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ABSTRACT

Sorghum crop has become attractive to breeders due to its drought tolerance, and many uses
including a human food source, animal feed, industrial fibre and bioenergy crop. Sorghum,
like any other plant, is a host to a variety of microbes that can have neutral, negative or positive
effects on the plant. While the majority of microorganisms are beneficial, pathogens colonize
plant tissues and overwhelm its defence mechanisms. This colonization is a direct threat to the
sorghum productivity. The development of microbiome-based approaches for sustainable crop
productivity and vyield is hindered by a lack of understanding of the main biotic factors
affecting the crop microbiome. Metabarcoding has proven to be a valuable tool which has been
widely used for characterizing the microbial diversity and composition of different
environments and has been utilized in many research endeavours. This study analyses the
relationship between the microbiota and their response to natural pathogen infection in
sorghum disease groups (R, MR, S and HS) and identifies the most dominant pathogen in the
highly susceptible disease group. The study also, assesses the spore viability through the use
of the automated cell counter and confirms Fusarium graminearum (dominant pathogen linked
to the HS disease group) through sequencing of the marker genes, to subsequently characterize
pathways likely to be involved in pathogen infection resistance. To achieve the objectives, a
combination of 16S rRNA (V3/V4 regions) and ITS (ITS1/1TS4) of the internal transcribed
spacer regions were amplified and sequenced using NGS technologies to study the microbiota
in response to natural infection. Additionally, comparative transcriptional analysis of sorghum

RILs in response to Fusarium graminearum infection was conducted through RNA-Seq.

Upon natural infection, the foliar symptoms assessment of the RILs was conducted and four
disease groups; resistant (R), moderately resistant (MR), susceptible (S) and highly susceptible
(HS) were designated. The results of the present metabarcoding study indicate that resistant
sorghum leaves (R group) supported a large diversity of fungal and bacterial microbes. The
genera Methylorubrum, Enterobacter and Sphingomonas with reported plant growth
promoting traits were more abundant and highly enriched in the R and MR group, with
members of the latter genus significantly enriched in the R group. The resistant fungal group

had a majority of OTUs showing similarity to well-known plant growth-promoting fungal



genus including Papiliotrema (Tremellaceae family), which are known biocontrol agents. The
yeast Hannaella was also highly linked with the resistant plants. Some Hannaella species are

known to produce indole acetic acid (IAA) for promoting plant growth.

Metabarcoding was also used to assess the major potential disease-causing taxa associated with
the highly diseased group. It identified fungal pathogenic species, that have not previously
been identified as pathogens of sorghum such as Ascochyta paspali and Ustilago kamerunensis
(which are known pathogenic fungi of grass species) and were associated with the susceptible
disease groups (S and HS). These analyses revealed the potential sorghum fungal pathogen
Epicoccum sorghinum, and was highly linked with the S disease group. It further expanded the
identification of a reportedly economically importance species causing sorghum related
diseases Fusarium graminearum (anamorph Gibberella zeae). This species has also been

identified in this study to be highly associated with the RILs showing major disease symptoms.

Fusarium graminearum a significant pathogen in winter cereals and maize has been associated
with stalk rot of sorghum and sorghum grain mould. The presence of Fusarium graminearum
in sorghum can be a toxicological risk, since this species has the potential to produce
mycotoxins. It was further shown that natural pathogen infection results in distinct foliar
microbial communities in sorghum RILs. The co-occurrence taxa represented by
Tremellomycetes and Dothiomycetes fungal classes and Bacillaceae and Sphingomonadaceae
bacterial family had more central roles in the network. The modules which are located centrally
on the network have been expected to play important ‘topological roles’ in interconnecting
pairs of other fungal and bacterial taxa in the symbiont-symbiont co-occurrence network.
These taxa having a central role, are considered to be keystone microbes, and have been
suggested to be drivers of microbiome structure and functioning. The results of bacterial and
fungal community composition, community co-occurrences further suggested the importance
of keystone taxa which may disproportionately shape the structure of foliar microbiomes. The
foliar disease symptom assessments revealed that sorghum RIL 131 was highly diseased and
RIL 103 did not show any visible disease symptoms and were subsequently used for

transcriptomic analysis.



Gene expression patterns were studied between the identified RIL that did not show visible
symptoms (resistant RIL no 103) and the RIL that showed major disease symptoms
(susceptible RIL no 131). Fusarium graminearum the dominant potential pathogen found in
this study to be associated with the highly susceptible plants was used to inoculate RILs at
seedling stage in a greenhouse and samples were collected in triplicates at 24 hours post
infection (hpi), 48 hpi, 7 days post infection (dpi) and 14 dpi. Prior to that, ITS and UBC genes
confirmed the identity of Fusarium graminearum, and the automated haemocytometer
confirmed the cell/spore viability. Using RNA-Seq analysis it was shown that the resistant RIL
had defence related pathways from early response (24- 48 hpi) to late response (7-14 dpi). And
the more the infection progressed, the more the defence related genes were up-regulated in
terms of fragments per kilobase of exon model per million reads mapped (FPKM) and False
Discovery Rate (FDR < 0.05) values.

Transcriptome time series expression profiling was used to characterize the plant response to
Fusarium graminearum with the Dirichlet Process Gaussian Process mixture model software
(DPGP) in susceptible and resistant RILs. The susceptible RIL (number 131) transcriptional
response upon Fusarium graminearum infection presented differences of the closely related
clustered expression profiles across all timepoints in both RILs. Group 2 exclusively clustered
the genes encoding the sesquiterpene metabolism pathway, which is one of the major
physiological change occurring in response to fungal infection and has been previously
reported to produce the mycotoxins associated with Fusarium head blight (FHB) of cereals.
This pathway presented an increase from the initial infection phase to the late infection phase
in group 4, the genes encoding starch sucrose, metabolism and cyanoamino acid pathways
presented a pattern that had a sharp decline from 48 hpi -14 dpi (at a later stage of infection).
This could suggest that, as the time progresses in the susceptible RIL the pathways which are
important in plant defence declines at a late infection stage. Group 3 presented a pattern
increase of the 5-lipoxygenase (LOX 5) gene expressed from 48 hpi-14 dpi timepoints. The
loss and silencing of LOX5 function have in the past described to be linked with enhanced
disease resistance. In this study the LOX5 was expressed and this could suggest that LOX5
might have a function as a susceptibility factor in disease caused by Fusarium graminearum

in sorghum RILs. CBL-interacting protein kinase 6 (CIPK6) gene was also associated with this
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group. This gene has been associated with negative regulation of immune response to
Pseudomonas syringae in Arabidopsis as plants overexpressing CIPK6 were more susceptible

to Pseudomonas syringae.

Transcriptional response of a resistant RIL (number 103) to infection with Fusarium
graminearum presented an increase in genes encoding metabolic and biosynthesis of
metabolites pathways in group 1 and group 4 at early infection phase and a sharp decline in
the late infection phase. An increase in the genes encoding pathways in earlier infection state
could suggest the establishment of a beneficial energy balance for defence. Additionally, genes
encoding phenylpropanoid (PAL), galactose and glycolysis pathway were amongst the genes
increased at early stages of infection in group 1. Sugar can play a significant role in resistance
to fungal pathogens through phenylpropanoid metabolism stimulation, and previous studies
showed that the phenylpropanoid pathway could play a role in resistance of wheat to Fusarium

graminearum and deoxynivalenol.

Overall, this study represents a first step in understanding the molecular mechanisms involved
in resistance to Fusarium graminearum. This analysis has also identified the reported
beneficial microbes and defence related genes and pathways. Together, the current findings
suggest that different ‘resident’ consortia found in naturally infected and uninfected sorghum
plants may be viable biocontrol and plant-growth promoting targets. Cultivation studies may
shed light on the nature of the putative symbiotic relationships between bacteria and fungi.
These results have consequences for crop breeding, and the analysis of microbial diversity and
community composition can be useful biomarkers for assessing disease status in plants. The
transcriptome and metabarcoding data generated will help guide further research to develop
novel strategies for management of disease in sorghum RILs through the integrative approach
considering both beneficial microbes and defence related genes. This provides the baseline
information and will positively impact in the development of Fusarium graminearum resistant
genotypes in future through the integration/incorporation of beneficial microorganisms

(bacteria and fungi) and resistant genes in breeding strategies.
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CHAPTER 1

General Introduction



1.1 CHAPTERS OUTLINE

This work is divided into 6 chapters. Each of the chapters are separately introduced and a

reference list is provided at the end of all chapters.

Chapter 1: Introduction
This chapter will provide a general introduction and motivation for the study. The aims and

objectives of the study are stated.

Chapter 2: Literature review

In this chapter literature related to the project is reviewed. A brief overview of sorghum
taxonomy, importance, domestication and breeding. Plant created micro-environments will be
reviewed extensively. A brief overview of plant microbe interactions will be reviewed looking
specifically at bacterial/fungal interactions with plants. Both beneficial and non-beneficial
plant microbe interactions will be reviewed. Fusarium graminearum will be reviewed. This
will be followed by a broad description of metagenomic projects studying phyllosphere fungal
and bacterial communities specifically. In the subsequent section, detailed information on next-
generation sequencing will be introduced, followed by Illumina sequencing technology
description specifically looking at sequencing the 16S rRNA and ITS gene in plants,

transcriptomics and the bioinformatic analysis of next-generation sequencing data.

Chapter 3: Bacterial and fungal composition of sorghum in asymptomatic and
symptomatic sorghum RILS

This chapter will describe the fungal and bacterial composition associated with Sorghum
bicolor in order to determine whether the diversity is increasing or decreasing on both
asymptomatic (resistant) and symptomatic (susceptible) sorghum RILS in response pathogen
infection. The study also presents an assessment of the bacterial and fungal pathogenic taxa
predominantly found in both the pathogen infected and the asymptomatic plants and the

identification of the pathogenic taxa highly associated with the symptomatic plants.

Chapter 4: Molecular identification of Fusarium graminearum and cell viability



The confirmation of the species identity of the Fusarium graminearum of the strains used in
this study, using molecular techniques; and the cell /spore viability conducted with the

automated cell counter are presented.

Chapter 5: Comparative gene expression

This chapter presents the comparative transcriptome analyses of resistant and susceptible
sorghum inbred lines in response to the fungal pathogen (Fusarium graminearum). The
assessment of whether Fusarium graminearum induces specific defence-related genes is
presented through an analysis of differential gene expression using whole transcriptome

analysis with RNA-Seq.

Chapter 6: General discussion and conclusions

In this chapter the final conclusion and further prospects of this study is discussed.



1.2 GENERAL INTRODUCTION

Sorghum (Sorghum bicolor) is the fourth most important cereal crop cultivated in South Africa,
after maize, wheat and barley (Beukes et al., 2017; Lateef et al., 2015). Climate change has
sparked a renewed interest in sorghum, as it is a robust plant species that can tolerate drought,
soil toxicities and a wide range of temperatures (Medraoui et al., 2007). It has remained a basic
staple food for many rural communities. This is particularly the case in the more drought prone
parts where this hardy crop offers better household food security (Mundia et al., 2019).
Additionally this crop is a promising target for forage, grain, and as a potential energy plant
for biofuel production (Gleadow et al., 2016). On a global scale, sorghum is the fifth most
important cereal crop after wheat, rice, maize and barley (FAOSTAT 2018). For the past 21
years sorghum recorded an increase in production/yield from 18 million tons in 21 million
hectares (ha) to 29 million tons in 29 million ha (FAOSTAT 2018). A sharp production decline
was observed in South Africa with the production of 223 thousand tons in the harvested area
of 98 thousand ha in the past 21 years to 115 thousand tons in the area harvested of 29 thousand
ha (1999-2018). The production decline trend in sorghum was caused by abiotic components
like drought (SAGL). Additionally, a major reason for South African sorghum production
decline is that yield levels have failed to increase, and producers shifted to more profitable
crops like soybeans and corn (USDA 2019). Sorghum plant production constraints/decline was
not only caused by abiotic factors, biotic components that includes microbial communities play
a crucial role in plant ecosystems (Mendes et al., 2013). Microbial communities also play a
pivotal role in the functioning of plants by influencing their physiology and development
(Guazzaroni et al., 2018).

Sorghum, like any other plant, interacts with a broad range of microorganisms. These microbes
include bacterial and fungal communities residing on or inside various plant organs, of which
those associated with leaf and roots surface are best characterized (Bulgarelli et al., 2013).
These microorganisms have neutral, beneficial or detrimental effects on plant development and
health (Rosselli and Squartini, 2015). The positive interactions provide an environment that
benefit the plant host by increasing stress tolerance, nutrient acquisition, pathogen resistance

and also aid in phytoremediation of environmental pollutants (Dar et al., 2019; Kumar and



Verma, 2019; Mia et al., 2014). Plants are however not only colonized by beneficial microbes,
they are also susceptible to several fungal and bacterial pathogens that result in pre and post-

harvest deterioration including the production of potentially harmful mycotoxins.

Fusarium head blight (FHB) is one of the fungal diseases caused mainly by Gibberella zeae
(Schwein) Petch (Anamorph: Fusarium graminearum Schwabe). Fusarium graminearum, the
dominant pathogen contributing towards sorghum grain mould has been previously isolated
from sorghum (Funnell-Harris et al., 2017; Funnell-Harris et al., 2013; Burgess et al., 2002;
Trimboli and Burgess, 1985). Various mycotoxin-producing Fusarium species have been
isolated from sorghum grain in South Africa (Beukes et al., 2017). These unfavourable plant
microbe’s interaction may also lead to genotypes that appear to be susceptible to the local and
endemic pathogenic strains and the susceptibility varies depending on the host genotype (Fall
et al., 2019). There are also several genotypes that are resistant to diseases (TeBeest et al.,
2004). The ratings for disease resistance and severity for selected high-yielding and popular
grain sorghum genotypes have been delineated into resistant (R), moderately Resistant (MR),
susceptible (S) and highly susceptible (HS) groupings (TeBeest et al., 2004). Phenotypic
observation of sorghum genotype based on the disease severity is essential, as the use of
resistant genotypes may be the most cost-effective means of managing diseases and can be

important component for ensuring food security (Haussmann et al., 2000).

Additionally, insights into the bacterial and fungal communities associated with various
diseases should be essential components of food and energy security programs, as they open
the possibility to develop new environmentally-friendly strategies for agricultural
sustainability (Wei and Jousset, 2017). Traditionally, estimates of microbial diversity were
based solely on culturable microorganisms. However, microscopic observations and
mathematical modelling estimate that 99% of microbes are unculturable under standard
laboratory conditions (Vorholt, 2012; Schloss et al., 2009; Schloss and Handelsman, 2006;
Stach and Bull, 2005). Next-generation sequencing (NGS)-based tools have allowed for
profiling of microbial communities on an unprecedented scale (Zhou et al., 2018; Vernikos et

al., 2015). NGS sequencing of the taxonomically informative 16S rRNA gene and ITS provides



a powerful tool for investigating bacterial and fungal diversity in plant species (Sanschagrin
and Yergeau, 2014; Porter and Golding, 2011).

This study used sorghum recombinant inbred lines (RILs) of the F9 generation, created by
crossing two inbred lines followed by repeated selfing to create a set of inbred lines whose
genomes are a mosaic of the parental genomes (Shiringani et al., 2010). The genetic material
of all the microbes (microbiomes) of these RILs and the relationship to plant health has not
been examined—Metabarcoding technique which uses short genetic sequences to identify
individual taxa will increase the understanding of the foliar microbiomes of sorghum RILs and
its link to natural infection. The use of this technique will also assist in identifying the reported

economically important pathogen taxa associated with sorghum RILs.

Fusarium graminearum was linked with the HS disease group in this study, and will be
subsequently used for the gene expression analysis. This pathogenic taxa is an important
sorghum production biotic constraint worldwide due to its ability to produce mycotoxins. It is
a major disease problem on cereal crops, as it can influence the yield and lead to economic
losses. However, management of sorghum mycotoxins is difficult and a better understanding
of pathogen aggressiveness as well as surveillance is needed for improved control. Fusarium
graminearum disease severity varies depending on the host genotype resistance (Fall et al.,
2019). Gene expression analysis of the pathogen-host interaction could possibly enhance
understanding of the resistant process and provides valuable information about the resistant
process of Fusarium graminearum in sorghum. Recent studies investigating the mechanisms
underlying the host defence response against Fusarium graminearum using comparative
transcriptome analysis in susceptible and resistant maize and wheat genotypes, have been
undertaken (Brauer et al., 2019; Yuan et al., 2019). The studies concluded that the susceptible
wheat genotype displayed higher auxin accumulation during infection relative to resistant
genotypes, and in maize the differentially expressed genes (DEGs) associated with
pathogenesis-related protein 1 (PR1) and regulation of salicylic acid were significantly
enriched during F. graminearum infection, suggesting that these DEGs play dominant roles in
maize resistance to Fusarium graminearum. The studies proved that RNA sequencing (RNA-

Seq) technology has been very useful in conducting transcriptomics studies.



1.3  JUSTIFICATION OF THE STUDY

One of the major challenges of the 21% century will be to create sustainable crop production
and environmentally sound systems. Enhanced production will be required to provide
sufficient food for the increasing human population, which is predicted to reach a plateau of 9
billion people by 2050 (Gerland et al., 2014). Sorghum is one of the main staples for the food
insecure people. It is attractive to breeders due to its drought tolerance, bioenergy potential,
and use as human food and animal feed. It is also a versatile crop that can be grown as grain
and sweet-stem crop. Globally, grain sorghum is an important staple food crop and sweet-stem
sorghum is to a greater extent considered as a promising biofuel feedstock (Vanamala et al.,
2018). Sorghum hosts microbes that can have neutral, negative or positive effects on the plant.
While the majority of microorganisms are beneficial, some are pathogens that colonize leaves
and overwhelm the plant defence mechanisms, as the result, the full potential of sorghum
productivity has not been realised due to an array of biotic constraints (Mengistu et al., 2016).
Plant pathogens represent major and constant constraint to food production, with global crop
losses estimated to be 20% — 30% principally in food-deficit areas (Savary et al., 2019). This
presents a direct threat to the sorghum productivity, yet not much is known about microbial
diversity, and the interplay between associated bacteria and fungi in leaves remains
unexplored. Recent reports, using metagenomic analysis, have revealed potential key taxa
associated with the rhizosphere and seed of sorghum (Kuramae et al., 2020; Hara et al., 2019;
Kinge et al., 2019; Xu et al., 2018; Guo, 2016). However, none of these studies assessed the
aerial region of the plant, which is suggested to be one of the primary entry sites for pathogens
(Cernava et al., 2019). This knowledge deficit is broadly true for plants where, in contrast to
the rhizosphere, substantially less is known regarding the effects of plant-microbe associations

on foliar diseases.

Additionally, emerging and re-emerging plant pathogens challenge the ability to ensure plant
health and growth worldwide (Koberl et al., 2011). There is an increasing demand for
ecologically compatible agricultural strategies. Plant biotechnology contributes to the
development of numerous crop varieties with greater drought, better nutritional value and
enhanced disease resistance. Unfortunately, beneficial plant microbe interactions were often

ignored in breeding strategies although plant associated microbes fulfil important ecosystem



functions for soils and plants (Berg et al., 2017; Berg and Smalla, 2009). Overall, it is necessary
that agricultural productivity be substantially increased within the next few decades and as a
result, agricultural practice is heading toward a more environmentally friendly and sustainable
approach. Understanding these microbial interactions is thus important in plant diseases

management.

Fusarium graminearum is one of the major biotic constraints affecting sorghum productivity
and it has been found in this study to be highly associated with the susceptible disease group
(Choi et al., 2013; Quazi et al., 2010; Tarekegn et al., 2006; Menkir et al., 1996). It affects the
three most important crops grown in South Africa (GRAINSA, 2017). It causes ear rot in
maize, it is a major contributor in the grain mould of sorghum and causes Fusarium head-blight
in wheat (Beukes et al., 2017). However, it has been indicated that sorghum only acts as an
asymptomatic host of F. graminearum (Pena et al., 2019; Burgess et al., 2002), but it has the
potential to produce 15-acetyldeoxynivalenol (15-ADON), deoxynivalenol (DON), nivalenol
(NIV), zearalenone (ZEA) and 3-acetyldeoxynivalenol (3-ADON) (Yerkovich et al., 2017). In
addition, the pathogenicity of Fusarium graminearum to sorghum was shown in other studies
(Van Rooyen, 2019; Bodogi et al., 2013) where it had the highest pathogenicity on sorghum
grain, followed by Fusarium solani, Fusarium verticillioides and lastly Fusarium
subglutinans. The susceptibility of grain sorghum to colonization by Fusarium graminearum
was assessed on sorghum seedlings and it was found that this pathogen can initiate host
infection at initial growth phases and progressively colonize adjacent tissues as an endophyte.
The results also showed that stem as well as roots tissues are susceptible to infection. This
pathogen causes diseases that results in reduced yield due to abortion of florets, reduced seed
filling market and quality values, endosperm deterioration and surface discoloration embryo
(Nida et al., 2019; Kange et al., 2015; Audilakshmi et al., 2011). Production losses due to
mycotoxins range from 30% to 100% depending on time of flowering, cultivar, and prevailing
weather conditions during flowering to harvesting (Das and Padmaja, 2016). The International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT), has projected US$ 130 million
as total losses due to grain mould in the semi-arid tropical areas of Africa and Asia. The United
States of America (USA) and India have seen losses of 50 - 80 million dollars (Gosal and Wani,
2018).



This study will add knowledge to what is currently available about the role and effects of fungal
and bacterial communities in sorghum and how these communities change under biotic stress
conditions. Understanding the dynamics of the phyllosphere bacterial and fungal composition
may allow us to modify these communities to increase resistance against foliar pathogens and
also allow successful colonization and growth of beneficial or commensal bacteria and fungi
(Copeland et al., 2015). To date there has not been a feasible way to control mycotoxins caused
by Fusarium graminearum. The best way to remove/limit mycotoxins from contaminated food
crops is to be able to control Fusarium graminearum. Assessing whether Fusarium
graminearum induces specific defence-related genes will add knowledge in ways to control
Fusarium graminaerum in sorghum. This will be done by characterizing the transcriptome
time series gene expression profiling in response to Fusarium graminearum infection in
resistant and susceptible recombinant inbred lines (RILS) through the use of RNA-Seq

technique.
141 AIM

e To identify the fungal and bacterial populations on/within sorghum leaves that are
naturally infected with various pathogens through the use of metabarcoding, and to
identify the pathogenic taxa highly associated with susceptible plants

e To identify the resistance genes and pathways that are associated with Sorghum bicolor
response to the identified taxa associated with diseased RILs (Fusarium graminearum)

through the use of transcriptomics (RNA-Seq).

1.4.2 OBJECTIVES

The objectives of the study were
e To determine the fungal and the bacterial community structure changes in sorghum
RILs in response to natural pathogen infection using metabarcoding;
e To characterize the fungal and bacterial taxa associated with disease groups (R, MR, S
and HS) in response to natural pathogen infection;

e To identify the most dominant pathogen in diseased sorghum RILs



e To confirm Fusarium graminearum through marker genes, analyse cell/spore viability,
and characterize pathways likely to be involved in pathogen infection resistance
through RNA-Seq.
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CHAPTER 2

Literature Review
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2.1 LITERATURE REVIEW
2.1.1 Sorghum taxonomy and importance

Sorghum (Sorghum bicolor (L.) Moench) is one of the main staple foods for the world’s most
food insecure people (Mekbib, 2007). This crop was first described in 1753 by Linnaeus under
the name of Holcus. Later, Moench distinguished the genus sorghum from the genus holcus
(Clayton, 1961). The present official taxonomic concept of the sorghum genus and species
concur with the one recognized by Moench. All the distinct names given by several
taxonomists are therefore taken as synonym to S. bicolor (L.) Moench. Sorghum bicolor
belongs to the genus Sorghum, Poaceae family, of the Andropogoneae tribe (Von Mark and
Dierig, 2014). The S. bicolor species include all cultivated sorghum species as well as wild and

semi wild plants which are regarded as weeds (Mutegi et al., 2011).

Sorghum is a grassy non-halophyte, which is both salt and drought tolerant, and it is considered
a promising crop for semi-arid regions (do Nascimento et al., 2014). It is classified into two
major classes: grain sorghum and sweet-stem sorghum. Sweet-stem sorghum is well adapted
to temperate and sub-tropical regions (Reddy et al., 2007). It is a fast growing C4 crop with
high photosynthetic efficiency, high sugar accumulation in the stalks and have a high potential
for biomass production (Almodares and Hadi, 2009). The total soluble sugars of the juice in
the stalk can vary from 7-24% depending on the sweet-stem sorghum variety. Sweet-stem
sorghum is a multi-purpose crop which can be cultivated for the simultaneous grain production
from its panicle (for food, mainly porridges and flat breads); sugary juice from its stalk (for
making ethanol and syrup); and green leaves and bagasse (as an organic fertilizer, for paper
manufacturing and an excellent fodder for animals) (Mengistu et al., 2016). In contrast to other

bioenergy feedstocks sorghum produces other valuable by-products and food products.

Grain sorghum ranks fifth among the world’s cereal crops in area sown after wheat, rice, maize
and barley (dos Santos et al., 2017). Its drought tolerance makes it a strategic crop for
sustainable grain production because of climate change and increasing food demand (Hadebe
etal., 2017). Itisrich in starch similar to maize, and has important agronomic advantages, such
as ability to grow in a wide range of soil types and climates (Ramirez et al., 2016). However,

limited research has been conducted on its performance for bioethanol since it generally shows

12



lower ethanol yield compared to maize and its lower susceptibility to hydrolysis, especially
after heat moisture treatments (Perez-Carrillo et al., 2012). It has been reported that the key
factors that affect the performance and efficiency of ethanol fermentation of grain sorghum
include, the amount of extractable proteins, content of phenolic compounds (tannins), protein-
starch interactions, starch content, amylose-amylopectin ratio, viscosity of the sorghum grain

suspensions and starch digestibility (Ramirez et al., 2016).
2.1.2 Sorghum domestication and production

Sorghum was domesticated in arid areas of north-eastern Africa. After its domestication, the
agricultural usage of sorghum spread across Africa and into the continent of Asia through
traditional trade routes. The world sorghum production for the 2018/2019 season stands was
at 58.4 million tons (SAGL, 2019). The three largest sorghum producers in the world are Africa
41%, America 38% and Asia 17% (FAOSTAT 2018) between 1999 to 2018 (Figure 2.2A). In
2018 Africa had an increase in sorghum production (Figure 2.2B) with 50%. The production
of sorghum in South Africa increased in the mid-eighties when over 300,000 hectares were
planted. However, the production declined dramatically as producers shifted to more profitable
crops like soybeans and corn (Figure 2.1). Since 2010 the average area planted in South Africa
declined to 86,000 hectares (ha) and reached 28,800 ha in 2018, due to drought conditions. A
major reason for South African sorghum production decline is that yield levels have failed to
increase as yield levels of soybeans and corn, leading to less competitive gross margins (USDA
2019). Unless there is a change in technology that, could improve sorghum, productivity,
producers will continue to shift to more profitable crops and the decreasing trend in hectares
planted with South African sorghum will continue. However, the area planted to sorghum in
South Africa improved in 2017 to 48,500 ha, a 75 percent increase from the previous season.
Limpopo province producers drove the increase in sorghum plantings to levels of around
20,000 ha, after only 5,000 ha of sorghum was planted in 2017 (USDA 2019). The overall
world sorghum crop production of the 2018 season was 59 million tons, with the harvested
area of 42 million hectares of land (FAOSTAT 2018; SAGL 2019) Figure 2.1.
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Figure 2.1: The sorghum production in tons and the area harvested in hectares between
1999-2018 of sorghum (A) world (B) Africa and (C) South Africa. Figure adapted from
(FAOSTAT, 2018). The sorghum production trend is indicated by a red trend, and the area
harvested is indicated by the blue trendline.
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2.1.3 Sorghum breeding, RILs and germplasm

Breeding efforts are essential because productivity of sorghum is threatened by abiotic and
biotic constraints (Motlhaodi, 2016; Reddy et al., 2007). The major goal of the breeding
programs is to improve the productivity of the crop (Reddy et al., 2007). The sorghum
productivity is mainly determined by quantitative traits such as stem sugar related
characteristics and grain yield (Shiringani et al., 2010). Additionally, other breeding objectives
for sorghum are pests and host plant resistance to pathogens, and currently drought adaptation
(Chisi, 2010). Sorghum breeders worldwide aim at improving various characteristics of the
crop that can result in commercialization. Although for many years the main trait was grain
yield, interest has now shifted from grain to stalk to manipulate biofuel-feedstock related traits.
Substantial crop improvement has been achieved by breeding in the last decades (Lenaerts et
al., 2019).

