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ABSTRACT 

 

Facial expression recognition (FER) is still a challenging concept, and machines struggle to 

comprehend effectively the dynamic shifts in facial expressions of human emotions. The 

existing systems, which have proven to be effective, consist of deeper network structures that 

need powerful and expensive hardware. The deeper the network is, the longer the training and 

the testing. Many systems use expensive GPUs to make the process faster. To remedy the 

above challenges while maintaining the main goal of improving the accuracy rate of the 

recognition, we create a generic hierarchical structure with variable settings. This generic 

structure has a hierarchy of three convolutional blocks, two dropout blocks and one fully 

connected block. From this generic structure we derived four different network structures to 

be investigated according to their performances. From each network structure case, we again 

derived six network structures in relation to the variable parameters. The variable parameters 

under analysis are the size of the filters of the convolutional maps and the max-pooling as 

well as the number of convolutional maps. In total, we have 24 network structures to 

investigate, and six network structures per case. After simulations, the results achieved after 

many repeated experiments showed in the group of case 1; case 1a emerged as the top 

performer of that group, and case 2a, case 3c and case 4c outperformed others in their 

respective groups. The comparison of the winners of the 4 groups indicates that case 2a is the 

optimal structure with optimal parameters; case 2a network structure outperformed other 

group winners. Considerations were done when choosing the best network structure, 

considerations were; minimum accuracy, average accuracy and maximum accuracy after 15 

times of repeated training and analysis of results. All 24 proposed network structures were 

tested using two of the most used FER datasets, the CK+ and the JAFFE. After repeated 

simulations the results demonstrate that our inexpensive optimal network architecture 

achieved 98.11 % accuracy using the CK+ dataset. We also tested our optimal network 

architecture with the JAFFE dataset, the experimental results show 84.38 % by using just a 

standard CPU and easier procedures. We also compared the four group winners with other 

existing FER models performances recorded recently in two studies. These FER models used 

the same two datasets, the CK+ and the JAFFE. Three of our four group winners (case 1a, 

case 2a and case 4c) recorded only 1.22 % less than the accuracy of the top performer model 

when using the CK+ dataset, and two of our network structures, case 2a and case 3c came in 

third, beating other models when using the JAFFE dataset. 

 

Key terms - Facial Expression Recognition (FER); Deep Learning; Convolutional Neural 

Network (CNN); Deep Convolutional Neural Network (DCNN); Artificial Intelligence; 

Hierarchical Deep Neural Network Structure; Face Detection; Facial Feature Extraction; 

Central Processing Unit (CPU); Graphics Processing Unit (GPU). 
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CHAPTER 1 INTRODUCTION 
 

1.1 BACKGROUD 

 

The genesis of Artificial Neural Network (ANN) which is a McCulloch-Pitts (MP) structure, 

and carries the two creators’ names, started more than seven decades ago. The MP structure 

is an ensemble of neurons for the activation of brain functions. This structure was first 

presented by McCulloch and Pitts in 1943. ANN concepts were derived from the MP 

structure. After 41 years, another structure was designed, known as the Hopfield Neural 

Network, bearing the name of its founder John Hopfield. This structure is a hybrid of storage 

and memory arrangements to enable the activation of the memory, depending on the selection 

of the mobilizer category chosen. The categories are continuous and discrete. During that era, 

there were not many advanced researches, therefore the structure was not the subject of 

attention as compare to what it could have attracted [1][2][3]. 

 

The real progress for deep learning structure originated in 1989 when the grasping of the 

concepts of back-propagation algorithm became sound, even though this algorithm was 

introduced three decades earlier. The application of back-propagation algorithm in the 

network structure started the revolution of deep learning networks. This algorithm gives the 

networks an automatic learning capacity of features and it distinguishes deep learning 

networks from other intelligent systems [4][5][6]. This is the reason why Deep Learning 

Neural Network (DLNN) is popular in the research world. DLNN is able to provide solutions 

to many sectors (medical, education, military, economy, science and if not all spheres of our 

lives) and in addition, DLNN provides alternatives to make our lives easier. 

