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Abstract 

 

Double sampling procedure is adapted from a statistical branch called acceptance sampling. 

The first Shewhart-type double sampling monitoring scheme was introduced in the statistical 

process monitoring (SPM) field in 1974. The double sampling monitoring scheme has been 

proven to effectively decrease the sampling effort and, at the same time, to decrease the time 

to detect potential out-of-control situations when monitoring the location, variability, joint 

location and variability using univariate or multivariate techniques. Consequently, an overview 

is conducted to give a full account of all 76 publications on double sampling monitoring 

schemes that exist in the SPM literature. Moreover, in the review conducted here, these are 

categorized and summarized so that any research gaps in the SPM literature can easily be 

identified. Next, based on the knowledge gained from the literature review about the existing 

designs for monitoring the process mean, a new type of double sampling design is proposed. 

The new charting region design lead to a class of a control charts called a side-sensitive double 

sampling (SSDS) monitoring schemes. In this study, the SSDS scheme is implemented to 

monitor the process mean when the underlying process parameters are known as well as when 

they are unknown. A variety of run-length properties (i.e., the 5th, 25th, 50th, 75th, 95th 

percentiles, the average run-length (𝐴𝑅𝐿), standard deviation of the run-length (𝑆𝐷𝑅𝐿), the 

average sample size (𝐴𝑆𝑆) and the average extra quadratic loss (𝐴𝐸𝑄𝐿) metrics) are used to 

design and implement the new SSDS scheme. Comparisons with other established monitoring 

schemes (when parameters are known and unknown) indicate that the proposed SSDS scheme 

has a better overall performance. Illustrative examples are also given to facilitate the real-life 

implementation of the proposed SSDS schemes. Finally, a list of possible future research ideas 

is given with hope that this will stimulate more future research on simple as well as complex 

double sampling schemes (especially using the newly proposed SSDS design) for monitoring 

a variety of quality characteristics in the future. 

 

Keywords: Double sampling, Monitoring scheme, Statistical process monitoring, Run-length 

properties, Overall performance measures, Side sensitive, Non-side-sensitive, Estimated 

parameters, Phase I, Phase II. 
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Chapter 1. Introduction 

 

The quality of products and services is one of the most important factors in the growth and 

good run of modern organizations. Thus, statistical process monitoring (or statistical process 

control) has become an important business strategy used to reduce the costs and improve the 

quality of products (or goods) and services; and therefore, maximize the organization’s profits. 

According to Montgomery (2013), statistical process monitoring (SPM) is a field of quality 

control that uses statistical tools (or methods) to monitor and control industrial and non-

industrial processes. It helps to ensure that a process is stable and operates efficiently to avoid 

waste and reworks (or scrap). SPM uses seven tools (or techniques) known as magnificent 

seven: (i) histogram, (ii) flow chart, (iii) scatter diagram, (iv) cause-and-effect diagram, (v) 

check sheet, (vi) Pareto chart and, (vii) control chart. The latter is the most popular and efficient 

tool used in SPM. Therefore, this study focuses on the design, implementation and 

enhancement of control charts to monitor the process location. 

 

1.1 Basic concepts of statistical process monitoring  

In this section, we provide a number of background information required to understand the 

essence of this work. These include, the definition of a monitoring scheme and its originality, 

important terminologies, different types of monitoring schemes, methods of computing the run-

length properties, difference between: univariate and multivariate schemes, parametric and 

nonparametric schemes, parameters known and unknown, Phase I and Phase II; and finally, 

define the concept of double sampling (from a general statistical point of view).  

 

1.1.1 Monitoring scheme (or control chart) 

The basic theory of SPM was developed in the late 1920’s by Dr. W. Shewhart – see for 

instance the introduction sections of Montgomery (2013), Qiu (2014), Chakraborti and Graham 

(2019). Montgomery (2013) stated that SPM is an application of a collection of statistical 

techniques, which allows high quality products to be produced. Among the different tools used 

in SPM applications, monitoring schemes are the most widely used for identifying changes in 

processes. One of the main purposes of the control charts is to distinguish between assignable 

and common causes of variation. The process that works only in the presence of common 

causes of variation is said to be statistically in-control (IC). When a given process runs in a 
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presence of assignable causes of variation then it is said to be out-of-control (OOC). In this 

case, an OOC signal is given. This OOC signal can also be classified as a false alarm which is 

a wrong warning about the presence of assignable causes, when in fact the process is IC. If the 

issued signal from the process is not a false alarm, corrective action(s) should be implemented 

to eliminate the assignable cause(s) and, consequently, return the process to the IC state.   

A typically monitoring scheme is a two dimensional graphic (or line graph – which can be two- 

or three-dimensional) consisting of the values of a plotting (i.e. charting) statistic plotted on 

the vertical axis against time or subgroup number on the horizontal axis along with the 

associated control limits. That is, the main purpose of a monitoring scheme is to continually 

monitor a given process by illustrating its behaviour. The charting statistic and the control 

limits are calculated from the data, which can be individuals or subgroup samples of 

observations, collected sequentially over time. For instance, a two-sided monitoring scheme 

showing eleven consecutive sample points with the plotting statistic (indicating some specific 

quality characteristic of interest, i.e. mean, standard deviation, variance, coefficient of 

variation, etc.) is shown in Figure 1.1.  

 

 

Figure 1.1: A typical Shewhart-type monitoring scheme 
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From Figure 1.1, it can be seen that a monitoring scheme usually has a center line (CL) and 

two horizontal lines, one on each side of the CL. The line above the CL is called the upper 

control limit (UCL) whereas the line below the CL is called the lower control limit (LCL). 

These three lines are placed on the monitoring scheme to aid the user in making an informed 

and objective decision whether a process is IC or OOC. For a basic Shewhart-type monitoring 

scheme, when a charting statistic plots on or outside either of the control limits it is said that a 

signal has been observed and the process is declared OOC. For instance, assume that  

{𝑋𝑡𝑗: t ≥ 1; j = 1, 2,…, n} (1.1) 

is a sequence of samples from an independent and identically distributed (iid) N(𝜇0, 𝜎0
2) 

distribution; where 𝜇0 and 𝜎0
2 are the specified IC mean and variance, respectively. Let  

𝑋̅𝑡 =
1

𝑛
∑𝑋𝑡𝑗

𝑛

𝑗=1

 (1.2) 

denote the plotting statistic at sampling point t. A basic monitoring scheme that is usually used 

to monitor 𝑋̅𝑡 is called the Shewhart 𝑋̅ scheme and it signals when a single plotting statistic 

(i.e. sample mean) falls above the UCL or below the LCL which are given by the following k-

sigma limits: 

UCL = 𝜇0 + 𝑘
𝜎0

√𝑛
, 

CL = 𝜇0, 

LCL = 𝜇0 − 𝑘
𝜎0

√𝑛
, 

(1.3) 

where k is the distance of the control limits from the CL; see for instance Figure 1.1. In Figure 

1.1, a process would be thought to be OOC at time points 5, 7 and 15. The corresponding event 

is called a signalling event. On the contrary, when the charting statistic randomly plots between 

the UCL and LCL, the process is thought to be IC and hence, no signal is observed on the 

monitoring scheme. The corresponding event is called a non-signalling event.   

 

1.1.2 Different types of monitoring schemes 

In the literature, there are many different types of monitoring schemes – each depending on 

what type of data is at hand. Data can be continuous or discrete. Quality characteristics that can 

be expressed in terms of a numerical measurement are called “variables” and the data collected 

on variables are called “variables data”, see Montgomery (2013, p. 234). Examples include 

dimensions such as length or width, temperature, volume, etc. However, quality characteristics 

that cannot be measured on a numerical scale, for example, the quality of paint on a glass 
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container for a liquid product, are called “attributes” and the corresponding data collected are 

called “attributes data”; see Montgomery (2013, p. 297). To examine attributes data, we 

classify them into one of the two categories called conforming and nonconforming, depending 

on whether the container meets the requirements on one or more quality characteristics. 

Examples include the number of errors or mistakes made in completing a loan application, the 

number of medical errors made in a hospital, etc.; see Montgomery (2013, p. 297). 

Note that, in general, monitoring schemes differ by the plotting statistic. For example, an 𝑋̅ 

scheme is for the mean or average; p and np schemes are for monitoring the fraction and 

number of conforming items in a sample; t and tr schemes are for the time between events; etc. 

and these are based on some assumed distribution, i.e. normal, binomial, exponential or 

gamma, etc. There are other schemes to monitor special processes, i.e. short-run, profiles, start-

up, time series, rare events, etc., – see Qiu (2014). These schemes have different methods to 

calculate charting statistics and control limits. 

Although there are many different monitoring schemes, most of these may be classified under 

the following two popular types of control charting techniques: the Shewhart schemes and 

memory-type schemes (e.g., the exponentially weighted moving average (EWMA), 

Cumulative Sums (CUSUM), etc.). Relative advantages and disadvantages of these schemes 

are well documented in the literature; see for example, Chapters 6, 7 and 9 in Montgomery 

(2013). Shewhart-type schemes are the most popular schemes in practice because of their 

simplicity, ease of application, and the fact that these versatile schemes are quite efficient in 

detecting moderate to large shifts; in addition, they are closely associated with the theory of 

hypothesis testing. The CUSUM scheme was developed by Page (1954) using Wald’s 

sequential testing theory. A comprehensive description of the construction of CUSUM scheme 

is discussed in Hawkins and Olwell (1998). The EWMA scheme assigns a larger weight to the 

most recent observations and was developed by Roberts (1959).  

 

1.1.3 Run-length characteristics 

Note that the number of rational subgroups to be collected or the number of charting statistics 

to be plotted on a monitoring scheme before the first OOC signal is observed is the run-length 

of a scheme, see Montgomery (2013). The run-length is a random variable, denoted usually by 

RL, with a mean and variance. The most widely used monitoring scheme’s performance metric 

is the mean of the run-length, referred to as the average run-length (ARL). However, since the 

run-length distribution is significantly right-skewed, researchers have advocated using other, 

more representative, measures for the assessment of chart performance. These include the 
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standard deviation of the run-length (SDRL) and percentiles of the run-length (𝑃𝑅𝐿), more 

specifically, the median run-length (MRL), which provides additional and more meaningful 

information about the IC and OOC performances of a monitoring scheme, not given by the 

ARL, which may be computed using the cumulative distribution function (c.d.f.). Some 

researchers such as Gan (1994), Chakraborti (2006) and Khoo et al. (2011a) have advocated 

the use of percentiles (i.e., such as the median, 5th, 25th, 75th and 95th) for assessment of a chart 

OOC performance. The run-length distribution and the characteristics of the run-length 

distribution can be obtained using four methods, namely 

i. The exact approach  

ii. The Markov chain approach 

iii. The integral equation approach 

iv. The Monte Carlo simulations approach 

These approaches are used to evaluate the run-length distribution and the characteristics of the 

run-length distribution of various types of control charts. In this dissertation, we use the first, 

third and the fourth methods listed above.  

 

1.1.4 Univariate and multivariate schemes 

Since the process in Equation (1.1) generates observations used to monitor a single quality 

characteristic in Equation (1.2), such monitoring schemes are termed, univariate. However, 

instead of Equation (1.1), when observations are generated by  

{𝑿𝑡𝑗 =

[
 
 
 
𝑋1𝑡𝑗

𝑋2𝑡𝑗

⋮
𝑋𝑝𝑡𝑗]

 
 
 

: t ≥ 1; j = 1, 2,…, n} (1.4) 

i.e., a p-variate normally distributed random variable with mean 𝝁𝟎 and variance 𝚺0, see 

Bersimis et al. (2007); such monitoring schemes are termed multivariate. The charting statistic 

in Equation (1.4) is used to monitor 𝑝 different quality characteristics. Note that 𝝁𝟎 and 𝚺0 

denote a (𝑝 × 1) vector of sample means and a (𝑝 × 𝑝) covariance matrix, respectively. Thus, 

the corresponding charting statistic is computed as (instead of Equation (1.2), the Hotelling’s 

𝑇2 statistic), 

𝑇2 = 𝑛(𝑿̅ − 𝝁𝟎)
′𝚺0

−1(𝑿̅ − 𝝁𝟎) (1.5) 

which has a central chi-square distribution with p degrees of freedom, where 𝑋̅ refers to the 

(𝑝 × 1) vector of sample means, with each of the p entries computed using Equation (1.2). 

However, when the process is thought to be OOC, it has non-central chi-square distribution 
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with p degrees of freedom, with the non-central parameter given by 𝜃2 = 𝑛(𝝁𝟏 −

𝝁𝟎)
′𝚺0

−1(𝝁𝟏 − 𝝁𝟎). For instance, after the occurrence of assignable causes, the mean shifts as 

follows, 

 Univariate case: from 𝜇0 to 𝜇1 (𝜇1 = 𝜇0 + 𝛿𝜎0), so that 𝛿 =
𝜇1−𝜇0

𝜎0
; 

 Multivariate case: from 𝝁𝟎 to 𝝁𝟏, so that 𝜹 = √(𝝁𝟏 − 𝝁𝟎)′𝚺0
−1(𝝁𝟏 − 𝝁𝟎). 

 

1.1.5 Parametric and nonparametric schemes 

The key difference between parametric and nonparametric schemes is that the parametric 

schemes have some assumed underlying distribution that the process follows. However, if it is 

different from the assumed distribution, then the corresponding performance may be adversely 

affected. According to Chakraborti and Graham (2019), a monitoring scheme is called 

nonparametric if its IC run-length distribution is the same for every continuous distribution. 

All the publications that are of interest in this dissertation are parametric schemes, except for 

two publications by Yang and Wu (2017a, b). The main advantage of nonparametric 

monitoring schemes is the nonparametric statistical methods, which are typically based on 

order statistics, ranks and various functions of them. That is, the corresponding charting 

statistics are based on distribution-free test statistics, meaning that their IC RL distributions do 

not depend on any specific underlying distributions. Thus, these monitoring schemes are IC 

robust. A monitoring scheme is said to be IC robust if the IC characteristics of the run-length 

distribution are the same over all continuous distributions, see for instance Qiu (2014), 

Chakraborti and Graham (2019), Mabude et al. (2019), etc. Note though, parametric monitoring 

schemes are not IC robust. That is, when a gamma distribution is used instead of a normal 

distribution when the process is IC, the 𝑋̅ scheme will yield different IC run-length properties 

under the gamma and normal distributions. 

 

1.1.6 Phase I and Phase II 

When the underlying process parameters are unknown, a monitoring scheme needs to be 

implemented in a two-phase approach, i.e. Phase I and Phase II (see Jensen et al. (2006) and 

Psarakis et al. (2013) for a review of parameter estimation effect articles). In Phase I, 

monitoring schemes are implemented retrospectively in order to estimate the distribution 

parameters and determine the control limits using an IC reference sample. Note that all 

administrative tasks are planned and executed in Phase I. However, in Phase II, monitoring 
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schemes are implemented prospectively to continuously monitor any departures from an IC 

state using the parameters estimated in Phase I. 

These concepts are further discussed in Chapters 2 and 4, in detail. 

 

1.1.7 Enhancement of monitoring schemes 

Different techniques have been proposed in the SPM literature to improve the statistical 

performance of some basic monitoring schemes. To list just a few, the SPM literature 

recommends the use of supplementary runs-rules, adaptive approaches (e.g., variable sampling 

size and interval), the combination of different monitoring schemes (e.g. synthetic schemes), 

the use of double sampling procedure, etc. The type of techniques is selected depending on the 

objectives of the investigation. For instance, to improve the traditional basic Shewhart scheme 

in monitoring small and moderate shifts in the process parameters, the literature recommends 

the use of double sampling scheme and the combination of the Shewhart and the memory-type 

scheme such as the EWMA, CUSUM, etc. To improve the memory-type scheme in monitoring 

large shifts in the process, the literature recommends either the combination of Shewhart and 

memory-type schemes or the use of supplementary runs-rules. To improve the EWMA scheme 

in monitoring very small shifts, the extended EWMA schemes such as the double EWMA 

(DEWMA), Hybrid EWMA (HEWMA), generally weighted moving average (GWMA) and 

double GWMA (DGWMA) schemes are recommended. Moreover, the side-sensitive designs 

can also be used to improve the performance of the basic and adaptive monitoring schemes as 

well as those supplemented with runs-rules in monitoring small to large shifts in the process.  

This study will focus on the design of side-sensitive double sampling monitoring scheme in 

order to improve the sensitivity of the existing double sampling schemes. The concept of 

double sampling is defined in the next sub-section. 

 

1.1.8 Concept of double sampling 

The main focus of this dissertation is on double sampling. Double sampling plan or scheme is 

not uniquely used in SPM (which is one of the branches of statistics also known as ‘Industrial 

Statistics’) but is also used in a variety of areas in statistics (see for example the review paper 

by Rao (2005)). More specifically, double sampling is “borrowed” from the area in statistics 

called ‘acceptance sampling’. Double sampling design is defined as a procedure in which a 

master sample is split into two separate homogeneous groups, where the first sample is used in 

the first stage and the second sample is used in the second stage. Note though, the latter 
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definition has been revised in the literature, and double sampling is now defined in a slightly 

different manner, and this is the main focus of chapters 2, 3 and 4.  

 

1.2 Problem statement 

Researchers and quality practitioners are looking for more sensitive, efficient and accessible 

monitoring schemes that can detect any change (or shift) in the production or manufacturing 

process as quickly as possible. However, most of the schemes have the difficulty to detect all 

range of shifts in the process soon after they have occurred, particularly smaller and moderate 

shifts. Montgomery (2013) showed that the detection ability of a monitoring scheme decreases 

when the size of a shift decreases. Montgomery (2013) also showed that the basic Shewhart 

monitoring schemes are more efficient in unmasking large shifts in the quality process and 

relatively less efficient in unmasking small and moderate shifts. To increase the sensitivity of 

monitoring schemes in unmasking small and moderate shifts, the CUSUM and EWMA 

monitoring schemes were proposed for such purpose. The CUSUM and EWMA monitoring 

schemes were found to be more efficient in detecting small and moderate changes in the 

process. However, they also have limitations because they are not as effective as the Shewhart 

scheme in unmasking large shifts. Hence, considerable efforts have been taken to improve their 

performance. 

Many researchers have hugely contributed to the development of new control schemes in order 

to increase their sensitivity in detecting small and moderate shifts. Some authors such as 

Croasdale (1974) and Daudin (1992) have developed double sampling schemes as an attempt 

to improve the efficiency of the traditional Shewhart scheme in monitoring small and moderate 

changes in the process mean. Other researchers combined different schemes in order to 

improve their efficiency, Shewhart charts were combined with CUSUM and EWMA in order 

to increase their sensitivity for being able to detect moderate and small process mean shifts. 

Primarily, when a control chart is improved in order to detect a particular type of shifts, the 

process affects the detection capability for other range of shifts. Therefore, an efficient and 

most powerful procedure would improve the detection capability irrespective of the magnitude 

(or size) of the shifts; or improve the detection capability for a specific type of shifts and keep 

its effectiveness for other shifts.  

In this study, a new double sampling scheme for monitoring the process location parameter, 

namely, the side-sensitive double sampling (SSDS) 𝑋̅  scheme when the process underlying 

distribution parameters are known and when they are estimated from some IC historical data. 

The proposed charts are expected to perform more efficiently than the classical Shewhart 



9 
 

scheme and the existing double sampling monitoring schemes, irrespective of the size of the 

location shifts. 

 

1.3 Research objectives  

As mentioned earlier, the traditional Shewhart 𝑋̅ scheme is less efficient in detecting (or 

unmasking) small and moderate shifts. Therefore, it is imperative to find alternative schemes 

to solve this problem. Many schemes have been developed in the past as an attempt to find an 

alternative of Shewhart 𝑋̅ scheme. The double sampling 𝑋̅ scheme is one of the alternatives; 

therefore, this research is willing to assist in improving the existing double sampling 𝑋̅ scheme 

by proposing a new design for the charting regions that will be shown to have a better detection 

ability than the existing double sampling design. The results from this study can be used as a 

baseline for developing and designing other schemes for monitoring the median, standard 

deviation, range, coefficient of variation, etc. In addition, this study is expected to promote the 

use of SPM approaches in manufacturing, public and private sectors and in all other types of 

organizations (or institutions) such as academic, engineering, health, education, finance, 

transportation, etc.  

 

1.4 Scope and limitation of the study 

In this dissertation, there are 5 main chapters. Firstly, in this introductory chapter, the main 

objectives of the whole dissertation are given and the important SPM concepts discussed 

throughout are defined so that the reader gets a better understanding of the research done in the 

upcoming chapters. In chapter 2, all the existing SPM literature on double sampling, exactly 

76 publications, are reviewed. A new design of double sampling schemes for monitoring abrupt 

shifts in the process mean when the distributional parameters are known and unknown are 

proposed in chapters 3 and 4, respectively. In chapter 5, the concluding remarks and possible 

future research ideas are given. Finally, the Appendices (i.e., A, B, C) explain how the 

expressions for calculating run-length properties are formulated in MATHCAD®14 software, 

and how they are derived for the new side-sensitive design. 

 

In this dissertation, the focus is on the univariate parametric double sampling schemes for 

monitoring the process location. The multivariate perspective of the chart and the monitoring 

of the variability will be discussed in the future. The scheme is based on some i.i.d. underlying 

parametric normal distribution. Note though, there are some discussions on other publications 
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that utilized other different distributions and those that are non-i.i.d. within the literature review 

in Chapter 2. 

 

1.5 Outline of the dissertation 

In this section, we give a brief outline of the research done in Chapters 2, 3, 4 and 5. 

 

1.5.1 Research done in Chapter 2 

Given the pioneering works by Crosier (1974) and Daudin (1992); double sampling procedures 

in SPM applications have shown some significant increase in outputs very recently, hence all 

the publications on this topic are reviewed. To ensure a proper easy to follow discussion, the 

literature on double sampling is discussed in terms of classes i.e. univariate and multivariate 

schemes. Based on these two classes, then the discussion is done in terms of double sampling 

schemes for monitoring the location, variability, as well as both the location and variability 

simultaneously. Based on some tables constructed to show what has been done in the literature, 

the key missing gaps are easily predictable.  

 

1.5.2 Research done in Chapter 3 

A new design for the double sampling scheme to monitor the process mean when the 

underlying process distribution (i.e., normal distribution) and parameters are specified is 

proposed. Using a number of run-length properties described in Section 1.1.3, it is shown that 

the new design yields a better OOC performance than that of the most used double sampling 

scheme by Daudin (1992) and a variety of other well-known monitoring schemes to monitor 

the process mean. Real-life examples are used to illustrate its implementation. The illustration 

of how the run-length formulae were programmed in MATHCAD® is shown in Appendix A 

and the derivation of the theoretical run-length formulas are shown in Appendix B.  

 

1.5.3 Research done in Chapter 4 

Given that the research done in Chapter 3 deals with the underlying parameters assumed 

known, then in Chapter 4, the effect of estimating the unknown parameters on the Phase II run-

length performance is conducted. More importantly, the run-length properties of the new 

design for the double sampling scheme are derived and evaluated empirically when the process 

parameters are assumed unknown. The aim of conducting parameters unknown case is to study 

the corresponding run-length properties and compare its performance to that of parameters 

known done in Chapter 3. That is, the intention is to measure the difference in performance 
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when parameters are known versus parameters unknown. As in other different monitoring 

schemes, researchers like Jones et al. (2004) observed that the run-length properties are 

significantly different when parameters are known versus parameters unknown. Consequently, 

the parameters unknown case is more real-life oriented than that in Chapter 3 (i.e. parameters 

known). Finally, the effect of the Phase I sample size on the performance of Phase II SSDS 

monitoring scheme in terms of the unconditional ARL metric when the parameters known 

optimal design parameters are used instead of the parameters unknown ones. A real-life 

example is used to illustrate its implementation. The derivation of the theoretical run-length 

formulas is shown in Appendix C. 

 

1.5.4 Research done in Chapter 5 

Here, the key findings from all the chapters in this dissertation are summarized. That is, the 

concluding remarks and possible future research ideas are given in this chapter. 
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Chapter 2. Double sampling schemes: A review and some future research 

ideas 

 

2.0 Overview 

In this chapter, the literature review on double sampling monitoring schemes is discussed. All 

existing articles on double sampling monitoring schemes were considered without any 

exclusion criterion. This chapter is divided into six sections organised as follows: in Section 

2.1, an introductory discussion presenting a detailed summary of all the publications on double 

sampling monitoring schemes is given. Section 2.2 discusses some important run-length 

properties that are used in the SPM literature to evaluate the performance of the double 

sampling schemes. In Section 2.3, the univariate double sampling monitoring schemes are 

discussed; whereas the multivariate ones are discussed in Section 2.4. Other different 

monitoring schemes or procedures that are integrated with the operation of the double sampling 

scheme are discussed in Section 2.5. Finally, some concluding remarks and future research 

ideas are given in Section 2.6. 

 

2.1 Introduction 

A double sampling monitoring strategy is one of the most powerful tools used in SPM to detect 

unexpected changes in various types of processes (such as business, health, manufacturing, 

etc.) as quickly as possible. Double sampling monitoring schemes implement a two-stage 

monitoring procedure to decide whether the process being monitored is IC or OOC. Croasdale 

(1974) adapted the idea of double sampling procedure from the acceptance sampling field and 

implemented its use in the SPM field. Croasdale (1974)’s method entails the use of a sample 

of size 𝑛1 in stage 1 and of size 𝑛2 in stage 2 to compute the corresponding charting statistics; 

both sub-samples from the same master sample of size 𝑛 (= 𝑛1 + 𝑛2), where 𝑛2 > 𝑛1. 

Consequently, as an improvement to Croasdale’s method, Daudin (1992) showed that the use 

of the sample size 𝑛1 in stage 1 and both 𝑛1 and  𝑛2 (i.e., 𝑛1 + 𝑛2) in stage 2 yields an even 

more improved performance. Based on the latter, the vast majority of discussions on double 

sampling schemes done post-1992 were more focused on the method by Daudin (1992) rather 

than the original version by Croasdale (1974). 

There are three main different designs of Shewhart-type double sampling schemes charting 

regions, which are defined as: (i) original non-side-sensitive, (ii) improved non-side-sensitive 

and, (iii) side-sensitive. The first non-side-sensitive double sampling scheme is a two-stage 

scheme based on two unconnected samples (i.e. the first sample of size 𝑛1 in stage 1 and the 
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second sample of size 𝑛2 in stage 2). It has only been discussed in 5 research works (see Figure 

2.1(a) for its charting regions) – and it was first proposed in Croasdale (1974). The second non-

side-sensitive double sampling scheme (by Daudin, 1992) is the most used design by slightly 

over 90% of publications on this topic; see Figure 2.1(b) for its charting regions – henceforth 

denoted by NSSDS. Unlike Croasdale’s design, the Daudin’s design is a two-stage scheme 

based on two connected samples (i.e. the first sample of size 𝑛1 in stage 1 and the second 

combined sample of size 𝑛1 + 𝑛2 in stage 2). The third one is called the side-sensitive double 

sampling with its charting regions given in Figure 2.1(c) – henceforth denoted by SSDS – this 

is proposed in Chapter 3 of this dissertation or, in Malela-Majika et al. (2019). The SSDS 

scheme is based on two connected samples. It is important to note from Figure 2.1 that the 

Croasdale (1974) charting regions imply that a monitoring process never goes to a state of OOC 

in stage 1, but it only does in stage 2. However, the charting regions in Figures 2.1(b) and (c) 

do allow for an OOC signal to take place in stage 1, making it more efficient. Note that the 

SSDS scheme contains work that is fully discussed in Chapters 3 and 4 of this dissertation.  

While the majority of the double sampling schemes are focused on the monitoring of the 

process location parameter, there is a variety of other different parameters that can be 

monitored by these schemes, e.g. the standard deviation, variance, range, coefficient of 

variation, etc. All existing publications from 1974 up to February 2020 that we could find in 

the SPM literature are summarized in Table 2.1. The corresponding journals or conference 

proceedings that published these ones are outlined in Table 2.2. Next, different authors that 

have made a contribution of at least two publications in this area of research are listed in Table 

2.3 along with their respective affiliations and the number of publications each published. It is 

observed from Tables 2.2 and 2.3 that Quality and Reliability Engineering International 

journal has the most publications on double sampling schemes, and that Prof M.B.C. Khoo 

(from Universiti Sains Malaysia) significantly has the most publications than any other author 

/ researcher. 
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(a) The original non-side-sensitive double sampling design 

 
(b) The latest non-side-sensitive double sampling (NSSDS) design 

 
(c) The side-sensitive double sampling (SSDS) design 

Figure 2.1: The charting regions in stages 1 and 2 of the different double sampling designs 
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Table 2.1: Classification of articles discussing double sampling schemes in SPM (sorted 

chronologically) 
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Croasdale (1974)           

Daudin et al. (1990)           

Daudin (1992)           

Irianto and Shinozaki (1998)           

Carot et al. (2002)           

He et al. (2002)           

He and Grigoryan (2002)           

He and Grigoryan (2003)           

Hsu (2004)           

Khoo (2004)           

Grigoryan and He (2005)           

He and Grigoryan (2006)           

Hsu (2007)           

Claro et al. (2008)           

Costa and Claro (2008)           

Champ and Aparisi (2008)           

Costa and Machado (2008)           

Machado and Costa (2008)           

Torng et al. (2009a)           

Torng et al. (2009b)           

Torng and Lee (2009)           

Lee et al. (2009)           

Irianto and Juliani (2010)           

Torng et al. (2010)           

Lee et al. (2010)           

Costa and Machado (2011)           

De Araújo Rodrigues et al. (2011)           

Khoo et al. (2011b)           

Faraz et al. (2012)           

Lee et al. (2012a)           

Lee et al. (2012b)           
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Table 2.1: (continued) 
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Khoo et al. (2013a)           

Khoo et al. (2013b)           

Khoo et al. (2013c)            

Teoh et al. (2013)           

Lee (2013)           

Chong et al. (2014)           

Teoh et al. (2014a)            

Teoh et al. (2014b)           

Costa and Machado (2015)           

Noorossana et al. (2015)           

Teoh et al. (2015)           

You et al. (2015)           

Khoo et al. (2015)           

Khoo et al. (2016)           

Lee and Khoo (2016)           

Teoh et al. (2016a)           

Teoh et al. (2016b)           

Aghaulor and Ezekwem (2016)           

Costa (2017)           

You (2017)           

Lee and Khoo (2017a)           

Lee and Khoo (2017b)           

Lee and Khoo (2017c)           

Chong et al. (2017)           

Castagliola et al. (2017)           

Yang and Wu (2017a)            

Yang and Wu (2017b)           

Haq and Khoo (2018)           

You (2018)           

Ng et al. (2018)           

Saha et al. (2018)           

Lee and Khoo (2018)           

Khatun et al. (2018)           

Chong et al (2018)           

Malela-Majika and Rapoo (2019)           

Malela-Majika et al. (2019)           

Malela-Majika (2019)           

Lee and Khoo (2019a)            

Lee and Khoo (2019b)           

Lee and Khoo (2019c)            

Haq and Khoo (2019)           

Rozi et al. (2019)           

Lee et al. (2019)           

Umar et al. (2019)           

Katebi and Moghadam (2020)           

Motsepa et al. (2020)           
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Table 2.2: Journals / Conference proceedings with double sampling schemes publications 

Journal / Conference proceedings title 
Number of 

publications 
Quality and Reliability Engineering International 9 

Communications in Statistics – Simulation and Computation 9 

International Journal of Production Research 7 

Communications in Statistics – Theory and Methods 6 

International Journal of Production Economics 5 

Computers & Industrial Engineering 4 

Journal of Applied Statistics 3 

South African Journal of Industrial Engineering 2 

European Journal of Operational Research  2 

International Journal of Advanced Manufacturing Technology 2 

Academic Journal of Science 1 

COMPUSOFT, An International Journal of Advanced Computer Technology 1 

European Journal of Industrial Engineering 1 

Expert Systems with Applications 1 

IEEE Access 1 

IEEE International Conference on Control and Robotics Engineering 1 

IEEE International Conference on Industrial Engineering and Engineering Management 1 

IIE Transactions 1 

International Conference on Smart Sensors and Application 1 

International Journal of Applied Engineering Research 1 

International Journal of Engineering Research & Technology 1 

International Journal of Industrial Engineering – Theory, Applications & Practice 1 

International Journal of Production Development 1 

International Journal of Pure and Applied Mathematics 1 

IOP Conference Series: Materials Science and Engineering 1 

ITB Journal of Engineering Science 1 

Journal of Probability and Statistics 1 

Journal of Quality Measurement and Analysis 1 

Journal of Quality Technology 1 

Journal of Statistical Computation and Simulation 1 

Journal of Testing and Evaluation 1 

MATEC Web of Conferences 1 

Pesquisa Operacional 1 

PLoS ONE 1 

Quality Technology and Quantitative Management 1 

Revue de Statistique Appliquée 1 

Transactions of the Institute of Measurement and Control 1 
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Table 2.3: Top researchers in SPM with at least two publications on double sampling 

schemes 

Author Affiliation 
Number of 

publications 
Khoo, M.B.C. Universiti Sains Malaysia; Malaysia 31 

Lee, M.H. Swinburne University of Technology; Malaysia 12 

Teoh, W.L. Heriot-Watt University Malaysia; Malaysia 12 

Castagliola, P. Université de Nantes & LS2N UMR CNRS 6004; France 10 

Lee, P.-H. National Yunlin University of Science and Technology; Taiwan 9 

Torng, C.-C. National Yunlin University of Science and Technology; Taiwan 8 

Costa, A.F.B. Sao Paulo State University; Brazil 7 

Yeong, W.C. University of Malaya; Malaysia 7 

Teh, S.Y. Universiti Sains Malaysia; Malaysia 6 

Chong, Z.L. Universiti Tunku Abdul Rahman; Malaysia 5 

He, D. University of Illinois; USA 5 

Grigoryan, A. University of Illinois; USA 5 

Machado, M.A.G. Sao Paulo State University; Brazil 5 

Malela-Majika, J.-C. University of South Africa; South Africa 4 

Irianto, D. Institute of Technology Bandung; Indonesia 3 

Saha, S. University of Business Agriculture and Technology, Bangladesh 3 

Tseng, C.-C. National Yunlin University of Science and Technology; Taiwan 3 

You, H.W. Universiti Kebangsaan Malaysia; Malaysia 3 

Haq, A. Quaid-i-Azam University, Pakistan 3 

Chakraborti, S. University of Alabama; USA 2 

Claro, F.A.E. Sao Paulo State University; Brazil 2 

Daudin, J.J. UMR MIA 518 AgroParisTech/INRA; France 2 

Hsu, L.F. City University of New York; USA 2 

Lee, H.C. Universiti Sains Malaysia; Malaysia 2 

Liao, H.-S. National Yunlin University of Science and Technology; Taiwan 2 

Liao, N.-Y. National Yunlin University of Science and Technology; Taiwan 2 

Motsepa, C.M. University of South Africa; South Africa 2 

Wu, Z. Nanyang Technological University; Singapore 2 

Wu, S.-H. National Chengchi University; Taiwan 2 

Yang, S.-F. National Chengchi University; Taiwan 2 

 

 

2.2 Operation and run-length properties of the double sampling schemes 

Remark: from Table 2.1, all the publications on double sampling schemes are based on some 

i.i.d. (independent and identically distributed) underlying parametric distribution (except for 

Yang and Wu (2017a, b) and the seven publications that are based on serially correlated data).  