For any crop improvement program, germplasm has shown to be the most important raw
material, and yet the possible extinction of this invaluable resource is a reality the world has to
face (Mengesha and Rao, 1982). Currently, the main aim is to have in hand the important raw
material required for improvement of crop, and sorghum is a crop endowed with one of the
highest levels of genetic diversity (Visarada and Aruna, 2019). There are close to a quarter
million accessions of sorghum collected and maintained by national and international
genebanks, worldwide. The two biggest sorghum germplasm holders are the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and the US Department of
Agriculture (USDA) (Singh and Upadhyaya, 2015). The majority of collections in the United
State gene bank are from India, Mali, Yemen, Sudan and Ethiopia (http: www.arg-

grin.gov/cg).

About 16% of the world sorghum collection (235,711 accessions) is conserved at ICRISAT,
genebank in India (Wang et al., 2016; FAO 1998). A main repository for sorghum germplasm
in the world is, ICRISAT with a total of 37,949 accessions from 92 countries. These accessions
comprise 458 wild and weedy relatives, 99 cultivars, 4,814 advanced breeding lines and 32,578
landraces (Upadhyaya et al., 2014) of the total collection. The germplasm maintained at

ICRISAT consists of five basic races: durra, kafir, caudatum, guinea and bicolor (Figure 2.3)
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and their 10 hybrid races based on spikelet morphology and panicle (Raemaekers, 2001;
Harlan, 1975). However, three races predominantly represent the collection: durra, caudatum
and guinea, of the 10 hybrid races, only three, durra-bicolor, guinea-caudatum and durra-
caudatum are common. Zimbabwe, Uganda and India have all the ten hybrid and five basic
races (Reddy et al., 2007). Caudatum and its hybrid races are adequately represented in Sudan
and durra, guinea-caudatum and their hybrid races in Ethiopia. The guinea race collections are
mostly from Zambia, Togo, Tanzania, Sierra Leone, Mozambique, Mali, Malawi, India
Gambia, Burkina Faso and Benin. The Southern African Development Community (SADC)
countries such as South Africa, Botswana, Swaziland, Lesotho and Zimbabwe have
contributed only kafirs and their hybrid races. However, kafirs races are photoperiod
insensitive at ICRISAT, Patancheru, India (Upadhyaya et al., 2014). The durras are from
Russia, Yemen, Pakistan, Cameroon, India, Somalia, Niger and Ethiopia and caudatums are
from Sri Lanka, Namibia, Central African Republic, Uganda, Sudan, Rwanda, Kenya and
Burundi. The ICRISAT taxonomic collection is poor in some cultivated and transplanted
sorghum. Furthermore ICRISAT is divided into base and active collections, over 30,000
sorghum accessions has been conserved in the Svalbard Global Seed Vault, Norway
(Upadhyaya et al., 2014). Additionally, genome mapping, molecular marker development and
tagging of agronomically important traits have been taken well into consideration and whole
genome resequencing determined a large number of single nucleotide polymorphisms (Mace
et al., 2013; Morris et al., 2013).

Breeding programs of sorghum globally are working towards enhanced varieties with drought
tolerance, better quality, agronomic traits and disease-resistance (Sallam et al., 2019; Serba et
al., 2017). The regions within genomes containing genes related with a specific quantitative
trait are known as quantitative trait loci (QTLs). Molecular breeding approaches are
increasingly being adopted to identify genomic regions and develop genetic linkage maps
influencing traits of importance in sorghum. Sorghum genome mapping based on DNA
markers commenced in the early 1990s and many sorghum genetic linkage maps were
published in the last decade, initially based on RFLP markers (Dje et al., 1999; Tao et al.,
1993). RAPDs (Dahlberg et al., 2002; Ayana et al., 2000), ISSRs (Yang et al., 1996), SSRs
(Djé et al., 1999), AFLPs (Ritter et al., 2007; Menz et al., 2004) and Diversity Array
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Technology (DArT) markers (Sanchez-Sevilla et al., 2015). Genetic linkage maps are an
important requirement for studying the inheritance of quantitative and qualitative traits, to
develop markers for molecular breeding, comparative genomic and map-based gene cloning
studies. Nested Association Mapping (NAM), are the multi-parent cross populations which are
developed to circumvent spurious associations and assist in increasing the rare alleles ‘s
detection strength in crops (Hu et al., 2018). The NAM mapping simultaneously exploits both
the advantages of association mapping and linkage analysis. It takes advantages of both historic
and recent combination of events in order to have the advantages of either association mapping
/linkage analysis (Sivakumar et al., 2019; Yu et al., 2008). Association mapping and linkage
analysis are two generally used methods to dissect the genetic architecture of complex traits as
complementary approaches. Association mapping offers high resolution with either prior
candidate gene information/ high marker coverage genome scan, while linkage analysis often
characterize broad chromosome regions of interest with relatively low marker coverage
(Kushwaha et al., 2017; Thornsberry et al., 2001). Combination of the two approaches will
provide integrated mapping strategy which will advance mapping resolution without needing
excessively dense marker maps. Recombinant inbred lines (RILS) serve as a powerful tool for
genetic mapping. A RIL is formed when two inbred lines are crossed followed by selfing to
create a new inbred line whose genome is a mosaic of the parental genomes (Broman, 2005).
Briefly, the parental cross from two highly bred lines is used to generate the F1 generation.
Crossing two members of the F1 generation produce the F2 generation. Then the individuals
from the F2 population are selfed in a single-seed descent strategy that results in highly
homozygous lines by the F7-9 generation. RILs have a number of advantages for genetic
mapping; multiple invasive phenotypes may be obtained on the same set of genomes, one can
phenotype multiple individuals from each strain to reduce environmental, individual and

measurement variability
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Figure 2.3: Morphological variability in sorghum germplasm indicating different races.
A- Guinea; B-Caudatum; C- Durra; D- Kafir; E- Bicolor Adapted from (Motlhaodi, 2016).

2.2 Sorghum genome

Sorghum is a C4 monocot and a genetic model for C4 grasses due to its small genome. The
nuclear DNA content of sorghum is 732.2 MB with 34,129 loci and 47,121 transcripts that
encodes proteins (McCormick et al., 2018). A sorghum genome transcriptome atlas of gene
expression was constructed from 47 RNA-Seq profiles of growing and developed tissues of
stems, roots, seed, panicles and leaves collected during the juvenile, vegetative and
reproductive stages (McCormick et al., 2018). The genome is a diploid with a haploid
complement of 10 chromosomes; it is viewed as a diploid from the perspective of genome
organization (Luo et al., 2016). It is three times smaller than the pearl millet and maize genome,
and 20 times smaller than the wheat genome. The original sorghum reference genome sequence
was based on approximately 8.5 fold depth paired-end Sanger sequence reads from genomic
libraries with 100 fold variation in the inserts size (Paterson et al., 2009). Gene annotation
analysis incorporating RNA-Seq showed that a high number of genes have not been annotated

in sorghum version 1 and many annotations were not complete (Olson et al., 2014).

2.3 Overview of plant microbe interactions in plants

Sorghum, like any other plant, interacts with a broad range of microorganisms. Plants host a
remarkable diversity of microorganisms known as the plant microbiota (Bulgarelli et al., 2012;
Knief et al., 2012; Lundberg et al., 2012). Plants live in association with diverse microbes,
which thrive on the plant above in the phyllosphere and below ground in the rhizosphere
(Knief, 2014). Figure 2.4 represents the general overview of plant microbes’ interactions. The

leaf microbiota is diverse and comprises many different genera of filamentous fungi, bacteria,
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algae, yeasts, and, less frequently, nematodes and protozoa (Rossmann et al., 2017). These
large numbers of diversified microbes interact with one another and form complex interaction
networks. The plant-associated (symbiotic) and free-living diazotrophic bacteria are ubiquitous
in soil (Rico et al., 2014), but barely much has been established with regards to their
contribution associated with the phyllosphere. Plant microbe interactions are regarded to be
dynamic and can have neutral, beneficial, or detrimental effects on the development of plant
health (Rosselli and Squartini, 2015).

Epiphytes & endophytes | Phyllosphere

Induced systemic and
acquired resistance Beneficial interactions Non-beneficial interactions (steps)
«+  Nitrogen fixing bacteria + Recognition of the pathogen

«+  Phosphorus solubilizing bacteria Effector: Root and leaf pathogen
«  Siderophore production (solubilizing Pathogen generates elicitors

the sequester iron) +  Signalling
+  Endophytes with biocontrol potential Signal transduction (movement of signals)
+  Production of plant growth inducing +  Response

hormones
«  Siderophore production (solubilizing
- the sequester iron)

Plant pathogenic microbes

Root pathogens
Mycorrhizae

Nitrogen fixing bacteri: Rhizosphere

Plant growth promoting bacteria & fungi
Commensal microbes & endophytes|

_—

Plant exudates Root exudates

Figure 2.4: Plant microbe’s interactions (beneficial and non-beneficial interactions) in
the rhizosphere and phyllosphere.

2.4 Beneficial interactions

Plant associated microbes isolated from phylloplane and rhizoplane surfaces are known as
epiphytes, while those found within the interior tissues of the plant are known as endophytes
(Andrews and Harris, 2000). Endophytes inhabit tissues without causing harm to the plant. The
majority of the diverse plant-colonizing microbes induce systemic resistance against pathogens
and utilize a plant growth promoting effect (Esitken et al., 2010). Plant growth promoting
microbes isolated from S. bicolor and other crops has reported biocontrol activities (Mishra et
al.,, 2017; do Nascimento et al., 2014). Producers became increasingly dependent on

agrochemicals as a dependable approach of crop protection, assisting with their economic
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stability operations as agricultural production intensified over the past few decades
(Ravisankar and Nithya, 2018). However, constant use of chemical inputs causes development
of pathogen resistance to the applied agents and their non-target environmental impacts (Gao
and Xu, 2014). Furthermore, the consumer demand for pesticide-free food and the increasing
cost of pesticides, particularly in less-affluent regions of the world, has led to a search for
substitutes for these products. There are also a proportion of diseases for which chemical
solutions are few, non-existent or ineffective (Gerhardson, 2002). Biological control is thus
being regarded as a supplemental or an alternative approach of reducing the chemicals use in
agriculture (Welbaum et al., 2004; Postma et al., 2003).

A substantial proportion of the plant-associated microorganisms are known for their
antagonistic activity against other microbes including pathogens (Berg et al., 2013) because of
their ability to produce hormones. This functional group of antagonists is a valuable resource
in the ongoing development of biological control agents (BCAs) that are supplied in agriculture
to suppress pathogens. The use of a mixture of compatible biocontrol agents with multiple
mechanisms of action, can be effective under a wider range of climatic conditions, thus
reducing some of limitations of biocontrol activity in the field. Such mixtures can potentially
have synergistic effects, which may result in higher level of protection and wider spectrum of
diseases that can be controlled (Corréa et al., 2014; Guetskyl et al., 2002).

2.4.1 Overview of plant growth promoting direct mechanisms

2.4.1.1 Nitrogen fixing bacteria

Fixed nitrogen is regarded as one of the major limiting nutrients in plant development, as plants
cannot directly assimilate molecular nitrogen (Gopalakrishnan et al., 2015). The biological
process responsible for the reduction of molecular nitrogen into ammonia is referred to
nitrogen fixation and a wide variety of microbes belonging to the bacterial domain have the
capacity to colonize the phyllosphere and interact with plants. These microorganisms are
capable of transforming atmospheric nitrogen into fixed nitrogen usable by plants. These

organisms affect more than 90% of all nitrogen fixation (Puri et al., 2018).
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2.4.1.2 Phosphorus solubilizing bacteria

Phosphorus is less available in most soils than any other macronutrients; this is a factor
constraining the productivity of plants and therefore requires the application of substantial
doses of phosphate fertilizers to increase productivity of plant (Rathinasabapathi et al., 2018).
This essential element plays a significant role in energy transfer reactions, respiration and
photosynthesis. One way of improving the endogenous phosphorus sources effectiveness is to
use microbes that exude substances capable of facilitating with the solubilization of insoluble
phosphates (Rathinasabapathi et al., 2018). Inorganic forms of phosphorus are solubilized by
a group of heterotrophic micro-organisms excreting organic acids that dissolve phosphatic
minerals and phosphate solubilization through a large number of saprophytic fungi and
bacteria. A rhizobia bacterium is known to nodulate legumes and has the greatest solubilization
potential (Marra et al., 2012). Phosphorus solubilizing bacteria mainly Bacillus, Pseudomonas
and Enterobacter and fungi Talaromyces aurantiacus and Aspergillus neoniger are very
effective in increasing the plant available phosphorus in soil, along with the growth and yield
of crops (Zhang et al., 2018a; Dash and Dangar, 2017; Hayat et al., 2017).

2.4.1.3 Siderophore production (solubilizing the sequestered iron)

Under aerobic conditions most iron in soil is available in the insoluble form and is not readily
available to plants, even though is needed for major physiological processes such as
photosynthesis, nitrogen fixation, and respiration in the plant (Morrissey and Guerinot, 2009).
To meet their requirement microbes have developed special mechanisms to facilitate the iron
siderophore complexes uptake through a specified outer membrane receptor protein and
chelate insoluble iron through siderophores release (Golonka et al., 2019). The involvement of
Pseudomonas spp. in the production of siderophores has been well documented (Besset-
Manzoni et al., 2018; Lujan et al., 2015). Mycorrhizal (symbiotic fungi) has been reported to
produce siderophore (Hanudin et al., 2017).

2.4.1.4 Production of hormones inducing plant growth

In the processes of plant growth gibberellins, indole acetic acid (IAA), cytokinins and ethylene
plays a significant role. These hormones can be synthesized by the plant itself or by their

associated microbes for instance Burkholderia phytofirmans and hemibiotrophic or

22



necrotrophic fungi produce 1AA (Kurepin et al., 2015; Ludwig-Mdller, 2015). Additionally,
plant associated microbes can influence the plant hormonal balance (Nihorimbere et al., 2011).
Ethylene has shown that the balance is most important for the hormonal effect, at low levels.
it can promote plant growth in several plant species (Ravanbakhsh et al., 2018). When present
in high levels this compound can be a chlorosis, senescence and leaf abscission hormone. In
this case, the high level of plant ethylene that is formed can significantly exacerbate the effects
of the stress (that triggered the ethylene response) (Glick, 2014). Bacteria are capable of
reducing the ethylene through the interaction of plant growth promoting bacteria containing
ACC  (l-aminocyclopropane-1-carboxylate)  deaminase  (Liu et al, 2015).
Aminocyclopropane-1 carboxylic acid (ACC) is a precursor of ethylene in plants (Vo et al.,
2016). ACC deaminase producing microbes are able to degrade this substance, so the uptake
by and the level in the root is reduced (Ravanbakhsh et al., 2018). Thus making the bacteria to
eventually increase root-growth by lowering the endogenous ACC levels (El-Tarabily et al.,
2019; Glick, 2005). Because ethylene has been established as a stress hormone, bacteria
producing ACC deaminase have a potential to safeguard the plant against abiotic and biotic
stress (Raghuwanshi and Prasad, 2018; Saleem et al., 2007).

25 Non-beneficial interactions

Non-beneficial interactions between the host plant and the pathogens have been classified into
either predation or parasitism (Ngah et al., 2018). Parasitic/pathogenic microbes occur when
microbes utilize the resources of plants such as nutrients and water at the expense of the growth
of the plant, development and health (Fatima and Senthil-Kumar, 2015). Depletion of the
plant’s resources increases its susceptibility to diseases, reduces its fitness and can thus lead to
the host death (Abdullah et al., 2017). Sorghum yield and quality are also constrained by many
environmental factors including certain diseases. Sorghum serves as a host for over 100
pathogens (bacterial, fungal, and viral pathogens) that infect different plant parts with more
fungal diseases colonizing the crop in comparison to bacterial and viral diseases (Klein et al.,
2001). The most important pathogenic microbes and their key symptoms are listed in Table
2.1.
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Table 2.1: Fungal and bacterial pathogens of sorghum (adapted from Frederiksen and Odvody, 2000; TeBeest et al., 2004; Das,

2019).

Sorghum diseases

Bacteria/fungi

Symptoms

Occurrence

Fungal leaf blight

Exserhilum turcicum

Large  cigar-shaped  lesion
oriented lengthwise along the

leaf

Is favoured by temperatures that are
moderate (18° to 27°C) and rain or

heavy dews

Charcoal rot

Macrophomina

phaseolina

Presence of black sclerotia and a
stringy, dry appearance of the

stem near the soil line

Late season as plants near maturity

Bacterial leaf spot

Pseudomonas syringae

Water soaked spot lesions on

leaves

Warm regions especially during the

rainy season

Bacterial leaf streak

Xanthomonas campestris
pv. holcicola

Water soaked tissue between
veins that later turn brown with

red margins.

Appears during warm temperatures as
early as the second leaf stage of the
seedling.

Bacterial leaf stripe

Burkholderia
Pseudomonas
andropogonis
Pseudomonas sorghicola

Characterized by long narrow
stripes that can vary from red to
black

Occur in mid-season, especially during

warm and humid weather

Sorghum smut
Loose-smut

Covered-smut

Sporisorium sorghi

Sporisorium cruenta

Characterized by infection of
rachis spikelet in a panicle

malformed (loose smut), a long

wet periods present severe disease

symptoms
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Head-smut
Long-smut

Tolyposporium
ehrenbergii

Sporisorium reilianum

sorus enclosed by a whitish thick
membrane (long smut), sorus
enclosed with a grayish-white
membrane (head smut), sorus
that is not

easily ruptured

(covered smut)

Fungal, zonate, gray,
rough, oval, target leaf
spot

Gloeocercospora sorghi
Cercospora sorghi

Ascochyta sorghi
Ramulisporasorghicola
Bipolaris sorghicola

bands with
that

Zonate- circular

straw-colour zones
resembles a bull’s eye; Gray-
narrow rectangular lesions turn
gray with age,
Oval-

roughness lesions with margins

delimited by
veins; sandpaper
which are defined; Rough- small,
water-soaked spots with red
border and straw center; Target-
cylindrical spots with irregular

margin and straw center (target)

Potentially occur in warm and high

rainfall conditions

Anthracnose

Colletotrichum

sublineolum

Small, circular, elliptical, or

elongated spots

Wet and humid weather encourages
rapid development of the disease
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Sorghum ergot

Claviceps sorghi,
Claviceps africana

Characterized by spots and have
margins that are wide and red,
orange, purple, or tan with straw-

coloured center

Problematic at any time that grain
sorghum is stressed after bloom and

into the fill period

Grain moulds

Fusarium spp.
Alternaria alternate
Phoma sorghina

Curvularia lunata

orange, pink, or white seeds

found on heads infected

Disease can be severe in wet periods.

Downy mildew

Peronosclerospora sorgi

Characterized by a white, downy
pathogen growth on the leaves
lower surfaces and seedling

stunting

High relative humidity is required to

allow conidia production, infection

Rust

Puccinia purpurea

Presence  of  reddish-brown
pustules first on lower leaves

then on younger leaves

High relative humidity
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2.6 Fusarium graminearum (Gibberella zeae) in sorghum

Gibberella zeae (anamorph Fusarium graminearum) is a devasting mycotoxin-producing
pathogen of grain crops (GRAINSA, 2017). It can influence the yield and also lead to major
economic losses, causing adverse implications for society, especially in poor communities. It
is a major cause of diseases on cereal crops, as it can influence the yield and lead to economic
losses. It is a hemi-biotrophic pathogen which has been previously isolated from sorghum grain
(Funnell-Harris et al., 2017; Funnell-Harris et al., 2013; Burgess et al., 2002). It forms part of
the Fusarium species complex that causes grain mould disease, sorghum production major
constraint throughout the world (Beukes et al., 2017; Funnell-Harris et al., 2017). Sorghum
grain mould is caused by complex fungal pathogens, which infect the developing caryopsis
and proceed through grain development. Infection before and after the physiological seed
maturity is promoted by temperatures of 25 to 35°C, rainy weather and/or by prolonged periods
of humid (> 85 to 90% relative humidity) throughout grain development (Little et al., 2012;
Navi, 2006; Tarekegn et al., 2006). Fusarium spp., Curvularia lunata, Phoma sorghina, and
Alternaria alternata, are widely known grain mould causing fungal species (Nida et al., 2019;
Mpofu and McLaren, 2014). Fusarium graminearum was identified as the dominant species
causing grain mould in sorghum (Nida et al., 2019; Menkir et al., 1996) followed by Fusarium
thapsinum, previously referred as Fusarium verticillioides until the acceptance of the name
change from Fusarium moniliforme to Fusarium verticillioides (Nida et al., 2019; Katile et al.,
2010; Summerell et al., 2003). Fusarium grain mould is the major component of sorghum grain

mould disease complex (Das, 2019; Das et al., 2012).

2.6.1 Economic importance

Fusarium graminearum affects the three most important crops grown in South Africa
(GRAINSA, 2017). It causes ear rot in maize, grain mould in sorghum and Fusarium head-
blight in wheat (Beukes et al., 2017; Mavhunga, 2013). Production losses due to mycotoxins
range from 30% to 100% depending on time of flowering, cultivar and prevailing weather
conditions during flowering to harvesting (Shiri et al., 2017; Das and Padmaja, 2016; Thakur
et al., 2006). Yield losses on highly susceptible sorghum lines can reach 100% (Prom et al.,

2017). Substantial economic losses are due to the impact on seed quality and yield. It is
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challenging to accurately estimate losses caused by the disease since it involves the assessment
of losses from production to marketing and down to utilization of the seed or grain (Hundekar
et al., 2016). The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT),
has projected US$ 130 million as total losses annually due to mycotoxins infected products in
the semi-arid tropical areas of Africa and Asia. The United State of America (USA) and INDIA
has experienced US$ 50 -80 million loss (Gosal and Wani, 2018). Sorghum Fusarium
graminearum related diseases results in reduced yield due to abortion of florets and reduced
seed filling, market values and quality are affected due to endosperm deterioration and surface
discoloration embryo (Nida et al., 2019; Kange et al., 2015; Audilakshmi et al., 2011). GRAIN
SA (2015), have reported that there has been an increase in the occurrence of Fusarium
graminearum species causing Fusarium species complex in South African crops. Other than
reduced grain quality, the ability of Fusarium species in producing the mycotoxins that

contaminate grain, is of concern for livestock and humans (Pinotti et al., 2016).

2.6.2 Control measures

The most prominent traditional ways to control grain mould is categorized into physical
methods, de-contamination through enterosorption, biological decontamination and chemical
inactivation (Ismail et al., 2018). Once a product that is contaminated has reached a processing
facility, segregation and clean-up are the initial control options through electronic sorting and
hand-picking, however, some mycotoxins will not be entirely destroyed at processing
temperatures as they are chemically stable (Waliyar et al., 2008). The use of hydrated sodium
calcium aluminosilicates (HSCAS) additives in feeds that are contaminated has proven to also
be efficient in preventing atoxicosis (Ismail et al., 2018). Furthermore, biological methods have
been used as alternatives for mycotoxin decontamination. Despite all the mentioned measures,
demonstrating efficient decontaminating properties biological methods usually rely on
compounds that are produced specifically by selected microbes (Colovié et al., 2019).
Chemical inactivation through ammoniation has proved to be useful, like other failed
measures, ammoniation has been shown to be less effective against other mycotoxins
contamination (Ditta et al., 2018). The transcriptomics (discussed in details in section 2.18)
approach have led to better understanding of pathogen resistance mechanisms in plants (Kazan

and Gardiner, 2018; Gkarmiri et al., 2015). Not many studies on sorghum gene-expression in
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response to grain mould infection has been conducted. The gene expression study that was
conducted, aimed at determining whether resistant and susceptible lines differed in response
to sorghum grain mould causing pathogens using real-time reverse transcriptase-polymerase
chain reaction (Katile et al., 2010). This study suggested that sorghum cultivars respond
differently to grain mould causing taxa, and the resistant cultivar showed a greater induction
of pathogenesis-related (PR) proteins. PR proteins have shown evidence in playing a role in
preventing fungal colonization (Prom et al., 2017; Katile et al., 2010). Furthermore, studies on
sorghum response to Fusarium infection has been widely conducted using genome wide

association mapping studies to identify resistant loci (Cuevas et al., 2019; Nida et al., 2019).
2.7  Plant immune response to pathogens

Plants have developed complex disease resistance mechanisms against diverse pests and
pathogens. The plant surface ‘s main purpose is to provide a protective barrier that can block
the attack caused by microbial pathogens (Andersen et al., 2018). This defence is mounted by
chemical and structural modifications to plant tissues specific to individual plant taxa. This
include the production of a broad range of antimicrobial compounds and waxes, including
terpenes, phenolics and tannins, that select for different types of microbial populations (Savoia,
2012). Innate immunity is triggered by the immune receptors activation and the initial line of
innate immunity is triggered by the pathogen-associated molecular patterns (PAMPS) detection
through pattern-recognition receptors (Nirnberger and Kemmerling, 2018). In plants, MAMPs
are perceived by receptor-like proteins or cell-surface receptor-like kinases (RLKs) to mount
pattern-triggered immunity (PTI) (Nurnberger and Kemmerling, 2018). However the
pathogenic microbes are able to overwhelm pattern triggered immunity through the production
of virulence effectors (Hwang et al., 2015). Many pathogenic microbes are able to deliver
effector proteins into host cells to favour pathogen survival, multiplication and mediate

effector-triggered susceptibility (Bertuzzi et al., 2019).

In plant-pathogen interaction, plants exploit signalling pathways for disease control, with plant
hormones, jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) (Bertuzzi et al., 2019).
These signalling pathways induce expression of several defence-related genes in the presence
of pathogens (Andersen et al., 2018). SA signalling is commonly involved in the activation of

plant defence against pathogens that have a biotrophic phase in their life cycle, followed by
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the establishment of systemic acquired resistance (Rodriguez-Moreno et al., 2018; Grant and
Lamb, 2006). In contrast to SA, ET and JA are usually associated with defence against
necrotrophic pathogens (Beckers and Spoel, 2006). Some pathogens display both necrotrophic
and biotrophic phases of growth, designated hemi-biotrophs, and results in more complex
circumstances (Sun et al., 2016; Bari and Jones, 2009). However, these signalling pathways
may be utilized by pathogen for their host pathogenesis. The phytotoxin coronatine, secreted
by P. syringae mimics jasmonates and activates JA signalling in P. syringae-infected plants
(Geng et al., 2014; Uppalapati et al., 2007) for its pathogenesis fitness. These interactions take
place in the different plant-created microenvironments, that provide habitats distinctive for

microorganisms colonization (Morgan et al., 2005).