 

Facial Expression Recognition (FER) has been and is being used in several spheres of our 

lives with huge benefits to society. In the security field, it has been extensively used and 

recently, many researchers are exploring new avenues for further improvement. From 

detecting diseases to being utilized for various needs in the medical sector and also for the 

design of robotics, FER is having a massive impact in our lives and has many valuable 

proficiencies to better the world[7][8][9][10][11]. 

 

There are seven main facial expressions to describe the human emotions [9][12][13][14][11]. 

These facial expressions are able to provides us with information about the state of emotions 

that humans are in at that specific moment of observation. Therefore, to have technologies 

which are capable of detecting each individual expression with accuracy is important. Facial 

expression recognition studies are gaining momentum recently and many researchers are 

trying to find solutions and share their expertise, so that quality and effective systems for 

facial expression recognition can be designed and improved. 

 

1.2 PROBLEM STATEMENT 

 

Facial expression recognition contributes to various societal needs. In South Africa, crime is 

on the rise and it has psychological impacts on the people. There is a need for a good 

technology to assist police officers to detect suspect’s hidden intentions during interrogations. 

The same technology is also needed in the psychiatry field to enable psychiatrists to diagnose 

any existence of a mental illness in a patient. Attempts to recognize facial expressions in 
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psychology have been done using conventional models in the past, but their accuracy was 

poor and they did require many procedures. During the last decade, FER based structures 

have been developed with acceptable accuracy results but the current accuracy can be 

improved and there is another challenge caused by algorithms that have become deeper, the 

process is slow due to the training and the testing of data which takes more time. Many 

systems use expensive Graphics Processing Units (GPUs) to make the process faster. This 

research aims to find an optimal network structure with optimal parameters by investigating 

different deep network structures as well as various parameters for FER that can improve 

accuracy. Secondly, this work emphasizes on the hardware cost by using a standard Central 

Processing Unit (CPU) which is affordable, the optimal network structure with optimal 

parameters is expected to give good accuracy using an affordable hardware and to be trained 

and tested within expected computational time. 

 

1.3 RESEARCH OBJECTIVES 

 

The aim of this research is to investigate different network architectures with variable 

parameters in order to find optimal network architecture with optimal parameters which can 

improve accuracy. The existing architectures accuracy is not good enough and requires 

expensive hardware to make training faster. We will use a standard CPU which is affordable 

to find optimal network architecture in order to get good performance within an appropriate 

computational time.  

 

1.4 DELIMITATIONS OF THE STUDY 

 

• Lack or not enough diversity in the database because of fewer images per expression. 

• Not enough similarities with images in the real world in the dataset.   

• The computational time for training will be according to the settings of less than 120 

minutes.  

• The purpose is to try to find an optimal architecture which can give better accuracy 

using a standard laptop (a laptop with these minimum specifications: CPU Intel(R) 

Core(TM) 2 with a clock speed of 2.40GHz and a RAM of 4 GB) according to the set 

time. Currently, many existing FER models are using GPUs in order to increase the 

speed of training time. 

• Currently, there is a challenge with web searches, the returned images in certain cases 

are not matching the keyword inserted.    
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1.5 METHODOLOGY 

 

• Literature review:  

I did an extensive literature study on the different algorithms used for FER analysis. I 

used two research databases (IEEE Xplore and Elsevier) to read as many as possible 

publications on FER.  

• Software:  

I used the python language for the implementation of the research with the deep 

learning frameworks (tensorflow & theano). 

• Results:  

The results from training and testing of the data during simulations were collected for 

analysis. 

• Analysis:  

Analyzed and compared the obtained results with other models used on FER using the 

same datasets to see if the accuracy of our proposed models has improved or has 

achieved better results than other tested FER based methods. 

• Final conclusion:  

I concluded the final details according to the comparison and study of the results of 

my proposed models and other tested FER models. Also, gave directions for future 

work based on my research work. 

