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Abstract 

 

As developing nations like South Africa chart a path of socio-economic 

development, the spatialisation of progress, opportunity, and neglect is a critical 

antecedent to policy-making and regional interventionism. Efforts to capture 

meaningful data using household surveys and censuses face a diluted accuracy due 

to sampling, surveying, and quantification errors. The reliability and regularity of these 

traditional methods is also constrained since the processes are costly and time-

consuming. Recent investigations in the field of machine learning and satellite imaging 

have presented a viable proof-of-concept technique to exploit specific economic 

indicators to demonstrate economic development patterns across regional areas. The 

current study adopts several interrelated approaches encompassed within the field of 

remote sensing in order to evaluate and model poverty in the South African landscape. 

By adopting publicly accessible information for classification to indicate the intensity 

of poverty, this study proposed an inexpensive solution to poverty estimation. 

Concretely, the solution combined satellite imagery and geospatial data with regional 

poverty data exploiting an ensemble approach to poverty diagnosis. The solution is 

based upon multidimensional indicators and multi-layered insights that can be 

extrapolated from overlapping models to bolster them and help with socio-economic 

well-being estimations.  

 

Through machine learning techniques and object-oriented training of a 

convolutional neural network, this study revealed that a naïve combination of distinct 

data sources shows patterns of socio-economic well-being in South Africa by 

achieving an R2 of 0.56 wealth estimation compared to 0.54 from satellite imagery. 

This outlined variability and incongruity within landscapes that not only reflect the 

persistent subdivisions of apartheid-era enclavisation, but indicate critical gaps in 

domestic social services, infrastructure, and developmental pathways. This study is 

applicable to policy makers in low- and middle-income countries that lack accurate 

and timely data on economic development as an important precursor to public support, 

policy making, and planned expenditures. 
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Chapter 1. Purpose and rationale of the study 

 

1.1 Introduction 

 

This chapter delineates the scope of the study and its intended contribution to 

the discourse. Central to the study is an endeavour to assess a variety of methods of 

measuring the poverty data gap using remote sensing, crowd-sourced information, 

night-time lights, and daytime satellite imagery in addition to socio-economic survey 

datasets. 

 

1.2 Research background 

 

As the global community continues to strive towards a more equitable standard 

of poverty eradication, the ability to assess, monitor, and manage welfare concerns is 

inherently linked to the ability to accurately and consistently measure the social effects 

of domestic poverty. From an intervention perspective, Jean et al. (2016, p. 790) 

remind us that measuring the economic characteristics of residents accurately 

influences research and policy in a critical way, suggesting that gaps and limitations 

in data collection and reliability can lead to inconsistencies in support and services for 

the most vulnerable global populations. While key poverty indicators such as the 

United Nations Sustainable Development Goals (UNSDG) provide a tangible basis for 

the measurement and benchmarking of related factors, Ayush et al. (2020, p. 1) report 

that most assessments are based upon costly, time-consuming processes such as 

household surveys. Due to such restrictions, the regularity and reliability of these 

surveys has been constrained, with even the most surveyed nations in Africa, like 

Uganda, conducting household surveys only every few years and only for a small 

representative population of villages or regional populations (Ayush et al. 2020, p. 1). 

As governments commit a broader range of resources to the diagnoses and mitigation 

of poverty, the breadth of regional surveying and analysis must scale upwards, 

encompassing a much more inclusive standard of practice in order to ensure that 

administrative strategies and investments are appropriate and effective. 
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Whilst the ubiquity of big data and spatial imaging datasets has provided 

researchers with unprecedented access to on-demand analysis, Xie et al. (2016, p. 2) 

argue that the concentration of these indicators amongst developed, wealthier nations 

has left developed countries lagging behind in a new digital divide. Accordingly, Zhao 

et al. (2019, p. 14) and Tingzon et al. (2019, p. 425) reflect that technological advances 

in geospatial information, computer-mediated search capabilities, and machine 

learning have enabled innovative approaches for estimating socio-economic 

indicators. By combining machine learning and geospatial information that is often 

retrievable from open source datasets, it becomes possible to chart poverty indicators 

in real time and across longitudinal models (Ayush et al. 2020, p. 1; Tingzon et al. 

2019, p. 425; Zhao & Kusumaputri 2016, p. 1; Zhao et al. 2019, p. 1). It is through a 

low-cost, high-fidelity inspection of spatial patterns via remote sensing as well as the 

accuracy afforded by machine learning insights and capabilities that poverty datasets 

are becoming increasingly accessible to a broader spectrum of both developed and 

developing nations. 

 

Central to the underlying motivations surrounding remote sensing and spatio-

structural analysis of systemic inequalities are the cost-related hurdles of social 

surveys and regionalised investigations, many of which take years to plan and, in 

some cases, such as South Africa, decades to implement (Gebru et al. 2017, p. 1; 

South Africa Gateway 2019, p. 2; Statistics South Africa 2019b, p. 2). In a variation 

study of satellite imagery and the classification potential of machine learning for 

spectral, textural, and structural differentiation, Engstrom, Hersh, and Newhouse 

(2017, p. 2) confirmed that satellite observations are ‘highly predictive of economic 

well-being’, drawing correlations with welfare and key regional features such as 

population density and construction materials (e.g., roofing). Due to the critical role of 

evidential insights and multi-factorial data in the diagnosis and interpretation of 

regional development goals, poverty, and social inequality, Holloway and Mengersen 

(2018, p. 10) suggest that advances in machine learning and the adoption of 

‘ensemble approaches’ to structural diagnosis offer discrete advantages that can be 

used to accelerate research and improve evidential fidelity. The current study has 

adopted a similar paradigm, exploring the relationship between remote sensing 

capabilities, machine learning, and poverty diagnosis in a nation where regional 
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inequalities are spatially complex and oftentimes visually indistinguishable: South 

Africa. 

 

In spite of government efforts to capture meaningful data from household 

surveys, Blumenstock, Cadamuro, and On (2015, p. 1073) report that the precision of 

these infrequent research instruments is diluted by up to 50% due to a variety of 

sampling, surveying, and quantification errors. Given the inadequacy of traditional 

poverty assessment methods, a range of innovative technological solutions have 

recently emerged as advances in remote sensing, digital imaging, and data mining 

have created a new range of opportunities for innovative researchers. For example: 

Michalopoulos and Papaioannou (2014, p. 154) devised a luminosity-based cross-

border poverty assessment resource to evaluate institutional efficiency in African 

nations; Ma et al. (2019, p. 4) introduced a typeface-based remote sensing model that 

correlated the relationship between signage fonts and regional amenity density in 

modern urban centres such as London; and Blumenstock et al. (2015, p. 1073) utilised 

mobile data usage statistics to model technological penetration and changing patterns 

in urban prosperity across emerging markets. Each of these techniques offers a 

different but comparable proposition: to utilise publicly accessible data resources from 

remote repositories to quantitatively model the relationship between regional 

characteristics and socio-economic conditions. 

 

 

1.3 Research rationale 

 

The range of emerging analytical techniques being proposed for remote 

sensing and long-distance surveying of socio-economic conditions is broad and 

innovative, highlighting the capacity-boosting influences of new technology-supported 

solutions. In South Africa, poverty remains an obvious but under-defined problem that 

often neglects the heterogeneous nature of social inequality and spatial stratification. 

In a recent nightlight-sensing report presented by Pfeifer, Wahl, and Marczak (2018, 

pp. 31–2), it was concluded that regionalised developments in the form of 

infrastructure, enhanced transportation, and the localisation of government services 

had distinct impacts on luminosity, accelerating ‘catch-up processes’ — particularly in 
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urban spaces. At the same time, Mveyange (2016, p. 20) has revealed that the 

conceptual link between remote sensing of night-time and Geographic Information 

System (GIS) images and domestic poverty is often obscured by the inability to align 

more tangible indicators of exclusion (e.g., education, healthcare, transportation, 

infrastructure) with regional developmental patterns (e.g., density, luminosity). In fact, 

Henderson, Storeygard, and Weil (2012, p. 1015) as well as Pinkovskiy and Sala-i-

Martin (2014, p. 8) have demonstrated that remote sensing models using nightlight 

assessment of luminosity over time are positively correlated with datasets based on 

national Gross Domestic Product (GDP), indicating a high degree of complementarity. 

For this reason, additional research on South African exclusion and the structural 

relationship between inequality and poverty was justified and required by the central 

gaps in the existing academic register. 

 

Other researchers including Blumenstock et al. (2015, p. 1073), Ma et al. (2019, 

p. 4), Suel et al. (2019, p. 7), and Zhao et al. (2019, p. 1) have employed remote 

sensing capabilities to compare satellite or street-level imagery with economic 

indicators, night-time lights, or crowd-sourced information in order to find correlations 

between key features and socio-economic traits. The problem with these empirical 

solutions is that they are not reliable measures of socio-economic disadvantage: they 

have a broad range of inconsistencies, conflicting definitions, and unreliable 

techniques, leading to ineffective measures that do not add sufficient value to the long-

term assessment of population welfare (Jean et al. 2016, p. 790). It is important to 

realise that, as Blumenstock et al. (2015) pointed out, call detail records such as 

telephone calls or mobile phone usage records used in some research efforts are not 

publicly available and consequently are hard to rely on. With evidence limited to 

generalisable conditions, the relative effectiveness of innovative models and 

exploratory technologies is constrained by their practical applications in relation to 

large-scale, replicable, and revelatory remote sensing capabilities. 

 

1.4 Problem statement 

 

Problem with the model developed by Jean et al. (2016), as well as the more 

recent model by Lam et al. (2018, pp. 7–8) is that it lacks the quantitative granularity 
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to distinguish between poverty characteristics: it generalises clustered housing groups 

and population sets (e.g., rural, urban) into general outputs rather than assessing 

quantifiable traits, rendering the model incapable of reconciling variations between 

municipalities, different socio-economic patterns, industrial versus residential areas, 

and a variety of other predictive indicators. In contrast, the model developed by Zhao 

and Kusumaputri (2016, p. 2) does not capture the qualitative differences in the 

geospatial features that are quantified from the satellite images. The current study was 

carried out as a proof of work investigation to apply machine learning techniques using 

only publicly available data that are readily available for processing. This work 

demonstrates the close relationship of these economic activities in the area and thus 

shows features that can elucidate poverty levels. This study has investigated the 

following core problem statement: 

 

Despite accelerated and sustained domestic economic development, South 

Africa is characterised by robust socio-economic inequality, with urban 

exclusion represented by key physical indications, including housing quality, 

night-time luminosity, and gaps in social services and domestic infrastructure. 

Due to the high cost of social surveys and the challenges of physical in situ data 

collection, there is an immediate need for alternative remote sensing solutions 

capable of diagnosing, modelling, and interpreting systemic exclusion 

conditions to improve policymaking and target future interventions. 

 

Whilst it is contended that the existing approaches to using non-traditional data 

are promising given that they are cheaper and inherently scalable, their broader 

adoption by policymakers is still lagging behind traditional data usages. Providing a 

basis for this investigation, researchers, including Jean et al. (2016, p. 794) and Zhao 

and Kusumaputri (2016, p. 6) have confirmed the viability of machine learning 

applications to evaluate household poverty indicators, enabled by geospatial feature 

assessment capabilities. By training software to make autonomous estimations about 

the spatial distribution of socio-economic well-being, and then comparing those 

outputs with regional or domestic household surveys, it is possible to confirm the 

degree of accuracy and consistency of the analytical tool (Jean et al. 2016, p. 794). 

This investigation has focused on patterns of regional socio-economic inequality that 

are oftentimes obscured by the tenuous relationship between urbanisation and social 



 

6 
 

 

migration. As a result, in nations like South Africa, where regional density patterns 

mirror the post-colonial heritage of exclusion and enclavisation reflected during 

apartheid, demonstrating the structural relationship between economic opportunity 

and regionalisation can be critical to understanding systemic gaps and inefficiencies.  

 

1.5 Research question 

 

Central to the pursuit of a low-cost, high-fidelity remote sensing solution for 

modelling poverty in developing nations, the following core research question has 

been answered during this investigation: 

 

Given the heterogeneity of economic characteristics in developing nations like 

South Africa, which cost-efficient machine learning methods can be used to 

determine the relationship between special features and socio-economic 

variations? 

 

The sub-research questions that were addressed to support the main research 

question of this study are as follows: 

 

1) Which technique is suitable for conducting satellite imagery remote sensing and 

how can this approach be adapted to analyse poverty in South Africa? This 

question seeks to establish the strengths and weaknesses of remote-sensing 

grounded approaches and satellite imagery classification tools. 

2) What are the challenges that affect machine learning capabilities and their 

application to satellite-based imagery of varied regional cityscapes? This 

question determines whether the characteristics of regional poverty in South 

African regions can be determined using cost-effective remote sensing 

geospatial techniques. 

3) What best practices and techniques can be applied to architect predictable 

remote sensing capabilities in future poverty assessment studies? This 

question seeks to establish whether the practices and techniques discovered 

during the study can be generalised and recommend suggestions for future 

studies. 
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1.6 Research objectives 

 

Due to the high level of complexity, investment, and time commitments required 

for ground-level field-based poverty surveys in African nations, the primary objective 

of this investigation was to critically assess the viability of cost-efficient data sources 

and machine learning methods for poverty estimation in order to confirm the proof-of-

concept and provide a viable alternative for poverty assessment in emerging but 

developed economies such as South Africa. By deploying an integrative approach to 

combine publicly available geospatial data, as well as using machine learning 

capabilities and analysis of relationships between special features and socio-

economic variations, this study achieved the following central research objectives: 

 

 To establish the strengths and limitations of recent research regarding remote 

sensing capability approaches and satellite imagery classification tools; 

 To determine whether the regional poverty characteristics in South African 

regions can be determined using cost-efficient remote sensing geospatial 

techniques; and 

 To establish whether the practices and techniques discovered during the study 

can be generalised and recommend suggestions for future studies. 

 
 
 

1.7 Research methodology 

 

To achieve the objectives of the study, the related literature and studies were 

reviewed in order to draw insights and lessons that would help formulate a 

computational framework as an artefact. Subsequently, a working model capable of 

predictably and reliably estimating socio-economic well-being in South Africa was 

developed. This study followed a positivist paradigm and design science approach as 

presented by Hevner, March, Park, and Ram (2004, p. 82) to the structure and 

application of cost-efficient and readily available data sources in the design of wealth 

estimation models. Hevner et al. (2004, p. 78) describe design science as a series of 
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related expert activities that are done to come up with an artefact, which is then 

evaluated in order to improve both the artefact’s quality and the process required to 

design the artefacts. Figure 1.1 shows the adopted approach that follows Peffers, 

Tuunanen, Rothenberger, and Chatterjee (2007, p. 58) modelled for this study. The 

approach follows six steps: problem identification and motivation, definition of 

solutions objectives, design and development, demonstration, evaluation, and 

communication. 

 

 
Figure 1.1: Design science research activities, according to Peffers et al. (2007, p. 58, Figure 1) 

 

The individual steps serve to structure the remaining study, and, at first, the 

research layout will start with a literature review as motivation in Chapter 2. The 

objectives of the study, which are to establish the strengths and limitations of recent 

research on remote sensing capabilities approaches and satellite imagery 

classification tools, as well as to determine whether regional poverty characteristics in 

South African regions can be determined using cost-efficient remote sensing 

geospatial techniques, are defined in the current chapter. In the design stage, the 

research extends the precedents established by Jean et al. (2016, p. 791), Zhao and 

Kusumaputri (2016, p. 4), and Head et al. (2017, p. 2) to design a predictive model 

capable of analysing, classifying, and summarising the indicative prevalence of 

poverty in South Africa detailed in Chapter 3 and has the following two approaches: 

(i) predict night-time lights as a proxy task of satellite imagery and then use them to 

compute the average features embedded per cluster to estimate wealth and (ii) include 

unconventional crowd-sourced datasets with night-time lights to infer wealth for cases 

where frequent surveys are not possible. The results will be demonstrated through 

experiments of the machine learning model grounded in the proposed artefacts 

(Chapter 4) and the performance of the models is evaluated using statistical methods 
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and ground truth data to verify if the designed artefact meets the pre-set requirements 

(Chapter 5). This is performed by iteratively improving the parameters to expand the 

performants and compare the results before selecting the best findings. 

 

The categorical dimensions for the models were extracted by incorporating a 

model to examine the extent to which merging geospatial remote-sensed and crowd-

sourced data can aid cost-effective and scalable means to estimate welfare in South 

Africa. The results were based on a critical, quantitative comparison of the 

classification results and socio-economic reports published by the South African 

government, thus confirming the transferability and consistency of the proposed 

model. The research is data-centric and multi-disciplinary, attempting to create 

knowledge that connects and spans the disciplines involved. 

 

1.8 Limitations and delimitations of the study 

 

The method of predicting human development with satellite data, geospatial 

data, and deep learning requires ground-truth data for training and evaluating the 

models. The first and most used approach is to use official socio-economic statistics 

as ground truth (Jean et al. 2016, p. 794). For this research, the Demographic and 

Health Survey (DHS) produced by the United States Agency for International 

Development (USAID) was used as the ground truth dataset (i.e., maximally objective 

data).  DHS survey data have some caveats on spatial and temporal precision 

regardless of being reliably sampled. To preserve the privacy of the survey 

respondents' data, noise is intentionally added by randomly compensating the Global 

Positioning System (GPS) coordinates of each household cluster by up to 2 km in 

urban areas and up to 5 km for rural areas. Noise offset will likely introduce bias in 

spatial analysis, and therefore buffer zones will be introduced as an attempt to mitigate 

the effects. Second, ground truth data was collected in 2016 and therefore features 

and wealth predictions were also adjusted for 2016. Recent values can only be rolled 

out when the next surveys are conducted. 

 

In terms of scope, the models were trained using satellite imagery data from 

South Africa. No comparisons were made with other countries within the region or that 
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have an almost similar GDP. Furthermore, while the accuracy and performance of the 

neural network is critical for the accurate predictions and determinations of the model 

during the assessment process (Ilic, Sawada, & Zarzelli 2019, p. 3; Suel et al. 2019, 

p. 7), the scope of the research involves a single model architecture for satellite 

imagery, a VGG16 architecture from Visual Geometry Group pre-trained on the 

ImageNet data set.  

 

Lastly, there may be concerns about the choice of the dataset used as ground 

truth given the Anglo-American military and economic interventions in Africa. This 

history is an extraneous detail when considering the socio-economic data for this 

study. It is assumed that the international institutional arrangements (including the 

dynamics of colonisation) do not have any epistemic impact on the quality of the data. 

 

1.9 Dissertation outline 

 

This chapter has provided the underlying motives and practical basis for 

conducting this exploratory study of data integration measures to support poverty 

identification in emerging economies. The research background section of this chapter 

showed the need for an additional in-depth understanding of the poverty phenomenon 

as an important step to inform research studies and guide policymakers in the 

development of timely and accurate policies for poverty intervention and subsequent 

impact monitoring. The study justification and problem statement, after which the 

research objectives and questions were detailed. The following paragraphs present a 

brief overview of each of the subsequent chapters that comprise a progressively 

technical exploration of targeted datasets, applying techniques and technologies that 

were designed to explore the relationships accurately and systematically between 

regional socio-economic indicators.  

 

Chapter 2: Literature review. Drawing upon a growing body of research 

regarding remote sensing, GIS imaging, and distance-based socio-economic analysis, 

this chapter outlines a variety of prior research in this field and identifies both the 

strengths and weaknesses of prior techniques, focusing on machine learning 
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capabilities and image-based analysis. It provides the conceptual and theoretical basis 

for the experimental design and empirical study. 

 

Chapter 3: Research methodology. This chapter outlines the range of 

methods adopted and deployed to capture GIS-based evidence from South Africa and 

its socio-economically diverse urban spaces. The central sources of evidence and the 

underlying techniques and technologies employed during this study are introduced 

and discussed. It formalised the design and conceptual basis for the key classification 

methods and identifiers that were adopted for the assessment of poverty in South 

Africa. 

 

Chapter 4: Implementation and results. This chapter presents the results of 

the remote sensing study, highlighting the overlapping similarities between day- and 

night-time-based indicators of poverty and various socio-economic determinations. It 

outlines the stages of data collection, organisation, and analysis, introducing the 

reliability and accuracy of data to confirm the effectiveness of the remote sensing 

capabilities of this poverty detection model. 

 

Chapter 5: Discussion and analysis. To triangulate these findings and 

confirm the validity and transferability of the techniques employed during this study, 

this chapter discusses evidence and models in relation to previous research in the 

field of applying machine learning to computational social sciences. 

 

Chapter 6: Conclusions and Recommendations. This final chapter draws 

summative conclusions from the entire study, highlighting the effectiveness and 

limitations of the methods used for this research, and offers recommendations to 

improve future results in additional remote sensing studies and experiments in ongoing 

poverty analysis. 

 

1.10 Chapter summary 

 

This chapter provided a synopsis of the study, including the underlying core 

problem under study, together with the objectives of the work, relevant research 
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questions, methodology, and the limitations of the investigation in relation to South 

Africa. Furthermore, the paradigm underpinning the study and the approach followed 

to solve the identified problems were also discussed. The following chapter is the 

outcome of an extensive review of the literature conducted to construct the main 

argument of this study. 
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Chapter 2. Review of the literature 

 

2.1 Introduction 

 

The field of remote sensing and purpose-constructed spatial imaging analysis 

has evolved towards increasingly advanced and innovative solutions as researchers 

have combined models and methods into discrete solutions. While daytime satellite 

imagery and structural recognition were once the standard for GIS-based analysis, 

modern innovations in machine learning and system adaptation have created 

opportunities for novel solutions such as night-time and geospatial analysis. The field 

of study surrounding data integration is increasingly broad, encompassing a variety of 

conceptual foundations related to machine learning, remote sensing, and probabilistic 

analysis. In order to narrow down the appropriateness and effectiveness of these 

techniques, this chapter compares multiple experimental and theoretical studies, 

outlining the potential advantages of these varied approaches for capturing data 

specifically related to regional poverty indicators. The following sections explore this 

range of techniques, outlining the advantages of specific, targeted approaches, and 

the potential challenges encountered in mapping various phenomena across 

diversified geographic and technological networks. This establishes a background for 

the research problem and identifies the gaps within the research questions posed. 

Lastly, the chapter briefly introduces machine learning, as it formed the backbone of 

the study at hand. 

 

2.2 Measurement of poverty 

 

Poverty has traditionally been conceptualised as one-dimensional: usually 

based on income, sometimes interchangeably referred to as consumption, which is 

also called income poverty (Alkire & Santos 2013, p. 5). Over time, combining various 

approaches has been proposed and doing so has led to the inclusion of economic 

well-being, capability, and social inclusion (Sen 1993, p. 31; Wagle 2008, p. 15) in 

these concepts. A more recent international measure is the Multidimensional Poverty 

Index (MPI), which recognises poverty as a multidimensional phenomenon and its 
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usage has increased rapidly over the last decade (Wagle 2008). MPI was initially 

developed by Alkire and Santos (2013) and later adopted by UNDP for its Human 

Development Reports (Oxford Poverty and Human Development Initiative 2015). The 

MPI offers insights into the extent and intensity of multidimensional poverty by 

combining ten indicators intended to reflect experiences of poverty-related deprivation 

from critical dimensions of health, education, and living conditions. The most reliable 

way to measure and estimate poverty is through intensive socio-economic household 

surveys and census data collection. However, these approaches are costly and time 

consuming. Studies have been conducted to highlight the relationship between 

poverty and spatial factors that are measurable from orbital space (e.g., satellites) 

such as buildings, agricultural activities, proximity to essential services, etc. (Lillesand, 

Kiefer, & Chipman 2015). 