 

2.2.1 Operation of the basic double sampling scheme  

Assume that 𝑌𝑡𝑗 are some i.i.d. observations of some quality characteristic of interest which are 

from some specified distribution. From these 𝑌𝑡𝑗 observations, a first subgroup sample of size 

𝑛1 is collected at the 𝑡𝑡ℎ sampling time (denoted as 𝑌1𝑡𝑗, 𝑡 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛1). If 

the standardized charting statistic based on the first sample falls on a region that requires a 

second stage to make a decision, then a second subgroup sample of size 𝑛2 (where 𝑛2 ≥ 𝑛1) is 
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also collected at the 𝑡𝑡ℎ sampling time (denoted as 𝑌2𝑡𝑗, 𝑡 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛2). 

Then any double sampling scheme uses these two separate sub-samples taken from the same 

master sample to decide whether the process is IC or OOC, and these sub-samples are used to 

compute the charting statistics of the two stages shown in Figure 2.1. Since the majority of the 

double sampling schemes in Table 2.1 are based on the univariate sample mean using the 

standard normal distribution; hence, for illustration purpose of the stages and the operation, we 

use the NSSDS 𝑋̅ scheme when parameters are known and unknown. 

 

 When parameters are known (i.e. Case K), the stages are implemented as follows: 

 Stage 1 

Let 𝑌̅1𝑡 = ∑ 𝑌1𝑡𝑗 𝑛1⁄𝑛1
𝑗=1  be the mean of the first sample of subgroup size 𝑛1 at the 𝑡𝑡ℎ sampling 

time. Hence, the standardized statistic for the first sample at the 𝑡𝑡ℎ  sampling time is then given 

by  

𝑍1𝑡 =
𝑌̅1𝑡 − 𝜇0

𝜎0 √𝑛1⁄
 

(2.1) 

where 𝑌̅1𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1
) and 𝛿 = |𝜇1 − 𝜇0| 𝜎0⁄  represents the magnitude of the 

standardized mean shift with the OOC mean 𝜇1 (𝜇1 = 𝜇0 + 𝛿𝜎0), so that 𝛿 = 0 means that the 

process is IC. In this case, 𝑍1𝑡 follows a standard normal distribution (i.e. 𝑍1𝑡~𝑁(0,1)). 

However, when 𝛿 ≠ 0, the process is OOC and 𝑍1𝑡~𝑁(𝛿, 1).   

 Stage 2 

At the 𝑡𝑡ℎ  sampling time of the second sample, the sample mean, i.e. 𝑌̅2𝑡 = ∑ 𝑌2𝑡𝑗 𝑛2⁄𝑛2
𝑗=1 , and 

the combined (or pooled) sample mean, i.e. 𝑌̅𝑡 = (𝑛1𝑌̅1𝑡 + 𝑛2𝑌̅2𝑡)/(𝑛1 + 𝑛2) are calculated, 

respectively. Hence, the standardized charting statistic for the combined samples at the 

𝑡𝑡ℎ  sampling time is then given by 

𝑍𝑡 =
𝑌̅𝑡 − 𝜇0

𝜎0 √𝑛1 + 𝑛2⁄
, (2.2) 

where 𝑌̅𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1+𝑛2
). When the process is IC, 𝑍2𝑡~𝑁(0, 1) since 𝛿 = 0 and when 

the process is OOC, 𝑍2𝑡~𝑁(𝛿, 1). 

 

 When parameters are unknown (i.e. Case U), the stages are implemented as follows: 

Phase I parameter estimation 
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Since the IC process parameters, 𝜇0 and 𝜎0, are usually unknown they have to be estimated 

from m Phase I subgroup samples, each of size 𝑛, i.e. 𝑋𝑖𝑗, 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. The 

estimated IC process parameters, 𝜇̂0 and 𝜎̂0, are given by  

𝜇̂0 =
1

𝑚𝑛
∑∑𝑋𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (2.3) 

and  

𝜎̂0 = √
1

𝑚(𝑛 − 1)
∑∑(𝑋𝑖𝑗 − 𝑋̅𝑖)

2
𝑛

𝑗=1

𝑚

𝑖=1

, (2.4) 

respectively, where 𝑋̅𝑖 = ∑ 𝑋𝑖𝑗/𝑛
𝑛
𝑗=1 .   

 

Phase II charting statistics and operation procedure: Stages 1 and 2 

Let 𝑌𝑡𝑗 be the Phase II observations from i.i.d. 𝑁(𝜇1 , 𝜎0), where 𝜇1 is the OOC mean (i.e. 𝜇1 =

𝜇0 + 𝛿𝜎0). In Phase II of the NSSDS 𝑋̅ monitoring scheme, there are two distinct standardized 

charting statistics in Case U (i.e. 𝑍̂1𝑡 and 𝑍̂2𝑡, shown below) used during stages 1 and 2, 

respectively.  

Stage 1: Similarly, as in Case K, 𝑌̅1𝑡 = ∑ 𝑌1𝑡𝑗 𝑛1⁄𝑛1
𝑗=1 ; so that 

𝑍̂1𝑡 =
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0 √𝑛1⁄
. (2.5) 

Stage 2: Similarly, 𝑌̅2𝑡 = ∑ 𝑌2𝑡𝑗 𝑛2⁄𝑛2
𝑗=1  and  𝑌̅𝑡 = (𝑛1𝑌̅1𝑡 + 𝑛2𝑌̅2𝑡)/(𝑛1 + 𝑛2), so that 

𝑍̂𝑡 =
𝑌̅𝑡 − 𝜇̂0

𝜎̂0 √𝑛1 + 𝑛2⁄
. (2.6) 

 

In essence, Equations (2.1) to (2.2) as well as (2.5) to (2.6), imply that there are two distinct 

standardized charting statistics used during stages 1 and 2 (if needed), respectively. 

Consequently, based on abovementioned stages, then it follows that the Phase I and Phase II 

operational procedure of the NSSDS scheme is as summarized in Figure 2.2. Note that in Case 

K, only the Phase II portion is relevant. 
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Figure 2.2: Flowchart of the operation of the NSSDS scheme in Phase I and Phase II 

 

Although Figure 2.2 is done for NSSDS 𝑋̅ scheme, it can easily be modified to account for the 

different designs outlined in Figure 1 as well as for different charting statistics, i.e. the median, 

standard deviation, coefficient of variation, etc. 

 

2.2.2 Run-length properties of the NSSDS 𝑿̅ scheme in Case K 

Let 𝑃0𝑘 represents the probability that the process is regarded as IC at stage 𝑘, where 𝑘 = 1, 2. 

Then,  𝑃0 = 𝑃01 + 𝑃02 is the probability that the process is IC, where: 

𝑃01 = 𝑃(𝑍1𝑡 ∈ A) = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1], (2.7) 

and  

𝑃02 = 𝑃[𝑍1𝑡 ∈ B and 𝑍2𝑡 ∈ E] 

= ∫
𝑍1𝑡∈I∗∗

{Φ[𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ] − Φ[−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]} 𝜙(𝑧)𝑑𝑧  
(2.8) 

where Φ(.) and 𝜙(.) are the c.d.f. (cumulative distribution function) and p.d.f. (probability 

density function) of the standard normal random variable, respectively; 𝑟2 = 𝑛1 + 𝑛2, 𝑐 =

𝑟 √𝑛2⁄ , and I∗∗ = [−𝐿 + 𝛿√𝑛1, −𝐿1 + 𝛿√𝑛1) ∪ (𝐿1 + 𝛿√𝑛1, 𝐿 + 𝛿√𝑛1] . Hence,   
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𝑃0 = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1]

+ ∫
𝑍1𝑡∈I∗∗

{Φ [𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]

− Φ [−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧. 

(2.9) 

Given that the NSSDS 𝑋̅ scheme is a Shewhart-type one, its run-length (RL) follows a 

geometric distribution. Therefore, the c.d.f. of the RL distribution (denoted 𝐹𝑅𝐿(ℓ)) is obtained 

as  

𝐹𝑅𝐿(ℓ) = 𝑃(𝑅𝐿 ≤  ℓ) = 1 − 𝑃0,
 ℓ (2.10) 

where ℓ ∈ {1, 2, 3, … }. Then, the (100𝜌)𝑡ℎ percentile of the RL distribution, ℓ𝜌, is given by 

𝑃(𝑅𝐿 ≤ ℓ𝜌 − 1) ≤ 𝜌 and 𝑃(𝑅𝐿 ≤ ℓ𝜌) > 𝜌. (2.11) 

Note that the most used metrics to evaluate the run-length distribution are 𝜌 = 0.05, 0.25, 0.50, 

0.75 and 0.95, which denote the 5th, 25th, 50th (or median), 75th and 95th percentiles, 

respectively. Other well-known RL properties are average run-length (ARL), standard deviation 

of the run-length (SDRL), average sample size (ASS) and average number of observations to 

signal (ANOS) which are given by  

𝐴𝑅𝐿 =
1

1 − 𝑃0
, (2.12) 

𝑆𝐷𝑅𝐿 =
√𝑃0

1 − 𝑃0
, (2.13) 

𝐴𝑆𝑆 = 𝑛1 + 𝑛2𝑃2   and    𝐴𝑁𝑂𝑆 = 𝐴𝑆𝑆 × 𝐴𝑅𝐿, (2.14) 

respectively, where 𝑃2 = 𝑃(𝑍1𝑡 ∈ 𝐵) is the probability of taking the second sample, and it is 

given by 

𝑃2 = Φ(𝐿 + 𝛿√𝑛1) − Φ(𝐿1 + 𝛿√𝑛1) + Φ(−𝐿1 + 𝛿√𝑛1) − Φ(−𝐿 + 𝛿√𝑛1). 

Since the ANOS depends on the ASS and ARL values, a larger ANOS value implies that either 

the monitoring scheme is inefficient and/or the cost of inspection is higher. A variety of other 

RL performance measures have been used in the literature, these include the average time to 

signal (ATS), average number of samples to signal (ANSS), average number of switches 

(ANSW), standard deviation of time to signal (SDTS), standard deviation of number of samples 

to signal (SDNSS), standard deviation of number of switches (SDNSW) – these are thoroughly 

discussed in Noorossana et al. (2015).      
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2.2.3 Run-length properties of the NSSDS 𝑿̅ scheme in Case U 

In order to calculate the unconditional RL properties, we need to first derive the conditional 

ones, see for instance, You et al. (2015). Hence, the conditional c.d.f. of 𝑍̂1𝑡, given 𝜇̂0 and 𝜎̂0 

is defined as 

𝐹𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) = Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). (2.15) 

where 𝑈 = (𝜇̂0 − 𝜇0)
√𝑚𝑛

𝜎0
 and 𝑉 = 𝜎̂0 𝜎0⁄ . Consequently, the conditional p.d.f. of 𝑍̂1𝑡, is given 

by 

𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) = 𝑉𝜙 (U√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). (2.16) 

Since 𝜇̂0~𝑁(𝜇0,
𝜎0

√𝑚𝑛
), then 𝑈~𝑁(0,1) so that the p.d.f. of the random variable 𝑈 is simply,  

𝑓𝑈(𝑢) = 𝜙(𝑢). (2.17) 

Next, using the fact that  𝑉2 = (𝜎̂0 𝜎0⁄ )2 has a gamma distribution with parameters 𝑚(𝑛 −

1)/2 and 2/[𝑚(𝑛 − 1)], then the p.d.f. of  𝑉 is defined as 

𝑓𝑣(𝑣|𝑚, 𝑛) = 2𝑣𝑓𝛾 [𝑣2|
𝑚(𝑛 − 1)

2
,

2
𝑚(𝑛 − 1)

], (2.18) 

where 𝑓𝛾(. ) is the p.d.f. of the gamma distribution with parameters 
𝑚(𝑛−1)

2
 and 

2

𝑚(𝑛−1)
. 

Consequently, to derive the unconditional c.d.f., we need to first derive the unconditional 

probability of the IC process. Let 𝑃̂0𝑘 denote the probability that the process with estimated 

parameters remains IC at the sampling stage 𝑘 (with 𝑘 = {1, 2}). Then, the probability that the 

process is IC is given by 

𝑃̂0 = 𝑃̂01 + 𝑃̂02 (2.19) 

where, 

𝑃̂01 = Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) 

(2.20) 

𝑃̂02 = ∫ 𝑃̂𝐸𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

.

𝑍∈I∗∗
 

with   

𝑃̂𝐸 = Φ[𝑈√
𝑛2

𝑚𝑛
+ 𝑉 (

𝐿2√𝑛1+𝑛2−𝑧√𝑛1

√𝑛2
) − 𝛿√𝑛2] − Φ [𝑈√

𝑛2

𝑚𝑛
− 𝑉 (

𝐿2√𝑛1+𝑛2+𝑧√𝑛1

√𝑛2
) − 𝛿√𝑛2]. 

Then, the unconditional c.d.f. of the NSSDS 𝑋̅ scheme is given by 

𝐹𝑅𝐿(ℓ) = ∫ ∫ (1 − 𝑃̂0
ℓ)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢,

+∞

0

+∞

−∞

 (2.21) 
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where ℓ ∈ {1, 2, 3, … . , }, 𝑓𝑈(𝑢) and 𝑓𝑉(𝑣) are defined in Equations (2.17) and (2.18), 

respectively. 

Therefore, the unconditional 𝐴𝑅𝐿 and 𝑆𝐷𝑅𝐿 of the NSSDS 𝑋̅ scheme are given by 

𝐴𝑅𝐿 = ∫ ∫ (
1

1 − 𝑃̂0

)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

 (2.22) 

and  

𝑆𝐷𝑅𝐿 = [∫ ∫ (
1 + 𝑃̂0

1 − 𝑃̂0

)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

− 𝐴𝑅𝐿2]

1/2

. (2.23) 

The 𝐴𝑆𝑆 is given by 

𝐴𝑆𝑆 = ∫ ∫ (𝑛1 + 𝑛2𝑃̂2)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

 (2.24) 

where 𝑃̂2 is the probability of taking the second sample, which is given by 𝑃̂2 =

𝑃(𝑍̂1𝑡 ∈ B|𝜇̂0, 𝜎̂0), or simply, 

𝑃̂2 = Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1)

+ Φ(𝑈√
𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) − Φ(U√

𝑛1

𝑚𝑛
− 𝑉𝐿 − 𝛿√𝑛1). 

(2.25) 

Then, the average number of observations to signal (𝐴𝑁𝑂𝑆) is given by  

𝐴𝑁𝑂𝑆 = ∫ ∫ (𝑛1 + 𝑛2𝑃̂2) (
1

1 − 𝑃̂0

)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

. (2.26) 

 

2.2.4 Other run-length properties of the double sampling scheme 

Various authors have revealed that if a monitoring scheme is designed based on one specific 

size of a mean shift, it will perform poorly when the actual size of the shift is significantly 

different from the assumed size (see You (2017, 2018)). Moreover, since the ARL is defined as 

the average number of samples required before an OOC signal is issued in the process. It is 

well-known that the RL distribution of a monitoring scheme is generally highly right-skewed 

when parameters are estimated; see for example Jones et al. (2004). Also, the ARL is criticized 

because of its ineffectiveness in assessing the overall performance, especially when the aim of 

the study is to assess the performance of a monitoring scheme over a range of shifts. Thus, 

many researchers have recommended the use of a quality loss function (QLF) instead of the 

ARL, SDRL, ANOS, ATS, etc., to assess the performance of a monitoring scheme. A QLF 

describes the relationship between the shift size and the quality impact. Ryu et al. (2010) 

observed the uncertainty in 𝛿, and hence, they recommended designing monitoring schemes to 
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rather minimize quality loss, which is measured by a quantity called the expected weighted 

run-length (EWRL) which is given by  

𝐸𝑊𝑅𝐿 = 𝐸[𝑤(𝛿) × 𝑅𝐿(𝛿)] = ∫ (𝑤(𝛿) × 𝑅𝐿(𝛿))

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

× ℎ(𝛿)𝑑𝛿 (2.27) 

where 𝛿 follows some p.d.f. with a density function ℎ(𝛿) and a range [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥], where 𝛿𝑚𝑖𝑛 

and 𝛿𝑚𝑎𝑥 are the lower and upper bound of the range of 𝛿, 𝑤(𝛿) is a weight function associated 

with 𝛿 and 𝑅𝐿(𝛿) is some specific shift run-length metric, e.g., ARL(𝛿), ANOS(𝛿), ATS(𝛿), 

etc. In the double sampling schemes literature, Equation (2.27) has been utilised by a number 

of different authors to formulate a bi-objective algorithm to obtain optimal parameter values, 

see for instance, Chong et al. (2014), Lee and Khoo (2017c), etc. More specifically, You (2017, 

2018) used 𝑤(𝛿)=1 to design the NSSDS scheme with the objective of minimizing Equation 

(2.27) when parameters are known (i.e. 𝑅𝐿(𝛿) equal to Equation (2.12)) and unknown (i.e. 

𝑅𝐿(𝛿) equal to Equation (2.22)), respectively. 

 

2.3 Univariate double sampling schemes 

In this section, the publications discussing basic double sampling schemes for location, 

variability and, both the mean and variability simultaneously are discussed in sub-sections 

2.3.1, 2.3.2 and 2.3.3, respectively. Note that double sampling schemes combined with other 

monitoring schemes to monitor location, variability, both the mean and variability 

simultaneously are discussed in Section 2.5.  

 2.3.1 Location 

In an effort to design double sampling schemes for monitoring the mean, many authors have 

studied the same NSSDS scheme; see for instance Daudin et al. (1990). However, they have 

designed it by taking into account different design aspects. For example, Irianto and Juliani 

(2010) outlined the following three design criterions:  

(i)  Minimize the expected number of sampling and inspections,  

(ii)  Maximize the OOC detection power (or minimizing the customer risk),  

(iii) Minimize the false alarm rate (or minimizing the producer risk). 

It worth pointing out that Daudin et al. (1990) and Daudin (1992) method prioritized (i) and 

(iii), whereas Irianto and Shinozaki (1998) used the charting regions in Figure 2.1(a) as these 

regions prioritize (ii) without taking into account (i). Irianto and Juliani (2010) formulated a 

model that takes into account (ii) and (iii), simultaneously. Note though, in Stage 2, Irianto and 

Shinozaki (1998) as well as Irianto and Juliani (2010) used a sample of size 𝑛1 + 𝑛2 instead of 
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just 𝑛2 as done in Croasdale (1974). Next, other publications discussed here, tend to ignore 

design criterion (iii), by keeping the false alarm rate constant, then prioritizing (i) and (ii), 

simultaneously. 

He et al. (2002) compared the performance of the NSSDS scheme to a triple sampling scheme 

(i.e. with 3 stages) and they observed that increasing the number of stages improves the 

detection ability of a monitoring scheme. However, Hsu (2004) raised some valid concerns 

regarding the manner in which the generic algorithm in He et al. (2002) was designed as it only 

took into account the ASS only, without using other run-length performance measures.  

As outlined in Table 1, seven publications for serially dependent observations using the NSSDS 

𝑋̅ scheme. Costa and Claro (2008) used the autoregressive moving average with order (1,1), 

whereas Claro et al. (2008) and Costa and Machado (2011) used the first-order autoregressive 

model; however, Torng et al. (2009a) and Lee et al. (2009) used a correlation model proposed 

in Yang and Hancock (1990). Finally, Haq and Khoo (2018) designed a NSSDS 𝑋̅ scheme 

based on a regression-type estimator of the process mean with an auxiliary variable under some 

specific conditions of correlation. 

Torng and Lee (2009) studied the NSSDS 𝑋̅ scheme using a variety of t- and gamma 

distributions with different parameters and observed that it is as good as the variable parameter 

𝑋̅ scheme; however, it turns to be much better than the basic 𝑋̅ scheme in terms of a variety of 

run-length performance measures. 

There have been numerous articles that have investigated the performance of the NSSDS 𝑋̅ 

scheme when parameters are unknown, these are: Khoo et al. (2013a, b), Teoh et al. (2013, 

2014b, 2015, 2016a, 2016b), You et al. (2015) and You (2018). That is, these latter articles 

studied the NSSDS scheme in Case U for a variety of design criterion and contexts. The design 

parameters that are obtained while the process is IC are such that the following performance 

metrics used in the latter articles (e.g. the unconditional average run-length (𝐴𝑅𝐿), the 

unconditional median run-length, the unconditional expected 𝐴𝑅𝐿 (𝐸𝐴𝑅𝐿), the unconditional 

average sample size (𝐴𝑆𝑆), the unconditional average number of observations to signal 

(𝐴𝑁𝑂𝑆), etc.) are minimized when the process is in a state of OOC. However, Motsepa et al. 

(2020) studied SSDS 𝑋̅ scheme when parameters are unknown (this is part of Chapter 4 of this 

dissertation), including the effect of Phase I sample size on the Phase II OOC performance.  

The economic and economic-statistical design of the NSSDS 𝑋̅ scheme in Case K have been 

conducted in an effort to find the optimal set of parameters which minimizes the net sum of all 

costs involved, so that the scheme can be operated at an economically optimal level by using 
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the classical cost model in Lorenzen and Vance (1986) as well as the sensitivity analysis. The 

latter was studied by Torng et al. (2009a, b) when observations are serially correlated and i.i.d., 

respectively.  

Until more recently, all the publications on NSSDS 𝑋̅ schemes have assumed that the 

observations were obtained using perfect measurements, i.e. without contaminated 

observations. Note that as discussed in Maleki et al. (2017), this is hardly ever true in real-life 

applications; hence, Lee et al. (2019) investigated the effect of measurement errors on the 

NSSDS scheme using a linearly covariate error model to capture the inherent measurement 

inaccuracy. To reduce the negative effect of measurement errors, Lee et al. (2019) used the 

multiple measurements sampling strategy (instead of the standard single measurement). 

Following a similar operational procedure as that in Figure 2.2, De Araújo Rodrigues et al. 

(2011) formulated the first double sampling scheme for attribute data called the NSSDS 𝑛𝑝 

scheme which monitors the number of nonconforming items in a sample and it was shown to 

have a significantly better performance than the basic 𝑛𝑝 scheme. More recently, Lee and Khoo 

(2019c) investigated the performance of the NSSDS 𝑛𝑝 scheme in Phase II when the process 

parameter is estimated from some IC historical Phase I data.  

   

 2.3.2 Variability 

The first NSSDS scheme for variability was proposed in He and Grigoryan (2002), where the 

sample standard deviation is computed by, 𝑆 =
1

𝑛
∑ (𝑋𝑡𝑗 − 𝑋̅)

2𝑛
𝑗=1  in each stage, accordingly, 

by using the operational procedure in Figure 2.2. Lee et al. (2010) illustrated a real-life 

application of the NSSDS 𝑆 scheme using a wire bonding process of packaging, where they 

showed the effectiveness of the scheme in reducing the cost as it requires fewer samples. Next, 

He and Grigoryan (2003) presented an improved version of the scheme in He and Grigoryan 

(2002) without the normality assumption for the sample standard deviation. Similar to the 

manner that Hsu (2004) showed that the sole use of the ASS without other run-length measures 

may, in some cases, yield misleading results; Hsu (2007) showed that He and Grigoryan 

(2003)’s sole use of the ASS is questionable because the conclusion is invalid when using other 

run-length properties. Next, Khoo (2004) investigated the performance of the NSSDS scheme 

for monitoring the variability using the S2 statistic when the underlying parameters are known 

and later, Castagliola et al. (2017) conducted the same study when the underlying parameters 

were estimated from a Phase I IC data and they also investigated the effect of Phase I sample 

size on the Phase II OOC performance.      
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Contrary, to the above publications that use either the standard deviation or the variance to 

monitor variability, Costa (2017) proposed an NSSDS scheme based on the sample ranges. 

 

 2.3.3 Location and variability 

In the review paper by McCracken and Chakraborti (2012), the authors observed that 

monitoring the process mean alone would imply ignoring the changes in the process standard 

deviation, despite being well known that the latter can be greatly affected when the mean value 

gives a poor measure of central tendency. For monitoring both the mean and variability 

simultaneously, it is assumed that the process is OOC if either the process mean shifts from 𝜇0 

to 𝜇1 = 𝜇0 ± 𝛿𝜎0 (i.e., |𝛿| > 0) and/or the process standard deviation shifts from 𝜎0 to 𝜎1 =

𝛾𝜎0 (i.e., 𝛾 > 1 for increase in 𝜎0, or 0 < 𝛾 < 1 for decrease in 𝜎0). The process is IC if 𝛿 = 0 

and 𝛾 = 1. He and Grigoryan (2006) first proposed the NSSDS scheme to monitor both the 

mean and standard deviation simultaneously using the NSSDS 𝑋̅ sub-scheme by Daudin (1992) 

and the NSSDS 𝑆 sub-scheme by He and Grigoryan (2002) i.e., with separate schemes for the 

mean and standard deviation. Later, Lee and Khoo (2017b) proposed the use of the single max-

type plotting statistic (see Chen and Cheng (1998)); that is, instead of separately plotting the 

standardized mean or standard deviation, one needs to plot the maximum value of either the 

standardized mean or standard deviation at each sampling point (for stage 1, and if needed, for 

stage 2 also) using the upper one-sided version of the charting regions in Figure 2.1(b).   

Since there are cases in SPM application where the process mean and standard deviation may 

not be constant when the process is in an IC state; however, their corresponding ratios are 

proportional, then Ng et al. (2018) implemented the SSDS charting regions in Figure 2.1(c) to 

monitor the coefficient of variation (CV) measuring the run-length performance with the 

ANOS; however, using samples of size 𝑛1 in stage 1, and 𝑛2 only in stage 2. Next, Rozi et al. 

(2019) instead implemented the NSSDS charting regions in Figure 1(b) with samples of size 

𝑛1 in stage 1, and (the combined samples) 𝑛1 + 𝑛2 in stage 2 to show that it outperforms the 

Ng et al. (2018) version using the ANOS. Considering that Malela-Majika et al. (2019) (i.e. 

Chapter 3 of this dissertation) shows that the SSDS design has a better OOC performance than 

the NSSDS design when monitoring the mean, one would expect that it would be the case for 

the CV statistic too. However, since Ng et al. (2018)’s SSDS scheme did not use the combined 

samples (i.e. 𝑛1 + 𝑛2) in stage 2, instead used a smaller sample of size 𝑛2, then the Rozi et al. 

(2019)’s NSSDS scheme with a larger sample size in stage 2 ended up outperforming the SSDS 

scheme.   
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2.4 Multivariate double sampling schemes 

A majority of publications on double sampling control charts are based on univariate 

monitoring schemes, with just only 8 (out of 76) publications on multivariate schemes - see the 

outline on Table 2.1. When more than one characteristics (either i.i.d. or correlated) are to be 

monitored, multivariate charts must be used. If observations are 𝑝-variate normal random 

variable with mean 𝝁𝟎 and variance 𝚺0, then the sequence of observations is denoted by {𝑿𝑡𝑗 =

[𝑋1𝑡𝑗  𝑋2𝑡𝑗   …   𝑋𝑝𝑡𝑗]
′
: t ≥ 1; j = 1, 2,…, n}. The NSSDS schemes for multivariate data are 

based on the Hotelling’s 𝑇2 = 𝑛(𝑿̅ − 𝝁𝟎)
′𝚺0

−1(𝑿̅ − 𝝁𝟎) statistic and the generalized sample 

variance (or equivalently, the determinant of the sample covariance matrix) |𝐒| =

|
1

𝑛
∑ (𝑿𝑡𝑗 − 𝑿̅)′(𝑿𝑡𝑗 − 𝑿̅)𝑛

𝑗=1 | which are used to monitor the multivariate sample mean and 

standard deviation, respectively.  The latter were first proposed by Champ and Aparisi (2008) 

and Grigoryan and He (2005), respectively. Note that, unlike the univariate double sampling 

schemes, the multivariate ones tend to be designed as one-sided schemes. Faraz et al. (2012) 

conducted an intensive economic-statistical design for the optimal set of parameters for the 

NSSDS 𝑇2 scheme and they showed that, in most cases, it even outperforms the well-known 

multivariate EWMA 𝑇2 scheme. 

For the specific bivariate case, Costa and Machado (2008) showed that the one-sided NSSDS 

𝑇2 scheme has a better performance than the basic, VSS, VSI 𝑇2 schemes. Moreover, they 

observed that the one-sided version of Croasdale (1974)’s regions in Figure 2.1(a) are more 

favourable in terms of implementation it is known that the OOC signal can only take place in 

stage 2, and in some cases, it yields better OOC performance than the NSSDS 𝑇2 scheme. 

Next, for the bivariate sample variability, Machado and Costa (2008) proposed a NSSDS 

scheme based on the VMAX statistic which can be used for monitoring a covariance matrix of 

a bivariate normal process, i.e. VMAX statistic utilizes the sample variances of two correlated 

random variables given by VMAX = max {𝑆𝑥
2, 𝑆𝑦

2}, where 𝑆𝑥
2 = ∑ 𝑥𝑗

2𝑛
𝑗=1 𝑛⁄ , 𝑆𝑦

2 = ∑ 𝑦𝑗
2𝑛

𝑗=1 𝑛⁄  

and the samples are denoted by (𝑥𝑗 , 𝑦𝑗), 𝑗 = 1,2, … , 𝑛. 

Other multivariate double sampling schemes are discussed under the appropriate subsections 

of Section 2.5. 

 



30 
 

2.5 Other monitoring schemes combined with the double sampling scheme 

Khoo et al. (2016) and Teoh et al. (2014a) compared the performance of the double sampling 

𝑋̅ scheme against the VSI and VSS 𝑋̅ schemes, respectively. It was observed that the VSI 

schemes had a better OOC performance when moderate to large shifts are of interest using the 

ATS; that is, the NSSDS scheme has a better performance for small shifts only. Next, the 

NSSDS scheme has a better OOC performance than the VSS scheme when using the ARL and 

SDRL; however, the converse is true when using the ASS.  

Because the purpose of integrating different monitoring schemes is to produce an improved 

scheme that has a better performance than the individual combined schemes, several 

monitoring schemes have been integrated with the basic double sampling scheme in an effort 

to improve its performance. Such monitoring schemes that we are aware of, so far, that have 

been integrated with the basic double sampling schemes are: (i) Variable sampling interval 

(VSI) scheme, (ii) Variable sample size and interval (VSSI) scheme, (iii) Synthetic scheme, 

(iv) Group-runs scheme and (v) Exponentially weighted moving average (EWMA) procedure.     

 

 2.5.1 VSI and VSSI scheme 

For a better understanding of VSI and VSSI schemes, the reader is referred to the literature 

review by Psarakis (2015). Assume that the possible sample sizes are 𝑛1 < 𝑛2 and we define 

the long and short sampling intervals as 𝑑1 and 𝑑2, respectively, where 𝑑1 > 𝑑2. Carot et al. 

(2002) were the first to combine the NSSDS scheme with the VSI design using the charting 

regions in Figure 2.1(b). At each sampling point 𝑡, in stage 1, the sample size is fixed at 𝑛1; 

however, the sampling interval is allowed to vary as follows 

{
𝑑2,  if 𝑍1,𝑡−1 ∈ Region B or C

𝑑1,  if 𝑍1,𝑡−1 ∈ Region A.        
 (2.28) 

Later, Torng et al. (2010) studied the corresponding works with the normality assumption 

relaxed by using various t- and gamma distributions with different parameters. Note though, 

slightly different charting regions were used in stage 1 – see Figure 2.3. That is, Torng et al. 

(2010) defined the implementation of the sampling intervals at 𝑍1𝑡 as follows 

{
𝑑2,  if 𝑍1,𝑡−1 ∈ Region B1 or B2 or C

𝑑1,  if 𝑍1,𝑡−1 ∈ Region A.                      
 (2.29) 

Moreover, unlike Carot et al. (2002), the charting procedure moves to stage 2 when 𝑍1𝑡 falls in 

Region B2 in stage 1. As an improvement to Haq and Khoo (2018), Umar et al. (2019) 

investigated the performance of the NSSDS scheme combined with the VSI design for 
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monitoring the process mean with regression-type estimators under specific conditions of 

correlation (i.e. with auxiliary based information). 

 

 

Figure 2.3: The charting regions in stages 1 and 2 of the VSI double sampling scheme 

 

However, Noorossana et al. (2015) combined the NSSDS scheme with the VSSI design using 

the charting regions in Figure 2.3. While the NSSDS with the VSI design has 𝑛1 and 𝑛2 only, 

the double sampling with VSSI design has 𝑛1, 𝑛2 and 𝑛3 (with 𝑛1 < 𝑛2 < 𝑛3). Consequently, 

at each sampling point 𝑡, the sample size and sampling interval (denoted as (𝑛𝑖 , 𝑑𝑖)) are defined 

as follows 

{

(𝑛3, 0)  if 𝑍1,𝑡−1 ∈ Region B2           

(𝑛2, 𝑑2)  if 𝑍1,𝑡−1 ∈ Region B1 or C

(𝑛1, 𝑑1)  if 𝑍1,𝑡−1 ∈ Region A.          

 (2.30) 

That is, when a plotting statistic falls in Region B2, the charting procedure moves to stage 2 

immediately (at that sampling point, i.e. the sampling interval is equal to zero) using a 

combined sample of size either (𝑛1 + 𝑛3) or (𝑛2 + 𝑛3) depending on the previous sample. 

Unlike Torng et al. (2010) who used integral equations to evaluate the run-length distribution, 

Carot et al. (2002) and Noorossana et al. (2015) used the Markov chain approach outlined in 

Jensen et al. (2008) to obtain the ATS, ANSS and ANOS. Using these run-length properties, 

Noorossana et al. (2015) showed that the double sampling scheme with the VSSI design has a 

better performance than the corresponding VSI counterpart. Moreover, it performs better than 

all the corresponding basic Shewhart VSS, VSI and VSSI 𝑋̅ schemes. Note that the economic 

design of the VSI double sampling 𝑋̅ scheme is studied in Lee et al. (2012a).  
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The NSSDS 𝑆 scheme combined with the VSI design for monitoring the standard deviation is 

discussed in Lee et al. (2012b). The corresponding scheme that jointly monitors the mean and 

the standard deviation (i.e., which in essence incorporates the VSI design to the He and 

Grigoryan (2006)’s joint 𝑋̅ and 𝑆 NSSDS scheme) was proposed in Lee (2013). Similarly; 

however, in the case of attributes data, Lee and Khoo (2017c) combined the NSSDS 𝑛𝑝 scheme 

with the VSI design. 

For multivariate data, Khatun et al. (2018) and Katebi and Moghadam (2020) investigated the 

performance of the NSSDS 𝑇2 scheme combined with the VSI and VSSI designs, respectively. 

In addition, the VSSI design incorporated into the NSSDS 𝑇2 scheme outperforms that of the 

VSI design in detecting shifts in the vector of process means. Lee and Khoo (2018) investigated 

the performance of the NSSDS |S| scheme combined with the VSI design. In the latter three 

multivariate articles, the combined schemes were shown to yield much better performance than 

their individual counterparts. 

  

2.5.2 Synthetic scheme 

For a better understanding of synthetic schemes, the reader is referred to the literature review 

by Rakitzis et al. (2019). The conforming run-length (CRL) is defined as the number of samples 

observed between two consecutive nonconforming samples, inclusive of the nonconforming 

sample at the end. The main difference between a basic NSSDS scheme (in Figure 2.1(b)) and 

a non-side-sensitive (NSS) synthetic double sampling scheme (in Figure 2.4(a)) is that the latter 

does not issue OOC signal at the first sample point that falls on the nonconforming regions 

(i.e., the ‘OOC regions’ in Figure 2.1(b)). That is, the process waits until a second sample point 

falls on the nonconforming region and, if these two nonconforming samples are relatively close 

to each other (say, CRL ≤ H), then an OOC signal is triggered. Note that H is a positive integer 

greater than 0 and it is defined as a control limit of the CRL scheme.  
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(a) NSS synthetic double sampling regions 

 
(b) SSS and RSS synthetic double sampling regions 

 
(c) MSS synthetic double sampling regions 

Figure 2.4: The charting regions in stages 1 and 2 of the synthetic double sampling scheme 
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Khoo et al. (2011b) and Khoo et al. (2013) were the first to integrate the operation of a NSS 

double sampling synthetic scheme with regions given in Figure 2.4(a) using the 𝑋̅ and 𝑇2 

charting statistics, respectively. It was observed that the integrated scheme has a significant 

improvement over the individual synthetic or NSSDS scheme. Next, the corresponding 

economic designs were studied in Lee and Khoo (2019a, b) under a variety of constraints for 

the univariate and multivariate NSS synthetic double sampling schemes, respectively. 