2.8 Plant created microenvironments

Fungi and bacteria are inhabitants commonly found on both the internal tissues and the surfaces
of most plants and have diverse effects on the host plant development. Microbial communities
have the ability to colonize internal plant tissues without causing any disease damage and play
a very significant role in the growth of host plants (Ryan et al., 2008). Yaish et al. (2015) study
on the date palm tree, revealed through molecular characterization that majority of the species
belonged to Bacillus and Enterobacter genera and these species have a potential to promote
plant growth and development. Some microorganisms can act as plant pathogens that can pose
unique problems for disease control. The plant-microbe interactions in different
microenvironments that are plant-influenced will be discussed broadly in section 2.8.1-2.8.3.
The current study focuses on the diversity of phyllosphere (leaf) microorganisms associated
with S. bicolor; therefore, the establishment of phyllosphere communities, including their
significance to plant life will be discussed in greater detail. Plant created microenvironments

include the endosphere, phyllosphere, and rhizosphere (Compant et al., 2011).
2.8.1 Endosphere

Some of the rhizosphere or endophytic microbes colonize the internal tissues (endosphere)
without causing adverse effects to the host plant (Chebotar et al., 2015). These microbes are
endophytes and are selected naturally to colonize the endosphere in the tissue between plant

cells. Some endophytes are seed borne while others come through horizontal transfer (Frank

30



et al., 2017). The endophytes are generally regarded as plant symbionts, which can offer a
variety of benefits to the plant (Chang et al., 2014). Metagenomic studies on sugar beet
revealed the diversity and stability of endophytic bacteria, where 13 classes were retrieved,
with  Alphaproteobacteria being the dominant class followed by Acidobacteria,
Gemmatimonadates and Actinobacteria (Tsurumaru et al., 2015). These endophytes have
reported plant growth promoting traits (Shi et al., 2014). Fungal endophytes of perennial reeds
were characterized to determine if the symbiosis of fungi could contribute to the invasiveness
through their effects on seed germination and seedling growth. The results suggested that many
endophyte taxa are seed borne and can increase seed germination and seedling growth (Shearin
etal., 2018).

2.8.2 Rhizosphere

Within the soil system, there is the rhizosphere, the immediate surrounding of the plant root.
It is a microbial hotspot regarded to be one of the most dynamic interfaces on earth (Philippot
et al., 2013). The rhizosphere microbial community composition is comprised of a complex
food web that utilizes the plant nutrients. This is a main driving force in the rhizosphere
microbial diversity regulation and activity (Mendes et al., 2014). Studies on apple orchard
rhizosphere soil bacteria have revealed that the most prevalent bacterial phyla were
Proteobacteria, Actinobacteria and Acidobacteria (Franke-Whittle et al., 2015). The bacterial
and fungal communities has been studied in olive root system and Canalisporium, Aspergillus,
Minimelanolocus and Macrophomina were the main fungal genera present (Fernandez-
Gonzaélez et al., 2019).

2.8.3 Phyllosphere

The aerial parts of living plants including leaves, buds, stems, fruits and flowers provide a
habitat for microorganisms termed the phyllosphere (Aleklett et al., 2014). This microbial
habitat is one of the largest microbial habitats on earth, with leaf surfaces area estimated to
exceed 108 km? globally (Morris et al., 2002). The phyllosphere represents a niche with great
agricultural and environmental importance (Whipps et al., 2008a). Bacteria and fungi are the
most common microbes in this habitat and therefore most focus of most studies (Deveau et al.,

2018). The phyllosphere is the microenvironment, which is characterized by the most nutrient
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deficient, habitat of microbes due to very small amounts of exudate released by the plant, and
it is exposed to rain and wind environmental factors (Kwak et al., 2014). The impermeable,
nutrient deficient and leaf surfaces is covered with water resistant cuticle that impedes the
colonization of microbes. However, microbes are transferred from the atmosphere to the
phyllosphere by vectors such as animals and insects (Gordon and Olson, 2013). Large numbers
of bacteria and fungi were reported from different roots, plant tissues, nodules, flowers, leaves
and sprouts of legumes, and they can promote plant establishment under adverse conditions,
accelerate seedling emergence and improve plant growth (Chang et al., 2014). The beneficial
microorganisms having mutualistic relationships that promote plant growth and enhance
disease resistance in the phyllosphere plays an integral part in agriculture (Farrar et al., 2014).
Phyllosphere bacterial communities of tropical trees were dominated by a core microbiome of
taxa including, Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria and Sphingobacteria
(Kembel et al., 2014). This is in contrast to Dees et al. (2015) study on the phyllosphere of
Lactuca sativa and Diplotaxis tenuifolia, where the 16S rRNA sequences identified were
attributed to only four phyla, with the most dominant being Proteobacteria followed by
Actinobacteria, Acidobacteria and Bacteroidetes. The existence of a complex fungal
consortium supported a high phyllosphere fungal diversity of olives suggesting a significant
impact on olive productions. Even though substantial studies have been conducted in other
phyllosphere of other crops, recent reports, using metagenomic analysis, have revealed
potential key taxa associated with the rhizosphere and seed of sorghum (Kuramae et al., 2020;
Hara et al., 2019; Kinge et al., 2019; Xu et al., 2018; Guo, 2016). However, none of these
studies assessed the aerial region of the plant, which is suggested to be one of the primary entry
sites for pathogens (Cernava et al., 2019). This knowledge deficit is broadly true for plants
where, in contrast to the rhizosphere, substantially less is known regarding the effects of plant-
microbe associations on foliar diseases. Figure 2.5 represents the phylogenetic tree of major
lineages of bacteria based on 16S rRNA sequence comparisons and phylum classification of

fungi based on internal transcribed sub-regions (Tedersoo et al., 2018).
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Figure 2.5: A: Major phyla of bacteria and fungi, based on 16S rRNA and ITS region: A
represents the bacterial 16S rRNA B: Fungal phylum-level classification. Numbers behind
branches indicate the classes. Names in red indicate traditionally considered taxa under the
Zoological nomenclature; names in green indicate undescribed major clades with unofficial
names; names in blue indicate taxonomic super- and sub-ranks and old classification (Tedersoo
etal., 2018).

2.9  Diversity of plant associated microbes

Leaf tissues are mostly colonized by both soil-borne and air-borne bacteria (Vorholt, 2012)
and are ubiquitous global habitats that harbour diverse microbial communities. It is estimated
that on the global scale, the phyllosphere spans more than 108 km? and is colonized by up to
1026 bacterial cells (Vorholt, 2012). Belowground and aboveground interactions exert critical
control on the composition and function of terrestrial ecosystems yet the fundamental
relationships between microbial diversity and plant diversity remain elusive (Lindow and
Brandl, 2003). Current understanding of the drivers of plant bacterial associations on leaves
has been based on studies of individual host species and individual bacterial strains (Kembel
et al., 2014). Different plant species possess different characteristic bacterial phyllosphere
communities (Kim et al., 2012; Knief et al., 2012). Lambais et al. (2014) reported that leaf
characteristics, such as composition, cuticle structure, leaf age, volatile organic compounds

emissions and chemical composition might be related to bacterial communities interspecies
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differences. The phyllosphere is a common niche for synergism between microbial diversity
and plant (Yadav, 2017).

2.10  Synergistic microbial interactions

Plants in natural environments establish multiple interactions with various different microbes
throughout their lifetime. Despite their potentially paramount importance for plants, these
extremely complex microbiota have remained largely uncharacterized (Schenk et al., 2012).
Historically, to understand the mechanisms underlying the development of plant diseases,
molecular pathology research has largely focused on the direct interaction’s characterization
between plant pathogens and their hosts, missing from this disease triangle is the impact of
other microbes on pathogen establishment. The earliest reports (in the 1800s) with regard to
communities of microbes as disease causal agents are ascribed to Pasteur, who noticed that
synergistic interactions of different microorganisms could cause a disease. The emergence of
studies comprising synergistic interactions that involves multispecies has proved to be
fundamental in the proper understanding of diseases caused by microorganisms (Lamichhane
and Venturi, 2015; Short et al., 2014), as the consortia and interactions of multispecies are
likely to be involved in the aggravation and disease establishment. Plants engage in multiple
biotic interactions that either reduce (parasitic) or enhance plant performance. These multiple
biotic interaction affects their survival, growth and reproduction and consequently influences
the primary productivity of natural ecosystems, agricultural yield and the evolution of plant
traits. A review by Amor et al. (2017) suggests that introduced populations interact with
different parasites, mutualists and competitors under different abiotic conditions. Studying this
multitrophic is important, as an infection by only one microorganism might not result in disease
symptoms that are severe whereas the synergistic interactions resulting from co-infection with
other taxa of microbes might result in the development of harsh disease. Moreover, such plant
interactions can be of fundamental significance for evolution, microbial pathogenesis

understanding and development of effective disease control strategies.
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Microbiome based approaches development for productivity and sustainable crop yield is
hindered by a lack of understanding of the main biotic factors shaping the crop microbiome
(Hamonts et al., 2018). Understanding the microbe-microbe interactions on crops may provide
a future source of targets for intervention and disease control (Snelders et al., 2018). Schenk et
al. (2012) suggested that a better understanding of detrimental and beneficial interactions
between plants and microbes might offer opportunities that are unprecedented to increase the

productivity of crops.

2.11 Variables affecting the microbial community structure in the phyllosphere

Microbial communities in the phyllosphere is shaped by different factors, including, microbial
interactions, environmental cues, plant phenotypes and genotypes (Vorholt, 2012). It was
discovered that the leaf microbial community at the start of the season is strongly influenced
by the microbiota of the soil but, with season progression, it becomes less diverse, and
transitions to have a higher fraction of shared leaf-specific taxa between all samples (Copeland
et al., 2015). The effect on microbial colonization of leaves is seasonally driven rather than
solely driven by leaf maturity (Dees et al., 2015). Williams et al. (2013) also suggested that
microbial diversity in the phyllosphere differs between seasons of planting. The phyllosphere
microbial community composition can be affected by environmental factors, such as
temperature, UV radiation, water availability, geographic location, nitrogen fertilization and
air pollution, as well as by biotic factors, such as plant species. Plant location rather than plant
species could have a significant influence on the phyllosphere community as plants growing
close to each other often get infected to similar microbial inocula (Williams et al., 2013;
Vorholt, 2012; Redford et al., 2010; Whipps et al., 2008b). Additionally, the phyllosphere is
an open system and microbes can invade plant leaves by migration from the soil, atmosphere,
other plants, animals and insects (Gu et al., 2010a). Other factors that influence microbial

diversity in the phyllosphere are leaf age and irrigation (Williams et al., 2013).
2.12 Metagenomics

Handelsman et al.(1998) first coined the term metagenomics in 1998 by proposing to clone
environmental DNA fragments into BAC vectors. The majority of the planet’s biological

diversity is comprised of uncultured microbes. The two of the three domains of life are

35



represented by microorganisms, however standard techniques cannot culture about 99% of the
microorganisms (Riesenfeld et al., 2004). Therefore, culture-independent techniques are
important in understanding the population structure, genetic diversity and ecological roles of
the majority of microorganisms (Singh et al., 2009). As such, the advent of high-throughput
next-generation sequencing (NGS) has brought classical environmental studies to another level

and revolutionized the microbial ecology field (Oulas et al., 2015).

This type of technology has led to the introduction of the metagenomics field defined as the
direct genetic analysis of genomes recovered from an environmental sample with no prior need
for clonal cultures (Riesenfeld et al., 2004). Figure 2.6 shows research techniques used to fully
characterize metagenomes. The term is currently and widely applied to studies performing
certain genes of interest amplification (marker gene amplification metagenomics), but
originally, it was only used for sequence-based and functional analysis of the collective

microbial genomes contained in an environmental sample (full shotgun metagenomics).

36



Environmental microbial community

DNA
extraction

l RNA extraction

L2
L2

v

Gene ampllflca%n cDNA Translation
') t& )
%% (A

C.\

Sequencing \

Target gene metagenomics Shotgun metagenomics Transcriptomics
16SrRNA and ITS

Figure 2.6: Metagenomics (metabarcoding and deep sequencing) and transcriptomics
research techniques for microbes and gene expression studies in plants (Gubb and
Matthiesen, 2010)

2.13 Traditional metagenomic studies

Metagenomic molecular approaches have been classified into two major categories; partial
community or whole community analysis, depending on their capability to reveal microbial
diversity function and structure (Rastogi et al., 2013). The partial community strategies include
PCR based methods where the total RNA/DNA isolated from the environmental sample is used
as a template for microorganisms characterization. The generated PCR product includes a
combination of microbial gene signatures from all organisms present in the sample. In
microbial ecology 16S rRNA gene amplification from environmental samples has been

extensively used for partial community analysis. The PCR products amplified from
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environmental DNA are analysed primarily by clone libraries, genetic fingerprinting and/or
sequencing (Yadav, 2017; DeSantis et al., 2007). The whole community analysis offers a more
genetic diversity comprehensive view compared to PCR-based molecular techniques targeting
only a few or single genes. These approaches analyse all the genetic information present in

total DNA extracted from a pure culture/ an environmental sample (Rastogi and Sani, 2011).
2.14  Next-generation sequencing (NGS) technology and bioinformatic analyses

While the metagenomic techniques explained above are highly effective in the characterization
of microbial diversity, the process of cloning is costly and laborious. Next-generation
sequencing (NGS) opens the possibility to conduct microbial communities studies through
directly sequencing the environmental genetic material (Hugerth and Andersson, 2017; Hall,
2007), circumventing the need for cloning. There is a potential to discover new organisms that
are highly divergent from those already known as they do not rely on known sequence
information and are not biased towards any specific microbial group (Snyder et al., 2009).
Since the advent of NGS technologies with the commercialization of 454 pyrosequencing in
2005, Illumina sequencing in 2007, and other high-throughput technologies, the genome
sequencing cost has dropped significantly. NGS have impressively accelerated biological
science research during the past years by allowing the production of large volumes of sequence
data to an extremely lower price per base, contrarily to traditional sequencing methods (Knief,
2014). These sequencing technologies are fast high-throughput techniques for DNA
sequencing and thus more appropriate for metagenomic sequencing than conventional Sanger
sequencing (Cardenas and Tiedje, 2008). The Roche 454 was the first high-throughput
sequencing technology successfully applied for the analysis of biodiversity (Liu, 2009), and
has now been discontinued by Roche. The Illumina technology is very efficient in performing
comparatively high sequencing depth despite having short read lengths, and has greatly
reduced per base costs (Loman et al., 2012; Caporaso et al., 2011). lllumina currently produces
a suite of sequencers (NextSeq 500, MiSeq and the HiSeq series 2000, 2500, 3000 and 4000
and Novaseq series 5000 and 6000 Systems) optimized for a variety of turnaround times and
throughputs. The HiSeq and MiSeq are the most established platforms. This technology has
been used for sequencing the amplicon of fungal and bacterial marker genes to characterize

phyllosphere and rhizosphere microbial communities.
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The recent and on-going developments in the genomics field allow researchers to address plant
microbe biology questions that were not conceivable in the past years. However, a shift towards
the Illumina platform is currently noticeable and in particular the MiSeq instrument is fitting
for such studies as it produces reads with a length (300bp) comparable to those of the first 454
instruments at much lower cost (Allali et al., 2017; Caporaso et al., 2011). The HiSeq NGS
platform aids in recovering enough rRNA reads from metagenome as it differs markedly in
scale with the MiSeq platforms. HiSeq 2500 produces 600 Gb in a standard run, in contrast to
MiSeq, which produces 1.5 Gb per day (Caporaso et al., 2012). Nevertheless, the amount of
sequence data obtained through MiSeq runs will in many cases be adequate to obtain a

sequencing depth that provides statistically significant answers to research questions.

Since the development of the next generation sequencing technologies, there has been a
continuous improvement in NGS technologies with the third generation sequencing promising
to further revolutionize the genomics research (van Dijk et al., 2014). The three commercially
available third-generation DNA sequencing technologies are the Oxford Nanopore
Technologies sequencing platform, Pacific Biosciences (PacBio) Single Molecule Real Time
(SMRT) sequencing, the Illumina Tru-seq Synthetic Long-Read technology and the 10x
Genomics Chromium (Edwards et al., 2019). The PacBio SMRT technology is the most
established of these sequencing technologies, and was commercially introduced in 2010 (Kang
et al., 2019; Roberts et al., 2013).

2.15 Metabarcoding

The development of DNA barcoding represents a significant advance in the molecular
microbial identification. This technique relies on the sequencing of one or more short DNA
fragments from standardized regions of the genome in identification of species (Abdelfattah et
al., 2018; Hebert et al., 2003). The barcode genes are defined as any fragment of DNA that
contains significant divergence and species-level genetic variability (Bingpeng et al., 2018).
The oligonucleotides used to amplify the standardized region of the genome should generate
short amplicons so as to be compatible with current, NGS technologies (Nilsson et al., 2019;

Kress and Erickson, 2008). Furthermore, the barcode genes must possess conserved flanking
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sites that may be utilized to design universal PCR primers, to provide a wide taxonomic

application.

The ability for microbial communities characterization from any kind of matrix and sample
has had a great impact on plant-associated microbes studies and use epiphytic, endophytic, and
soil-borne (Hassani et al., 2018). The evolutionary information inferred by specific marker
genes, have previously allowed hidden microbial worlds investigation, more especially in
microbial ecology (Boon et al., 2014; Moreira and Lopez-Garcia, 2002). The opportunities
provided by NGS were rapidly embraced in prokaryotic and fungal ecology (Balint et al.,
2014).

The ever-increasing metagenomic studies, conducted by metabarcoding technology and
analytical software, have characterized microbial communities from complex environmental
samples, and provided new information about their response to environmental factors (Rausch
et al., 2019). The availability of NGS platforms makes it possible to study bacterial and fungal
diseases complexes using this metagenomic approach (Ruppert et al., 2019). There have been
a number of studies, on the use of NGS analysis of fungi infecting crop plants (Bai et al., 2018;
Hong et al., 2015; Gu et al., 2010b; Al Rwahnih et al., 2009). Another study using NGS
analysis of 16S rRNA Leveau and Tech (2010) showed that the bacterial community on leaves

differed, both in size and structure, from that found/occurring on grape leaves.

2.16  Sequencing 16S rRNA gene in bacteria

The 16S ribosomal RNA (16S rRNA) gene is a well-suited marker for amplicon metagenomics
phylogenetic surveys aiming to study the bacterial community, as this gene shows enough
polymorphism in enabling the discernment between different taxonomic groups (Klindworth
et al., 2013). The 16S rRNA gene is universally present in all bacteria and contains regions
with either high or low sequence variability (Bukin et al., 2019). It is the most commonly used
molecular marker in microbial ecology. NGS sequencing techniques has advanced the
application of 16S rRNA profiling (Hamady et al., 2008). NGS technologies, including the

Illumina sequencers, use 16S rRNA amplification primers targeting hypervariable regions,
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although it is still arguable which regions are best for species profiling (de la Cuesta-Zuluaga
and Escobar, 2016).

The 16S rRNA gene contains nine hypervariable regions (V1-V9) that demonstrate differential
and considerable sequence diversity among different bacteria (Chakraborty et al., 2010).
Although no single hypervariable region is able to distinguish among all bacteria, regions, V2,
V3 and V6 provide the maximum discriminating power and contain maximum heterogeneity
for analysing bacteria (Chakravorty et al., 2007). However, Kembel et al. (2012) argued that
the 16S rRNA marker might not be a convenient, since it has copy numbers that are variable,
with some taxa having up to 15 copies of this gene. As a consequence, there might be taxa
overrepresentation in the final set of sequences and that could lead to community structure
estimations that are biased. However, the use of 16S rRNA gene marker advantages outweigh

this inconvenience and that is why amplicon sequencing it is widely used in surveys.

2.16.1 Challenges sequencing 16S rRNA gene in plant microbes

One of the main obstacles when using 16S amplicons metagenomics for evaluating the plant-
associated microbial community and diversity is the amplification of eukaryotic organelle
DNA by most primers. The chloroplast and mitochondria genomes from the plant, and bacterial
16S rRNA sequences of bacteria are homologous and this homology makes bacterial rRNA
gene amplification and sequencing difficult. This will then result in most of the sequence data
being from plant sequences, which is of no interest to the study. This is true for studies aimed
at assessing endophytic microbial diversity, as the extraction of DNA is performed directly
from plant tissues, resulting in an increased plant DNA content in the extract. Zarraonaindia et
al. (2015) presented that the chloroplast sequences posed the biggest problem on Vitis vinefera,
since they can make up to 98% of the sequences obtained using the Illumina MiSeq sequencer,

in contrast to mitochondrial sequences which do not seem to pose a significant problem.

Chloroplast sequences are most closely related to nitrogen—fixing unicellular Cyanobacteria
(Kembel et al., 2014). It is typically possible to distinguish between bacterial DNA sequences
and eukaryotic organelle DNA sequences, but it does complicate the bacterial community

analysis (Bulgarelli et al., 2013). The utilization of sequence-specific peptide nucleic acid
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(PNA) clamps, which bind to, and block host-derived DNA amplification has been conducted.
PNA oligos are polymers of purine and pyrimidine bases connected via peptide bond and are
artificially synthesized. Due to their specificity of the sequence, PNAs are designed to bind
host organellar sequence variants of a target region and efficiently block their PCR
amplification (Figure 2.7). Universal PNA clamps have been suggested to being able to
obstruct/block host plant-derived mitochondrial (mPNA) and plastid (pPNA) sequences at the
V4 16S rRNA locus (Fitzpatrick et al., 2018). PNA clamps suppress the mitochondrial and
plant host plastid 16S contamination and reduce the bias and produce sequencing results that
are more accurate through PNA clamping. PNA clamping occurs when the PNA probes have
strong specificity to its target DNA and binding affinity, and are not being recognized by DNA
polymerase as a primer. However, these universal PNAs efficacy was tested only in the
Arabidopsis thaliana model plant (Fitzpatrick et al., 2018; Lundberg et al., 2012). Another set
of blocking primer based on the technique described was established to reduce non-target plant
DNA amplification when performing metagenomic research on microbial endophyte
communities. Compared to a standard PCR in an Illumina-based study of Sorghastrum nutans

leaves, bacterial amplification efficacy was increased 300-fold (Arenz et al., 2015).

A Forward ‘ B
Forward mesp PNA clamp = Reverse
-—= Reverse
No amplification Amplification

Figure 2.7: Indicates how the PNA clamp suppresses the amplification of the host DNA.
The presence of the PNA clamp suppresses the amplification of the host DNA, resulting in no
amplification of the host DNA. B The absence of the PNA clamp resulted in the amplification
of the host DNA.
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Another primary challenge faced in plant-associated metagenomic studies is the recovery of
good-quality DNA (mDNA) that can allow reliable downstream analyses using PCR-based
technique. There is a couple of studies that evaluated different mMDNA extraction procedures
to retrieve endophytic bacterial diversity and quality DNA (Wust et al., 2016; Maropola et al.,
2015). Their study concluded that commercial Kits retrieved higher quality mDNA when
compared to classical DNA extraction protocols. Maropola et al. (2015) study forms a baseline

for the current study.

2.16.2 The internal transcribed spacer region (ITS) sequencing

Fungal analyses have relied on traditional phenotypic and morphologic features, which were
the main criteria for fungal classification for a long time (Cuadros-Orellana et al., 2013).
However, due to the phenotypic overlap between different taxa, the existence of intermediate
forms and the instability of morphological traits, these traditional approaches alone does not
allow for reliable fungal classification at lower taxonomic levels (Feau et al., 2009) even at the
light of modern molecular techniques (Cuadros-Orellana et al., 2013). Methods that relies on
parallel sequencing of short DNA fragments amplified by PCR have been widely used (Schoch
etal., 2012).

Target-gene amplicon sequencing application is the most exhausted high-throughput
sequencing in microbial ecology. The fungal genetic marker internal transcribed spacer (ITS)
has been proposed to be the official fungal primary barcode (Coissac et al., 2016; Fajarningsih,
2016; Das and Deb, 2015). It is a non-coding region that is highly polymorphic, with enough
taxonomic units and has the ability to separate sequences into species level (Fajarningsih,
2016). It is located in the ribosomal RNA operon and has a length ranging from 450 to 750 bp
(De Beeck et al., 2014). The advantage of using ITS as DNA barcoding is that it has been used
in many studies and has updated reference sequences that exists in the NCBI database (Samson
et al., 2019). The most commonly used oligonucleotides for sequence-based fungal
classification at the species level are ITS1, ITS2, ITS3 and ITS4 (Gardes and Bruns, 1993;
White et al., 1990). These oligonucleotides pairs have been used in many mycological research
branches and are popular tools in fungal community research (Tedersoo et al., 2018; Amend
et al., 2010; Jumpponen et al., 2010; Buée et al., 2009).
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2.17 Meta-barcoding bioinformatic analyses

Bioinformatic analysis of plant microbiome and gene expression studies demands the use of
tools that effectively analyses the large amount of data produced from deep and amplicon
sequencing for gene expression patterns and overview of taxonomic classification. Various
tools are available for analysis of 16S rRNA gene sequencing data and include, Quantitative
Insights Into Microbial Ecology (QIME) (Caporaso et al., 2012), MOTHUR, and
Metagenomics - Rapid Annotation using Subsystems Technology (MG-RAST) (Meyer et al.,
2009). These pipelines are self-contained and are widely used for amplicon metagenome
analyses. Additionally, they can be utilized to process 16S rRNA gene sequences from quality
control to taxonomic classification and are three of the most cited and generally used pipelines
in 16S rRNA gene sequences analysis (Plummer et al., 2015). The comparison between the
diversity and taxonomic compositions generated by MG-RAST and QIIME using samples
from the gastro-intestine was investigated (D’ Argenio et al., 2014). The study did not find any
significant changes in the alpha diversity measures or microbial compositions; however it was
concluded from the study that QIIME produced compositional assignments that are more
accurate, primarily due to the inability to classify large number of reads by MG-RAST.
Plummer et al. (2015) did the similar investigation comparing the MOTHUR, QIIME and MG-
RAST pipelines. The pipelines detected the similar abundances at phylum level. Pipeline
difference was observed with regard to genera taxonomic assignments from the

Enterobacteriaceae family, particularly Klebsiella and Enterobacter.

2.18  Gene expression and Bioinformatics

While high-throughput sequencing has enabled the use of metagenomic DNA for taxonomic
classification (Tett et al., 2012). However, a metagenome contains relatively few rRNA genes
reducing the taxonomic assignments strength and also it doesn’t allow the functional
annotation in a host. Other techniques are necessary to identify which genes are actually being
expressed through transcriptomics. Transcriptomics, is a method where total RNA from the
environment is sequenced to reveal active community members and metabolic pathways in a
sample. This is technically much less challenging than enrichment of mMRNA and avoids PCR
biases. The incorporation of transcriptomics and metagenomics will therefore extensively

assess/identify the plant microbiome taxa and the genes expressed upon pathogen infection.
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Historically, mRNA expression has been conducted by gPCR or microarray based approaches.
However, the two technologies have not been reliable in evaluating novel alternative splicing
isoforms (Shendure, 2008). The inexpensive and rapid sequencing capacity offered by next-
generation sequencing instruments has become the main choice to measure gene expression
levels. Reconstruction of novel and known transcripts at single-base level, with broad dynamic
range, and not limited by signal saturation and reproducibility levels that are high are key
advantages offered by RNA-Seq over hybridization-based technologies (Roy et al., 2011;
Bullard et al., 2010; Shendure, 2008). RNA-Seq is an NGS based technology for profiling the
RNA that enables the measurement and comparing gene expression patterns at unprecedented
resolution based on next-generation sequencing (Finotello and Di Camillo, 2015). RNA-Seq
is the standard method for transcriptome analysis generating a huge volume of data. However,
its interpretation is not straightforward and accurate data analysis involves choices of tools and
several different steps (Kukurba and Montgomery, 2015). Subsequently, the advent of RNA-
Sequencing (RNA-Seq) technologies, introduced various statistical analysis tools for
differential gene expression (DGE) (Hrdlickova et al., 2017). Twenty five (25) pipelines
performance for testing differentially expressed genes in RNA-Seq data were recently
evaluated and no single tool uniformly performed better than the others (Assefa et al., 2018).
Cuffdiff also forms part of the pipelines utilized to test for differentially expressed genes, test
the statistical significance of observed changes and is used to quantify transcript abundance
measured by fragments per kilobase of transcript per million fragments mapped (FPKM) (Li
et al., 2018). A basic reference based data analysis pipeline consists of pre-processing (remove
sequences with low quality to get better alignment), alignment of the raw reads with the
reference genome, assembly of the transcripts and detection of differentially expressed genes
(‘Yalamanchili et al., 2017).