 

Underscoring the central principles of this poverty modelling is what Bertram-

Hümmer and Baliki (2015, p. 770) describe as ‘visible wealth’. Although it is an ideal 

socio-economic differentiation mechanism, the researchers note that ‘visibility’ by 

definition is unclear—a problem which can only be reconciled if some tangible 

dimension, category, or indicator can be identified relative to the underlying condition 

evaluated: wealth (Bertram-Hümmer & Baliki 2015, pp. 770–3). To distil the range of 

variables (e.g., dwelling size, outbuildings, vehicles, possessions) into a quantitative 

indicator of visibility, Bertram-Hümmer and Baliki (2015, p. 781) tested the theory of 

‘relative deprivation’ by comparing individual interpretations of ‘visible wealth’ by 

weighing the relative importance of multiple indicators. The findings confirmed that 

tangible indicators of visible wealth such as being domiciled in a house or having 

possessions had a direct impact on the perceptions of deprivation held by the 

participants, confirming that when applied to a residential environment on a 

comparative basis, perceptions of poverty (or lack thereof) are likely to be contingent 

upon comparative interpretations of visible regional wealth (Bertram-Hümmer & Baliki 

2015, p. 781). Although Bertram-Hümmer and Baliki's (2015, p. 781) study does not 

apply remote sensing techniques to the assessment of poverty, it does highlight the 

weight ascribed to visible determinants of wealth or deprivation in a given society, 

justifying the assessment of visible indicators as proxy measures for differences in 

socio-economic status. Consequently, remote sensing and machine learning 
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algorithms can be developed to identify poverty traps and deprivations from features 

that are visible in geospatial data as an aid for policymakers to develop interventions.  

 

2.3 Geospatial information systems and remote sensing 

 

As satellite imagery, Geospatial Information Systems (GIS), and crowd-

sourcing technologies increase the visibility and transparency of global landscape 

models, the potential for mapping both urban and rural development patterns 

continues to motivate a diversified range of exploratory studies (Hillson et al. 2014, p. 

2). Combining data from Global Positioning Systems (GPS) via ground-based 

mapping of structural features and characteristics and GIS imagery to digitise rooftop 

features, Hillson et al. (2014, p. 11) revealed significant inaccuracies in top-down 

assumptions based on rooftop surface area calculations and Object-Based Image 

Analysis (OBIA). For this reason, the combination of physical, crowd-sourced, and 

ground-based assessments with remote sensing observations of the same regional 

characteristics created an opportunity to diagnose the likelihood of error and bias in 

the mapping outputs, confirming the potential for residential density bias in regions 

where both industrial and residential spaces are frequently interspersed (Hillson et al. 

2014, p. 11). 

 

Central to the challenges of remote sensing is the significant scale of 

classification data that is needed in order to draw meaningful interpretations from GIS 

models. Challenges such as regional granularity, texture, and feature-based 

recognition create hurdles for training and classifying datasets (Lam et al. 2018, p. 2). 

Tingzon et al. (2019, p. 425), for example, focused their research on determining 

whether a range of satellite-based methods could be applied to poverty prediction in 

varying urban landscapes, assessing the intersection between publicly accessible 

geospatial information and emergent GIS-based imagery in terms of regional coverage 

and accuracy. While Xie et al. (2016, p. 3935) have concluded that deep learning 

advances and the architecture of data-rich identification proxies indeed provide a 

solution for transfer learning and efficient GIS modelling, these techniques require the 

ability to train systems to identify complex features and terrains. Jean et al. (2016, p. 

794) propose that GIS-based models are capable of outperforming other passive data 
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collection instruments such as cell phone data modelling, but cluster effects and 

regional incongruities can create false positives or inaccuracies that may lead to a lack 

of fidelity in the model output. 

 

Crowd-sourced geographical information is another emerging data source for 

assessing urban density, socio-economic development and inequalities to identify land 

use, land expansion, proximity of services, building polygons, develop urban spatial 

structure and road networks (Gervasoni, Fenet, Perrier, & Sturm 2019, pp. 595–596; 

Mahabir et al. 2018, p. 5). Volunteered Geographic Information (VGI) contains billions 

of entries that are maintained by a massive community of global mappers whose 

common objective is to curate precise and complete geospatial data. As computational 

resources increase and the ability to use computer vision on satellite imagery evolves, 

research has increasingly used geospatial datasets as well (Yan et al. 2020, p. 1781). 

Yue et al. (2015, p. 464) acknowledge that there is an increased availability of GIS 

data, which has enabled the development of advanced machine learning algorithms 

for geospatial solutions.  

 

Building upon the early models that relied on VGI, there is a distinct and 

significant opportunity for the development of effective visual sensing capabilities that 

can accurately compare economic welfare analyses. Poverty characteristics are 

complex and, therefore, it is difficult to effectively evaluate poverty with a single type 

of data in both theory and practice. Leveraging the approach to night-based luminosity 

and satellite imagery, Zhao et al. (2019) conducted studies in an attempt to identify 

and estimate poverty in Bangladesh using data from multiple sources, including road 

maps and land cover data. Studies by Jean et al. (2016) and Zhao et al. (2019) also 

acknowledge that differences between wealthy, sparsely populated areas and poor, 

densely populated areas within night-time luminosity data would likely produce similar 

results, making it difficult to tell the difference. Combining data from multiple sources 

provides a comprehensive evaluation of poverty from multiple dimensions. A similar 

study conducted by Pan and Hu (2018, p. 1104) on multidimensional poverty 

measurement using night-time luminosity data recognises that the availability of 

education, health, transport, and financial services related to poverty have become 

important factors impacting poverty. In order for related analyses to be highly effective, 
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however, it is critical that they use data from multiple sources to accurately predict 

poverty measures within an area.  

 

Efforts to crowd-source geospatial data are increasing. A good example is 

OpenStreetMap (OSM), the largest free collaborative platform that produces a crowd-

sourced geographic database, and one of the major platforms that promotes the use 

of geospatial data in humanitarian and community development fields. Big 

corporations such as Microsoft, Uber, Grab, Facebook, Amazon, Baidu, and Weibo 

have been making substantial contributions to community mappers from around the 

world who are curating accurate and representative geospatial data on sites such as 

OSM (Anderson, Sarkar, & Palen 2019, pp. 6–7). The OSM open map dataset 

contains geospatial data which provides critical infrastructure that shows the presence 

of roads, rivers, built-up areas, and points of interest (POI), enabling researchers to 

investigate the association among present characteristics and socio-economic 

conditions. It helps us to understand our planet and the functioning of the society. More 

than 100 million changesets have been uploaded to OSM, representing a collective 

global contribution of nearly 1 billion features in the last 16 years. Hu, Yang, Li, and 

Gong (2016, p. 4) and Ye et al. (2019, p. 938) conducted studies to demonstrate that 

crowd-sourced data from Baidu and OSM can provide details of the spatial distribution 

of economic activities. 

 

2.4 Detection of poverty using machine learning 

 

The ubiquity of artificial intelligence and machine learning capabilities in modern 

social studies is enhanced by the perceived effectiveness of these overlapping models 

in the diagnosis and interpretation of socio-economic inequality and regionalised 

variations in economic growth and development (Holloway & Mengersen 2018, p. 2). 

OBIA involves analysing pixels grouped together into matching sections or objects 

rather than individual pixels (Holloway & Mengersen 2018, p. 6). From variations in 

structural characteristics in Ghana to the impacts of a recent cyclone in the Philippines, 

Holloway and Mengersen (2018, p. 6) reveal that the separation and classification of 

structural characteristics through remote sensing (e.g., point-based, edge-based, 

region-based) initiatives allows researchers to diagnose the impacts and 
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consequences of both isolated and persistent socio-economic events. It is this 

practical applicability of machine learning to complex visual relationships that elevates 

this solution to a high-interest domain in the field of poverty and welfare analysis. 

 

By applying indicators such as the Living Environment Deprivation (LED) index 

to remote sensing of regional poverty and public health, Arribas-Bel, Patino, and 

Duque (2017, p. 4) predict that researchers can chart regional characteristics and 

features over time to measure the effects of deprivation. By automating this process 

of feature detection through machine learning capabilities, it is possible to measure 

textural variations (e.g., greenbelts versus urbanisation) across pixel subsets and 

chart the intersection between city features and poverty indicators (Arribas-Bel et al. 

2017, pp. 8–9). To automate this process, Arribas-Bel et al. (2017, p. 10) adopted a 

random forest algorithm that leverages other machine learning techniques (e.g., 

bagging) to aggregate a series of models into a single prediction. This decision tree 

model was based upon a full dataset and its multi-layered subsets, which could be 

sampled randomly in order to de-correlate identifiers that might otherwise lead to 

model inaccuracies (e.g., single versus strand trees) (Arribas-Bel et al. 2017, p. 11). 

A Gradient Boosting Regressor (GBR) algorithm was used to ‘boost’ the output of 

other models with the result being only one prediction variable. Through the application 

of these techniques to a specific urban landscape (e.g., Liverpool, UK), Arribas-Bel et 

al. (2017, p. 18) confirmed that textural variations with particular emphasis on urban 

green spaces could be effective measures of LED characteristics, with lower land 

cover variability indicating higher LED. 

 

The central advantage of a remote sensing model is predicated upon its 

transferability to other geographical perspectives as researchers seek to develop 

general, data-driven solutions that can be replicated with a high level of accuracy (Suel 

et al. 2019, p. 7). Through a restrained training methodology, Suel et al. (2019, p. 8) 

have demonstrated how the improvement of Convolutional Neural Network (CNN) 

analysis can be coordinated across multiple datasets by implementing an image-

outcome pairing standard that allows for intra-regional confirmation. This contextual 

solution considers that within any given image set, training can be executed across a 

majority percentage of the images, with minority imagery from the same dataset being 

withheld for assessment purposes (e.g., 80/20) (Suel et al. 2019, p. 8). When applied 
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to other municipalities or visual reference groups, it becomes possible to use this 

segmented training methodology to validate regionally accurate visual cues (e.g., 

building traits in a given municipality) and subsequently confirm whether the training 

sets retain their accuracy when transferred to other municipal areas (e.g., London 

versus Manchester) (Suel et al. 2019, pp. 8–9). 

 

As increasingly innovative deep learning technologies are developed, the 

accuracy of visual mapping and street-view analysis is a critical antecedent to the 

value and transferability of remote sensing analysis (Ilic et al. 2019, p. 1). Deep 

mapping techniques involve developing multiple representations of similar 

classifications (e.g., roofing materials, housing characteristics) that can be applied 

across multiple urban landscapes in order to develop a meaningful outcome, insight, 

or interpretation (Ilic et al. 2019, p. 3). For example, by developing a CNN-based model 

for Google Street View (GSV) mapping, Ilic et al. (2019, p. 3) assessed improvements 

in the quality of the frontage of residential properties in Ottawa, Canada, to determine 

the level of gentrification in various urban regions. Although the model was vulnerable 

to false positives and negatives due to the complex and varied definition of ‘frontage 

quality’, evidence suggested that this technique could be applied to urban analysis in 

order to assess changes in landscape characteristics over time as planning permits 

are approved or withheld in environments of varying socio-economic conditions (Ilic et 

al. 2019, p. 6). 

 

It is the practical applicability of remote sensing CNN models to real-world 

problems that presents the greatest opportunities for policy-making and urban 

development. Nguyen et al. (2019, p. 7), for example, revealed how high-level satellite 

images could be used to classify the built environment and its effects on regional 

amenities, targeting health-improving outcomes that are defined in relation to hospital 

and service density. When considering the disparities between quality of health across 

urban and rural areas, this model allowed regional data on health pathology to be 

compared with visual data on built services and social support over time (Nguyen et 

al. 2019, p. 7). Gebru et al. (2017, p. 13108) offered a different classification model 

based upon automobile characteristics that demonstrated the applicability of GSV 

images to a CNN-based assessment of regional demographics. The findings revealed 

a direct correlation between inferred classifications (e.g., income, race, education, 
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voting patterns) and the actual demographic indicators that were captured for a given 

neighbourhood or urban region (Gebru et al. 2017, p. 13108). The implications of such 

findings are linked to future voting profiling and social services programmes, 

suggesting that the implications of visual mapping can be extended beyond the 

experimental basis for these targeted models (Gebru et al. 2017, p. 13113). 

 

2.5 Nightlight analysis and spatial imaging 

 

One emergent solution for assessing urban density and poverty-related 

patterns in discrete geographic models is to evaluate luminosity at night in order to 

predict changes in productivity and economic activity over time (Chen & Nordhaus 

2011, p. 8589; Ghosh, Anderson, Elvidge, & Sutton 2013; Henderson et al. 2012, p. 

995; Jean et al. 2016, p. 791; Michalopoulos & Papaioannou 2014, p. 152; Mveyange 

2016, p. 2; Pfeifer et al. 2018, p. 2; Pinkovskiy & Sala-i-Martin 2014, p. 3). Jean et al. 

(2016, p. 791) recognise that night-time lights were universally reliable and existing 

proxy for economic activity regardless of them being noisy. Through machine learning 

training of a CNN, several critical stages are required for developing a representation 

of economic activity, as both daytime variations and night-time light features can be 

used to increase the accuracy of the dataset (Jean et al. 2016, p. 791). It is the 

recognition of night-time light variations at higher income levels that Jean et al. (2016, 

p. 791) proposed can be applied to the detection of variations amongst lower-income, 

more densely populated urban areas; however, inconsistencies in the poverty 

assessment can lead to false positives or assumptions of higher income regions. By 

training the model to recognize some 'livelihood-related characteristics of the 

landscape' in the daytime model, the model can then discern specific features that are 

correlated with night-time light indicators, resulting in an automated and high-accuracy 

representation of household consumption expenditure and wealth (Jean et al. 2016, 

p. 791). Figure 2.1 provides a visual representation of this multi-modal assessment, 

utilising variable landscapes to not only train the daytime assessment, but also the 

nightlight interpretation of luminosity and regional density (Jean et al. 2016, p. 791). 
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Figure 2.1: Three-model comparison of daylight (top), nightlight (middle) and filtered (bottom) assets 

across (left to right) urban, nonurban, water and roads (Jean et al. 2016, p. 792, Figure 2) 

 

Similar visual comparisons were recently employed by Engstrom et al. (2017, 

p. 6) to draw verifiable comparisons between night-time light density, the regional 

poverty rate, and the mean population density. Their comparison revealed a higher 

level of correlation between night-time light areas and population density than welfare 

indications, suggesting a potentially incomplete representation of welfare and poverty-

specific representations. To further classify and distinguish between visual features 

via GIS images, Engstrom et al. (2017, p. 7) applied deep learning object-based 

classification techniques to develop object predictions based on specific traits such as 

roof type, road characteristics, structural density, automobile density, and landscape 

usage (e.g., agriculture, urban). Evidence revealed a negative correlation between 

regional poverty surveys and vehicle density (e.g., lower density equals higher 

poverty), a negative correlation between road density (e.g., higher density equals 

lower poverty), and a positive correlation between regional poverty and agricultural 

land (e.g., higher agricultural land equals higher poverty) (Engstrom et al. 2017, pp. 

14–15). Specific to the role of night-time lights in explaining poverty variances 

observed in the models, Engstrom et al. (2017, p. 19) confirmed a 7-12% explanation 

in the variance of per capita consumption, suggesting a potentially inaccurate, and 

only marginally supportive solution for GIS poverty modelling. 
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A comparison of recent GIS-based machine learning studies, including those 

by Jean et al. (2016, p. 794), Xie et al. (2016, p. 3934), and Babenko et al. (2017, p. 

3), revealed that the efficacy and accuracy of the analysis are predicated upon the 

effectiveness of the training programme devised for convolutional neural networks 

(CNNs) and the correlated accuracy of feature-based observations with their capacity 

to predict poverty-related factors (e.g., urban density, access to electricity). In a broad, 

global assessment of the night-time light assessment of poverty, Ghosh et al. (2013, 

p. 4712) revealed that when applied across multiple urban landscapes and compared 

with correlated data from annual poverty reports such as the World Bank, it becomes 

possible to track patterns of socio-economic deprivation and development over time 

by using comparative models. Alternatively, Mveyange (2016, p. 15) used an 

Integrated Public Use Microdata Series (IPUMS) dataset from ten African countries to 

compare night-time light data with regional employment, education, and urban density 

statistics, generating a comparative indicator of poverty that was representative of a 

broad, multi-dimensional scale. Pfeifer et al. (2018, pp. 20–30) localised this approach 

to a regional study of South Africa, drawing evidence from multiple night-time light 

datasets that revealed the affective influence of infrastructure improvements made in 

preparation of hosting the 2010 FIFA World Cup on regional poverty as measured by 

improved structural solutions and socio-economic welfare. By specifically identifying 

features (e.g., train stations, bus depot) that could be correlated with the 2010 FIFA 

World Cup investments, post-event night-time indicators revealed regional urban 

luminosity indicators that suggested positive economic improvements (Pfeifer et al. 

2018, p. 29). 

 

Systematising the approach to night-based luminosity analysis, Pinkovskiy and 

Sala-i-Martin (2014, p. 7) developed a pixel-based assessment of luminosity that 

assigned a score to each spatial indicator (one square kilometre) in order to model the 

relative luminosity of a given region or geographic area. The premise for the nightlight-

based assessment is based upon the positive correlation between luminosity and 

national accounts (e.g., GDP) which has been demonstrated over a range of critical 

socio-economic events (e.g., decline in luminosity during the Asian Financial Crisis) 

(Pinkovskiy & Sala-i-Martin 2014, p. 8). A similar study conducted by Chen and 

Nordhaus (2011, p. 8589) acknowledges that when comparing light saturation with the 
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estimated urban population, a log-log linear relationship between urban scale and 

population can be calculated. However, in order for such analyses to be effective, it is 

critical for these models to be able to resolve inconsistencies such as scanning errors, 

water vapour, luminous noise (e.g., fires), and other irregularities that are likely to 

negatively influence the accuracy of the datasets (Chen & Nordhaus 2011, p. 8589). 

 

Building upon these early models, there is a distinct and significant opportunity 

to develop effective visual sensing tools that are capable of accurate and comparative 

analysis of economic welfare via satellite imagery. Research by Pinkovskiy and Sala-

i-Martin (2014, p. 8) in Angola, for example, demonstrated a doubling of per capita 

income between 2000 and 2009 that was positively correlated with a significant 

increase in night-time lighting recorded from satellite images taken during this same 

nine-year period. Similarly, in India, where per capita income more than doubled 

between 1994 and 2010, satellite imagery demonstrated that lighting intensity both 

within urban areas and across previously unlit areas of the nation increased 

significantly during a period of accelerated economic growth (Pinkovskiy & Sala-i-

Martin 2014, p. 8). When luminosity was compared across ethnic groups in Africa 

separated by national boundaries (e.g., Ambo Group in Angola and Namibia), the 

differentiation between luminosity within a single group had direct implications for 

assessing institutional performance between countries, as visualised in Figure 2.2 

(Michalopoulos & Papaioannou 2014, p. 154). These findings revealed an important 

visual differentiation between the economic welfare of members of a single ethnic 

group when subdivided across international borders (Michalopoulos & Papaioannou 

2014, p. 154). 
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Figure 2.2: Ethnic group nationality partitioned luminosity measures (Michalopoulos & Papaioannou 

2014, p. 154, Figure IIB) 

 

A critical problem with the pixel-based luminosity equation is that the digital 

number output (luminosity score) at the bottom or top end of a model is likely to reflect 

either artificial dimming (e.g., lack of light continuity) or blooming (e.g., luminosity 

carryover from pixel to pixel) (Pinkovskiy & Sala-i-Martin 2014, p. 8). Furthermore, 

although the efforts of Michalopoulos and Papaioannou (2014, p. 159) were originally 

constructed to highlight the significant gaps in national institutions across international 

borders, the findings revealed regionalised heterogeneity in cross-border luminosity 

which could not be explained by institutional variations. Instead, other contextual 

factors within the region, such as distance from the urban centre, were identified as 

primary impact factors that played a direct role in determining the degree of 

institutional penetration across regional populations (Michalopoulos & Papaioannou 

2014, p. 159). This finding is problematic, particularly when considering luminosity as 

a representative indicator of poverty, as remote sensing experiments would be unable 

to reconcile variations between municipalities, different socio-economic patterns, 

industrial versus residential areas, and a variety of other predictive indicators. 

 

 In order for nightlight mapping to provide an effective proxy for domestic 

welfare, it is important not only to observe a single representation of lighted urban or 
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residential spaces, but also to compare the characteristics of night-time lighting over 

a time-series sample (Henderson et al. 2012, p. 999). Employing data aggregated by 

the National Oceanic and Atmospheric Administration (NOAA) from US defence 

satellites, Henderson et al. (2012, p. 999) determined a reliable source of nightlight 

imaging that could be compared across regions and time periods to assess luminosity 

on a scale from zero (no lights) to a high score of 63 (brightest saturation of lights). 

Figure 2.3 visualises two long-term comparative images of the Korean Peninsula and 

the change in luminosity from 1992 until 2008 as urban landscapes have expanded 

and rural areas have gained access to electricity (Henderson et al. 2012, p. 1002). By 

applying a pixel-based classification technique, Henderson et al. (2012, p. 1015) 

propose calculating economic growth over time by comparing luminosity across time-

series visual models and comparing positive and negative lighting effects within the 

datasets. Similar to the findings presented by Pinkovskiy and Sala-i-Martin (2014, p. 

8) with respect to the Southeast Asian financial crisis, Henderson et al. (2012, p. 1015) 

suggest that economic recessions can be observed via regressive patterns in regional 

luminosity, while expanding GDP can be observed via an increased regional level of 

consistent and efficient brightness. However, despite the advantages associated with 

a general assessment of luminosity for urban analysis and activity mapping, Jean et 

al. (2016, p. 790) remind the research community that in areas below the poverty line 

(less than USD $1.90 per capita per day), the lack of electric capability is likely to mean 

limited luminosity and, therefore, limited variations in levels over time. 
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Figure 2.3: Light-recorded long-term growth on Korean Peninsula (Henderson et al. 2012, p. 1002, Figure 

2) 

 

2.6 Other remote sensing solutions 

 

As researchers struggle to apply methods such as night-time light analysis to 

the assessment of economic growth and regional welfare, other social models and 

investigations are providing a comparative basis for validation and confirmation. One 

important revelation presented by Pinkovskiy and Sala-i-Martin (2014, p. 8) in relation 

to the results captured from Angolan and Indian remote sensing experiments is related 

to the gap in domestic surveys (e.g., reported income increase) and national accounts 

(e.g., World Bank Per Capita Income Data). Specifically, there is a stronger correlation 

between luminosity and per capita income data than with the household surveys and 

social reports, and the researchers attribute the weakness in the latter category to 

reliability and consistency issues associated with these field-level investigations 

(Pinkovskiy & Sala-i-Martin 2014, p. 8). Yet Blumenstock et al. (2015, p. 1073) 

recognise that many nations are restricted to fieldwork surveys and ground-level 

assessments of poverty data which have been proven to vary in terms of accuracy by 

as much as 50% from the ground-truth measures of regional wealth and economic 

productivity. For this reason, researchers are seeking quantitative correlations which 

they can use not only to model poverty characteristics over time, but also to improve 

the reliability of the relationship between a given metric (e.g., luminosity, housing 
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density) and its predictive effects for poverty modelling (Blumenstock et al. 2015, p. 