Aghaulor and Ezekwem (2016) designed the NSS synthetic double sampling scheme in a 

slightly different manner than Khoo et al. (2011b); that is, they implemented an algorithm such 

that the samples of sizes 𝑛1 and 𝑛2 used in stages 1 and 2, respectively, are such that: 𝑛1 < 𝑛, 

𝑛2 < 2𝑛 and 𝑛1 + 𝑛2 < 𝑛. Next, Costa and Machado (2015) realized that a side-sensitive 

version of the Khoo et al. (2011b) scheme yields an improved performance; hence they 

proposed the standard side-sensitive (SSS) synthetic double sampling scheme using the regions 

in Figure 2.4(b). Finally, Malela-Majika and Rapoo (2019) proposed the revised and modified 

side-sensitive (denoted by RSS and MSS, respectively) synthetic double sampling schemes; 

and they showed that the latter two schemes outperform the other synthetic double sampling 

schemes.  

As an improvement to the NSSDS scheme for monitoring the mean with auxiliary variable by 

Haq and Khoo (2018), Haq and Khoo (2019) combined the later with the CRL sub-scheme. 

After observing that there is no synthetic double sampling scheme dedicated to simultaneously 

monitoring the mean and standard deviation, Malela-Majika (2019) used the regions in Figure 

2.4(c) and the CRL sub-scheme to propose the MSS synthetic double scheme with an OOC 

performance better than all its Shewhart-type competitors.  

Having observed the performance of the basic NSSDS np scheme by De Araújo Rodrigues et 

al. (2011), Chong et al. (2014) investigated the corresponding NSS synthetic double sampling 

np scheme. For the variability case, Lee and Khoo (2017a) extended on He and Grigoryan 

(2002) work and proposed a NSS synthetic double sampling 𝑆 scheme.  

 

 2.5.3 Group-runs scheme 

For a better understanding of group-runs schemes, the reader is referred to Gadre and Rattihalli 

(2007). Khoo et al. (2015) and Chong et al. (2017) proposed the side-sensitive group-runs 

(SSGR) double sampling scheme for the process mean and number of nonconforming items in 

a sample, respectively. Looking at group-runs schemes in a different way, it is a generalized 
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version of the synthetic schemes in Section 2.5.2, i.e. it is similar to the CRL sub-scheme except 

in the decision making procedure. That is, the group-runs schemes give an OOC signal when 

the first CRL charting statistic is less or equal to H (i.e., CRL1 ≤ H), or any two consecutive 

CRL charting statistics are both less than or equal to H (i.e., 𝐶𝑅𝐿𝑖 ≤ H and 𝐶𝑅𝐿𝑖+1 ≤ H, 

𝑖=2,3,…). SSGR double sampling schemes uses the charting regions in Figure 2.4(b) similar 

to those of the RSS synthetic schemes. The zero- and steady-state OOC performance of these 

schemes were computed using the ANOS. Chong et al. (2018) studied the run-length in more 

details by evaluating additional run-length properties, i.e., the median and percentile number 

of observations to signal. Later, Saha et al. (2018) enhanced the latter scheme by re-defining 

the CRL sub-scheme so that it has two limits, i.e. a warning limit (denoted by 𝐻1) and a control 

limit (denoted by 𝐻2), with 𝐻1 < 𝐻2, where 𝐻1 and 𝐻2 are positive integers greater than 0. 

This new scheme was called the modified SSGR double sampling. The modified SSGR double 

sampling scheme gives an OOC signal when the first CRL charting statistic is less or equal to 

𝐻2 (i.e., CRL1 ≤ 𝐻2), or any two consecutive 𝐶𝑅𝐿𝑖 ≤ 𝐻1 and 𝐶𝑅𝐿𝑖+1 ≤ 𝐻2, 𝑖=2,3,…). Using 

the ANOS and EANOS, the modified SSGR double sampling has been shown to outperform the 

SSGR double sampling scheme and a variety of other Shewhart-type competitors.   

 

 2.5.4 EWMA procedure 

Yang and Wu (2017a) used an asymmetric version of the control limits in Figure 2.1(b) to 

study the EWMA double sampling scheme based on the nonparametric sign statistic. This latter 

scheme was studied, and shown to yield a better performance than a variety of parametric and 

distribution-free schemes under the normal, double exponential, uniform, chi-square and 

exponential distributions. Similarly, Yang and Wu (2017b) showed that the asymmetric 

EWMA double sampling scheme for monitoring the variance has a better performance 

compared with the parametric and distribution-free schemes for monitoring variability. 

 

2.6 Concluding remarks  

In this chapter, all 76 existing publications that use the double sampling methodology to 

monitor the location, variability, both the location and variability simultaneously, etc. using 

univariate or multivariate techniques are categorized and summarized so that any research gaps 

can easily be identified. Note that other different monitoring schemes that are integrated with 

the operation of the double sampling methodology are also included in this chapter.  
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Based on this review chapter it is apparent that double sampling schemes are one of the most 

powerful Shewhart-type schemes in SPM literature and yields a better OOC performance than 

a majority of Shewhart-type schemes and using some run-length metric shows that they yield 

more competitive performance as compared to memory-type schemes, i.e. CUSUM and 

EWMA. Moreover, credit to Yang and Wu (2017a, b), the double sampling procedure has been 

integrated with the EWMA procedure to show that it has an even better OOC performance 

when integrated with memory-type schemes. 

Note that the directions for future research suggestions are given in Chapter 5 of this 

dissertation. 

 

 

 

  



37 
 

Chapter 3. A new side-sensitive double sampling 𝑿̅ scheme for monitoring 

an abrupt change in the process location 

 

3.1 Introduction 

A review of all currently available research works on double sampling schemes in SPM 

literature has been reviewed in Chapter 2, i.e. from 1974 up to November 2019. To ensure that 

this chapter is self-contained, there will be some few key concepts and figures that will be 

reproduced from Chapter 2; however, the rest of the concepts are described in Chapters 1 and 

2.  

Keep in mind that the double sampling 𝑋̅ scheme was first presented by Croasdale (1974) as 

an attempt to improve the standard Shewhart 𝑋̅ scheme in detecting small and moderate shifts 

in the process mean. Croasdale’s double sampling scheme is a two-stage scheme based on two 

unconnected samples, where the master sample size is equal to 𝑛. Note that ‘unconnected 

samples’ imply that the first sample size (denoted as 𝑛1) is used in Stage 1 whereas the second 

sample size (denoted as 𝑛2) is used in Stage 2; where 𝑛 = 𝑛1 + 𝑛2. Daudin et al. (1990) and 

Daudin (1992) modified Croasdale’s double sampling scheme by connecting the first and the 

second sample at the second stage; that is, instead of using a sample of size 𝑛2, they used a 

sample of size 𝑛. Since then, many authors have contributed to the design of the double 

sampling schemes – see Table 2.1 in Chapter 2.  

To further increase the sensitivity of monitoring schemes, the SPM literature suggests the use 

of improved schemes such as the synthetic and runs-rules schemes. These schemes could be 

classified into two main categories, which are the non-side-sensitive (NSS) and side-sensitive 

(SS) schemes, respectively. The NSS w-of-(w+v) scheme (with integers 𝑤 > 1 and 𝑣 ≥ 0) 

gives an out-of-control (OOC) signal when w nonconforming points out of the last w+v 

successive points plot outside of the control limits, no matter whether some (or all) of the w 

nonconforming points plot above the UCL and others (or all) plot below the LCL, which are 

separated by, at most, v conforming points that plot between the LCL and the UCL. 

Alternatively, the SS w-of-(w+v) scheme gives a signal when w nonconforming points out of 

the last w+v successive points plot on or above (below) the UCL (LCL), which are separated 

by, at most, v points that plot below (above) the UCL (LCL), respectively. Klein (2000) and 

Shongwe and Graham (2016) showed that the SS schemes not only improves the sensitivity of 

the basic (i.e. 1-of-1) scheme in detecting small shifts, but also outperforms the corresponding 

NSS scheme.   
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Motivated by the discussion in the latter paragraph, in this chapter, we propose the side-

sensitive double sampling (SSDS) 𝑋̅ scheme with known process parameters (i.e. Case K) in 

order to improve the existing non-side-sensitive double sampling (NSSDS) 𝑋̅ scheme by 

Daudin (1992) in detecting small (𝛿 < 0.75) and moderate (0.75 ≤ 𝛿 < 1.5) shifts without 

affecting its sensitivity in detecting large shifts (𝛿 ≥ 1.5).  

The remainder of this chapter is organized as follows: In Section 3.2, we present the operation 

of the proposed SSDS 𝑋̅ scheme and the exact expressions of the probability of the in-control 

(IC) process and average run-length (ARL). Section 3.3 presents the measures of the overall 

performance. In Section 3.4, we evaluate the IC and OOC performances of the proposed 

monitoring scheme and compare their overall performances with some well-known monitoring 

schemes. In Section 3.5, we give an illustrative examples using real-life data to demonstrate 

the implementation and design of the SSDS scheme. Finally, some concluding remarks are 

given in Section 3.6.   

 

3.2 Operation and design consideration 

3.2.1. Operation of the SSDS 𝑿̅ control scheme  

Assume that the observations of the quality characteristic {𝑋𝑡𝑗: 𝑡=1,2,3,…; 𝑗=1,2,3,…,𝑛} are 

independent and identically distributed (iid) from a N(𝜇0, 𝜎0) distribution, where 𝜇0 and 𝜎0 

represent the IC mean and the IC standard deviation, respectively. Let 𝐿1 and 𝐿 (with 𝐿 ≥ 𝐿1 >

0) be the warning and control limits of the first sample at Stage 1, respectively; and 𝐿2 (with 

𝐿2 > 0) be the control limit of the combined samples at Stage 2. Therefore, the SSDS 𝑋̅ scheme 

is divided into eight intervals, i.e. A = [−𝐿1, 𝐿1], B+ = ( 𝐿1, 𝐿], B− = [−𝐿, −𝐿1), C =(−∞, −𝐿) 

∪ (𝐿, +∞), F+ = (𝐿2, +∞), F− = (−∞, 𝐿2], G− = (−∞, −𝐿2) and G+ = [−𝐿2,+∞).  
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Figure 3.1: The charting regions of the SSDS scheme 

 

From the 𝑋𝑡𝑗 observations, a first subgroup sample of size 𝑛1 is collected at the 𝑡𝑡ℎ sampling 

time (denoted as 𝑋1𝑡𝑗, 𝑡 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛1). If the standardized charting statistic 

based on the first sample falls on Region B− or B+, then a second subgroup sample of size 𝑛2 

(where 𝑛2 ≥ 𝑛1) is also collected at the 𝑡𝑡ℎ sampling time (denoted as 𝑋2𝑡𝑗, 𝑡 = 1, 2, …, and 

𝑗 = 1, 2, …, 𝑛2). Note that in each stage, the charting statistic is as follows. 

 

Stage 1: Let 𝑋̅1𝑡 = ∑ 𝑋1𝑡𝑗 𝑛1⁄𝑛1
𝑗=1  be the mean of the first sample of subgroup size 𝑛1 at the 𝑡𝑡ℎ 

sampling time. Hence, in Case K, the standardized statistic for the first sample at the 

𝑡𝑡ℎ  sampling time is then given by  

𝑍1𝑡 =
𝑋̅1𝑡 − 𝜇0

𝜎0 √𝑛1⁄
 

where 𝑋̅1𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1
) and 𝛿 = |𝜇1 − 𝜇0| 𝜎0⁄  represents the magnitude of the 

standardized mean shift with the OOC mean 𝜇1 (𝜇1 = 𝜇0 + 𝛿𝜎0), so that 𝛿 = 0 means 

that the process is IC. In this case, 𝑍1𝑡 follows a standard normal distribution (i.e. 

𝑍1𝑡~𝑁(0,1)). However, when 𝛿 ≠ 0, the process is OOC and 𝑍1𝑡~𝑁(𝛿, 1).  

Stage 2: At the 𝑡𝑡ℎ  sampling time of the second sample, the sample mean, i.e. 𝑋̅2𝑡 =

∑ 𝑋2𝑡𝑗 𝑛2⁄𝑛2
𝑗=1 , and the combined sample mean, i.e. 𝑋̅𝑡 = (𝑛1𝑋̅1𝑡 + 𝑛2𝑋̅2𝑡)/(𝑛1 + 𝑛2) 

are calculated, respectively. Hence, in Case K, the standardized charting statistic for the 

combined samples at the 𝑡𝑡ℎ  sampling time is then given by 
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𝑍𝑡 =
𝑋̅𝑡 − 𝜇0

𝜎0 √𝑛1 + 𝑛2⁄
 

where 𝑋̅𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1+𝑛2
). When the process is IC, then 𝑍𝑡~𝑁(0, 1) as 𝛿 = 0 

and when the process is OOC, then 𝑍𝑡~𝑁(𝛿, 1). 

That is, there are two distinct standardized charting statistics (i.e. 𝑍1𝑡 and 𝑍𝑡) used during stages 

1 and 2 (if needed), respectively (see Figure 3.1). Thus, the operational procedure of the SSDS 

𝑋̅ scheme is as follows:  

1. Take a sample of size 𝑛1 and calculate 𝑋̅1𝑡 and 𝑍1𝑡 at the 𝑡𝑡ℎ sampling time of the first 

sample. 

2. If 𝑍1𝑡 ∈ A, the process is considered as IC. 

3. If 𝑍1𝑡 ∈ C, the process is said to be OOC and then the necessary corrective action must 

be taken to find and remove the assignable causes. 

4. If 𝑍1𝑡 ∈ B+ (or 𝑍1𝑡 ∈ B−), take a second sample of size 𝑛2, with 𝑛2 ≥ 𝑛1 and calculate 

𝑋̅2𝑡 at the 𝑡𝑡ℎ sampling time of the second sample.  

5. At the 𝑡𝑡ℎ sampling time, calculate 𝑋̅𝑡 and 𝑍𝑡. 

6. Consequently, the process is declared IC at stage 2: 

(a) If 𝑍1𝑡 ∈ B+  and 𝑍𝑡 ∈ F−, or 

(b) If 𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+. 

Otherwise, the process is declared OOC at stage 2: 

(a) If 𝑍1𝑡 ∈ B+  and 𝑍𝑡 ∈ F+, or  

(b) If 𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G−.  

 

Remarks: 

 If the charting statistic 𝑍1𝑡 falls in region B+ at stage 1, then at stage 2, we consider the 

charting regions F+ = (𝐿2, +∞) and F− = (−∞, 𝐿2] only (i.e., the upper scheme with 

control limit 𝐿2). 

 However, if the charting statistic 𝑍1𝑡 falls in region B− at Stage 1, then at Stage 2, we 

consider charting regions G− = (−∞, −𝐿2) and G+ = [−𝐿2,+∞) only (i.e., lower 

scheme with control limit −𝐿2). 

 

Figure 3.2 provides a graphical summary of the operation of the proposed SSDS scheme. 
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Figure 3.2: Flow chart for the proposed SSDS 𝑋̅ monitoring scheme 

 

3.2.2. Run-length properties of the SSDS 𝑿̅ scheme  

At stage 1, the SSDS 𝑋̅ scheme gives an OOC signal if the charting statistic 𝑍1𝑡 plots in region 

C. Unlike the conventional NSSDS scheme by Daudin (1992), the SSDS scheme gives a signal 

at Stage 2 if both charting statistics 𝑍1𝑡 and 𝑍𝑡 plot on one side of the scheme in regions B+ 

and F+ (or B− and G−), respectively. In order to properly formulate run-length properties of 

the SSDS scheme, the following four types of events need to be defined: 

(i) the Stage 1 IC event when “𝑍1𝑡 ∈ A”, 

(ii) the Stage 2 IC event when either “𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−” or “𝑍1𝑡 ∈ B− and 

𝑍𝑡 ∈ G+”,   

(iii) the Stage 1 OOC event when “𝑍1𝑡 ∈ C” and 

(iv) the Stage 2 OOC event when either “𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F+” or “𝑍1𝑡 ∈ B− 

and 𝑍𝑡 ∈ G−”.   

Since 𝜇0 and 𝜎0
2 are known (i.e., Case K), let 𝑃0𝑘 be the probability that the process is regarded 

as IC at stage 𝑘 where 𝑘 = 1, 2. Then,  𝑃0 = 𝑃01 + 𝑃02 is the probability that a process in both 

stages is IC, where: 
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𝑃01 = 𝑃(𝑍1𝑡 ∈ A) = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1] (3.1) 

and 

𝑃02 = 𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] + 𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+]

= ∫
𝑍1𝑡∈B++ {Φ[𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧

+ ∫
𝑍1𝑡∈B−− {1 − Φ[−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧. 

(3.2) 

Equations (3.1) and (3.2) are based on events (i) and (ii), respectively. Hence,   

𝑃0 = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1]

+ ∫
𝑍1𝑡∈B++ {Φ[𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧

+ ∫
𝑍1𝑡∈B−− {1 − Φ[−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ ]}  𝜙(𝑧)𝑑𝑧, 

(3.3) 

where Φ(.) and 𝜙(.) are the cumulative distribution function (c.d.f.) and probability density 

function (p.d.f.) of the standard normal random variable, respectively. In this chapter, 𝑟2 =

𝑛1 + 𝑛2, 𝑐 = 𝑟 √𝑛2⁄ , B++ = (𝐿1 + 𝛿√𝑛1, 𝐿 + 𝛿√𝑛1] and B−− = [−𝐿 + 𝛿√𝑛1, −𝐿1 + 𝛿√𝑛1). 

Given that the SSDS 𝑋̅ scheme is a Shewhart-type one, its run-length (RL) distribution, denoted 

by 𝐹𝑅𝐿(𝑙), is defined by the geometric distribution. Therefore, the c.d.f. of the RL distribution 

is obtained as 

𝐹𝑅𝐿(𝑙) = 𝑃(𝑅𝐿 ≤ 𝑙) = 1 − 𝑃𝑜,
𝑙  (3.4) 

where 𝑙 ∈ {1, 2, 3, … }. 

Then, the (100𝜌)𝑡ℎ percentile of the RL distribution, 𝑙𝜌 is given by 

𝑃(𝑅𝐿 ≤ 𝑙𝜌 − 1) ≤ 𝜌 and 𝑃(𝑅𝐿 ≤ 𝑙𝜌) > 𝜌 (3.5) 

The 𝐴𝑅𝐿, standard deviation of the run-length (𝑆𝐷𝑅𝐿) and the average sample size (𝐴𝑆𝑆) at 

each sampling time are given by  

𝐴𝑅𝐿 =
1

1 − 𝑃o
, (3.6) 

 

𝑆𝐷𝑅𝐿 =
√𝑃o

1 − 𝑃o
, (3.7) 

and  

𝐴𝑆𝑆 = 𝑛1 + 𝑛2 × 𝑃2, (3.8) 

respectively, where 𝑃2 = 𝑃(𝑍1𝑡 ∈ B+ ∪ B−) is the probability of taking the second sample, and 

it is given by 

𝑃2 = (Φ(𝐿 + 𝛿√𝑛1) − Φ(𝐿1 + 𝛿√𝑛1)) + (Φ(−𝐿1 + 𝛿√𝑛1) − Φ(−𝐿 + 𝛿√𝑛1)). 
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Then, the average number of observations to signal (ANOS) is given by 

𝐴𝑁𝑂𝑆 = 𝐴𝑆𝑆 × 𝐴𝑅𝐿. (3.9) 

 

There are five parameters (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) that need to be specified in order to design the SSDS 

𝑋̅ scheme. The efficiency of the proposed SSDS scheme depends on the combinations 

(𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2). We have three steps in the optimal design of the proposed SSDS scheme: 

 Firstly, the nominal IC ARL (𝑁𝐴𝑅𝐿0) is set to some high recommended values, such as 

370.4 or 500.  

 Secondly, the (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) combination, which provides an attained IC 𝐴𝑅𝐿 

(𝐴𝑅𝐿0), is set much closer to the 𝑁𝐴𝑅𝐿0 and the smallest OOC ARL (𝐴𝑅𝐿𝛿) for a given 

mean shift 𝛿 is considered as an optimal combination.  

 Thirdly, the optimization model is presented as follows 

Min
𝑛1,𝑛2,𝐿1,𝐿,𝐿2

𝐴𝑅𝐿𝛿 (3.10) 

subject to 

𝐴𝑅𝐿0 =  𝑁𝐴𝑅𝐿0 (3.11) 

and  

𝐸[𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒|𝜇 = 𝜇0] = 𝑛1 + 𝑛2 × 𝑃2 = 𝑛, (3.12) 

where n represents the expected IC ASS (denoted as 𝐴𝑆𝑆0).  

 

3.3 Measures of the overall performance 

Although the 𝐴𝑅𝐿 value is the most used metric measurement in SPM; numerous authors have 

advocated against the sole use of the ARL as a performance measure (see, for example, Graham 

et al. (2014) for a recent discussion on this issue). In addition to the arguments made by Graham 

et al. (2014), a number of authors have shown that if a control scheme is designed based on 

one specific size of a mean shift, it would perform poorly when the actual size of the shift is 

significantly different from the assumed size (Reynolds and Lou, 2010; Ryu et al., 2010). This 

makes the ARL deficient in assessing the overall performance of a control scheme. To solve 

this problem, a number of researchers have suggested the use of quality loss functions (QLFs) 

instead of the 𝐴𝑅𝐿 to assess the performance of a monitoring scheme (see, for example, 

Machado and Costa, 2014). A QLF describes the relationship between the shift size and the 

quality impact. Therefore, when the aim of a study is to measure the overall performance of a 

control scheme over a range of shifts (i.e. 0 < 𝛿 ≤ 𝛿𝑚𝑎𝑥), the objective function must be 
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defined in terms of the average extra quadratic loss (𝐴𝐸𝑄𝐿) function given as (see Wu et al., 

2008; Machado and Costa, 2014; Shongwe and Graham (2019a, b); Shongwe et al. (2019)) 

Min
𝑛1,𝑛2,𝐿1,𝐿,𝐿2

𝐴𝐸𝑄𝐿(𝛿) (3.13) 

  with 

 𝐴𝐸𝑄𝐿(𝛿) =
1

𝛿𝑚𝑎𝑥
∫ 𝑤(𝛿) × 𝐴𝑅𝐿(𝛿)

𝛿𝑚𝑎𝑥

0
  𝑑𝛿                                             

where 𝛿𝑚𝑎𝑥 is the upper boundary of the range of shifts under consideration and 𝑤(𝛿) (with 

𝑤(𝛿) = 𝛿2) represents the weight function associated with 𝛿. It is generally assumed that all 

location shifts (mean shifts) occur with equal probability. Therefore, a uniform distribution of 

𝛿 is implied.      

The expression of the AEQL given in Equation (3.13) can also be written as follows 

𝐴𝐸𝑄𝐿(𝛿) =
1

𝛿𝑚𝑎𝑥
∑ 𝛿2 × 𝐴𝑅𝐿(𝛿)

𝛿𝑚𝑎𝑥

0

. (3.14) 

Note that after using Equations (3.10) to (3.12), the optimal parameters are selected using 

Equation (3.14), which imply that they yield a minimum AEQL value.  

In order to measure the relative effectiveness of two different schemes, Wu et al. (2008) 

suggests the use of the performance comparison index (PCI), which is given as 

𝑃𝐶𝐼 =
𝐴𝐸𝑄𝐿

𝐴𝐸𝑄𝐿𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
, (3.15) 

where 𝐴𝐸𝑄𝐿𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 is the 𝐴𝐸𝑄𝐿 of the benchmark scheme. In this paper, the SSDS 𝑋̅ 

scheme is used as the benchmark scheme. In addition to the 𝐴𝐸𝑄𝐿 and 𝑃𝐶𝐼, many authors 

suggest the use of the average ratio of the 𝐴𝑅𝐿 (denoted 𝐴𝑅𝐴𝑅𝐿) to measure the overall 

performance of a benchmark scheme against other competitors; see for instance, Wu et al. 

(2008). The 𝐴𝑅𝐴𝑅𝐿 is given by   

𝐴𝑅𝐴𝑅𝐿 =
1

𝛿𝑚𝑎𝑥
∑

𝐴𝑅𝐿(𝛿)

𝐴𝑅𝐿(𝛿)𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

𝛿𝑚𝑎𝑥

0

. (3.16) 

Note that, if the 𝑃𝐶𝐼 and/or 𝐴𝑅𝐴𝑅𝐿 is larger than one, the competing scheme will produce 

larger 𝐴𝑅𝐿𝛿 values over the range of shifts under consideration. Therefore, the benchmark 

scheme outperforms the competing scheme for that specific range; otherwise, the competing 

scheme is more sensitive than the benchmark scheme. Finally, if the 𝑃𝐶𝐼 and/or 𝐴𝑅𝐴𝑅𝐿 is 

equal to one, then the competing scheme and the benchmark scheme have the same 

performance. 
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Although it is not the scope of this chapter, it is worth mentioning that the effectiveness of 

traditional performance measures should be revisited. Even as far back as 1986, Woodall 

(1986) had started mentioning flaws in the designs of monitoring schemes and, even today, 

there is still room for improvement. We do not wish to degrade the importance of traditional 

monitoring scheme performance metrics; however, the key common characteristic of these 

traditional methods is to design the monitoring scheme for a pre-specified magnitude of shift. 

Many researchers have now argued that if a monitoring scheme is designed for some pre-

specified magnitude of shift, it will perform poorly when the actual shift differs significantly 

from this pre-specified value (see for example, Ryu et al., 2010; Machado and Costa, 2014). 

The recommendation is that the overall performance metrics, such as QLFs, must be used to 

supplement the specific shifts metrics. The exploration into the fact that making use of 

traditional measures can be misrepresentative is currently under investigation and will be 

reported on in a future research works. 

 

3.4 Performance study of the proposed scheme 

3.4.1 Optimal design of the SSDS 𝑿̅ monitoring scheme    

In this section, we investigate the optimal design of the SSDS 𝑋̅ control scheme in Case K by 

setting the 𝐴𝑅𝐿0 to some high, acceptable nominal values and minimizing the 𝐴𝑅𝐿𝛿 and / or 

𝐸𝑄𝐿 values with (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) = (0, 2.5) and a step shift of size 0.1. In this study, we set the 

𝑁𝐴𝑅𝐿0 to 370.4 and 500, respectively, with an 𝐴𝑆𝑆0 (i.e. n) ∈ {2, 5, 7, 11}. We used Equations 

(3.4) to (3.7) in MATHCAD® 14 to compute the IC and OOC characteristics of the run-length 

distribution, respectively. Moreover, the ASS, ANOS and AEQL values were computed using 

Equations (3.8), (3.9) and (3.14), respectively. Note that there are three main steps in the search 

of the optimal design parameters:  

(i) For some specific sample sizes (i.e., 𝑛1 and 𝑛2) and shift (𝛿 = 0), find all possible 

combinations  of the design parameters that yield an attained 𝐴𝑅𝐿0 value of 370.4 

for a prespecified value of n (i.e., 𝐴𝑆𝑆0); 

(ii) For each combination, calculate the AEQL value; 

(iii) Select the combination that yields the minimum AEQL value to be the optimal 

design parameters. 

 

Table 3.1 presents the optimal design parameters of the proposed scheme when 𝐴𝑆𝑆0 ∈ {2, 5, 

7, 11}. For instance, when (𝑛1, 𝑛2) = (2, 8) with 𝐴𝑆𝑆0 = 5, we compute the optimal design 
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parameters (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) in order to achieve a specified 𝐴𝑅𝐿0 of 370.4. In this example, we 

observed that (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) is such that (2, 8, 0.8856, 3.3526, 3.0085) so that the attained 

𝐴𝑅𝐿0 = 370.4 with a minimum 𝐸𝑄𝐿 value of 33.99. Under the same conditions, and for another 

choice of design parameters, say (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) = (2, 8, 0.8815, 3.1026, 3.2731), the SSDS 

scheme yields an 𝐴𝑅𝐿0 value of 370.4 with an 𝐸𝑄𝐿 value of 39.31. In this situation, the design 

parameters that yield the smallest AEQL (i.e. minimum 𝐴𝐸𝑄𝐿) value are considered to be the 

winner, and thus are used as optimal design parameters. From Table 3.1 it is observed that the 

sensitivity of the SSDS scheme is proportional to the first (Stage 1) and second (Stage 2) sample 

sizes. This means that the larger the samples (i.e. 𝑛1 and 𝑛2), the more sensitive the SSDS 

scheme is.    

 

Table 3.1: Optimal design parameters and 𝐴𝐸𝑄𝐿 values when 𝑁𝐴𝑅𝐿0 ∈{370.4, 500} and 

𝐴𝑆𝑆0 ∈{2, 5, 7, 11}  

Attained 𝑨𝑹𝑳𝟎 370.4 500 

𝑨𝑺𝑺𝟎 𝒏𝟏 𝒏𝟐 (𝑳𝟏, L, 𝑳𝟐) AEQL (𝑳𝟏, L, 𝑳𝟐) AEQL 

2 2  

2 (2.9101, 3.0568, 2.4050) 120.11 (2.9631, 3.1688, 2.5120) 138.68 

5 (2.9001, 3.0073,2.9025) 119.97 (2.9337, 3.1021, 2.9611) 134.89 

8 (2.9751, 3.0009, 2.9805) 129.36 (3.0428, 3.0917, 3.0832) 150.93 

11 (2.9908, 3.0002, 2.9925) 131.56 (3.0732, 3.0906, 3.0926) 155.96 

5  

2  

8 (0.8856, 3.3526, 3.0085) 33.99 (0.8868, 3.6788, 3.0367) 35.52 

11 (1.0941, 3.2339, 3.0101) 32.45 (1.0943, 3.3422, 3.0889) 34.46 

14 (1.2377, 3.1693, 3.0126) 32.01 (1.2373, 3.2522, 3.1180) 34.11 

4 

4 (1.1491, 3.4180, 3.0412) 35.64 (1.1423, 3.2402, 3.2926) 42.90 

8 (1.5291, 3.2440, 3.0302) 31.11 (1.5293, 3.2602, 3.2027) 34.48 

11 (1.6821, 3.1435, 3.0617) 30.68 (1.6823, 3.2162, 3.1985) 33.07 

14 (1.7906, 3.0989, 3.0773) 30.61 (1.7943, 3.2302, 3.0846) 31.55 

5 

5 (2.9934, 3.0008, 2.9998) 49.54 (2.9655, 3.1102, 3.0016) 52.20 

8 (2.9947, 3.0004, 2.9979) 49.56 (2.9935, 3.0992, 3.0301) 52.87 

11 (2.9961, 3.0002, 2.9993) 49.59 (2.9878, 3.0998, 2.9081) 52.15 

7  

3 
8 (0.6740, 3.5671, 3.0013) 29.84 (0.6738, 3.5308, 3.1203) 32.51 

11 (0.9076, 3.5336, 2.9559) 27.60 (0.9078, 3.6105, 3.0541) 29.22 

5 

5 (0.8406, 3.4148, 3.0521) 30.99 (0.8406, 3.4405, 3.1610) 33.88 

8 (1.1496, 3.6358, 2.9798) 27.41 (1.1498, 3.8905, 3.0618) 28.96 

11 (1.3342, 3.5663, 2.9306) 26.01 (1.3338, 3.9704, 3.0019) 27.05 

7 
8 (2.9952, 3.0005, 2.9993) 37.72 (3.0008, 3.1025, 3.0014) 39.96 

11 (2.9962, 3.0003, 2.9998) 37.73 (3.0002, 3.0994, 3.0001) 39.82 

11 

3 
8 (0.0001, 3.8993, 3.0020) 29.03 (0.0002, 4.2604, 3.0643) 31.07 

11 (0.3486, 3.8211, 2.9827) 26.48 (0.3482, 4.3104, 3.0643) 27.86 

5 
8 (0.3185, 3.8526, 3.0049) 26.90 (0.3182, 4.1103, 3.0904) 28.51 

11 (0.6045, 3.8868, 2.9861) 25.08 (0.6039, 4.1006, 3.0750) 26.26 

 

3.4.2 Performance of the SSDS 𝑿̅ control scheme    

Once the optimal parameters are obtained, the OOC performance of the proposed scheme can 

then be investigated. Tables 3.2 and 3.3 present the performance of the SSDS scheme for 

different optimal design parameters with 𝑁𝐴𝑅𝐿0 = 370.4 when 𝐴𝑆𝑆0 ∈ {2, 5} and {7, 11}, 
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respectively. In terms of the ARL values, it was observed that the performance of the SSDS 

scheme depends on the 𝐴𝑆𝑆0 value, and the first and second sample sizes (i.e., 𝑛1 and 𝑛2). 

When the couple (𝑛1, 𝑛2) is kept constant,  

(i) as the 𝐴𝑆𝑆0 (i.e., 𝑛) value increases, the performance of the SSDS scheme improves 

(see Figure 3.3),  

(ii) in terms of the cost of inspection, the SSDS scheme is cost effective for small 𝐴𝑆𝑆0 

values (see Figure 3.4),  

(iii) for 𝐴𝑆𝑆0 = 𝑛1 ≤ 2, when 𝑛2 increases, the sensitivity of the SSDS scheme 

decreases regardless of the size of the process mean shift, and  

(iv) for 𝐴𝑆𝑆0 > 2, when 𝑛2 increases, the sensitivity of the SSDS scheme increases for 

small and moderate shifts. For large shifts in the process mean, the sensitivity 

remains the same. 

(v) for 𝐴𝑆𝑆0 =  𝑛1 and 𝑛1 > 2,  when 𝑛2 increases, the sensitivity of the SSDS scheme 

increases regardless of the size of the process mean shift (see Figures 3.3 (a) to (d)). 

Note that when 𝐴𝑆𝑆0 = 𝑛1, the OOC 𝐴𝑆𝑆 (𝐴𝑆𝑆𝛿) values remain closer to the 𝐴𝑆𝑆0 

value, which makes the SSDS scheme cost effective (see Figures 3.4 (a) to (d)).  

 

Therefore, to obtain an optimal and cost effective design of the SSDS scheme, we suggest 

keeping the 𝐴𝑆𝑆0 value and 𝑛1 as small as possible at an acceptable cut-off point (e.g. 𝐴𝑆𝑆0 =

𝑛1 = 3 or 4) and increase 𝑛2 in order to get an efficient and economic SSDS 𝑋̅ scheme. In terms 

of the percentile of the run-length (PRL) values, for a 𝑁𝐴𝑅𝐿0 of 370.4 with an 𝐴𝑆𝑆0 value of 

2 and (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) = (2, 5, 2.9001, 3.0073, 2.9025), the results in Table 3.2 reveal that 

when the process is IC (i.e. 𝛿 = 0), there is a 5% chance that the SSDS scheme signals for the 

first time on the 19th subgroup. However, there is 95% chance that the SSDS scheme signals 

for the first time on the 1110th subgroup. When there is an abrupt mean shift of size 0.2 (i.e. 𝛿 

= 0.2), there is 5% chance that the SSDS scheme will signal on the 13th subgroup and 95% 

chance that it will signal on the 768th subgroup. For large shifts, there is 50% chance that the 

SSDS scheme signals on the second subgroup and 75% chance that it will signal on the 5th 

subgroup. When we increase the 𝐴𝑆𝑆0 value, say 𝐴𝑆𝑆0 = 5 for (𝑛1, 𝑛2) = (2, 8), (𝐿1, 𝐿, 𝐿2) = 

(0.8856, 3.3526, 3.0085) so that the scheme yields a 𝑁𝐴𝑅𝐿0 of 370.4. In this case, when there 

is an abrupt mean shift of size 0.2, there is 5% chance that the SSDS scheme will signal on the 

7th subgroup and 95% chance that it will signal on the 387th subgroup. For large sample sizes, 

there is a very high chance that the SSDS scheme signals on the first subgroup. This shows that 
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the sensitivity of the SSDS scheme increases as the sample size increases. Consequently, the 

cost increases as well. It can also be observed that for small 𝐴𝑆𝑆0 values, for instance when the 

𝐴𝑆𝑆0 = 2, the IC characteristics of run-length are the same for different optimal combinations 

regardless of the sample sizes. However, for moderate and large 𝐴𝑆𝑆0 values, the IC 

characteristics of the run-length are not equal for different optimal combinations regardless of 

the sample sizes. For more details, see Tables 3.2 and 3.3.    