2.19 Pathway and cluster analysis

The data generated from RNA-Seq is extremely large and user-friendly tools to analyze it have
been developed (Tagliaferri et al., 2014). The analysis of transcriptomics data requires access
to statistical methods that are robust, data analysis tools to identify patterns and transcripts
correlating with the experimental phenotypes. MultiExperiment Viewer (MeV) is a Java-based

application allowing analysis of advanced gene expression data (Howe et al., 2011). This
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softwares could be used for gene expression analysis, and includes, hierarchical clustering, t-

tests, k-means clustering, EASE and analysis of variance (ANOVA) (Howe et al., 2011).

Clustering methods for RNA-Seq data time series partitions genes into disjoint clusters based
on expression response similarity. K-means clustering (Tavazoie et al., 1999), hierarchical
clustering (Eisen et al., 1998) and self-organizing maps (Tamayo et al., 1999) are clustering
methods, that evaluate similarity response using Euclidean distance or correlation. These
clustering approaches assume that adjacent time points expression levels are independent,
which is not valid for time series transcriptome data (Ramoni et al., 2002). A couple of these
approaches demand for post hoc analyses and model selection to dictate the number of clusters
that are most appropriate. The Dirichlet Process Gaussian Process mixture model (DPGP) has
been developed to circumvent the problem that the other clustering methods presents in
measuring gene expression levels across time (McDowell et al., 2018). DPGP has compared
favourably to time series data clustering methods that currently exists. It is the most accessible,
publicly-available software package and it is robust to non-Gaussian marginal observations
(McDowell et al., 2018).

Although the statistical approaches on DEGs provides valuable information regarding the
changes across phenotypes, they alone cannot describe the complex mechanisms that are
involved in the given condition (Nguyen et al., 2019). The most common tools used to address
this is to search the knowledge contained in various pathway databases such as Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2004), Reactome (Fabregat et
al., 2018), BioCarta (Adriaens et al., 2008), NCI-PID WikiPathways (Schaefer et al., 2009)
and PANTHER (Thomas et al., 2003). The analysis of pathway approaches use databases and
the given gene expression data to identify the significantly impacted pathways in a given
condition (Conesa et al., 2016).
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2.20 CONCLUSION

In summary, over the last three decades, since the first studies using the concept of
metagenomics, extraordinary advances in permitting measurement of population diversity
levels in situ and allowing the prediction of functions encoded by microbial communities in
the field have been achieved. The phyllosphere is an economically and scientifically important
microenvironment in which to conduct microbial ecology studies and is also suggested to be
one of the entry site for pathogens. It has been discussed in details as this plant
microenvironment has more to contribute to the microbial ecology field, plant pathology and
plant genomics. The phyllosphere also contribute in providing more efficient and less
environmentally harmful means of plant protection. Sorghum bicolor has emerged as an
essential food security crop, as well as biofuel production, that is both salt and drought tolerant,
and its review with regards to domestication, taxonomy and importance has been discussed in
details. Next Generation Sequencing (NGS) has revolutionized the research on bacterial and
fungal compositions in plants, and high-throughput sequencing is now at a state that it is very
good for analysing ITS and 16S rRNA sequences for fungal and bacterial community. When
conducting these studies, it is imperative that metagenomic information overload be
transformed into biological understanding. It was reviewed in this chapter that bacteria and
fungi can synergistically interact to stimulate plant development through a range of
mechanisms that include inhibition of fungal plant pathogens and improved nutrient
acquisition. These interactions can be of significance in maintaining soil fertility and plant
health, within sustainable low-input agricultural cropping systems that depends on biological
processes rather than agrochemicals. Metagenomics through barcoding has proved to be an
efficient microbial ecology tool, to determine who is there. However, it cannot determine the
genes expressed in response to biotic/abiotic stress inflicted upon the host. Existing functional
screening metagenomic methods usually have low rates of gene target identification.
Therefore, the construction of an alternative tool that is able to detect enzymatic activities/other
target gene output is required. This challenge lead to the introduction of transcriptomics, where

total RNA from the environment is sequenced revealing active functional annotation and
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metabolic pathways. This greatly come into play to be able to circumvent the inability of
metabarcoding in revealing functional annotation, and has been discussed in details.
Incorporating meta-barcoding (describing the taxonomic classification) and transcriptomics
approaches (functional approaches) will improve the understanding on the taxa making up a
community and also predict the functional roles in the ecosystem. Bioinformatic softwares
have been developed that can deal with both microbial community analyses and gene
expression studies. In conclusion, by combining the collective information in overcoming the
previously described challenges. Shedding light on the “hidden” world of uncultured
microorganisms and its inherent enzymatic treasures shall make it possible to integrate
emerging concepts in the plant pathology and genomics field. Collective intelligence from a
plethora of experts is imperative in bringing biotechnological solutions and answering central
biological questions in a myriad of different fields in this review. This will therefore, expand

the knowledge currently present in a myriad of areas.
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CHAPTER 3

Identification of bacterial and fungal populations
on/within sorghum leaves that are naturally infected
with various diseases through the use of
metabarcoding
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3.1 INTRODUCTION

The past three decades of research using model plant systems (Nicotiana tabacum and
Arabidopsis thaliana) have revealed a variety of plant adaptations, which have evolved in
response to both biotic and abiotic environmental stressors (Ritpitakphong et al., 2016;
Lundberg et al., 2012; Ryu et al., 2007). Recently, studies have shown that both healthy and
asymptomatic plants co-exist with diverse assemblages of microorganisms including protists,
archaea, fungi and bacteria (Lebreton et al., 2019; Hassani et al., 2018). These microorganisms
have collectively been shown to influence plant growth and productivity (Stone et al., 2018;
Almario et al., 2017; Buée et al., 2009; Lindow and Brandl, 2003). Plant-associated
microorganisms positively influence plant health by increasing nutrient acquisition, stress
tolerance and pathogen resistance (del Carmen Orozco-Mosqueda et al., 2020; Finkel et al.,
2019; Jones et al., 2019; Tsolakidou et al., 2019; Schirawski and Perlin, 2018; Mia et al., 2014).
Yet, the understanding of the interplay between microbiomes and plants remains rudimentary
and has largely focused on model plant species (Berendsen et al., 2018; Edwards et al., 2015;
Aleklett et al., 2014).

Understanding the interaction between microbiomes and plants is central to the elucidation of
the response to biotic and abiotic stress in agriculturally important crops. To ensure food
security, it is essential to optimize the reliability of production pipelines by minimizing
environmental impacts (Saad et al., 2020; Wille et al., 2019). Integrating insights regarding
beneficial plant microbiomes to enhance plant growth and disease resistance will contribute to
increased agricultural production which will ultimately contribute to food security (Busbhy et
al., 2017; Mounde, 2015; Pascale et al., 2020; Sivakumar et al., 2020).

While the vast majority of microorganisms are beneficial to plant growth, plant pathogens may
colonize leaves and overwhelm the innate plant defence mechanisms in order to cause diseases.
This colonization by fungal and bacterial pathogens is a direct threat to the productivity and
sustainability of sorghum production (Chala et al., 2019; Bandara et al., 2017; Kelly et al.,
2017). Sorghum is a versatile crop that can be grown as grain and sweet crop. However the full

potential of sorghum productivity has not been realised due to an array of biotic and abiotic
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constraints (Mengistu et al., 2016). Plant pathogens represent a constant and major food
production constraints, with global crop losses estimated to be 20%- 30% principally in food-

deficit areas (Savary et al., 2019).

Elucidating the composition of the sorghum microbiome and relating this to its effects on plant
health may provide important cues to potential strategies for pathogen management. The few
studies available on the sorghum microbiome have been mainly based on culture-dependent
methodologies, which are known to miss 99% of microbial communities (Sanmartin et al.,
2018; Tripathi et al., 2018; Mihajlovski et al., 2015). Recent reports, using metagenomic
analysis, have revealed potential key taxa associated with the rhizosphere and seed of sorghum
(Kuramae et al., 2020; Hara et al., 2019; Kinge et al., 2019; Xu et al., 2018 Guo, 2016).
However, none of these studies assessed the aerial region of the plant, which is suggested to
be one of the primary entry sites for pathogens (Cernava et al., 2019). This knowledge deficit
is broadly true for plants where, in contrast to the rhizosphere, substantially less is known

regarding the effects of plant-microbe associations on foliar diseases.

Regardless of sorghum recombinant lines (RILS) being suited to all proposed approaches for
renewable fuel production i.e., from starch, sugar, and/or cellulose (Xie et al., 2018), less is
known with regard to their leaf microbial structure. Sorghum bicolor and Sorghum
propinquumis have been used for early-generation genetic analysis by single-seed descent and
differs in traits related to plant architecture, growth and development, reproduction, and life
history (Kong et al., 2013). The F2 generation sorghum inbred lines produced from this are the
widest euploid cross that can be made with the cultigen (S. bicolor) by conventional means.
The interspecific populations from these lines offer opportunities to genetically dissect a wide
range of traits related to plant domestication and crop productivity, some of which have begun
to receive attention (Feltus et al., 2006; Chittenden et al., 1994). The opportunities offered by
comparison of S. bicolor and S. propinquum have led to much effort to develop genomics

resources, including a detailed genetic map (Bowers et al., 2003).

Sorghum recombinant lines used in this study are useful models, however, the microbiomes of
these RILs and the relationship to plant health has not been examined. To increase the

understanding of the foliar microbiomes of sorghum RILs and its link to natural infection,
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bacteria and fungi associated with asymptomatic and symptomatic plants using 16S ribosomal
ribonucleic acid (rRNA) gene and internal transcribed spacer (ITS) region sequencing,
respectively were characterized. In addition to revealing the relative abundance patterns of
bacteria and fungi the significant differential abundance of taxa in asymptomatic and
symptomatic sorghum RILs was assessed. Adding to revealing the fungal and bacterial relative
and differential taxa abundance patterns the co-occurrence dynamics and diversity measures

of fungi and bacteria were examined.
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3.2 MATERIALS AND METHODS
3.2.1 RIL material

The mapping population was originally derived by selfing a single F1 plant from S. bicolor
grain (M71) and sweet sorghum (SS79) and advanced to the F9 generation by single seed
decent (Shiringani et al., 2010) to produce a mapping population of 187 F9 recombinant inbred
lines (RILs). These RILs were mapped for quantitative traits such as grain yield and stem
sugar-related traits for biofuel yield of sorghum. The F9 generation seeds used in this study
were collected from the Agricultural Research Council (ARC) - Grain Crops Institute,
Potchefstroom, South Africa (see RIL information Appendix Table 3A.1).

3.2.2 Cultivation of sorghum RILs

The sorghum RIL seeds were cultivated in a mixture of autoclaved vermiculite and perlite
medium in pots sterilized with 70% ethanol at the ARC - Biotechnology Platform (ARC-BTP),
Onderstepoort, South Africa. A pot experiment was carried out in a net-house which was used
to reduce the damage caused by insects, wind and the hail in the crop. The net-house was used
to mimic nature and is naturally ventilated and climate controlled (natural temperature and
light). The RILs were subjected to the same planting conditions and were left to grow until the
matured grain filling developmental stage (120 days old plant) to allow the plants to be
naturally colonized by pathogenic and commensal microbes. Moisture was maintained by
watering to weight every 2-3 days. To assess the role of sorghum leaf microbial community
structure in sorghum disease manifestation, 45 leaf samples (1 2" leaf below the flag leaf -
emerged final leaf) from individual RILs at the grain filling stage (maturity) were retrieved.
The foliar symptoms (Table 3.1) were scored according to the method described by TeBeest et
al. (2004). The pathogen susceptibility of the RILs was based on foliar symptoms after
allowing for natural infection by pathogens. The scale used presented visual foliar symptoms
of four models that denoted, resistant (R), moderately resistant (MR), susceptible (S) and
highly susceptible (HS) disease groups under natural infection. The symptoms and lesions
on the leaf area of the R group was (1-10%) with MR, S and HS symptoms and lesions
represented by 11-30%, 31->50% and 51->75%, of the leaf area, respectively.
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3.2.3 Sampling

Leaf samples were collected from 45 individual RILs based on the even distribution of
phenotype (foliar symptoms) across all disease groups. The number of samples collected for
the resistant group (R) were (n = 11), moderately resistant (MR) (n = 10), susceptible (S) (n =
12) and highly susceptible (HS) (n=12) were confirmed with the Chi-square test in Excel. Table
3.1. The leaves were harvested by hand (using gloves and forceps which was pre-sterilized
with 70% ethanol for each leaf sampled). The leaf samples were kept in sterile bags in a -4°C
ice box and were stored in a —80 °C freezer until further processing (this was to ensure that

DNA is of good quality for further processing).

3.2.4 DNA extraction, PCR amplification and sequencing

Leaf material was crushed using the Savant Fastprep™ FP120 Cell Disruptor (Thermofisher
Scientific), followed by total DNA extraction using the Chemagic DNA Plant Kit (Chemagen,
Perkin Elmer) as detailed in the manufacturers protocol. For bacterial amplification, primers
with a PNA-PCR clamp added to block the amplification of host DNA were used to amplify
the 16S rRNA gene V3-V4 region (Lundberg et al., 2012; Herlemann et al., 2011). For fungi
taxon-specific primers, ITS1 and ITS4 regions were amplified as described previously (Gardes
and Bruns, 1993). Amplicons were purified using the MinElute® PCR Purification Kit
(Qiagen). The concentration and quality of the purified PCR product was evaluated using the
Qubit Fluorometer (Invitrogen). The amplicon library was normalized and prepared for
sequencing following the Illumina MiSeq 16S rRNA gene library preparation guide (Illumina
2016). Sequencing was done by utilizing the MiSeq Illumina Sequencer (Illumina, San Diego,
CA) with a MiSeq Reagent Kit v3 to generate 2 x 300 paired end reads at the ARC
Biotechnology Platform.
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3.2.5 Bioinformatics analyses

3.2.5.1 Operational Taxonomic Unit (OTU) Assignment

Analysis of bacterial and fungal communities was performed using the Quantitative Insights
Into Microbial Ecology (Qiime2) version 2019.10 (Caporaso et al., 2010) with demux plugins
(https://github.com/giime2/q2-demux) (Amir et al., 2017). Forty-five samples of 16S and ITS
sequencing data were received in the fastq file format and included forward and reverse paired-
end reads. MiSeq 2500 generated ITS and 16S rRNA data was de-multiplexed at the
sequencing facility. The forward and reverse reads, were combined into one “qza” file in the

conda environment and then imported into Qiime2 using the Casava 1.8 pipeline (paired-end).

The length of nucleotides to trim and truncate, for the subsequent Deblur giime denoise
analysis was obtained from the demux.qzv visualization. The demux.qzv visualization showed
the quality scores of the reads, which allowed for the removal of reads with lower than Phred33
scores. Deblur plugin was used to remove chimeric sequences and sequence variant calling of

the Illumina-amplicon sequences.

Taxonomic assignments were performed using giime feature-classifier classify-sklearn in
which a pre-trained Naive-Bayes classifier SILVA 138 database (Yilmaz et al., 2014) was used
for bacterial taxonomic classification. For fungal ITS taxonomy analysis, a UNITE database
(https://unite.ut.ee/) was used. Compositional and taxonomic analyses were conducted by
using feature-classifier plugins, i.e. composition (Mandal et al., 2015) and taxa
(https://github.com/qiime2/g2).

Sequences were binned according to similarity, resulting in operation taxonomic units (OTUs),
followed by the generation of a representative sequence for each OTU (Schloss and
Handelsman, 2005). The resulting representative sequences, hereinafter referred to as OTUs,
were used for downstream taxonomic assignment and diversity metrics. The feature table was
then used to generate a phylogenetic tree with the “phylogeny fasttree” command (Price et al.,

2010). The complete list of commands and the system details are listed in Appendix C.
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3.2.5.2 Exploratory analyses

Exploratory analyses were performed in R v.3.5.1 and Bioconductor v.3.0 (Gentleman et al.,
2004). Briefly, Rarefaction curves were computed using phyloseq. The two alpha diversity
indices were computed (Simpson and Shannon) to measure diversity by accounting for
dominance and richness in phyloseq. These indices were obtained using the
plot_anova_diversity function of the microbiomeSeq package (Heruth et al., 2016). B-Diversity
was visualized using PCoA ordinations generated with the Bray—Curtis distance metric.
Ordinations were created with the phyloseq and ggplot2 (v2.1.0) packages. Pair-wise analysis
of variance (ANOVA) of diversity measures were computed using microbiomeSeq (McMurdie
and Holmes, 2013), with plot_anova_diversity function. B-Diversity was measured using
PERMANOVA with the betadisper function from the microbiomeSeq package (Heruth et al.,
2016; Oksanen et al., 2007). Taxonomic classification data was normalised and visualised
using phyloseq and microbiomeSeq package. Differential abundance plots between the disease
groups were obtained through the use of DESeq2 R package (Love et al., 2014) with p-value
cutoff of 0.05. Networks interactions were done using the R package Sparse InversE
Covariance estimation for Ecological Association and Statistical Inference (SpiecEasi) (Kurtz
et al., 2015), with neighbourhood selection (MB method). The complete list of R packages and

scripts are listed in Appendix C.

56



3.3 RESULTS

3.3.1 Foliar assessments reveal discrete pathogen groups which were evenly distributed
(Chi-square tests).

The results from foliar assessments delineated the grouping of RILs into the following disease
groups: resistant (R) (n = 11), moderately resistant (MR) (n = 10), susceptible (S) (n = 12) and
highly susceptible (HS) (n=12) (Table 3.1). Comparisons of the distribution of disease groups
were generated between R, MR, S and HS using Chi-square tests. These analyses showed that

the number of samples per disease group was evenly distributed.

Table 3.1: The samples from individual RILs of which manual foliar disease rating was
done based on visual symptoms of the leaves collected according to a rating scale described
by TeBeest et al. (2004).

Severity scale | Symptoms and lesions Disease reaction No of samples | Visual symptoms

2 1-5% leaf area Resistant (R) 11
6-10 % leaf area

3

4 11-20 % leaf area Moderately resistant | 10
21-30 % leaf area (MR)
31-40 % leaf area Susceptible (S) 12
41-50 % leaf area

7

8 51-75% leaf area Highly susceptible | 12
> 75% leaf area (HS)

9

3.3.2 Rarefaction curves for samples used in this study (phyloseq)

The illustrated rarefaction curves primarily determines the minimum sample size and also
indicates the number of OTUs with agiven depth of sequencing. The bacterial and the fungal
rarefaction reached the near plateau phase depicting satisfying sampling depth (Figures 3.1A

and 3.1B respectively).
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Figure 3.1: Curve showing the number of individual (A) Bacterial and (B) Fungal OTUs
identified in a given rarefaction. The rarefaction curves were generated using vegan, with an
OTU defined at 97% similarity.
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3.3.3 Bacterial and fungal alpha diversity of sorghum leaves (microbiomeSeq package)

Estimates of indices measuring richness (Shannon) and dominance (1-Simpson index), showed
that the bacterial alpha-diversity differences resulted in HS disease group significantly
harbouring high bacterial species richness (Shannon), compared to R group (ANOVA, p-value
= 0.034; df = 19) Figure 3.2A. However, diversity measures which account for dominance (1-
Simpson index) suggest that HS samples were dominated by fewer species (ANOVA, p-value
= 0.05; df = 19). The R group was significantly more diverse (ANOVA, p-value = 0.05; df =
19) consistent with low 1-Simpson index values compared to the other disease groups, based
on species dominance (Figure 3.1B). The Shannon index of the S disease group was associated
with high species richness compared with the R group (ANOVA, p-value = 0.026; df = 18).
The diversity measures for the MR group did not show any significant difference with the other
disease groups (see Appendix C for detailed statistics on fungal and bacterial alpha diversity

measures).

Similarly, the fungal alpha-diversity differences between disease groups were statistically
significant. The HS disease group had a significantly higher Shannon-Weaver index compared
to the R group (ANOVA, p-value = 0.034; df = 19) Figure 3.1B. Fungal population diversity
measure 1-Simpson index indicated a significant difference between HS and R (ANOVA, p-
value = 0.05; df = 19). Indices measuring dominance (1-Simpson index) suggest that the fungal
populations on HS plants were less diverse compared to those on R plants. A significant
difference in the Shannon-Weaver index between S and R (ANOVA, p-value = 0.0136; df =
18) was observed, with S disease group indicating higher species richness. The MR group did
not show any significant difference in 1-Simpson index diversity. However, in terms of the

Shannon index, the MR group was associated with high species richness.
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Figure 3.2: (A) Bacterial (B) Fungal alpha diversity metrics based on Shannon’s and 1-
Simpson’s diversity indices on disease groups R, MR, S and HS. The box plots represent
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the observed bacterial and fungal values based on richness, and dominance of different disease
groups. The lines represent the interquartile range and asterisks above the boxplots represents
statistically significant differences at (p-value < 0.05) plotted using the plot_anova_diversity
function within MicrobiomeSeq R package. For 1-Simpson index box (**p-value = 0.05; df=
19 between HS and R), for Shannon index box plot (*** p-value = 0.034, df= 19 between HS
and R), (* p-value = 0.013; df = 18 between R and S) in Fungi. For bacterial alpha diversity 1-
Simpson index box (* p-value = 0.05; df = 19 between HS and R), for Shannon index box plot
(*p-value = 0.034; df = 19 between HS and R), (* p-value = 0.026; df =18 between R and S)

3.3.4 Beta-diversity and disease severity (microbiomeSeq package)

Bacterial abundance variation, beta- dispersion revealed a significant difference between the
R and S group (Prervpise = 0.04; df = 18) Figure 3.3A. Permutation analysis of variance
(PERMANOVA) and corresponding r-squared revealed that microbial communities were
significantly differentiated across all the disease groups, with (R?>=0.16, Ppermanova = 0.001;
df = 41) for bacteria and (R?= 0.216, Ppermanova = 0.001; 41). PCoA showed a cluster for each
disease group and the differences between the clusters were tested for significance using
PERMANOVA (Figure 3.3B). Beta-dispersion, used to measure variances in fungal abundance
revealed the significant differences in the microbial community dispersion (within-group
variation in beta-diversity) between MR and HS (Prermpise = 0.002; df = 18) and R and HS
(Prermpise = 0.005; df = 19). See supplementary statistics details for fungi and bacteria in

Appendix Table 3A.5 and Appendix Table 3A.6 respectively.
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Figure 3.3: Beta diversity of (A) Bacterial and (B) Fungal communities represented via
Principal Coordinates Analysis (PCoA) based on Bray-Curtis distance from the
PERMANOVA analysis (betadisper function) across disease groupings (R, MR, S and HS).
Groupings is based on the categorical factors depicted with ellipses representing the standard
error around the centroid.

3.3.5 Bacterial and fungal composition of sorghum leaves (microbiomeSeq)

The impact of microbial communities on sorghum RILs after exposure to natural infection by
pathogens was assessed in this study. The bacterial and fungal composition observed consisted
of both disease-causing and reported beneficial taxa. Analysis of bacterial abundance,
revealing the composition of commensal and pathogenic bacteria of sorghum RILs across all
disease groups at the family and genus levels is shown in (Figures 3.4A; 3.4B and Table 3.2).
The known pathogen Pantoea (~ 10%) were exclusively associated with the HS disease group.
The S disease group had a higher relative abundance of the genera Siccibacter and the
pathogenic genus Cronobacter (~ 5% for both genera). It was found that Proteobacteria and
Firmicutes had the highest relative abundances among all the disease groups. The dominant
families across all disease groups were Erwiniaceae, Bacillaceae, Enterobacteriaceae and
Pseudomonadaceae with members of the genera, Bacillus and Pseudomonas highly dominant
across all the disease groups. Among all disease groups, sequences assigned to members of the
genera Bacillus and Kosakonia were found at high relative abundances in both R and HS
disease group. The relative abundance of Bacillus sequences in both R and HS were evenly
distributed (~ 10%). Similarly, an even distribution of relative abundance of Kosakonia
sequences was observed in the R and HS disease group. These taxa were followed by members
of the genus Sphingomonas which were highly abundant and evenly distributed (~ 10%) in the
R and MR group. Bacterial sequences were assigned to 246 OTUs, of which 81 of the OTUs
corresponded to 32.9% and were shared amongst all disease groups. The HS disease group
harboured the highest proportion of unique OTUs (21) corresponding to 8.5%, while MR and
S had the lowest number of unique OTUs (14), corresponding to 5.7%. Disease groupings S
and HS shared 5 OTUs that corresponded to 5.3% of bacterial OTUs with only 5 OTUs
corresponding to 2% shared between the R and MR groups (Figure 3.6A).

The most dominant fungal pathogenic species, for the plants designated as HS, was the well-

known phytopathogen members of the family Nectriaceae and genus Gibberella (40%).
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Members of the genus Epicoccum (family Didymellaceae), were exclusively found in the R
and S disease groups and accounted for over 5% relative abundance. In addition to these
genera, members of families Didymellaceae (Ascochyta genus) and Ustilaginaceae (Ustilago
genus) were found in the susceptible disease groups albeit in lower abundance (<5%).
Furthermore, members of the families Didymellaceae (Didymella genus) and Massarinaceae
(Sclerostagonospora genus), were also amongst the potential pathogenic taxa found across all
disease groups, although in low percentages (Figures 3.4C and 3.4D). Table 3.3 further
highlights the known potential sorghum pathogenic taxa and the pathogenic taxa not

commonly found in sorghum.

The dominant phyla were Ascomycota and Basidiomycota respectively, which in total
comprised over 55% of the OTUs. Chytridiomycota, Kickxellomycota, Glomeromycota,
Mucoromycota and Rozellamycota were detected at much lower relative abundances,
cumulatively 9% of fungal OTUs. Unassigned fungi encompassed less than 13% of OTUs. The
most substantial differences were observed among the different disease groups, with a higher
relative abundance of OTUs found in the HS samples. Members of the family, Pleosporaceae,
Bulleribasidiaceae, Tremellaceae with taxa in the genera Phoma (30%), Didymella (30%) and
Papiliotrema (20%) dominated the samples designated as the R group (Figures 3.3A and 3.3B).
The S and HS disease groups had a high proportion of fungal OTUs, which agrees with results
from Shannon diversity analyses (Figure 3.2B). The R and MR groups had the same fungal
composition, with, the relative abundance of genera identified as Papiliotrema, Phoma and
Cladosporium high in the R group. Similarly, the S and HS disease groups had the same
microbial composition with a high relative abundance (more than 20%) of Gibberella genus in
the HS disease group, while Epicoccum was more abundant in the R group and S disease group.
Surprisingly, our analyses showed that the sorghum fungal community had more OTUs (478)
compared to the bacterial OTUs (246) Appendix Tables 3A.2 and 3A.3. The majority of these
fungal OTUs (301) were shared and corresponded to 63% of all OTUs distributed among all
the disease groups. The HS disease group had the highest proportion of 11 unique fungal OTUs
which corresponded to 2.3%. The distribution of fungal OTUs in HS relative to R group is

shown in Figure 3.6B.
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Figure 3.4: The relative abundance of taxa in sorghum disease groups. (A) Bacterial
genera across disease groups (R, MR, S and HS), (B) The relative abundance of bacterial
family across different disease groups (C) Fungal genera relative abundance across disease
groups. (D) The relative abundance of fungal family across different disease groups. Each bar
represents a disease group, the colour distinguishes the taxon in each group. Gibberella,
Pantoea and Serratia genera indicated an increasing trend in relative abundance in the HS
disease group, while Alternaria and Cronobacter showed an increase in relative abundance
trend across all disease groups. Papilliotrema and Sphingomonas indicated an increase trend
in the R and MR group, with Methylorubrum showing an increase in relative abundance trend
in the R group.