1073). 

 

As an alternative to night-time light sensing techniques, Jean et al. (2016, p. 

790) describe a new machine learning method for the extraction of socio-economic 

data from daytime satellite imagery in high resolution, applying the technique to a five-

country case study in order to compare readouts and analysis against local, domestic 

georeferenced datasets regarding economic traits. Due to the lack of trained sets and 

object-based recognition patterns, Jean et al. (2016, p. 790) adopted a ‘transfer 

learning approach’ to remote sensing of poverty levels, adopting a ‘noisy but easily 

obtained proxy for poverty’ that could be used to train a deep learning system. 

Specifically, this approach used a night-time light training model to help a CNN learn 

classification strata for a range of urban characteristics (e.g., urban density, roofing 

materials, agricultural areas) (Jean et al. 2016, p. 791). When applied to daytime 

classification models, distinctions between key features such as roofing material and 

distance to an urban area were accurately filtered, and the researchers applied the 

trained sets to the asset-based differentiation between key image assets (Jean et al. 

2016, p. 792). By comparing the accuracy of the transfer model with other remote 

sensing exercises, such as nightlight calculations or cell phone data, Jean et al. (2016, 

pp. 792–3) demonstrated an approach with increased efficiency that is effective for 

poverty-oriented cluster assessment. When efforts to assess differences within 

clusters are employed, the model becomes less effective, as granularity is constrained 

by both the capabilities of the CNN-derived coordinates and the resolution of the 

geographical imagery (Jean et al. 2016, p. 793). 

 

As technological models evolve, the intersection between physical and digital 

assessment is diversifying, with researchers such as Blumenstock et al. (2015, p. 

1074) proposing that other indicators such as mobile phone use can serve as proxies 

for wealth in developing nations. The rationale behind this approach is based upon 

technological penetration—a representation of individual wealth and economic means 

that is characterised by an increase in mobile data consumption that can be merged 

with personal economic data in order to predict wealth (Blumenstock et al. 2015, p. 

1073). Through a paired survey and remote sensing experiment, Blumenstock et al. 

(2015, p. 1076) present a regional snapshot model which suggests that in emerging 
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economies like Rwanda, the pattern of mobile phone activity over time is positively 

correlated with regional wealth, allowing researchers to model patterns of growth 

reflecting urbanisation processes and district services. 

 

In another study, Ma et al. (2019, p. 2) adopted a novel approach to spatial 

economic analysis, predicting that there may be a correlation between typeface usage 

in building signage and regional economic wealth, classifying nine class-specific 

typefaces according to their relationship with modern amenities. This novel approach 

involved two central stages: (1) typeface classification based upon urban audits to 

determine amenity type/frequency (see Figure 2.4), and (2) regional classification and 

comparison (Ma et al. 2019, p. 3). By applying this technique to a geographical area 

with robust socio-economic data (London), Ma et al. (2019, p. 4) were able to 

successfully map typeface characteristics using remote sensing capabilities, Google 

Street View, and a deep CNN capable of learning and automatically evaluating 

typefaces and their associated characteristics relative to this classification matrix. 

Similar to the scalar limitations reflected in Blumenstock et al. (2015, p. 1074), the 

generalisation of typeface characteristics presented by Ma et al. (2019, p. 5) is 

vulnerable to a range of heterogeneous influences including urban rehabilitation, 

regional preferences, socio-cultural biases, and other interference categories, which 

make the narrow visualisation of typeface an unreliable solution for socio-economic 

modelling. 
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Figure 2.4: Correlation of typeface with amenity type (Ma et al. 2019, p. 3, Figure 2) 

 

Models proposed by Blumenstock et al. (2015, p. 1074) and Ma et al. (2019, p. 

5) uses different contextual and semantic triggers to visually track poverty according 

to a discrete set of cues or characteristics. One of the challenges is what Law, Paige, 

and Russell (2019, p. 3) refer to as the challenge of 'heterogeneous good', a value 

determination that is based on the weighted evaluation or interpretation of a quality 

relative to the assessment metric. The typeface correlation model developed by Ma et 

al. (2019, p. 5) demonstrated a classification problem that was resolved by repeated 

comparisons across a regional landscape in order to identify weighted similarities. In 

relation to housing, Law et al. (2019, p. 3) describe a ‘hedonic price approach’ which 

suggests that housing attributes can be used to predict real estate values, where 

variations (e.g., one bedroom versus two bedrooms) can be used to classify the value 

relative to competing traits. To realise a maximal ‘predictive accuracy’ of the hedonic 

price model, Law et al. (2019, pp. 10–11) compared CNN perceptual calculations 

based on attributional features with real housing prices, calculating correlational 

relationships between image orientations (e.g., street, aerial) and determining the 

degree of error for various street orientations and visual characteristics (e.g., 
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obfuscation). Although the approach revealed encouraging results, the lack of 

continuity in housing facades, designs, and attributes resulted in a high degree of 

variation, which was magnified when the training set was transferred to another region 

or neighbourhood where structural traits were regionally indicative or highly 

heterogeneous (Law et al. 2019, p. 16). 

 

For emerging economies, the accurate representation of regional poverty 

through remote sensing is a critical problem that is motivating innovative tactics in 

CNN and object-based classification according to feature characteristics (Ayush et al. 

2020, p. 3). The following section evaluates remote sensing solutions and discusses 

the challenges of reliability and consistency associated with field-level investigations, 

call data records from mobile operators not being readily accessible, the possibility of 

granularly assessing within lowest levels of clusters, heterogeneous influences, and 

transferability to other regions. To overcome these challenges, it is imperative that 

further research be required to use cost-effective algorithms that not only use readily 

accessible data, but also enable granular poverty assessments supported by artificial 

intelligence (AI) and can be transferred to other less developed countries for socio-

economic policy development and interventions. 

 

2.7 A background overview of machine learning 

 

Kovalerchuk (2018, p. vii) acknowledges that in modern problem solving, high-

dimensional data shapes information analysis, management, and strategy-making as 

researchers visually compare hundreds of complex, multidimensional relationships 

across a discrete dataset. Knowledge discovery is characterised by Kodratoff (1999, 

p. 1) as a data mining process that is oversimplified, a field of research that relies 

heavily upon inductive reasoning in order to draw meaningful conclusions from 

otherwise unrelated datasets. A subset of AI, machine learning is implemented by 

leveraging mathematical models that use training data to make predictions, yet have 

not been programmed to make the said decisions explicitly (Zhang 2020, p. 223). As 

machines are trained and focused, they imitate the human learning process and their 

capacity for rule-based identification of targets or critical data allows researchers to 

apply replicable comparative techniques to the assessment of varied phenomena 
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(e.g., the relationship between nightlights and poverty) (Jean et al. 2016, p. 792). In 

fact, significant advances have been made in the use of nightlights, satellite imagery, 

and crowd-sourced map data in estimating socio-economic equality in recent years, 

and therefore these indicators can act as reliable predictors of wealth levels. 

 

Machine learning is mostly categorised as either supervised or unsupervised. 

Supervised learning involves learning from examples of labelled training data whose 

outcome is known, while unsupervised learning involves using an unlabelled dataset 

and then finding patterns or knowledge as a solution (Zhang 2020, p. 224). In 

supervised learning, the known data is used for the model training process 

continuously until the required accuracy level is reached, and then, through knowledge 

transfer, will generalise on unknown data. With unsupervised learning, the model uses 

clustering or association to reduce redundancy or organise by similarity to extract 

rules. The following sections discuss the main machine learning concepts that were 

applied to this study. 

 

2.7.1 Deep learning 

 

Emulating the brain, deep learning is one of the ML methods that uses 

representation (feature) learning based on a neural network to process external input 

features to an output (Goodfellow, Bengio, & Courville 2016, pp. 5–8). Neural networks 

consist of neurons that are connected to each other and form deep neural networks, 

similar to neurons in the nervous system. The neural network consists of three main 

different model layers: the input layer, hidden layers, and an output layer (Figure 2.5). 
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Figure 2.5: A 3-layer neural network with three inputs, two hidden layers of four neurons each, and one 
output layer (Karpathy 2020, p. 1). The connections (synapses) between neurons are across layers but 

not within a layer. 

 

The input layer is also called the visible layer as it contains variables that are 

observable, takes in raw data such as the image, and stores each pixel value in a 

neuron. A series of concealed layers extract the abstract features from the image, 

where a neuron will serve as a sifter that is triggered each time a precise feature is 

detected. It is called ‘hidden’ because the input is not given as a value but 

visualisations of relationships in the observed data for each feature represented 

(Goodfellow et al. 2016, p. 6). The output layer recognises the objects and categories 

that are present in the image. The success of how an algorithm performs vision-based 

tasks is determined by how the hidden layers perform. There are several variants that 

can be implemented as hidden layers to control their behaviour, and among them is 

CNN, which is implemented to analyse satellite imagery for this study. The algorithm 

is trained to discern human eye-recognizable features, such as points of interest, 

buildings, or roads which can be co-related with night-time light intensity, which will 

then be transferrable to predict poverty (Jean et al. 2016, p. 790). 

 

2.7.2 Convolutional Neural Network (CNN) 

 

CNNs have been applied to deep learning solutions in order to learn the 

important features of input images to avoid an attempt to come up with a method to 

extract the features (Long, Gong, Xiao, & Liu 2017, p. 2486). In a CNN, the 

convolutional layer is responsible for extracting features by learning from high-

dimensional data when it slides or ‘convolves’ over input images. Down-sampling is 
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required to address sensitivity issues where the location of specific features impacts 

classification from shifts and distortions (Yamashita, Nishio, Do, & Togashi 2018, p. 

615). In order for the CNN to generate optimal output, it must be trained based on a 

training set that includes labelled remote sensing images and the corresponding target 

outputs that confirm or reject the identification of the feature (Yu, Wu, Luo, & Ren 2017, 

p. 6). The VGG16 CNN model architecture (Simonyan & Zisserman 2015, p. 8) 

visualised in Figure 2.6 includes convolution layers, pooling layers, and full-connection 

layers (Long et al. 2017, p. 2488) and is now a significantly popular model that is 

preferred nowadays for classification tasks in computer vision. The layer’s functions 

are described below. 

 Convolution Layer: Utilises several filters on local receptive fields to generate 

different feature maps using the maps of the previous layer or input (Long et al. 

2017, p. 2488). 

 Pooling Layer: Additionally, it uses filters as well to generalise the brief 

representation of the convolution layer to reduce the number of parameters 

(Long et al. 2017, p. 2488) in order to reduce the spatial information of features 

(e.g., adjacency and rotation). It can include maximum or average pooling. It is 

also a way to down-sample an input image and introduce transitional invariance 

to the network in order to identify objects in images regardless of the 

appearance. 

 Full-Connection Layer: Extracts the output of the convolution or pooling 

exercises and predicts the best label to describe the associated image. 
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Figure 2.6: A 16-layer VGG16 pipeline model architecture for 224 × 224 × 3 image sizes, with 1000 classes 
in the softmax layer (rightmost). It shows all the stages in the layer, including the convolutional, pooling, 

and a fully connected final layer (ul Hassan 2018) 

 

The major component in extracting features from satellite images is a CNN 

model architecture. A CNN with VGG16 architecture is a convolutional neural network 

that consists of 16 blocks, also known as trainable layers (Simonyan & Zisserman 

2015, p. 2). The authors have designed the VGG to have 16 layers that are composed 

of stakes of convolutional base layers which implement neurons with 3 × 3 receptive 

fields and max-pooling layers for spatial pooling (red-coloured in Figure 2.6) to aid in 

down-sampling. The convolutional base is followed by a Rectified Linear Unit (ReLU), 

an activation non-linearity function. In a network layer, activation functions are required 

to fire exact neurons (Krizhevsky, Sutskever, & Hinton 2017, pp. 85–86). The last three 

layers are called fully connected layers, which have 4096 neurons and whose output 

are feature maps that are fed into a 1000-way softmax one-dimensional array of 

vectors that produces a distribution over the 1000 class labels (Krizhevsky et al. 2017, 

p. 87). The input holds a raw pixel value of an image, and 224 × 224 × 3 refers to width 

224, height 224, and with three colour channels red, blue, green (RGB). When 

comparing the performance of neural networks, the advantage of using CNN 

architecture presented by Yamashita et al. (2018, p. 612) is related to its computational 

efficiency in filtering important features in image processing automatically without the 

need for human supervision. CNN models can be pre-trained to recognise 1,000 
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classes of a dataset such as ImageNet and fine-tuned for research that uses satellite 

imagery datasets (Simonyan, Vedaldi, & Zisserman 2014, p. 1). 

 

2.7.3 Transfer learning 

 

As a critical innovation in machine learning and artificial intelligence (AI) 

deployment, transfer learning involves the use of both the 'data in the target task 

domain' and any of the learning processes in the source domain, including the training 

data, models, and task description' (Yang, Zhang, Dai, & Pan 2020, p. 8). Due to their 

dependence upon massive training datasets, deep learning models require large 

banks of data in order to promote an understanding of the latent patterns and 

characteristics that improve predictability and replication of the identification or 

modelling output (Tan et al. 2018, p. 270). By rejecting the 'hypothesis that the training 

data must be independent and identically distributed with the test data' (Tan et al. 

2018, p. 271), deep transfer learning uses independent tasks and a CNN model to 

extract features and classification measures from high-level representations (e.g., 

satellite classification data) (Xie et al. 2016, p. 3929). Figure 2.7 shows the two basic 

ways pre-training can be applied for transfer learning, which are fixed feature 

extraction and fine-tuning (Yamashita et al. 2018, p. 620). 

 
Figure 2.7: Transfer learning methods (Yamashita et al. 2018, p. 621, Figure 10) 
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Transfer learning enables a model to recognise features of an image (as the 

network would have learnt them from a small dataset) where the network is pre-

training on an extremely large dataset from across many domains, such as ImageNet, 

which yields better performance and faster training times when applied to a specific 

task of interest (Jean et al. 2016, p. 790). ImageNet contains over 15 billion high-

resolution images of over 20,000 categories, which were labelled through crowd-

sourcing (Krizhevsky et al. 2017, p. 85). For socio-economic studies that use 

geospatial data, the approach involves training an algorithm to predict the intensity of 

night-time lights first in order to obtain more detailed poverty data. This follows an 

assumption that brighter lights at night signify a more economically developed place, 

compared to less well-lit areas, thereby using night-time lights as a substitution for 

socio-economic activities. 

 

2.8 Conceptual framework 

 

Although the central foundations of these studies are based on a variety of 

overlapping and varied remote sensing techniques, night-time light data collection, and 

crowd-sourced map, there are several unifying considerations that predict the efficacy 

of any model in future investigations. Through a review of the literature in this field, it 

is evident that there are several tenuous and varied relationships that need to be tested 

in order to resolve the array of procedural and systemic gaps related to multimodal 

remote sensing techniques: 

 

 Core Concept 1: Machine learning and object-oriented modelling allow 

researchers to distinguish between geospatial and satellite map features that 

present direct indications of poverty profiles (Arribas-Bel et al. 2017, p. 4; 

Holloway & Mengersen 2018, p. 2). 

 

 Core Concept 2: There is a strong and testable relationship between 

geospatial data sources and poverty that can be compared with key social 

indicators (e.g., education levels, access to electricity, access to water, durable 

household goods, and road network) in order to determine changing patterns 
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of regional deprivation (Fatehkia et al. 2020, p. 1; Jean et al. 2016, p. 791; Xie 

et al. 2016, p. 3934; Zhao and Kusumaputri 2016, p. 1). 

 

 Core Concept 3: A multimodal, multi-banded GIS-based solution that 

combines various datasets will likely reveal greater accuracy in predicting 

poverty than a single band day or night-time model alone (Engstrom et al. 2017, 

p. 7). 

 

 Core Concept 4: Post-processing benchmarking is critical for confirming the 

accuracy of the model and predicting whether the observations achieved during 

the assessment are comparable to government reports or regional publications 

(Jean et al. 2016, pp. 792–3; Pinkovskiy & Sala-i-Martin 2014, p. 8). 

 

Figure 2.8 provides a conceptual framework that aligns the findings of the 

literature to prescribe the structural and evidence-related requirements to design and 

apply a crowd-sourced and remote sensing strategy to the assessment of poverty in 

South Africa. 
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Figure 2.8: Conceptual framework 

 

2.9 Chapter summary 

 

This chapter has provided an in-depth overview of the range of remote sensing 

techniques that have been explored as researchers strive to extrapolate meaningful 

evidence from a growing spectrum of GIS databases. Advanced imaging capabilities 

being developed in a variety of recent experimental studies are indicative of the power 

of remote sensing and data integration exercises. By applying systemised analytical 

techniques, machine learning, and extensive model training, it becomes possible for 

researchers to exploit high-quality, high-fidelity images to illuminate meaningful 
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patterns and phenomena. For nations in which the cost of large-scale population 

studies is likely to improve investment, remote sensing capabilities offer an economical 

solution that can be administered across geographic channels by specialists in 

particular socio-economic fields. The models reviewed during this chapter have 

highlighted several targeted solutions for designing, administering, and analysing an 

experimental platform that can be deployed across a broad range of locations and 

indicators. The following chapter will outline the methodological solutions that were 

used to craft and administer remote sensing to a discrete problem of poverty in South 

Africa, a nation of extreme socio-economic inequality. 
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Chapter 3. Research methodology 

 

3.1 Introduction 

 

The spectrum of methodological techniques and poverty assessment indicators 

introduced in the preceding chapter is broad and multi-faceted. As researchers 

struggle to parse the noise and complexity of poverty indicators, we are faced with a 

variety of hurdles, ranging from data availability, consistency, to measurement 

accuracy. Methodological fidelity and accuracy are critical to the transferability of 

empirical findings and the applicability of mapping and modelling techniques to more 

complex, systematic problems. Consequently, the design and implementation of an 

experimental resource require selecting the techniques that are most appropriate and 

then applying them to a dataset that is verifiable, replicable, and inherently comparable 

to the existing overlapping discourse. This helps researchers plan and execute a study 

to answer the research questions (Saunders, Lewis, & Thornhill 2015, p. 163). By 

comparing studies that have focused on the challenges of night-time light assessment 

and classification, this chapter outlines specific sources of evidence and analytical 

techniques applied to the methodological approach. The following sections will outline 

the methodological selection process employed over the course of this study and will 

discuss both the origins of the data collected for this experiment and the techniques 

applied to facilitate this analytical solution applied to the machine learning problem. 

 

The presentation of this chapter broadly follows the scheme proposed by 

Saunders et al. (2015, p. 124) where each onion layer is a detailed description of the 

research process stages followed. The research paradigm in Section 3.2 explains the 

philosophical considerations of the study, South Africa as the study area is discussed 

in Section 3.3, and the research approach established to deduce the truth is discussed 

in Section 3.4. Furthermore, this chapter will delve into the details of the data sources 

and uses of these data in Section 3.5. At the end of the chapter, ethical concerns are 

outlined. The chapter not only discusses the selected options, but also explains the 

logic behind the selected choice and techniques to answer research questions. 
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3.2 Research paradigm 

 

Different approaches are available to do research. The method chosen 

depends on the research questions to be answered related to the research topic. The 

term ‘paradigm’ originated with Kuhn (1970) to define how members of scientific 

communities share beliefs, assumptions, and world views. A paradigm is a system of 

thinking or belief which is used to organise observations and reasoning (Bhattacherjee 

2012, p. 17). As a basis for research design and methodological development, Bryman 

(2012, p. 24) acknowledges that the research paradigm serves as the epistemic 

foundation for selecting and applying techniques to a given social problem. Whilst 

many poverty studies and poverty models depend upon complex, multi-dimensional 

social surveys, the primary goal of these approaches is the extrapolation of 

transferrable insights and interpretations that can be used to inform and support 

improved domestic policies.  

 

The extrapolation of evidence from empirical or observational sources through 

analytical and deductive techniques involves a series of structured steps and 

approaches that originated in the natural sciences and represents a positivist 

paradigm (Bryman 2012, p. 24). Indicative of patterns and predictable, measurable 

representations of evidence related to a particular problem (e.g., the propagation of 

poverty in urban versus rural spaces), a central advantage of the positivist paradigm 

is its ability to illuminate likelihood and statistical relationships, allowing for repetition 

and hypothesis testing (Jonker & Pennink 2009, p. 30). For the current study, the 

positivist paradigm, which is based on the empiricist view of epistemology, formed the 

basis for the deductive evidential techniques that were applied to overlapping datasets 

from South Africa. 

 

3.3 Research approach 

 

The research approach must be established before an investigation can begin. 

To discover the truth, there are two fundamental approaches: the deductive and 

inductive approaches. A deductive approach begins by defining basic statements 

about confirming how the world works based on research questions and the 
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hypothesis developed. This differs from the inductive approach, which requires 

defining truths that explain the phenomenon as the focus of the investigation by 

collecting and analysing qualitative data to establish links with research objectives 

before drawing new conclusions. The positivist empiricist view of epistemology, which 

requires obtaining knowledge through experimentation and observation, synchronises 

with the deductive nature of this study whose objective is to compare the performance 

of predictive techniques that crowd-sourced geospatial data over satellite imagery for 

South African poverty estimation. Therefore, the study follows a deductive approach 

which involves a series of steps taken to design and experiment with several models 

to choose the best performing. 

 

3.4 Research strategy 

 

The research strategy is a general approach used to respond to the research 

questions (Oates 2006, p. 25). There are several strategies available, including 

survey, case study, ethnography, experiment, and design and creation. This research 

can be classified as a knowledge discovery process that involves both elements of 

data science and engineering, as it involves building a model that uses data to test 

and confirm whether it works as hypothesised. It combines data science and 

knowledge discovery processes to adopt the design science research method. 

Originating in the field of natural sciences, design science research was proposed by 

Simon (1996, p. 198) who suggested that researchers “devise artefacts to attain goals” 

in order to structure analytical instruments according to the ‘character of the artefact 

and the environment in which the artefact performs’. Artefacts are further explicated 

by Dresch, Lacerda, and Antunes (2015, p. 56) as “meeting points between the inner 

environment’ and the ‘surroundings in which they operate”; therefore, the purpose of 

design science is to create new knowledge by developing “new artefacts that 

contribute to better human performance”. Although it is idealistic in such a broad 

representation of its affective capacity, by establishing problem solving as the basis 

for the design of the artefact, design science makes the relationship between structure 

and optimisation intrinsic to the focus and purpose of the design process itself. 
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For the current study, design science informed several considerations that 

shaped this software-based, but sociologically and data-science-oriented, problem. 