The results in Tables 3.2 and 3.3 also show that the distribution of the 𝐴𝑆𝑆𝛿 is symmetric or 

skewed or relatively constant about 𝛿𝐴𝑆𝑆𝑚𝑎𝑥
(where 𝛿𝐴𝑆𝑆𝑚𝑎𝑥

is the mean shift that produces the 

maximum 𝐴𝑆𝑆𝛿 value) depending on the triplet (𝐴𝑆𝑆0, 𝑛1, 𝑛2). Therefore, the 𝐴𝑆𝑆𝛿 of the 

proposed scheme may be considered as an increasing and decreasing function of 𝛿 in the ranges 

[0, 𝛿𝐴𝑆𝑆𝑚𝑎𝑥
] and [𝛿𝐴𝑆𝑆𝑚𝑎𝑥

, 𝛿𝑚𝑎𝑥], respectively. Figures 3.4 (a) to (d) reveal that, for small and 

moderate shifts, when 𝑛2 is kept constant, the design of the SSDS scheme is cost effective for 

small 𝑛1. For large shifts, the design of the SSDS scheme is cost effective for large 𝑛2. When 

𝐴𝑆𝑆0 = 𝑛1, the SSDS scheme is cost effective regardless of the size of the mean shift. 

 



 

 

49 
 

 

Table 3.2: Exact ARL, SDRL, ASS, ANOS, AEQL, percentile values and optimal design parameters of the SSDS scheme when the 𝑁𝐴𝑅𝐿0 = 370.4, 𝑛 = 𝐴𝑆𝑆0 = 2 and 5 with 

𝛿𝑚𝑎𝑥 = 2.5 

Shift (𝜹) 
   (ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95 ) 

   

0.00 
(370.40, 369.90, 2, 742.82) 

(19, 106, 256, 513, 1110) 

(370.42, 369.82, 2, 741.54 ) 

(19,  106,  256, 513, 1110) 

(370.36, 369.86, 2, 741.07) 

(19, 106, 256, 513, 1110) 

(370.43, 369.93, 5, 1852 ) 

(19, 106, 256, 513, 1110) 

(370.38, 369.87, 5, 1852) 

(19,  108, 261, 523, 1118) 

(370.40, 369.91, 5, 1887) 

(19, 108, 261, 522, 1119) 

(370.40, 369.90, 5, 1852.0) 

(19, 106, 256, 513, 1110) 

0.20 
(257.39, 256.89, 20.1, 516.64) 

( 13, 74, 178, 356, 768) 

(261.59, 261.08, 2.01 , 523.83) 

(13, 74.9, 181, 362, 780) 

(262.28, 261.78, 2.02, 524.88) 

(13, 75, 181, 362, 780) 

(130.06, 129.56, 5.15, 669.50) 

(7, 37, 89, 179, 387) 

(122.00, 121.50, 5.20, 634.61) 

(6, 34, 82, 165, 356) 

(117.18, 116.68, 5.23, 625.04 ) 

(6, 34, 82, 165, 357) 

(177.37, 176.87, 5.01, 886.95) 

(9, 50, 122, 245, 529) 

0.40 
(123.33, 122.83, 2.02, 248.25)                                      

(6, 35, 85, 170, 367) 

(128.97, 128.47, 2.03, 258.53) 

(7,  37,  89, 178, 385) 

(130.08, 129.58, 2.03, 260.44) 

(7, 37, 89, 179, 385) 

(30.63, 30.13, 5.56, 170.37) 

(2, 9, 21, 42, 90) 

(26.23, 25.73, 5.78, 151.49) 

(1, 7, 17, 35, 76) 

(25.51, 25.01, 5.88, 152.66) 

(1, 7, 17, 35, 76) 

(56.33, 55.83, 5.01, 281.74) 

(3, 16, 38, 77, 167) 

0.60 
(57.44, 56.94, 2.02, 116.22)                                      

(3, 16, 39, 79, 170) 

(61.70, 61.20, 2.03, 123.93) 

(3, 17, 42, 85, 183) 

(62.66, 62.15, 2.04, 125.57 ) 

(3, 18, 43, 86, 185) 

(9.47, 8.95, 6.16, 58.34 ) 

(1, 3, 6, 12, 27) 

(7.81, 7.30, 6.63, 51.76) 

(1, 2, 5, 10, 22) 

(7.65, 7.13, 6.82, 52.86) 

(1, 2, 5, 10, 21) 

(20.43, 19.92, 5.02, 102.22) 

(1, 6, 13, 28 , 60) 

0.80 
(28.46, 27.96, 2.05, 58.09) 

(1, 8, 19 , 39, 84) 

(31.24, 30.73, 2.05, 62.94) 

(2, 9, 21, 43 , 92) 

(31.91, 31.41, 2.04, 64.06) 

(2, 9, 21, 43, 92) 

(3.95, 3.42, 6.85, 27.06 ) 

(1, 1, 2, 5, 10) 

(3.35, 2.81, 761, 25.50) 

(1, 1, 2, 4, 8) 

(3.22, 2.68, 7.83, 25.44) 

(1, 1, 2, 4, 8) 

(8.79, 8.27, 5.02, 44.01) 

(1, 2, 6, 11, 25) 

1.00 
(15.30, 14.79, 2.08, 31.60) 

(1, 4, 10, 21, 44) 

(17.01, 16.50, 2.07, 34.42) 

(1, 5, 11, 23, 49) 

(23.38, 22.87, 2.06, 35.08 ) 

(1, 5, 12, 24, 51) 

(2.17, 1.60, 7.49, 16.27 ) 

(1, 1, 1, 2, 5) 

(1.97, 1.38, 8.57, 16.89) 

(1, 1, 1, 2 , 4) 

(1.84, 1.24, 8.60, 15.89 

(1, 1, 1, 2,4) 

(4.46, 3.93, 5.03, 22.36 ) 

(1, 1, 3, 6, 12) 

1.20 
(8.94, 8.42, 2.10, 18.74)                                    

(1, 2, 6, 12, 25) 

(9.97, 9.45, 2.10, 20.29 ) 

(1, 2, 6, 13, 28) 

(10.22, 9.71, 2.08, 20.62 ) 

(1, 3, 7, 13, 29) 

(1.50, 0.87, 7.98, 11.99 ) 

(1, 1, 1, 1, 2) 

(1.46, 0.82, 9.34, 13.65) 

(1, 1, 1 1, 2.) 

(1.33, 0.67, 8.87, 11.86) 

(1, 1, 1, 1, 2) 

(2.65, 2.09, 5.03, 13.26) 

(1, 1, 1, 3, 6) 

1.40 
(5.64, 5.12, 2.12, 12.04)                           

(1, 1, 4, 7, 15) 

(6.26, 5.74, 2.13, 12.83 ) 

(1, 2, 4, 8, 17) 

(6.41, 5.89, 2.10, 12.97) 

(1, 2, 4, 8, 18) 

(1.23, 0.53, 8.24, 10.10) 

(1, 1, 1, 1, 2) 

(1.25, 0.55, 9.79, 12.20 ) 

(1, 1, 1, 1, 1) 

(1.13, 0.39, 8.56, 9.71) 

(1, 1, 1,1, 1) 

(1.80, 1.20, 5.05, 9.06) 

(1, 1, 1, 1, 4) 

1.60 
(3.83, 3.29, 2.13, 8.302)                                    

(1, 1, 2, 5, 10) 

(4.20, 3.67, 2.16, 8.67 ) 

(1, 1, 3, 5,  11) 

(4.29, 3.75, 2.12, 8.71) 

(1, 1, 2 , 5, 11) 

(1.11, 0.34, 8.23, 9.11 ) 

(1, 1, 1, 1, 1) 

(1.14, 0.40, 9.85,  11.22), 

(1, 1, 1, 1, 1) 

(1.05, 0.24, 7.76, 8.17) 

(1, 1, 1, 1, 1) 

(1.38, 0.73, 5.06, 6.96) 

(1, 1, 1 , 1, 2) 

1.80 
(2.77, 2.21, 2.14, 6.082) 

( 1, 1, 2, 3, 7) 

(3.00, 2.45, 2.12, 6.22 ) 

(1, 1, 2, 3, 7) 

(3.05, 2.50, 2.13, 6.21) 

(1, 1, 2, 4, 8) 

(1.05, 0.24, 7.94, 8.36) 

(1, 1, 1, 1, 1) 

(1.08, 0.29, 9.49, 10.25) 

(1, 1, 1, 1, 1) 

(1.02, 0.14, 6.73, 6.87) 

(1, 1, 1, 1, 1) 

(1.18, 0.46, 5.08, 5.90) 

(1, 1, 1, 1, 2) 

2.00 
(2.12, 1.54, 2.15, 4.693) 

(1, 1, 1, 2, 5) 

(2.26, 1.69, 2.10 , 4.71) 

(1, 1, 1, 2, 5) 

(2.63, 2.07, 2.11, 4.69) 

(1, 1, 1, 2, 5) 

(1.03, 0.17, 7.39, 7.52) 

(1, 1, 1, 1, 1) 

(1.04, 0.21, 8.78, 9.16) 

(1, 1, 1, 1, 1 ) 

(1.01, 0.08, 5.74, 5.79) 

(1, 1, 1, 1, 1) 

(1.07, 0.28, 5.09, 5.38) 

(1, 1, 1, 1, 1) 

2.50 
(1.36, 0.69, 2.13, 2.957) 

(1, 1, 1, 1, 2) 

(1.40, 0.75, 2.07, 2.91 ) 

(1, 1, 1, 1, 2) 

(2.30, 1.73, 2.08, 2.88) 

(1, 1, 1, 1, 2) 

(1.00, 0.06, 5.39, 5.41 ) 

(1, 1, 1, 1, 1) 

(1.01, 0.09, 6.12, 6.16 ) 

(1, 1, 1, 1, 1) 

(1.00, 0.02, 4.47, 4.32) 

(1, 1, 1, 1, 1 ) 

(1.00, 0.07, 5.11, 5.02) 

(1, 1, 1, 1, 1) 

AEQL 119.97 129.36 131.56 33.99 32.45 31. 11 49.56 

(𝑳𝟏, L, 𝑳𝟐) (2.9001, 3.0073, 2.9025) (2.9751, 3.0009, 2.9805) (2.9908, 3.0002, 2.9925) (0.8856, 3.3526, 3.0085) (1.0941, 3.2339, 3.0101) (1.5291, 3.2440, 3.0412) (2.9934, 3.0008, 2.9998) 

(𝒏, 𝒏𝟏, 𝒏𝟐) (2, 2, 5) (2, 2, 8) (2, 2, 11) (5, 2, 8) (5, 2, 11) (5, 4, 8) (5, 5, 5) 
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Table 3.3: Exact ARL, SDRL, ASS, ANOS, AEQL, percentile values and the optimal design parameters   of the SSDS scheme when the 𝑁𝐴𝑅𝐿0 = 370.4, 𝑛 = 𝐴𝑆𝑆0 = 7 and 11 

with 𝛿𝑚𝑎𝑥 = 2.5 

Shift (𝜹) 
   (ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95 ) 

   

0.00 
(370.48, 369.97, 7.00, 2593  )                                                                         

(19, 106, 256, 513, 1110) 

(370.37, 369.87, 7.00, 197.37)                                                                                                                     

((19, 106, 256, 513, 1110) 

(370.38, 369.88, 7.00, 2593 ) 

(19, 106, 256, 513, 1110) 

(370.44, 369.94, 7.00, 2593 ) 

(19, 106, 256, 513, 1110) 

(370.42, 369.92, 11.00, 4075) 

( 19, 106, 256, 513, 1110) 

(370.40, 369.90, 11.00, 4074) 

(19, 106, 256, 513, 1110) 

(370.36, 369.86, 11.00, 4074) 

(19, 106, 256, 513, 1110) 

0.20 
(108.02, 107.52, 7.20, 777.51 ) 

(6, 31, 74, 149, 322) 

(115.65, 115.15, 7.22, 99.33) 

( 1, 33, 79, 159, 342) 

(91.59, 91.09, 7.37, 674.57)                                           

(5, 26, 63, 126, 271) 

(79.18, 78.68, 7.46, 591.04) 

(4, 22, 54, 109, 235) 

(84.43, 83.94, 11.17, 942.86 ) 

(4, 24, 58, 116, 249) 

(88.48, 87.98, 11.18, 989.44) 

(4, 25, 61, 122, 264) 

(73.18, 72.68, 11.42, 835.79) 

(4, 21, 50, 100, 218) 

0.40 
(23.11, 22.61, 178.68 )                   

(1, 7, 16, 31, 67) 

(25.87, 25.37, 7.78, 39.77) 

(1, 1, 3, 6, 14) 

(17.94, 17.43, 8.33, 149.48)                         

(1, 5, 12, 24, 52) 

(14.39, 13.88, 8.73, 125,68) 

(1, 4, 10, 19, 41) 

(15.83, 15.32, 11.61, 183,76)                            

(1, 4, 10, 21, 46) 

(17.02, 16.51, 11.63, 197.93) 

(1, 5, 11, 23, 49) 

(12.79, 12.28, 12.48, 159.57) 

(1, 4, 9, 17, 36) 

0.60 
(6.99, 6.47, 8.44, 58.98) 

(1, 1, 4, 9, 19) 

(7.89, 7.38, 8.44, 20.84)                                               

(1, 1, 1, 3, 6) 

(5.34, 4.81, 9.57, 51.12 )                          

(1, 1, 3, 7, 14) 

(4.31, 3.78, 10.43, 44.94) 

(1, 1, 3, 5, 11) 

(4.69, 4.16, 12.18, 57.14)                                         

(1, 1, 3, 6, 13) 

(5.04, 4.51, 12.11, 60.99) 

(1, 1, 3, 6, 13) 

(3.77, 3.24, 13.69, 51.67) 

(1, 1, 2, 5, 10) 

0.80 
(2.97, 2.42, 9.13, 27.16) 

(1, 1, 2, 3, 7) 

(3.30, 2.75, 8.90, 13.83)                                    

(1, 1, 1, 1, 3) 

(2.36, 1.79, 10.66, 25.13)                     

(1, 1, 1, 3, 5) 

(2.02, 1.44, 12.02, 24.29) 

(1, 1, 1, 2, 4) 

(2.12, 1.54, 12.73, 26.95)                          

(1, 1, 1, 2, 5) 

(2.23,1.65, 12.42, 27.66) 

(1, 1, 1, 2, 5) 

(1.78, 1.18, 14.59, 25.99) 

(1, 1, 1, 1, 4) 

1.00 
(1.71, 1.10, 9.64, 16.50) 

(1, 1, 1, 2,  3) 

(1.84, 1.24, 9.00, 10.79)                                                          

(1, 1, 1, 1, 2) 

(1.45, 0.81, 11.25, 16.32)                        

(1, 1, 1, 1, 3) 

(1.34, 0.68, 12.97, 17.43) 

(1, 1, 1, 1, 2) 

(1.35, 0.69, 13.08, 17.73)                          

(1, 1, 1, 1, 2) 

(1.38, 0.73, 12.40, 17.17) 

(1, 1, 1, 1, 2) 

(1.22, 0.51, 14.92, 18.14) 

(1, 1, 1, 1, 2) 

1.20 
(1.26, 0.57, 9.84, 12.35 ) 

( 1, 1, 1, 1, 2) 

(1.30, 0.62, 8.67, 9.23)             

  (1, 1, 1,1, 1) 

(1.14, 0.40, 10.11, 12.71)                         

(1, 1, 1, 1, 1) 

(1.12, 0.36, 12.95, 14.47) 

(1, 1, 1, 1, 1) 

(1.11, 0.34, 13.18, 14.57)                                            

(1, 1, 1, 1, 1) 

(1.11, 0.34, 11.97, 13.24) 

(1, 1, 1, 1, 1) 

(1.05, 0.23, 14.54, 15.27) 

(1, 1, 1, 1, 1) 

1.40 
(1.09, 0.31, 9.67, 10.50) 

(1, 1, 1, 1, 1) 

(1.09, 0.32, 8.00, 8.14)                                                                         

(1, 1, 1, 1, 1) 

(1.04, 0.20, 10.36, 10.76)                  

(1, 1, 1, 1, 1) 

(1.04, 0.20, 11.96, 12.43) 

(1, 1, 1, 1, 1)) 

(1.03, 1.930.18, 12.93, 13.31)                        

(1, 1, 1, 1, 1) 

(1.02, 0.15, 11.10, 11.35) 

(1, 1, 1, 1, 1) 

(1.01, 0.1, 13.47, 13.60) 

(1, 1, 1, 1, 1) 

1.60 
(1.03, 0.17, 9.15, 9.40) 

(1, 1, 1, 1, 1) 

(1.02, 0.16, 7.16, 7.19)                       

(1, 1, 1, 1, 1) 

(1.01, 0.1, 9.12, 9.21)                

(1, 1, 1, 1, 1) 

(1.01, 0.11, 10.31, 10.45) 

(1, 1, 1, 1, 1) 

(1.01, 0.09, 12.31, 12.42)                                  

(1, 1, 1, 1, 1) 

(1.00, 0.06, 9.86, 9.90) 

(1, 1, 1, 1, 1) 

(1.00, 0.04, 11.82, 11.84) 

(1, 1, 1, 1, 1) 

1.80 
(1.01, 0.09, 8.32, 8.40) 

(1, 1, 1, 1, 1) 

(1.00, 0.07, 6.35, 6.37)                      

(1, 1, 1, 1, 1) 

(1.00, 0.05, 7.77, 7.79)              

(1, 1, 1, 1, 1) 

(1.00, 0.06, 8.52, 8.55) 

(1, 1, 1, 1, 1) 

(1.00, 0.05, 11.32, 11.36)                       

(1, 1, 1, 1, 1) 

(1.00, 0.02, 8.45, 8.47) 

(1, 1, 1, 1, 1) 

(1.00, 0.03, 9.89, 9.90) 

(1, 1, 1, 1, 1) 

2.00 
(1.00, 0.05, 7.31, 7.32) 

(1, 1, 1, 1, 1) 

(1.00, 0.03, 5.73, 8.73)                                                                               

(1, 1, 1, 1, 1) 

(1.00, 0.02, 6.61, 6.61)                    

(1, 1, 1, 1, 1) 

(1.00, 0.03, 7.00, 7.00) 

(1, 1, 1, 1, 1) 

(1.00, 0.03, 10.02, 10.03)                                 

(1, 1, 1, 1, 1) 

(1.00, 0.01, 7.14, 7.14) 

(1, 1, 1, 1, 1) 

(1.00, 0.01, 8.07, 8.07) 

(1, 1, 1, 1, 1) 

2.50 
(1.00, 0.01, 4.78, 4.78) 

(1, 1, 1, 1, 1) 

(1.00, 0.00, 5.07, 5.07)                                      

(1, 1, 1, 1, 1) 

(1.00, 0.00, 5.20, 5.203)                          

(1, 1, 1, 1, 1) 

(1.00, 0.00, 5.24, 5.236) 

(1, 1, 1, 1, 1) 

(1.00, 0.01, 6.36, 6.36)                         

(1, 1, 1, 1, 1) 

(1.00, 0.00, 5.33, 5.33) 

(1, 1, 1, 1, 1) 

(1.00, 0.00, 5.48, 5.49) 

(1, 1, 1, 1, 1) 

AEQL 29.84 30.99 27.41 26.01 26.48 26.90 25.08 

(𝑳𝟏, L, 𝑳𝟐) (0.6740, 3.5671, 3.0013) (0.8406, 3.4148, 3.0521) (1.1496, 3.6358, 2.9798) (1.3342, 3.5663, 2.9306) (0.3486, 3.8211, 2.9827) (0.3185, 3.8526, 3.0049) (0.6045, 3.8868, 2.9861) 

( n, 𝒏𝟏, 𝒏𝟐) (7, 3, 8) (7, 5, 5) (7, 5, 8) (7, 5, 11) (11, 3, 11) (11, 5, 8) (11, 5, 11) 
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(a) for different triplets (𝑛, 𝑛1, 𝑛2) (b) when 𝑛2 = 11 with different 𝑛 and 𝑛1 sample sizes 
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(c) when 𝑛 = 5 with different 𝑛1 and 𝑛2 sample sizes (d) when 𝑛1 = 5 with different 𝑛 and 𝑛2 sample sizes 

Figure 3.3: ARL values of the SSDS 𝑋̅ scheme for different sample sizes 
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Shift

A
S

S

2.001.801.601.401.201.000.800.600.400.20

15.0

12.5

10.0

7.5

5.0

Variable

ass(7,5,11)

ass(11,5,11)

ass(5,5,11)

ass(7,5,8)

 Shift

A
S

S

2.001.801.601.401.201.000.800.600.400.20

16

14

12

10

8

6

4

2

Variable

ass(5,4,11)

ass(5,5,11)

ass(7,3,11)

ass(7,5,11)

ass(11,5,11)

ass(2,2,11)

ass(5,2,11)

 
(c) when 𝑛1 = 5 with different 𝑛 and 𝑛2 sample sizes (d) when 𝑛2 = 11 with different 𝑛 and 𝑛1 sample sizes 

Figure 3.4: ASS values of the SSDS 𝑋̅ scheme for different sample sizes 
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(a) for different triplets (𝑛, 𝑛1, 𝑛2) (b) when 𝑛 = 5 with different 𝑛1 and 𝑛2 sample sizes 
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(c) when 𝑛2 = 11 with different 𝑛 and 𝑛1 sample sizes (d) when 𝑛1 = 5 with different 𝑛 and 𝑛2 sample sizes 

Figure 3.5: ANOS values of the SSDS 𝑋̅ scheme for different sample sizes 
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Figures 3.5 (a) to (d) confirm that for small values of n, the SSDS scheme is cost effective. For 

instance, in terms of the ANOS values, when 𝛿 = 0.2, (𝑛1, 𝑛2) = (2, 11) and n = 2, the SSDS 

scheme signals for the first time on either the 524th or the 525th observation. When (𝑛1, 𝑛2) =

(2, 11) and n = 5, the SSDS scheme signals for the first time on the either the 634th or the 635th 

observation. This confirms that the SSDS 𝑋̅ scheme is cost effective for small values of n. 

 

3.4.3 Performance comparison 

In this section, the SSDS 𝑋 ̅scheme is compared to seven well-known monitoring schemes, 

namely, the traditional 𝑋̅, NSS synthetic 𝑋̅, SSS synthetic 𝑋̅, VSS 𝑋̅, 𝑋̅-EWMA (𝜆), 𝑋̅-CUSUM 

and NSSDS 𝑋̅ schemes in terms of the 𝐴𝐸𝑄𝐿, 𝐴𝑅𝐴𝑅𝐿 and 𝑃𝐶𝐼 values. For a fair comparison, 

these performance measures are computed when n ∈ {4, 7}, 𝑛1 ∈ {2, 4}, 𝑛2 = 12 and 𝛿𝑚𝑎𝑥 = 

2.5 with 𝑁𝐴𝑅𝐿0 = 370.4 for each scheme. The performance of the 𝑋̅-EWMA (𝜆) was 

investigated for 𝜆 = 0.1 and 0.5. However, the synthetic schemes were investigated such that 

𝐻 = 1 where 𝐻 is a non-zero positive integer representing the control limit of the conforming 

run-length (CRL) sub-chart. Each competing scheme was optimized by minimizing the 𝐴𝑅𝐿𝛿 

values resulting in minimum AEQL values.  

From Table 3.4, it can be seen that for small 𝐴𝑆𝑆0 values, in terms of the AEQL, ARARL and 

PCI values, when the 𝑛1 (i.e. Stage 1 sample size) increases, the proposed SSDS 𝑋̅ scheme 

becomes less sensitive than the NSS DS 𝑋̅ scheme (i.e., its AEQL values are greater than the 

ones of the NSS DS 𝑋̅ scheme – this is also indicated by the 𝐴𝑅𝐴𝑅𝐿 as well as the 𝑃𝐶𝐼 values 

of the NSS DS 𝑋̅ scheme, which are less than 1) except for large shifts in the process location 

where the performance of these two schemes are similar. For small Stage 1 sample sizes, the 

SSDS and NSS DS 𝑋̅ schemes are almost equivalent. In addition, for small shifts, the 𝑋̅-

EWMA and VSS 𝑋̅ schemes outperform the SSDS 𝑋̅ scheme and the 𝑋̅-CUSUM scheme is as 

much sensitive as the SSDS 𝑋̅ scheme. However, for large 𝐴𝑆𝑆0 values, the proposed SSDS 𝑋̅ 

scheme outperforms all competing schemes regardless of the size of the shift in the process 

location (i.e. it has the smallest 𝐴𝐸𝑄𝐿 value).  
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Table 3.4: Case K monitoring schemes performance comparison for different shift sizes when n ∈ {4,7}, 𝑛1 ∈{2,4}, 𝑛2=12 and 𝛿𝑚𝑎𝑥=2.5 with 

𝑁𝐴𝑅𝐿0 = 370.4 

 

*Shift 

Performance 

measures 

Monitoring scheme 

(𝒏𝟏, 𝒏𝟐) 𝑨𝑺𝑺𝟎 = 𝒏 
𝑿̅ VSS 𝑿̅ 

NSS 

Synthetic 𝑿̅ 

SSS 

Synthetic 𝑿̅ 

𝑿̅-

EWMA(0.1) 

𝑿̅-

EWMA(0.5) 
𝑿̅-CUSUM NSS DS 𝑿̅ SSDS 𝑿̅ 

Small 
AEQL 152.47 53.48 147.82 104.95 55.89 138.16 61.43 42.35 61.19 

(4, 12) 

 
ARARL 2.42 0.92 2.19 1.70 0.95 2.09 1.04 

 
0.75 1.00  

 PCI 2.49 0.87 2.41 1.72 0.91 2.26 1.00 0.69 1.00 

4  

 

Moderate 

 

AEQL 148.45 45.21 151.14 109.52 44.78 79.64 77.53 18.35 20.36 
ARARL 8.89 2.12 8.54 7.50 2.22 3.92 3.88 0.91 1.00 

 PCI 7.29 2.22 7.42 5.38 2.20 3.91 3.80 0.90 1.00 

Large 
AEQL 34.83 32.23 106.59 91.86 37.23 46.45 82.87 17.06 17.25 

ARARL 2.11 1.89 9.54 8.77 2.20 2.77 4.86 0.99 1.00 
PCI 2.02 1.87 6.18 5.33 2.16 2.69 4.80 0.99 1.00 

Small-to-large 
AEQL 77.47 73.43 135.95 102.59 81.54 136.10 149.69 40.66 47.42 

ARARL 1.87 1.78 7.18 6.36 1.82 2.96 3.34 0.88 1.00 
PCI 1.63 1.73 2.86 2.16 1.72 2.87 3.16 0.86 1.00 

Small 
AEQL 152.47 49.22 147.82 104.95 55.89 138.16 61.43 38.84 36.83 

(2, 12) 

ARARL 2.49 1.42 3.34 1.83 1.53 3.59 1.71 1.04 1.00 
 PCI 4.14 1.34 4.01 2.85 1.52 3.75 1.67 1.05 1.00 

 AEQL 148.45 41.34 151.14 109.52 44.78 79.64 77.53 14.25 14.35 
Moderate ARARL 9.10 2.32 9.16 8.17 3.14 5.67 5.38 0.99 1.00 
  PCI 10.34 2.88 10.54 7.63 3.12 5.55 5.40 0.99 1.00 

Large 
AEQL 34.83 30.75 106.59 91.86 37.23 46.45 82.87 17.11 17.18 

ARARL 2.23 1.46 10.08 9.11 2.23 2.80 4.90 1.00 1.00 
PCI 2.03 1.79 6.21 5.44 2.17 2.70 4.84 1.00 1.00 

Small-to-large 
AEQL 77.47 70.41 135.95 102.59 81.54 136.10 149.69 37.11 36.67 

ARARL 1.91 1.62 7.65 6.79 2.33 4.04 4.08 1.01 1.00 
PCI 2.11 1.92 3.70 2.80 2.21 3.71 4.08 1.01 1.00 

Small 
AEQL 141.03 49.79 97.19 91.98 55.71 138.36 61.35 28.29 24.91 

 

 

(4, 12) 

 
ARARL 2.31 1.89 2.70 2.60 2.25 5.47 2.55 12.89 1.00  

 PCI 5.66 2.00 3.90 3.69 2.24 5.55 2.46 1.14 1.00 

7 

 

Moderate 

 

AEQL 112.44 41.24 103.33 97.06 45.47 79.57 77.58 11.22 10.09 
ARARL 8.62 2.13 8.43 7.98 4.64 8.39 7.75 1.44 1.00 

 PCI 11.14 4.09 10.24 9.62 4.51 7.89 7.69 1.11 1.00 

Large 
AEQL 33.56 30.33 91.82 84.99 37.18 46.46 82.78 16.39 16.15 

ARARL 2.09 1.81 6.29 5.59 2.40 3.04 5.28 1.07 1.00 
PCI 2.08 1.88 5.69 5.26 2.30 2.88 5.13 1.01 1.00 

Small-to-large 
AEQL 73.19 69.46 97.93 91.78 81.88 136.13 149.61 31.50 29.58 

ARARL 2.72 2.32 6.52 6.09 3.13 5.64 5.29 1.32 1.00 
PCI 2.47 2.34 3.31 3.11 2.77 4.60 5.08 1.26 1.00 

Small 
AEQL 141.03 46.77 97.19 91.98 55.71 138.36 61.35 42.35 31.00 

(2, 12) 

ARARL 4.45 1.91 2.57 1.78 1.85 4.44 2.09 1.37 1.00 
 PCI 4.54 1.51 3.14 2.97 1.80 4.46 1.98 1.37 1.00 

 AEQL 112.44 39.43 103.33 97.06 45.47 79.57 77.58 18.35 11.45 
Moderate ARARL 9.44 3.32 8.72 8.42 4.05 7.24 6.79 1.65 1.00 
  PCI 9.82 3.44 9.02 8.49 3.97 6.94 6.78 1.60 1.00 

Large 
AEQL 33.56 29.05 91.82 84.99 37.18 46.46 82.78 17.06 16.41 

ARARL 2.01 1.76 8.65 8.01 2.35 2.97 5.17 1.05 1.00 
PCI 2.04 1.77 5.59 5.18 2.67 2.83 5.04 1.04 1.00 

Small-to-large 
AEQL 73.19 63.25 97.93 91.78 81.88 136.13 149.61 40.66 32.41 

ARARL 2.49 2.12 5.99 5.58 2.78 4.90 4.78 1.36 1.00 
PCI 2.26 1.95 3.02 2.83 2.53 4.20 4.62 1.25 1.00 

                 * Small: (0 < 𝛿 ≤ 0.7), Moderate: (0.7 < 𝛿 ≤ 1.6), Large (1.6 < 𝛿 ≤ 2.5) and Small-to-large: (0 < 𝛿 ≤ 2.5) 
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3.5 Illustrative example 

3.5.1 Example 1 

To illustrate the implementation and application of the proposed SSDS 𝑋̅ scheme, the well-

known dataset from Montgomery (2013) on the inside diameters of piston rings manufactured 

by a forging process is considered. This data set contains 25 retrospective or Phase I samples, 

each of size five, that were collected when the process was thought to be IC. A goodness of fit 

test for normality reveals that the data are normally distributed. For this data, the process 

parameters, 𝜇0 and 𝜎0 are given by 74.001 and 0.008, respectively. This data set also contains 

75 Phase II observations (i.e. 15 sub-groups of size 5). Therefore, we consider the SSDS 𝑋̅ 

scheme with (𝑛1, 𝑛2) = (5, 5) and an 𝐴𝑆𝑆0 of 5. The optimal combination (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) 

when 𝐴𝑆𝑆0 = 5 is found to be equal to (5, 5, 3.0, 3.0, 3.0) so that the 𝐴𝑅𝐿0 = 370.4 with 𝐴𝐸𝑄𝐿 

= 49.54. For a fair comparison with the Daudin (1992)’s NSSDS 𝑋̅ scheme, we also considered 

the NSSDS 𝑋̅ scheme with (𝑛1, 𝑛2) = (5, 5) and an 𝐴𝑆𝑆0 of 5. The optimal combination for this 

scheme is given by (5, 5, 2.51, 3.221, 2.752) so that the 𝐴𝑅𝐿0 = 370.4 with 𝐴𝐸𝑄𝐿 = 52.46. The 

standardized statistics for the first sample and combined samples are 𝑍1𝑡 and 𝑍𝑡, respectively. 

These values are computed using 𝜇0 and 𝜎0.  

A plot of the charting statistics 𝑍1𝑡 and 𝑍𝑡 for both schemes is shown in Figure 3.6. It can be 

seen that from the first to the 13th sampling time (i.e. 𝑡 = 1 to 13) of the first sample, the charting 

statistics 𝑍1𝑡 of the SSDS 𝑋̅ scheme plotted in region A (𝐿1 =  𝐿). Therefore, at this stage, the 

process was IC. At the 14th sampling time, the charting statistic (𝑍1,14) plotted below -L (i.e. 

below -3). Thus, the SSDS 𝑋̅ scheme gives a signal for the first time on the 14th sampling time. 

It was observed that for the NSSDS 𝑋̅ scheme, at the first and second sampling times of the 

first sample, the charting statistics (𝑍1,1 and 𝑍1,2) plotted in region B+ and their corresponding 

stage 2 charting statistics 𝑍1 and 𝑍2 plotted in the IC region F−; thus, the process is IC at this 

stage. On the twelfth sampling time of the first sample, (i.e., 𝑍1,12) plots in region B− and its 

corresponding stage 2 charting statistic 𝑍12 plots in region G+, which means that the process is 

IC. From the fourteenth sampling time of the first sample onwards, all of the charting statistics 

plotted in the IC regions. Hence, the NSSDS 𝑋̅ scheme does not signal. Therefore, the SSDS 

𝑋̅ scheme outperforms the NSSDS 𝑋̅ scheme. These findings confirm the results found in 

Section 3.4.3. Note that since we needed to go to stage 2 on three different sampling times 

(using a second sample) at times 𝑡 =1, 2 and 12, the NSSDS scheme has 22 sampling times, 

instead of 25. 
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Figure 3.6: The SSDS and NSSDS 𝑋̅ schemes for the piston ring data  

 

3.5.2 Example 2 

In addition to the example in Section 3.5.1, another dataset is used to illustrate the 

implementation and application of the proposed SSDS 𝑋̅ scheme. This dataset is based on the 

hard-bake process which is used in conjunction with photolithography in semiconductor 

manufacturing – see Chapter 6 of Montgomery (2013). The interval of time between samples 

or subgroups is modified such that master samples of size 10 are taken every two hours to 

monitor the flow width of the resist, see Table 3.5. A goodness of fit test for normality reveals 

that the data are normally distributed. From prior information, the process parameters, 𝜇0 and 

𝜎0 are known to be 1.5056 microns and 0.1398 microns, respectively.  