Table 3.2: Plant pathogenic bacteria inhabiting sorghum and other cereal plants across
various disease groups (R, MR, S and HS).

Potential pathogenic taxa Disease group Percentage Recorded Reference
(%) of samples [symptoms

Pantoea HS 10 Bacterial leaf spot [(Lana et al., 2012;
of sorghum Cota et al., 2010)

Serratia S <10 Cucurbit  Yellow|(Besler and Little,
\Vine Disease 2017)

Pseudomonas R.MR, S, HS [ <10 Bacterial leaf|(Kaplin et al., 2017)
stripe of sorghum
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Table 3.3: Plant pathogenic fungi inhabiting sorghum and other cereal plants across

various disease groups (R, MR, S and HS).

disease

Potential pathogenic taxa Disease group Percentage Recorded Reference
(%) of samples [symptoms
Epicoccum S <10 Grain mould of  |(Oliveiraet al.,
2017a)
sorghum
Mycosphaerella R, MR, S, HS | <5 Charcoal rot in|(Bandara et al.,
sorghum 2018, 2017,
Quaedvlieg et al.,
2013; Das et al,
2012)
Sclerostagonospora MR, S, HS <5 Blackleg and leafi(Ma et al.,, 2019
Anamorph Leptosphaeria blotch in sorghum,|Quaedvlieg et al.,
wheat and maize [2013; Fitt et al.,
2006)
Ascochyta R, MR, S, HS | <5 Leaf spots (Xu et al., 2019;
Jayashree and
Wesely, 2018;
Tivoli and Banniza,
2007)
Didymella R >20 Leaf spot and leafl(Moral et al., 2018)
MR 10 blight
S 10
Ustilago S <10 Leaf smut disease [(Kruse et al., 2018;
Omayio et al., 2018)
Gibberella HS >40 Stalk rot and|(Nida et al., 2019;
MR >10 Sorghum complexiKelly et al., 2017,

Gilbert
Fernando, 2004)

and
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Phoma R >10 Mycotoxins inf(Bennett et al., 2018;
Oliveira et

MR <10 sorghum 2017h)
S 5
HS <5

Alternaria R >10 Leafspot (Astoreca et
MR <10 2019; Wei et al,
S 20 2020)
HS <5

3.3.6 Potential fungal and bacterial species (microbiomeSeq)

Because the taxonomic assignments for the microbes particularly at species rank cannot be
accurately annotated due to the amplicon studies relatively short sequences, the species will be
reported as potential/ possible species (Meola et al., 2019). The potential bacterial species
presented the members of the species Mixta gaviniae which was highly associated with the HS
disease group. While the species Paenibacillus wenxiniae and Bacillus clausii were highly

linked with the R group (relative abundance <10%) Figure 3.5A.

The most dominant fungal potential species (relative abundance >50%) for the plants
designated as HS, was the well-known potential phytopathogen Gibberella zeae. Potential
species Epicoccum sorghinum (family Didymellaceae), a sorghum pathogen, was exclusively
found in the HS plants. In addition to these known potential sorghum pathogens, members of
the species Ascochyta paspali and Ustilago kamerunensis, both potential grass species
pathogens, were found in the susceptible disease groups. Furthermore, members of the
Didymella glomerata and Sclerostagonospora phragmiticola species, were also amongst the

potential species found across all disease groups, though in low percentages Figure 3.5B.
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s__Aureobasidium_pullulans
s__Cladosporium_delicatulum
s__Didymella_calidophila
s__Didymella_glomerata
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s__Epicoccum_sorghinum
s__Filobasidium_magnum
s__Gibberella_zeae
s__Hannaella_luteola
s__Hannaella_oryzae
s__Hannaella_siamensis
s__Hannaella_sinensis
s__Mycosphaerella_tassiana
s__Naganishia_albida

s__Naganishia_friedmannii

s__Naganishia_uzbekistanensis
s__Neoascochyta_paspali
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s__Saitozyma_flava
s__Saitozyma_paraflava
s__Sclerostagonospora_phragmiticola

s__Sporobolomyces_oryzicola
s__Ustilago_kamerunensis

s__Vishniacozyma_globispora

s__Vishniacozyma_heimaeyensis

s__Vishniacozyma_victoriae

69



Figure 3.5: The relative abundance of potential species in sorghum disease groups. (A)
Bacterial species across disease groups (R, MR, S and HS) (B) The relative abundance of
fungal species across different disease groups. Each bar represents a disease group, the colour

distinguishes the taxon in each group.
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Intersection Size

Intersection Size
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Figure 3.6: (A) Upset plot showing shared and unique bacterial OTUs across disease
groups (B) Upset plot showing shared and unique fungal OTUs across disease groups.
The total size of each disease group is represented on the left barplot. The overlapping red lines
indicates the number of OTUs across all disease groups and connecting bar indicates multiple
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disease groups. The bar chart placed on top of the matrix represents the number of the OTUs
across all disease groups.

3.3.7 Differential taxa abundance (DESeg2 R package)

Differential abundance analyses were conducted to determine the taxa that showed significant
abundance between the R and HS disease group (differential abundance was done in these
groups as they showed significant differential abundance). Differentially abundant taxa were
determined with a log2 fold change > 0 cut-off and an p adjusted-value of < 0.05. The relative
difference in abundance was expressed as log2 fold change, with more represented
differentially abundant taxa expressed at a log2 fold change of > 0 and the less represented
differentially abundant taxa expressed at a log2 fold change < 0 with p adjusted< 0.05. The
bacterial analyses showed 15 differentially abundant genera between the two disease groups
and included Methylorubrum, Aeribacillus, Pantoea, Serratia, Halomonas, Enterobacter,
Kosakonia, Sphingomonas, Acinotobacter, Paenibacillus, Enterococcus, Siccibacter,
Pseudomonas, Bacillus and Cronobacter. Members of the genera Pantoea and Serratia were
significantly enriched in the HS disease group while Methylorubrum and Aeribacillus were
highly enriched in the R group (Figure 3.7A). Eleven (11) fungal genera, Gibberella,
Epicoccum, Alternaria, Papiliotrema, Phoma, Aerobasidium, Cladosporium, Filobasidium,
Ascochyta and Didymella showed significant differential abundance in the HS disease group,

while Hannaella genus was significantly enriched in the R group (Figure 3.7B).
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Figure 3.7: Differential abundance between the examined disease groups (R and HS). (A)
Bacterial genera and phyla (B) Fungal genera and phyla. The log2 fold change as measured by
DESeq? is plotted for each fungal and bacterial genus significantly associated with R and HS
disease groups at p values < 0.05.

3.3.8 Inference of Microbial Ecological Networks across all the disease groups
(SpiecEasi)

To elucidate co-occurrences and co-exclusion of key microorganisms in the networks, bacterial
and fungal interactions were investigated with SPIEC-EASI. The bacterial network revealed
positive correlations between taxa (85% hubs/edges) represented by members of the class
Alphabacteria, Gammabacteria and Bacilli at g-value < 0.05 (Figures 3.8A and 3.8B). The
negative correlation was indicated by only 15% of the hubs/edges networks, (Appendix Table
3A.5). The abundant bacterial class (Bacillaceae and Sphingomonadaceae), showed co-
association patterns. The bacterial families, Bacillaceae and Sphingomonadaceae tended to
have more central roles in the network than OTUs from the Pseudomonadaceae,
Methylobacteriaceae and Enterobacteriaceae, which were peripheral and were not co-
associated with other taxa (Figures 3.8A and 3.8B). The OTUs that were most highly connected
(nodes with high degree) and that connect different parts of the network (nodes with high
betweenness centrality) were from the member of the family Bacillaceae and

Sphingomonadaceae.

The co-occurrence relationships dominated the inferred fungal networks. Similar to fungal
networks, the inferred networks in bacteria were dominated by co-occurrence relationships.

The fungal network revealed co-occurrence (positive correlations) between taxa (89%
hubs/edges) represented by members of the class Cystobasidimycetes, Dothiomycetes,
Microbotryomycetes, Sordiomycetes, Tremellomycetes and Ustilaginomycetes (Figures 3.8C
and 3.7D; Appendix Table 3A.5) at g-value < 0.05. The co-exclusion (negative correlation)
was indicated by only 11% of the hubs/edges networks, represented by the key fungal taxon
Agaricomycetes (Figure 3.8C; Appendix Table 3A.5). The abundant fungal classes,

Tremellomycetes and Dothiomycetes, showed co-interaction patterns.
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The Tremellomycetes and Dothiomycetes classes tended to have more central roles in the
network than OTUs from Sordiomycetes, which were peripheral and were not co-associated
with other taxa (Figures 3.8C and 3.8D). The OTUs that were most highly connected (nodes
with high degree) and that connect different parts of the network (nodes with high betweenness

centrality) were Tremellomycetes and Dothiomycetes classes.
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Figure 3.8: Ecological Networks across all the disease groups in (A) Bacterial family (B)
Fungal family. Nodes indicating co-occurrence relationships (central- represented by a green
colour and peripheral taxa- represented by a pink colour) across all the disease groups (C)
Bacterial class (D) Fungal class. The R package SPIEC-EASI was used for networks
construction. Network visualizations with OTU nodes were coloured according to class
lineage. Nodes correspond to OTUs and edges represent significant co-association between the
two OTUs. Edges are coloured by sign (co-occurrence: green represented by beta > 0; co-
exclusion: red represented by beta < 0 pulsar.params = 0.05).
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3.4  DISCUSSION

The community dynamics of microbial assemblages linked to the rhizosphere of plants are
increasingly well documented. Unfortunately, little is currently known regarding the
composition and community dynamics of the foliar microbiome (Pefiuelas and Terradas,
2014). This study provides novel insights into the leaf microbial structure and diversity of
sorghum RILs. The current results suggest that previous studies may have underestimated the
effects of natural infection in selecting the microbial communities in sorghum plants, as there
is evidence of studies on naturally coexisting soil and rhizosphere microbial consortia (Zegeye
et al., 2019; Nemergut et al., 2013). The strong correlation between the diseased groups and
the sorghum microbiota was found after natural infection. This observation suggests that
naturally occurring pathogens may considerably shape the structure of microbiota, favouring

some taxa.

Rarefaction curves used to measured observed OTUs with a given depth of sequencing,
permitted direct comparisons of samples of different sample sizes (Kim et al., 2017). The
metabarcoding sequencing depth of the bacteria and funga OTUs was sufficient for the
analysis and sampling depth. However, it isimportant to note that to investigate and determine
species level identification of microbiota using NGS it is not possible because Miseq can
capture only about 200 bp. Therefore, full length 1500 bp makes a reliable species
identification. The samples used in this study were not rarefied because of well-established
statistical theory, that discourage the samples to be rarefied (McMurdie and Holmes, 2014).

The investigation of natural infection variation uncovered a remarkable amount of heritable
genetic variation among RILs. The variance expressed has a clear quantitative basis, with clear
boundaries between a “resistant” and a “susceptible” group of RILs but no clear boundaries
between the “resistant and moderately resistant” and “susceptible and highly susceptible”.
Similarly, Arabidopsis thaliana accession ‘s response to natural infection resulted in the same

variation in a group of ecotypes (Kover and Schaal, 2002).
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The results of alpha diversity analysis, displayed clear contrasts between disease groups, which
supports this hypothesis. The beta diversity analysis indicated a distinction between the RILs
displaying disease symptoms and those that did not show disease symptoms (S; HS and R; MR
samples). The alpha and beta-diversity metrics showed that the RIL microbiome assemblage
was associated with the severity of the disease symptoms. Alpha diversity analyses (Shannon
index) indicated that fungi and bacteria were richer in highly susceptible leaves. However, the
HS group had lower fungal and bacterial diversity (dominance index) than the resistant plants,
while the R group was more diverse (dominance index) relative to the other disease groups.
Similarly, there were significant fungal and bacterial variation (beta diversity) between the
RILs that showed disease symptoms (S and HS disease groups) and those that did not show
disease symptoms (R and MR groups). Similar to the current study, vines with moderate pierce
disease symptoms displayed higher microbial diversity (dominance index) than severely
symptomatic vines (Deyett and Rolshausen, 2019). The current data could suggests a plant-
driven microbial response to the pathogen infection as plants are known to drive microbial
assemblage in order to cope with biotic stresses and increase environmental fitness (Deyett and
Rolshausen, 2019; Berendsen et al., 2018; Turner et al., 2013). This data highlights a plant-
driven microbial response to the pathogen infection. In contrast, in severely symptomatic vines,
the toxic environment (e.g., occlusion of xylem vessel with tyloses and decrease of hydraulic
conductivity; Deyett et al., 2019) is not conducive to microbial survival. A similar result was
also observed in a soil microbiome where soil surrounding healthy tobacco plants harboured
more diverse microbial communities, based on soil samples collected around bacterial wilt
affected plants (YYang et al., 2017). Other reports have also shown that plants with a microbial
community that is diverse were less susceptible to pathogen attack than those with less complex
microbial communities (Berg et al., 2017; Shade, 2017; Yang et al., 2017; van Elsas et al.,
2012). This is likely due to increased competition for available resources among potential
pathogens and other microorganisms in the less diverse community (Shade, 2017). The results
suggest that highly diverse plant microbiomes could decrease the chance of disease outbreak

as pathogens are likely to be outcompeted (Berg et al., 2017; Shade, 2017; Yang et al., 2017).
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The largest number of unique OTUs were associated with the susceptible disease group in both
bacterial and fungal datasets. This is consistent with previous studies which have shown that
diseased hosts tend to harbour more unique OTUs when compared to healthy hosts
(Rosenzweig et al., 2012). The fungal communities associated with the highly susceptible
disease group was the most complex. Zhang and colleagues (2018) recently reported an
increase in the fungal community richness (Shannon index) and linked this to increased disease
pressure. Another report revealed that soils with Fusarium wilt were colonized by more richer
bacterial communities (richness) and also harboured significantly different community
structure compared to healthy soils (Zhou et al., 2019). The current results on the leaf
microbiome demonstrate similar patterns and possibly suggest that plant diseases may affect

shifts in the phyllosphere of fungal and bacterial communities on sorghum leaves.

Taxonomic assignments for fungal taxa, up to genus level, was dominated by a considerable
portion of fungi classified as known pathogens of sorghum. Genera such as Cladosporium,
Alternaria and Sporobolomyces found in this study are frequent filamentous fungi colonizing
the phyllosphere as epiphytes and endophytes and is in agreement with previous observations
(Kinge et al., 2019; Rana et al., 2019; Glushakova and Chernov, 2004; Inacio et al., 2002;
Arnold et al., 2000). Fungal families Nectriaceae and Didymellaceae classified as Gibberella
and Epicoccum, respectively were assigned, and significantly linked to the HS and (HS and S)
disease groups, respectively. These genera are pathogenic taxa and have been previously
reported to be a major causative genera in sorghum grain mould disease (de Oliveira et al.,
2018; Kelly et al., 2017; Oliveira et al., 2017a). Sorghum grain mould disease is a major
limitation to sorghum production (Kinge et al., 2019; Sharma et al., 2011), and the Gibberella
genus has been reported to be the dominant species causing grain mould in sorghum (Nida et
al., 2019; Menkir et al., 1996). Interestingly, members of the genus Epicoccum were also
associated with the resistant group, albeit in low levels. Fungi belonging to the genus
Epicoccum are ubiquitous ascomycetes frequently isolated from healthy and diseased
grapevine (Del Frari et al., 2019; Bruez et al., 2014; Hofstetter et al., 2012; Pancher et al.,
2012). However, there are different references to the Epicoccum genus, not ascribed to a
species, that have been reported from healthy grapevine cuttings (Halleen et al., 2003), pruning

wounds (Urbez-Torres and Gubler, 2011) and mature grapevine plants (Choueiri et al., 2014;
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Kuntzmann et al., 2010). These fungi have been thought to be endophytes or saprophytes in
grapevine but their role on healthy or diseased plants, where they can co-inhabit with different
grapevine trunk diseases pathogens, has not been investigated (Del Frari et al., 2019). The
members of the genera Ascochyta (Didymellaceae family) and Ustilago (Ustilaginaceae
family) causing sorghum leaf stripe disease and leaf smut, respectively, were also associated
with the HS and S disease groups (Xu et al., 2019; Jayashree and Wesely, 2018; Kruse et al.,
2018; Omayio et al., 2018; Tivoli and Banniza, 2007). It was also detected that Didymella
(Didymellaceae family) which was highly significant in the R group, Alternaria and
Sclerostagonospora anamorph Leptosphaeria (Massarinaceae family), which are known to
cause sorghum blackleg, leaf spot and leaf blight (Ma et al., 2019; Moral et al., 2018;
Quaedvlieg et al., 2013; Fitt et al., 2006) were significantly associated with MR, S and HS.
Interestingly, members of the genera Didymella and Alternaria were highly associated with
the R group. This was expected, as members of these genera has been shown to exhibit plant
growth capabilities (Turbat et al., 2020; Zhou et al., 2018). Additionally, members of genus
Phoma (Didymellaceae), previously reported as having the ability to produce mycotoxins in
sorghum (Bennett et al., 2018; Oliveira et al., 2017b) was highly associated with all the disease
groups. Members of the Phoma genus were significantly associated with the R group and was
unsurprising as this genus has both biocontrol and plant growth capabilities (Saldajeno et al.,
2012).

The resistant fungal group had a majority of OTUs showing similarity to well-known plant
growth-promoting fungal genus including Papiliotrema (Tremellaceae family), which are
known biocontrol agents (Schisler et al., 2019). Members of the genus Alternaria, from the
Pleosporaceae family, were also detected in high relative abundances in the resistant group
and have previously been demonstrated to possess bio-herbicide traits (Poudel et al., 2016).
Members of the family Bulleribasidiaceae and Hannaella yeast were also detected at high
relative abundances in resistant plants. Hannaella yeasts are frequently observed in the
phyllosphere of various plant species (Edwards et al., 2015; Nasanit et al., 2015; Nutaratat et
al., 2014; Caporaso et al., 2012). Some Hannaella species are known to produce indole acetic
acid (IAA) (Kaewwichian et al., 2015; Sun et al., 2014). The 1AA producing microorganisms
are reported to be efficient bio-fertilizer inoculants used for promoting plant growth (Mehmood

et al., 2018), although another study has suggested that yeasts may not necessarily promote
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plant growth (Sun et al., 2014). Therefore, it remains unclear how Hannaella yeasts interact
with other yeasts, bacterial or fungal species in or on plant leaves. The precise mechanisms

used to influence plant performance and host-genotype specifically also remain unclear.

Pantoea, a sorghum bacterial pathogen causing leaf spot, was significantly and exclusively
associated with the HS disease group. Pseudomonas, bacterial pathogens causing leaf blight in
sorghum, was associated with all the disease groups including R, MR, S and HS. The presence
of Pseudomonas in the R group suggests that it embodies an attractive biocontrol agent because
of their catabolic adaptability and their capacity to produce a wide range of antifungal
metabolites as previously reported (Gémez-Lama Cabanas et al., 2018; Panpatte et al., 2016;
Praveen Kumar et al., 2012). Members of the Serratia genus, causing cucurbit yellow vine
disease on cucurbits, sunflower, alfalfa were associated with the S disease group (Besler and
Little, 2017). These pathogens are known to colonize several monocotyledonous plants but
have not previously been found on sorghum leaves (Moral et al., 2018; Quaedvlieg et al.,
2013). This finding is perhaps not unusual as some pathogenic fungi have very broad host
ranges and may infect numerous different plant species (Prospero and Cleary, 2017; Bolton et
al., 2006). Some fungi may also have very narrow host ranges and the pathogen-response of
the plant may vary, determining the presence or absence of detectable symptoms (Yuan and
Gao, 2015). However, not much is known regarding the host specificity of pathogens infecting

agriculturally important plants like sorghum.

The taxonomic assignments for the majority of fungal species were classified at a considerable
portion as either potential or possible fungal species. These so-called potential microbial taxa
include taxa which could not be accurately annotated, particularly at lower taxonomic ranks.
This is a common issue in microbial classification studies and is due to several issues including
the relatively short sequences generated from amplicon studies and possibly due to insufficient
representative curated sequences in the databases used for classification (Meola et al., 2019).
Nevertheless, fungal species were potentially classified as Gibberella zeae and Epicoccum
sorghinum species, respectively, which were linked to the HS and S disease groups,
respectively. These species are potential pathogenic taxa and have been previously reported to

be major causative species in sorghum grain mould disease (de Oliveira et al., 2018; Kelly et

85



al., 2017). Gibberella zeae (anamorph Fusarium graminearum) was previously reported to be
the dominant species causing grain mould in sorghum (Nida et al., 2019). The potential
pathogenic species Ascochyta paspali and Ustilago kamerunensis causing leaf stripe disease
and head smut, respectively, in Paspalum dilatatum and Pennisetum purpureum grass species
(from the same Poaceae family as sorghum) were also associated with the HS and S disease
groups (Omayio et al., 2018). Interestingly, a newly identified potential pathogenic Mixta
gaviniae species of the genus Erwiniaceae family was highly associated with the HS disease

group (Palmer et al., 2018).

For the analysis of bacterial composition, it was found that Proteobacteria and Firmicutes were
had the highest relative abundances among all the disease groups. Previous studies showed that
phyllosphere bacterial communities were dominated by the phyla Proteobacteria followed by
the Actinobacteria, Bacteroidetes and Firmicutes (Knief et al., 2010; Miller et al., 2016). Many
genera that includes Bacillus, Methylorubrum, Pantoea, and Pseudomonas have been reported
from the phyllosphere environment of different crop plants (Aquino et al., 2019;
Dobrovol’skaya et al., 2017; Luo et al., 2012; Meena et al., 2012; Mukhtar et al., 2010). It was
shown that bacterial pathogens were present at considerably lower proportions compared to
fungi. While, sorghum serves as host to over 100 pathogens, previous studies suggest that fungi
are more likely to colonize plants in comparison to bacterial pathogens (Akinrinlola et al.,
2018; Zheng et al., 2016). Interestingly, the susceptible disease group had a higher relative
abundance of members of the family Bacillaceae, which are usually associated with healthy
plants and have the ability to promote plant growth (Das et al., 2012; Klein et al., 2001).
However, members of this family also contain other plant pathogens such as Bacillus pumilus,
a ginger rhizome rot pathogen (Yuan and Gao, 2015). In addition, members of this family may
survive unfavourable conditions, such as droughts or invasion by pathogens (Zheng et al.,
2016). This may explain the high relative abundances of the Bacillaceae family in the

susceptible disease group.
The genera Methylorubrum, Enterobacter and Sphingomonas were more abundant and highly

enriched in the R and MR group, with members of the latter genus significantly enriched in the

R group. Enterobacter and Sphingomonas have been previously reported to exhibit plant
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growth-promotion traits (Schlemper et al., 2018; Knief et al., 2010) Little is known regarding
the phylogenetic taxa and functional attributes of the recently classified Methylorubrum genus
(Grossi et al., 2020; Green and Ardley, 2018). However, members of this genus are abundant
in the phyllosphere and have the ability to promote growth in some plants (Koskimaki et al.,
2015; Bulgari et al., 2011; Schreiner et al., 2010; Sagaram et al., 2009). Members of this family
have also been shown to associate with plants which displayed resistance to disease (Schisler
et al., 2019; Wallace et al., 2018; Zhang et al., 2018b; Rakotoarisoa et al., 2015; Trivedi et al.,
2010).

Microbial taxa that frequently co-occur with other taxa form networks, which potentially play
a key role within the microbiome. The current findings showed that the OTUs represented by
Tremellomycetes and Dothiomycetes classes had more central roles in the network than OTUs
from the Sordiomycetes, which were peripheral. The bacterial networks Bacillaceae and
Sphingomonadaceae had more central role in the network. The modules which are located
centrally on the network have been reportedly expected to play important ‘topological roles’
in interconnecting pairs of other fungal and bacterial taxa in the symbiont-symbiont co-
occurrence network (Layeghifard et al., 2017; Toju et al., 2016). Both the fungal and bacterial
network data suggest that the dominant taxa in terms of microbial community composition are
essential in structuring the co-association network. These dominant taxa, are considered to be
keystone microbes, and have been suggested to be drivers of microbiome structure and
functioning (Hamonts et al., 2018; Layeghifard et al., 2017).

Conclusion

To the best of our knowledge, this is the first study to assess both the fungal and bacterial
composition in the leaves of sorghum RILs. It is shown that natural pathogen infection results
in distinct foliar microbial communities in sorghum RILs. The results of bacterial and fungal
community composition, community co-occurrences further suggest the importance of
keystone taxa which may disproportionately shape the structure of foliar microbiomes. The
current data provides a baseline for testing hypothesis related to the importance of keystone
taxa in foliar microbiota. Cultivation studies may shed light on the nature of the putative

symbiotic relationships between bacteria and fungi.
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The analysis of microbial diversity and community composition in this study could suggest
that different ‘resident’ consortia found in sorghum plants may be viable biocontrol and plant-
growth promoting agents. These results can also be useful biomarkers for assessing disease

status in plants, and therefore contribute towards crop breeding.
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CHAPTER 4

Sequencing of marker genes and cell viability
assessment of Fusarium graminearum (Gibberella
Zeae)
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41 INTRODUCTION

Fusarium graminearum, was significantly associated with the highly susceptible plants in the
current study. It was not surprising to observe the characterization of Fusarium graminearum
(Gibberela zeae), as it has been previously reported in other studies. This pathogen was isolated
in sorghum residues from the Krasnodar region of the Northern Caucasus (Burgess et al., 2002;
Francis and Burgess, 1977). Menkir et al. (1996) found significant levels of the Gibberella
disease in sorghum and incidence of Gibberella zeae was positively correlated with Sorghum

Grain Mould (SGM) damage scores.

Fusarium graminearum, is a cause of major disease of cereal crops, and can influence the yield
and lead to economic losses (Beukes et al., 2017). It is the dominant pathogen causing head
blight disease of wheat, and has occasionally been isolated from sorghum (Burgess et al., 2002;
Trimboli and Burgess, 1985). Fusarium graminearum showed the highest pathogenicity on
sorghum grain when compared to other Fusarium species (Quazi et al., 2010). This species has
the potential to produce zearalenone (ZEA, 15-acetyldeoxynivalenol (15-ADON),
deoxynivalenol (DON), nivalenol (NIV) and 3-acetyldeoxynivalenol (3-ADON) (Yerkovich
et al., 2017) which can negatively influence the health of people and animals when heavily
mycotoxin contaminated food based products of sorghum are ingested over a long period
(Pinotti et al., 2016). Studies on infection of sorghum seedlings by Fusarium graminearum
indicated that this pathogen can infect the sorghum host at early growth stages and gradually
colonize adjacent tissues (Van Rooyen, 2019; Bodoci et al., 2013). GRAINSA, 2017,
Schoeman and Greyling-Joubert (2017) have reported that there has been an increase in the

occurrence of Fusarium graminearum in South African crops.