Hevner's (2007, p. 88) design science research cycle is linked with the Knowledge 

Discovery in Databases (KDD) process of Fayyad, Piatetsky-Shapiro, and Smyth 

(1996, p. 29) to come up with an analytical solution that works as a research 

intervention instrument. Design science follows a structured process in its effort to 

support the design of artefacts, which is comprised of the relevance cycle, design 

cycle, and rigour cycle (Hevner 2007, p. 88), as shown in Figure 3.1. 

 

 
Figure 3.1: Design science research cycles (Hevner 2007, p. 88, Figure 1)  

 

The design science research methodology has iterative expert activity steps to 

design and evaluate an artefact which, when followed, will result in the output being 

fed into future iterations, thereby enhancing the overall understanding of the 

phenomenon under study and refining the characteristics of the resulting artefact 

(Hevner et al. 2004, p. 85). The relevance cycle aims to introduce artefacts in a domain 

consisting of people and the organisational and technical system that interacts to 

improve the current environment (Hevner 2007, pp. 88–89). In Chapter 2, existing 

research by experts was reviewed to propose the requirements for developing a cost-

efficient machine learning model to estimate wealth indices from readily accessible 

datasets. Essentially, the design cycle is where the artefact will be developed and 

evaluated iteratively until a satisfactory design is achieved following the work of Peffers 

et al. (2007, p. 54) design science research methodology adopted for this study (cf. 



 

44 
 

 

Chapters 3 and 4). Lastly, the rigor cycle ensures that the artefact is innovative and 

meticulously developed. The artefacts were tested using experiments, evaluated, and 

discussed (cf. Chapters 5 and 6). 

 

For prior solutions, Blumenstock et al. (2015, p. 1074) and Ma et al. (2019, p. 

2) have proposed novel measures of classification and structural identification without 

defining any significant or purposive objective. Classifying building font choices, for 

example, in Ma et al. (2019, p. 2) is a novel representation of deep learning 

capabilities, but it neglects the broader concept of gentrification upon which the 

research originated. By adopting a design science basis for this study, the problem, 

poverty in South Africa, informed the methods, categorisation, and optimisation of the 

analytical tools designed for this research. Accordingly, this process has revolved not 

only around the expectation of a novel software-based proof of work output, in addition 

to a positive contribution of this artefact to the field of research surrounding poverty, 

regional inequality, and the lagging process of socio-economic development in under-

resourced urban spaces. 

 

3.4.1 Design science research 

 

Design research originated from engineering and the sciences of the artificial 

(Hevner et al. 2004, p. 76; Simon 1996, p. 216). Its importance is highly acknowledged 

in the information systems literature and has received increased attention in the last 

decade from various authors such as (Gregor 2002), (Hevner et al. 2004), (Peffers et 

al. 2007), and (Simon 1996) among others. Design science research concerns itself 

with the knowledge and understanding of the domain of a problem and then gains new 

knowledge by developing a novel artefact and analysis of the artefact in use with 

abstraction (Hevner et al. 2004). As a result of following specific guidelines for 

evaluation and iteration, Hevner et al. (2004, p. 85) says that the end product of a 

design research should help to close the gap between the current state and an ideal 

goal. Although its application is widespread among research fields, it is most notable 

in engineering and computer science disciplines. 

 



 

45 
 

 

Peffers et al. (2007) formalised the design science process and presented a 

methodology that acts as a model for carrying out and evaluating research. Unlike 

Hevner et al. (2004), the model by Peffers et al. (2007, p. 56) which is adopted for this 

study provides an explicit process description. The methodology guided the research 

process, in addition to legitimising it by providing overarching elements on which an 

ideal research is formed.  

 

The adopted model proposed by Peffers et al. (2007) is depicted in Figure 3.4. 

The Peffers et al. (2007) methodology starts with addressing a problem and the 

objective motivation, and then iteratively moves to the rest of the stages which involve 

building and evaluating the artefact (rigour cycle) until its application in the relevance 

cycle (Hevner 2007, pp. 1–2; Hevner et al. 2004, pp. 87–88). The purpose of design 

science goes hand in hand with the goal of this research, which is to solve insider 

problems by developing a model for integrating remote-sensing and crowd-sourced 

data.  

 

 
Figure 3.2: Design science research activities, according to Peffers et al. (2007, p. 58) 

 

The Peffers' et al. (2007) process methodology consists of six elements, which 

will now be discussed in detail regarding how they are applied in this research study. 

 

3.4.1.1 Identify the problem and motivate 
 

Estimating poverty indicators using accurate, granular, and up-to-date data is 

essential for a stable economy and political environment, as well as for the 

identification of vulnerable regions for humanitarian assistance efforts. Traditional data 

collection methods for poverty statistics are conducted through on-the-ground 
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household surveys, which requires heavy organisation, is time-consuming, is updated 

after long time frames, is sometimes limited to accessible areas, and is sometimes 

considered subjective, making it difficult to rely on one for up-to-date socio-economic 

data (Engstrom et al. 2017, p. 2; Jerven 2014, p. 6). The main research question for 

this study focused on cost-effective approaches that can be adopted to estimate 

poverty. The need for an artefact (in this case, a machine learning model) for the 

estimation of poverty on a large scale using readily accessible data in a faster and 

easier way. 

 

By evaluating recent machine learning and satellite imagery approaches, the 

motivation of the study is for the adoption of open-source and freely available data to 

mitigate the challenges of sparse data, shortcomings and weakness can be identified 

and improved upon leading to cost-efficient machine learning models to predict the 

poverty indicators that will benefit resource-constrained agencies. The main research 

question as stated in Chapter 1, Section 1.5 is: Given the heterogeneity of economic 

characteristics in developing nations like South Africa, which cost-efficient machine 

learning methods can be used to determine the relationship between special features 

and socio-economic variations? 

 

3.4.1.2 Define the objectives of the solution 
 

The activity of defining the objectives of the machine learning model is the 

second step in the design science research methodology suggested by Peffers et al. 

(2007). In line with the main and sub-research questions proposed for the study, the 

required information and data were gathered through various means and sources. The 

databases of academic literature and the internet were used to review the existing 

literature on machine learning, remote sensing, and poverty measurement and their 

application in South Africa from Chapter 2 was combined with the problem statement 

from Chapter 1 (Section 1.4). The output of the activity provided a background for 

understanding the research problem; motivate its relevance and lay the foundation for 

designing a machine learning model (artefact). 

 

3.4.1.3 Design and development 
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The aim and function of the third activity in the methodology is to address the 

design specifications and development requirements of an IT artefact through 

specification, which forms the output of the study. The artefact can be in the form of a 

construct, model, method, or an instantiation (Hevner et al. 2004, p. 78) and is a socio-

technological innovation, which according to Hevner et al. (2004, pp. 81–83), can be 

grounded in theory of a problem to define ideas, practices, or products. In this study, 

the design requirements are converted into machine learning models that are 

developed in the following phases (cf. Chapters 3 and 4) as the artefacts: 

i. Predict wealth using satellite imagery: This model replicates and improves on 

a study by Jean et al. (2016) where night-time lights intensity is used as a proxy 

task, which then are used to compute average features embeddings per cluster 

to estimate wealth using regression models. 

ii. Predict wealth using cost-efficient crowd-sourced data: Use exploratory data 

analysis of night-time lights and OSM data to perform regression analysis of 

predictive models.  

 

Through experiments, the performance of the developed models is evaluated. 

The first model which uses satellite imagery is evaluated using South African DHS 

data as ground truth by measuring co-relation between night-time luminosity and the 

average household wealth index. The second experiment is conducted on night-time 

luminosity data alone, and then together with the OSM data using several regression 

models to compare if the crowd-sourced readily accessible data performs better than 

proprietary or licensed data. 

 

3.4.1.4 Demonstration 
 

In this phase, ground truth data were applied to wealth prediction models to 

measure their performance and demonstrate the feasibility of the concept as 

experiments. The first model used night-time luminosity proxy from satellite imagery 

using CNN, deep learning, and transfer learning. The second model applied random 

forest and ridge regression classification algorithms to crowd-sourced data and night-

time data separately and combined. The classification task was implemented using 
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Python to rapidly prototype the patterns using Google’s Colab Notebook and machine 

learning libraries. 

 

3.4.1.5 Evaluation 
 

The evaluation phase involves evaluating the artefact implemented against the 

objectives formulated in Phase 2. The results of the demonstration phase are 

observed and compared with the objectives to formulate conclusions on the 

performance of the models and how they meet the objectives. Evaluation and testing 

of the models must be rigorously demonstrated to ensure utility, quality, and efficacy, 

which are necessary for conducting research in order to produce some poverty 

indicators (Hevner et al. 2004, p. 85). Improvements can be made to the artefact 

iteratively until a decision is made that the model performance is comparable and good 

enough before proceeding to the next phase. 

 

3.4.1.6 Communication 
 

The last element of the methodology involves synthesising and concluding the 

findings of the research phases, outcomes, and processes. Additionally, it includes 

guidelines for using the model and generalisation possibilities as well. Research 

questions are answered, reflections on the research are formed, conclusions are 

formed, and recommendations for future research are formulated from the 

conclusions. Moreover, the main part of this phase is the presentation of the results 

and research in a scholarly or scientific format, as documented in Chapter 6. The next 

section discusses the adopted research strategy and experimentation utilised to build 

and test the implementation models. 

 

3.5 Target country 

 

The current study focuses on South Africa, a nation characterised by 

widespread, regionalised poverty, with approximately 40% of the population reportedly 

living below the upper-bound poverty line (Statistics South Africa 2019a). South Africa 
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reflects a dualistic economic system with extremely wide gaps in wage equality and a 

Gini coefficient of 0.63 in 2015, an indicator that had actually increased since the 

appointment of the modern regime in 1994 (World Bank 2019, p. 1). Despite an 

expanding domestic economy, more than 30.4 million South Africans live on less than 

$75 USD per month; With more than 50% of the population below the age of 35 

currently unemployed, the domestic disparities between the rich and poor populations 

offer a glaring indication of pro-business, anti-poor domestic policies (Worstall 2017).  

 

Currently, approximately 10% of the upper-class population holds around 71% 

of the net wealth, whilst low levels of intra-generational mobility result in pass-through 

poverty and exhibit persistent inequality across the population demographics (World 

Bank 2019, p. 1). With more than 18.8% of the population living on less than $1.90 

USD per day, the South Africa Gateway (South Africa Gateway 2019, p. 1) reports 

that domestic poverty is systemic and geographically concentrated, resulting in the 

regionalisation of poverty. Characterised as multi-dimensionally poor, poverty in these 

critical regions is measured according to four core measures: health, education, living 

standards, and economic activity (South Africa Gateway 2019, p. 1). Although more 

than 22 years have passed since the collapse of apartheid, Figure 3.2 presents a stark 

juxtaposition of wealth and poverty in South Africa, with major roads, rivers, and 

industrial zones providing divisionary boundaries for class-based separation (The 

Guardian 2016). As of 2018, Statista reports that more than 66% of the South African 

population resides in urban areas and more than 70% of that population is employed 

in white-collar industries such as the service sector.  
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Figure 3.3: Visual distinction between upper middle class and poor residential areas in South Africa (The 

Guardian 2016) 

 

South Africa is made up of nine administrative units called provinces, divided 

into 52 administrative units called districts (eight of which are metropolitan cities) with 

205 local municipalities. At the finest level of administrative units, instances are called 

wards. There are 4,392 wards. South Africa used to conduct a census every five years 

and has since extended the interval to ten years due to a lack of capacity within 

Statistics South Africa (Statistics South Africa 2020). 

 

3.6 Data sources 

 

The compositional approach adopted by Jean et al. (2016, p. 791) provided a 

viable, multi-layered solution to the problem of data fidelity, poverty analysis, and 

density errors in remote sensing of both urban and rural areas. As demonstrated by 

Pinkovskiy and Sala-i-Martin (2014, p. 8), poverty visualisation must be confirmed to 

ensure that the increase in lights being seen is closer to what is suggested by surveys 

before assumptions about the effectiveness of the machine learning model can be 

verified, as additional economic activity could be benefiting those who are already well-

off, or images are recorded by aged satellites which are almost to be retired. Similarly, 

Zhao et al. (2019, p. 3), Zhao and Kusumaputri (2016, p. 1), and Head et al. (2017, p. 

2) outlined specific database sources that could be used to systematically and 

comparatively analyse the relationships between poverty indicators and spatial 
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imaging analysis. Consequently, this study used overlapping visual data, crowd-

sourced maps, and statistical datasets for comparative analysis, allowing regional 

indicators of poverty to be identified alongside the weighted output of the image and 

feature classification model. For example, as maximally objective data, the DHS 

USAID (2020) provided baseline indicators of regional poverty and socio-economic 

welfare. For night-time imagery dataset, the NOAA (2020, p. 1) imagery was 

downloaded. Regional satellite images were downloaded from Google (2020), whilst 

the volunteered geospatial data was downloaded from Geofabrik GmbH (2020). The 

data used for this analysis were captured from different critical resources as 

enumerated below. 

 

3.6.1 Demographic and health survey 

 

The publicly available Demographic and Health Survey (DHS) household 

survey data for South Africa were used as the ground truth, namely, to serve as a 

reference point to verify the validity of the analysis. It provides baseline indicators of 

regional poverty and socio-economic welfare outcomes for validating the machine 

learning models by comparing them with the wealth predictions. The most recent 

survey included in the analysis was conducted in 2016. DHS contains nationally 

representative household survey information on a wide variety of demographic, social, 

economic, and health-related indicators by sampling villages proportional to their size 

and is funded by USAID (2020). The South African DHS data contained 750 clusters. 

Key indicators identified within this model include education levels, access to 

electricity, access to water, and wealth index. 

 

DHS provides geocoded data where the approximate location of each 

household is re-coded using the latitude and longitude coordinates and assigned a 

cluster or enumeration area surveyed in addition to the asset data. For each cluster, 

DHS also collects and provides the centroid’s geographic coordinates. Each cluster is 

roughly equivalent to a village in rural areas and a neighbourhood in urban areas. DHS 

protects the privacy of the surveyed households by anonymising: the GPS coordinates 

are jittered by up to 2km for urban clusters and 5km for rural clusters (Burgert, Colston, 

Roy, & Zachary 2013, p. vii). A further 1% of rural clusters are jittered by up to 10km. 
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Displacements are a source of noise in training data and can add considerable 

measurement errors to regional wealth estimates. Although the DHS instrument does 

not collect consumption or income data, its measures of asset ownership, health, and 

education are commonly used in calculating MPI. The study included four responses 

from the DHS survey for socio-economic indicators (Tingzon et al. 2019, p. 426). 

 

 Wealth Index. The DHS has a factor called 'wealth index', which is a continuous 

scale to measure socio-economic well-being. It is calculated as the first 

principal component of survey responses related to a household’s wealth (Sahn 

& Stifel 2003), for example, roof material, television ownership, water supply. 

No further transformations were done on this column. 

 

 Education Completed in Years. This is the most reliable measure of 

education completed in years for all respondents to the household survey who 

are at least six years old. In most cases, the respondent would have been the 

head of the household. The aggregate information required for the study is 

computed by calculating the average years of education completed by all 

households present in a cluster. 

 

 Access to Electricity. This is an aggregate of household survey respondents 

who affirmatively confirmed that they have access to electricity within a DHS 

cluster. 

 
 Access to Water. The survey has responses for the time it takes for each 

household to reach a drinking water source, measured in minutes. The time is 

set to zero in cases where the source of water is in situ (i.e., tap water, water 

well or bottled water). Responses are aggregated to compute the mean for all 

household respondents in a cluster. 

 

3.6.2 Night-time luminosity 

These datasets provide records of artificial light on the Earth’s surface collected 

during the night using average radiance composite images using night-time data from 

the Visible Infrared Imaging Radiometry Suite Day/Night Band (VIIRS DNB), a remote 
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sensing instrument on the Suomi National Polar-Orbiting Partnership (S-NPP) 

satellite. The data were pre-processed by the National Oceanic and Atmospheric 

Administration (NOAA) National Centre for Environmental Information (NCEI) to 

eliminate stray light whilst emphasising light from towns. The dataset comprises cloud-

free composite maps of all calendar years which are developed from all the available 

archived Operational Linescan System smooth resolution data. The NOAA NCEI suite 

is a version 1 product; version 1 products span the globe with light intensity data. The 

data is provided as inter-calibrated tiled raster layers. 

 

The imagery recognises wavelengths from green to near-infrared and is 

distributed in the form of monthly composite cloud-free maps to maximise the amount 

of light received from the Earth’s surface. Satellite imagery data was downloaded from 

intra-period indicators in annual bands at 15 arc-second geographic grids at a 

resolution of 0.742km × 0.742km grid cells (see Figure 3.3). The data sets are made 

available for free in GeoTIFF format as a set of six tiles on the NOAA/NCEI (2020) 

website. The continuous luminosity level was modulated from level 0 to 122 in South 

Africa and grouped into five luminosity intensity classes (1-5): low intensity (0), 

moderately low intensity (0.05-2), medium intensity (2-15), moderately high intensity 

(15-30), and high intensity (30-122) (Tingzon et al. 2019, pp. 426–427). The light 

luminosity intensity data is measured in units of 𝑛𝑊/ 𝑐𝑚 𝑠𝑟 (nanoWatts/cm2 - 

steradian), and 2016 data was downloaded for this study. 
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Figure 3.4: Night-time imagery for Cape Town, South Africa (NOAA 2020) 

 

 

Each tile is a set of images that are cut at the equator containing average 

radiance values and spans 120 degrees of latitude (NOAA/NCEI 2020, p. 1). The 

images were extracted on the basis of the latitude and longitude of the DHS clusters. 

Specific tiles with night-time luminosity data for South Africa were downloaded with 

Tag Image File Format (TIFF) data. 

 

3.6.3 Daytime satellite imagery 

 

The primary strategy for the daytime imagery model was to obtain high-quality 

satellite image samples to use in the training of the convolutional architecture for 

wealth prediction. The requirement was to achieve this merely from freely accessible 

sources of data or from those that keep their costs close to zero. For this reason, the 

Google Static Maps Application Programming Interface (API) was chosen as the sole 

source to download daytime satellite imagery. Daily Google API requests are restricted 

to 25,000 free of charge, after which billing is required or the user will get errors. 

Although the night-time satellite imagery allowed for classification of luminosity relative 
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to each of the regional sectors and density bands, it was critical to differentiate 

between the contributing factors. The banding approach employed by Jean et al. 

(2016, p. 792) was similarly adopted by Tingzon et al. (2019, p. 426) and involved 

obtaining daytime satellite imagery data for the target regions. For this research, the 

daytime satellite imagery data was collected corresponding to the DHS cluster 

centroids. Since DHS introduces noise to preserve privacy for the mean latitude and 

longitude of each household, large neighbourhoods will be considered to address 

noise in the cluster coordinates. Each DHS cluster comes already tagged as a rural or 

urban location. The geolocation information coordinates are also necessary in order 

to get images consistent with the DHS cluster coordinates. 

 

After completing the Google Cloud registration process, an API and a Secret 

Key were provided to enable the extraction of regional images using the DHS 

geolocation and the required zoom level. The zoom level of Google Maps ranges from 

0 to 19 describing the scale of the map. Google Maps is built on a 256 × 256 pixel tile 

system where the zoom level is 0 for a 256 × 256 pixel image of the whole earth. A 

256 × 256 tile for zoom level 1 enlarges a 128 × 128 pixel region from zoom level 0. 

The download was carried out with a zoom level = 17, scale = 1, and image size = 400 

× 400 pixels for 2016. A zoom level of 17 (1 pixel = 2.387m) means that each image 

covered ~1km in width and height. The resolution of the images was set at 400 × 400 

pixels to match 0.25km2 which is equivalent to a single pixel of the night-time lights 

data, which it typically covers. This will accelerate model training and extraction of 

geographical features during the unsupervised training process. 

 

3.6.4 OpenStreetMap data 

 

Despite the ease of access, Google Static Map imagery is proprietary and may 

incur costs if you request to download more than 25,000 static images per day, as this 

causes delays in downloading the required number of images for conducting studies. 

This research proposes a methodology that uses an open-source repository of 

geographic information contributed by volunteers. OpenStreetMap (OSM), an online 

publicly accessible database, is amongst the most established geographic mapping 

and analysis crowd-sourcing platforms. It is an open-source, large-scale collaborative 
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geospatial project that contains records of volunteered geographic information. OSM 

has grown to be the most popular geospatial data crowd-sourcing platform. The 

platform allows users, a community of global mappers, to accurately depict any 

interesting features they encounter that producers of commercial maps may have 

never represented. The completeness of projects that involve mass collaboration is an 

ongoing challenge (OSM 2020). In addition to the advantages of being open source, 

OSM is also used by humanitarian teams in health outreach projects, as it has the 

most complete coverage even when compared to commercial map engines such as 

Google Static Maps (Humanitarian OpenStreetMap Team 2020). The main focus for 

OSM in 2004 when it was initially launched was on roads and streets; however, it was 

broadened later on to include mapping of buildings, land uses, points of interest, and 

other notable geographic features (Barrington-Leigh & Millard-Ball 2017, p. 2). It uses 

nodes where each node has an ID, coordinates, and metadata to describe it. In other 

words, for each road, the metadata includes its capacity, category, whether it is paved, 

etc. 

 

For this study, OSM data for South Africa were acquired from the Geofabrik 

GmbH (2020) website, an online repository containing OSM data as ESRI shapefiles. 

Data were used to train a model according to buildings, roads, points of interest, 

railways, water or waterways, transport, and land use related to areas of interest, 

increasing the granularity of the training set and supporting a more robust 

interpretation of the output. Three steps were followed to characterise the OSM data: 

(1) downloaded the South African OSM data; (2) features were extracted and 

classified according to roads, buildings, and POIs using QGIS algorithms, an open-

source GIS software; (3) using shapefiles from the DHS GPS dataset, the survey 

clusters and OSM feature locations files were merged. 

 

3.7 Research experiment  

 

In order to design the experimental features of this study, it was important to 

review a variety of prior techniques before developing a solution that would have an 

adequate degree of specificity and predictive capacity to achieve the overarching goal 

of the research. This section introduces and discusses the applied methods used to 
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predict socio-economic well-being. The design of this experimental prediction model 

and the methods implemented in this study derived structure and instrumentality from 

Jean et al. (2016, p. 790), Tingzon et al. (2019, p. 425) and Head et al. (2017, pp. 1–

2) and the precipitating night-time model introduced by Xie et al. (2016, p. 3931). Two 

computational frameworks are proposed to estimate wealth using satellite imagery and 

crowd-sourced geospatial information. The process of predicting regional socio-

economic indicators using night-time light intensity as a proxy task for satellite imagery 

data to compute the average feature embeddings per cluster and use regression 

models on the cluster-level feature vectors. The second approach involved using OSM 

data and night-time lights data, first separately and then combined, with the hypothesis 

that integrating data from multiple sources will lead to performance improvements of 

the regression model compared to using data from a single source. 