Table 3.5: Dataset on the hard-bake process 

 Stage 1 

observations 
Stage 2 observations 

𝑡 𝑌1𝑡1 𝑌1𝑡2 𝑌2𝑡1 𝑌2𝑡2 𝑌2𝑡3 𝑌2𝑡4 𝑌2𝑡5 𝑌2𝑡6 𝑌2𝑡7 𝑌2𝑡8 

1 1.4483 1.5458 1.4538 1.4303 1.6206 1.5435 1.6899 1.5830 1.3358 1.4187 

2 1.5175 1.3446 1.4723 1.6657 1.6661 1.5454 1.0931 1.4072 1.5039 1.5264 

3 1.4418 1.5059 1.5124 1.4620 1.6263 1.4301 1.2725 1.5945 1.5397 1.5252 

4 1.4981 1.4506 1.6174 1.5837 1.4962 1.3009 1.506 1.6231 1.5831 1.6454 

5 1.4132 1.4603 1.5808 1.7111 1.7313 1.3817 1.3135 1.4953 1.4894 1.4596 

6 1.5765 1.7014 1.4026 1.2773 1.4541 1.4936 1.4373 1.5139 1.4808 1.5293 

7 1.5729 1.6738 1.5048 1.5651 1.7473 1.8089 1.5513 1.8250 1.4389 1.6558 

8 1.6236 1.5393 1.6738 1.8698 1.5036 1.412 1.7931 1.7345 1.6391 1.7791 

9 1.7372 1.5663 1.4910 1.7809 1.5504 1.5971 1.7394 1.6832 1.6677 1.7974 

10 1.4295 1.6536 1.9134 1.7272 1.4370 1.6217 1.822 1.7915 1.6744 1.9404 
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In this example, we consider the SSDS 𝑋̅ scheme with (𝑛1, 𝑛2) = (2, 8) and an 𝐴𝑆𝑆0 of 5. The 

optimal combination (𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2) when 𝐴𝑆𝑆0 = 5 is found to be equal to (2, 8, 0.8856, 

3.3526, 3.0085) so that the attained 𝐴𝑅𝐿0 = 370.4 – see Table 3.1. 

 

Table 3.6: Illustration of the operation of the SSDS 𝑋̅ schemes using the dataset on the hard-

bake process 

𝑡 𝑌̅1𝑡 𝑍1𝑡 Region 
Take a 2nd  

Sample 
𝑌̅2𝑡 𝑌̅𝑡 𝑍𝑡 Region 

Stage 1: 

Signal 

Stage 2: 

Signal 

1 1.4971 -0.0865 A No     No   

2 1.4311 -0.7542 A No     No   

3 1.4739 -0.3212 A No     No   

4 1.4744 -0.3162 A No     No   

5 1.4368 -0.6965 A No     No   

6 1.6390 1.3489 B+ Yes 1.4486 1.4867 -0.4281 F- No No  

7 1.6234 1.1911 B+ Yes 1.6371 1.6344 2.9129 F- No No  

8 1.5815 0.7673 A No     No   

9 1.6518 1.4784 B+ Yes 1.6634 1.6611 3.5164 F+ No Yes  

10 1.5416 0.3636 A No     No   

 

 
Figure 3.7: The SSDS 𝑋̅ scheme for the hard-bake process data 

Given the illustration in Table 3.6 and Figure 3.7, it is observed that the process does not give 

an OOC signal at Stage 1. However, the process goes to Stage 2 at the 6th, 7th and 9th sampling 

time (see the red dots in Figure 3.7); and eventually issue an OOC signal on the 9th subgroup 

for the first time according to the implementation operation in Figure 3.2. 
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3.6 Conclusion 

In this chapter, a new design of the parametric monitoring scheme based on double sampling 

is proposed. At the second stage, the proposed SSDS scheme gives a signal if the charting 

statistic of the first sample and the combined samples plot on one side of the charting regions 

in each stage (i.e., side-sensitive). The performance of the proposed SSDS scheme with known 

process parameters was investigated in terms of the characteristics of the run-length 

distribution, the 𝐴𝑆𝑆, the ANOS and the 𝐴𝐸𝑄𝐿 function. It was observed that for large 𝐴𝑆𝑆0 

values, the SSDS 𝑋̅ scheme outperforms all competing schemes considered in this chapter 

regardless of the size of the mean shifts. However, for small 𝐴𝑆𝑆0 values and large Stage 1 

sample sizes, the NSS DS, EWMA and VSS 𝑋̅ schemes outperform the proposed SSDS 𝑋̅ 

scheme for small shifts in the process location.  In terms of the ASS, the proposed SSDS scheme 

is cost effective when compared to the NSSDS and VSS 𝑋̅ schemes (keep in mind that, in Teoh 

et al. (2014a), it was concluded that the VSS 𝑋̅ scheme has a better ASS performance than the 

NSSDS 𝑋̅ scheme). Note though, the proposed SSDS scheme tends to yield better OOC 

performance than its competitors in many situations. 

However, users / companies that do not face problems involving large sample sizes are advised 

to use large sample sizes regardless of the shift size of interest, as this guarantees a much better 

performance. If the sample size is a major concern for a user / company, we recommend the 

use of small sample sizes for small and moderate shifts and large sample sizes for large shifts. 

We also suggest that companies use 𝐴𝑆𝑆0 = 𝑛1 = 3, 4 or 5, and increase 𝑛2 considerably in 

order to reach the desired efficiency. 
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Chapter 4. A new side-sensitive double sampling 𝑿̅ scheme for monitoring 

an abrupt change in the process location with estimated parameters 

 

4.1 Introduction 

A literature review of all currently available double sampling schemes in SPM have been 

reviewed in Chapter 2. To ensure that this chapter is self-contained, there will be some few key 

concepts and figures that will be reproduced from Chapter 2.  

Although there is a lots of research work based on parameters known (i.e. Case K), in practice, 

the process parameters are generally unknown (i.e. Case U). As stated in Chapter 2, there are 

a fewer number of articles that investigated the Case U scenario in the context of NSSDS 

schemes as compared to Case K (see Table 2.1 in Chapter 2). These are: Khoo et al. (2013b), 

Teoh et al. (2013, 2014, 2015, 2016a, 2016b), Castagliola et al. (2017), You et al. (2015), You 

(2018) and, Lee and Khoo (2019c). It is worth noting that all the articles on Case U NSSDS 

schemes mentioned in the previous sentence, used the non-side-sensitive design discussed in 

Daudin (1992); see these charting regions design in Figure 2.1(b). In Chapter 3 of this 

dissertation, it is shown that the SSDS 𝑋̅ scheme has an improved performance over the NSSDS 

𝑋̅ scheme when Case K is assumed. Since the abovementioned articles have thoroughly 

discussed the design and implementation of the NSSDS 𝑋̅ scheme. Therefore, in this chapter, 

the design and implementation of the SSDS 𝑋̅ scheme in Case U using the (5th, 25th, 50th, 75th, 

95th) percentiles, 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆 and the average extra quadratic loss (𝐴𝐸𝑄𝐿) metrics are 

discussed.         

The rest of this chapter is structured as follows: Section 4.2 presents the operation, design and 

run-length properties of the SSDS 𝑋̅ scheme in Case U; while, Section 4.3 presents the overall 

performance run-length metrics. The optimization model is given in Section 4.4. Section 4.5 

assesses the IC, OOC performance of the SSDS 𝑋̅ scheme and compares their overall 

performance with the NSSDS 𝑋̅ scheme and other established monitoring schemes in Case U. 

In Section 4.6, a case study is given using real-life data to demonstrate the implementation and 

design of the Case U SSDS 𝑋̅ scheme. Finally, some concluding remarks are given in Section 

4.7.   

 

4.2 Design of the SSDS 𝑿̅ monitoring scheme with estimated process parameters 

The Case U scenario requires monitoring schemes to be applied in a two-phase approach, i.e. 

Phase I and Phase II (see Jensen et al. (2006) and Psarakis et al. (2013) for a review of parameter 
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estimation effect publications). In Phase I, monitoring schemes are implemented 

retrospectively in order to estimate the distribution parameters using an IC reference sample. 

However, in Phase II, monitoring schemes are implemented prospectively to continuously 

monitor any departures from an IC state using the parameters estimated in Phase I.  

 

4.2.1 Phase I and Phase II operation of the SSDS 𝑿̅ monitoring scheme 

Phase I parameter estimation 

Since the IC process parameters, 𝜇0 and 𝜎0, are usually unknown they have to be estimated 

from m Phase I subgroup samples, each of size 𝑛, i.e. {𝑋𝑖𝑗}𝑗=1,2,…,𝑛
𝑖=1,2,…,𝑚

. The estimated IC process 

parameters, 𝜇̂0 and 𝜎̂0, are given by  

𝜇̂0 =
1

𝑚𝑛
∑∑𝑋𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (4.1) 

and  

𝜎̂0 = √
1

𝑚(𝑛 − 1)
∑∑(𝑋𝑖𝑗 − 𝑋̅𝑖)

2
𝑛

𝑗=1

𝑚

𝑖=1

, (4.2) 

respectively, where 𝑋̅𝑖 = ∑ 𝑋𝑖𝑗/𝑛
𝑛
𝑗=1 .   

 

Phase II charting statistics and operation procedure: Stages 1 and 2 

Let 𝑌𝑡𝑗 be the Phase II observations from i.i.d. 𝑁(𝜇1 , 𝜎0), where 𝜇1 is the OOC mean (i.e. 𝜇1 =

𝜇0 + 𝛿𝜎0) with 𝛿 = |𝜇1 − 𝜇0|/𝜎0 the magnitude of the standardized mean shift from 𝜇0 to 𝜇1. 

Let 𝐿1 and 𝐿 (with 𝐿 ≥ 𝐿1 > 0) be the warning and control limits of the first sample of size 𝑛1 

at Stage 1, respectively; and 𝐿2 (with 𝐿2 > 0) be the control limit of the combined samples of 

size 𝑛  (= 𝑛1 + 𝑛2) at Stage 2. Therefore, the SSDS 𝑋̅ control scheme is divided into eight 

intervals, i.e. A = [−𝐿1, 𝐿1], B+ = ( 𝐿1, 𝐿], B− = [−𝐿, −𝐿1), C =(−∞, −𝐿) ∪ (𝐿, +∞), F+ = 

(𝐿2, +∞), F− = (−∞, 𝐿2], G− = (−∞, −𝐿2) and G+ = [−𝐿2,+∞).  



 

 

62 
 

 
Figure 4.1: The charting regions of the SSDS scheme 

 

In Phase II of the SSDS 𝑋̅ monitoring scheme, there are two distinct standardized charting 

statistics in Case U (denoted as 𝑍̂1𝑡 and 𝑍̂2𝑡, shown below) used during Stage 1 and 2, 

respectively (see Figure 4.1). From the 𝑌𝑡𝑗 observations, a first subgroup sample of size 𝑛1 is 

collected at the 𝑡𝑡ℎ sampling time (denoted as 𝑌1𝑡𝑗, 𝑡 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛1). If the 

standardized charting statistic based on the first sample falls on Region B− or B+, then a second 

subgroup sample of size 𝑛2 (where 𝑛2 ≥ 𝑛1) is also collected at the 𝑡𝑡ℎ sampling time (denoted 

as 𝑌2𝑡𝑗, 𝑡 = 1, 2, …, and 𝑗 = 1, 2, …, 𝑛2). Then the SSDS 𝑋̅ scheme uses these two stages to 

decide whether the process is IC or OOC, and each stage’s charting statistic is as follows. 

Stage 1: Let 𝑌̅1𝑡 = ∑ 𝑌1𝑡𝑗 𝑛1⁄𝑛1
𝑗=1  be the mean of the first sample of subgroup size 𝑛1 at the 𝑡𝑡ℎ 

sampling time. Hence, the standardized statistic for the first sample at the 𝑡𝑡ℎ  sampling 

time in Case U is given by  

𝑍̂1𝑡 =
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0 √𝑛1⁄
. (4.3) 

where 𝑌̅1𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1
), so that 𝛿 = 0 means that the process is IC. In this case, 

𝑍1𝑡 follows a standard normal distribution (i.e. 𝑍1𝑡~𝑁(0,1)). However, when 𝛿 ≠ 0, 

the process is OOC and 𝑍1𝑡~𝑁(𝛿, 1).  

Stage 2: At the 𝑡𝑡ℎ  sampling time of the second sample, the sample mean is given by 𝑌̅2𝑡 =

∑ 𝑌2𝑡𝑗 𝑛2⁄𝑛2
𝑗=1 , so that the combined sample mean is given by 𝑌̅𝑡 = (𝑛1𝑌̅1𝑡 +

𝑛2𝑌̅2𝑡)/(𝑛1 + 𝑛2). Thus, the standardized charting statistic in Case U at the 

𝑡𝑡ℎ  sampling time is given by 
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𝑍̂𝑡 =
𝑌̅𝑡 − 𝜇̂0

𝜎̂0 √𝑛1 + 𝑛2⁄
. (4.4) 

where 𝑌̅𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1+𝑛2
). When the process is IC, 𝑍̂2𝑡~𝑁(0, 1) since 𝛿 = 0 and 

when the process is OOC, 𝑍̂𝑡~𝑁(𝛿, 1).  

 

Thus, based on the description above, the operational procedure of the Case U SSDS 𝑋̅ scheme 

is given as follows:  

1. From the IC retrospective data with m samples, estimate the IC mean and standard 

deviation of the process using Equations (4.1) and (4.2), respectively. 

2. In the prospective phase, take a sample of size 𝑛1 and calculate the sample mean 𝑌̅1𝑡 at 

the 𝑡𝑡ℎ sampling time at Stage 1. 

3. If 𝑍̂1𝑡 ∈ A, the process is considered as IC. 

4. If 𝑍̂1𝑡 ∈ C, the process is said to be OOC and then the necessary corrective action must 

be taken to find and remove the assignable causes. 

5. If 𝑍̂1𝑡 ∈ B− ∪ B+, take a second sample of size 𝑛2(𝑛2 ≥ 𝑛1) and calculate the sample 

mean 𝑌̅2𝑡 at the 𝑡𝑡ℎ sampling time of the second sample. 

6. At the 𝑡𝑡ℎ  sampling time, calculate 𝑌̅𝑡 and then 𝑍̂𝑡. 

7. The process is declared IC if: 

(a) If 𝑍̂1𝑡 ∈ B+ and 𝑍̂𝑡 ∈ F− , or 

(b) If 𝑍̂1𝑡 ∈ B− and 𝑍̂𝑡 ∈ G+. 

However, the process is declared OOC: 

(c) If 𝑍̂1𝑡 ∈ B+ and 𝑍̂𝑡 ∈ F+ , or 

(d) If 𝑍̂1𝑡 ∈ B− and 𝑍̂𝑡 ∈ G−. 

  

In essence, if the plotting statistic falls in region B+ (region B−) in Stage 1, then it can only fall 

in regions F− or F+ (regions G+ or G−) only, in Stage 2, respectively. Conversely, if in Stage 

1, 𝑍̂1𝑡 ∈ B+, then in Stage 2, we have  𝑍̂𝑡 ∉ {G+, G−}. Similarly, if in Stage 1, 𝑍̂1𝑡 ∈ B−, then 

in Stage 2, we have  𝑍̂𝑡 ∉ {F−, F+}. The flow chart illustrating the steps involved in the 

operation of the Case U SSDS 𝑋̅ monitoring scheme is shown in Figure 4.2. 

 



 

 

64 
 

 
Figure 4.2: Flow chart for the proposed SSDS 𝑋̅ control scheme in Case U 

 

4.2.2 Unconditional run-length properties of the SSDS 𝐗̅ scheme                                       

In order to calculate the unconditional run-length (RL) properties, we need to first derive the 

conditional ones, see Jensen et al. (2006). Hence, the conditional c.d.f. of 𝑍̂1𝑡, given 𝜇̂0 and 𝜎̂0 

is defined as 

𝐹𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) = Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). (4.5) 

where 𝑈 = (𝜇̂0 − 𝜇0)
√𝑚𝑛

𝜎0
 and 𝑉 = 𝜎̂0 𝜎0⁄ . Consequently, the conditional p.d.f. of 𝑍̂1𝑡, given 

𝜇̂0 and 𝜎̂0 is given by 

𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) = 𝑉𝜙 (𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). (4.6) 

Since 𝜇̂0~𝑁(𝜇0,
𝜎0

2

𝑚𝑛
), then 𝑈~𝑁(0,1) so that the p.d.f. of the random variable 𝑈 is simply,  

𝑓𝑈(𝑢) = 𝜙(𝑢). (4.7) 
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Zhang et al. (2011) used the fact that  𝑉2 = (𝜎̂0 𝜎0⁄ )2 has a gamma distribution with parameters 

𝑚(𝑛 − 1)/2 and 2/[𝑚(𝑛 − 1)] to show that the p.d.f. of 𝑉 is defined as 

𝑓𝑣(𝑣|𝑚, 𝑛) = 2𝑣𝑓𝛾 [𝑣2|
𝑚(𝑛 − 1)

2 ,
2

𝑚(𝑛 − 1)
], (4.8) 

where 𝑓𝛾(. ) is the p.d.f. of the gamma distribution with parameters 
𝑚(𝑛−1)

2
 and 

2

𝑚(𝑛−1)
.  

Next, to derive the unconditional c.d.f. of the RL of the proposed SSDS scheme, we need to 

first derive the unconditional probability of the IC process. Let 𝑃̂0𝑘 denote the probability that 

the process with estimated parameters remains IC at the sampling stage 𝑘 (with 𝑘 = {1, 2}). 

Then, the probability that the process is IC is given by 

𝑃̂0 = 𝑃̂01 + 𝑃̂02 (4.9) 

where, 

𝑃̂01 = Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) 

(4.10) 

𝑃̂02 = ∫ 𝑃̂F−𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

.

𝑍∈B++

+ ∫ 𝑃̂G+𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

.

𝑍∈B−−

 

with   

𝑃̂F− = Φ[𝑈√
𝑛2

𝑚𝑛
+ 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2] 

and 

𝑃̂G+ = 1 − Φ[𝑈√
𝑛2

𝑚𝑛
− 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2]. 

Then, the unconditional c.d.f. of the SSDS 𝑋̅ monitoring scheme for Case U is given by 

𝐹𝑅𝐿(ℓ) = ∫ ∫ (1 − 𝑃̂0
ℓ)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢,

+∞

0

+∞

−∞

 (4.11) 

where ℓ ∈ {1, 2, 3, … . , }, 𝑓𝑈(𝑢) and 𝑓𝑉(𝑣) are defined in Equations (4.7) and (4.8), 

respectively. 

Therefore, the unconditional 𝐴𝑅𝐿 and 𝑆𝐷𝑅𝐿 of the proposed SSDS 𝑋̅ monitoring scheme with 

estimated process parameters are given by 

𝐴𝑅𝐿 = ∫ ∫ (
1

1 − 𝑃̂0

)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

 (4.12) 

and  

𝑆𝐷𝑅𝐿 = [∫ ∫ (
1 + 𝑃̂0

1 − 𝑃̂0

)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

− 𝐴𝑅𝐿2]

1/2

. (4.13) 

The Case U average sample size (𝐴𝑆𝑆) is given by 
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𝐴𝑆𝑆 = ∫ ∫ (𝑛1 + 𝑛2𝑃̂2)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

 (4.14) 

where 𝑃̂2 is the probability of taking the second sample, which is given by 𝑃̂2 =

𝑃(𝑍̂1𝑡 ∈ 𝐵− ∪ 𝐵+|𝜇̂0, 𝜎̂0), or simply, 

𝑃̂2 = Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1)

+ Φ(𝑈√
𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) − Φ(U√

𝑛1

𝑚𝑛
− 𝑉𝐿 − 𝛿√𝑛1). 

(4.15) 

Then, the average number of observations to signal (𝐴𝑁𝑂𝑆) is given by  

𝐴𝑁𝑂𝑆 = ∫ ∫ (𝑛1 + 𝑛2𝑃̂2) (
1

1 − 𝑃̂0

)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢
+∞

0

+∞

−∞

. (4.16) 

Since the 𝐴𝑁𝑂𝑆 depends on the 𝐴𝑆𝑆 and 𝐴𝑅𝐿 values, a larger 𝐴𝑁𝑂𝑆 value implies that either 

the monitoring scheme is inefficient and/or the cost of inspection is higher.       

 

4.3 Measures of the overall performance 

The ARL (see Equation (4.12)) is defined as the average number of samples required before an 

OOC signal is issued in the process. It is well-known that the RL distribution of a monitoring 

scheme is generally highly right-skewed in Case U; see for example Jones et al. (2004). As a 

result, many researchers prefer to use more meaningful performance measures (such as the 

percentiles of the RL which includes the median run-length (MRL)) to better evaluate the 

performance of the schemes. Furthermore, the ARL has been widely criticized by many authors, 

see for example, Wu et al. (2008) and Machado and Costa (2014). The ARL was simply 

criticized because of its ineffectiveness in assessing the overall performance, especially when 

the aim of the study is to assess the performance of a monitoring scheme over a range of shifts. 

Several authors have revealed that if a monitoring scheme is designed based on one specific 

size of a mean shift, it will perform poorly when the actual size of the shift is significantly 

different from the assumed size (see Reynolds and Lou (2010), Ryu, Wan and Kim (2010), 

Machado and Costa (2014) and Shongwe, Malela-Majika and Rapoo (2019)). Therefore, many 

researchers have recommended the use of a quality loss function (QLF) instead of the ARL to 

assess the performance of a monitoring scheme. A QLF describes the relationship between the 

shift size and the quality impact. The average extra quadratic loss (AEQL) is an alternative 

measure of the ARL used to assess the overall performance of a monitoring scheme for a range 

of shifts. Therefore, when the aim of a study is to measure the overall performance of a scheme 
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over a range of shifts (say, 0 ≤ 𝛿 ≤ 2.5), the objective function can be defined in terms of the 

𝐴𝐸𝑄𝐿 given by   

𝐴𝐸𝑄𝐿 = ∫ ∫ ∫ 𝑊(𝛿) (
1

1 − 𝑃̂0

)𝑓(𝛿)𝑓𝑈(𝑢)𝑓𝑉(𝑣) 𝑑𝑣 𝑑𝑢 𝑑𝛿
+∞

0

+∞

−∞

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

 (4.17) 

where 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are the lower and upper boundary of the range of shifts under 

consideration and 𝑊(𝛿) (with 𝑊(𝛿) = 𝛿2) represents the weight function associated with 𝛿. 

Since it is generally assumed that all location shifts (mean shifts) occur with equal probability; 

hence, a uniform distribution of  𝛿 is implied, i.e. 𝑓(𝛿) = 1 (𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛)⁄ . 

In order to measure the relative effectiveness of two different schemes, Wu et al. (2008) 

suggested the use of the PCI, which is the ratio between the AEQL of a competing monitoring 

scheme and the AEQL of the benchmark scheme under the same settings. In this chapter, the 

proposed SSDS scheme is used as the benchmark. The 𝑃𝐶𝐼 is then defined by 

𝑃𝐶𝐼 =
𝐴𝐸𝑄𝐿

𝐴𝐸𝑄𝐿∗
 (4.18) 

where 𝐴𝐸𝑄𝐿∗ is the 𝐴𝐸𝑄𝐿 of the benchmark SSDS scheme. In addition to the 𝐴𝐸𝑄𝐿 and 

the 𝑃𝐶𝐼, many authors also suggested the use of the 𝐴𝑅𝐴𝑅𝐿 to measure the overall performance 

of a benchmark SSDS scheme against other competing schemes; see Wu et al. (2008). The 

𝐴𝑅𝐴𝑅𝐿 is given by 

𝐴𝑅𝐴𝑅𝐿 =
1

𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛
∑

𝐴𝑅𝐿(𝛿)

𝐴𝑅𝐿∗(𝛿)

𝛿𝑚𝑎𝑥

𝛿=𝛿𝑚𝑖𝑛

 (4.19) 

where 𝐴𝑅𝐿∗ is the ARL of the benchmark SSDS scheme. Note that, if the 𝑃𝐶𝐼  and/or 𝐴𝑅𝐴𝑅𝐿 

is larger than one, the competing scheme will produce larger ARLs over the range of shifts 

under consideration, which means that the SSDS scheme outperforms the competing scheme 

for that particular range; otherwise, if PCI is less than one, then the competing scheme is more 

sensitive than the SSDS scheme.  

 

4.4 Bi-objective model of the proposed SSDS 𝑿̅ monitoring scheme 

There are three control limits 𝐿1, 𝐿 and 𝐿2 and two sample sizes 𝑛1 and 𝑛2 that need to be 

specified for a specified nominal ASS value (denoted by 𝐴𝑆𝑆0) in order to design the SSDS 𝑋̅ 

monitoring scheme. The efficiency of the proposed SSDS 𝑋̅ scheme depends on the 

combination (𝑚, 𝑛1, 𝑛2, 𝐿1, 𝐿, 𝐿2 ). There are three main steps in the optimal design of the 

SSDS scheme: Firstly, the nominal IC 𝐴𝑅𝐿 (𝐴𝑅𝐿0) is set to a high desired value, such as 370.4 

or 500. Secondly, the combination that yields an 𝐴𝑅𝐿0 as close as possible to the nominal 𝐴𝑅𝐿0 
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value and the smallest OOC ARL (𝐴𝑅𝐿𝛿) for a given mean shift 𝛿 and a minimum 𝐴𝐸𝑄𝐿 value 

is considered to be the optimal combination. Thirdly, the optimization model is given by: 

(𝐿1, 𝐿, 𝐿2) = argmin
𝑚,𝑛1,𝑛2,𝐿1,𝐿,𝐿2

(𝐴𝑅𝐿1, 𝐴𝐸𝑄𝐿)  (4.20) 

subjects to  

𝐴𝑅𝐿0 = 𝜏 (4.21) 

and  

𝐴𝑆𝑆0 = 𝜉, (4.22) 

where 𝜉 is the prespecified 𝐴𝑆𝑆0 value and 𝜏 represents the nominal 𝐴𝑅𝐿0 value. Note that the 

𝐴𝑆𝑆0 and OOC 𝐴𝑆𝑆 (𝐴𝑆𝑆𝛿) are used because the sample size is not fixed in advance (it can be 

𝑛1 or 𝑛1 + 𝑛2). This plays an important role in the estimation of the cost of inspection. 

The search of the optimal parameters can be summarized in three main steps given as follows: 

1. Fix 𝑚 and for some specific sample sizes (i.e., 𝑛1 and 𝑛2) and mean shift (𝛿 = 0), find 

all possible combinations of the design parameters that yield an attained 𝐴𝑅𝐿0 value of 

370.4 for a prespecified value of the 𝐴𝑆𝑆0. These combination of parameters (𝐿1, 𝐿, 𝐿2) 

are called local design parameters; 

2. For each combination the local design parameters, compute the 𝐴𝑅𝐿𝛿 (where 𝛿 = 0.1 

to 2.5 with a step shift of 0.1) and then calculate the corresponding 𝐴𝐸𝑄𝐿 value; 

3. Select the combination that yields the minimum 𝐴𝐸𝑄𝐿 value to be the combination of 

the optimal design parameters (𝐿1
∗ , 𝐿∗, 𝐿2

∗ ). 

 

4.5 Performance study of the proposed monitoring scheme 

4.5.1 Performance analysis of the SSDS 𝐗̅  monitoring scheme 

In this section, the performance of the SSDS 𝑋̅ scheme is investigated in Case U by setting the 

nominal 𝐴𝑅𝐿0 value to 370.4 with a maximum mean shift of 2.5 (i.e. 𝛿𝑚𝑎𝑥 = 2.5) and  𝐴𝑆𝑆0 

values of 5 and 8, see Tables 4.1 to 4.4; where, for illustration purpose, m is set at 50 and 100 

for Case U SSDS 𝑋̅ scheme, and m is assumed to approach infinity (∞) for Case K. The first 

row of each cell gives the 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆 and 𝐴𝑁𝑂𝑆 values and the second row gives the 5th, 

25th, 50th, 75th, 95th percentiles (denoted by (P5, P25, P50, P75, P95)) of the RL distribution of 

the Case U SSDS 𝑋̅ scheme. Note that the Case K RL properties discussed in Chapter 3 are 

given in the last column. Equations (4.11) to (4.13) are used to compute the IC and OOC 

characteristics of the RL distribution. Moreover, the ASS, ANOS and AEQL values are 

computed using Equations (4.14), (4.16) and (4.17), respectively.  
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For instance (see the second column of Table 4.1), for a Phase I sample of size 50 (i.e. m = 50), 

when (𝑛1,𝑛2) = (5, 5), (𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥) = (0, 2.5) and 𝐴𝑆𝑆0 = 5, it is found (using the optimization 

model in Equations (4.20) to (4.22)) that (𝐿1, 𝐿, 𝐿2) = (2.9093, 3.0111, 2.9309) so that the SSDS 

𝑋̅ scheme satisfies 𝐴𝑅𝐿0 = 370.4 with a minimum 𝐴𝐸𝑄𝐿 = 70.72. However, when 𝑛2 is 

increased to 8, for the same values of m, 𝑛1, 𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥, and 𝐴𝑆𝑆0, it is found that (𝐿1, 𝐿, 𝐿2) 

= (2.9101, 3.0108, 2.6310) so that the SSDS scheme also satisfies 𝐴𝑅𝐿0 = 370.4 with a 

minimum 𝐴𝐸𝑄𝐿 = 69.06 (see the third column of Table 4.1).  

From Table 4.1, it can be seen that when m = 50 and 𝐴𝑆𝑆0 = 5, if (𝑛1,𝑛2) = (5, 5) there is a 5% 

chance that the Case U SSDS 𝑋̅ scheme gives a signal for the first time on the 18th subgroup 

and a 95% chance that it signals on the 1102 subgroup in Phase II when the process is IC (shift 

= 0). For a small shift of size 0.3, there are 5% and 95% chances that the proposed scheme 

gives a signal on the 11th and 563th subgroups, respectively. For m = 100 with an 𝐴𝑆𝑆0 of 5, 

when (𝑛1,𝑛2) = (5, 5) (i.e. fourth column of Table 4.1) and with 𝛿 = 0.3, there are 5% and 95% 

chances that the Case U SSDS 𝑋̅ scheme gives a signal on the 7th and 388th subgroups, 

respectively. For a moderate 𝛿 = 0.9, there are 5% and 95% chances that the Case U SSDS 𝑋̅ 

scheme signals on the 1st and 18th subgroups, respectively. These findings confirm that the 

larger the Phase I sample size, the more sensitive the SSDS 𝑋̅ scheme. As 𝛿 increases, the 

SSDS 𝑋̅ scheme becomes more sensitive. When 𝑛1 is kept at 5 and increase 𝑛2 (say 𝑛2 = 8) 

for m = 50, for a 𝛿 = 0.3, there is 95% chance that the proposed scheme gives a signal on the 

546th subgroup in the prospective phase. This reveals an improvement in the sensitivity of the 

proposed scheme when the stage 2 sample size increases. In Case K, when 𝛿 = 0.3, (𝑛1,𝑛2) = 

(5, 8) and (3, 10) with 𝐴𝑆𝑆0 = 5, there is 5% chance that the SSDS 𝑋̅ scheme gives a signal on 

the 4th sample, see the last column of Tables 4.1 and 4.2, respectively. However, there is 95% 

chance that the SSDS 𝑋̅ scheme gives a signal on the 260th and 183rd sample, respectively. This 

shows that the SSDS 𝑋̅ scheme performs better in Case K. From Tables 4.3 and 4.4, it can be 

seen that when the ASS increases, the sensitivity of the SSDS 𝑋̅ scheme increases as well. For 

small Phase I sample sizes (i.e. m = 25, on the second column of Tables 4.3 and 4.4), the 

detection ability of the SSDS 𝑋̅ scheme is poor as compared to m = 50 and 100 on columns 3 

to 6, respectively.   

In terms of the 𝐴𝑅𝐿 values, for small and moderate shifts in the process mean, the larger the 

Phase I sample (i.e. m), the more sensitive the Case U SSDS 𝑋̅ scheme. However, for large 

shifts in the process mean, the SSDS 𝑋̅ scheme performs uniformly better regardless of the 

Phase I sample size. For small and moderate shifts, the SSDS 𝑋̅ scheme is less sensitive in Case 
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U than in Case K. This under-performance is due to the effect of estimation that deteriorates 

the performance of a monitoring scheme.   

In terms of the 𝑆𝐷𝑅𝐿 values, it can be seen that the practitioner-to-practitioner variability in 

the performance of the SSDS 𝑋̅ scheme decreases as the Phase I sample size increases. The 

OOC 𝑆𝐷𝑅𝐿 (𝑆𝐷𝑅𝐿𝛿) drop rapidly as the Phase I sample size increases. Therefore, the larger 

the Phase I sample size, the more reliable the results. The larger the 𝐴𝑆𝑆0, the smaller the 

variability in the performance outputs. In terms of the 𝐴𝑁𝑂𝑆 values, the larger the Phase I 

sample, the smaller the OOC 𝐴𝑁𝑂𝑆. For very small shifts, 0 < 𝛿 < 0.2, the smaller the 𝐴𝑆𝑆0 

and 𝐴𝑁𝑂𝑆 values. When 𝛿 ≥ 0.2, the larger the 𝐴𝑆𝑆0 values and the smaller the 𝐴𝑁𝑂𝑆 values, 

which means that when the process is OOC, the SSDS 𝑋̅ scheme is more efficient and cost 

effective for larger values of 𝐴𝑆𝑆0.    
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  Table 4.1: The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the SSDS 𝑋̅ scheme when 

m∈{50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(5,5); (5, 8)}, 𝐴𝑆𝑆0=5 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4   

Shift(δ)  
(ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95)  

0.00 
(370.4, 369.98, 5.00, 1847.56)  

(18, 107, 254, 510, 1102)  

 

(370.4, 371,36, 5.00, 1853.22) 

(20, 106, 257, 516, 1093) 

 

(370.4, 375.44, 5.01, 1862.09)  

(19, 103, 256, 518, 1122)   

 

(370.4, 373.22, 5.02, 1858.68)   

(19, 107, 254, 513, 1121)   

 

(370.4, 367.15, 5.02, 1859.37)  

(20, 108, 257, 515, 1121)  

 
0.10 

(347.63, 340.25,5.00, 1740.89) 

(24, 132, 314, 620, 1337) 

333 

(340.83, 345.39,5.01, 1608.47) 

(23, 127, 303, 603, 1329) 

 

(279.97, 278.84, 5.01,1504.20) 

(20, 109, 257, 522, 1139) 

 

(273.23, 272.54, 5.02,1472.99) 

(20, 109, 258, 516, 1124) 

 

(292.46, 288.87, 5.02, 1467.67) 

(16, 89, 205, 405, 870) 

 
0.20 

(333.23,329.98, 5.00, 1669.22) 

(17, 96, 233, 457, 998) 

, 

(321.71, 322.17, 5.01,1613.34) 

(16, 91, 222, 449, 948) 

 

(243.47, 242.17, 5.08, 1221.64) 

(12, 73, 170, 334, 723) 

 

(241.81, 241.39, 5.03, 1215.90) 

(13, 71, 169, 333, 714) 

 

(159.38, 159.45, 5.03, 801.43) 

(8, 46, 110, 223, 474) 

( ) 

() 

 

0.30 
(187.70, 189.80, 5.02, 941.31) 

(11, 55, 129, 260, 563) 

5. 