Traditional diagnostic methods for identification and detection of Fusarium graminearum in
culture or in infected grains were based on morphological features. This process is laborious
and it can often be challenging to differentiate between species that are similar. Molecular
methods are more sensitive, faster and are also employed in Fusarium species identification.
PCR with primers targeting the internal transcribed sequence (ITS) between ribosomal DNA
(Schilling et al., 1996) for the detection and identification of Fusarium graminearum has been
used extensively. However, sequences in the ITS regions have shown to be highly variable in

fusaria (O’Donnell, 1992), as several species of Fusarium morphological features closely
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resemble those of F. graminearium (Aoki et al., 1999). The most commonly used primers in
fungal ecology for sequence-based fungal identification at species level are ITS1, ITS2, ITS3
and 1TS4 (De Beeck et al., 2014; White et al., 1990). In this chapter, molecular methods were
used to confirm Fusarium graminearum with ITS (ITS1 and ITS4 regions) and UBC primer
sets (UBC85F410-UBC85Ru410) specific to the Fusarium graminearum, and also to check the

cell/spore viability of the identified species through an automated cell counter.
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4.2  MATERIALS AND METHODS
4.2.1.1 Fungal isolation (mycelia production and harvest)

The isolate was originally derived from wheat grain and was received from the Agriculture
department at University of South Africa (UNISA). Fusarium graminearum was grown
separately in Petri plates containing potato dextrose agar (PDA) medium in triplicate. Plates
were incubated at 25°C for 10-14 days. Fungal conidia were harvested by flooding the plates
with 10 ml sterilized water and then the agar surface was scraped with a spatula to dislodge the
conidia. The conidial suspensions were filtered through four layers of sterile cheesecloth into
two separate beakers and diluted with sterile water at various concentrations from 1x10° to
2x10%* conidia/ml.

4.2.1.2 Determination of cell viability

Cultivated spore (harvested from a media) viability and count was conducted using a LUNA-
1™ automated cell counter (Logos Biosystems inc, USA) following the manufacturer’s
instructions. Briefly, a cell count was performed by mixing 10 ul of the cell sample with 10 pl
of trypan blue stain, 10 ul of the mixed cell sample was loaded into the inlet of one chamber
of the counting slide. The slide was inserted into the slide port of the cell counter. The cell

count was read generating results for total, live, dead cell concentrations and viability.

4.2.2 Fusarium graminearum confirmation

4.2.2.1 Isolation of DNA

Fungal DNA was isolated using the CTAB method with minor modifications. Fresh fungal
mycelium grown from 6 days old mycelia was transferred to a 2 ml plastic tube, and 500 pl
lysis buffer (Macherey-Nagel) was added. The mycelium was crushed using the Savant
Fastprep™ FP120 Cell Disruptor for 20 s and incubated for 60 min at 60 °C. The total volume
of 140 ul 1.4 M NaCl and 65 pl of 10% CTAB was added. Following, incubation at 60 °C for
10 min, 452.5 pul SEVAG was added and incubated for 30 min at 4 °C. After 10 min
centrifugation at 14000 x g, the supernatant was transferred to a fresh tube and 440 ul

isopropanol was added, mixed and centrifuged for 10 min at 14000 x g.
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4.2.2.2 DNA purification and concentration quantification

The supernatant was then discarded and the pellet was washed twice with cold 70% ethanol.
The pellet was dried and dissolved with 25 pl elution buffer (10 mM Tris-Cl, 1 mM EDTA,
pH 8.0). A volume of 1 pl RNase A (20 mg/ml) was added to DNA samples, mixed and
incubated at 37 °C for 1 h. The concentration of the DNA was determined using Qubit 2.0

fluorometer.

4.2.2.3 PCR amplification, gel electrophoresis and concentration quantification

Fusarium graminearum species isolated in triplicates were confirmed using two primer sets
ITS1 and ITS 4 and UBC85F410 and UBC85R410 (DeLeon-Rodriguez et al., 2013; Group et
al., 2009; Schilling et al., 1996). Each PCR reaction contained DNA template (~10-20 ng), 10
uM of each primer (Integrated DNA Technologies, USA), 2.0 mM MgCly; 0.2 mM of each

dNTP; and 1.25 U Tag DNA polymerase (Thermo Scientific Co., USA) and PCR grade water
to a final volume of 25ul. The reaction was carried out on a G STORM Thermal cycler (Gene
Technologies, UK). The thermal cycling conditions used were, initial denaturation at 95 °C for
1 min, followed by 30 cycles of denaturation for 30 s at 94 °C, and the annealing phase at 55
°C for 60s (ITS1 and ITS 4) and 61 °C for 30s (UBC85F410 and UBC85R410) and extension
at 70°C for 20 s; a final extension was performed at 72 °C for 10 min. PCR amplicons
concentration was quantified using a Qubit® fluorometer. The quality of the amplicon was
viewed with agarose gel electrophoresis. Briefly, the cast gels were equilibrated in the running
buffer 1IXTBE (Tris base: Boric acid: EDTA at 10 VV/cm for 30 min). A RiboRuler RNA ladder

was used as molecular size marker (RiboRuler, Fermentas).

4.2.2.4 PCR product sequencing

Sanger sequencing of PCR products was conducted at Inqaba Biotec (Gauteng, South Africa).
PCR purified products of the (ITS1 and ITS 4) and (UBC85F410 and UBC85R410) gene of
the strains were analyzed for nucleotide. sequence determination by using the ABlI PR1SM
3500XL DNA Sequencer (Applied Biosystems) at Ingaba Biotechnical Industrial (Pty) Ltd,

Pretoria, South Africa, according to the manufacturers protocol.
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4.2.2.5 Quality control and sequence assembly

Sequencing data was obtained in the AB1 file format and was visualized and edited using
SnapGene software (GSL Biotech, Chicago, IL, USA). Subsequent, to the conversion of the
file from ABI format to fastq, the quality of the sequenced data was assessed using the FastQC
v0.10.1 tools (Andrews, 2010). CLC-Workbench was used to assemble the resultant sequences
and  consensus  sequences  were  submitted to BLASTn  on NCBI
(www.ncbi.nlm.nih.gov/BLAST) to retrieve known sequences that are homologous as

references for species identification.
4.2.2.6 Phylogenetic analysis and sequence alignment

The molecular evolutionary genetics analysis package (MEGA v.7.0) (Tamura et al., 2011)
was used for phylogenetic analysis and multiple sequence alignments. Non-parametric
maximum likelihood (ML) bootstrapping with heuristic searches of 10,000 replications was
performed to assess branch support in phylogenetic trees generated. The percentage values of
97% or larger were regarded as evidence that the groupings were of the same species.
Sequences amplified from Fusarium graminearum with fungal ITS primer set and UBC primer
set were aligned separately with the voucher sequences to estimate the similarities between the
samples through NCBI blast (www.ncbi.nlm.nih.gov/BLAST). Alignments were further

visualised with the GenBank datasets using CLC Bio Genomics workbench v9.0.
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43 RESULTS
4.3.1 Fusarium graminearum pathogen viability
The conidial suspensions resulted in live cells being more than the dead cells in terms of cell

number and concentration (3.45 x 10°) Figure 4.1. The pathogen viability was at 65% which

was enough to initiate pathogen infection (Table 4.1).
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Figure 4.1: Cell size histogram expressed by cell number and cell concentration measuring
total cells (red and green colour), live cells (green colour) and dead cells (red colour). The
pathogen viability concentration was at 65% which was enough to initiate pathogen infection.
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Table 4.1: The total number of live and dead cell as measured by the automated cell
counter. The cell viability of the pathogen was 65% represented by the number of live cells.

Total cell concentration

3.47 x 107 cells/mL

Live cell concentration

2.25 x 107 cells/mL

Dead cell concentration

1.22 x 107 cells/mL

Viability 65%
Average cell size 8.8 um
Total cell number 7057
Live cell number 4580
Dead cell number 2477
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4.3.2 Molecular characterization and phylogenetic analyses of Fusarium graminearum
4.3.2.1 PCR amplification

The identification and confirmation of Fusarium graminearum through molecular analysis was
indicated. The amplification of the ITS and the UBC regions of the Fusarium graminearum
resulted in the ~500 bp expected product (Figures 4.2A and 4.2B), which was subsequently

confirmed through Sanger sequencing.
4.3.2.2 Quality control and sequence alignment

The analysis showed the higher quality reads (most reads above Phred scores 20) of the
UBC+ITS data (Figures 4.3A and 4.3B). ITS and UBC primer sets generated consensus
sequences subjected to BLASTnN and resulted in a retrieval of known homologous sequences
with a percentage similarity of 97-100. The sequence alignment of different GenBank species
(NCBI) showing sequence similarities with the ITS consensus sequences of the isolates used
in this study, presented that these regions are highly variable as shown in alignments with

sequences from other Fusarium spp. (Figure 4.4).
4.3.2.3 Phylogenetic analyses

The ITS consensus sequences were further aligned with the Fusarium graminearum voucher
species with unique accession numbers (MN017275- MNO17277) and the evolutionary tree
derived from the maximum likelihood analysis for the primer sets ITS set clustered with
Fusarium graminearum voucher sequences and this is shown in Figures 4.5 and 4.6. For the
UBC primer sets (which are Fusarium graminearum species specific) the isolates DNA
sequences showed similarity (97%) to GenBank species Fusarium graminearum
(HG970333.1) only, in contrast to ITS which has shown to be highly variable. It was confirmed
that Fusarium graminearum aligned with the consensus sequences, as shown in Figure 4.7.
Sequences with UBC primer sets also aligned and clustered with Fusarium graminearum
voucher species (accession numbers, MT723845-MT723847) Figures 4.8 and 4.9, confirming
the similarity and identity of Fusarium graminearum. The UBC and ITS primer set exclusively

clustered with Fusarium graminearum voucher species with unique GenBank accession
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number (MT723845-MT723847; MNO17275- MN017277 respectively) at 99-100% sequence
identity. While the Fusaria species in the NCBI database were highly variable (Figure 4.10).
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Figure 4.2: Agarose gel amplified DNA of Fusarium graminearum. M. indicates the
1kilobase (kb) molecular marker lane. Lanes 1-3 represents amplified ITS1 and ITS 4 regions
of Fusarium graminearum in 3 replicates (A) targeted ITS regions, (B) Agarose gel amplified
DNA of Fusarium graminearum. M. indicates the 1 kb molecular marker lane. Lanes 1-3
represents the amplified UBC85F10 & UBCB85R410 regions of Fusarium graminearum in 3
replicates
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Figure 4.3: Sanger base quality reads used to create a consensus sequence (assembly)
checked and analysed by FastQC v0.10.1 tools (Andrews, 2010) (A) reads generated by the
UBC primer set (B) reads generated by the ITS primer set. The analysis showed the higher
quality reads (most reads above Phred scores 20) of the UBC+ITS data.

101



HG936661.1
HG936663.1
MG274303.1
MG979795.1
MH290473.1
MH290474.1
MH290475.1
AY147330.1
KF624778.1
KY910866.1
KY910868.1
GU327636.1
MG736154.1
MG736156.1
MG736167.1
MG736177.1
AY147323.
AF502838.
AB250414.
DQ459818.
DQ459820.
DQ459825.
DQ459827.
DQ459817.
DQ459849.
DQ459854.
KC311482.
KF212329.
KF212333.
KF212334.
KF800642.

KJ562375.
NR_121203.
HQ832817.
KP196572.
KT211541.
HG936656.
HG936659.
KU847854.
KU987906.
MF687188.
MG274301.
DQ459864.
DQ459868.

FJ466715.
HQ630964.
HQ176433.
HQ333188.
HQ333193.
HG936662.
HG936658.
MG182680.
HG936657.
HG936660.
HG799026.
KF646093.
AY147322.
MG515308.
MF800905.
MF372579.
KX421420.
KT828725.
KX527878.
KU715165.
KT996042.
KM265500.
KC857271.
KC577196.
KC577195.
JX125047.
JX125046.
JQ674751.
IN417227.

FJ459980.
AY188924.
KU715163.
JQ412111.
IN615245.
KY985465.
KX349468.1
MF497390.1
MF800906.1
KX349500.1
KT211545.1
KM266021.1
KT318586.1
AB289554.1
Consensus F1
Consensus F3
Consensus F2

L S A P S S S I SV A I ) S IR

Consensus
100%

Conservation
0%

-GCGGAGGGA TCATTACCGA GTTTACAACT CCCAAACCCC TGTGAACATA CCTTATGTTG

HG936661.
HG936663.
MG274303.
MG979795.
MH290473
MH290474.
MH290475.
AY147330.
KF624778
KY910866.
KY910868.
GU327636
MG736154
MG736156.
MG736167.
MG736177.
AY147323.
AF502838.
AB250414.
DQ459818,
DQ459820.
DQ459825.
DQ459827.
DQ459817
DQ459849.
DQ459854.
KC311482
KF212329.
KF212333.
KF212334.
KF800642
KJ562375.
NR_121203.
HQ832817
KP196572
KT211541.
HG936656.
HG936659.
KU847854.
KU987906.
MF687188.
MG274301
DQ459864.
DQ459868.
FJ466715.
HQ630964
HQ176433.
HQ333188.
HQ333193
HG936662
HG936658.
MG182680.
HG936657.
HG936660.
HG799026.
KF646093.
AY147322
MG515308.

[}

[2})

@

[]

[2¥]

[}

[}

[2¥]

[]

@
[o]

[o}]

MF372579,
KX421420.
KT828725.
KX527878.
KU715165
KT996042.
KM265500.
KC857271.
KC577196
KC577195.
JX125047.
JX125046
JQ674751
IN417227.
F)459980.
AY188924
KU715163
JQ412111.
IN615245.
KY985465.
KX349468.1
MF497390.1
MF 1
KX349500.1
KT211545.1
KM266021.1
KT318586.1
AB289554.1
Consensus F1
Consensus F3
Consensus F2

Consensus CCTCGGCGGA TCAGCCCGCG CCCCGTAAAA AGGGACGGCC CGCCGCAGGA ACCCTAAACT

100%

Q@

[]

[2¥]

[]

@

i e e e e e

[2}] @
[olaXoYoNoKoRoRoKeRoNoKeRoNokoKoNaKoKeRoRoKeRaRa o NoNRaRoRoRaRo Koo Koo No Koo o ReRoNoKeRoNoNo Ko RoKoReRoRoKeRoNaKo NoNaXoReRoRo Koo RaKoNo Koo RoKaRaNo)

mmmmmmmmmmmmmmomommommmmmmmmmmmmmmmmgmmmmoomommommmmmmmmmmmmmmmmmmommoomo

Conservation
o%

102



HG936661
HG936663
MG274303
MG979795
MH290473
MH290474
MH290475
AY147330.
KF624778
KY910866
KY910868
GU327636.
MG736154
MG736156
MG736167.
MG736177
AY147323
AF502838.
AB250414.
DQ459818.
DQ459820.
DQ459825.
DQ459827.
DQ459817.
DQ459849.
DQ459854.
KC311482.
KF212329
KF212333.
KF212334.
KF800642.
KJ562375
NR_121203.
HQ832817.
KP196572.
KT211541
HG936656.
HG936659.
KUB47854.
KU987906.
MF687188.
MG274301.
DQ459864.
DQ459868.
FJ466715.
HQ630964.
HQ176433
HQ333188.
HQ333193.
HG936662.
HG936658.
MG182680
HG936657.
HG936660.
HG799026.
KF646093.
AY147322.
MG515308.
MF800905
MF372579.
KX421420.
KT828725.
KX527878.
KU715165.
KT996042.
KM265500.
KC857271
KC577196.
KC577195.
JX125047
JX125046.
JQ674751.
IN417227.
F}459980
AY188924.
KU715163.
JQ412111.
IN615245
KY985465
KX349468.
MF497390.
MF800906.
KX349500.
KT211545.
KM266021.

KT318586.1
AB289554.1
Consensus F1
Consensus F3
Consensus F2

sus GAATTCAGTG AATCATCGAA TCTTTGAACG CACATTGCGC CCGCCAGTAT TCTGGCGGGC

comens, (TN TR TN T T AT TR AT

HG936661.
HG936663.
MG274303.
MG979795
MH290473.
MH290474.
MH290475.
AY147330.
KF624778.
KY910866.
KY9108638.
GU327636.
MG736154.
MG736156.
MG736167
MG736177.
AY147323.
AF502838.
AB250414.
DQ459818.
DQ459820.
DQ459825.
DQ459827.
DQ459817.
DQ459849.
DQ459854.
KC311482.
KF212329.
KF212333.
KF212334.
KF800642.
KJ562375.
NR_121203.
HQ832817.
KP196572.
KT211541.
HG936656.
HG936659.
KU847854.
KU987906.
MF687188.
MG274301.
DQ459864.
DQ459868.
FJ466715.
HQ630964.
HQ176433.
HQ333188.
HQ333193.
HG936662.
HG936658.
MG182680.
HG936657.
HG936660.
HG799026.
KF646093.
AY147322.
MG515308.
MF800905.
MF372579.
KX421420.
KT828725.
KX527878.
KU715165.
KT996042.
KM265500.
KC857271.
KC577196.
KC577195.
JX125047.
JX125046.
JQ674751.
IN417227.
FJ459980.
AY188924.
KU715163.
JQ412111.
IN615245.
KY985465.
KX349468.
MF497390.
MF800906.
KX349500.
KT211545.
KM266021.
KT318586.1
AB289554.1
Consensus F1
Consensus F3
Consensus F2

Consensus ATGCCTGTTC GAGCGTCATT TCAACCCTCA AGCCCAGCTT GGTGTTGGGA GCTGCAGTCC

concenason, [[TTTTTTTIT TTTTITTINT TATTTTTTTIT TOTTUATINT TUTTTTCITIT TTUTTIITIT

103



HG936661.
HG936663.
MG274303.
MG979795.
MH290473.
MH290474.
MH290475.
AY147330.
KF624778.
KY910866.
KY910868.
GU327636.
MG736154.
MG736156.
MG736167.
MG736177.
AY147323.
AF502838.
AB250414.
DQ459818.
DQ459820.
DQ459825.
DQ459827.
DQ459817.
DQ459849.
DQ459854.
KC311482.
KF212329.
KF212333.
KF212334.
KF800642.
KJ562375.
NR_121203.
HQ832817.
KP196572.
KT211541.
HG936656.
HG936659.
KUB47854.
KU987906.
MF687188.
MG274301.
DQ459864.
DQ459868.
FJ466715.
HQ630964.
HQ176433.
HQ333188.
HQ333193.
HG936662.
HG936658.
MG182680.
HG936657.
HG936660.
HG799026.
KF646093.
AY147322.
MG515308.
MF800905.
MF372579.
KX421420.
KT828725.
KX527878.
KU715165.
KT996042.
KM265500.
KC857271.
KC577196.
KC577195.
JX125047.
JX125046.
JQ674751.
IN417227.
F}459980.
AY188924.
KU715163.
JQ412111.
IN615245.
KY985465.
KX349468.
MF497390.
MF800906.
KX349500.
KT211545.
KM266021.
KT318586.1
AB289554.1 TcETGERE
Consensus F1
Consensus F3 G [etel et
Consensus F2 TGETcEAE B L] @i L]
Consensus TGCTGCACTC CCCAAATACA TTGGCGGTCA CGTCGAGCTT CCATAGCGTA GTAATTTACA

<consersaven [TTTTTTTTIT THITTTTTTT TTTTTTTTT TIATTTT T T

[P S S O P P ) QS G N P 0 N G P O N A S P S S S S D S SR DN P P A A A A A

HG936661.
HG936663.
MG274303.
MG979795.
MH290473.
MH290474.
MH290475.
AY147330.
KF624778.
KY910866.
KY910868.
GU327636.
MG736154.
MG736156.
MG736167.
MG736177.
AY147323.
AF502838.
AB250414.
DQ459818.
DQ459820.
DQ459825.
DQ459827.
DQ459817.
DQ459849.
DQ459854.
KC311482.
KF212329.
KF212333.
KF212334.
KF800642.
KJ562375.
NR_121203.
HQ832817.
KP196572.
KT211541.
HG936656.
HG936659.
KU847854.
KU987906.
MF687188.
MG274301.
DQ459864.
DQ459868.
FJ466715.
HQ630964.
HQ176433.
HQ333188.
HQ333193.
HG936662.
HG936658.
MG182680.
HG936657.
HG936660.
HG799026.
KF646093.
AY147322.
MG515308.
MF800905.
MF372579.
KX421420.
KT828725.
KX527878.
KU715165.
KT996042.
KM265500.
KC857271.
KC577196.
KC577195.
JX125047.
JX125046.
JQ674751.
IN417227.
FJ459980.
AY188924.
KU715163.
JQ412111.
JN615245.
KY985465.
KX349468.
MF497390.
MF800906.
KX349500.
KT211545.
KM266021.
KT318586.1
Consensus F1
Consensus F3
Consensus F2 @
Consens:

100
Conservation

260
1

L S P Y P P P ) S P D P S S S

00000 E0OONNONNNNNNNNNNN0NNNNNNNNNN0N0NNN0NNNN0NNNNNNNNNN0NNNNNNNNNNNNNNNN0NNNNNNNN00000H

cT@ @l
us CATCGTTACT GGTAATCGTC GCGGCCACGC CGTTAAACCC CAACTTCTGA ATGTTGACCT

o

104



HG936661.
HG936663.
MG274303.
MG979795.
MH290473.
MH290474.
MH290475.
AY147330.
KF624778.
KY910866.
KY910868.
GU327636.
MG736154.
MG736156.
MG736167.
MG736177.
AY147323.
AF502838.
AB250414.
DQ459818.
DQ459820.
DQ459825.
DQ459827.
DQ459817.
DQ459849.
DQ459854.
KC311482.
KF212329.
KF212333.
KF212334.
KF800642.
KJ562375.
NR_121203.
HQ832817.
KP196572.
KT211541.
HG936656.
HG936659.
KU847854.
KU987906.
MF687188.
MG274301.
DQ459864.
DQ459868.
F]466715.
HQ630964.
HQ176433.
HQ333188.
HQ333193.
HG936662.
HG936658.
MG182680.
HG936657.
HG936660.
HG799026.
KF646093.
AY147322.
MG515308.
MF800905.
MF372579.
KX421420.
KT828725.
KX527878.
KU715165.
KT996042.
KM265500.
KC857271.
KC577196.
KC577195.
JX125047.
JX125046.
JQ674751.
IN417227.
F)459980.
AY188924.
KU715163.
JQ412111.
JN615245.
KY985465.
KX349468.
MF497390.
MF800906.1
KX349500.1
KT211545.1
KM266021.1

KT318586.1
AB289554.1
Consensus F1
Consensus F3
Consensus F2 il AcE

Consensus CGGATCAGGT AGGAATACCC GCTGAACTTA AGCATATCAA

on HHHHHHHHH‘HHHHHHHHHH HHHHHHHHHHHHHHHHHHHH

Conservation
0%

FPHRRHEHERRHERERREHER R RR R R R RRE R R R RR R R R R R R R R R R R R R RRRRRRRERRRHRRRR R R RERR R R R

519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
519
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520
520

520
520
520
520
520

Figure 4.4: ITS region based multiple sequence alignments with comparison to the
Fusaria species in GenBank databases. The alignments were created using CLC Bio

Genomics Workbench v9.
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Figure 4.5: Multiple sequence alignments of I TS region of Fusarium graminearum species
that aligned with comparison to the GenBank Fusarium graminearum voucher species
(MNO017275- MNO017277). The alignments were created using CLC Bio Genomics Workbench

V9

107



N

1009

AY147330.1 Fusarium culmorum
KF624778.1 Fusarium graminearum
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KU715165.1 Fusarium graminearum
KT996042.1 Fungal sp.
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KC857271.1 Fungal sp.
KC577196.1 Fusarium graminearum
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JN417227.1 Gibberella zeae isolate
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AY188924.1 Gibberella zeae
KU715163.1 Fusarium graminearum
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Figure 4.6: Maximum likelihood phylogenetic tree of Fusarium graminearum species
derived from Fusarium graminearum and other Fusaria species (unique GenBank
accession number (MN017275- MNQ17277) targeting ITS regions. The ITS amplicons could
not distinguish between other Fusaria sp. Bootstrap values were calculated from 10,000

replicates.
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Figure 4.7: UBC region based multiple sequence alignments of Fusarium graminearum
with comparison to the GenBank databases. The alignments were created using CLC Bio
Genomics Workbench v9.
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Figure 4.8: UBC region based multiple sequence alignments of Fusarium graminearum
with comparison to the GenBank Fusarium graminearum voucher species. (MT723845-
MT723847). The alignments were created using CLC Bio Genomics Workbench v9
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Figure 4.9: Maximum likelihood phylogenetic tree of Fusarium graminearum species
(circled) clustered with only Fusarium graminearum. UBC set of primers specific to
Fusarium graminearum identification exclusively clustered with Fusarium graminearum
voucher species unique GenBank accession number (MT723845-MT723847) at 100%
sequence identity. Bootstrap values were calculated from 10,000 replicates
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Figure 4.10: Maximum likelihood phylogenetic tree of UBC and ITS primer sets NCBI
database sequences together with their voucher species. UBC and ITS primer set
exclusively clustered with Fusarium graminearum voucher species with unique GenBank
accession number (MT723845-MT723847; MNO017275-MNO017277) at 100% sequence
identity. While the Fusaria species in the NCBI database were highly variable. Bootstrap values

were calculated from 10,000 replicates
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4.4  DISCUSSION

The purpose of this chapter was to confirm the identity of the pathogen and check the viability
of the pathogen to ensure infection initiation. Previous studies relied on morphological
identification which requires considerable expertise in physiology and taxonomy and are time
consuming. Furthermore, the identification and classification of Fusarium spp. using
morphological characteristics is difficult even for specialists because of the large
morphological variation of isolates within a single species and also because of the varieties,
number, and forms of species (Abedi-Tizaki and Sabbagh, 2012; Leslie et al., 2005).

The amplification of ITS regions (ITS 1 and ITS 4) in this study resulted in the expected ~600
base pairs (bp) products. The ITS sequences of the 3 individual samples clustered with
Fusarium graminearum (Gibberella zeae) voucher sequences which were deposited in the
NCBI database. The three individual ITS samples (voucher species) were assigned NCBI
unique gene accession numbers (MNO17275- MNQ017277). As much as primers targeted to the
internal transcribed sequence (ITS) of the ribosomal DNA (Schilling et al., 1996) were used,
the identification and detection of Fusarium graminearum sequences in the ITS regions has
been reported to be highly variable in fusaria (Frenkel et al., 2012; O’Donnell, 1992). This was
illustrated in the current study through the alignment of the isolated species and NCBI
GenBank fusaria sequences. However, through multiple sequence alignment, voucher

sequences aligned with the isolates used in this study.

The proper identification of Fusarium spp. is critical to predict the potential mycotoxigenic
risk of the isolates, as there is a need for complementary and accurate tools that permit
sensitive, specific, reliable and rapid diagnosis of Fusarium spp. (Sampietro et al., 2010).
Hence, PCR assays that are species-specific are usually needed for accurate identification.
Accordingly, species-specific PCR was conducted to confirm the Fusarium graminearum
species identity with strain specific primers (UBC85F410-UBC85R410), which were
subsequently confirmed through Sanger sequencing. The UBC primer sets generated
sequences of the three individual isolates with a fragment size of ~450 bp. The isolates
exclusively showed the percentage similarity with only Fusarium graminearum, in contrast

with the ITS primer sets which presented isolates that aligned with other Fusarium spp.

114



showing high variability. Furthermore, phylogenetic and multiple alignments analysis have
shown that the species-specific isolates used in this study clustered and aligned with voucher
Fusarium graminearum species at 100% sequence similarity. With regards to the viability of
the spores, the percentage was calculated through the automated cell counter. The re-suspended
conidial concentration of 1x106 to 2x10* resulted in live cells being more than the dead cells
in terms of cell number and concentration. The automated cell counter measured the live spores
(cell concentration) of the pathogen to 2.25 x 107 cells/ml, and the spore viability was at 65%

which was enough to initiate pathogen infection (Barua et al., 2017).