 

The analysis for this study will use design experiments as a means to evaluate 

design alternatives with respect to their impact on reality. Experiments will be 

conducted to gain general knowledge about the artefact to ensure verifiability and to 

find ways to improve the product design. Firstly, the datasets that were used in the 

development and testing of the computational algorithm are discussed in Section 3.6. 

Following that, the two different approaches for the estimation of socio-economic well-

being are discussed. Figure 3.5 shows the research stages that were followed to carry 

out the study. 

 

 
Figure 3.5: Research organization 
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This organisation follows the design science research process adopted for the 

study. The satellite imagery approach based on CNN and the transfer learning 

architecture was also developed as discussed in Section 3.8.1. The crowd-sourced 

information model was discussed in Section 3.8.2. Regression models were 

implemented to predict socio-economic well-being and simulations were performed to 

validate and measure performance as discussed in Chapter 5. Finally, in Section 3.8.3, 

the machine learning classification models used in the study are discussed. 

 

3.7.1 Satellite imagery approach 

 

The first method applied uses the transfer learning strategy, which means that 

an existing CNN architecture is modified to learn and classify images for the current 

study. The VGG-16 is an existing architecture that was developed by Simonyan and 

Zisserman (2015, p. 12) of the Visual Geometry Group at the University of Oxford. 

This is a very large-scale network that has 16 layers with trainable weights (13 

convolutional of increasing depths and 3 fully connected). A singular critical 

assumption in designing this study was based upon the hypothesis that night-time light 

modelling would yield a positive proxy for economic activity (Jean et al. 2016, p. 792; 

Xie et al. 2016, p. 3930). Training a network of this magnitude requires tremendous 

computational power, which would not be feasible in the context of this project. 

However, since the network has been extensively pre-trained on the ImageNet 

database (Deng et al. 2009, p. 251), it contains an enormous variety of images 

belonging to many class varieties and has weights that are publicly available. The 

satellite images used for this study will have extractable features similar to the image 

features that were used to train the convolutional network. The model will classify the 

extracted image features based on night-time luminosity intensity classes at a DHS 

cluster-level corresponding to the daytime satellite images. The hypothesis for this 

experiment is that night-time lights have features that can be used as a proxy for 

economic development in the sense that wealthier places will have brighter lights at 

night compared to less affluent places. The following steps are followed for the 

experiment: 
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 Download the required datasets from sources and pre-process the data before 

it can be used in the models to ensure that it was in a format that can be 

understood by the model in addition to data cleaning, transformation, and 

reduction. 

 Generate cluster aggregates for information. 

 Predict night-time light intensity as a proxy task using the transfer learning 

approach to train a VGG architecture on satellite images for predicting the night-

time lights bins and average them across a cluster. 

 Compute the average of 4096 size feature embeddings per cluster to estimate 

wealth using ridge and random forest regression models. 

 

After the extraction of vectors of learnt representations, they are averaged at 

cluster level and used as input to a regressor for the prediction of socio-economic 

indicators as shown in Figure 3.6. 

 

 
Figure 3.6: Satellite-based transfer learning model 

 

3.7.2 Crowd-sourced information approach 

 

The OSM model compared regressor performance on OSM features, both 

separately and combined, to predict socio-economic well-being. Furthermore, 

experiments are set to test the performance using features from both night-time and 

OSM datasets. Another critical assumption in designing this model was that using data 

from multiple cost-effective sources to train models will enhance the performance of 

the model. The model design is shown in Figure 3.7. Night-time features consist of 
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summary statistics and histograms extracted from nightlight pixels within each cluster 

using a script and saved as a .csv file.  

 
Figure 3.7: OSM model for the study 

 

The model results will be compared as part of the model performance 

evaluation. Although this is a valuable starting point for this experiment, it was 

important to focus the training set on specific contextual, geographic, and structural 

characteristics associated with South African urban spaces. There were several 

stages to this modelling methodology in order to evaluate the merging of datasets for 

poverty estimation which are outlined as follows: 

 

By selecting regionally specific images that were tailored to South African 

spaces with varied levels of daytime poverty indicators identified using the 

OpenStreetMap (OSM) model, any indications of poverty identified by the night-time 

model could be verified and assessed relative to their daytime counterparts. This 

secondary assessment model employed a multi-regional, multiple timestamp series 

GIS solution adopted from (Jean et al. 2016, p. 792) and trained to address the 

economic poverty indicators identified during the initial training sessions. In order for 

the OSM model to yield productive results, it was critical to first identify and classify 

the various building types (e.g., housing, mixed land use, storage, mercantile, medical 

institution), allowing cluster areas to be mapped relative to structural densities within 

each particular class. The critical analysis of this output thereby employed a 

comparison of several regression models trained on various OSM features, 

establishing the justified basis for socio-economic welfare. 
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3.7.3 Classification and regression models 

 

In order to realise meaningful data-driven comparisons of the model 

performance in learning features, statistical techniques are applied to the resolution 

and analytical granularity of the knowledge base comprising the data that will be 

analysed. The study problems were treated as classification tasks. Classification 

techniques in machine learning include both supervised and unsupervised categories, 

as discussed earlier. The deductive approach to machine learning involves applying a 

set of reasoning rules from a training set or a range of premises to create a classifying 

output that can be applied to new instances (Kotsiantis 2007, p. 4). The unsupervised 

approach (e.g., cluster analysis) requires only input data without an associated 

response to find relationships or groups in the data. In contrast, supervised learning 

uses data that are already labelled with the correct values to train the algorithm. Most 

statistical learning methods are used for supervised learning tasks where the learning 

problems are either classification or regression. To improve classification and 

regression for prediction and avoid overfitting, James et al. (2013, p. 204) proposes 

regularisation and bagging among other options. To improve the performance of the 

models to derive features, the Ridge and Random Forest regressors were 

implemented as follows. 

 Ridge Regression: A simple linear regression is an approach for estimating a 

quantitative response Y based on a single predictor variable X, assuming there 

is an approximately linear relationship between X (the input variables) and Y 

(the target variables) (James et al. 2013, p. 61). The primary goal of linear 

regression is to fit a function so that the residual sum of squares (loss function) 

is minimized. The model coefficients are defined through an optimisation 

method that seeks to minimise the sum-squared error between the predictions 

and the expected target values. Ridge regression (also known as Tikhonov) is 

a regularisation method that shrinks the regression coefficients by imposing a 

penalty term on them, which helps to reduce variance for better prediction 

where linear regression could become unstable due to input sensitivity. Since 

some of the features will be more important than others in predicting the wealth 
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level of a cluster, a substantial number of parameters may present challenges 

of low bias and high variance resulting in overfitting and less generalisability. 

The values of the ridge regression coefficient parameter minimise 
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over 𝜷 for a given λ, where λ is a tuning parameter (𝛌 𝟎  which is used to seek 

coefficient estimates that fit the data well by making the residual sum of squares 

(RSS) small, p is the number of variables available for use during prediction, n 

is the number of distinct data points or observations, 𝒊 is used to index the 

samples/observations (from 1 to n) and 𝒋 will be used to index the variables 

(from 1 to p). 𝒙𝒊𝒋 represent the value of the 𝒋𝒕𝒉 variable for the 𝒊𝒕𝒉 observation, 

where 𝒊 = 1, 2, …, n and 𝒋 = 1, 2, …, p (James et al. 2013, p. 10). The shrinkage 

penalty, ∑ 𝜷𝒋
𝟐𝒑

𝒋 𝟏  has the effect of shrinking the estimates towards zero. 

 

 Random Forest: A supervised classification mechanism that uses decision 

trees to allow training sets to be mapped or split into individual nodes that 

operate as an ensemble committee and are then combined to have one strong 

predictor. A central advantage is its simplicity; however, it is likely to require 

multiple training sessions and may not withstand more complex diagonal 

partitioning or replication challenges. An RSS splitting criterion is used as 

follows: 

𝑹𝑺𝑺  𝒀𝒊  𝒀𝑳
∗ 𝟐

𝒍𝒆𝒇𝒕
  𝒀𝒊  𝒀𝑹

∗ 𝟐

𝒓𝒊𝒈𝒉𝒕
 𝟑 𝟐  

 

where 𝒀𝑳
∗  = mean y-value for the left node, 𝒀𝑹

∗  mean y-value for the right node, 

and 𝒚𝒊 is the actual observed value. 
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3.8 Metrics and evaluation 

 

A major liability that results from machine learning models is the phenomenon 

called overfitting. When a model is trained, it learns both meaningful signals and 

random noise such that the model will fit its parameters to both the noise and the 

signal. It will appear as an excellent fit for the input data, but will perform poorly when 

applied to previously unobserved data. There are different methods that can be 

employed to evaluate the performance of machine learning models depending on the 

phenomenon under study. A technique called cross-validation was used to protect 

against overfitting. To measure performance, the value of the models for this study, 

normally an estimate of the wealth index which is continuous and ranges between -

one and +one was used. A value of ±1 indicates a perfect degree of association and 

a correlation coefficient closer to zero represents a weaker relationship. To assess the 

performance of the models, one has to look at the correlation, which measures how 

well the model fits the data, which is the association between the independent and 

response variables, and how well the model estimates the response variable 

(direction). Models were evaluated using ridge and random forest regression machine 

learning techniques. The scoring metrics for the models is done using R-squared (𝑅 ), 

correlation between real and predicted values, and Root Mean Squared Error (RMSE) 

to compare the performance of poverty prediction. Descriptive statistics were used to 

explain the characteristics of the data for easier understanding. The methods and 

techniques are described in detail below.  

 

3.8.1 R-squared value 

 

The accuracy of a machine learning model is measured using R-squared, 

represented as 𝑅 , or also known as coefficient of determination. 𝑅  is a statistical 

measure of fit metric that is based on a linear relationship representing the proportion 

of the variance between the response variable (𝑌) and an independent variable (𝑋) in 

a regression model. It takes values between zero and one (0 𝑅  1) and is 

independent of the scale of the response variable. It is computed by: 
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𝑅  1  
∑ 𝑦 𝑦
∑ 𝑦 𝑦

1  
𝑅𝑆𝑆
𝑇𝑆𝑆

3 3  

  
 

where ∑ 𝑦 𝑦  is also known as the “Total Sum of Squares” (TSS) which 

measures the total variance (summation) inherent to the actual response variable 

output and average value, whilst ∑ 𝑦 𝑦  is the “Residual Sum of Squares” 

(RSS) measuring the total variation of the discrepancies between the actual values of 

𝑌 and those predicted by the regression equation (James et al. 2013, pp. 69–71). An 

𝑅  value which is close to one indicates a high proportion of response variability 

between the response and independent variables that has been explained and 

captured in the regression model. Whereas an 𝑅  close to zero indicates that the 

regression model is unable to sufficiently capture and explain the variability of the 

response variable. In this research, R2 is used to measure the proportion (%) of 

variation of the wealth index survey data and the predictions generated by OSM, night-

time luminosity, and satellite imagery during cross-validation. 

 

3.8.2 Root mean squared error 

 

Root Mean Squared Error (RMSE) is useful to measure and compare the 

prediction performance of a regression model using the error rate, where errors are 

measured at similar rates. It does this by measuring the difference between predicted 

values and the real values and, therefore, is the sample standard deviation of that 

difference. To compute it, you need to determine the residuals first denoted as 𝑦 𝑦  

and it is based on the cross-validated predictions which are computed by: 

 

𝑅𝑀𝑆𝐸  
∑ 𝑦 𝑦

𝑁
 3 4  

 

where 𝑖 is the variable 𝑖, 𝑁 is the number of missing data points, 𝑦  is the 

predicted value, and 𝑦  is the actual observed value for the 𝑖  observation. It is not 

always straight forward if one has obtained a good RMSE or 𝑅  value, which is why it 

is important to evaluate the performance of the model using multiple metrics. In this 
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case, 𝑅  provides additional insight especially since 𝑅  has an interpretability 

advantage over RMSE. 

 

3.8.3 Cross-validation 

 

Cross-validation is used to protect the models from overfitting. The k-fold cross-

validation, sometimes known as rotation estimation, is similar to random sampling but 

uses subsets for testing and training instead. The sparsity of poverty indicators usually 

causes differences between the distribution of training and testing data in subsets, 

leading to results that can be quite different between splits. To avoid these challenges, 

the performance of the baseline model was improved using a k-fold validation with the 

data used by the training model split into five parts, and each part is a fold. The model 

is trained with all k-1 folds and then tested with the remaining fold. This will be repeated 

k number of times, as shown in Figure 3.8. To overcome overfitting problems, we set 

the shuffle-true parameters in addition to the k-fold parameter. Cross-validation allows 

researchers to tune hyperparameters using their original training subset, enabling 

them to keep the test as a truly unseen dataset for selecting the final model. This 

allows the diagnostic values from the testing set to provide a more accurate reflection 

of how the model would perform in a realistic out-of-sample scenario. 

 

 
Figure 3.8: 5-fold cross-validation data split 

 

The performance of the baseline wealth index prediction model based on the 

DHS survey wealth index was implemented using five-fold cross-validation where, 

across five iterations, the training data are split into five equal folds, and the model is 

trained on four folds of the data, then evaluated with the remaining fold. The five-fold 

nested cross-validation scheme was used to validate all the models in the training set 

to select the 'optimal' model. After the data was merged, Spearman and Pearson 

correlation was investigated to check the importance of the data features on the 
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predicted values. Pearson benchmarks linear relationships, while Spearman 

benchmarks monotonic relationships. Regression plots were used to visualise the 

relationship between independent and predicted indicators. A t-distributed stochastic 

neighbour embedding plot (t-SNE) was used to visualise the mean embeddings 

obtained from the deep learning model. 

 

3.8.4 Data analysis and assessment 

 

One of the challenges involved in using Google Earth and satellite images is 

that the underlying records are the result of multiple satellite patches and stitched 

images. For this reason, the outputs may be inconsistent or incongruent, with cross-

locational images resulting in inaccuracies or a lack of visual conformity. Therefore, 

the data analysis for this study required the selection of image sets that were 

consistent and representative of a singular, regionally conforming output. Statistical 

correlations and an Analysis of Variance (ANOVA) comparison of means tests were 

used to confirm the statistically significant relationships between variables within the 

dataset (Singh 2007, p. 238). However, for visual comparison, poverty predictions 

were based on regional forecasts (e.g., percentage of impoverished households) and 

subdivided regional GDP datasets that could predict the likely bounds of poverty within 

a given geographic area (e.g., percent of the population in Cape Town earning less 

than $1.50 USD per day). As the primary research objective was to build a proof of 

concept model for the solution, the primary analytical output was a correlated 

comparison between the poverty predictions of the neural network analysis (e.g., 

percentage of impoverished members of the population for the sample region) and the 

quantitative data captured via regional household surveys. 

 

One of the challenges in developing an accurate visualisation instrument was 

that many of the housing characteristics within the targeted regions are similar or 

structurally indiscriminate. For example, making a distinction between residential 

structures and multi-family housing is often impossible given the top-down view offered 

by the satellite model. This issue also arises when considering night-time light data 

and in order to estimate the degree of error in night-time assessment models, Chen 

and Nordhaus (2011, p. 8591) averaged the luminosity scores recorded for multiple 
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satellite image records, resolution levels, and scalar records. By acknowledging 

particular factors that might interfere with the accuracy of the dataset, such as image 

resolution and artificial influences (e.g., fires, factories), predictions can be made about 

errors before the analysis is completed (Chen & Nordhaus 2011, p. 8592). For this 

study, regional generalisations were made based upon the variations between ground 

truth data and the calculations made by the model. 

 

3.8.5 Descriptive statistics 

 

When data are gathered, it is initially read and understood by applying statistical 

techniques before applying algorithms and making predictions. Descriptive statistics 

enable the summarising and organising of large quantities of data using limited 

numerical values which highlight the important data features so that they can easily 

be understood, that is, to describe variables numerically (Saunders et al. 2015, p. 444). 

The DHS dataset will be summarised using frequency tables and statistics including 

measuring central tendency (e.g., mean, median, and mode) and measures of 

spread/dispersion (e.g., standard deviation, mean deviation, percentiles, variance, 

quartiles). During the exploratory analysis of night-time luminosity data, characteristics 

of the distribution consisting of summary statistics and histogram-based features will 

be produced for each DHS cluster. These include the following additional statistics: 

Mean, Maximum, Minimum, Median, Coefficient of Variation, Standard Deviation, 

Skewness, and Kurtosis. Skewness is the measure of symmetry or lack thereof, whilst 

kurtosis measures the pointiness of the data. The correlation, which considers whether 

there is a relationship between variables in the data, apart from characteristics, is 

already discussed in Section 3.9.1. 

 

3.8.6 Poverty indicators and calculations 

 

The validity of visible wealth as a proxy for poverty has been empirically 

confirmed through a survey assessment by Bertram-Hümmer and Baliki (2015, p. 781) 

which suggests that individuals will perceive their own personal status and relative 

deprivation differently according to regional characteristics. Therefore, differentiation 
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between owned assets, proximity to services, building footprints, road network, and 

remotely sensed data on night-time light data were identified to serve as proxies for 

poverty characteristics that could be visually correlated with household surveys. In 

order for this experimental model to be sufficiently valuable, it needed to be extendable 

and generalisable across multiple geographic regions. For example, Jean et al. (2016, 

p. 790) employed household expenditures or average household wealth to calculate 

poverty characteristics at the cluster level (villages in rural areas or wards in urban 

areas). Extending this approach, Bency et al. (2017, p. 8) highlighted how building 

type, rent value, roads occupying more space, and neighbourhood features can be 

used to distinguish key patterns such as gentrification and poverty. Therefore, this 

study used multiple predictors of regional poverty not only to assess the precision of 

the trained solution, but also to confirm the transferability of this model to other regions 

in South Africa and other African nations based on contextual or categorical indicators. 

Therefore, the central dimensions used to assess poverty levels included the following: 

 Building type 

 Distance to nearest essential services 

 Education level attained 

 Access to drinking water 

 Road network 

 Amenities or services (frequency of parks, amenities such as community 

centres, government buildings) 

 

Once the visual classification models had been compiled, statistical 

comparisons between the visual findings and the quantitative data sets needed to be 

performed. Quantitative comparative measures developed by Pinkovskiy and Sala-i-

Martin (2014, p. 9) modelled the GDP data from the World Bank over time to calculate 

an indicator that compared luminosity with per capita income in order to confirm the 

degree of correlation between visible and economic indicators over time. This 

approach was inappropriate for the degree of granularity used in the current 

assessment but predicted that regional statistical data could be used to compare visual 

cues and outputs in order to calculate poverty rates and characteristics. 

 

3.8.7 Reliability and validity 
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Once a machine learning artefact is developed, trained, and tested, reliability 

and validity are two primary factors that require attention. Reliability refers to the 

degree of trust in the variables produced by the model. This is done to ensure that 

they are consistent, replicable, and free from measurement errors. On the other hand, 

validity refers to the accuracy of the model results that are produced on the test data. 

 

In order to test the validity of the wealth estimation for the purposes of this study, 

the findings were compared with the average wealth index of the ground truth data, 

which is based on the South African DHS survey for 2016. Ground truth data is 

obtained by direct observation or survey-based techniques rather than by modelling 

or inference. Validation challenges exist for big data (and remote sensing research in 

general) as the data are not specifically collected for socio-economic analysis. 

Reliability concerns the more mechanical aspects of a procedure by measuring the 

degree to which there is consistency rather than error in the measurements. 

 

3.9 Ethical considerations 

 

This study focuses on the assessment of a controversial social indicator: 

poverty. Although the evidence captured and analysed during the course of this 

research is based on publicly accessible secondary datasets, the vulnerability of the 

populations that this information targets remains a significant concern. Central to the 

responsible execution of any exploratory, data-oriented research, Bryman (2012, p. 

134) proposes that in any social research, ethical integrity is of paramount importance 

and through targeted controls, efforts must be made to mitigate harm and realise 

objective, broadly valuable outcomes. Similarly, Punch (2013, p. 49) suggests that by 

triangulating empirical evidence against underlying theoretical and conceptual 

foundations, interpretation and analysis can consider the broader applications and 

consequences of the empirical findings. The GIS imaging employed is generally 

anonymised and therefore protects participants from exposure. For this study, the 

controls employed in capturing and analysing the evidence for this data integration 

experiment were clearly defined before the visual data were downloaded. Geographic 

location data was scrubbed from visual representations of evidence to protect the 
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anonymity of residents and mitigate any potential association between poverty 

judgments and particular groups or individuals. Although regional specificity still played 

a critical role in this study, the generalisability applied to the machine learning 

techniques used will likely prove beneficial in future studies where these stages of 

research can be replicated and applied to different datasets (Carrig & Hoyle 2011, p. 

129). All findings were analysed by applying objective, quantitative comparisons, and 

visual grouping measures, thus reducing the likelihood of subjectivity and maintaining 

the objective output of the regional insights (Bryman 2012, p. 134). The researcher 

obtained an ethics clearance from the University of South Africa (UNISA) before data 

collection and followed the UNISA research ethics policy throughout the study. The 

research ethical clearance certificate is attached in the Appendices section. 

 

3.10 Chapter summary 

 

This chapter presented detailed methodological solutions that were used to 

craft and administer remote sensing to a discrete problem of poverty in South Africa, 

a nation of extreme socio-economic inequality. The chapter showed that by adopting 

a range of previously validated remote sensing techniques and applying regionally 

specific datasets to the systematic analysis of both daytime and night-time images, 

the methods developed for this study have illuminated a range of socio-economic 

patterns that are observable even in high-density urban areas. It was shown that for 

South Africa, this regionalisation and structural isolation results in several critical 

implications, including mapping and analysing the effectiveness of government 

programs, assessing network gaps and poverty enclaves, and predicting factor-

specific links between energy density and regional poverty.  

 

The following chapter will present these findings in their entirety, drawing upon 

specific South African sources of evidence to draw conclusions about the current state 

of regional poverty in this developing but high-inequality nation. 
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Chapter 4. Implementation and results 

 

4.1 Introduction 

 

This chapter discusses the experiments which were carried out for this study 

and aims to delve into the details of the data collection, pre-processing, and analysis 

thereof. The chapter begins with an introduction of the processing that was done to 

prepare the data for the practical implementation of both the feature-based and 

computer vision models. Several tools and scripts were used to prepare the data and 

generate .csv files. The chapter subsequently discusses the statistical models, the 

results of the implemented models, and a thorough evaluation of the performance of 

the models. In addition, this chapter discusses the setup of the environment, data 

preparation, and the corresponding evaluation metrics. 

 

4.2 Data collection 

 

Data collection is the method of acquiring data from relevant sources that 

enables the researcher to answer the research questions and evaluate the results. 

Dataset preparation is a time-consuming effort and requires a significant volume of 

high-quality images that are gathered from areas within the clusters targeted for the 

study. The data for this research are notoriously unstructured and noisy with varying 

degrees of difficulty in handling. This was a major challenge that took a lot of time and 

required patience. Google limits the maximum number of images that can be 

downloaded per day to 25,000 and will return blank messages instead of an error if 

you attempt to download more than the allowed daily limit. This led to delays in model 

development and training.  