(182.85, 182,73, 5.02, 918.68) 

(10, 53, 128, 252, 546) 

 

(131.10, 131.65, 5.03, 659.31) 

(7, 38, 91, 182, 388) 

 

(123.83, 124.38, 5.05, 624.92) 

(7, 35, 84, 172, 375) 

 

(86.17, 86.73, 5.05, 434.89) 

(4, 25, 59, 121, 260) 

 
0.40 

(102.65, 100.97, 5.02, 515) 

(6, 30, 72, 143, 307) 

 

(97.23, 97.40, 5.03, 489.93) 

(5, 28, 68, 133, 292) 

 

(69.75, 69.28, 5.05, 352.05) 

(4, 20, 48, 97, 208) 

 

(66.91, 66.79, 5.08, 339.64) 

(4, 20, 46, 93, 202) 

 

(47.67, 47.36, 5.08, 241.97) 

(3, 14, 33, 66, 143) 

 
0.50 

(56.26, 56.21, 5.03, 283.38) 

(3, 16, 39, 77, 170) 

5.0 

(54.73, 54.16, 5.06, 276.92) 

(3, 16, 38, 75, 165) 

 

(39.00, 38.92, 5.07, 197.91) 

(3, 12, 27, 52, 117) 

 

(36.99, 36.08, 5.11, 189.36) 

(2, 11, 26, 51, 109) 

 

(28.02, 27.18, 5.12, 143.40) 

(2, 9, 20, 39, 82) 

19 
0.60 

(32.50, 31.65, 5.05, 164.27) 

(2, 10, 23, 45, 97) 

 

(30.88, 30.61, 5.09, 157.11) 

(2, 9, 21, 43, 93) 

 

(22.99, 22.69, 5.11, 117.47) 

(2, 7, 16, 31, 69) 

 

(21.98, 21.46, 5.18, 113.80) 

(2, 7, 15, 30, 64) 

 

(17.30, 16.94, 5.18, 89.54) 

(1, 5, 12, 24, 52) 

 
0.70 

(19.63, 19.02, 5.07, 99.65) 

(1, 6, 14, 27, 58) 

 

(19.16, 18.80, 5.12, 98.15) 

(1, 6, 13, 27, 55) 

 

(14.20, 13.41, 5.16, 73.21) 

(1, 5, 10, 19, 41) 

 

(13.46, 13.03, 5.25, 70.66) 

(1, 4, 9, 18, 40) 

 

(11.26, 10.62, 5.25, 59.13) 

(1, 4, 8, 15, 33) 

 
0.80 

(12.62, 12.11, 5.10, 64.38) 

(1, 4, 9, 17, 36) 

5. 

(12.18, 11.60, 5.16, 62.91) 

(1, 4, 9, 17, 35) 

 

(9.15, 8.52, 5.21, 47.68) 

(1, 3, 7, 12, 26) 

 

(8.59, 7.96, 5.34, 45.85) 

(1, 3, 6, 12, 24) 

 

(7.52, 7.05, 5.34, 40.14) 

(1, 3, 5, 10, 22) 

 
0.90 

(8.34, 7.76, 5.13, 42.83) 

(1, 3, 6, 11, 24) 

55 

(7.94, 7.42, 5.21, 41.34) 

(1, 3, 6, 11, 23) 

 

(6.31, 5.78, 5.27, 33.28) 

(1, 2, 4, 9, 18) 

 

(6.03, 5.55, 5.43, 32.76) 

(1, 2, 4, 8, 17) 

 

(5.31, 4.85, 5.43, 28.84) 

(1, 2, 4, 7, 15) 

 
1.00 

(5.83, 5.38, 5.15, 30.08) 

(1, 2, 4, 8, 16) 

5. 

(5.66, 5.13, 5.25, 29.73) 

(1, 2, 4, 8, 16) 

 

(4.46, 3.93, 5.42, 14.24) 

(1, 2, 3, 6, 13) 

 

(4.28, 3.81, 5.53, 23.69) 

(1, 2, 3, 6, 12) 

 

(4.03, 3.48, 5.53, 22.30) 

(1, 2, 3, 5, 11) 

 
1.20 

(3.22, 2.72, 5.20, 16.72) 

(1, 1, 2, 4, 9) 

 

(3.21, 2.62, 5.31, 17.03) 

(1, 1, 2, 4, 8) 

 

(2.62, 2.07, 5.45, 9.64) 

(1, 1, 2, 3, 7) 

 

(2.56, 1.98, 5.68, 14.56) 

(1, 1, 2, 3, 6) 

 

(2.40, 1.81, 5.68, 13.66) 

(1, 1, 2, 3, 6) 

 
1.40 

(2.04, 1.46, 5.20, 10.61) 

(1, 1, 2, 3, 5) 

5 

(2.04, 1.44, 5.32, 10.87) 

(1, 1, 2, 3, 5) 

 

(1.77, 1.17, 5.39, 9.64) 

(1, 1, 1, 2, 4) 

 

(1.78, 1.18, 5.72, 10.19) 

(1, 1, 1, 2, 4) 

 

(1.71, 1.08, 5.71, 9.77) 

(1, 1, 1, 2, 4) 

 
1.60 

(1.50, 0.88, 5.17, 7.77) 

(1, 1, 1, 2, 3) 

 

(1.51, 0.88, 5.27, 7.95) 

(1, 1, 1, 2, 3) 

 

(1.39, 0.73, 5.39, 7.47) 

(1, 1, 1, 2, 3) 

 

(1.37, 0.71, 5.62, 7.68) 

(1, 1, 1, 2, 3) 

 

(1.34, 0.68, 5.62, 7.51) 

(1, 1, 1, 1, 3) 

 
1.80 

(1.25, 0.55, 5.12, 6.37) 

(1, 1, 1, 1, 2) 

 

(1.24, 0.54, 5.18, 6.42) 

(1, 1, 1, 1, 2) 

 

(1.17, 0.45, 5.27, 6.18) 

(1, 1, 1, 1, 2) 

 

(1.17, 0.45, 5.44, 6.39) 

(1, 1, 1, 1, 2) 

 

(1.16, 0.43, 5.44, 6.32) 

(1, 1, 1, 1, 2) 

 
2.00 

(1.11, 0.34, 5.06, 5.60) 

(1, 1, 1, 1, 2) 

5 

(1.11, 0.35, 5.10, 5.65) 

(1, 1, 1, 1, 2) 

 

(1.07, 0.28, 5.16, 5.53) 

(1, 1, 1, 1, 2) 

 

(1.07, 0.27, 5.61, 5.25) 

(1, 1, 1, 1, 2) 

 

 

(1.06, 0.26, 5.25, 5.58) 

(1, 1, 1, 1, 2) 

 
2.50 

(1.01, 0.08, 5.01, 5.04) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.08, 5.01, 5.05) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.07, 5.02, 5.04) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.06, 5.03, 5.04) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.05, 5.03, 5.04) 

(1, 1, 1, 1, 1) 

 AEQL 70.72 69.06 59.59 55.28 49.91 

m                                                                                                           

(𝒏𝟏, 𝒏𝟐) 

50                                                                            

(5, 5) 

50                                                                            

(5, 8) 

100                                                                            

(5, 5) 

100                                                                                                                                         

(5, 8) 

∞                                                                                                                                          

(5, 8) 

(𝑳𝟏, L)                                                   

𝑳𝟐 

(2.9093, 3.0111)  

2.9309                                                                                                            

(2.9101, 3.0108)  

2.6310                                                                                                            

(2.9096, 3.1354)  

2.9103                                                                                                            

(2.9098, 3.1361)  

2.7101                                                                                                            

(2.9099, 3.1354)  

1.9002                                                                                                            
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Table 4.2: The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters  of the SSDS 𝑋̅scheme when m∈ 

{50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(3,5); (3, 10)}, 𝐴𝑆𝑆0=5 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4  
 

Shift(δ)  

(ARL, SDRL, ASS, ANOS)  

(P5, P25, P50, P75, P95)  

 

0.00 

 

(370.4, 369.67, 5.11, 1898.25) 

(20, 108, 255, 513, 1103) 

 

(370.4, 372.08, 4.95, 1841.79) 

(20, 105, 258, 517, 1115) 

 

(370.4, 370.85, 5.08, 1874.94) 

(20, 108, 258, 500, 1112) 

 

(370.4, 373.06, 5.03, 1850.61) 

(18, 104, 253, 507, 1115) 

 

(370.4, 369.43, 5.03, 1873.42) 

(19, 107, 259, 518, 1107) 

 
0.10 

(349.72, 344.22, 5.14, 1512.51) 

(23, 133, 312, 618, 1342) 

 

(357.29, 354.83, 5.06, 1693) 

(26, 136, 320, 628, 1362) 

 

(280.74, 279.53, 5.12, 1450.46) 

(19, 109, 263, 533, 1128) 

5.22,,,  

(267.35, 268.21, 5.09, 1370.19) 

(20, 106, 255, 515, 1102) 

 

(267.48, 262.02, 5.09, 1361.74) 

(14, 75, 190, 374, 791) 

 
0.20 

(329.95, 328.82, 5.23, 1728.44) 

(17, 93, 226, 460, 1000) 

( ) 

() 

 

(317.14, 318.04, 5.20, 1650.42) 

(16, 91, 219, 438, 943) 

( ) 

() 

 

(222.82, 222.43, 5.22, 1163.72) 

(12, 65, 154, 309, 662) 

( ) 

() 

 

(235.37, 234.30, 5.28, 1243.25) 

(13, 70, 164, 325, 699) 

( ) 

() 

 

(132.85, 130.81, 5.28, 701.74) 

(7, 39, 93, 184, 397) 

( ) 

() 

 

0.30 
(184.41, 188.05, 5.39, 994.05) 

(11, 52, 125, 252, 566) 

 

(154.15, 153.63, 5.51, 848.96) 

(9, 44, 107, 213, 472) 

 

(110.50, 109.24, 5.38, 594.59) 

(6, 33, 79, 153, 325) 

 

(122.11, 120.98, 5.59, 682.53) 

(7, 35, 85, 170, 370) 

 

(61.16, 60.69, 5.59, 341.88) 

(4, 18, 42, 86, 183) 

 
0.40 

(96.62, 95.25, 5.59, 539.68) 

(6, 29, 68, 133, 287) 

 

(71.17, 70.62, 5.91, 420.53) 

(4, 21, 49, 100, 212) 

 

(55.06, 54.33, 5.59, 307.52) 

(3, 16, 39, 76, 164) 

 

(60.09, 59.23, 5.99, 360.35) 

(4, 17, 42, 84, 178) 

 

(29.18, 27.98, 5.99, 175.01) 

(2, 9, 21, 41, 84) 

 
0.50 

(49.86, 48.63, 5.81, 289.59) 

(3, 15, 35, 69, 145) 

19 

(32.75, 32.34, 6.39, 209.19) 

(2, 10, 23, 45, 99) 

19 

(29.09, 29.01, 5.82, 169.38) 

(2, 9, 20, 40, 87) 

19 

(28.90, 28.79, 6.48, 187.32) 

(2, 9, 20, 40, 86) 

19 

(14.68, 14.39, 6.48, 95.14) 

(1, 5, 10, 20, 44) 

19 
0.60 

(27.34, 27.00, 6.04, 165.15)  

(2, 8, 19, 38, 81) 

  

 (16.65, 16.14, 6.92, 115.15) 

(1, 5, 12, 23, 49)   

 

(16.68, 16.30, 6.07, 101.34)  

(1, 5, 12, 23, 49)  

 

(15.47, 14.96, 7.01, 108.49)  

(1, 5, 11, 21, 45)  

 

(8.34, 7.76, 7.01, 58.49)  

(1, 3, 6, 11, 24) 

 
0.70 

(15.95, 15.41, 6.27, 99.91) 

(1, 5, 11, 22, 47)  

 

(9.15, 8.57, 7.46, 68.30) 

(1, 3, 7, 13, 27) 

 

(9.92, 9.48, 6.32, 62.74) 

(1, 3, 7, 14, 28) 

 

(8.53, 8.09, 7.56, 64.56) 

(1, 3, 6, 12, 25) 

 

(5.03, 4.45, 7.57, 38.08) 

(1, 2, 4, 7, 14) 

 
0.80 

(9.62, 9.07, 6.46, 62.19) 

(1, 3, 7, 13, 27) 

 

(5.51, 5.03, 7.99, 44.03) 

(1, 2, 4, 7, 16) 

 

(6.27, 5.75, 6.56, 41.11) 

(1, 2, 4, 9, 18) 

 

(5.07, 4.56, 8.10, 41.09) 

(1, 2, 4, 7, 14) 

 

(3.38, 2.81, 8.10, 27.40) 

(1, 1, 2, 4, 9) 

 
0.90 

(6.29, 5.79, 6.62, 41.62) 

(1, 2, 4, 8, 18) 

 

(3.57, 2.99, 8.47, 30.23) 

(1, 1, 3, 5, 9) 

 

(2.99, 2.42, 6.76, 28.58) 

(1, 1, 2, 4, 8) 

 

(3.40, 2.81, 8.59, 29.18) 

(1, 1, 3, 4, 9) 

 

(2.41, 1.84, 8.59, 20.70) 

(1, 1, 2, 3, 6) 

 
1.00 

(4.18, 3.60, 6.72, 28.09) 

(1, 2, 3, 6, 11) 

 

(2.57, 2.01, 8.87, 22.82) 

(1, 1, 2, 3, 7) 

 

(4.23, 3.62, 6.92, 20.66) 

(1, 2, 3, 6, 11) 

 

(2.46, 1.90, 8.99, 22.08) 

(1, 1, 2, 3, 6) 

 

(1.91, 1.31, 8.99, 17.18) 

(1, 1, 1, 2, 5) 

 
1.20 

(2.28, 1.72, 6.75, 15.41) 

(1, 1, 2, 3, 6) 

 

(1.62, 1.01, 9.33, 15.09) 

(1, 1, 1, 2, 4) 

 

(1.83, 1.24, 7.06, 12.89) 

(1, 1, 1, 2, 4) 

 

(1.54, 0.91, 9.45, 14.57) 

(1, 1, 1, 2, 3) 

 

(1.36, 0.69, 9.46, 12.83) 

(1, 1, 1, 2, 3) 

 
1.40 

(1.54, 0.90, 6.50, 9.99) 

(1, 1, 1, 2, 3)  

 

(1.25, 0.55, 9.24, 11.55) 

(1, 1, 1, 1, 2)  

 

(1.34, 0.68, 6.96, 9.32) 

(1, 1, 1, 2, 3)  

 

(1.22, 0.51, 9.37, 11.41) 

(1, 1, 1, 1, 2)  

 

(1.17, 0.44, 9.37, 10.93) 

(1, 1, 1, 1, 2)  

 
1.60 

(1.20, 0.49, 6.04, 7.25) 

(1, 1, 1, 1, 2) 

 

(1.11, 0.36, 8.62, 9.61) 

(1, 1, 1, 1, 2) 

 

(1.12, 0.37, 6.61, 7.42) 

(1, 1, 1, 1, 2) 

 

(1.09, 0.31, 8.75, 9.56) 

(1, 1, 1, 1, 2) 

 

(1.07, 0.27, 8.76, 9.39) 

(1, 1, 1, 1, 2)  

 
1.80 

(1.08, 0.29, 5.43, 5.85) 

(1, 1, 1, 1, 2) 

 

(1.05, 0.23, 7.62, 8.02) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.21, 6.07, 6.32) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.20, 7.75, 8.04) 

(1, 1, 1, 1, 1) 

 

(1.03, 0.19, 7.75, 8.01) 

(1, 1, 1, 1, 1)  

 

 2.00 
(1.02, 0.15, 4.78, 4.89) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.15, 6.46, 6.60) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.16, 5.42, 5.48) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.13, 6.57, 6.69) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.12, 6.57, 6.66) 

(1, 1, 1, 1, 1)  

 
2.50 

(1.00, 0.02, 3.55, 3.55) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 4.09, 4.10) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 3.93, 3.93) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 4.15, 4.16) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 4.15, 4.16) 

(1, 1, 1, 1, 1)  

 AEQL 62.32 50.50 46.82 45.79 35.03 

m                                                                                                           

(𝒏𝟏, 𝒏𝟐) 

50                                                                            

(3, 5) 

50                                                                            

(3, 10) 

100                                                                            

(3, 5) 

100                                                                                                                                        

(3, 10) 
∞                                                                                                                                          

(3, 10) 

(𝑳𝟏, L)                                                   

𝑳𝟐 

(0.8018, 3.1071)  

3.2650                                                                                                            

(1.2903, 3.1079)  

3.2210                                                                                                            

(0.8093, 3.4354)  

3.1721                                                                                                     

(1.2693, 3.1354)  

3.5001                                                                                                     

(1.2693, 3.1354)  

3.1600                                                                                                            
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Table 4.3: The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters  of the SSDS 𝑋̅ scheme when 

m∈{25, 50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(5,5); (5, 8)}, 𝐴𝑆𝑆0=8 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4  

Shift(δ) 
(ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95) 

0.00 
(370.4, 373.18, 8.41, 3126.71) 

(20, 106, 256, 517, 1115) 

 

(370.4, 370.84, 7.99, 2961.50) 

(20, 108, 257, 508, 1116) 

 

(370.4, 365.99, 8.00, 2933.87) 

(21, 109, 256, 505, 1086) 

 

(370.4, 378.83, 7.99, 3014.07) 

(18, 107, 256, 522, 1134) 

 

(370.4, 361.99, 8.00, 2914.36) 

(19, 106, 251, 512, 1077) 

 

(370.4, 368.56, 8.00, 2956.70) 

(20, 110, 258, 509, 1085) 

 
0.10 

(266.04, 266.36,8.44, 2246.64) 

(13, 77, 181, 367, 806) 

8 

(168.63, 165.29, 8.04,1356.19) 

(9, 50, 119, 236, 502) 

 

(138.89,137.37, 8.10, 1124.34) 

(8, 41, 97, 192, 417) 

 

(168.88, 180.20, 8.04,1438.60) 

(10, 51, 125, 249, 531) 

 

(132.11, 157.06,8.10, 1662.76) 

(35, 187, 444, 901, 671) 

 

(133.41, 119.10, 8.10, 1608.56) 

(12, 68, 156, 307, 674) 

 
0.20 

(128.55, 128.04, 8.55,1098.77) 

(7, 39, 89, 179, 383) 

( ) 

() 

 

(73.81, 74.87, 8.17, 602.87) 

(4, 21, 50, 102, 219) 

 

(59.36, 57.63, 8.37, 454.94) 

(3, 16, 38, 75, 163) 

( ) 

() 

 

(49.41, 79.13, 8.17, 648.65) 

(5, 23, 55, 110, 238) 

( ) 

() 

 

(56.80, 88.21, 8.37, 480.60) 

(21, 115, 75, 143, 230) 

( ) 

() 

 

(56.76, 55.42, 8.37, 734.41) 

(5, 25, 61, 120, 227) 

( ) 

() 

 

0.30 
(58.67, 57.42, 8.70, 510.52) 

(4, 18, 41, 81, 174) 

 

(35.23, 34.95, 8.36, 294.47) 

(2, 11, 25, 49, 103) 

 

(26.06, 25.35, 8.79, 211.56) 

(2, 7, 17, 33, 70) 

 

(27.00, 36.72, 8.36, 309.25) 

(2, 11, 26, 51, 109) 

 

(24.63, 24.04,8.79, 389.23) 

(8, 43, 103, 203, 437) 

 

(24.35, 23.01, 8.79, 319.64) 

(2, 11, 25, 51, 108) 

 
0.40 

(28.64, 28.41, 8.88, 254.43) 

(2, 8, 20, 39, 86) 

 

(18.06, 17.63, 8.58, 155.04) 

(1, 6, 12, 25, 54) 

 

(13.73, 12.26, 9.32, 109.35) 

(1, 4, 8, 16, 34) 

 

(18.87, 18.22, 8.58, 161.96) 

(1, 6, 13, 26, 56) 

 

(12.32, 56.60, 9.32, 134.38) 

(3, 17, 40, 79, 171) 

 

(12.02, 11.36, 9.32, 158.68) 

(1, 5, 12, 24, 49) 

 
0.50 

(15.01, 14.43, 9.07, 136.12) 

(1, 5, 11, 21, 43) 

19 

(9.96, 9.31, 8.82, 87.86) 

(1, 3, 7, 14, 28) 

 

(7.41, 5.86, 9.91, 63.54) 

(1, 2, 5, 9, 18) 

19 

(10.42, 10.08, 8.82, 91.89) 

(1, 3, 7, 14, 30) 

19 

(6.42, 23.99, 9.91, 101.98) 

(2, 7, 17, 33, 72) 

19 

(6.80, 5.33, 9.91, 87.20) 

(1, 3, 6, 12, 25) 

19 
0.60 

(9.60, 8.16, 9.23, 79.42) 

(1, 3, 6, 12, 25) 

 

(5.92, 5.41, 9.03, 53.43) 

(1, 2, 4, 8, 17) 

 

(4.95, 4.44, 10.51, 41.49) 

(1, 1, 3, 5, 11) 

 

(6.25, 5.81, 9.03, 56.44) 

(1, 2, 4, 8, 18) 

 

(4.18, 11.65, 10.50, 67.92) 

(1, 4, 9, 17, 36) 

 

(4.06, 3.65, 10.50, 53.19) 

(1, 2, 4, 7, 14) 

 
0.70 

(5.31, 4.89, 9.35, 49.63) 

(1, 2, 4, 7, 15) 

 

(3.93, 3.42, 9.19, 36.09) 

(1, 1, 3, 5, 11) 

 

(2.94, 2.03, 11.07, 28.73) 

(1, 1, 2, 3, 7) 

 

(4.04, 3.57, 9.19, 37.16) 

(1, 1, 3, 5, 11) 

 

(2.61, 6.04, 11.06, 43.13) 

(1, 2, 5, 9, 19) 

 

(2.25, 1.74, 11.06, 36.01) 

(1, 1, 2, 4, 9) 

 
0.80 

(3.53, 3.04, 9.40, 33.17) 

(1, 1, 3, 5, 10) 

 

(2.94, 2.22, 9.29, 25.41) 

(1, 1, 2, 4, 7) 

 

(1.99, 1.43, 11.56, 22.22) 

(1, 1, 1, 2, 5) 

 

(2.77, 2.22, 9.29, 25.71) 

(1, 1, 2, 4, 7) 

 

(2.00, 3.43, 11.55, 26.20) 

(1, 1, 3, 5, 11) 

 

(1.98, 1.69, 11.55, 26.32) 

(1, 1, 2, 3, 6) 

 
0.90 

(2.91, 1.97, 9.38, 23.57) 

(1, 1, 2, 3, 6) 

 

(2.25, 1.44, 9.29, 19.07) 

(1, 1, 2, 3, 5) 

 

(1.80, 0.87, 11.97, 17.92) 

(1, 1, 1, 2, 3) 

 

(2.10, 1.56, 9.30, 19.57) 

(1, 1, 2, 3, 5) 

 

(1.70, 2.15, 11.95, 22.30) 

(1, 1, 2, 4, 7) 

 

(1.74, 1.12, 11.96, 20.82) 

(1, 1, 1, 2, 4) 

 
1.00 

(2.09, 1.31, 9.28, 17.57) 

(1, 1, 1, 2, 4) 

 

(1.95, 1.03, 9.22, 15.17) 

(1, 1, 1, 2, 4) 

 

(1.59, 0.61, 12.30, 15.85) 

(1, 1, 1, 1, 2) 

 

(1.65, 1.05, 9.22, 15.24) 

(1, 1, 1, 2, 4) 

 

(1.33, 1.31, 12.26, 23.61) 

(1, 1, 1, 2, 5) 

 

(1.30, 0.74, 12.26, 17.16) 

(1, 1, 1, 2, 3) 

 
1.20 

(1.33, 0.67, 8.82, 11.69) 

(1, 1, 1, 1, 3) 

 

(1.30, 0.52, 8.80, 10.74) 

(1, 1, 1, 1, 2) 

 

(1.28, 0.29, 12.71, 13.71) 

(1, 1, 1, 1, 2) 

 

(1.22, 0.52, 8.80, 10.73) 

(1, 1, 1, 1, 2) 

 

(1.10, 0.62, 12.60, 16.36) 

(1, 1, 1, 1, 3) 

 

(1.12, 0.37, 12.60, 14.10) 

(1, 1, 1, 1, 2) 

 
1.40 

(1.19, 0.33, 8.08, 8.91) 

(1, 1, 1, 1, 2)  

 

(1.09, 0.27, 8.08, 8.61) 

(1, 1, 1, 1, 2) 

 

(1.09, 0.14, 12.90, 13.14) 

(1, 1, 1, 1, 1)  

 

(1.07, 0.27, 8.08, 8.61) 

(1, 1, 1, 1, 2)  

 

(1.08, 0.29, 12.57, 13.56) 

(1, 1, 1, 1, 2)  

 

(1.03, 0.16, 12.57, 12.89) 

(1, 1, 1, 1, 1)  

 
1.60 

(1.12, 0.15, 7.21, 7.38) 

(1, 1, 1, 1, 1) 

 

(1.07, 0.13, 7.21, 7.33) 

(1, 1, 1, 1, 1) 

 

(1.06, 0.06, 12.97, 13.02) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.13, 7.21, 7.32) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.14, 12.18, 12.39) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.08, 12.18, 12.26) 

(1, 1, 1, 1, 1)  

 
1.80 

(1.09, 0.07, 6.39, 6.42) 

(1, 1, 1, 1, 1) 

 

(1.05, 0.04, 6.39, 6.40) 

(1, 1, 1, 1, 1) 

 

(1.04, 0.02, 12.99, 12.99) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.05, 6.39, 6.40) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.06, 11.39, 11.44) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.03, 11.39, 11.40) 

(1, 1, 1, 1, 1)  

 
2.00 

(1.07, 0.02, 5.75, 5.75) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.01, 5.75, 5.75) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.02, 12.99, 13.00) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.02, 5.75, 5.75) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 10.22, 10.23) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.02, 10.22, 10.23) 

(1, 1, 1, 1, 1)  

 
2.50 

(1.04, 0.00. 5.08, 5.08) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.00, 5.08, 5.08) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 12.99, 12.99) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 5.08, 5.08) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 6.88, 6.88) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.00, 6.88, 6.88) 

(1, 1, 1, 1, 1)  

 AEQL 39.63 36.96 33.59 32.84 30.19 29.07 

m                                                                                                           

(𝒏𝟏, 𝒏𝟐) 

25                                                                                                                                          

(5, 5) 
50                                                                            

(5, 5) 

50                                                                            

(5, 8) 

100                                                                            

(5, 5) 

100                                                                                                                                         

(5, 8) 
∞                                                                                                                                          

(5, 8) 
(𝑳𝟏, L)                                                   

𝑳𝟐 

(0.4093, 3.4354)  

3.2221                                                                                                            
(0.524, 3.435)  

3.243                                                                                                            

(0.8870, 10.5920)  

3.1850                                                                                                            

(2.9835, 3.0083)  

2.0027                                                                                                            

(0.887, 4.866)  

3.375                                                                                                            

(0.887, 4.866)  

2.975                                                                                                            
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Table 4.4: The exact 𝐴𝑅𝐿, 𝑆𝐷𝑅𝐿, 𝐴𝑆𝑆, 𝐴𝑁𝑂𝑆 (first row), the Percentiles (second row), 𝐴𝐸𝑄𝐿 and optimal design parameters of the SSDS 𝑋̅ scheme when 

m∈{25, 50, 100} and 𝑚 = ∞ (i.e. Case K), (𝑛1, 𝑛2) ∈{(3,5); (3, 10)}, 𝐴𝑆𝑆0 = 8 and 𝛿𝑚𝑎𝑥 = 2.5 for a nominal 𝐴𝑅𝐿0 value of 370.4 

Shift(δ) 
(ARL, SDRL, ASS, ANOS) 

(P5, P25, P50, P75, P95)  

0.00 
(370.4, 377.30, 7.98, 2995.65)  

(20, 107, 262, 516, 1131)  

0) 

 

(370.4, 373.36, 7.98, 2979.38)  

(19, 108, 257, 516, 1126)  

 

(370.4, 371.12, 8.00, 2947.74)  

(20, 105, 254, 513, 1111)  

 

 (370.4, 367.01, 7.98, 2968.61)  

(20, 108, 263, 515, 1124)  

 

(370.4, 364.11, 8.00, 2938.58)  

(19, 106, 257, 507, 1090) 

 

(370.4, 374.68, 8.00, 2982.43)  

(20, 110, 253, 515, 1126)  

 
0.10 

(273.72, 274.99, 7.98, 2183.83) 

(15, 79, 191, 378, 808) 

 

(270.11, 271.52, 7.98, 2155.02) 

(15, 80, 187, 376, 800) 

 

(134.70, 135.11, 8.07, 1086.59) 

(7, 39, 94, 188, 405) 

 

(195.76, 196.16, 7.98, 1561.82) 

(10, 55, 135, 271, 592) 

 

(131.27, 131.95, 8.07, 1020.31) 

(8, 43, 105, 209, 446) 

 

(129.99, 121.92, 8.07, 1074.63) 

(11, 64, 151, 303, 466) 

 
0.20 

(150.52, 150.47, 7.97, 1200.79) 

(8, 43, 105, 207, 455) 

( ) 

() 

 

(150.22, 148.41, 7.97, 1197.84) 

(8, 44, 105, 208, 448) 

( ) 

() 

 

(52.96, 52.31, 8.25, 473.12) 

(3, 16, 37, 74, 158) 

( ) 

() 

 

(99.86, 99.42, 7.97, 796.25) 

(6, 30, 69, 137, 302) 

( ) 

() 

 

(50.03, 49.70, 8.25, 447.20) 

(4, 18, 41, 81, 173) 

( ) 

() 

 

(49.29, 49.09, 8.25, 437.00) 

(5, 26, 61, 122, 165) 

( ) 

() 

 

0.30 
(79.85, 79.34, 7.96, 635.99) 

(5, 24, 55, 111, 237) 

 

(77.18, 75.54, 7.96, 614.69) 

(4, 22, 54, 107, 228) 

 

(23.82, 23.60, 8.55, 203.66) 

(2, 7, 17, 33, 70) 

 

(50.80, 49.60, 7.95, 404.60) 

(3, 15, 36, 71, 151) 

 

(21.47, 20.86, 8.55, 226.32) 

(2, 8, 19, 36, 78) 

 

(20.87, 19.06, 8.55, 323.77) 

(2, 11, 27, 53, 111) 

 
0.40 

(42.89, 43.41, 7.95, 340.97) 

(3, 12, 30, 59, 127) 

 

(41.25, 39.51, 7.95, 327.96) 

(3, 12, 29, 58, 122) 

7 

(11.71, 11.36, 8.93, 104.60) 

(1, 4, 8, 16, 35) 

 

(27.53, 26.61, 7.95, 218.88) 

(2, 8, 19, 38, 80) 

 

(11.96, 11.43, 8.93, 115.75) 

(1, 4, 9, 18, 38) 

 

(11.84, 10.28, 8.93, 119.39) 

(1, 5, 13, 24, 52) 

 
0.50 

(23.54, 23.11, 7.93, 186.62) 

(2, 7, 16, 32, 69) 

19 

(23.29, 22.92, 7.93, 184.63) 

(2, 7, 16, 32, 68) 

19 

(6.54, 6.14, 9.38, 61.30) 

(1, 2, 5, 9, 19) 

19 

(15.74, 15.24, 7.93, 124.78) 

(1, 5, 11, 21, 46) 

19 

(6.07, 5.51, 9.38, 66.35) 

(1, 2, 5, 9, 20) 

19 

(6.20, 5.87, 9.38, 86.24) 

(1, 3, 6, 12, 27) 

19 
0.60 

(13.47, 13.07, 7.89, 106.35) 

(1, 4, 10, 18, 40) 

 

(13.23, 12.71, 7.89, 104.40) 

(1, 4, 9, 18, 38) 

 

(3.95, 3.37, 9.86, 38.93) 

(1, 1, 3, 5, 11) 

 

(9.48, 9.03, 7.89, 74.86) 

(1, 3, 7, 13, 28) 

 

(3.84, 2.70, 9.86, 37.79) 

(1, 2, 3, 6, 12) 

 

(3.80, 2.86, 9.86, 36.21) 

(1, 2, 4, 7, 15) 

 
0.70 

(8.32, 7.79, 7.84, 65.22) 

(1, 3, 6, 11, 24) 

 

(8.25, 7.76, 7.84, 64.67) 

(1, 3, 6, 11, 24) 

 

(2.69, 2.16, 10.34, 27.85) 

(1, 1, 2, 3, 7) 

 

(6.02, 5.41, 7.84, 47.22) 

(1, 2, 4, 8, 17) 

 

(2.62, 1.89, 10.34, 27.20) 

(1, 1, 2, 4, 7) 

 

(2.61, 1.90, 10.34, 35.28) 

(1, 1, 2, 4, 9) 

 
0.80 

(5.45, 4.89, 7.77, 42.40) 

(1, 2, 4, 7, 15) 

 

(5.42, 4.94, 7.77, 42.16) 

(1, 2, 4, 7, 15) 

 

(1.97, 1.40, 10.81, 21.29) 

(1, 1, 1, 2, 5) 

 

(4.10, 3.63, 7.77, 31.85) 

(1, 1, 3, 5, 11) 

 

(2.06, 1.48, 10.81, 22.32) 

(1, 1, 2, 3, 5) 

 

(2.32, 1.77, 10.81, 25.12) 

(1, 1, 2, 3, 6) 

 
0.90 

(3.77, 3.24, 7.68, 28.95) 

(1, 1, 3, 5, 10) 

 

(3.73, 3.19, 7.68, 28.64) 

(1, 1, 3, 5, 10) 

 

(1.65, 0.92, 11.25, 17.42) 

(1, 1, 1, 2, 3) 

 

(2.93, 2.38, 7.68, 22.48) 

(1, 1, 2, 4, 8) 

 

(1.62, 1.00, 11.25, 18.24) 

(1, 1, 1, 2, 4) 

 

(1.78, 1.17, 11.25, 19.97) 

(1, 1, 1, 2, 4) 

 
1.00 

(2.27, 2.15, 7.56, 20.58) 

(1, 1, 2, 4, 7) 

 

(2.74, 2.19, 7.56, 20.73) 

(1, 1, 2, 4, 7) 

 

(1.42, 0.65, 11.63, 15.40) 

(1, 1, 1, 1, 3) 

 

(2.22, 1.65, 7.56, 16.81) 

(1, 1, 2, 3, 6) 

 

(1.36, 0.71, 11.63, 15.83) 

(1, 1, 1, 2, 3) 

 

(1.47, 0.83, 11.63, 17.13) 

(1, 1, 1, 2, 3) 

 
1.20 

(1.74, 1.14, 7.22, 12.55) 

(1, 1, 1, 2, 4) 

 

(1.71, 1.10, 7.22, 12.36) 

(1, 1, 1, 2, 4) 

 

(1.21, 0.34, 12.23, 13.49) 

(1, 1, 1, 1, 2) 

 

(1.51, 0.88, 7.22, 10.87) 

(1, 1, 1, 2, 3) 

 

(1.12, 0.37, 12.23, 13.71) 

(1, 1, 1, 1, 2) 

 

(1.16, 0.44, 12.23, 14.24) 

(1, 1, 1, 1, 2) 

 
1.40 

(1.28, 0.60, 6.73, 8.63) 

(1, 1, 1, 1, 2)  

 

(1.28, 0.60, 6.73, 8.58) 

(1, 1, 1, 1, 2)  

 

(1.05, 0.18, 12.60, 13.01) 

(1, 1, 1, 1, 1)  

 

(1.19, 0.48, 6.73, 8.03)  

(1, 1, 1, 1, 2)  

 

(1.04, 0.21, 12.60, 13.12) 

(1, 1, 1, 1, 1) 

 

(1.06, 0.25, 12.60, 13.31) 

(1, 1, 1, 1, 2) 

 
1.60 

(1.10, 0.32, 6.12, 6.71) 

(1, 1, 1, 1, 2)  

 

(1.10, 0.33, 6.12, 6.74) 

(1, 1, 1, 1, 2)  

 

(1.03, 0.10, 12.81, 12.94) 

(1, 1, 1, 1, 1)  

 

(1.07, 0.26, 6.12, 6.53) 

(1, 1, 1, 1, 2) 

 

(1.01, 0.12, 12.81, 12.99) 

(1, 1, 1, 1, 1) 

 

(1.02, 0.14, 12.81, 13.07) 

(1, 1, 1, 1, 1) 

 
1.80 

(1.03, 0.17, 5.44, 5.59) 

(1, 1, 1, 1, 1)  

 

(1.03, 0.18, 5.44, 5.60) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.07, 12.88, 12.94) 

(1, 1, 1, 1, 1)  

 

(1.02, 0.13, 5.44, 5.54) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.07, 12.88, 12.95) 

(1, 1, 1, 1, 1) 

 

(1.01, 0.08, 12.88, 12.97) 

(1, 1, 1, 1, 1) 

 
2.00 

(1.01, 0.08, 4.77, 4.78) 

(1, 1, 1, 1, 1)  

 

(1.01, 0.09, 5.10, 4.80) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.03, 12.85, 12.86) 

(1, 1, 1, 1, 1)  

 

(1.00, 0.07, 4.77, 4.79) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.05, 12.85, 12.88) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.04, 12.85, 12.87) 

(1, 1, 1, 1, 1) 

 
2.50 

(1.00, 0.01, 3.54, 3.54) 

(1, 1, 1, 1, 1)  

 

(1.00, 0.01, 3.54, 3.54) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 12.17, 12.17) 

(1, 1, 1, 1, 1)  

 

(1.00, 0.00, 3.53, 3.54) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 12.17, 12.17) 

(1, 1, 1, 1, 1) 

 

(1.00, 0.01, 12.17, 12.17) 

(1, 1, 1, 1, 1) 

 AEQL 41.22 40.88 28.10 34.83 27.68 27.21 

m                                                                                                           

(𝒏𝟏, 𝒏𝟐) 

25 

(3, 5) 
50                                                                            

(3, 5) 

50                                                                            

(3, 10) 

100                                                                                                                                        

(3, 5) 
100                                                                            

(3, 10) 

∞                                                                                                                                          

(3, 10) 

(𝑳𝟏, L)                                                   

𝑳𝟐 

(0.02527, 3.088) 

3.2100 
(0.02549, 3.091) 

3.2010 

(0.6740, 5.7150)  

3.3102                                                                                                            

(0.02544, 3.088)  

3.1503                                                                                                           
(0.6736, 5.7150)  

2.999                                                                                                            

(0.6742, 5.7155)  

2.945                                                                                                            
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In terms of the overall performance, i.e. AEQL, the SSDS 𝑋̅ scheme performs better for large 

Phase I sample sizes and/or large expected number of samples. As the Phase I sample size 

increases, the Case U run-length properties converge towards the Case K run-length properties. 