45  CONCLUSION

Molecular analyses pointed to the confirmation of Fusarium graminearum using the fungal
ITS primers set and strain specific primers (UBC85F410-UBC85R410). This study also confirms
through the alignment and phylogenetic analysis that the species is Fusarium graminearum
and not any other related Fusarium spp. One of the aims of this chapter was also to count the
number of live cells/spores present in a given sample solution, to ensure that plant pathogen
infection will occur in the subsequent chapter through the automated cell counter. The
percentage of the live spores was over 60% which ensured that viability of the Fusarium

graminearum will allow for the infection of the plant by the pathogen.
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CHAPTER 5

Gene expression patterns in susceptible and
resistant recombinant inbred line (RILS) in response
to Fusarium graminearum infection across different

time-points
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5.1 INTRODUCTION

Sorghum, like any other plant, is subjected to a wide variety of biotic and abiotic constraints.
Plants are susceptible to infection by agents of varying complexity including eukaryotic
parasites such as fungi. Pathogen infection instigate a dynamic cascade of events which
culminates in gene expression patterns that are altered in both interacting organisms
(Westermann et al., 2017). These changes give rise to the pathogen adaptation and persistence
or to its clearance from the host by the immune response. A global and an unbiased
understanding of the transcriptomes of both host and pathogen can provide new insights by
identifying pathways in the host cell that respond to pathogen-associated molecular patterns

(PAMPs) exposure to specific pathogens.

Fusarium graminearum has been found in this study to be associated with highly diseased
RILs. Sorghum has been previously reported as both a host and an important alternative host
of the fungal pathogen Fusarium graminearum (Goswami and Kistler, 2004). Fusarium
graminearum has also shown the highest pathogenicity on sorghum grain compared to other
fusaria species (Quazi et al., 2010). The Fusarium graminearum species is a significant,
pathogen in maize and winter cereals, and has been associated with stalk rot and grain mould
of sorghum (Nida et al., 2019; Kelly et al., 2017; Menkir et al., 1996; Trimboli and Burgess,
1985). Not only is it a major biotic sorghum production constraint, Fusarium graminearum
causes Gibberella ear rot of maize, and Fusarium head blight (FHB) of wheat and barley (Harris
etal., 2016).

Additionally, Fusarium graminearum can be a toxicological risk to animals and humans (Pena
et al., 2019; Burgess et al., 2002), since this species has the potential to produce 15-
acetyldeoxynivalenol  (15-ADON), deoxynivalenol (DON), nivalenol (NIV), 3-
acetyldeoxynivalenol (3-ADON) and zearalenone (ZEA) (Yerkovich et al., 2017). The
toxicological effect of Fusarium graminearum is that, it is responsible for the majority of
important mycotoxins in winter cereals as they cause reduced kernel germination, mass and

density, reduced nutritional quality, market value, storage quality and unfavourable processing
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characteristics (Balota et al., 2012; Navi et al., 2005; Marley and Ajayi, 1999; Menkir et al.,
1996).

The total loss of 130 million US dollars in the semi-arid tropical areas of Asia and Africa due
to mycotoxins has been reported by the International Crops Research Institute for the Semi-
Arid Tropics (ICRISAT) (Gosal and Wani, 2018). Currently, the most prominent way to
control mycotoxins is through the use of traditional ways that are laborious. Additionally, they
have proved to be inefficient in the mycotoxins on grains. The best way to remove/limit
mycotoxins from contaminated food crop is to be able to control Fusarium graminearum.
Several recent transcriptome studies in Arabidopsis, wheat, and maize have been conducted to
study the response to Fusarium graminearum (Kheiri et al., 2019; Sarowar et al., 2019; Zhou
et al., 2019). The mechanisms underlying the host defence response against Fusarium
graminearum using comparative transcriptome analysis in susceptible and resistant maize and
wheat genotypes has been conducted (Brauer et al., 2019; Yuan et al., 2019). To the best of
our knowledge there is no reported study of gene expression study using RNA-Seq studies
conducted in the response of sorghum upon Fusarium graminearum infection. Therefore, the
aim of this chapter was to do comparative gene profiling to inspect the difference between the
resistant (RIL 103) and the susceptible (RIL 131) recombinant inbred lines (RILS) upon
Fusarium graminearum infection across time-points 24 hours post infection (hpi), 48 hpi, 7
days post infection (dpi) and 14 dpi using the RNA-Seq technique. And also, to determine if

Fusarium graminearum induces specific defence-related genes in the resistant RIL.
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5.2  MATERIALS AND METHODS

5.2.1 Sorghum cultivation

Sorghum recombinant inbred lines (RILS) were cultivated in vermiculate and perlite medium
in pre-sterilized pots. The plants were watered to 60% water holding capacity and the moisture
content was maintained by watering to weight every 2—-3 days. The experiment was carried out

in a controlled-environment glasshouse where the temperature was maintained at 25 + 2 °C.

5.2.2 Fungal inoculation on the plant

Sorghum leaves were inoculated at seedling stage in triplicate using point inoculation method
(artificial inoculation of the pathogen inoculum applied on the host surface). The wounds were
made on the host surface directly on the underside of the leaf and the leaves were inoculated
with conidial suspension of fungi. Inoculated leaves were covered with paper bags for 24 hours

post infection (hpi).

5.2.3 Sampling
Both susceptible and resistant sorghum RILs leaves were collected, according to the time-
points 24 hours and 48 hours post inoculation (hpi) for early pathogenesis, and at 7 days and

14 days post inoculation (dpi) for late pathogenesis. The RILs leaves were collected in

biological triplicates as shown in Figure 5.1.
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Figure 5.1: Experimental setup and sampling strategy. The resistant and the susceptible
RILs were cultivated and point inoculation was used to infect both resistant and susceptible
RILs. The leaf samples were collected in biological replicates in timepoints 24 hours post
infection (hpi), 48 hpi, 7 days post infection (dpi) and 14 dpi.
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5.2.4 Treatment of equipment and glassware for RNA isolation

Pestles and mortars, spatulas and tweezers that were used for RNA preparations and isolations
were treated with DEPC in water, then autoclaved at 121 °C for 15 min to sterilize. After
autoclaving, the instruments and glassware were subjected to 80 °C dry heat to dry before
being utilized. Equipment such as gel preparation trays, combs, and gel running tank were

treated with DEPC water before being used.
5.2.5 RNA extraction and quantification

Leaf tissues (100 mg) from infected resistant and susceptible RILs for time points 24 hpi, 48
hpi, 7 dpi and 14 dpi were ground in liquid nitrogen. For each biological replicate (at each time
point), three plants were used. RNA was isolated from leaf material using the Nucleospin RNA
plant kit (Macherey-Nagel, Germany), following manufacturer's instructions. RNA was
digested with DNase using the RNase-Free DNase kit (Qiagen, Valencia, CA), subsequently
eluted in 50 pl RNase-free water, and stored at -80 °C (to ensure that the leaf samples produces
a high quality RNA) until further usage. RNA concentration was quantified using a Qubit®

fluorometer.

5.2.6 Gel electrophoresis

RNA quality was viewed with agarose gel electrophoresis. Briefly, the cast gels were
equilibrated in the running buffer 1XTBE (Tris base: Boric acid: EDTA at 10 VV/cm for 30 min.
A RiboRuler RNA ladder was used as molecular size marker (RiboRuler, Fermentas).
Ethidium bromide stained images were captured on a BioRad Gel/Chemi DOC (BioRad
laboratories Inc., CA). After quantifying concentrations using a Qubit® fluorometer, all RNA

samples were adjusted to the same concentration.

5.2.7 Library preparation and RNA sequencing

Library preparations were performed from total RNA using the TruSeq Stranded mRNA
Sample Preparation Kit (Illumina, San Diego, CA, USA) that captures poly A tails of mMRNA

molecules. First strand cDNA was synthesized using random hexamers and reverse
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transcriptase followed by the synthesis of the second strand. The cDNA fragments were 3’
adenylated followed by ligation of the adapter with RNA adapter indexes. PCR amplification
was performed to enrich for adapter ligated fragments. The concentration of the libraries was
determined using a Qubit® fluorometer following the manufacturer’s instructions, and the
libraries were further validated by electrophoresis on a 1% 1xTBE agarose gel. Library
dilutions were prepared and loaded on a cBOT system (Illumina, San Diego, CA, USA) for
cluster generation and sequenced using an Illumina HiSeq 2500 (ARC-BTP). Each biological
replicate (3 per time point) was sequenced separately for each recombinant inbred line (131
and 103) at 24 hpi, 48 hpi, 7 dpi and 14 dpi.

5.2.8 Bioinformatic analysis

The quality of the sequenced data was assessed using the FastQC v0.10.1 tools (Andrews,
2010). Trimmomatic v0.36 (Bolger et al., 2014) was used to remove adapters and low-quality
reads from the RNA-Seq data in raw fastq files. The quality-filtered reads were then mapped
to the sorghum v3.3.1 reference genome using HISAT2 v2.0.5 (McCormick et al., 2018;
Karlovsky et al., 2016; Pertea et al., 2016). For this process, a maximum of two mismatches
were allowed, and all other parameters were used with the default settings. The mapped data
was assembled into transcripts and quantified using StringTie v1.3.1 (Pertea et al., 2015).
Default parameter settings were used for the quantification, based on the sorghum annotation
file. StringTie generated a matrix of expression values in fragments per kilobase of exon model
per million reads mapped (FPKM). Samtools (Li et al., 2009) was used to convert sequence
alignment map (SAM) output files to binary alignment map (BAM) format and transcript
assembly was completed using Cufflinks (Trapnell et al., 2010). A combined gene transfers
format (GTF) assembly file was created for differential expression analysis, using Cuffmerge,
containing the reference GTF genome as well as the Cufflinks output for each sample (Trapnell
et al., 2012). Gene expression data from the biological replicates of each genotype was
compared to determine the positive correlation of biological replicates within the same time-
point using MS Excel measured with Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) values (Figures 5.2A and 5.2B). The biological triplicates data was not pooled
and each biological replicate was analysed separately per time-point for each genotype before

differentially expressed genes analysis.
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5.2.9 Differential analyses with Cuffdiff

The files were amalgamated into a single, unified transcript catalog and the transcribed
fragments that may be artefacts were filtered out using Cuffmerge. The reference annotation
file was included to allow gene names and other details such as, exon number, transcript 1D,
coding sequence ID and transcription start site ID to be added to the merged transcript
catalogue. The merged GTF file was then provided to Cuffdiff along with the original
alignment files produced from HISAT2. Cuffdiff was used to determine pairwise differential
gene expression between the various time-points, and the cummeRbund R package was used
to generate graphical representations of the RNA-Seq data set (Trapnell et al., 2012, 2010).
Differentially expressed genes (DEGs) were determined with a log2 fold change > 0 cut-off

and an absolute FDR-value of < 0.05.

5.2.10 Gene expression clustering and pathway enrichment

Gene expression values (FPKMs) for all the time points (24 hpi, 48 hpi, 7 dpi and 14 dpi) were
analysed for significant expression in the resistant and susceptible RILs. The differentially
expressed genes for both the susceptible and resistant RILs generated by cuffdiff as mentioned
in section 5.2.5 were used for gene expression clustering analysis. Each transcript expression
value (FPKM) of the differentially expressed transcripts was log2 transformed to normalise
the data. DPGP clustering of genes with respect to expression levels was done using Dirichlet
Process Gaussian Process mixture model (DPGP) software (McDowell et al., 2018). A
maximum number of (1000) of iterations of clustering were performed with default software
parameters. The resistant and susceptible RILs were clustered into closely related expression
profiles to determine cluster membership across all timepoints in each RIL. KEGG mapping
and pathway enrichment for each cluster group were analysed using KEGG Orthology Based
Annotation System (KOBAS) (Xie et al., 2011) version 3.0 (http://kobas.cbi.pku.edu.cn/).
Gene enrichment was done using default settings against Arabidopsis. P<0.05 and input
number >3 were considered to be the most significant (Wu et al., 2017). The complete list of

commands and packages are listed in Appendix C.
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5.2.11 Profiling of time-points using keyword Gene Ontology terms and pathway
analyses

The Gene Ontology (GO) terms associated with differential expressed genes (DEGSs) were
described into biological processes, molecular functions and cellular components. The WEGO
program was used to plot GO annotations (http://wego.genomics.org.cn) (Ye et al., 2018).
Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) annotation service (http://www.genome.jp/kegg/pathway.html) (Moriya et al., 2007;
Kanehisa et al., 2004). KEGG Orthology (KO) terms were assigned to DEGs using the
Sorghum bicolor annotation file (www.phytozome.net). The list of assigned KO terms for each
time point and RIL type were then mapped to KEGG pathways for enzyme function. Pathway
annotation to reveal the trend of physiological processes affected by enriched pathway
enzymes encoded by the DEGs were clustered (Section 5.2.7). A comparison of the overall
DEGs between the resistant and susceptible RIL across all timepoints were then mapped to
KEGG pathways and significantly enriched terms were further identified in comparison with

the Arabidopsis thaliana genome background.
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5.3 RESULTS
5.3.1 Biological replicate variability and sequenced data information

A detailed account of all sequencing reads generated per time point (an average of 3 replicates)
is provided in Table 5.1. RNA-Seq data was acquired for RIL 131 and 103 from Fusarium
graminearum inoculated leaves at 24 hpi, 48 hpi, 7 dpi and 14 dpi in biological triplicates. The
RNA-Seq reads resulted in high quality raw reads represented by (Figure 5.1A). Figure 5.1B
represents a trimmed sequence, where low quality reads and reads containing adaptor
sequences were trimmed, and their quality was then assessed before and after trimming using
FastQC (Andrews, 2010). High quality reads were generated, resulting in the retention of an
average of 83% of the sequences after trimming (Table 5.1). Paired end reads only were
considered in the mapping to the reference genome. The reads for each biological replicate in
each time-point were mapped individually to the reference genome with HISAT2 (Pertea et
al., 2015). On average, 87% of the trimmed reads could be mapped to the sorghum reference
genome (Table 5.1). The assessed intergroup variation of gene expression of replicates using
excel, presented a good correlation between reads from the different biological replicates of
each sorghum RIL (in both susceptible and resistant RILS). The correlation coefficient values
ranged from R? = 0.92 - 0.99 (Figures 5.2A and 5.2B) in 24 hpi, 48 hpi, 7 dpi and 14 dpi
timepoints. Results show that transcripts in the sorghum samples were highest in the
susceptible RIL based on differentially expressed genes (DEG s) at False Discovery Rate (FDR
<0.05).
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Table 5.1: Summary of raw and trimmed reads generated per time-point after pooling
across the three biological replicates and subsequently mapping to the sorghum

reference genome (Shicolor_454 v3.0.1.fa).

RIL Hours/days No. of raw Trimmed %Trimmed % Mapped
Dataset  post-infection reads reads reads reads
131 24 hpi 80 million 66 83 84
reads million
reads
48 hpi 112 million 91 82 90
reads million
reads
7 dpi 55 million 51 93 78
reads million
reads
14 dpi 44 million 38 88 91
reads million
reads
103 24 hpi 20 million 15 75 81
reads million
reads
48 hpi 75 million 56 75 90
reads million
reads
7 dpi 34 million 28 83 91
reads million
reads
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14 dpi 188 million 152 81 91
reads million

reads

RNA-Seq data acquired for RIL 131 and 103 from Fusarium graminearum inoculated leaves
at 24 hpi, 48 hpi, 7 dpi, 14 dpi. Paired end reads generated through Trimmomatic (v0.36)
(Bolger et al., 2014) only were considered in the mapping to the reference genome (average
mapping rate of 87%).
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Figure 5.2: Quality analysis of reads before and after adapter clipping and trimming.
A=analysis of raw reads, B = analysis of read quality after read processing. Read quality was
viewed using FastQC version 0.11.8 (Andrews, 2010). The green area indicates the good reads
suitable for further analysis and data representation, orange is acceptable reads, and the pink
area is the bad unacceptable reads.
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Figure 5.3A: FPKM/FPKM scatter charts of the susceptible RIL leaf samples infected
with Fusarium graminearum (24 hpi — 14 dpi). Coefficient of determination (r?) measuring
the degree of relationship between two variables within 3 biological replicates. Images A-C
show 24 hpi (infected at 24 h), D-F show correlations of 3 biological replicates at 48 hpi
(infected at 48 h), G-I show correlations of 3 biological replicates at 7 dpi (infected at 7 days),
and J-L show correlations of 3 biological replicates at 14 dpi (infected at 14 dpi).
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Figure 5.3B: FPKM/FPKM scatter charts of the resistant RIL leaf samples infected with
Fusarium graminearum (24 hpi — 14 dpi). Coefficient of determination (r?) measuring the
degree of relationship between two variables within 3 biological replicates. Images A-C show
24 hpi (infected at 24 h), D-F show correlations of 3 biological replicates at 48 hpi (infected at
48 h), G-1 show correlations of 3 biological replicates at 7 dpi (infected at 7 days), and J-L
show correlations of 3 biological replicates at 14 dpi (infected at 14 dpi).
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5.3.2 Differential Gene Expression differences within resistant and susceptible over a
time period (24 hpi, 48 hpi, 7dpi and 14 dpi)

There were significant differences in the expression levels using the False Discovery Rate
(FDR < 0.05) and log2 fold change (Appendix: Table 5A.1, Table 5A.2), the significance
overall expression matrix displaying the number of differentially expressed genes across all
time-points post infection is shown in Figures 5.3A & 5.3B for susceptible and resistant
respectively. A total of 235 and 37 differentially expressed genes were observed, between the
time points in both susceptible and resistant RILs, respectively. Volcano plots (Goff et al.,
2012) Figures 5.4A & 5.4B) also displayed the number of differentially expressed genes
(DEGS) identified pairwise between each group. Up- and down-regulated genes were
represented with red dots, with more DEGs represented in the susceptible than in the resistant
samples. In both susceptible and resistant RILs, RIL infection resulted in a steady increase
observed in the number of DEGs with increase in time post-infection 48 hpi vs 7 dpi and 7 dpi
vs 14 dpi (Table 5.2). There was also an increase in the number of DEGs between 24 hpi and

48 hpi, and an observed decrease between 7 dpi and 14 dpi.

A B

Significant genes Significant genes
at alpha 0.05 at alpha 0.05

97 xagh 17

sample_2

s .
31 o g xd 10

107 10

sample_1 sample_1

Figure 5.4: The expression matrix displaying the significant number of differentially
expressed genes in (A) susceptible, and (B) resistant between each experimental group
(24 hpi, 48 hpi, 7 dpi and 14 dpi) at a given alpha (0.05) with 235 DEGs in susceptible and 37
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DEGs resistant RIL. Differentially expressed transcripts obtained using Cuffdiff tool (Trapnell
et al., 2012) were subjected to CummeRbund R software package (Trapnell et al., 2012).

14d X24h xash x7d X14d

10g10(p value)
10g10(p value)

0 5 1l 5 o 5 1o 0 o 5 0 5 10-0 5 0 5 100 5 0
loga(fold change) loga(fold change)

Figure 5.5: Pairwise volcano plots indicating significant DEGs between 24 hpi, 48 hpi, 7
dpi and 14 dpi in A- susceptible, B- resistant RILs respectively. Following the identification
of differential expressed genes with Cuffdiff (Trapnell et al., 2012). Significant DEGs were
identified with g values (P value adjusted to false discovery rate) of less than 0.05.
CummeRbund R software package was used to visualize the significant DEGs. Red spots
represent significant DE genes, and black spots are for non-DE genes.
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A total of 235 and 37 genes from the susceptible and resistant RILs were differentially
expressed (log2 fold change and FDR < 0.05) across all time-points (24 hpi -14 dpi) following
Fusarium graminearum infection (Table 5.2). In both susceptible and resistant RILs, RIL
infection resulted in a steady increase observed in the number of DEGs with increase in time
post-infection 48 hpi vs 7 dpi and 7 dpi vs 14 dpi (Table 5.2). There was also an increase in
the DEGs number between 24 hpi and 48 hpi, and an observed decrease between 7 dpi and 14
dpi.

Table 5.2: An overview of the number of up- and down-regulated genes (DEGS)
identified across 24 hpi, 48 hpi, 7 dpi and 14 dpi in susceptible and resistant RILs
response to Fusarium graminearum infection.

RIL Dataset Timepoints  Up-regulated Down-regulated  Total

131 (Susceptible) 24hvs 48h 68 (70%) 29 (30%) 97
48hvs7d 25 (81%) 6 (19%) 31
7d vs 14 37 (35%) 70 (65%) 107
dpi
Total 130 (55%) 105 (46%) 235

103 (Resistant) 24hvs 48h 16 (94%) 1 (6%) 17
48hvs7d 9 (90%) 1(11) 10
7dvs14d 9 (90%) 1 (9%) 10
Total 34 (92%) 3 (8%) 37

Displays the significant total number of down-and up regulated DEGs obtained using Cuffdiff
(Trapnell et al., 2012) between each experimental group (24 hpi, 48 hpi, 7 dpi and 14 dpi) in
susceptible and resistant RIL.
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Comparative analysis revealed that most of the DEGs observed were uniquely expressed at
specific time-points and that there were less common DEGs across different time-points in
both RILs (Figure 5.6) A high proportion of DEGs in the susceptible RIL was shared between
7 dpi and 14 dpi, and 24 hpi and 48 hpi (39% and 36% respectively). Over ten percent (11%)
DEGs were uniquely found in the 24 hpi.

48 hpi 7 dpi

Figure 5.6: Distribution of shared and unique differentially expressed genes (DEGS)
among three biological replicates at respective time points (24 hpi, 48 hpi, 7 dpi, 14 dpi)
in the susceptible RIL post-infection with Fusarium graminearum. Only transcripts with a
minimum of FDR < 0.05 were included in the data. Each coloured circle represents a time-
point, with shared and unique DEGs among different samples. The number of shared DEGs
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showed a rising trend in the susceptible RIL at late infection stage (48 hpi - 14 dpi). The early
infection stage indicated a decrease in the number of shared DEGs trend 24 hpi and 48 hpi).

In the resistant RIL, of the DEGs identified, 3% were common across all time-points (Figure
5.7). Similar to the susceptible RIL a high proportion (43%) of DEGs was shared between 24
hpi and 48 hpi. Time-points 7 dpi and 14 dpi had the least proportion of shared DEGs (14%).
48 hpi, 7dpi and 14 dpi shared 27% of DEGs.

48 hpi 7 dpi

Figure 5.7: Distribution of shared and unique differentially expressed genes (DEGS)
among three biological replicates at respective time points (24 hpi, 48 hpi, 7 dpi, 14 dpi)
in the resistant RIL post-infection with Fusarium graminearum. Only transcripts with a
minimum of FDR <0.05 were included in the data. Each coloured circle represents a time-
point, with shared and unique DEGs among different samples. The number of shared DEGs
showed a rising trend in the resistant RIL at early infection stage (24 hpi - 48 hpi). Late
infection stage (time-points 7 dpi and 14 dpi) showed a decrease trend in the number of shared
DEGs at late infection.
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5.3.3 DEGs expression clustering

Clusters in the susceptible RIL were grouped into 6 groups of distinct general expression trends
through DPGP software (Figure 5.8; Appendix Table 5A.3). The grouping of gene clusters was
done based on genes which had similar expression patterns. Groups 4 and 5 constituted 60%
of the total DEGs (Table 5.3). Genes encoding enzymes in the metabolic pathway were highly
enriched in group 2 and group 4 (Table 5.3). In group 2 the physiological trend showed an
increase at the late infection stage. Genes encoding enzymes in the biosynthesis of secondary
metabolites pathway were highly enriched in groups 2 and 4, and an increasing trend

progressed with infection time.

Genes encoding plant hormone signal transduction pathways were highly enriched in group 2
and the gene expression pattern increased with infection time, the increase was more
pronounced at the late infection stage 14 dpi. Genes encoding MAPK signalling pathways were
enriched in group 2, the expression trend also decreased with time. The genes encoding starch
sucrose metabolism and cyanoamino acid metabolism pathways were highly enriched in group
4, and presented an increase in the gene expression in the early infection stage and a decrease
in the late infection stage. Genes encoding ubiquinone and other terpenoid-quinone
biosynthesis (exclusively clustered in group 4) presented a significant decline from early

infection stage (24 hpi and 48 dpi) to late infection stage (7 dpi and 14 dpi).

Group 2, clustered into several multigene families within the susceptible RIL which are
reportedly involved in pathogenesis and included Sobic.007G059100 (methyltransferase),
Sobic.004G182300 - mildew locus (MLO) gene, Sobic.010G078100 (pantothenate Kkinase
(PanK). Group 3 presented an increased pattern in reported pathogen related genes negatively
and positively influencing immunity in 48 hpi-14 dpi. Genes associated with the expression
trends in group 3 included Sobic.006G248300 - 5-lipoxygenase (LOX5), Sobic.003G139500
(CBL-interacting protein kinase 1) and Sobic.001G482600 (jasmonate-zim-domain protein 1;
(JAZ1). The gene expression pattern, in group 2 increased with infection time, the increase
was more pronounced at the late infection stage 14 dpi. Group 1, exclusively presented a gene

encoding sesquiterpene metabolism pathway and presented a decrease with reported defence
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related genes in late infection stage (7-14 dpi); while group 6 presented an increase in the

reported defence related pathways at 48 hpi and a significant decline in14 dpi.

Group 1 Group 2 Group 3

Cluster 1 Cluster 6 3 Cluster 7

Gene expression
o

Gene expression
=)
Gene expression
o

24h agh 7d 14d 23 48h d 14d 24h 48h 7d 14d
Time
Time Time
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Group 4 ¥ Cluster 2
Cluster 3 Cluster 4
3 3
2 R
2 2

Gene expression
L=

Gene expression
o

Gene expression
(=]

Time Time Time
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Gene expression
o

24h 48h d 14d
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Figure 5.8: Cluster analysis of statistically significantly susceptible RIL genes using k-
means. Clustering of genes with respect to expression levels was done using Dirichlet Process
Gaussian Process mixture model DPGP. 1000 iterations of clustering were performed with
default software parameters. Differentially expressed genes obtained using cuffdiff (Trapnell
et al., 2012) were subjected to DPGP clustering to identify susceptible RIL significantly
expressed transcripts upon Fusarium graminearum infection, which were then separated into
closely correlated clusters of expression trends. Six general expression trends were observed.
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The general trend groups depicted: group 1, a decrease with reported defence related genes in
late infection stage (7-14 dpi); group 2, an increase with reported pathogen related genes that
positively and negatively affects susceptibility in the late infection stage; group 3, an increase
in reported pathogen related genes negatively influencing immunity in 48 hpi-14 dpi; group 4,
an increase in the reported defence related pathways at 24 hpi and a pronounced decline in 7-
14 dpi; group 5, an increase in the reported pathogen related genes that negatively influence
the plant at 7-14 dpi; group 6, an increase in the reported defence related pathways at 48 hpi
and pronounced decline in 14 dpi. The number of genes per cluster is shown in the left upper
corner. Group number is written in the left upper corner of each colour-coded group. The
horizontal axis is the hours and days post infection and the y-axis is the gene expression values
(FPKM) which were log2 transformed to normalize the data. For each cluster, standardized
FPKM as well as the posterior cluster mean £2 standard deviations is shown. The blueline
depicts the median expression level of the genes in a cluster.