 

The main requirement for selecting a data source was to enable the models to 

use readily accessible data sources to allow cost-efficient approaches to poverty 

estimation using machine learning. It is costly to purchase high-resolution images, and 

additionally, implementing deep learning models requires powerful computers with 

high performing GPUs, which can act as adoption barriers for the tools to the majority 
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of developmental organisations with limited resources (Ayush et al. 2020, p. 1; Jean 

et al. 2016, p. 794). Table 4.1 provides information on the data used to train each 

model for the experiments. The data sets described in the previous chapter will be 

used. Models were built using different types of training data set, depending on the 

objective and methodology of the research.  

 

Table 4.1: Training data setup 

Model Approach Training Dataset 

1 Satellite image-based  Daytime satellite, night-time lights, and DHS 

2 OSM-based OSM and DHS 

3 Night-time and OSM OSM data, night-time lights, and DHS  

 

4.3 Pre-processing 

 

Some pre-processing techniques must be applied to make the obtained data 

useful for analysis in this study before the actual image analysis and classification can 

be conducted. The pre-processing includes atmospheric correction of the image, bit-

depth conversion, georeferencing, and co-registration of the images. 

 

4.3.1 Demographic and health survey 

 

The pre-processing tasks involved processing a shapefile that was downloaded 

from the DHS website to get a layer in QGIS with buffers of different sizes for urban 

or rural DHS clusters. These were different sizes as shown in Figure 4.1. The process 

was carried out using a buffer algorithm along with expressions in the specific column. 

The researcher also changed the initial shapefile from EPSG Geodetic Parameter 

Dataset which was initially created by European Petroleum Survey Group (EPSG) to 

that for South Africa in order to improve accuracy. A Python script was developed to 

process the data. Two data files, ZAHR71FL.DTA and ZAHR71FL.DO, the file 

formulated with the household strata and the keys to the questionnaires, respectively, 

were downloaded and unzipped from the data file. The files were merged to generate 

a .csv file with 11,083 rows and 794 columns as shown in the code in Figure 4.1. 
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Figure 4.1: Python code for DHS dataset objects count 

 

The cluster column specified the exact DHS cluster where the survey was 

conducted. In order to obtain a meaningful prediction target, the mean or median 

values were calculated for the required columns. The mean was calculated for the 

columns of the cluster “Has electricity”, “Education completed in years”, and “Wealth 

index factor score combined”. The median value was calculated for the factor “Time 

to get to water source (minutes)”. A .csv file was generated with 746 columns and 4 

rows for each column grouped by cluster number. Figure 4.2 shows the spatial 

distribution of the clusters obtained by simulation of a DHS shapefile in QGIS where 

green represents urban clusters and red represents rural clusters. 
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Figure 4.2: South African DHS clusters 

  

Table 4.2 shows the summary data describing the statistics of the DHS clusters 

that were downloaded and pre-processed using a Python script. 

 

Table 4.2: Descriptive statistics of the DHS clusters 

 Wealth Index Education 

Completed (years) 

Access to 

Electricity 

Access to Water 

(minutes) 

Count 746 746 746 746

Mean 10,847.23 9.99 0.90 4.01

Std Dev 91,384.04 3.89 0.24 10.62

Min -246,990.20 0.77 0.00 0.00

25% -53,220.37 7.27 0.94 0.00

50% 12,694.50 9.51 1.00 0.00

75% 83,642.22 12.43 1.00 0.00
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Max 167,679.00 37.33 1.00 105.00

 

4.3.2 Night-time lights 

 

The night-time lights images were downloaded in GeoTIFF format. The TIFF 

files were used to generate .csv files with night-time luminosity data for the coordinates 

around the DHS clusters. In order to generate the file, first of all the point sampling 

tool plugin for QGIS was installed and used to open the VIIRS data. By default, the 

VIIRS data cover an exceptionally large area: the whole world. Since this study 

requires data for South Africa, the image was clipped so that it only covered the 

country of interest using a GADM (2020) geopackage of the country’s administrative 

boundary. The command “Generate points (pixel centroids) inside polygons” was used 

to obtain the pixel centroids for an image (raster) inside a polygon (vector) to produce 

a vector whose longitude and latitude points could be calculated using the “Field” 

calculator. The image was used as the raster layer, and the administrative boundaries 

of the South African provinces were used as the vector layer. The Point Sampling Tool 

and vectors were used with a set of points as a “Layer containing sampling points” in 

order to select the latitude and longitude of the vector and Band 1 of the raster as 

“Layers with fields/bands to get values from”. This was repeated by going to the 

“Fields” tab and renaming Band 1 as a night-time light then going back to the “General” 

tab to save the “Output point vector layer” as a .csv file. The final step was to use a 

buffer algorithm to merge data with DHS clusters to produce a .csv file with latitude 

and longitude coordinates along with a night-time light intensity indicator for each DHS 

cluster and values for luminosity. A total of 6,513,751 images were downloaded. 

Figure 4.3 shows the night-time lights data that were extracted for South Africa and 

Gauteng night-time lights merged with the DHS clusters. High luminosity can be 

identified in major cities in various provinces such as Bloemfontein, Cape Town, 

Durban, Johannesburg, Nelspruit, Polokwane, Port Elizabeth, Pretoria, and 

Rustenburg. 
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Figure 4.3: South African night-time luminosity data (left) and night-time data merged with DHS 

coordinates for Gauteng province (right) 

 

4.3.3 Daytime satellite imagery 

 

With the Google Cloud API and secret key, a total of 113,215 images were 

downloaded with a scale of 17 and pixel resolution of 1.25m2. Figure 4.4 shows a 

sample image from the downloaded dataset. The daytime satellite imagery data was 

downloaded for locations in the 2016 DHS coordinates. The images are 400 × 400 

pixels. 
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Figure 4.4: Sample Google satellite image for South Africa downloaded from (Google 2020) 

 

4.3.4 OpenStreetMap 

 

After the initial OSM data processing, the relevant data points are exported and 

converted to csv files. The OSM database consists of a collection of vector data 

objects that include point features (nodes), lines, and polygon features. QGIS is used 

to match each database table and convert the attributes of interest into PostgreSQL 

files in order to allow greater and faster manipulation of spatial data. The noise 

introduced while jittering DHS location data to protect respondent confidentiality will 

likely introduce bias in the spatial analysis, and therefore the extraction of the OSM 

features was done after setting a radius buffer zone of up to 2 km and 5 km for urban 

and rural areas, respectively, with each area centred on the cluster locations. The 

OSM features that were extracted included roads, buildings, POIs, railways, 
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waterways, transport, and land use. As a method to convert the OSM features into the 

required columns in the required files, an algorithm named “Distance to the nearest 

(hub) points” in QGIS was used to find the distance of each cluster to buildings, POIs, 

railways, and roads. The remaining columns were obtained using the “Buffer” 

algorithm in QGIS with the clusters as input and then using the “Join attributes by 

location (summary)” algorithm with the buffered clusters as input. Pre-processing for 

road feature extraction was performed using Zhao and Kusumaputri's (2016) 

technique where they got the type of road, the total number of roads, or lengths of 

roads in the cluster. For buildings, the total count, the average area, and the proportion 

of the area covered in a cluster were obtained. Hundreds of areas with POIs were 

identified, including the total within each cluster and the proximity to the POI within the 

cluster. Figure 4.5 shows the road network, POIs and buildings extracted from OSM 

and visualised through QGIS. 

 

 
Figure 4.5: Visualised OSM data 
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After obtaining attributes of the layers produced by algorithms with the help of 

pandas (a Python-based software library for data manipulation and analysis), this 

research pivoted the data, conducting the necessary renaming to produce wider 

categorical features. After exporting roads, buildings, and POI data, the researcher 

created categories based on OSM guidelines (OpenStreetMap 2020). Data were 

analysed according to the categories presented in Table 4.3. 

 

Table 4.3: OSM feature categories 

Buildings Residential, Industrial, Commercial, Education, Health, 

Administration, Damaged, Undefined 

Roads Primary, Paved, Residential, Unpaved, Trunk, Unknown 

Points of Interest Food, Education, Emergency, Finance, Healthcare, 

Entertainment, Tourism, Historic, Natural, Shop, Leisure, 

Others 

 

The basis of the analysis for this model is data containing the road network, 

buildings, POIs and night-time light data for South Africa extracted from OSM and 

VIIR. A general overview of South African data merged with DHS clusters generated 

using QGIS is shown in Figure 4.6. 
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Figure 4.6: QGIS OSM datapoints showing roads (blue), POI (green), buildings (orange), and DHS clusters 

(red dots) 

 

OSM data were pre-processed using QGIS, which is based on a graphical user 

interface (GUI) and involves multiple repetitive tasks which are tedious. The task was 

therefore time-consuming and took three weeks to complete. Furthermore, QGIS has 

limited support for machine learning models. A more efficient method of processing 

OSM data would have been to use Geopandas. However, this option was discovered 

after most of the data had already been processed. 

 

4.4 Experimentation 

 

A literature review on the machine learning techniques used to predict socio-

economic well-being was conducted. The review included the use of various cost-

effective geospatial datasets to estimate regional socio-economic well-being in DHS 

household survey clusters. The study used a positivist research paradigm and design 

science approach to deduce how well the models perform compared to each other 

based on single or merged data sets. The following section discusses the development 

steps for the models and the experiments conducted to evaluate them. The aim of the 
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experiment is to show that cost-efficient and readily accessible data can be used to 

provide more granular data for poverty estimation than other approaches. 

 

4.4.1 Experiment setup 

 

Machine learning models were implemented to simulate and run experiments. 

Python 3.8 programming language was used to implement the deep learning network 

for transfer learning and classification tasks. The transfer learning and satellite 

imagery pipeline models were implemented using a virtual machine instance, as 

computer vision and neural network architecture require a lot of resources due to fast 

computation capacity, efficient matrix multiplication, convolution, and parallelism 

requirements where normal CPUs would require days to complete. An AWS instance 

was used because it was available freely unlike GCP which was not freely available 

and would require a subscription to use GPU. The AWS instance had the 

specifications outlined in Table 4.4. 

 

Table 4.4: AWS instance specifications 

Instance g3.4xlarge 

GPUs 1 

vCPU 16 

Memory (GiB) 122 

GPU Memory (GiB) 8 

GPU NVIDIA Tesla M60 GPU 

 

The scripts were developed and deployed in GCP using Google Colab. Python 

is an open-source high-level programming language. Among the advantages of 

Python is that it comes with an extensive list of standard libraries that are suitable for 

many fields, including all the tasks performed in this study. During implementation, the 

libraries were downloaded and used. In addition to being free and open source, Python 

was selected because it is portable (i.e., it can run on either Windows or Macintosh 

safely) and provides rich modules and functions. The software, tools, and libraries that 

were used for this study are listed in Table 4.5, including the versions of the software 

and how they were used. 
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Table 4.5: Software and library versions 

Software / Library Version Use / Description 

QGIS 3.10 Open-source application that supports the viewing, 
editing, and analysis of geospatial data. 

Python 3.8 An interpreted, high-level, and general-purpose 
programming language. 

matplotlib 3.0.2 Embed plots into applications as an extension of 
numpy. 

pandas 1.0.3 Data manipulation and analysis. 

seaborn 0.9.0 Works with matplotlib to provide a high-level 
interface for drawing attractive and informative 
statistical graphics. 

numpy 1.16.0 Support for large, multi-dimensional arrays and 
matrices from feature extraction, along with a large 
collection of high-level mathematical functions to 
operate on these arrays. 

pandas 0.24.0 Data manipulation and analysis. 

torchsummary 1.5.1 View visualisation of the model and useful for 
debugging the network. 

torchvision 0.2.1 Image loading, transformation and common 
architectures for computer vision, pre-trained 
weights. 

tqdm 4.30.0 Progress bar library. 

 

When conducting predictive and exploratory studies that analyse geospatial 

and satellite imagery data, free cloud services that also offer free Graphical Processing 

Units (GPUs) can be leveraged. This study used Google Drive, Google Earth Engine, 

Google Colab, and Amazon Web Services (AWS). Google Colaboratory (Colab), a 

Google-Cloud-hosted Jupyter notebook service, was used to develop the models, as 

it offers a free Python development environment that can be used to write and execute 

code through a web browser, and is also highly integrated with Google Drive (Google 

2020). These tools allow researchers to combine executable Python scripts, images, 

and rich text in a single document, and, generally speaking, they are easy to set up, 

access, and share. With Colab, one can harness the full power of popular Python 

libraries. Due to the size of the images and the computing resources required to 

process satellite imagery, a virtual machine was set up to run on AWS Cloud Platform: 

this allowed for accelerated classification and testing of solutions. AWS is available 

from the researcher’s office and, therefore, was a cheaper option compared to running 

Google’s Cloud Platform (2020, p. 1), which requires a subscription to access GPU 
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tools. Once compiled and verified, the training sets were uploaded to Google Cloud to 

facilitate the experimental analysis of poverty indicators within multiple mixed-use 

(urban and suburban) landscapes in South Africa. The models for this study were 

implemented and deployed on Google Colab. 

 

4.4.2 Satellite imagery approach 

 

This approach will help identify poverty and locate regional-specific issues that 

will provide policy makers with accurate decision-making information for poverty 

alleviation. This will be done by creating a model that uses computer vision to extract 

features from daytime satellite images using night-time satellite images as a proxy 

task. In order to use daytime satellite images to predict cluster wealth, features must 

be extracted first. The images are a combination of red, green, and blue (RGB) colours 

with each pixel encoded as an integer between 0 (no light) and 255 (brightest). Figure 

4.7 highlights the steps required to carry out the experiment and the simulations for 

this approach. 

 

 
Figure 4.7: Satellite imagery approach steps 

 

The second and third processes are related to this experiment stage and 

therefore discussed in detail in the following sections. 

 

4.4.2.1 Transfer learning 
 

In order to speed up the training and reduce the amount of data needed to train 

and extract features from satellite images, models that already exist and have learnt 

generalisable weights pre-trained from existing datasets can be used (Yamashita et 

al. 2018, p. 620), and then fine-tune the fully connected network layer to suit the case 

under study. For the research under study, a VGG16 CNN architecture for fixed 
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feature extraction was selected as the baseline and pre-trained on the ImageNet 

dataset to assign labels to a large set of images (Deng et al. 2009, p. 254). The 

advantages of the VGG over other networks are that it has a simple architecture. The 

CNN model was trained to recognize 1000 different class labels reduced to five night-

time luminosity intensity classes using a well-known technique referred to earlier in the 

literature as transfer learning (Pan & Yang 2010, p. 1345).  

 

Due to the structural variation between the VGG16 model (224 × 224 pixel 

images) and the input subset (400 × 400 pixel images), the convolutional architecture 

proposed by Xie et al. (2016, p. 3931) and improved upon by Jean et al. (2016) was 

adopted. It involves replacing some set of fully connected layers of the network with 

one that is randomly initialized. In this way, the model will not lose any information 

even if it is fed images of any size, compared to cropping or scaling. The input images 

were transformed by subtracting the mean across each individual pixel before being 

fed into the CNN. Network fine-tuning was introduced by applying an Adam adaptive 

learning rate optimiser. The model was trained to extract feature vectors as output. In 

the current study, transfer learning resolved the challenges associated with capturing, 

testing, and revising classification datasets relative to poverty assessment based on 

satellite images from South Africa. 

 

As presented in Table 4.5, there were 113,215 images of size 400 × 400 with 

RGB spectral bands, and to prevent overfitting, the images were divided into 0.9 and 

0.1 sets which were used for training and validation, respectively. Night-time class 

imbalances were handled by implementing up-sampling and down-sampling for the 

three classes—low, medium, and high—in order to balance the nightlights data set to 

avoid bias in the results. The night-time light characteristics of the distribution consist 

of summary descriptive statistics discussed in Section 3.9.5 within each DHS cluster. 

Summary numbers of VIIR images for the night-time model, including the distribution 

between training and validation sets, are presented in Table 4.6. 

 

Table 4.6: Satellite imagery and distribution between training and validation sets 

 Total Training set Validation set 

Low 50,055 45,117 4,938 

Low medium 30,257 27,148 3,109 
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Medium 21,598 19,444 2,154 

High medium 6,844 6,122 722 

High 4,461 4,062 399 

Total  113,215 101893 11322 

 

Visualising what features the CNN regards as the most important when 

encoding information into the feature vectors is important in order to confirm whether 

the training of the night-time intensity task used during transfer learning guides the 

network to learn the important features. Figure 4.8 shows the sample images that were 

saved during the training to validate the model classification of the images based on 

the five luminosity intensity classes. 

 

 
Figure 4.8: Examples of daytime satellite images corresponding to light intensities 

 

This is achieved by visualising the activation maps of the fifth convolutional 

layer of the black box, which result from the convolutions (Zeiler & Fergus 2014, p. 

819). 

 

4.4.2.2 Estimating night-time light intensities 
 

This study aimed not to use daytime satellite imagery directly for feature 

extraction using CNN, but instead to use them in lieu to predict night-time lights and 

then to use the predicted values for wealth estimation. Night-time indicators were used 

as a proxy task for temporal socio-economic activities for which traditional data: would 

take a long time to compile, are of poor quality, or are not available for inaccessible 

areas (Henderson et al. 2012, p. 1025; Mellander, Lobo, Stolarick, & Matheson 2015, 

p. 15) were subsequently classified relative to intensity levels on a 5-point Likert scale: 

1 = low, 2 = moderately low, 3 = medium, 4 = moderately high, and 5 = high brightness 
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bins—by fitting a one-dimensional Gaussian mixture model to the relative frequencies 

of the night-time light intensity values from the sample in order to simplify the tasks, 

which are the five luminosity intensity classes discussed in Section 3.6.2. Since we 

used only five classes of bins for the night-time luminosity, the number of outputs in 

the last layer of the pre-trained model was changed from 1,000 to 5. Figure 4.9 shows 

how the model splits the images between the training and validation set in addition to 

the allocation to specific night-time luminosity classes. 

 

 
Figure 4.9: Data split between training and validation 

 

Feature embeddings that are useful for wealth prediction were used as input 

into ridge regression and random forest models. Similarly, the asset wealth index and 

GPS location labels from the DHS for South Africa for 2016 were used. Wealth index 

scores were combined with images centred on household locations. However, the 

coverage in the surveys is sparse compared to the large amount of satellite image 

data. From the learning curve in Figure 4.10, it is apparent that the loss in the training 

and validation sets starts decreasing in the first few iterations and becomes more 

stable after 200,000 iterations. It was decided to take a snapshot of the model at the 

200,000th iteration, since there was no significant change in the loss after that iteration. 

This occurred after having performed the optimization until one million iterations. 
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Figure 4.10: Learning plot 

 

Following the approaches of Simonyan, Vedaldi, and Zisserman (2014, p. 4) 

and Jean et al. (2016, p. 792), class saliency maps were generated based on an image 

class to visualise the night-time light classification model of the fifth convolutional layer. 

Each image has its own saliency. The saliency is calculated from the amount of the 

class score derivative, indicating the influence of each pixel on the class score. The 

saliency maps are generated using backpropagation passes through the trained CNN, 

and examples are shown in Figure 4.11. 

 

 
Figure 4.11: Night-time classification saliency maps generated from satellite imagery 
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From Figure 4.9, it can be observed that the model correctly identified pixels 

related to the presence of buildings and roads as important features. In contrast, pixels 

related to vegetation were linked to areas with lower luminosity classes. In the left 

column, an isolated house was identified regardless of its size. The identification and 

classification of buildings as an important feature made sense as they tend to produce 

more light, both from inside and outside, and hence they would be classified as a 

distinguishing feature when determining the night-time light intensity class. 

 

4.4.2.3 Final feature vectors 
 

The final output of the feature was the 4,096-character feature vector for each 

cluster which was used for further analysis. From the set of fully connected layers that 

have 4,096 neurons, a 4,096 one-dimensional vector of activations was extracted. 

These were optimised into a softmax to distinguish the night-time luminosity levels for 

each image. This was repeated for all images within a cluster. Finally, the mean for 

each cluster was calculated from the one-dimensional arrays of the total cluster. In 

order to predict the socio-economic well-being, the regression models were fed with 

the cluster-level feature vectors. As in previous studies by Head et al. (2017) and Jean 

et al. (2016), regression models were used to learn the wealth distribution rate of a 

cluster from the image feature extracted by the CNN model and stored in the last 

convolutional layer. 

 

4.4.3 Crowd-sourced information approach 

 

In this approach, an OSM model was implemented for wealth estimation using 

only OSM data. The model involved extracting quantifiable features from OSM 

geospatial data. The goal was to extract features that have the most predictive power 

regarding wealth estimation. OSM data contains metadata associated with roads, 

buildings, and POIs. QGIS routines were used to extract and calculate the required 

features that are included around each of the DHS surveyed clusters. Radius buffers 

were set to 2km in urban areas and 5km in rural areas to capture the surrounding 

elements. In addition, the buffers were also included to compensate for noise, as DHS 
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data are randomly displaced to protect the confidentiality of survey participants. 

Regional economic activities can be illuminated through OSM features and therefore 

can be used to train a model to discover paramount features to help with wealth level 

estimation. By conjecture, an affluent neighbourhood will have, for example, tarred 

roads, residential areas, and public infrastructure within proximity. On the contrary, a 

poorer neighbourhood will have low-cost housing structures, fewer public facilities, or 

narrow roads. Therefore, combining these data will present an opportunity to 

determine features that can help predict the poverty distribution of a survey cluster in 

South Africa. This approach does not capture qualitative differences in geospatial 

features, such as the nature of the building or the type of road of the same length. 

During pre-processing, buildings were classified, and the classification results were 

used to calculate the input parameters within each cluster. Road characteristics were 

processed using the same technique as described by Zhao and Kusumaputri (2016). 

Lastly, POIs were identified within each cluster and the researcher counted the total 

number within a certain proximity to the area. 

 

A performance comparison was carried out for the regression models that were 

deployed on each type of OSM feature, both individually and combined with night-time 

lights statistical results to predict socio-economic well-being. Given the lack of relevant 

poverty indicators, it was determined that a specific and targeted object class would 

need to be developed that could be integrated into the training construct in order to 

focus in depth on both the OSM features and the luminosity-derived features to test 

predictive performance. Zhao et al. (2019) acknowledge that the overall performance 

of their experiment was deficient and that it failed to achieve the transparency needed 

to improve future predictability. Instead, features from mixed data sources could 

bolster the model performance. By combining data with quantifiable and qualitative 

features in 10km × 10km grid cells, Zhao et al. (2019) proposed that the analysis could 

be used to train models more effectively, complementing learnt object characteristics 

and extending the data set towards specific contexts, and applications to other 

countries (Zhao et al. 2019). For the current study, regression models were trained 

using data that had merged the features of night-time lights and OSM within each 

cluster as input. 
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4.5 Feature extraction  

 

The vector of features for each cluster needed to be extracted before training 

the regression models. The features were extracted from satellite imagery downloaded 

for South Africa using the Google Maps API. Deep feature extraction from satellite 

imagery was achieved by implementing a CNN architecture that uses deep learning 

approaches to learn hierarchical representations of data through non-linear 

transformations. CNNs are designed for image input and encompass convolution 

operations to encode translational invariance of image features, which is the capability 

to ignore positional shifts of the target in the image: for example, the application should 

still recognise a feature across an image whether it slightly faces up or down 

(rotational) or is slightly moved in the image (locational) (Shin et al. 2016, p. 133). 