Therefore, it is very important to study the effect of the Phase I sample size on the performance 

of the SSDS scheme in order to know the amount of Phase I observations required to reach the 

Case K performance; this is done in the next sub-section. 

 

4.5.2 ARL profiles of the Case U SSDS 𝑿̅ scheme using Case K parameters 

In this sub-section, we investigate the ARL profile behaviour of the proposed SSDS 𝑋̅ scheme 

when the Case U performance is obtained using the Case K optimal design parameters (as 

discussed in Chapter 3 of this dissertation) instead of the Case U optimal design parameters. 

To evaluate the impact of using the Case K optimal design parameters in Case U, the percentage 

difference (%𝐷𝑖𝑓𝑓) between the Case U OOC 𝐴𝑅𝐿 (denoted as 𝐴𝑅𝐿𝛿𝑈
) and Case K OOC 𝐴𝑅𝐿 

(denoted as 𝐴𝑅𝐿𝛿𝐾
) is calculated as follows: 

%𝐷𝑖𝑓𝑓 = (
𝐴𝑅𝐿𝛿𝑈

− 𝐴𝑅𝐿𝛿𝐾

𝐴𝑅𝐿𝛿𝐾

) × 100 (4.23) 

Table 4.5 displays the 𝐴𝑅𝐿𝛿𝑈
 and 𝐴𝑅𝐿𝛿𝐾

 (last column) values using the Case K optimal design 

parameters when 𝑛 ∈ {2, 5}, 𝑛1 ∈ {2, 5}, 𝑛2 ∈ {2, 5, 8, 11} and nominal 𝐴𝑅𝐿0 of 370.4; where 

𝑚 = ∞ denotes the Case K values. From Table 4.5, it is observed that the proposed SSDS 𝑋̅ 

scheme yields very large 𝐴𝑅𝐿𝛿𝑈
 for small Phase I sample sizes. For instance, when 𝛿 = 0.5 

and (𝑛, 𝑛1, 𝑛2) = (2,2,2) for a nominal 𝐴𝑅𝐿0 value of 370.4, the SSDS 𝑋̅ scheme yields ARL 

values of 160.2 and 79.41 when 𝑚 = 25 and 𝑚 = ∞, respectively; revealing a 101.7% 

percentage difference as compared to the Case K ARL value. Moreover, the results in Table 4.5 

show that, as the Phase I sample size increases, the %𝐷𝑖𝑓𝑓 decreases considerably. For a large 

Phase I sample size (e.g. 𝑚 = 400), the %𝐷𝑖𝑓𝑓 is less than 1%, meaning that the Case U SSDS 

𝑋̅ scheme performs as if the optimal design parameters were known. Therefore, it is very 

important to know the number of Phase I observations for which the proposed scheme performs 

as if it was in Case K. As we can see from Table 4.5, this will depend on the ASS as well as the 

stages 1 and 2 sample sizes. Moreover, the larger the ASS, the higher the %𝐷𝑖𝑓𝑓.  
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Table 4.5: Case U and Case K OOC 𝐴𝑅𝐿 (first row) and %𝐷𝑖𝑓𝑓 (second row) of the SSDS 

scheme using the Case K optimal design parameters when 𝑛 ∈ {2, 5}, 𝑛1 ∈ {2, 5} and 𝑛2 ∈ 

{2, 5, 8, 11} when 𝑁𝐴𝑅𝐿0 = 370.4 

𝒏 (𝒏𝟏, 𝒏𝟐) 
Case K Optimal 

parameters (𝑳𝟏, 𝑳, 𝑳𝟐) 
𝜹

𝒎 

25 50 100 200 300 400 ∞ 

2 

(2, 2) (2.910, 3.057, 2.405) 

0.5 160.20 112.64 101.41 82.01 81.11 80.01 79.41 

 101.7% 41.8% 27.7% 3.3% 2.1% 0.8%  
1.0 30.14 30.19 24.58 18.71 17.14 15.48 15.43 

 95.3% 95.7% 59.3% 21.3

% 

11.1% 0.3%  
1.5 11.16 8.19 6.37 5.54 5.00 4.74 4.73 

 135.9% 73.2% 34.7% 17.1

% 

5.7% 0.2%  
2.0 5.13 3.31 3.00 2.64 2.39 2.20 2.18 

 135.3% 51.8% 37.6% 21.1

% 

9.6% 0.9%  

2.5 3.36 2.24 2.24 2.03 1.88 1.41 1.40 
 140.0% 60.0% 60.0% 45.0

% 

34.3% 0.7%  

(2, 8) (2.975, 3.005, 2.931) 

0.5 164.20 95.02 87.64 83.63 82.23 81.09 80.34 
 104.4% 18.3% 9.1% 4.1% 2.4% 0.9%  

1.0 32.11 26.62 23.13 19.24 17.44 16.03 15.97 

 101.1% 66.7% 44.8% 20.5

% 

9.2% 0.4%  
1.5 12.94 9.04 7.18 5.70 5.02 4.82 4.77 

 171.3% 89.5% 50.5% 19.5

% 

5.2% 1.0%  
2.0 6.07 3.56 2.98 2.66 2.37 2.29 2.27 

 167.4% 56.8% 31.3% 17.2

% 

4.4% 0.9%  

2.5 4.01 2.62 2.21 2.05 1.76 1.44 1.43 

  180.4% 83.2% 54.5% 43.4

% 

23.1% 0.7%  

(2, 11) (2.991, 3.00, 2.998) 

0.5 165.18 96.21 88.07 83.61 82.00 81.18 80.74 
 104.6% 19.2% 9.1% 3.6% 1.6% 0.5%  

1.0 34.05 28.19 24.13 19.31 18.07 16.73 16.66 
 104.4% 69.2% 44.8% 15.9

% 

8.5% 0.4%  

1.5 13.71 12.63 7.25 5.82 5.38 5.00 4.96 

 176.4% 154.6% 46.2% 17.3

% 

8.5% 0.8%  
2.0 6.60 6.11 2.99 2.67 2.49 2.31 2.29 

 188.2% 166.8% 30.6% 16.6

% 

8.7% 0.9%  
2.5 4.26 4.38 2.29 2.24 2.03 1.76 1.75 

 143.4% 150.3% 30.9% 28.0

% 

16.0% 0.6%  
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Table 4.5: (continued) 

𝒏 
(𝒏𝟏, 

𝒏𝟐) 

Case K Optimal 

parameters (𝑳𝟏, 𝑳, 𝑳𝟐) 
𝜹

𝒎 

25 50 100 200 300 400 ∞ 

5 

(2, 11) (1.094, 3.234, 3.010) 

0.

5 
116.33 30.21 22.07 22.51 21.02 19.4

0 

19.3

5  501.2% 56.1% 14.1% 16.3% 8.6% 0.3%  

1.

0 
24.42 4.23 3.72 3.31 2.89 2.44 2.39 

 921.8% 77.0% 55.6% 38.5% 20.9

% 

2.1%  

1.

5 
9.06 2.51 2.04 1.69 1.61 1.49 1.48 

 512.2% 69.6% 37.8% 14.2% 8.8% 0.7%  

2.

0 
3.10 2.08 1.63 1.39 1.26 1.13 1.12 

 176.8% 85.7% 45.5% 24.1% 12.5

% 

0.9%  

2.

5 
2.00 1.61 1.39 1.22 1.12 1.04 1.02 

 96.1% 57.8% 36.3% 19.6% 9.8% 2.0%  

(5, 5) (2.993, 3.001, 3.000) 

0.

5 

120.76 41.47 32.04 29.11 27.77 26.4

3 

26.2

9  359.3% 57.7% 21.9% 10.7% 5.6% 0.5%  
1.

0 

22.01 9.21 6.36 4.71 4.04 3.87 3.86 

 470.2% 138.6% 64.8% 22.0% 4.7% 0.3%  

1.

5 

8.86 4.92 2.28 1.61 1.50 1.42 1.42 
 523.9% 246.5% 60.6% 13.4% 5.6% 0.0%  

2.

0 

3.97 2.73 1.94 1.40 1.26 1.10 1.09 
 264.2% 150.5% 78.0% 28.4% 15.6

% 

0.9%  

2.

5 

3.45 1.87 1.47 1.19 1.10 1.03 1.02 

 235.0% 81.6% 42.7% 15.5% 6.8% 0.0%  

(5, 8) (2.993, 3.001, 2.998) 

0.

5 

104.31 26.42 21.72 20.17 19.08 18.7

1 

18.6

1  460.5% 42.0% 16.7% 8.4% 2.5% 0.5%  
1.

0 

21.79 7.26 5.48 5.01 3.04 2.09 2.09 

 942.6% 247.4% 162.2% 139.7

% 

45.5

% 

0.0%  
1.

5 

7.08 4.54 2.19 2.01 1.63 1.24 1.22 

 475.6% 269.1% 78.0% 63.4% 32.5

% 

0.8%  

2.

0 

3.31 2.80 1.79 1.53 1.36 1.07 1.06 
 212.3% 164.2% 68.9% 44.3% 28.3

% 

0.9%  

2.

5 

2.48 1.74 1.41 1.34 1.20 1.02 1.01 
 145.5% 72.3% 39.6% 32.7% 18.8

% 

1.0%  

(5, 11) (2.996, 3.000, 2.999) 

0.

5 

99.17 25.45 21.39 19.15 17.82 17.2

3 

17.2

1  476.2% 47.9% 24.3% 11.3% 3.5% 0.1%  
1.

0 

22.84 7.42 5.47 4.93 3.00 2.11 2.11 

 982.5% 251.7% 159.2% 133.6

% 

42.2

% 

0.0%  
1.

5 

6.59 4.50 2.16 1.97 1.61 1.15 1.14 

 478.1% 294.7% 89.5% 72.8% 41.2

% 

0.9%  
2.

0 

3.22 2.77 1.77 1.49 1.33 1.09 1.07 

 198.1% 156.5% 63.9% 38.0% 23.1

% 

0.9%  

2.

5 

2.29 1.70 1.39 1.33 1.21 1.02 1.00 
 126.7% 68.3% 37.6% 31.7% 19.8

% 

1.0%  

 

Therefore, to secure stability and better OOC performance in Phase II for the proposed SSDS 

𝑋̅ scheme, the operator must either use a high desired Phase I sample size or choose the 

appropriate design parameters as suggested in Tables 4.1 to 4. 4. 

 

4.5.3 Performance comparison 

In this section, the proposed Case U SSDS 𝑋̅ scheme is compared to a number of well-known 

Case U monitoring schemes including the existing NSSDS 𝑋̅, NSS and side-sensitive synthetic 
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Shewhart 𝑋̅, exponentially weighted moving average 𝑋̅ (denoted as 𝑋̅-EWMA (𝜆) where 𝜆 

represents the smoothing parameter) with 𝜆 = 0.1 and 0.5, Cumulative Sum 𝑋̅ (denoted as 𝑋̅-

CUSUM) monitoring schemes with estimated process parameters. The competing schemes are 

compared in terms of the AEQL, the ARARL and PCI values. Note that the monitoring scheme 

with a small AEQL value is considered to be superior in performance for the range of shifts 

under consideration. In this example, the proposed scheme is considered to be the benchmark 

scheme. Therefore, for the chosen competing schemes, if its PCI and ARARL values are less 

than one; then, that particular competing scheme is declared as more efficient than the proposed 

Case U SSDS 𝑋̅ scheme. However, if the PCI and ARARL values are greater than one, then the 

competing scheme is declared as less efficient than the proposed SSDS 𝑋̅ scheme. When the 

PCI and ARARL values are equal to one, then the competing scheme and the proposed SSDS 

𝑋̅ scheme are equivalent. For a fair comparison, the performance of the competing schemes are 

investigated when (𝛿𝑚𝑖𝑛,𝛿𝑚𝑎𝑥) = (0,2.5), m∈{50,100}, 𝐴𝑆𝑆0 ∈{5,8} corresponding to 

𝑛 ∈{5,8},  𝑛1 ∈{3,5}, 𝑛2 ∈{5,8} and a nominal 𝐴𝑅𝐿0 = 370.4. The shifts sizes are divided into 

three groups which are “small” (0< 𝛿 ≤ 0.7), “small to moderate” (0< 𝛿 ≤1.6), and “small to 

large” (0< 𝛿 ≤2.5). In Table 4.6, the proposed scheme is compared to the foregoing 

monitoring schemes in terms of the overall performance. The results corresponding to the best 

monitoring scheme are highlighted in bold.   
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Table 4.6: Case U monitoring schemes performance comparison when n = 𝐴𝑆𝑆0 = 5, 𝑛1 ∈ {3, 5}, 𝑛2 ∈ {5, 8}, 𝛿𝑚𝑖𝑛 = 0 and 𝛿𝑚𝑎𝑥 = 2.5 with a nominal 𝐴𝑅𝐿0 

of 370.4 

 

*Shift 

Performance 

measures 

 Control charts 

(𝒏𝟏, 𝒏𝟐) 𝑨𝑺𝑺𝟎 = 𝒏 m 
NSS 

Synthetic 

𝑿̅ 

SS 

Synthetic 

𝑿̅ 

𝑿̅-

EWMA(0.1) 

𝑿̅-

EWMA(0.5) 
𝑿̅-CUSUM NSS DS 𝑿̅ SSDS 𝑿̅ 

Small 
AEQL 98.21 82.33 70.56 119.12 96.01 84.13 76.23 

(3, 5) 

 

50 

ARARL 1.24 1.10 0.91 1.48 1.23 1.13 1.00  
 PCI 1.29 1.08 0.93 1.56 1.26 1.10 1.00  

Small to 

moderate 

AEQL 104.24 80.32 76.79 120.24 103.72 74.22 70.76  
ARARL 1.49 1.17 1.11 1.64 1.50 1.08 1.00 5 

PCI 1.47 1.14 1.09 1.70 1.47 1.05 1.00  

Small to 

large 

AEQL 86.04 70.43 94.18 110.44 100.37 67.99 62.32  
ARARL 1.41 1.11 1.47 1.68 1.56 1.13 1.00  

PCI 1.38 1.13 1.51 1.77 1.61 1.09 1.00  

Small 
AEQL 72.89 68.16 60.30 73.05 71.18 68.29 62.46 

(5, 8) 

 
ARARL 1.20 1.14 0.95 1.21 1.14 1.12 1.00  

PCI 1.17 1.09 0.97 1.17 1.14 1.09 1.00  

Small to 

moderate 

AEQL 71.51 60.16 61.47 79.09 66.34 59.35 54.24  
ARARL 1.34 1.15 1.14 1.52 1.20 1.12 1.00 8 

PCI 1.32 1.11 1.13 1.46 1.22 1.09 1.00  

Small to 

large 

AEQL 45.04 40.37 50.56 61.40 59.48 38.55 33.59  
ARARL 1.36 1.31 1.40 1.72 1.63 1.17 1.00  

PCI 1.34 1.20 1.45 1.71 1.65 1.15 1.00  

Small 
AEQL 75.43 67.68 54.44 103.57 86.12 71.07 63.40 

(3, 5) 

 

100 

ARARL 1.17 1.03 0.82 1.57 1.32 1.14 1.00  
 PCI 1.19 1.07 0.86 1.63 1.36 1.12 1.00  

Small to 

moderate 

AEQL 79.69 61.21 59.85 85.59 75.05 56.10 51.94  
ARARL 1.49 1.23 1.21 1.43 1.36 1.13 1.00 5 

PCI 1.53 1.18 1.15 1.65 1.44 1.08 1.00  

Small to 

large 

AEQL 67.65 51.18 71.02 83.51 68.71 53.95 46.82  
ARARL 1.48 1.12 1.41 1.74 1.49 1.19 1.00  

PCI 1.44 1.09 1.52 1.78 1.47 1.15 1.00  

Small 
AEQL 72.43 65.68 53.51 99.43 88.09 70.12 61.25 

(5, 8) 

 
ARARL 1.21 1.10 0.84 1.58 1.41 1.17 1.00  

PCI 1.18 1.07 0.87 1.62 1.44 1.14 1.00  

Small to 

moderate 

AEQL 75.45 59.06 60.76 83.28 71.26 53.23 49.59  
ARARL 1.46 1.21 1.26 1.56 1.47 1.10 1.00 8 

PCI 1.52 1.19 1.23 1.68 1.44 1.07 1.00  

Small to 

large 

AEQL 65.69 59.34 68.13 74.79 66.52 51.48 47.19  
ARARL 1.42 1.19 1.45 1.47 1.36 1.06 1.00  

PCI 1.39 1.26 1.44 1.58 1.41 1.09 1.00  

 * Small: (0<𝛿 ≤0.7), Small to Moderate: (0<𝛿 ≤1.6) and Small to Large: (0<𝛿 ≤2.5). 
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From Table 4.6, it can be seen that regardless of the sample sizes, the EWMA (0.1) monitoring 

scheme outperforms the proposed scheme for “small” shifts (𝛿𝑚𝑎𝑥 = 0.7) in the process mean. 

However, for “small to moderate” shifts (i.e. 𝛿𝑚𝑎𝑥 = 1.6) as well as for the “small to large” 

shifts (i.e. 𝛿𝑚𝑎𝑥 = 2.5), the proposed SSDS monitoring scheme outperforms all the competing 

schemes considered in this paper. These findings are also confirmed in terms of the ARARL 

and PCI values. When comparing the existing DS 𝑋̅ scheme to the proposed scheme, we can 

observe the following: for “small” shifts, the SSDS 𝑋̅ monitoring scheme improves the existing 

DS 𝑋̅ scheme between 10% and 17%. From “small to moderate” shifts, the overall 

improvement is between 5% and 9%. From “small to large” shifts, the overall improvement is 

between 7% and 15%.  

 

4.6 Illustrative example 

In this section, the implementation and application of the proposed SSDS 𝑋̅ scheme is 

illustrated using the dataset from Zaman et al. (2017). The data gives the information on the 

inside diameter of cylinder bores in an engine block and contain thirty-five samples, each of 

size n = 5. In this implementation example, each sample is considered to be a master sample 

which is divided into two subgroups of sizes 2 and 3 (i.e. 𝑛1 = 2 and 𝑛2 = 3), in stages 1 and 2, 

respectively, such that 𝑛 = 𝑛1 + 𝑛2 = 5. The estimated IC process mean and standard deviation 

(using Equations (4.1) and (4.2)) for the inside diameter of cylinder bores are 𝜇̂0 = 200.15 and 

𝜎̂0 = 3.47 millimeters (mm), respectively. The shift detection ability of the proposed Case U 

SSDS 𝑋̅ scheme is also compared to the one of the existing Case U NSSDS  𝑋̅ scheme.   

For (𝑛1, 𝑛2) = (2, 3) and ASS0 = 3, the optimal combinations (𝐿1, 𝐿, 𝐿2) of the Case U SSDS 𝑋̅ 

scheme and the Case U NSSDS 𝑋̅  scheme are found to be equal to (2.212, 2.576, 2.305) and 

(2.306, 2.614, 2.418), respectively, so that these schemes both satisfies 𝐴𝑅𝐿0 = 370.4. A plot 

of the charting statistics, 𝑍1𝑡 and 𝑍𝑡  (i.e., for stages 1 and 2, respectively) of the two monitoring 

schemes are shown in Figure 4.3. Table 4.7 illustrates the operation of the Case U’s Phase II 

NSSDS and SSDS 𝑋̅ schemes using the data set on the inside diameter of cylinder bores.  

It is seen that the NSSDS 𝑋̅ scheme does not give a signal at stage 1. However, at the 16th, 19th 

and 26th sampling time, there was a need for a second sample and the process moved to stage 

2. The plotting statistics of the NSSDS 𝑋̅ scheme at stage 2, 𝑍𝑡, at the 16th, 19th and 26th 

sampling time are equal to -0.425, 1.015 and 3.176, respectively. It can be seen that 𝑍16 and 

𝑍19 plot between -𝐿2 = -2.418 and 𝐿2 = 2.418, which means that the NSSDS 𝑋̅ scheme does 

not signal on the 16th and 19th sampling time. Since 𝑍26 plots above 𝐿2, the NSSDS 𝑋̅ scheme 
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gives a signal at the 26th sampling time (see Figure 4.3(a) and Table 4.7) for the first time in 

Stage 2. 

The proposed SSDS 𝑋̅ scheme moves for the first time to Stage 2 at the 16th sampling time. At 

this sampling time, 𝑍2,16 is equal to -0.425. Since 𝑍16 ∈ (−𝐿2, 𝐿2) = (-2.305, 2.305), the 

proposed SSDS 𝑋̅ scheme does not give a signal on the 16th sampling time. However, on the 

19th sampling time, 𝑍1,19 equal to 2.5864 plots above L = 2.576. Therefore, the SSDS 𝑋̅  scheme 

gives a signal for the first time at the 19th sampling time in Stage 1 (see Figure 4.3(b) and Table 

4.7). 

This example shows that the proposed SSDS 𝑋̅ scheme is more sensitive than the existing 

NSSDS 𝑋̅ scheme in monitoring Phase II samples when the unknown underlying distribution 

design parameters are estimated from an IC Phase I sample. 
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Table 4.7: Illustration of the operation of the NSSDS and SSDS 𝑋̅ schemes using the dataset on the inside diameter of cylinder bores in an engine block 

 NSSDS 𝑋̅ chart SSDS 𝑋̅ chart 

Sample 

No 
𝑋̅1𝑡 𝑍̂1𝑡 

Take a 2nd  

Sample 
𝑋̅2𝑡 𝑋̅𝑡 𝑍̂𝑡 

Stage 1: 

Signal 

Stage 2: 

Signal 
𝑋̅1𝑡 𝑍̂1𝑡 

Take a 2nd  

Sample 
𝑋̅2𝑡 𝑋̅𝑡 𝑍̂𝑡 

Stage 1: 

Signal 

Stage 2: 

Signal 

1 203.5 1.3637 N    N   203.5 1.3637 N    N   

2 200.5 0.1409 N    N   200.5 0.1409 N    N   

3 201.5 0.5485 N    N   201.5 0.5485 N    N   

4 204 1.5674 N    N   204 1.5674 N    N   

5 197.5 -1.0818 N    N   197.5 -1.0818 N    N   

6 200.5 0.1409 N    N   200.5 0.1409 N    N   

7 202 0.7523 N    N   202 0.7523 N    N   

8 196.5 -1.4894 N    N   196.5 -1.4894 N    N   

9 199.5 -0.2667 N    N   199.5 -0.2667 N    N   

10 199 -0.4705 N    N   199 -0.4705 N    N   

11 204.5 1.7712 N    N   204.5 1.7712 N    N   

12 200.5 0.1409 N    N   200.5 0.1409 N    N   

13 200.5 0.1409 N    N   200.5 0.1409 N    N   

14 200.5 0.1409 N    N   200.5 0.1409 N    N   

15 200 -0.0629 N    N   200 -0.0629 N    N   

16 194 -2.5084 Y 203.67 199.8 -0.4253 N N 194 -2.5084 Y 203.67 199.8 -0.4253 N N 

17 202 0.7523 N    N   202 0.7523 N    N   

18 199.5 -0.2667 N    N   199.5 -0.2667 N    N   

19 206.5 2.5864 Y 197.33 201 1.0152 N N 206.5 2.5864 N    Y   

20 202 0.7523 N    N   202 0.7523 N    N   

21 201.5 0.5485 N    N   201.5 0.5485 N    N   

22 199.5 -0.2667 N    N   199.5 -0.2667 N    N   

23 198 -0.8780 N    N   198 -0.8780 N    N   

24 199 -0.4705 N    N   199 -0.4705 N    N   

25 200 -0.0629 N    N   200 -0.0629 N    N   

26 206 2.3826 Y 200.67 202.8 3.1760 N Y 206 2.3826 Y 200.67 202.8 3.1760 N Y 

27 203.5 1.3637 N    N   203.5 1.3637 N    N   

28 200 -0.0629 N    N   200 -0.0629 N    N   

29 198.5 -0.6743 N    N   198.5 -0.6743 N    N   

30 200 -0.0629 N    N   200 -0.0629 N    N   

31 200 -0.0629 N    N   200 -0.0629 N    N   

32 195.5 -1.8970 N    N   195.5 -1.8970 N    N   

33 200.5 0.1409 N    N   200.5 0.1409 N    N   

34 199 -0.4705 N    N   199 -0.4705 N    N   

35 202 0.7523 N       N   202 0.7523 N    N   

Note: N = No and Y = Yes. 
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(a) NSSDS 𝑋̅ scheme 
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(b) SSDS 𝑋̅ scheme 

Figure 4.3: The Case U NSSDS and SSDS 𝑋̅ schemes using the data set on the inside diameter of cylinder bores in an engine block 
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4.7 Conclusion  

In this chapter, a SSDS 𝑋̅ monitoring scheme is proposed under the assumption of unknown 

process parameters. The performance of the SSDS scheme is investigated in terms of the 

different characteristics of the run-length distribution (i.e. ARL, SDRL, PRL) as well as the 

ANOS, AEQL, PCI and ARARL values. The proposed SSDS 𝑋̅ scheme outperforms the 

competing schemes considered in this paper in many situations. Moreover, in terms of the ASS 

and ANOS values, the proposed SSDS scheme is found to be cost effective and sensitive 

compared to the competing schemes considered in this chapter. Practitioners in the industrial 

and non-industrial environments are recommended that, when the underlying process 

parameters are unknown and need to be estimated, the reference sample size m must be 

sufficiently large (i.e., m greater or equal 100) in order to get more accurate estimates and 

stability in the performance of the proposed SSDS scheme as for such large Phase I sample 

sizes, the resulting performance is closer to the parameters known scenario.  
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Chapter 5: Concluding remarks and future research ideas  

 

Shewhart-type double sampling monitoring schemes have been shown to yield better OOC 

performance than their corresponding basic Shewhart schemes when the process parameters 

are known (i.e. Case K) and unknown (i.e. Case U) regardless of the nature of the underlying 

process distribution. This strategy has been proven to effectively decrease the sampling effort 

and, at the same time, to decrease the time to detect potential out-of-control situations. For 

these reasons, it has received some attention in the statistical process monitoring. Moreover, 

from the works of Yang and Wu (2017a, b) it has been shown that this remains valid in the 

case of the double sampling schemes based on memory-type schemes. Also, the double 

sampling schemes combined with other designs / schemes (e.g. VSI, VSSI, synthetic, group-

runs) have an even better OOC performance than their individual integrated schemes. Thus, 

this indicates that these monitoring schemes can be more useful in many real-life applications 

where the traditional Shewhart scheme is currently in use. Implementation tools need to be 

developed (e.g. using statistical packages like R, Minitab, SAS, Matlab, SPSS, etc.) so that 

these monitoring schemes can be implemented in real-life monitoring of some online real time 

applications.  

Consequently, while a majority of research works has been dedicated to non-side-sensitive 

double sampling (i.e., NSSDS) design, very little has been dedicated to the design of side-

sensitive double sampling (i.e., SSDS) Shewhart-type scheme. This current dissertation 

investigates the latter and shows that the integration of side-sensitive design to the traditional 

Shewhart-type double sampling scheme improves considerably its sensitivity in monitoring 

unexpected shifts in the location parameters. Moreover, in Case U, the estimation of the process 

parameters has a negative effect on the performance of the proposed SSDS monitoring scheme. 

In this case, operators in the industries are advised to use some high desired number of Phase 

I observations to guarantee stability and better performance. Therefore, the investigation of the 

design of monitoring schemes in Case U is needed for all types of schemes. In addition, while 

SPM literature shows that there are a number of estimated parameter(s) research works for 

double sampling schemes – except the NSSDS S2 scheme by Castagliola et al. (2017), these 

are only for the univariate process location, with none dedicated to monitoring both the location 

and variability simultaneously, as well as the coefficient of variation, etc. 
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Finally, a list of some possible future research ideas that may be of interest to researchers who 

are interested in pursuing enhancements of double sampling monitoring schemes are listed 

below: 

1. Majority of double sampling schemes are based on monitoring of the process location 

parameter for a normally distributed i.i.d. process. There are a number of pitfalls in 

ignoring or assuming that the corresponding standard deviation is constant or 

unaffected by changes in location parameter. Thus, future research works need to focus 

more on monitoring both the location and variability parameters simultaneously in the 

case of non-normal distributions (e.g. Burr’s XII distributions), as well as using for 

instance, monitoring time between events using, say, the exponential distribution; etc. 

2. Double sampling schemes are mostly based on the assumption that the subgroup 

samples do not have either autocorrelation (within-sample correlation) or cross-

correlation (between-samples correlation). However, for sequential observations, there 

tend to be some inherent underlying correlation within the observations – see for 

instance, Qiu (2019). Therefore, it is important in the future to focus on double sampling 

schemes with more focus on the autocorrelated observations as well as on 

nonparametric or distribution-free monitoring schemes.  

3. With the exception of Haq and Khoo (2018, 2019), no other double sampling scheme 

takes into account auxiliary information. There is only a single research work that takes 

into account measurement errors, i.e. Lee et al. (2019). Considering the importance of 

auxiliary information and measurement errors in real-life applications; these important 

factors require more attention for double sampling schemes.  

4. With only eight publications on multivariate schemes, there is a lot of research in double 

sampling that need to be done based on parametric and nonparametric multivariate 

double sampling schemes – with Qiu (2014) being the more appropriate starting point. 

Moreover, for the parametric case, there is a need for a multivariate double sampling 

schemes based on monitoring both location and variability simultaneously, as well as 

the coefficient of variation. 

5. Since the combined schemes usually perform better than the individual integrated 

schemes, a fact that has been shown in the case of double samples with synthetic, VSI, 

VSSI and group-runs schemes. The latter statement needs to be tested whether it holds 

in the case of memory-type schemes (i.e. exponentially weighted moving average 

(EWMA), cumulative sum (CUSUM), generally weighted moving average (GWMA), 
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homogeneously weighted moving average (HWMA)). The only publications that have 

done this so far in the literature are on distribution-free method using the EWMA 

double sampling scheme; see Yang and Wu (2017a, b). The latter methodologies need 

to be adopted for the parametric scenarios and also be extended for other nonparametric 

scenarios. Moreover, for complex double sampling schemes, research may investigate 

the possibility of combining the synthetic or group-runs double sampling schemes with 

the VSI or VSSI designs.  

6. Only a few studies on the economic and economic-statistical designs for the process 

location (those corresponding to the double sampling 𝑋̅ and T2 schemes only) have 

been done in the literature. Hence, more needs to be done especially when there is no 

assumption of i.i.d. and normality; and more importantly, when parameters are 

estimated.  

7. With only a few studies on attributes data, more investigations are required in the area 

of double sampling schemes, specifically based on the number of nonconformities as 

well as high-yield processes, see the review on attributes data by Woodall (1997) as a 

possible starting point. 

 

In closing, the main objective of this study was first to introduce a new double sampling 

monitoring scheme under both Case K and Case U. Second, to give a more intensive review as 

well as more detailed background on this important class Shewhart-type schemes; with hope 

that this will stimulate more future research on simple as well as complex double sampling 

schemes (especially using the newly proposed SSDS design) for monitoring a variety of quality 

characteristics. 
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Appendices 

In this section, there are 3 appendices, i.e. Appendix A, B and C. In Appendix A, some 

illustrations are given to show how the expressions were implemented in MATHCAD®14 

software to calculate the ARL, ASS, ANOS, SDRL and EQL.   

 

Appendix A: MATHCAD explicit formulas 

To illustrate how the empirical values in the main chapter were calculated, the following 

metrics are used to show how the formulas are entered in MATHCAD®14: ARL, ASS, ANOS, 

SDRL and EQL.     
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A1. ARL formula from Equation (3.6) 

 

 

 

 

The above are the resulting values of the ARL when 𝛿 varies from 0 to 2.5 with an increment of 0.1, where specifically, 𝑛1=2, 𝑛2=2, 𝐿1=2.9101, 

𝐿2=2.4050 and 𝐿=3.0568. 

arl n1 n2 l1 l l2 d( )
1

1 pnorm l1 d n1 0 1  pnorm l1 d n1 0 1 
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l2 z

n1

n2


d n1 n2( )
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 0 1

















dnorm z 0 1( )






d

l d n1

l1 d n1

z1 pnorm
n1 n2( )

n2
 l2 z

n1

n2


d n1 n2( )

n2
 0 1


















dnorm z 0 1( )






d

















d 0 0.1 2.5

arl 2 2 2.9101 3.0568 2.4050 d( )

370.394

333.364

253.872

177.41

120.604

82.088

56.618

39.754

28.462

20.784

15.48

11.753

9.093

7.165

5.746

...


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A2. ASS formula from Equation (3.8) 

 

 
 

 
 

 
The above are the resulting values of the ASS when 𝛿 varies from 0 to 2.5 with an increment of 0.1, where specifically, 𝑛1=2, 𝑛2=2, 𝐿1=2.9101, 

𝐿2=2.4050 and 𝐿=3.0568. 

