt,

thus,

∫ ∞

0
tη–1e–ψ(s)t dt =

�(η)
ψ(s)η

.

Hence,

T
{

tη–1} =
�(η)ϕ(s)
ψ(s)η

. �

Remark 2 Through the result in Lemma (2), we can deduce the Sumudu transform of the
function tη–1 (see [41]) and the Shehu transform (see [40]).

Theorem 5 The general transform of the Atangana–Baleanu fractional integral of the
function f (t) is given as

T
{AB

0 Iη
t
(
f (t)

)}
=

1
K(η)

(1 – η)ψ(s)η + η

ψ(s)η
FJ(s).

Proof Let FJ(s) be the new general transform of the function f (t), we have

T
{AB

0 Iη
t
(
f (t)

)}
=

1 – η

K(η)
T

{
f (t)

}
+

η

K(η)�(η)
T

{∫ t

0
f (x)(t – x)η–1 dx

}

=
1 – η

K(η)
T

{
f (t)

}
+

η

K(η)�(η)
T

{
f (t) ∗ tη–1}.

According to the convolution theorem (2) and Lemma (2), we obtain,

T
{AB

0 Iη
t
(
f (t)

)}
=

1 – η

K(η)
FJ(s) +

η

K(η)�(η)
1

ϕ(s)
T

{
f (t)

}
T

{
tη–1}

=
1 – η

K(η)
FJ(s) +

η

K(η)�(η)
1

ϕ(s)
FJ(s)

�(η)ϕ(s)
ψ(s)η

,

then

T
{AB

0 Iη
t
(
f (t)

)}
=

1
K(η)

(1 – η)ψ(s)η + η

ψ(s)η
FJ(s). �

4 Applications
We now substantiate the theoretical aspects that we developed in the previous section by
providing practical examples.

Example 1 Consider the following fractional initial value problem:

ABC
0 Dη

t
(
u(t)

)
= f (t), u(0) = c, c ∈R. (7)
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Applying the integral transform on both sides of Eq. (7),

T
{ABC

0 Dη
t
(
u(t)

)}
= T

{
f (t)

}
,

gives

K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

[
UJ(s) –

ϕ(s)
ψ(s)

u(0)
]

= FJ(s).

Therefore,

UJ(s) =
1 – η

K(η)
ψ(s)η + η

1–η

ψ(s)η
FJ(s) +

ϕ(s)
ψ(s)

u(0),

taking the inverse general transform, we obtain

u(t) = T–1
{

1 – η

K(η)
ψ(s)η + η

1–η

ψ(s)η
FJ(s) +

ϕ(s)
ψ(s)

u(0)
}

.

If f (t) = t, the equivalence of (7) is

ABC
0 Dη

t
(
u(t)

)
= t, u(0) = c, c ∈ R, (8)

whose solution is

u(t) = T–1
{

1 – η

K(η)

(
1 +

η

1 – η

1
ψ(s)η

)
ϕ(s)
ψ(s)

+
ϕ(s)
ψ(s)

u(0)
}

=
1 – η

K(η)
T–1

{
ϕ(s)
ψ(s)

+
η

1 – η

ϕ(s)
ψ(s)η+1 +

ϕ(s)
ψ(s)

u(0)
}

.

The above equation reduces to

u(t) =
1 – η

K(η)

(
1 + c +

η

1 – η

1
�(η + 1)

tη

)
.