Naturally, a convolution operation involves sliding filters across the image where each 

filter is a template to match a certain image feature. Deep learning models are referred 

to as such because they comprise various layers of operations. CNN models in 

particular have a front-end component that executes low-level feature learning from 

image data and then other layers that learn higher-level features and carry out the 

classification task. They define a mapping from input tensors to feature vectors using 

the following formula: 

 

𝑓 ∶  ℝ    → ℝ 4 1  

 

where 𝜃 represents the parameters of the CNN, 𝑤  ℎ 𝑑 represents the 

dimensions of the input, and 𝑛 is the feature vector dimensionality. The feature vectors 

are used as input to a classifier for the well-being predictions. Therefore, CNN 

architectures summarise the complex image input into a feature vector for prediction. 

Vector features often represent complex compositions of the lower-level features 

extracted by the initial layers and can include textures and objects (Zeiler & Fergus 

2014, p. 823). 

 

The deep learning architecture model was first used in 2013 and is among the 

most prevalent for image recognition when using labelled daytime satellite imagery for 

training. Although using night-time lights to train a CNN model is a good idea, night-
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time luminosity is a fundamentally flawed measure because you cannot easily 

differentiate areas that have night lights but have no proximity to essential services 

and have bad road networks, such as rural areas, for example. This is especially true 

for South Africa compared to other sub-Saharan African countries, as access to 

electricity is better. Therefore, a hypothesis to merge data from various sources to 

measure both proximity and luminosity would be able to mitigate the challenge. Using 

night-time lights for transfer learning using convolutional network parameters which 

were used for this study are shown in Figure 4.12. 

 

 
Figure 4.12: Sixteen-layer VGG16 model with parameters for this study 
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Transforming satellite imagery into inputs that can be understood and 

processed by the computer model involves converting them into numerical format. Key 

to this effort is recognising that a normal Red, Green, and Blue (RGB) image 

comprises three independent channels that correspond to varying levels of RGB light 

intensity represented by pixel values ranging from 0 (which means that no colour 

appears) to 255 (which is the highest colour present in a pixel). Therefore, the pixel 

values are representations of satellite imagery that are translated into values that are 

fed into the model. 

 

Transfer learning has become the most popular approach to speed up the 

training and deployment of models where pre-trained CNN architecture weights and 

biases are repurposed and leveraged for a different task as a baseline. This aids the 

learning process for tasks that are similar to the original use case, thereby reducing 

the computing time, data, and resources needed. This research therefore employed a 

VGG16 model pre-trained on ImageNet as a generic image feature representation. 

Proposed by Simonyan and Zisserman (2015), VGG16 has stacks of convolutional 

and fully connected layers and accepts a fixed input image size of 224 × 224 pixels, 

which is smaller compared to the 400 × 400 pixel images from Google. It consists of a 

max pooling layer to reduce the size of the feature maps. The 400 × 400 input 

produces an output of size 2 × 2 × 4096 by setting a pooling layer, which is similar to 

down-sampling, that strides across individual feature maps. There are two hidden 

layers, each with 4,096 nodes which represent the scores of four overlapping 

quadrants of the image for 4,096 features. The cluster scores are then averaged to 

obtain a 4,096-dimensional feature vector optimised to distinguish between the five 

levels of night-time light luminosity. The learned representations of the feature vector 

are averaged into a single vector, which in turn is used as input for the classification 

regression model to predict socio-economic indicators. The output layer has five nodes 

representing the five classes of night-time luminosity with a SoftMax activation. 
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Figure 4.13: Model of the CNN architecture 

 

Satellite images were split into two sets so that 90% of the images were used 

for model training and the remaining 10% for validation. Training data were augmented 

using random horizontal mirroring, and CNN was initialised using an Adam optimizer. 

 

4.6 Chapter summary 

 

Comparing the performance of the regression models trained on various 

features (both separately and combined) enabled the selection of the best performing 

regression method. The experiments helped to determine whether the predictive 

performance of the models would bolster performance when used with multiple data 

sources. Furthermore, regression models were built, trained, and tested while carrying 

out the implementation experiments. In the next chapter, the results of the trained 

models are analysed and discussed by assessing the performance of the models 

using their respective evaluation metrics, as discussed earlier in Section 3.9. 
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Chapter 5. Discussion and analysis 

 

5.1 Introduction 

 

The evidence presented in the preceding chapter has confirmed several 

important findings. This chapter summarises the findings regarding the performance 

of the models that were implemented in an attempt to answer the research questions 

presented in the first chapter. First, the poverty levels in South Africa are sufficiently 

high to warrant persistent and targeted analysis of time-series evidence, allowing 

comparisons to be drawn between multiple models and analyses. Second, the 

application of a night-time luminosity model for poverty analysis has partial validity, 

with particular advantages in rural or suburban landscapes in South Africa. However, 

this study has revealed several important insights that need to be further discussed in 

relation to the prior academic investigations in this field and the theoretical propositions 

afforded by multi-dimensional poverty proxies and remote sensing capabilities.  

 

An attempt is made to link the performance analysis of the models with the 

research questions and to identify the models that perform the best in the research. 

This diversity is important in investigating the validity of the research results. Elements 

that may impact the validity of research experiments, in addition to discussions about 

how to limit their impact, are addressed in this chapter. The evaluation of the 

performance of an algorithm can sometimes be ambiguous due to inherent variance 

as a result of ambiguities in lexical, syntactic, semantic, and metonymy, for example. 

The following sections will outline and discuss these findings, drawing on previous 

research in this field to triangulate the evidence and illuminate practical opportunities 

for improving future analyses. 

 

5.2 Satellite imagery approach 

 

The model for this approach was developed in order to test the performance of 

satellite-based deep learning models in South Africa. The main task was to predict 

South African socio-economic indicators in a cluster of households from the ground 
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truth data set. The ground truth dataset had 11,083 households grouped into 750 

unique clusters. The average latitude and longitude locations of the households were 

maintained within each cluster with noise of up to 5km in each direction in order to 

preserve the anonymity of individual households. As a result of the significant noise in 

the available input data, the tiles were obtained within a radius surrounding each 

cluster centroid, which corresponds to a pixel in the night-time dataset. Regression 

models were trained and evaluated using a five-fold nested cross-validation scheme. 

The results of deep learning methods presented by previous investigations in this field, 

including those of Jean et al. (2016, p. 792) and Pfeifer et al. (2018, p. 20) provided 

the methodological basis for the exploratory analysis of poverty in South Africa through 

GIS-based remote sensing and machine learning techniques. Predictably, the range 

of results encountered by these previous studies varied, offering 𝑅  indications that 

were regionally distinct and varied quantitatively depending upon the machine learning 

method and image quality (e.g., Uganda: 0.69, Nigeria: 0.68, Malawi: 0.55, Tanzania: 

0.57 Rwanda, 0.75) (Jean et al. 2016, p. 22). The current study achieved a 

comparative R2 outcome of 0.55, thus confirming that the techniques employed are 

not only comparable to other approaches, but they extend the prior research and 

classification techniques of researchers like Jean et al. (2016, p. 792) and Head et al. 

(2017, p. 4) towards an improved classification framework. 

 

Specifically, the current study developed novel pre-processing techniques that 

considered the uniqueness of the South African urban landscape, an environment that 

is characterised by high urban density and high urban sprawl amongst low-income 

citizens and low urban density, enclavisation amongst higher-income citizens. 

Drawing upon the socio-cultural roots of apartheid, it was possible to predict variations 

in the visual representation of poverty in South Africa, considering the monumentality 

of specific landmarks such as highways, factories, and waterways in relation to the 

localisation of high- and low-income enclaves (Statistics South Africa 2019b, p. 3). 

Yet, Pfeifer et al. (2018, p. 32) had previously confirmed that regional development in 

South Africa had impacted upon the localisation of income, wealth, and development 

to key areas affected by the World Cup. Therefore, by selectively targeting urban areas 

where improved structures, new buildings, and social service facilities had been 

constructed during this large-scale refurbishment initiative, it was possible to extend 
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the work of Pfeifer et al. (2018, p. 32) and chart post-developmental effects on poverty 

over time. 

 

The study was able to achieve a wealth index 𝑅  score of 0.54. It can be seen 

from the findings in Table 5.1 that the regression methods do not generalise to other 

socio-economic indicators with the same accuracy as wealth: for example, the random 

forest result for education score is 𝑅  = 0.16, access to electricity has 𝑅  = 0.07, and 

access to water has 𝑅  = 0.27. Similar to the findings of Head et al. (2017) and Tingzon 

et al. (2019, p. 425), the scores for years of education completed, access to electricity, 

and access to water are low as they do not have a clearly defined relationship with 

night-time lights. 

 

Table 5.1: Satellite imagery regression results comparison table 

Model Ridge Regression Random Forest  

Indicator 𝑹𝟐 RMSE 𝑹𝟐 RMSE 

Wealth index 0.532 68207 0.541 68207 

Education completed 0.156 3.586 0.153 3.584 

Access to Electricity 0.060 0.205 0.072 0.233 

Access to Water 0.256 9.202 0.274 9.024 

 

The performance of the regression models was analysed using 𝑅  and RMSE 

performance metrics. After comparing the metrics, the regression model which 

performed the best was selected (this is discussed in detail in Section 5.4). The metrics 

are good performance indicators because they consider how well the different models 

fit the data based on the relationship between the response and independent variables 

as well as the overall prediction ability. The variables and metrics were detailed in 

Section 3.9. 
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Figure 5.1: South Africa ground-truth wealth index and the model poverty prediction results for the study  

 

A central advantage of the night-time lights model adopted for this study was 

its ability to extrapolate a gradient interpretation of regional luminosity, mirroring the 

evidence presented by Jean et al. (2016, p. 792) in relation to urban and rural spaces 

and the multi-class model developed by Tingzon et al. (2019, p. 428) to differentiate 

night-time light intensity across varied urban densities. As a model for charting 

population density or highlighting centres of commerce, night-time light density 

analysis offers a valuable tool for evaluating variations throughout extended periods 

of time or following significant developmental improvements or changes. Engstrom et 

al. (2017, p. 19) have confirmed, however, that night-time luminosity is not a viable 

indication of poverty in most urban settings because of the heterogeneity and 

interconnection of various socio-economic classes. In such urban environments, the 

poor and wealthy are likely to live in close proximity as the urban space itself evolves 

and adapts to changing population flows and residential patterns. 
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5.3 Crowd-sourced information approach 

 

To assess and predict regional poverty, the current study adopted a set of 

random forest and ridge regression object-oriented feature detection training sets. For 

visual sanity checks, Spearman and Pearson rank correlation coefficients were 

implemented to evaluate the potential relationship between the features and the target 

variables. By focusing on specific features (e.g., road, building, point of interest), 

variance could be calculated in relation to poverty indicators at both low-level inclusion 

and higher granularity inclusion levels. By integrating all three characteristics of the 

OSM features, including night-time lights, OSM features, and binary regional 

indicators, the accuracy of the wealth prediction model increased significantly to 0.55. 

A summary of the results for the two regression models is shown in Table 5.2. Further 

subdivisions of key socio-economic indicators related to education, electricity access 

and water access were found to predict poverty across 𝑅  of 0.17, 0.08, and 0.27, 

respectively with water access being the best predictor. The model trained on OSM 

features alone achieved an 𝑅  of 0.44. Although data on household durable goods 

were extrapolated from Statistics South Africa (2019b, p. 1) dataset, the ability to 

correlate household consumption with GIS-based poverty indicators was restricted by 

a lack of intra-household congruity and insights. The poverty prediction approach for 

this research was optimised to predict asset-based wealth as measured by DHS. 

Other indicators that included access to hospitals and access to education that 

incorporated proximity dimensions and were found to have a similar positive 0.48 for 

access to electricity or water, since the features of the night-time lights could be 

correlated within the statistical regression model. The correlation could be due to the 

nature of the task, as assets can be visible from satellite images. The overall results 

achieved also fall in line with MPI measurement, where standards of living indicators 

are related to asset ownership and accessibility to essential services. 

 

Table 5.2: Comparison table of OSM and VIIR data regression results 

Model Ridge Regression Random Forest Regression 

Indicator 𝑹𝟐 RMSE 𝑹𝟐 RMSE 

Wealth index 0.518 76852 0.546 68207 

Education completed 0.169 3.548 0.155 3.580 
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Access to electricity 0.065 0.231 0.075 0.232 

Access to water 0.242 9.280 0.268 9.085 

 

This study confirms that the accuracy and overall performance of the OSM-

night-lights-hybrid model are statistically comparable to those of the satellite-based 

transfer learning model. For policymakers and researchers in development planning, 

this evidence offers a significant advantage due to the publicly accessible OSM 

databases and the emerging transparency of government-based Statistics South 

Africa (2019b, p. 1) evidence. With the accuracy of the predictive models almost 

producing similar results, the applicability of these findings to future research in this 

field yields tangible cost savings over field-based research or those satellite-based 

datasets requiring pay-for-access in order to download daytime satellite images 

(Fatehkia et al. 2020, p. 13). Additional improvements to poverty or wealth indicators 

through model training and AI interpretation of key structural and spatial features will 

predictably improve the accuracy and structural consistency of such analyses, as 

existing models can be critically compared with future datasets and changing regional 

geographies. 
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Figure 5.2: Results of the South African ground truth wealth index and poverty prediction model 

 

However, the OSM features have some drawbacks when used to predict 

poverty. Amongst the disadvantages is the fact that OSM can be regarded as semi-

automated, which means it requires assessment to measure the accuracy and 

completeness of the data before use: it is volunteer-curated. Therefore, it is highly 

dependent on the input of domain-experienced surveyors to map up-to-date geospatial 

specific features. For countries like South Africa, this can be easily achieved. In some 

settings, certain information could be missing, making the dependability of this data 

source a challenge. Finally, it was noted during pre-processing that the OSM dataset 

contains a large number of different features, with multiple attributes pertaining to the 

same building type or POI, for example, thus requiring extensive data cleaning and 

feature engineering. 
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5.4 Features and further evaluation 

 

Several evaluation techniques were used to measure the performance of the 

models (see Section 3.9). These are discussed in the following sections. In addition, 

the usual train/test splitting process used cross-validation, which could potentially lead 

to different training and testing data distributions. As discussed in Section 3.9.3, 5-fold 

cross-validation was used to mitigate the problem. 

 

5.4.1 R-squared 

  

The machine learning models adopted for estimation were ridge regression and 

random forest, which were checked to see how the results would change if one of 

them was used. 𝑅 , a statistical measure representing the proportion of variance for 

the dependent, as explained by an independent variable in a regression model was 

used to evaluate the performance. Comparing the 𝑅  results of the satellite imagery 

and crowd-sourced information approaches prediction accuracy in Tables 5.1 and 5.2 

respectively from the ridge and random forest regression, both approaches did well, 

although random forest was generally more accurate in all estimations except for 

Education Completed indicators. Random forest estimation is a prominent machine 

learning algorithm that is commonly adopted because of its strengths. Among the 

strengths of random forest are that it has precise learning algorithms, operates well on 

large datasets, manages thousands of input variables, provides estimates on variables 

that are critical in classification, and is capable of estimating missing data (Breiman & 

Cutler 2002). Therefore, it means that Random Forest is a good predictor of poverty 

using data of the type discussed in this study, though not in all cases. Table 5.3 shows 

the results for the models that were tested for this study. 

 

Table 5.3: 𝑹𝟐 output comparison 

Model / Indicators OSM Features 
Only 

VIIRs 
Data 

OSM+VIIRs Satellite 
Imagery 

Wealth Index 0.322 0.375 0.546 0.541 
Education Completed 
(Years) 

0.141 0.162 0.174 0.153 

Access to Electricity 0.077 0.115 0.103 0.072 
Access to Water (Minutes) 0.177 0.218 0.264 0.247 
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5.4.2 Root Mean Square Error 

 

Comparison of the RMSE, which uses sample and population values to 

measure the differences between the predicted values and the values observed from 

the computational methods (Tables 5.1 and 5.2) shows that the random forest method 

produced the lowest RMSE value. In particular, the satellite imagery model generated 

the highest RMSE. 

 

5.4.3 Descriptive statistics 

 

To enable the summation of large amounts of data in limited numerical values 

that highlight only important data features, descriptive statistics were used as part of 

the model development and evaluation. The models that were developed involved 

several datasets, some of which were images or numbers that were counted by the 

system and needed to be displayed as a means of sanity checks and evaluation to 

ensure the progress of the model and to display some of the results of the deep 

learning ‘black-box.’ The success in extracting the features with minimum effort and 

without relying on expert-labelled data suggests that the transfer learning method is 

able to generalise to the socio-economic measurement and prediction problem. From 

the results of night-time features, summary statistics and histograms were produced 

for the luminosity pixels within each cluster. In order to train the satellite imagery model 

on night-time luminosity data, it was required to obtain the characteristics of the 

distribution of the different values of night-time luminosity per DHS cluster. The list of 

luminosity values was processed and the bins were grouped according to the mean, 

maximum, minimum, median, coefficient of variation, standard deviation, skewness, 

and kurtosis. Data was saved as a .csv file, and Figure 5.3 shows the sample results. 
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Figure 5.3: Night-time lights summary data 

  

The Gaussian mixture model was used to map the luminosity values to the 

night-time class bins of low, low, medium, medium, high medium, and high. Table 5.4 

shows how the data was allocated to the different bins. 

 

Table 5.4: Gaussian mix model image bin assignment 

Bin Number of images Percentage 

Low 50055 0.442123 

Low medium 50055 0.267253 

Medium 21598 0.190770 

High medium 6844 0.060451 

High 4461 0.039403 

Total 113215 100 

 

 

Figure 5.4 shows the average distribution of the night-time light intensities 

within each cluster. 
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Figure 5.4: Average night-time light distribution per cluster 

 

The transfer learning approach used five night-time light intensity classes which 

were obtained by fitting a mixture of five Gaussian distributions to the relative 

frequencies of the night-time intensity values instead of the three used by Jean et al. 

(2016, p. 790) to improve the model performance. The five classes were adopted by 

monitoring the night-time light intensity histograms, as in Figure 5.5, for the South 

African DHS survey locations that insinuated five dominant night-time light modes. The 

Gaussian mixture model provided a principled approach to bin data. 

 

 
Figure 5.5: Distribution of the light intensity at night per cluster 
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The relationship between wealth index, completed education, access to 

electricity, and access to water socio-economic indicators at the cluster level and the 

mean night-time light intensities per cluster was computed and is summarised in 

Figure 5.6. 

 

 
Figure 5.6: Relationship between Night-Time Light Luminosity and DHS Indicators 

 

The dark lines represent a LOWESS (Locally Weighted Scatterplot Smoothing) 

curve, which is a regression fitted to the data. 

 

A t-SNE plot is a visualisation of the clusters in the data, namely, clusters for 

embeddings. Embeddings are high-dimensional vectors that encode information 

regarding distinctive attributes in a picture. For this research, attributes were pulled 

from satellite images that were responsible for night-time lighting (e.g., roads, 

buildings, etc.). Not only was the number pulled, but we also extracted additional 

information that the deep learning model could parse. All the information was then 

encoded in the vectors as shown in Figure 5.7. 
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Figure 5.7: t-SNE plot for night-time lights 

 

The t-SNE plot demonstrates the internal structure of all the embeddings as 

multidimensional data. The main purpose is to check if the internal structure has some 

data clustering and if the result is a very tight ball, which means that the embeddings 

could not pick up any distinctive features from the data, which is purely a sanity check. 

The results of this study show that more light points are closer and more blue ones 

are separated, so the vectors responsible for low intensity are close to each other, for 

example. 

 

Regression graphs were used to visualise the relationship between the 

independent variables and the indicators used plots prediction in this study. Figures 

5.1, 5.2 and 5.5 are some of the plots that were generated to show the relationship 

between the socio-economic indicators from the DHS ground truth data and the 

predicted values. After merging the data for buildings, roads, POIs, and night-time 

lights, it was important to investigate their impact on the predictive power of the model 

using the Spearman-Pearson correlation. Pearson benchmarks the linear relationship, 

whilst Spearman benchmarks the monotonic relationship. The most important features 

are shown in Figure 5.8. Of the important features listed, most consist of POIs such 

as schools, healthcare facilities, or leisure. Paved roads were of great importance. The 
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presence of the feature in a cluster was considered for this study, and it would be ideal 

in the future to consider whether the distance to the POI influences the level of poverty. 

 

  
Figure 5.8: Spearman and Pearson’s correlation for important features 

 

 

 

 

 

 

 

 

 

5.5 Poverty mapping 
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Binary regional indicators were used as predictors of a wealth index score. 

Using a fine-grained poverty map that uses the 2016 DHS survey wealth index data 

for comparison, a qualitative poverty map was generated at the district level using the 

predicted wealth index. The wealth index score was compared with data from the DHS 

survey and then used as a proof of concept to reconstruct poverty maps at the district 

level, as shown in Figure 5.8. These are computed by grouping the estimated wealth 

values at the cluster level. From this figure, it can be seen that the final estimated 

wealth model was able to produce a distribution of poverty in South Africa comparable 

to the map obtained using the data from the DHS survey. In Figure 5.9, the dark green 

to dark red color gradient is used to show the intensity of poverty in a district. Dark 

green represents that the location has a higher wealth index, whilst dark red indicates 

an exceedingly low wealth index. 

 

 
Figure 5.9: District-level ground truth and predicted wealth indices 

 

It appears that the highest poverty is in the districts of the Eastern Cape, 

KwaZulu-Natal and Limpopo. The maps have some differences that may be due to the 

temporal disparity between the DHS and satellite imagery data years or inaccuracies 

in either map. Another comparison as visualised in Figure 5.10 shows the most 

impoverished regions of South Africa, again confirming that they are concentrated 

around high-density urban centres, as citizens continue to live in segregated enclaves 

close to their familial homes under apartheid (South Africa Gateway 2019, p. 1). 
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Figure 5.10: Regional localisation of domestic poverty (South Africa Gateway 2019, p. 1) 

 

Prior research in this field conducted by Pfeifer et al. (2018, p. 4) shows that 

positive infrastructural gains following the 2010 World Cup in South Africa have had 

measurable effects on regional poverty. With a decline in unemployment of more than 

1.3% in areas central to the event infrastructure and further improvements across city 

spaces where transportation infrastructure was upgraded or installed to meet visitor 

needs during the 2010 FIFA World Cup, the night-light evidence modelled by Pfeifer 

et al. (2018, pp. 27–8) suggests similar effects across urban spaces. Drawing on such 

insights and the practical advantages of remote sensing and GIS mapping, the current 

investigation was carried out to critically evaluate transformative patterns of poverty at 

various urban levels. By applying multi-layered data collection and analysis to the 

diverse regions of South Africa’s urban centres, this study has narrowed the insights 

of this model to specific developmental relationships, providing meaningful outputs 

that can be applied to poverty analysis in the future. 