Table 5.3: Analysis of pathway enrichment of susceptible RIL differentially expressed
genes

Group Pathway | Category Term PValue Corrected P- | Input
number | ID Value number
Group 1 | ath00902 | Biosynthesis of secondary 2.81e-3 8.43e-3 1
Cluster | ath01110 | metabolites 1.23e-2 1.23e-2 2
1 ath00904 | Metabolic pathways 3.66e-2 4.39%-2 1
ath00941 | MAPK signalling pathway — plant | 6.31e-3 9.47e-3 1
ath04016 | Flavonoid biosynthesis 6.31e-3 9.47e-3 1
ath01100 | Sesquiterpene metabolism pathway
Group 2 | ath01100 | Metabolic pathways 4.79e-5 7.18e-4 7
Cluster | ath01110 | Biosynthesis of secondary 1.44e-4 1.08e-3 5
6 ath00940 | metabolites 1.12e-2 3.36e-2 1
ath00196 | Photosynthesis - antenna proteins | 1.12e-2 3.36e-2 1
ath00770 | Flavonoid biosynthesis 1.26e-2 1.26e-2 2
ath04712 | Plant hormone signal transduction | 1.41e-2 3.52e-2 1
ath00561 | Pantothenate and CoA 1.80e-2 3.85e-2 1
ath00460 | biosynthesis 2.94e-2 5.52e-2 1
ath00564 | Circadian rhythm — plant 3.37e-2 5.62e-2 1
ath00480 | Glycerolipid metabolism 4.69e-2 6.71e-2 1
ath00270 | Cyanoamino acid metabolism 4.92e-2 6.71e-2 1
ath04016 | Glycerophospholipid metabolism | 5.81e-2 7.26e-2 2
ath00500 | Glutathione metabolism 6.41e-2 7.39%-2 3
ath04075 | Cysteine and methionine 7.82e-2 8.38e-2 1
metabolism 2.47e-3 8.43e-3 1

MAPK signalling pathway - plant
Photosynthesis - antenna proteins
Starch and sucrose metabolism
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Group 3 | ath00480 | Plant hormone signal transduction | 1.26e-2 1.26e-2 1
Cluster | ath00270 | Glutathione metabolism 4.92e-2 6.71e-2 1
7 ath04016 | Cysteine and methionine 5.81e-2 7.26e-2 1
ath00500 | metabolism 6.41e-2 7.39%-2 11
ath00480 | Starch and sucrose metabolism
Group 4 | ath00460 | Cyanoamino acid metabolism 1.46e-3 1.19-2 2
Cluster | ath01100 | Metabolic pathways 1.49¢e-3 1.19-2 7
3&4 ath00500 | Starch and sucrose metabolism 7.77e-3 3.14e-2 3
ath01110 | Biosynthesis of secondary 1.09e-2 3.49e-2 3
ath04933 | metabolites 1.73e-2 3.63e-2 4
ath00730 | Thiamine metabolism 1.81e-2 3.63e-2 1
ath00941 | Flavonoid biosynthesis 2.90e-2 5.16e-2 1
ath04712 | Circadian rhythm — plant 3.98e-2 5.71e-2 1
ath00410 | beta-Alanine metabolism 4.21e-2 5.71e-2 1
ath00860 | Porphyrin and chlorophyll 4.28e-2 5.71e-2 1
ath00330 | metabolism 6.02e-3 7.31e-3 1
ath00195 | Arginine and proline metabolism 6.39e-3 7.31e-3 1
ath04145 | Photosynthesis 7.87e-3 8.40e-3 1
ath00480 | Phagosome 1.96e-2 1.96e-2 1
ath04075 | Glutathione metabolism 2.93e-2 7.21e-2 1
ath00130 | Plant hormone signal transduction
Ubiquinone and other terpenoid-
quinone biosynthesis
Group 5 | ath01100 | Metabolic pathways 1.17e-5 7.05e-5 8
and 6 ath00196 | Photosynthesis - antenna proteins | 2.20e-12 | 2.64e-11 5
Cluster | ath03010 | Carbon metabolism 1.83e-2 1.53e-2 2
5and 2 | ath01200 | Biosynthesis of secondary 1.23e-2 1.48e-2 1
ath01110 | metabolism 8.75e-3 1.17e-2 1
ath00500 | Starch and sucrose metabolism 8.80e-3 1.17e-2 1
ath04712 | Circadian rhythm - plant 2.02e-2 7.21e-2 1
ath00860 | Porphyrin and chlorophyll 3.78e-2 7.21e-3 1
ath00710 | metabolism 1
ath00460 | Cyanoamino acid metabolism
ath00195 | Photosynthesis

The enriched pathways per cluster were pooled into groups with similar expression pattern in
the susceptible RIL and changes thereof across the six expression patterns. Cluster group = a
collection of similar expression trend. The pathway enrichment analysis of genes in the groups
was performed using KEGG Orthology Based Annotation System (KOBAS) (Xie et al., 2011)
P<0.05 and input number >3 were considered to be significant. Pathway ID = KEGG orthology
term (accession) of each pathway, Category term = KEGG pathway description of the pathway.
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In the resistant RIL within the 5 closely correlated clusters (Figure 5.9, Appendix Table 5A.4),
5 general expression trends were noted. Only cluster (group) 1, 4 and 5 could be assigned gene
pathways because of the unassigned KO terms on DEGs in group 2 and 3 (Table 5.4). Group
4 had equal number of genes encoding metabolic and glutathione pathway. The genes encoding
autophagy pathway were exclusively clustered in group 5. The genes encoding autophagy
pathway presented an increase from 24- 48 hpi and a sharp decrease to 7 dpi, and it further
progressed to increase again in a late infection stage (14 dpi). The upregulated pathway is
shown in (Figure 5.10). Group 1 was the most enriched with genes in the metabolic pathway
(2) and biosynthesis of metabolites (2) in contrast to group 4. In group 1, there was an increase
in genes encoding metabolic pathways from 48 hpi and a decrease which was constant
throughout the late infection stage (7-14 dpi). A similar trend was observed in genes encoding
galactose, phenylpropanoid and glycolysis pathway, which were upregulated at this time point
and the pathways are represented by Figures 5.11, 5.12 and 5.13 respectively. Various reported
defence related proteins were found in group 1 which included Sobic.001G432500 -
glutathione S-transferase (GST29, GSTU1L), Sobic.001G432550 (Ankyrin repeat family),
Sobic.002G353900 (polyols), Sobic.006G205600 (xyloglucan endotransglucosylase),
Sobic.002G109500 - dirigent protein 1 (DIR1) and Sobic.008G182900 (osmotin). Group 4
presented an increase in genes encoding metabolic pathways from 48 hpi-7 dpi and a decrease
at the late infection stage (7-14 dpi). Group 2, represented reported defence related genes
Sobic.010G020200 - 4-amino-2-trifluoromethyl-phenyl retina (ATPR1), Sobic.002G109500
dirigent proteins (DIR) and Sobic.005G212700 glutathione S-transferase (GST29, GSTU18)
which were more pronounced at late infection stage. Group 3 related proteins presented an

increase at 24 hpi -7 dpi and a significant decrease at 14 dpi.
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Figure 5.9: Cluster analysis of statistically significantly resistant RIL expressed genes
using k-means. Clustering of genes with respect to expression levels was done using Dirichlet
Process Gaussian Process mixture model DPGP (McDowell et al., 2018). 1000 iterations of
clustering were performed with default software parameters. Differentially expressed genes
obtained using cuffdiff (Trapnell et al., 2012) were then separated into closely correlated
clusters of expression trends. Five general distinct expression trends were observed and the
clusters were not re-grouped. The general trend groups depicted: group 1, an increase with
reported basal defence related genes at early infection stage and a decrease at late infection
stage; group 2, an increase in reported defence related genes at the late infection stage; group
3, an increase at 24 hpi &7 dpi and a significant drop at 14 dpi; group 4, a decrease at the late
infection stage (7-14 dpi); group 5 an increase in reported defence related pathways at late
infection stage (14 dpi). The number of genes per cluster is shown in the left upper corner.
Group number is written in the left upper corner of each colour-coded group. The horizontal
axis is the hours and days post infection and the y-axis is the gene expression values (FPKM)
which were log2 transformed to normalize the data. For each cluster, standardized FPKM as
well as the posterior cluster mean +2 standard deviations is shown. The blueline depicts the
median expression level of the genes in a cluster.
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Table 5.4: Analysis of pathway enrichment of resistant RIL differentially expressed

genes

Group Pathway | Category Term PValue | Corrected | Input

number ID P-Value | number

Group 1 ath00380 | Glycolysis biosynthesis 4.40e-3 | 2.20e-2 1

Cluster 1 | ath01210 | Tryptophan metabolism 1.11e-2 | 2.28e-22 1
ath01110 | Oxocarboxylic acid metabolism 1.37e2 | 2.28e-2 1
ath01100 | Biosynthesis of secondary 1.87e-2 | 2.34e-2 2
ath00941 | metabolism 3.48e-2 | 3.48e-2 2
ath00940 | Metabolic pathways 3.00e-3 | 1.26e2 3
ath00010 | Phenylpropanoid biosynthesis 7.86e-3 | 3.14e-2 2
ath00052 | Galactose Metabolism

Group 2 - - - - -

Cluster 6

Group 3 - - - - -

Cluster 7

Group 4 ath01110 | MAPK signalling pathway - plant 1.23e-2 | 2.34e-2 1

Cluster 3 | ath04016 | Plant-pathogen interaction 1.56e2 | 2.34e-2 1

&4 ath04626 | Plant hormone signal transduction 2.49e2 | 2.49e-2 1
ath04075 | Metabolic pathways 1.23e-2 | 1.37e-2 2
ath00480 | Glutathione metabolism 2.80e-2 | 5.60e-2 2

Group 5 ath04136 | Autophagy - other 1.25e-3 | 1.25e-3 1

and 6

Cluster 5

and 2

The enriched pathways per cluster pooled into groups with similar expression pattern in the
resistant RIL and changes thereof across the five expression patterns. Cluster group = a
collection of similar expression trend. The pathway enrichment analysis of genes in the groups
was performed using KEGG Orthology Based Annotation System (KOBAS) (Xie et al., 2011).
P<0.05 and input number >3 were considered to be the most significant. Pathway ID = KEGG
orthology term (accession) of each pathway, Category term = KEGG pathway description of
the pathway.
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Figure 5.10: Localization of up-regulated autophagy pathway on the leaf tissues of the
resistant RIL post-infestation with Fusarium graminearum. Boxes highlighted in green
represents genes that are present in the Arabidopsis thaliana genome (organism used for
KEGG maps), while boxes highlighted in pink are the up-regulated DEGs in the leaf tissues
post Fusarium graminearum infection. Boxes that are not highlighted are the genes that are
not present in the Arabidopsis thaliana genome. Names of enriched enzymes are written close
to the enzyme commission (EC) number.
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Figure 5.11: Localization of up-regulated Galactose metabolism pathway on the leaf
tissues of the resistant RIL post-infestation with Fusarium graminearum. Boxes
highlighted in green represents genes that are present in the Arabidopsis thaliana genome
(organism used for KEGG maps), while boxes highlighted in pink are the up-regulated DEGs
in the leaf tissues post Fusarium graminearum infection. Boxes that are not highlighted are the
genes that are not present in the Arabidopsis thaliana genome. Names of enriched enzymes are
written close to the enzyme commission (EC) number.
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Figure 5.12: Localization of up-regulated glycolysis pathway on the leaf tissues of the
resistant RIL post-infestation with Fusarium graminearum. Boxes highlighted in green
represents genes that are present in the Arabidopsis thaliana genome (organism used for
KEGG maps), while boxes highlighted in pink are the up-regulated DEGs in the leaf tissues
post Fusarium graminearum infection. Boxes that are not highlighted are the genes that are
not present in the Arabidopsis thaliana genome. Names of enriched enzymes are written close
to the enzyme commission (EC) number.
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Figure 5.13: Localization of up-regulated phenylpropanoid pathway on the leaf tissues of
the resistant RIL post-infestation with Fusarium graminearum. Boxes highlighted in green
represents genes that are present in the Arabidopsis thaliana genome (organism used for
KEGG maps), while boxes highlighted in pink are the up-regulated DEGs in the leaf tissues
post Fusarium graminearum infection. Boxes that are not highlighted are the genes that are
not present in the Arabidopsis thaliana genome. Names of enriched enzymes are written close
to the enzyme commission (EC) number.

5.3.4 Profiling of sorghum RILs using keyword gene ontology (GO) terms

Profiling of sorghum using keyword gene ontology, annotated 77 genes under the GO
functional categorization. DEGs were highly represented in the biological processes, cellular
processes and molecular function respectively. The gene ontology result of the resistant RIL
was distinctly different from that of the susceptible RIL. In the resistant RIL, the cellular
component encoding genes were more pronounced, in which the most prominent number of
DEGs classified as cell (GO:0005623), cell part (GO:0044464), organelle (GO:0043226),
extracellular region (GO:0005576) and extracellular region part (GO:0044421) in contrast to
the susceptible RIL. There were three common GO terms between susceptible and resistant
RILs, which includes response to stimuli (GO:0051716) metabolic process (GO:0008152) and
binding (GO:0005488), among which, the GO term denoting binding and response to stimuli
were more highly represented (Figure 5.14).

5.3.5 Profiling of sorghum RILs using keyword KEGG Orthology (KO) terms

A pathway analysis was performed for the additional characterization of how Fusarium
graminearum affects genes involved in the plant-pathogen response. The metabolic pathway
analysis, using the KEGG database, revealed that 73 out of 244 unique DEGs (30%) identified
from susceptible mapped to KEGG pathways (Table 5.2; Appendix Table 5A.1 and 5A.2).
There were more up-regulated than down-regulated genes in almost all of the KEGG pathways
mapped in both susceptible and resistant RILs (Figures 5.14A and 5.14B) although a high
percentage of genes could not be mapped due to a lack of KO terms. Both up- and down-

regulated genes mapped to the metabolic pathway in susceptible (Figures 5.15A; 5.15B) with
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more up-regulated genes pronounced in the resistant compared to the susceptible RIL.
Enriched up-regulated DEGs in the susceptible RIL at P<0.05 and input number >3 encoded
pathways, glutathione biosynthesis, biosynthesis of secondary metabolites, plant hormone
signal transduction, linoleic acid, plant circadian rhythm and photosynthesis. The most down-
regulated DEGs per pathway encoded metabolic pathways, biosynthesis of secondary
metabolites, starch and sucrose metabolism, cyano-amino acid metabolism and flavonoid

biosynthesis.

In the resistant RIL the pathways with the most up-regulated DEGs were found to be metabolic,
biosynthesis of secondary metabolites, phenylpropanoid biosynthesis and glutathione
metabolism. Glycolysis and galactose metabolism pathways had the same DEGs number and
were also amongst the most up-regulated. DEGs encoding autophagy were among the
pathways that were up-regulated and exclusively found in the resistant RIL. Similarly, the
pathways 2-Oxocarboxylic acid metabolism, MAPK signalling pathway and plant hormone
signal transduction had similar number of significantly enriched DEGs. The down-regulated
DEGs pathways were not as pronounced in the resistant plant as the up-regulated genes.
(Figure 5.15B).
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Figure 5.14: The top GO functional annotations of differentially expressed proteins of

sorghum RILs response upon Fusarium graminearum infection in susceptible (red) and
resistant (blue) sorghum RILs. Differences observed between the two RILs are pointed with

arrows.

151



Pathway

| ‘ |

boli

te ism

2-Oxocarboxylic add metabalis
Steroid biosynthesis

mRNA surveillance pathway
Biosynthesis of amino adds

dhurrin biosynthesis

Circadian rhythm - plant

Biosynthesis of secondary metabolites

Phot hesis - protein

Metabolic pathways
Flavonoid biosynthesis
Ribosome

Carbon metabolism

Cysteine and bolism
Phagosome

Glycerophospholipid metabolism

Diterpenoid biosy nthesis
Thiamine metabolism

MAPK signaling pathway -plant
Plant hormone signal transduction
Glutathione metabolism
Linoleicacid metabolism
Monoterpenoid biosynthesis
Arginine and proline metabolism

Porphyrin and chlorophyll metabolism

Starch and sucrose ism
beta-Alanine metabolism

Cyanoamino acid metabolism

o

~

o
©

Gene input number per pathway

W Down-regulated W Up-regulated

14

16

18

Pathway

Galactose metabolism
Phenylpropanoid biosynthesis
Biosynthesis of secondary metabolites
Metabolic pathways

Plant hormone signal transduction
Plant-pathogen interaction

MAPK signaling pathway -plant
Glutathione metabolism
2-Oxocarboxylic add metabolism
Autophagy

Tryptophan metabolism

Glycolysis metabolism

o

0,5

W Up-regulated

-

1,5 2 2,5

Gene input number per pathway

m Down-regulated

152

w

35



Figure 5.15: The KEGG pathway distribution of DEGs in A- susceptible, B- resistant in
response to Fusarium graminearum infection using Arabidopsis thaliana as the reference.
The graph represents the enriched pathways (in terms of the number of DEGs allocated in each
pathway). The pathway enrichment analysis of genes in the groups was performed using
KEGG Orthology Based Annotation System (KOBAS) (Xie, et al., 2011) P<0.05 and input
number >3 were considered to be the most significant.
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5.4 DISCUSSION

Exploring the plant host-pathogen interface is important to revealing the molecular
mechanisms that regulate progression of disease. RNA-Seq was used to evaluate the expression
patterns of sorghum host in response to Fusarium graminearum infection at four time-points
(24 hpi, 48 hpi, 7 dpi, 14 dpi), in order to identify changes in gene expression patterns that

could be linked to key aspects of the infection process.

5.4.1 Susceptible RIL and its associated pathways and genes in 6 groups

The number of differentially expressed genes in the susceptible RIL was greater than in the
resistant RIL in response to Fusarium graminearum infection. A similar observation was
observed by Zhang et al. (2017), where the number of genes differentially expressed in the
susceptible Lemont cassava leaves was higher than that in the tolerant TeQing cassava leaves
throughout Rhizoctonia solani infection, which can suggest that different sorghum RILs

activate distinct mechanisms upon infection.

Group 1 presented an induction of genes that have been reported to have negative and positive
influence in defence response at the early infection stage, and the significant decline at the late
infection stage in the susceptible RIL. The genes encoding the sesquiterpene metabolism
pathway, which is one of the major physiological changes occurring in response to fungal
infection, were exclusively found in group 1 (Bonnighausen et al., 2019). This pathway has
been previously reported to provide the building blocks for trichothecene, which are
mycotoxins associated with Fusarium head blight (FHB) of cereals (Bonnighausen et al., 2019;
Foroud et al., 2019). The reported defence genes included WRKY DNA-binding protein,
copine, RING domain ligase, Nodulin MtN21, jmjC domain containing protein and glyoxalase
enzymes also presented a decline at the late infection stage. Nodulin-like proteins are positively
influencing the pathogens as they enhance their fitness during host colonization (Denancé et
al., 2014). An increase in this protein at 24 hpi could suggests enhancing pathogen fitness
during colonization. Not only reported defence response genes were associated with group 1,
betagalactosidase and cytochrome 50 which are proteins associated with Fusarium

graminearum and negatively influence the plant, were associated with group 1.
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Genes encoding metabolic pathways were more enriched in group 2 and the physiological trend
showed induced pattern at the late infection stage. In a similar transcriptomics study, a detailed
primary metabolic profile was induced at a late infection stage in alfalfa leaves response to
Phoma medicaginis infection and this might induce senescence in leaves leading to plant death
(Fan et al., 2018). Group 2 also presented enriched genes encoding proteins that function in
the catalysis of metabolic pathways to the biosynthesis of metabolites, which has been reported
to threaten global food security by enabling pathogenic fungi to cause disease, particularly on

important agricultural crops (Kimura et al., 2001).

Group 3 presented a pattern increase of the LOX 5 gene expressed from 48 hpi-14 dpi
timepoints. The loss and silencing of LOX5 function has resulted in improved disease
resistance in the Arabidopsis and wheat response to Fusarium graminearum (Nalam et al.,
2015). Results presented in this study could suggests that LOX5 could have a function as a
susceptibility factor in disease caused by Fusarium graminearum in sorghum RILs. CIPK6
gene was also associated with this group. CBL-interacting protein kinase 6 negatively regulates
immune response to Pseudomonas syringae in Arabidopsis as plants overexpressing CIPK6

were more susceptible to Pseudomonas syringae (Sardar et al., 2017).

The genes encoding the starch and sucrose metabolism pathway physiological pattern
presented by group 4 had a sharp decline from 48 hpi - 14 dpi (at a later stage of infection).
Upon infection of pathogen, a reduction in the content of starch has also been observed in the
infected region, suggesting that the starch degradation provides more substrates to sucrose
synthesis (Tauzin and Giardina, 2014). Similarly, group 4 had an increase in genes encoding
cyanoaminoacid metabolism pathway at the early infection stage and a significant decline from
48 hpi which remained constant to a late stage (14 dpi). Cyanoamino acid metabolism, is
involved in chemical defence against pathogens (Zambrano et al., 2017). Similar to this study,
the concentration of most plant derived amino acids and total nitrogen content of the leaf
apoplast increased during the initial contact during the hemi-biotrophic compatible interaction
between Cladosporium fulvum and tomato (Solomon and Oliver, 2001). One possibility
mentioned for amino acid increase during infection could be an increase in apoplastic protease
activity, probably a serine protease, induced in tomato upon infection (Planas-Marques et al.,

2018; Solomon and Oliver, 2001). The fungus could therefore manipulate plant metabolism to
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maintain or increase the apoplastic concentration of nitrogen compounds (Solomon and Oliver,
2001). This is particularly the case for biotrophs and hemibiotrophs fungal pathogens that
derive nutrients from living plant cells (Dulermo et al., 2009). This metabolic imbalance of
amino acids leads to host plant necrosis and even chlorosis, and possibly facilitates pathogen
growth, because of the nutrient release (Arrebola et al., 2011). Additionally DEGs encoding
ubiquinone and other terpenoid-quinone biosynthesis pathways were exclusively enriched in
group 4, and these pathways has been involved in defence response to biotic stress (Fan et al.,
2019; Tholl, 2015). This could suggests that, as the time progresses in the susceptible RIL the
pathways which are important in plant defence declines/deteriorates at a late infection stage

allowing the infection.

5.4.2 Transcriptional response on the resistant RIL revealed reported plant defence genes

Transcriptional response of a resistant RIL to infection with Fusarium graminearum presented
an increase in genes encoding proteins that function in the catalysis of metabolic pathways to
the biosynthesis of metabolites in group 1 and group 4 at early infection stage and a sharp
decline in the late infection stage. It has been proposed that during plant—pathogen interactions,
the function of primary metabolism is to support the cellular energy needs for plant defence
responses to create an energy balance favourable for defence (Andolfo and Ercolano, 2015;
Kangasjarvi et al., 2012). An increase in the genes encoding these pathways in earlier infection
stage could suggest the establishment of a favourable energy balance for defence (Zhang et al.,
2017). Galactose metabolism pathway encoded by Galactose mutarotase-like superfamily
protein was exclusively expressed in the resistant RIL. The galactose metabolism pathway
transcriptional response has also been observed in tolerant soybean to aphids (Prochaska et al.,
2015). In most fungal pathogen—plant systems, plant resistance is enhanced by plant tissues
high level of sugars (Morkunas and Ratajczak, 2014). Sugars represent the primary substrate
providing energy and structural material for defence responses in plants, and it also act as
signalling molecules interacting with the hormonal signalling network regulating the plant
immune system (Khan et al., 2019). Fungal infection initiates the degradation of galactose via
the enzymes of the Leloir pathway. Galactose, a disaccharide of glucose and galactose (from
the milk sugar lactose), enters glycolysis by its conversion to glucose-1-phosphate (G1P)

(Sasaoka et al., 2018). Galactose can occur in two different forms; a-D and B-D-galactose. The
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enzyme galactose mutarotase also known as aldose 1-epimerase (encoded by the GALM gene)
is required in order to convert the B-form of galactose to the a-form (Kulcsar et al., 2017).
Galactose metabolism through the glycolytic pathway needs a constant supply of UDP-glucose
generated from glucose-1-phosphate via the action of UDP-glucose pyrophosphorylase 2
(encoded by the UGP2 gene). It has also been reported that sugar can play a role that is
significant in fungal pathogens resistance through phenylpropanoid metabolism stimulation
(La Camera et al., 2019; Morkunas and Ratajczak, 2014; Giberti et al., 2012).

Additionally, phenylpropanoid pathway (PAL) encoded by peroxidase enzyme was amongst
the pathways increased at early stages of infection in group 1. Similar to our study, PAL genes
were up-regulated at the early stage of the fungal Ganoderma boninense infection on palm
seedlings (Govender et al., 2017). This suggests that, expression of genes encoding defence
pathways at the early stage, could play a role in plant defence. The pathogen elimination is
determined by the efficiency and speed of early defence responses initiated by the plant and

activates a series of events (Morkunas and Ratajczak, 2014).

Previous reports has also showed, that the phenylpropanoid pathway could play a part in
resistance of wheat to Fusarium graminearum and deoxynivalenol (the most important
mycotoxin produced by Fusarium graminearum) (Sorahinobar et al., 2017; Ding et al., 2011).
PAL have been previously shown to be expressed more quickly or at higher levels during
pathogen attack and has been linked with production of phytoalexins and increased lignin
deposition (Little and Magill, 2003)

Additionally, the phenylpropanoid pathway allows for production of various secondary
metabolites by plants in defence response (Bajaj et al., 2018; Morkunas and Ratajczak, 2014).
These include flavonoids (isoflavonoids specifically), which can play a part in plant
phytoalexins (Morkunas and Ratajczak, 2014). Isoflavonoids can be toxic to pathogens caused
by fungi, i.e., reducing the fungal development by inhibiting the spore germination, mycelial
growth, while they also limit fungal pathogenicity. The peroxidase protein within the
phenylpropanoid pathway has been associated with wound repair, injury and disease

resistance (Mhlongo et al., 2016; Singh et al., 2010). Peroxidases are involved in the
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polymerization of suberin, lignin and oxidation of phenolic compounds in cell walls (Pandey
et al., 2017). They catalyze the oxidation of phenol substrates and its derivates by hydrogen
peroxide and are responsible for dehydrogenation of coniferyl and sinapyl alcohol during

lignin synthesis (Harman-Ware et al., 2017).

Various reported defence related proteins were associated with group 1. Ankyrin repeat family
protein has been observed at a number of different cellular levels, which includes
transcriptional expression of defence genes in the nucleus and has contributed in the plant
defence response (Vo et al., 2015). Polyols also found in this group can play a role in
translocation of antioxidants and carbon skeletons which may be involved in some plants to be
resistant to biotic and abiotic constraints (Tian et al., 2017). In a transcriptional response of
citrus to candida xyloglucan endotransglucosylation (XET) activity level was found to peak at
the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale (Olsen and Krause,
2017). In addition to the reported defence related genes mentioned above, osmotin was
amongst the reported defence DEGs in group 1. Transgenic plants overexpressing osmotin
displayed increased resistance to pathogenic fungi (Anil Kumar et al., 2015) clearly pointing
to a role as a defence system against these pathogens (Gonzalez et al., 2017). An increase in
the physiological trend of defence DEGs in earlier infection stage further suggests the

establishment of a favourable energy balance for defence.

Group 2 presented an increase in reported defence related genes at the late infection stage. This
group cluster was represented by DIR1, which has been previously found to be involved in the
resistance to different Fusarium pathogens (Gottwald et al., 2012). The 4-amino-2-
trifluoromethyl-phenyl retinate (AtPR-5) encoding specific components involved in salicylic
acid (SA) regulation, synthesis, and signalling, also showed an increased trend in group 2. SA
signalling contributes to wheat defence against F. graminearum (Hao et al., 2019; Sarowar et
al., 2019).

GST genes activities induction were frequently noted in plants treated with microbes that are
beneficial and stimulate a systemic resistance response (ISR) to subsequent pathogen
infections. Silencing or overexpression of specific GSTs can noticeably modify pathogen

multiplication rates and disease symptoms. However, not much is known about the exact
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metabolic functions of disease-induced GST isoenzymes (Gullner et al., 2018). The GST genes

in this study has been expressed in both the susceptible and resistant groups.

Group 4 and 5 also encompassed reported plant defence related genes. The physiological trend
in group 4 presented an increase at the early infection stage and a sharp decline in the late
infection stage. This group encompassed proteins defective in ind