Example 2 Consider the following nonlinear fractional differential equation:

ABC
0 Dη

t
(
u(t)

)
+ u(t) = f (t). (9)

By employing the new general transform in Eq. (9), we get

T
{ABC

0 Dη
t
(
u(t)

)}
+ T

{
u(t)

}
= T

{
f (t)

}
,

thus,

K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

[
UJ(s) –

ϕ(s)
ψ(s)

u(0)
]

+ UJ(s) = FJ(s).
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Therefore,

(K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

+ 1
)
UJ(s) =

K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

ϕ(s)
ψ(s)

u(0) + FJ(s),

it follows that

UJ(s) =
K(η)

K(η) + 1 – η

ψ(s)η

ψ(s)η + η

K(η)+1–η

ϕ(s)
ψ(s)

u(0) +
1 – η

K(η) + 1 – η

ψ(s)η + η

ψ(s)η + η

K(η)+1–η

FJ(s),

UJ(s) =
K(η)

K(η) + 1 – η

ψ(s)η

ψ(s)η + η

K(η)+1–η

ϕ(s)
ψ(s)

u(0) +
1 – η

K(η) + 1 – η
FJ(s)

+
η

(K(η) + 1 – η)2
1

ψ(s)η + η

K(η)+1–η

FJ(s).

Using the inverse transform, the convolution theorem (2) and Corollary 1, we get

T–1
{

ψ(s)η

ψ(s)η + η

K(η)+1–η

ϕ(s)
ψ(s)

}
= Eη

(
–

η

K(η) + 1 – η
tη

)
,

also,

T–1
{

1
ψ(s)η + η

K(η)+1–η

FJ(s)
}

= T–1
{

ϕ(s)
ψ(s)η + η

K(η)+1–η

}
∗ f (t)

= tη–1Eη

(
–

η

K(η) + 1 – η
tη

)
∗ f (t).

Then

u(t) = T–1{UJ(s)
}

=
K(η)

K(η) + 1 – η
Eη

(
–

η

K(η) + 1 – η
tη

)
u(0) +

1 – η

K(η) + 1 – η
f (t)

+
η

(K(η) + 1 – η)2 tη–1Eη

(
–

η

K(η) + 1 – η
tη

)
∗ f (t).

Note that, when η → 1 and f (t) = e–2t , then the exact solution is

u(t) =
(
1 + u(0)

)
e–t – e–2t .

Example 3 We now consider Eq. (9) with the Riemann–Liouville derivative,

ABR
0 Dη

t
(
u(t)

)
+ u(t) = f (t). (10)

Applying the new general transform in Eq. (10) yields

(K(η)
1 – η

ψ(s)η

ψ(s)η + η

1–η

+ 1
)
UJ(s) = T

{
f (t)

}
.
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Therefore,

UJ(s) =
(1 – η)ψ(s)η + η

(K(η) + 1 – η)ψ(s)η + η
FJ(s),

u(t) = T–1
{

(1 – η)ψ(s)η + η

(K(η) + 1 – η)ψ(s)η + η
FJ(s)

}
.

If f (t) = sin(t), (10) becomes

ABR
0 Dη

t
(
u(t)

)
+ u(t) = sin(t), 0 < η ≤ 1,

whose exact solution is

u(t) = T–1
{

(1 – η)ψ(s)η + η

(K(η) + 1 – η)ψ(s)η + η

ϕ(s)
ψ(s)2 + 1

}
.

In particular, when η → 1, we obtain

u(t) = T–1
{

1
ψ(s) + 1

ϕ(s)
ψ(s)2 + 1

}

= T–1
{

0.5
ϕ(s)

ψ(s) + 1
– 0.5

ψ(s)ϕ(s)
ψ(s)2 + 1

+ 0.5
ϕ(s)

ψ(s)2 + 1

}
,

with the exact solution

u(t) = 0.5
(
e–t – cos t + sin t

)
.

5 Conclusion
We explored the feasibility of applying the generalized integral transform (Jafari trans-
form) in fractional calculus, the Atangana–Baleanu derivative with its corresponding in-
tegral is used as a case in point. It is proved that imposing certain conditions on the Jafari
transform leads to other integral transforms. To prove the applicability of this generalised
integral transform, practical examples are given. This generalised integral transform re-
sembles other integral transforms in that it is easy to implement and offers the convenience
of using a table in the solution procedure of differential equations.
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