 

1.6 FACIAL EXPRESSION RECOGNITION DATASETS 

 

I implement my simulations by using two datasets described in [15]. These two datasets are 

used by many researchers to test various algorithms related to facial expression recognition. 

Therefore, they are suitable for evaluation against the latest technology. I perform my 

investigation by testing my proposed HDNN structures on these datasets. 

 

 

1.7 LAYOUT OF THE DISSERTATION 

 

Chapter 1 Introduction: 

 

Chapter 1 presents the current problems for deep learning neural networks structures, 

objectives, delimitations of the study, methodology, facial expression recognition datasets 

and layout of the dissertation. 

 

 Chapter 2 Literature Review: 

 

Chapter 2 studies facial expression recognition technique, from face detection to 

classification. Secondly, the chapter investigates the deep learning neural networks and in 

depth studies on convolutional neural network structures are accomplished. Finally, the 

existing Convolutional Neural Network (CNN) models are analysed. 
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 Chapter 3 Hierarchical Deep Neural Network Structure: 

 

Chapter 3 details the different proposed HDNN structures for facial expressions recognition. 

Additionally, the chapter presents the proposed HDNN structure case studies with variable 

parameters. Finally, the chapter explores the details of the proposed HDNN structures 

according to each case study based on the value settings. 

 

Chapter 4 Experimental setup:  

 

Chapter 4 explains the two FER datasets which will be used to test our proposed HDNN 

structures, the structure design, the training process and how the assessment of our 

investigation will be conducted. 

 

Chapter 5 Simulation results and analysis:  

 

Chapter 4 details the simulation outcomes and the analysis of all case studies of all the 

different proposed HDNN structures. The chapter compares the performances of the proposed 

HDNN structures. Finally, the chapter compares our optimal HDNN structure with the 

existing FER models. 

Chapter 6 Conclusion and future work:  

 

Chapter 6 the advantages of our optimal HDNN structure with optimal parameters are 

discussed and orientations are given for future studies. 
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CHAPTER 2 LITERATURE REVIEW 

 
 

This chapter explains in detail the facial expression recognition processes. Secondly, the deep 

convolutional neural network is described. Key components of the CNN structure are 

detailed. Lastly, the existing CNN structures are detailed and studied.  

 

 

2.1 FACIAL EXPRESSION RECOGNITION OVERALL PATH 
 

There are a number of facial expressions for a single person, just as there are different images 

for the same person as shown in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

The process of recognition of facial expressions follows a common pattern that is in the order 

of: 

• Face detection 

• Facial feature extraction 

• Classification 

 

 

Figure 2.2 displays the overall pattern which FER process follows. We will elaborate each 

part of the process individually in depth to grasp the concept.  

 

 

 

 

 

Figure 2.1: Facial expressions of human emotions. 
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2.1.1 FACE DETECTION 

 

Face detection is the first part of the process and it is vital in order to achieve facial 

expression recognition. Many techniques have been explored to attain face detection in the 

past [16]. They are as follows;  

• Face tracking technique: a specific algorithm that is mixed with a 3D technique to 

detect images from a video source. 

• Normalization technique: the two points on the eyes are selected as points 1 and 2; 

the middle of the mouth is indicated as point 3. All these 3 points are the references of 

the method. From point 1 to point 2, we have d (fixed distance) which is the first 

condition of the technique. The second requirement is based on the face 

measurements:  the width and the height of the face are estimated at 2d and 3d 

respectively. 

• Surface feature analysis technique: it operates on the principle where light is used 

to stimulate the surface and information can be retrieved for analysis. Faces are 

displayed in triangular meshes.  

• Hybrid Haar–like-feature and skin colour detection technique: it is based on 

eliminating the false detections in the process. 

• Registration technique: placement of the eyes is selected and the face is rotated to 

match the eyes horizontally. The specific output image is finalised after a number of 

operations.  

• Cropping technique: it was applied on the CK database, this method involves the 

cropping of images from the previous state and the resizing of the distance between 

the eyes placements. 

• Voila-Jones technique: the two authors came up with integral image which is a fast 

technique for image operations and processing. 