 

ass n1 n2 l1 l l2 d( ) n1 n2 pnorm l d n1 0 1  pnorm l1 d n1 0 1  pnorm l1 d n1 0 1  pnorm l d n1 0 1  

d 0 0.1 2.5

ass 2 2 2.9101 3.0568 2.4050 d( )

2.003

2.003

2.004

2.005

2.007

2.009

2.012

2.016

2.021

2.027

2.034

2.042

2.051

2.061

2.071

...


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A3. ANOS formula from Equation (3.9) 

 

 
 

 
  

The above are the resulting values of the ANOS when 𝛿 varies from 0 to 2.5 with an increment of 0.1, where 

specifically, 𝑛1=2, 𝑛2=2, 𝐿1=2.9101, 𝐿2=2.4050 and 𝐿=3.0568. 

 
 
 
 

anos n1 n2 l1 l l2 d( ) ass n1 n2 l1 l l2 d( ) arl n1 n2 l1 l l2 d( )

d 0 0.1 2.5

anos 2 2 2.9101 3.0568 2.405 d( )

741.807

667.718

508.668

355.673

241.996

164.909

113.921

80.15

57.525

42.133

31.489

24.003

18.652

14.765

11.899

...


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A4. SDRL formula from Equation (3.7)  

 

 

 

 

The above are the resulting values of the SDRL when 𝛿 varies from 0 to 2.5 with an increment of 0.1, where specifically, 𝑛1=2, 𝑛2=2, 𝐿1=2.9101, 

𝐿2=2.4050 and 𝐿=3.0568. 

pa n1 n2 l1 l l2 d( ) pnorm l1 d n1 0 1  pnorm l1 d n1 0 1 

l1 d n1

l d n1

zpnorm
n1 n2( )

n2
l2 z

n1

n2


d n1 n2( )

n2
 0 1

















dnorm z 0 1( )






d

l d n1

l1 d n1

z1 pnorm
n1 n2( )

n2
 l2 z

n1

n2


d n1 n2( )

n2
 0 1


















dnorm z 0 1( )






d

sdrl1 d( )
pa 2 2 2.9101 3.0568 2.4050 d( )

1 pa 2 2 2.9101 3.0568 2.4050 d( )


d 0 0.1 2.5

sdrl1 d( )

369.894

332.864

253.372

176.91

120.103

81.586

56.116

39.251

27.957

20.278

14.971

11.242

8.579

6.646

5.222

4.158

3.351

2.73

2.247

1.867

1.563

1.319

...





 
 

 

A5. EQL formula from Equation (3.14)  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

The above are the resulting value of the EQL when 𝛿 varies from 𝛿𝑚𝑖𝑛=0 to 𝛿𝑚𝑎𝑥=2.5 with an increment of 0.1, where specifically, 𝑛1=3, 𝑛2=11, 

𝐿1=0.3486, 𝐿2=2.9827 and 𝐿=3.8211. 

 

 

 

c1 1

c2 0.1

k 1 2 26

arlrss k( ) arl 3 11 0.3486 3.8211 2.9827 k 1( ) 0.1[ ][ ]

dsq k c1 c2( ) k c1( ) c2[ ] k c1( ) c2[ ]

eqltot x( )

k

dsq k c1 c2( ) arlrss k( ) k x( )[ ]

2.5

eqltot 25( ) 26.482



 
 

Appendix B: Derivations of the SSDS schemes’ run-length expressions in Case K 

 

Note that the expressions in Chapter 3 assume that the unstandardized means are 𝑌̅1𝑡 =

∑ 𝑌1𝑡𝑗 𝑛1⁄𝑛1
𝑗=1 , 𝑌̅2𝑡 = ∑ 𝑌1𝑡𝑗 𝑛2⁄𝑛2

𝑗=1  and 𝑌̅𝑡 = (𝑛1𝑌̅1𝑡 + 𝑛2𝑌̅2𝑡)/(𝑛1 + 𝑛2). The corresponding 

standardized plotting statistics are 𝑍1𝑡, 𝑍2𝑡 and 𝑍𝑡 in stages 1 and 2, which are given by 

𝑍1𝑡 =
𝑋̅1𝑡 − 𝜇0

𝜎0 √𝑛1⁄
 

𝑍2𝑡 =
𝑋̅2𝑡 − 𝜇0

𝜎0 √𝑛2⁄
 

𝑍𝑡 =
𝑋̅𝑡 − 𝜇0

𝜎0 √𝑛1 + 𝑛2⁄
 

(B1) 

respectively.  

Based on the latter, the warning and control limits in Figure 3.1 are also standardized. On the 

contrary, the warning and control limits for unstandardized observations (i.e. 𝑋̅1𝑡 and 𝑋̅𝑡 in 

stages 1 and 2, respectively) are as given in Figure B1; where the upper & lower control limits 

in stage 1 are denoted by 𝑈𝐶𝐿1 & 𝐿𝐶𝐿1, the upper & lower warning limits in stage 1 are denoted 

by 𝑈𝑊𝐿 & 𝐿𝑊𝐿, the upper & lower control limit in stage 2 are denoted by 𝑈𝐶𝐿2 & 𝐿𝐶𝐿2, 

respectively.    

 

 
Figure B1: The charting limits for the SSDS scheme for unstandardized observations 
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The limits in Figure B1for stage 1 of the SSDS monitoring scheme are given by 

𝑈𝐶𝐿1 = 𝜇0 + 𝐿
𝜎0

√𝑛1

 

𝑈𝑊𝐿 = 𝜇0 + 𝐿1

𝜎0

√𝑛1

 

𝐿𝑊𝐿 = 𝜇0 − 𝐿1

𝜎0

√𝑛1

 

𝐿𝐶𝐿1 = 𝜇0 − 𝐿
𝜎0

√𝑛1

 

(B2) 

and those for stage 2 are given by 

𝑈𝐶𝐿2 = 𝜇0 + 𝐿2

𝜎0

√𝑛1 + 𝑛2

 

𝐿𝐶𝐿2 = 𝜇0 − 𝐿2

𝜎0

√𝑛1 + 𝑛2

. 

(B3) 

 

Now that the above unstandardized charting regions have been defined; next, the expressions 

used in the main chapters are shown how they were derived. 
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Lemma B1 

From Equation (3.1) in Chapter 3, it is given that   

𝑃01 = 𝑃[𝑍1𝑡 ∈ A] = Φ(𝐿1 + 𝛿√𝑛1) − Φ(−𝐿1 + 𝛿√𝑛1)  

i.e. this is the probability that the process is IC in stage 1, hence no need for stage 2. 

Proof:  

𝑃01 = 𝑃(𝑍1𝑡 ∈ A) 

= 𝑃(−𝐿1 < 𝑍1𝑡 < 𝐿1) 

= 𝑃 (−𝐿1 <
𝑋̅1𝑡 − 𝜇0

𝜎0

√𝑛1

< 𝐿1)   {using Equation (B1)} 

= 𝑃 (𝜇0 − 𝐿1

𝜎0

√𝑛1

< 𝑋̅1𝑡 < 𝜇0 + 𝐿1

𝜎0

√𝑛1

 )   

= 𝑃 (

(𝜇0 − 𝐿1
𝜎0

√𝑛1
) − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
𝑋̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<

(𝜇0 + 𝐿1
𝜎0

√𝑛1
) − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

) 

= Φ(𝐿1 + 𝛿√𝑛1) − Φ(−𝐿1 + 𝛿√𝑛1);   i.e., 
𝑋̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

~𝑁(𝛿, 1). 
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Lemma B2 

From Equation (3.2) in Chapter 3, it is given that   

𝑃02 = 𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] + 𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+]

= ∫
𝑍1𝑡∈B++ {Φ (𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ )}  𝜙(𝑧)𝑑𝑧

+ ∫
𝑍1𝑡∈B−− {1 − Φ(−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ )}  𝜙(𝑧)𝑑𝑧. 

 

i.e. this is the probability that the process is IC in stage 2, given that in stage 1 it plotted in 

either region B+ or B−; and 𝜙(𝑧) is the p.d.f. of the standard normal distribution. 

Proof: 

Since, 𝑃02 = 𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] + 𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+] then we first consider, the 

first part of the equation, i.e., 𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−]. From the latter, we start with stage 2 

component, i.e. 𝑃[𝑍𝑡 ∈ F−].  

𝑃(𝑍𝑡 ∈ F−) 

= 𝑃(𝑍𝑡 < 𝐿2) 

= 𝑃 (
𝑋̅𝑡 − 𝜇0

𝜎0

√𝑛1 + 𝑛2

< 𝐿2) 

= 𝑃 (𝑋̅𝑡 < 𝜇0 + 𝐿2

𝜎0

√𝑛1 + 𝑛2

) 

= 𝑃 (
𝑛1𝑋̅1𝑡 + 𝑛2𝑋̅2𝑡

𝑛1 + 𝑛2
< 𝜇0 + 𝐿2

𝜎0

√𝑛1 + 𝑛2

) 

= 𝑃 (
𝑛1(𝑋̅1𝑡 − (𝜇0 − 𝛿𝜎0)) + 𝑛2(𝑋̅2𝑡 − (𝜇0 − 𝛿𝜎0))

𝑛1 + 𝑛2
+ (𝜇0 − 𝛿𝜎0)

< 𝜇0 + 𝐿2

𝜎0

√𝑛1 + 𝑛2

) 

= 𝑃 (

𝑛1 (
𝜎0

√𝑛1
𝑍1𝑡) + 𝑛2 (

𝜎0

√𝑛1
𝑍2𝑡)

𝑛1 + 𝑛2
< 𝜇0 + 𝐿2

𝜎0

√𝑛1 + 𝑛2

− 𝜇0 + 𝛿𝜎0) ; 

 i.e., 𝑍𝑖𝑡 =
𝑋̅𝑖𝑡−(𝜇0−𝛿𝜎0)

𝜎0

√𝑛1

~𝑁(𝛿, 1), for 𝑖 = 1 and 2, hence 
𝜎0

√𝑛𝑖
𝑍𝑖𝑡= 𝑋̅𝑖𝑡 − (𝜇0 − 𝛿𝜎0). 

= 𝑃 (
𝜎0

𝑛1 + 𝑛2
(√𝑛1𝑍1𝑡 + √𝑛2𝑍2𝑡) < 𝜎0 (

𝐿2

√𝑛1 + 𝑛2

+ 𝛿)) 

= 𝑃 (𝑍2𝑡 < 𝐿2√
𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

𝑛2
− 𝑍1𝑡√

𝑛1

𝑛2
) 
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Consequently, it follows that 

𝑃(𝑍𝑡 < 𝐿2|𝑍1𝑡 = 𝑧) = 𝑃 (𝑍2𝑡 < 𝐿2√
𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

𝑛2
− 𝑧√

𝑛1

𝑛2
)

= Φ(𝐿2√
𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

√𝑛2

− 𝑧√
𝑛1

𝑛2
) 

Since 𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] is the probability that a sample plots in region F− in stage 2 

given that in stage 1, a sample plotted in region B+ (i.e. this region is denoted by B++ = (𝐿1 +

𝛿√𝑛1, 𝐿 + 𝛿√𝑛1]), and the standardized values are used, then  

𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] =  ∫ 𝑃(𝑍2𝑡 ∈ F−|𝑍1𝑡 = 𝑧) 𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B++

 

= ∫ Φ(𝐿2√
𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

√𝑛2

− 𝑧√
𝑛1

𝑛2
)  𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B++

 

By letting 𝑟2 = 𝑛1 + 𝑛2, 𝑐 = 𝑟 √𝑛2⁄ , hence it follows that 

𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] =  ∫ Φ(𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ )  𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B++

. (B7) 

 

𝑃[𝑍1𝑡 ∈ B+ and 𝑍𝑡 ∈ F−] =  ∫ Φ(𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ )  𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B++

. 

Similarly, for 𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+], we first consider  

𝑃( 𝑍𝑡 ∈ G+) = 𝑃 (
𝑋̅𝑡 − 𝜇0

𝜎0

√𝑛1 + 𝑛2

> −𝐿2) 

From the fact that 𝑋̅𝑡 =
𝑛1𝑋̅1𝑡+𝑛2𝑋̅2𝑡

𝑛1+𝑛2
it follows that 

= 𝑃 (
𝑛1𝑋̅1𝑡 + 𝑛2𝑋̅2𝑡

𝑛1 + 𝑛2
> 𝜇0 − 𝐿2

𝜎0

√𝑛1 + 𝑛2

) 

= 𝑃 (
𝑛1(𝑋̅1𝑡 − (𝜇0 − 𝛿𝜎0)) + 𝑛2(𝑋̅2𝑡 − (𝜇0 − 𝛿𝜎0))

𝑛1 + 𝑛2
+ (𝜇0 − 𝛿𝜎0) > 𝜇0 − 𝐿2

𝜎0

√𝑛1 + 𝑛2

) 

= 𝑃 (
√𝑛1𝑍1 + √𝑛2𝑍2

𝑛1 + 𝑛2
> −𝐿2

1

√𝑛1 + 𝑛2

+ 𝛿) 

= 𝑃 (√
𝑛1

𝑛2
𝑍1𝑡 + 𝑍2𝑡 > −𝐿2√

𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

√𝑛2

) 
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= 1 − 𝑃 (𝑍2𝑡 < −𝐿2√
𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

√𝑛2

− 𝑍1𝑡√
𝑛1

𝑛2
) 

 

Since 𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+] is the probability that a sample plots in region G+ in stage 2 

given that in stage 1, a sample plotted in region B− (i.e. this region is denoted by B−− = (−𝐿 +

𝛿√𝑛1, −𝐿1 + 𝛿√𝑛1]), and the standardized values are used, then  

𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+] =  ∫ 𝑃[𝑍𝑡 ∈ G+|𝑍1𝑡 = 𝑧] 𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B−−

 

= ∫ {1 − Φ(𝐿2√
𝑛1 + 𝑛2

𝑛2
+ 𝛿

(𝑛1 + 𝑛2)

√𝑛2
− 𝑧√

𝑛1

𝑛2
)}  𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B−−

 

By letting 𝑟2 = 𝑛1 + 𝑛2, 𝑐 = 𝑟 √𝑛2⁄ , hence it follows that 

𝑃[𝑍1𝑡 ∈ B− and 𝑍𝑡 ∈ G+] =  ∫ {1 − Φ(𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√
𝑛1

𝑛2
)}  𝜙(𝑧)𝑑𝑧

𝑍1𝑡∈B−−

. (B8) 

Therefore, using Equations (B7) and (B8), then it follows that Lemma 2 is proved.  
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Lemma B3  

From Equation (3.3) in Chapter 3, it is given that   

𝑃0 = Φ[𝐿1 + 𝛿√𝑛1] − Φ[−𝐿1 + 𝛿√𝑛1]

+ ∫
𝑍1𝑡∈B++ {Φ (𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ )}  𝜙(𝑧)𝑑𝑧

+ ∫
𝑍1𝑡∈B−− {1 − Φ(−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1 𝑛2⁄ )}  𝜙(𝑧)𝑑𝑧 

 

i.e. this is the probability that the process is IC in both stages 1 and 2, given that in stage 1 it 

plotted in either region B+ or B−. 

Proof: 

The proof follows directly from Lemmas 1 and 2, since 𝑃0 = 𝑃01 + 𝑃02. 
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Lemma B4  

From Equation (3.8) in Chapter 3, it is given that   

𝑃2 = Φ(𝐿 + 𝛿√𝑛1) − Φ(𝐿1 + 𝛿√𝑛1) + Φ(−𝐿1 + 𝛿√𝑛1) − Φ(−𝐿 + 𝛿√𝑛1)  

i.e. this is the probability of taking the second sample. 

Proof: 

𝑃2 = 𝑃(𝑍1𝑡 ∈ B+ ∪ B−) 

= 𝑃(𝑍1𝑡 ∈ B+) + 𝑃(𝑍1𝑡 ∈ B−) 

= 𝑃(𝐿1 < 𝑍1𝑡 < 𝐿) + 𝑃(−𝐿 < 𝑍1𝑡 < −𝐿1) 

= 𝑃 (𝐿1 <
𝑋̅1𝑡 − 𝜇0

𝜎0

√𝑛1

< 𝐿) + 𝑃 (−𝐿 <
𝑋̅1𝑡 − 𝜇0

𝜎0

√𝑛1

< −𝐿1) 

= 𝑃 (𝜇0 + 𝐿1

𝜎0

√𝑛1

< 𝑋̅1𝑡 < 𝜇0 + 𝐿
𝜎0

√𝑛1

) + 𝑃 (𝜇0 − 𝐿
𝜎0

√𝑛1

< 𝑋̅1𝑡 < 𝜇0 − 𝐿1

𝜎0

√𝑛1

) 

Then using Equation (B5), it follows that  

𝑃2 = 𝑃 (

𝜇0 + 𝐿1
𝜎0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
𝑋̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<

𝜇0 + 𝐿
𝜎0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

)

+ 𝑃 (

𝜇0 − 𝐿
𝜎0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
𝑋̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<

𝜇0 − 𝐿1
𝜎0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

) 

= (Φ(𝐿 + 𝛿√𝑛1) − Φ(𝐿1 + 𝛿√𝑛1)) + (Φ(−𝐿1 + 𝛿√𝑛1) − Φ(−𝐿 + 𝛿√𝑛1)). 
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Appendix C: Derivations of the SSDS schemes’ run-length expressions in Case U 

 

Note that the expressions in Chapter 4 assume that the unstandardized means are 𝑌̅1𝑡 and 𝑌̅2𝑡 in 

stages 1 and 2, respectively. The unstandardized combined process means in stages 1 and 2 is 

obtained by 

𝑌̅𝑡 =
𝑛1𝑌̅1𝑡 + 𝑛2𝑌̅2𝑡

𝑛1 + 𝑛2
. (C1) 

Consequently, the corresponding standardized process means 𝑍̂1𝑡, 𝑍̂2𝑡 and 𝑍̂𝑡 are given by 

𝑍̂1𝑡 =
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0 √𝑛1⁄
 

𝑍̂2𝑡 =
𝑌̅2𝑡 − 𝜇̂0

𝜎̂0 √𝑛2⁄
 

𝑍̂𝑡 =
𝑌̅𝑡 − 𝜇̂0

𝜎̂0 √𝑛1 + 𝑛2⁄
, 

(C2) 

respectively. 

The limits in Figure B1for stage 1 of the SSDS monitoring scheme, in Case U, are given by 

𝑈𝐶̂𝐿1 = 𝜇̂0 + 𝐿
𝜎̂0

√𝑛1

 

𝑈𝑊̂𝐿 = 𝜇̂0 + 𝐿1

𝜎̂0

√𝑛1

 

𝐿𝑊̂𝐿 = 𝜇̂0 − 𝐿1

𝜎̂0

√𝑛1

 

𝐿𝐶̂𝐿1 = 𝜇̂0 − 𝐿
𝜎̂0

√𝑛1

 

(C3) 

and those for stage 2, in Case U, are given by 

𝑈𝐶̂𝐿2 = 𝜇̂0 + 𝐿2

𝜎̂0

√𝑛1 + 𝑛2

 

𝐿𝐶̂𝐿2 = 𝜇̂0 − 𝐿2

𝜎̂0

√𝑛1 + 𝑛2

. 

(C4) 
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Lemma C1  

From Equation (4.3) in Chapter 4, it is given that   

𝑃̂01 = 𝑃[𝑍̂1𝑡 ∈ A] = Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) 

i.e. this is the probability that the process is IC in stage 1, hence no need for stage 2. 

Proof: 

𝑃̂01 = 𝑃(𝑍̂1𝑡 ∈ A|𝜇̂0, 𝜎̂0) 

= 𝑃(−𝐿1 < 𝑍̂1𝑡 < 𝐿1|𝜇̂0, 𝜎̂0)  

= 𝑃 (−𝐿1 <
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0

√𝑛1

< 𝐿1|𝜇̂0, 𝜎̂0)    {using Equation (C1)} 

= 𝑃 (𝜇̂0 − 𝐿1
𝜎̂0

√𝑛1
< 𝑌̅1𝑡 < 𝜇̂0 + 𝐿1

𝜎̂0

√𝑛1
 |𝜇̂0, 𝜎̂0)  

       = 𝑃 (
(𝜇̂0 − 𝐿1

𝜎̂0

√𝑛1
) − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
𝑌̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
(𝜇̂0 + 𝐿1

𝜎̂0

√𝑛1
) − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

|𝜇̂0, 𝜎̂0) 

= Φ(
𝜇̂0 − 𝜇0

𝜎0

√𝑛1

+ 𝐿1

𝜎̂0

𝜎0
+ 𝛿√𝑛1)

− Φ(
𝜇̂0 − 𝜇0

𝜎0

√𝑛1

− 𝐿1

𝜎̂0

𝜎0
+ 𝛿√𝑛1) , i. e.

𝑌̅1𝑡 − (𝜇0 − 𝛿𝜎0)
𝜎0

√𝑛1

~𝑁(𝛿, 1) 

Let 𝑈 =
𝜇̂0−𝜇0

𝜎0

√𝑚𝑛

 and 𝑉 =
𝜎̂0

𝜎0
. Since 𝜇̂0~𝑁(𝜇0,

𝜎0

√𝑚𝑛
), it follows that 

𝜇̂0−𝜇0
𝜎0

√𝑛1

= 𝑈√
𝑛1

𝑚𝑛
; and 

therefore, 

𝑃̂01 = Φ (𝑈√
𝑛1

𝑚𝑛
+ 𝐿1𝑉 + 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
− 𝐿1𝑉 + 𝛿√𝑛1). 

Note that when the process is IC, 𝑃̂01 is given by 

𝑃̂01 = Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝐿1𝑉) − Φ(𝑈√

𝑛1

𝑚𝑛
− 𝐿1𝑉). 
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Lemma C2  

The conditional probability distribution function (p.d.f.) of  𝑍̂1𝑡 given 𝜇̂0 and 𝜎̂0, 

𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) = 𝑉𝜙 (𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝑧 − 𝛿√𝑛1). 

Proof: Let 𝐹𝑌̅1𝑡
(𝑧|𝜇̂0, 𝜎̂0) be the conditional cumulative distribution function (c.d.f.) of 𝑌̅1𝑡 

given 𝜇̂0 and 𝜎̂0. Since 𝑌̅1𝑡~𝑁(𝜇0 + 𝛿𝜎0 ,
𝜎0

√𝑛1
)  

𝐹𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) = 𝑃(𝑍̂1𝑡 < 𝑧|𝜇̂0, 𝜎̂0) 

= 𝑃 (
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0

√𝑛1

< 𝑧|𝜇̂0, 𝜎̂0) 

= 𝑃 (𝑌̅1𝑡 < 𝜇̂0 + 𝑧
𝜎̂0

√𝑛1
|𝜇̂0, 𝜎̂0) 

= 𝑃 (
𝑌̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<

(𝜇̂0 − 𝜇0) + 𝑧
𝜎̂0

√𝑛1
+ 𝛿𝜎0

𝜎0

√𝑛1

|𝜇̂0, 𝜎̂0) 

= 𝑃 (𝑍̂1𝑡 < 𝑈√
𝑛1

𝑚𝑛 + 𝑉𝑧 + 𝛿√𝑛1|𝜇̂0, 𝜎̂0) 

= Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝑧 + 𝛿√𝑛1) 

Next, we take the first derivative of 𝐹𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)so that  

𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0) =

𝜕

𝜕𝑧
𝐹𝑍̂1𝑡

(𝑧|𝜇̂0, 𝜎̂0) 

=
𝜕

𝜕𝑧
{Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝑧 + 𝛿√𝑛1)} 

= 𝑉𝜙 (𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝑧 + 𝛿√𝑛1). 
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Lemma C3 

From Equation (4.4) in Chapter 4, it is given that   

𝑃̂̂02 = 𝑃[𝑍̂1𝑡 ∈ B+ and 𝑍̂𝑡 ∈ F−] + 𝑃[𝑍̂1𝑡 ∈ B− and 𝑍̂𝑡 ∈ G+]

= ∫ 𝑃̂F−𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

𝑍∈B++

+ ∫ 𝑃̂G+𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

𝑍∈B−−

. 
 

with 

𝑃̂F− = Φ[𝑈√
𝑛2

𝑚𝑛
+ 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2] 

and 

𝑃̂G+ = 1 − Φ[𝑈√
𝑛2

𝑚𝑛
− 𝑉 (

𝐿2√𝑛1 + 𝑛2 + 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2]. 

 

Proof:   

Note that, 

𝑃̂F− = 𝑃(𝑍̂𝑡 < 𝐿2|𝑍̂1𝑡 = 𝑧, 𝜇̂0, 𝜎̂0). 

Firstly though, since, 

𝑍̂𝑡 =
𝑌̅𝑡 − 𝜇̂0

(
𝜎̂0

√𝑛1 + 𝑛2
)
 

=
{
𝑛1𝑌̅1𝑡 + 𝑛2𝑌̅2𝑡

𝑛1 + 𝑛2
} − 𝜇̂0

(
𝜎̂0

√𝑛1 + 𝑛2
)

,     see Equation (C1) 

=
{
𝑛1(𝑌̅1𝑡 − 𝜇̂0) + 𝑛2(𝑌̅2𝑡 − 𝜇̂0)

𝑛1 + 𝑛2
+ 𝜇̂0} − 𝜇̂0

(
𝜎̂0

√𝑛1 + 𝑛2
)

 

=

{
𝑛1 (

𝜎̂0

√𝑛1
𝑍̂1𝑡) + 𝑛2 (

𝜎̂0

√𝑛2
𝑍̂2𝑡)

𝑛1 + 𝑛2
+ 𝜇̂0} − 𝜇̂0

(
𝜎̂0

√𝑛1 + 𝑛2
)

, see Equations (C2) 

=

𝑛1 (
𝜎̂0

√𝑛1
𝑍̂1𝑡) + 𝑛2 (

𝜎̂0

√𝑛2
𝑍̂2𝑡)

𝑛1 + 𝑛2

(
𝜎̂0

√𝑛1 + 𝑛2
)
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=
𝜎̂0(√𝑛1𝑍̂1𝑡 + √𝑛2𝑍̂2𝑡)

𝑛1 + 𝑛2
× (

√𝑛1 + 𝑛2

𝜎̂0
) 

=
√𝑛1𝑍̂1𝑡 + √𝑛2𝑍̂2𝑡

√𝑛1 + 𝑛2

 

 

then, 

𝑃̂F− = 𝑃 (√
𝑛1𝑍̂1𝑡 + √𝑛2𝑍̂2𝑡

√𝑛1 + 𝑛2
< 𝐿2|𝑍̂1𝑡 = 𝑧, 𝜇̂0, 𝜎̂0) 

= 𝑃(√𝑛2𝑍̂2𝑡 < 𝐿2√𝑛1 + 𝑛2 − √𝑛1𝑍̂1𝑡|𝑍̂1𝑡 = 𝑧, 𝜇̂0, 𝜎̂0) 

= 𝑃 (𝑍̂2𝑡 < 𝐿2√
𝑛1 + 𝑛2

𝑛2
− √

𝑛1

𝑛2
𝑍̂1𝑡|𝑍̂1𝑡 = 𝑧, 𝜇̂0, 𝜎̂0) 

= 𝑃 (𝑍̂2𝑡 < 𝐿2√
𝑛1 + 𝑛2

𝑛2
− √

𝑛1

𝑛2
𝑧). 

Moreover, since 

𝑍̂2𝑡 =
𝑌̅2𝑡 − 𝜇̂0

𝜎̂0

√𝑛2

   with   𝑌̅2𝑡~𝑁(𝜇0 − 𝛿𝜎0,
𝜎0

√𝑛2

) 

then,  

𝑃̂F− = 𝑃 (𝑍̂2𝑡 < 𝐿2√
𝑛1 + 𝑛2

𝑛2
− √

𝑛1

𝑛2
𝑧) 

= 𝑃 (
𝑌̅2𝑡 − 𝜇̂0

𝜎̂0

√𝑛2

< 𝐿2√
𝑛1 + 𝑛2

𝑛2
− √

𝑛1

𝑛2
𝑧) 

= 𝑃 (𝑌̅2𝑡 < 𝜇̂0 + 𝐿2√
𝑛1 + 𝑛2

𝑛2

𝜎̂0

√𝑛2

− 𝑧√
𝑛1

𝑛2

𝜎̂0

√𝑛2

) 

= 𝑃

(

 
 𝑌̅2𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛2

<

𝜇̂0 + 𝐿2√
𝑛1 + 𝑛2

𝑛2

𝜎̂0

√𝑛2
− 𝑧√

𝑛1

𝑛2

𝜎̂0

√𝑛2
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛2
)
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= Φ

(

 
 𝜇̂0 − 𝜇0

𝜎0

√𝑛2

+

𝐿2√
𝑛1 + 𝑛2

𝑛2

𝜎̂0

√𝑛2
𝜎0

√𝑛2

−

𝑧√
𝑛1

𝑛2

𝜎̂0

√𝑛2
𝜎0

√𝑛2

+
𝛿𝜎0

𝜎0

√𝑛2
)

 
 

,

i. e.
𝑌̅2𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛2

~𝑁(𝛿, 1) 

= Φ(𝑈√
𝑛2

𝑚𝑛
+ 𝑉𝐿2√

𝑛1 + 𝑛2

𝑛2
− 𝑉𝑧√

𝑛1

𝑛2
+ 𝛿√𝑛2) 

= Φ(𝑈√
𝑛2

𝑚𝑛
+ 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2). 

 

Since 𝑃[𝑍̂1𝑡 ∈ B+ and 𝑍̂𝑡 ∈ F−] is the probability that a sample plots in region F− in stage 2 

given that in stage 1, a sample plotted in region B+ (i.e. this region is denoted by B++ = (𝐿1 +

𝛿√𝑛1, 𝐿 + 𝛿√𝑛1]), and the standardized values are used, then (by also invoking Lemma C2) 

𝑃[𝑍̂1𝑡 ∈ B+ and 𝑍̂𝑡 ∈ F−] =  ∫ 𝑃[𝑍̂𝑡 ∈ F−|𝑍̂1𝑡 = 𝑧] 𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

𝑍1𝑡∈B++

 

= ∫ Φ(𝑈√
𝑛2

𝑚𝑛
+ 𝑉 (

𝐿2√𝑛1 + 𝑛2 − 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2) × 𝑉 × 𝜙 (𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝑧 + 𝛿√𝑛1)𝑑𝑧

𝑍1𝑡∈B++

 

(C5) 

 

Next, for 𝑃̂G+, similar derivations as above are done as follows,  

𝑃̂G+ = 𝑃(𝑍̂𝑡 > −𝐿2|𝑍̂1𝑡 = 𝑧, 𝜇̂0, 𝜎̂0) 

= 𝑃 (√
𝑛1𝑍̂1𝑡 + √𝑛2𝑍̂2𝑡

√𝑛1 + 𝑛2
> −𝐿2|𝑍̂1𝑡 = 𝑧, 𝜇̂0, 𝜎̂0) 

= 𝑃 (𝑍̂2𝑡 > −𝐿2√
𝑛1 + 𝑛2

𝑛2
− √

𝑛1

𝑛2
𝑧) 

= 1 − 𝑃 (
𝑌̅2𝑡 − 𝜇̂0

𝜎̂0

√𝑛2

< −𝐿2√
𝑛1 + 𝑛2

𝑛2
− √

𝑛1

𝑛2
𝑧) 

= 1 − 𝑃

(

 
 𝑌̅2𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛2

<

𝜇̂0 − 𝐿2√
𝑛1 + 𝑛2

𝑛2

𝜎̂0

√𝑛2
− 𝑧√

𝑛1

𝑛2

𝜎̂0

√𝑛2
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛2
)
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= 1 − Φ

(

 
 𝜇̂0 − 𝜇0

𝜎0

√𝑛2

−

𝐿2√
𝑛1 + 𝑛2

𝑛2

𝜎̂0

√𝑛2
𝜎0

√𝑛2

−

𝑧√
𝑛1

𝑛2

𝜎̂0

√𝑛2
𝜎0

√𝑛2

+
𝛿𝜎0

𝜎0

√𝑛2
)

 
 

 

= 1 − Φ(𝑈√
𝑛2

𝑚𝑛
− 𝑉𝐿2√

𝑛1 + 𝑛2

𝑛2
− 𝑉𝑧√

𝑛1

𝑛2
+ 𝛿√𝑛2) 

= 1 − Φ(𝑈√
𝑛2

𝑚𝑛
− 𝑉 (

𝐿2√𝑛1 + 𝑛2 + 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2). 

Since 𝑃[𝑍̂1𝑡 ∈ B− and 𝑍̂𝑡 ∈ G+] is the probability that a sample plots in region F− in stage 2 

given that in stage 1, a sample plotted in region B+ (i.e. this region is denoted by B−− = (−𝐿 +

𝛿√𝑛1, −𝐿1 + 𝛿√𝑛1]), and the standardized values are used, then (by also invoking Lemma C2) 

𝑃[𝑍̂1𝑡 ∈ B− and 𝑍̂𝑡 ∈ G+] =  ∫ 𝑃[𝑍̂𝑡 ∈ G+|𝑍̂1𝑡 = 𝑧] 𝑓𝑍̂1𝑡
(𝑧|𝜇̂0, 𝜎̂0)𝑑𝑧

𝑍̂1𝑡∈B−−

 

= ∫ Φ(𝑈√
𝑛2

𝑚𝑛
− 𝑉 (

𝐿2√𝑛1 + 𝑛2 + 𝑧√𝑛1

√𝑛2

) − 𝛿√𝑛2) × 𝑉 × 𝜙 (𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝑧 + 𝛿√𝑛1)𝑑𝑧

𝑍̂1𝑡∈B++

 

(C6) 

Therefore, using Equations (C5) and (C6), then it follows that Lemma 3 is proved.  
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Lemma C4  

From Equation (4.15) in Chapter 4, it is given that   

𝑃̂2 = 𝑃(𝑍̂1𝑡 ∈ B− ∪ B+|𝜇̂0, 𝜎̂0) 

= Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1)

+ Φ(𝑈√
𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) − Φ(U√

𝑛1

𝑚𝑛
− 𝑉𝐿 − 𝛿√𝑛1). 

i.e., the probability of taking the second sample. 

Proof: 

𝑃̂2 = 𝑃(𝑍̂1𝑡 ∈ B+ ∪ B−) 

= 𝑃(𝑍̂1𝑡 ∈ B+) + 𝑃(𝑍̂1𝑡 ∈ B−) 

= 𝑃(𝐿1 < 𝑍̂1𝑡 < 𝐿) + 𝑃(−𝐿 < 𝑍̂1𝑡 < −𝐿1) 

= 𝑃 (𝐿1 <
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0

√𝑛1

< 𝐿) + 𝑃 (−𝐿 <
𝑌̅1𝑡 − 𝜇̂0

𝜎̂0

√𝑛1

< −𝐿1) 

= 𝑃 (

𝜇̂0 + 𝐿1
𝜎̂0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
𝑌̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<

𝜇̂0 + 𝐿
𝜎̂0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

)

+ 𝑃 (

𝜇̂0 − 𝐿
𝜎̂0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<
𝑌̅1𝑡 − (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

<

𝜇̂0 − 𝐿1
𝜎̂0

√𝑛1
− (𝜇0 − 𝛿𝜎0)

𝜎0

√𝑛1

) 

= {Φ(𝑈√
𝑛1

𝑚𝑛
+ 𝑉𝐿 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
+ 𝑉𝐿1 − 𝛿√𝑛1)}

+ {Φ(𝑈√
𝑛1

𝑚𝑛
− 𝑉𝐿1 − 𝛿√𝑛1) − Φ(𝑈√

𝑛1

𝑚𝑛
− 𝑉𝐿 − 𝛿√𝑛1)}. 
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