 

5.6 Reliability, validity, and generalisability 
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The central comparability indicator for this study was based upon the 

incidences of wealth in the ground truth for South African clusters. By comparing 

income-class specific differentials across urban spaces, large-scale geographic 

luminosity comparisons were drawn through satellite-based night-time spatial GIS 

modelling. The degree of reliability of the model was calculated and indicated a lower 

degree of methodological validity. Specifically, the OSM and night-time lights analysis 

was best suited to comparative regional assessments, allowing a pixelated distillation 

of daytime poverty data and night-time comparison to demonstrate a high degree of 

correlation and poverty-oriented indications. While the training process allowed the 

machine learning execution to detect gradient pixilation with relative accuracy, the 

translation of these scalar dimensions (e.g., low luminosity, moderate luminosity) into 

poverty indicators was contingent upon other regional socio-economic conditions 

(e.g., housing density, regional income levels, access to services). 

 

One of the problems with reliability and validity in a nation like South Africa 

where peri urban sprawl has led to informal development and unplanned housing 

construction is that traditional, physical landmarks and indicators of regional 

stratification are missing. For example, in Cape Town, where peri-urban construction 

is directly separated from high income residential enclaves via highways, the arc of 

neighbourhood construction follows the roadway, not a planned residential map or a 

grid model that might otherwise inject specific facilities (e.g., medical, education) into 

the landscape itself. In the research conducted by Fatehkia et al. (2020), a similar 

incongruity was observed in relation to the varied distribution of wealth across multiple 

island chains and archipelagos that resulted in the direct impacts of the physical 

landscape of the associated built environment. 

 

In spite of the lack of reliability and validity in relation to night-time lights and 

urban poverty, these findings offer generalisable machine learning techniques that can 

be adopted in future investigations regarding urban density, poverty patterns, and 

government development strategies. For example, Mveyange (2016, p. 15) and 

Babenko et al. (2017, p. 3) applied the CNN-based machine learning solution to the 

evaluation of tangible relationships between access to key government services and 

regional poverty. Similarly, Engstrom et al. (2017, p. 7) revealed the classification 

advantages of object-based training, suggesting that varying patterns of usage, 
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varying property characteristics, and vehicle density can all be used to generalise 

socio-economic wealth (or poverty). The current study has confirmed the viability of 

such object-oriented AI training, demonstrating both the advantages and limitations of 

feature granularity as a range of urban characteristics have been assessed and 

modelled in relation to South Africa. 

 

Similarly, Engstrom et al. (2017, p. 7) revealed the classification advantages of 

object-based training, suggesting that varying patterns of usage, varying property 

characteristics, and vehicle density can all be used to generalise socio-economic 

wealth (or poverty). This study has confirmed the viability of such object-oriented AI 

training, with roads and buildings being the best indicators, as they showed a variance 

of 45 - 50% demonstrating both the advantages and limitations of feature granularity 

as a range of urban characteristics have been assessed and modelled with relation to 

South Africa. 

 

5.7 Chapter summary 

 

This chapter has discussed the research and experimentally evaluated the 

performance of transfer learning and OSM geospatial methods to predict socio-

economic well-being in South Africa in relation to the research objectives and 

questions set out in the first chapter. Central to the evidence captured during the 

course of this study is a positive, affirming relationship between earlier research 

conducted by Jean et al. (2016, p. 792) and Head et al. (2017, p. 1). By confirming the 

transferability of these combinative, daytime-night-time-OSM comparisons to the 

South African landscape, this investigation has demonstrated the broader potential for 

remote sensing, crowd-sourced data, and machine learning across global poverty 

studies and socio-economic assessments. For South Africa, these findings have direct 

implications, supporting future research beyond the costly and time-consuming 

limitations of in situ fieldwork. The experimental results revealed that the proposed 

approach that merges night-time lights data and OSM features produced the most 

optimal results. By continuing to capture visual relationships via satellite and crowd-

sourced images, it is possible to track the socio-economic impacts of government 

investment, development, and policymaking over time. Regression models were 



 

112 
 

 

deployed, and the statistical significance of the results was assessed using R2 and 

RMSE. The following chapter will conclude these findings and outline future paths for 

further research in this field and alternative applications of these techniques. 
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Chapter 6. Conclusions and recommendations 

 

6.1 Introduction 

 

In the previous chapters, this research compared approaches based on transfer 

learning and OSM geospatial features to predict socio-economic well-being of clusters 

within the DHS-surveyed areas in South Africa. The research involved investigating 

the effectiveness of combining computer vision, satellite imagery, night-time luminosity 

data, and crowd-sourced geospatial information to provide granular and reliable 

poverty estimates while overcoming the challenges of laborious, expensive, and time-

intensive methods required to conduct household surveys on the ground. This final 

chapter concludes the research implemented by presenting an overview of the 

findings, highlighting the achievements and contributions of this multidimensional 

study, and the potential applicability of the proposed experimental model. The 

research had one main research question further broken down into three sub-

questions (listed in Section 1.5) to realise the research objectives (summarised in 

Section 6.2). This chapter concludes the research with recommendations for future 

research to address the limitations of the study in an effort to alleviate poverty. 

 

6.2 Overview of the study 

 

The study drew findings by establishing a reasonably strong socio-economic 

well-being estimation, predictive accuracy was yielded by using readily accessible 

night-time lights and volunteered geographic information datasets. Approaches to 

poverty estimation using machine learning and leveraging these datasets yield a 

wealth estimation 𝑅  of 0.56 from the random forest regression model compared to an 

𝑅  value of 0.53 for the satellite imagery approach. This study included a literature 

review of the problems with machine learning and computer vision models that have 

been adopted to date in order to determine the limitations of reliable poverty data from 

developing countries. This information can affect decision makers and help them make 

informed policy decisions and effectively allocate appropriate resources to the 

neediest areas. The information garnered helped to re-establish the research objective 
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and show relevance of the study. An artefact was designed, developed, and evaluated 

using design science research methodology. It was demonstrated in the form of 

experiments using South African data. The artefact design process was evaluated 

using documented procedures to ensure research rigour. Evaluation was performed 

in iterations by running the models until similar results were reported to ensure 

maximum performance and utility for the model. 

 

6.3 Revisiting the problem statement and research questions 

 

The main objective of this study was to develop and test an integrative 

approach to combine publicly available and freely accessible geospatial data, as well 

as to use machine learning capabilities for the estimation of socio-economic well-being 

(see Section 1.6). From the extant design science literature, the main end result of a 

research is the development of an artefact such as methods, models, or instantiations 

(see Section 3.7). Thus, the major contribution of this study is the artefact that was 

developed (see Chapter 4). As stated earlier, Google restricts imagery download API 

requests to 25,000 per day and will start charging for additional downloads while high-

resolution from DigitalGlobe, for example, are proprietary, expensive, and non-

redistributable. Alternatively, the OSM and night-time lights datasets are publicly 

available, cost-effective, and update frequently, making them reliable to complement 

the time-lagging and expensive in situ surveys as solutions for diagnosing, modelling, 

and interpreting the conditions of systemic exclusion in order to improve policymaking 

and target future interventions. In the process of developing the artefact, the 

dissertation answered the research question and three sub research questions 

identified at the beginning of this study (see Section 1.5). The findings and conclusions 

pertaining to each specific research question, answer, and findings are summarised 

in the remainder of this section. 

 

Which technique is suitable for conducting remote sensing of satellite imagery, 

and how can this approach be adapted to analyse poverty in South Africa? 

To test whether the model would improve upon the use of either satellite 

imagery or merged night-time lights and geospatial data in estimating the wealth index, 

regression models were deployed, and the outcomes of the models were evaluated. 
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The first approach was a model that used daytime satellite imagery with night-time 

lights as a proxy for transfer learning. The results of this approach were 4,096-

dimensional feature vectors that were fed into a regression model along with DHS 

socio-economics data to estimate wealth indices. The second approach was also 

based on regression models that used DHS socio-economic indicators along with 

night-time lights data and crowd sourced OSM information, first separately and then 

combined. The results of the approaches were compared to determine the 

performance of the models. Compared to the results of the models that used night-

time lights and daytime satellite imagery for wealth estimation, the night-time lights 

and OSM data model accuracy results were slightly higher. This suggested that a 

model can be improved in accuracy and performance by using data of different types, 

where an R2 of 0.55 was achieved from cost-effective datasets. Taking into account 

the amount of time required to process daytime satellite imagery data in addition to 

computing resource requirements, the OSM crowd-sourced information and night-time 

lights data approach was more efficient and accurate than the daytime satellite 

imagery approach with a computationally cheap and easy-to-implement approach. 

 

What are the challenges that affect machine learning capabilities and their 

application to satellite-based imagery of varied regional cityscapes? 

Satellite-based model performance, particularly in settings beyond where they 

were trained, is perhaps the most common and important concern for researchers and 

policy makers interested in potential applications in sustainable development. For 

privacy reasons, the GPS coordinates of the DHS survey were displaced by up to 5 

km in all directions, thereby introducing noise into the training data. The performance 

of models can be degraded due to noisy training data in two possible ways. To begin 

with, the ability of the model to learn features in imagery that are predictive of the 

outcome of interest can be diminished. Second, and more subtly, the model may learn 

the relevant features but perform poorly in predicting test data precisely because the 

test data have noise. The latter concern would lead studies to understate the true 

performance of the model. Noisy datasets are increasingly being employed for model 

development, which requires researchers to contend with the dual challenges of not 

overfitting to noise and not understating the performance of a model with respect to 

reality. Some of the challenges noted from the literature review include blooming of 

night-time lights, reliability and consistency associated with field-level investigations, 
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data not readily accessible (expensive), defining economic labels, lack of available 

ground truth data, overfitting, generalisability problems, the black box problem, 

possibility to granularly assess within the lowest levels of clusters, heterogeneous 

influences, and transferability to other regions. 

 

What best practices and techniques can be applied to architect predictable 

remote sensing capabilities in future poverty assessment studies? 

Integrating multiple sources of data is an effective way to derive maximum 

benefit from conventional and innovative machine learning algorithms. Studies on the 

feasibility of incorporating satellite imagery and geospatial data do not aim to replace 

conventional methods of measuring poverty and wellness. Rather, satellite imagery 

analysis, crowd-sourced geospatial data, and conventional sources of poverty data 

can be blended to complement official statistical data to provide a level of granularity 

that sheds light on a country’s true spatial distribution of socio-economic disadvantage. 

These studies can help address some of the limitations associated with traditional 

poverty estimation techniques. In addition, they can help validate the findings 

produced using traditional methodologies, which can serve as a means to build trust 

in the poverty statistics compiled by the statistical offices.  

 

6.4 Summary of contributions 

 

Research contributes to the existing literature on poverty estimation by 

developing a prediction model that uses publicly available datasets and computer 

vision techniques. By doing so, the objective is to analyze the results and assess the 

feasibility of the solution to serve as a means of reinforcing confidence in poverty maps 

compiled using this innovative methodology in South Africa, a feat that is currently 

being thoroughly explored globally. It will serve as an excellent starting point to adopt 

machine learning techniques without incurring significant financial costs upfront. This 

model is a new contribution to the South African context as no other similar studies 

have been conducted to the best of my knowledge. This has the potential to interest 

policymakers and development agencies to understand the spatial distribution of 

poverty at zero data cost and aid the use of national statistics data for poverty 

intervention policies and programs. 
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6.5 Concluding remarks 

 

Although South Africa is colloquially viewed as a developmental success on the 

African continent, the longstanding legacy of apartheid and the persistent effects of 

robust socio-economic inequality indicate that developmental incongruities perpetuate 

poverty and restrict widespread development. Although government officials and 

domestic welfare agencies have undertaken to calculate the extent and impact of 

poverty in the South African landscape, the high cost, timeliness, and unreliability of 

such field-based research techniques have created significant gaps and inaccuracies 

in reporting output. There is an unrelenting necessity to find reliable data for socio-

economic well-being estimation in lieu of statistical survey data. Consequently, an 

alternative solution was needed in order to diagnose, model, and interpret systemic 

exclusion conditions in order to improve and inform policymaking, allowing 

government programmes to meet a wider range of needs and social solutions based 

upon specific regional gaps. This study recognised the emerging advantages of 

remote sensing technologies, explored a variety of previous techniques and 

approaches, and developed a viable technical solution that could be applied to South 

Africa. Remote sensing data, geographic information, and night-time luminosity data 

can reflect some of the characteristics associated with poverty and have been 

proposed by several researchers. 

 

The primary research question answered over the course of this investigation 

focused on how night-time analysis of luminosity and crowd-sourced geographic 

information could be used to determine the relationship and predict socio-economic 

variations. At the beginning of this study, it was predicted that there was a negative 

correlation between luminosity and wealth estimation that could be measured by 

applying regional density assessments and welfare statistics to the outputs of a night-

time luminescence assessment. In order to capture this relationship, however, it was 

essential for this methodology to consider poverty in terms of key socio-economic 

indicators including density, access (e.g., education, healthcare, transportation, 

water), and household consumption. A night-time model would have been inadequate 

on its own to identify the specific features (e.g., hospitals, schools) needed to assess 
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the relationship between luminosity and socio-economic deprivation. As a result, 

multiple databases, including OSM geographical information, were used to assess and 

identify a training set of structural characteristics that could then be applied pixelated 

to the night-time assessment. 

 

By implementing the deep learning approach and accurately training a CNN AI-

based application to recognise asset-based wealth and poverty via remote sensing, 

this study has successfully and reliably adapted the techniques outlined in previous 

poverty studies, including Jean et al. (2016, p. 792) and Xie et al. (2016, p. 3935). The 

ubiquity of publicly accessible GIS-based data resources via online channels from both 

global agencies such as NOAA and crowd-sourced data from OSM ensured that this 

study compared geographical domains across similar scalar and resolution-controlled 

models. However, the evidence captured during this research process suggests that 

remote sensing is neither a trivial solution to government poverty surveys, nor a 

simplistic appropriation of technological advances in the field of machine learning and 

geospatial analysis. Instead, a systematic, structured, and selective procedure has 

emerged from the convalescence of this and other studies in this field that reveals 

significant opportunities for poverty modelling and analysis in the future. 

 

The study found that, in general, the merging of OSM features such as roads, 

buildings, and POI with night-time lights gives slightly better results than the satellite 

imagery approach. The features collectively explained an 𝑅  of 55% for wealth 

estimation, surpassing the results of daytime satellite imagery alone (54%) and OSM 

alone (44%), which indicates that the models have better generalisability. 

Furthermore, the approach showed great potential as an alternative cost-effective 

approach in supplementing existing tools of governments and policy makers using free 

and publicly available datasets (in addition to its simplicity). Compared to the approach 

of using daytime satellite imagery to estimate socio-economic well-being, the merged 

night-time lights and OSM crowd-sourced information model produced results whose 

accuracy was higher. It can be used to efficiently measure, monitor, and analyse 

poverty rates against policies implemented to mitigate poverty effects.  

 

As an extension of other research conducted in relation to South Africa (Pfeifer 

et al. 2018, p. 20), this study demonstrates a strong correlation between urban 
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improvements and night-time luminosity. However, the overall results in South Africa 

were surprisingly lower than the values of other studies in the sub-Saharan region. 

The metrics revealed that luminosity is relevant, but South Africa is the most 

developed economy in sub-Saharan Africa with the highest access to electricity 

(Sarkodie & Adams 2020, p. 1). Despite having very high income inequality in the 

subregion and the world (Todes & Turok 2018, p. 1), South Africa had 86%, with 85% 

for rural areas and 87% for urban areas as of 2014 (Sarkodie & Adams 2020, p. 1) 

which limits the effectiveness of electricity or night-time lights as a poverty proxy. 

Owing to this, some clusters that could show poverty from daytime satellite imagery 

would probably be assigned a high luminosity class. At the same time, due to the 

structurally variegated nature of the South African urban landscape, it is unlikely that 

luminosity itself can adequately serve as a proxy for poverty. Specifically, this research 

has determined that the persistent consequences of apartheid in the form of socio-

economic exclusion and inequality have created a sort of aggressive divide that 

positions wealthy, high-income, high-net-worth residents within one or two streets of 

the high-density slums and impoverished areas where opportunity-seeking urbanites 

continue to reside. As a result, it was concluded over the course of this study that 

night-time luminosity would only offer a valuable comparative mechanism in order to 

assess the affective influence of regional development and improvements on resource 

availability (e.g., electricity) and usage. 

 

Alternatively, this research confirms previous findings presented by Fatehkia et 

al. (2020) that when combined with other daytime indicators and texture-based or 

structural assessments, it becomes possible to efficiently classify regional populations 

according to service access, resource propagation, and comparative poverty 

indicators (e.g., socio-economic, demographics). This combinative approach draws 

upon the full, comparative potential of the machine learning capabilities, the accuracy 

of the incumbent training set, and the multi-model overlay of daytime and night-time 

images. Regionalisation of resource classifications, for example, can be used to 

distinguish between health services and educational resources in targeted urban 

areas, highlighting the relationship between access and impoverishment over time. 

While much of the prior research in this field has been presented as a form of proof-

of-concept approach to remote sensing, the current study validates prior hypotheses 
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regarding the capacity to assess regional poverty accurately and consistently through 

remote sensing capabilities and techniques. 

 

Geospatial variances and regional socio-economic inequalities are widespread 

in South Africa and present a valuable, comparative opportunity for future research in 

this field and for additional comparative insights as they relate to the visual-economic 

relationships manifesting in urban areas. Whilst government efforts to extend the 

reach of infrastructure and the inclusion of all citizens in healthcare and education 

have fulfilled a range of developmental objectives in the past two decades, the 

juxtaposition of wealthy and poor and the extent of this extreme inequality suggest that 

there is a lack of congruity in the support being provided by these policies and the 

effects of such support on the regional populations. This study concludes that remote 

sensing can be used effectively in the future to model and analyse changing patterns 

of urban development, whilst additional modifications to the training set and various 

socio-economic indicators will continue to improve the overall accuracy of the CNN 

and machine learning solutions derived from both daytime and night-time images. 

 

6.6 Recommendations and future research 

 

A central objective of this study was to recommend an alternative to the in-situ 

survey-based poverty assessment in developing nations. Evidence collected during 

the course of this study has revealed that the proposed approach is a viable high-

fidelity solution to several challenges facing domestic policymakers as they seek to 

identify regional inequalities and systematic dysfunctionality in urban landscapes 

using machine learning models combined with crowd-sourced and remote sensing 

data. Based upon these techniques, the following future research is recommended, 

the extension of which will involve model testing and validation on an international 

scale. 

 

Recommendation 1) Improved privacy guidelines: Future studies can be done to 

improve privacy guidelines. Whilst prediction has become increasingly granular and 

accurate, there is a need to use precisely georeferenced ground truth data to train or 

validate models without undermining the privacy of household survey participants. 
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Producing guidelines to navigate these issues will help with the accuracy of model 

estimation, which is a critical issue. 

 

Recommendation 2) Factor-based degradation analysis applying varimax 

rotation and statistical assessment of critical poverty indicators to GIS-based 

visual mapping: Central to these empirical findings was the revelation that some 

dimensions have greater accuracy than others when predicting poverty. For example, 

night-time luminosity is likely to have high value effects on the prediction of socio-

economic improvement across rural locations when applied to longitudinal analyses 

over time. Similarly, housing density in urban spaces can be used as a proxy for 

welfare needs, regional socio-economic equity, or government welfare programme 

efficiency. Based upon these findings, it is predicted that by conducting a factor-based 

discrimination analysis at multiple points of influence, a more accurate and rigorous 

regional model can be developed for the prediction of poverty. 

 

Recommendation 3) Textural assessment of rooftop construction materials 

versus night-time luminosity effects: Central to the effectiveness of night-time 

luminosity analysis is the ability to reconcile the reflective characteristics of residential 

rooftops. This means a critical comparison of daytime housing textural features with 

night-time luminosity scores to establish test zones. 

 

Recommendation 4) Differentiation between high-density urban poverty 

accuracy and lower-density, suburban luminosity models: A comparative 

assessment of the daytime and night-time density models in the current study revealed 

variations in poverty models that are indicative of distinctions between geospatial 

characteristics in urban landscapes. Therefore, additional analysis is needed to 

highlight whether it is possible to apply GIS-based machine learning and factor 

modelling to the assessment of poverty in urban / suburban high- and low-density 

spaces. 

 

Recommendation 5) Model interpretability: Lastly, one barrier to entry and adoption 

of machine learning modelling is a lack of interpretability due to the black-box nature 

of deep learning models. Therefore, it is difficult for policymakers or officials to 

understand the behaviour of the models or interpret their results. Model interpretability 
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is an area of research that is greatly impacting the adoption of AI-assisted decision-

making processes to come up with policies and intervention strategies. 

 

6.7 Limitations 

  

This research had some limitations. It was noted that dependence on 

incomplete and potentially unrepresentative data from OSM could have interpretation 

limitations. Whilst the derived characteristics can have wealth correlations, it does not 

follow that they have any causation effects. Therefore, caution should be exercised 

with interpretation claims unless the coverage and completeness of the datasets are 

investigated. Second, the data used for the study were acquired from slightly different 

time periods. The DHS survey dataset was conducted in 2016, while the night-time 

lights and satellite imagery data were collected in 2016. Unfortunately, it was not 

possible to download OSM data from 2016, and therefore the latest dataset was 

downloaded from that year. The differences from acquiring data in different timespans 

could result in reduced estimation accuracy and derail government initiatives that 

eliminate poverty as specified in the National Development Plan 2030. The ongoing 

initiatives could have improved the welfare of households since the last DHS survey 

or imagery was captured but not captured yet. Lastly, the DHS survey locations were 

not accurate due to the noise introduced, which could also affect the accuracy of the 

estimation of the models that were developed. 

 

Despite these limitations, the research findings are valid and essential to 

advance the accuracy of poverty mapping, which presents great potential for 

policymakers, governments, and humanitarian organisations to better understand the 

spatial distribution of poverty and develop evidence-based targeted intervention 

strategies. 

 

6.8 Chapter summary 

 

This chapter has concluded these findings, which demonstrate the practical 

efficacy of machine learning and remote sensing in the diagnosis, assessment, and 
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interpretation of regional poverty indicators. For nations like South Africa, where socio-

economic disadvantages are difficult to predict and likely to result in high-cost field 

research and surveys, the model proposed in this study offers substantial cost and 

time savings over other more intensive techniques. Based upon these findings, night-

time luminosity and crowd-sourced data were confirmed as a viable research 

technique for some urban analysis scenarios, particularly when there is a comparable 

model that can be tracked over time to determine the rate of change or developmental 

effects. Ultimately, these findings conclude that this technique is best suited to 

comparative, multi-factor models in which poverty can be tracked and analysed by 

applying multiple proxy dimensions to a given problem during the assessment. The 

recommendations for future research will seek to address the possible limitations of 

this model and will overcome the gaps associated with spatial heterogeneity in high-

density urban landscapes. 
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