2.1.2 FACIAL FEATURE EXTRACTION 

 

Facial feature extraction acquires the facial features that are distinctive and possess certain 

stability. Different systems for facial feature extraction are utilized [17]; 

Face detection 
Facial feature 

extraction 
Classification 

Figure 2.2: Overall path of FER process. 
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• Appearance features system: it uses an image filter to work on face data to retrieve 

the modifications of facial exterior. Principal Component Analysis (PCA), 

Independent Component Analysis (ICA) or Local Binary Pattern has achieved good 

results. 

• Geometric features system: consists of a creation of a feature vector that serves as 

facial geometry and is an ensemble of points of angles, shape and distances. 

• Hybrid appearance and geometric feature system: when the two techniques are 

merged, good recognition performance has been achieved. 

 

2.1.3 CLASSIFICATION 

 

The final part of FER system is the stage of identifying the facial expression images and 

classify them accordingly as “happy” or “angry”. The terms detailed below are methods of 

the classification that is implemented for FER systems [18]. 

Directed line segment Haudorff distance (dLHD): dLHD is the divergence identified 

between two lines sets and the difference in the output is measured. 

Euclidean distance metric: the approximated distance is obtained after the matrix of 

normalized and similarity counts. 

Minimum Distance Classifier (MDC): the distance measurement is used for classification 

and is the length from one vector to another. 

KNN (k-Nearest Neighbours) algorithm: is a technique where prediction occurs during the 

phase of training and the allocation of classes is done through the liaison amidst algorithms. 

Support Vector Machine (SVM):  consists of a formation of a line (hyperlane) that 

dissociates images into classification. 

 Radial Basis Function (RBF): the technique incorporates a value allocation to an input by a 

function and the output is forever an absolute amount. 

Hidden Markov Model (HMM): is based on a statistical model using observation of 

sequences of internal details to classify facial expressions. HMM uses one state per class. 

Hidden Conditional Random Fields (HCRF): is an extension of Conditional Random 

Fields (CRFs) to tacle more complex data. HCRF uses few states per class. 

Online Sequential Extreme Learning Machine (OSELM): consists of the first phase to 

initialize data training and the second phase is sequential learning.  

 ID3 Decision Tree: is based on set decisions to output efficient decisions for classification. 

 Classification and Regression Tree (CART): is a method based on the length between 

vectors. 

 Learning Vector Quantization (LVQ): is made of two sheets. The first is competitive and 

has neurons. The second sheet is the output sheets where the selected neuron is deposited. 

  Multi-Layer Perception (MLP):  each knob has a neuron in the 3 layers and utilizes the 

activation function. 
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 Multi-Layer Feed Forward Neural Network (NFFNN): it is exactly like the above 

technique except that the back propagation is added to classify images that consist of weights 

during the training phase for initialization and the prediction of the activation entities. 

 Bayesian Neural Network: uses graphs with probability calculations for classification. 

 Convolution Neural Network (CNN): uses neurons formed to classify with less pre-

processing. It has input, subsampling, pooling and output phases. 

 Deep Neural Network (DNN):  consist of many hidden layers, the neurons learn from the 

data to classify images.  

 

2.2 DEEP CONVOLUTIONAL NEURAL NETWORK 
 

CNNs are simple Artificial Neural Networks (ANNs) in a shape of multilayer perceptron 

(MLP). They have hidden layers which are referred to as convolutional layers. The 

convolutional layers define a CNN hence the description. CNNs are structured with the 

ability to grasp certain patterns of the data and to understand their meaning. That ability 

makes CNNs well suited for image classification. CNNs can be used for other classifications 

as well, for example, the language classification. The number of hidden layers is the only 

aspect differentiating CNNs from Deep Convolutional Neural Networks (DCNNs); they are 

both the same except DCNNs have many convolutional layers [19].  

2.2.1 CNN STRUCTURE 

 

CNNs change the input information from the input layer and proceed along the connected 

layers until the last stage where they give classification results to the output layer.  CNN 

structure can be in various forms and there are different types of CNN structures. All CNN 

structures share the same characteristics which are given in Figure 2.3. 
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We can see from Figure 2.3 above there is a general pattern of three components: the first 

component is the input layer which receives data. This input data has some settings. That is, it 

must;  

• have a size in the shape of width x height 

• be in three dimensions 

• have depth to illustrate the calorific avenues, for example RGB has three avenues 

The second component is the feature-extraction layers which have an arrangement 

characterised by a repetition model: convolution layer (CONV), rectified linear unit (ReLu), 

activation function level and pooling level (Pool). The last component is the classification 

layers where fully connected layers reside. It can be one or several layers. The fully 

connected layers transform the features into classes and have distinctive elements: 

• they are attached to all the neurons housed in the preceding level 

• they give an output of the number of examples X the number of classes [b x N] 

• output is a two dimensional 

Figure 2.3:  An advanced general CNN 

structure 
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2.2.1.1 Input layer 

 

All unprocessed data images are deposited and housed in the input layers for network 

operation. There is clarification regarding the image width and height as well as how many 

channels will be used. Often, there are 3 routes that represent the RGB values for a particular 

pixel. Figure 2.4 displays the input layer in 3 dimensions.  

                      

 

 

2.2.1.2 Feature-extraction layers 

2.2.1.2.1 Convolutional layers 

 

The central building blocks of a CNN structure are the convolutional layers. These layers 

receive the input data and modify it by using a blot of linked neurons derived from the 

preceding level. The outcome is similar but smaller with geometric configurations. 

A convolution is a simple analytical application which details a rule for merging two data 

items. It transforms an input by using convolution kernels and outputs a feature map. 

Convolutional layers have some main constituents: Filters, Activation maps, Parameter 

sharing and hyper parameters.  

 

Filters: are part of the structure that has a width and a height. A filter is tiny and is applied 

after the input volume. It is used in a sliding shape along the width and height of the input 

volume. The output of a filter results in an activation. 

Activation maps: are an output number when a neuron allows data to take route. The 

mentioning of “activates” simply means the filter allows data to continue along the path from 

the input volume to the output volume. 

Figure 2.4: Input level 3D 

Size 
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Parameter sharing: it is important because it reduces the training time by using a small 

number of elements to learn during training. CNNs use parameter sharing from invariance to 

positioning. 

Hyperparameters: are the main actors for producing the geometric shape and size that is an 

output volume. These hyper parameters are: size of filters, output depth, stride and zero-

padding. 

 

2.2.1.2.2 Pooling layers 

They are often used in between convolutional layers that precede each other. The role of the 

pooling layers is to scale down the dimensions of data. This reduction process is done 

repeatedly along the network structure. Another function of the pooling layers is to manage 

over-fitting which comes from the complexity of the model that has a reflection of nearly 

closed data that will compromise the resulting predictions. The pooling layers do not depend 

on other elements for their working. 

2.2.1.3 Classifications 

 

Fully connected layers are the constituents of this component. These layers are used to 

numerically output the results for classification. The arrangement of the output is [1 x 1 x N], 

N is indicating the classes’number. They possess the linked neurons including those from the 

preceding level. The parameters of fully connected layers are weights and biases of the 

network neurons.  

To effectively grasp the concept of a network structure in order for the classification to occur, 

the following elements need to be put in action [20]: 

Score function: this element has the task of mapping the images from the input to scores for 

classification. 

Loss function: this element has the role of determining how close the result of the prediction 

of the network structure is to the correct value.  

Therefore, when building a network structure, it is important to use a connection between the 

two functions detailed above in order to create a situation whereby the optimization will 

diminish the loss function in relation to the specifications of the score function. 

2.2.1.3.1 Linear classifiers 

These classifiers consist of linear blends of predetermined nonlinear basis functions. Linear 

classifiers seem to be easy to comprehend but in actual fact there is a challenge created by the 

reality that the majority of data are nonlinearly detachable while these classifiers are linear 

[20]. 

2.2.1.3.2 Nonlinear classifiers 

The challenge described in 2.2.1.3.1 can be resolved by making use of architectures that can 

understand nonlinear features. These architectures are neural networks which were conceived 
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from the idea of neurons in a human brain and they use basis functions like the ones 

mentioned in 2.2.1.3.1 whereby the ensemble of variables from the input to the ensemble of 

the variables from the output result in these nonlinear functions which is managed by a vector 

of modifiable constituents [20]. 

 

2.3 FER BASED STRURCTURES  

2.3.1 IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) CNN 

STRUCTURE CONTESTANTS  

 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual competition 

where researchers come up with designed algorithms, with the aim of winning the 

competition and proving that their proposed algorithm was the best and most effective in 

image classification. The competition is based on a large spectrum of images considering that 

these models classify 1000 images into their respective categories [21]. Therefore, the models 

that contest in this challenge must be well built to handle the large database of images and be 

able to classify the images into their relevant groups. The following are some of the leading 

challengers on the ILSVRC competition [22].  

1. LeNet-5 

In 1998 Lecun et al designed a model structured with seven layers to classify numbers, and 

these numbers in the database were black and white. When a network operates on grey 

images, it does require powerful hardware for quality resolution detection and many 

convolutional blocks in the network for correct classification. The above enumerated points 

are some of the limitations of this network structure. This system was valuable to the banks in 

verifying the legitimacy of clients in respect to their writing on their checks. Therefore, 

refuting scammers who tried to copy clients writing.  
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Figure 2.5: LeNet architecture [23]. 

 

2. AlexNet 

 

 Alex Krizhvsky et al in 2012 conceived this network structure and it took the first position 

that year in the ILSVRC competition by overwhelmingly beating other challengers. The 

network achieved 10.7 % reduction of the top-5 error results. The noticeable difference 

between this network and LeNet-5 is the application of additional filters per block in the 

AlexNet structure which makes it deeper and required solid hardware for its operation. The 

training becomes very slow as the network structure becomes deeper, hence the reason 

AlexeNet used two Graphics Processing Units (GPUs) to boost the process speed and it took 

close to one week of training for classification.  

 

Figure 2.6: AlexNet architecture [24]. 



 14       

3. ZFNet 

 

The winner of ILSVRC competition in 2013 was ZFNet, they managed to achieve top-5 error 

results, 0.5 % less than AlexNet. This network structure is like AlexNet, the only change 

made was the permutations of hyperparameters to increase its efficiency. 

 

Figure 2.7: ZFNet architecture [25]. 
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4. GoogLeNet 

 

In 2014 Google’s team of researchers designed GoogLeNet, which got its concepts from the 

network structure LeNet but incorporated many tiny convolutions hence the architecture 

consists of 22 convolutional blocks. This robust algorithm achieved outstanding top-5 error 

results which are nearly half the percentage of the top winner in the previous year. The results 

were comparable to human capacity of image recognition. Another key factor in the 

GoogLeNet design which enhanced its capacity is the use of parameters of the system 

network. This network structure used only around 6.67 % of parameters quantity which was 

used in AlexNet.  

 

 

Figure 2.8: A simplified GoogLeNet architecture [26]. 

 

 

 

 

 

 

 

 

 

Long-term Recurrent 

Convolutional Network (LRCN) 
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5. VGGNet 

 

The network structure was designed by Simonyan and Zisserman in 2014 and finished behind 

GoogleNet in the ILSVRC 2014 competition. It is the most selected network model from the 

successful ILSVRC competition models to date by many researchers. The following are some 

of the reasons why the research world is in love with this architecture: 

• It has a homogeneous structure of 3 by 3 convolutional layers that allows for easy 

replication. 

• It is available on many online platforms. 

 

The structure differs from AlexNet by only applying more filters in the network and houses 

16 convolutional blocks. The limitation of this architecture is the high number of parameters. 

With over hundred million parameters, the structure requires more work for proper use. The 

system is very deep and it needed 14 to 21 days of training while using 4 GPUs for image 

classification during the competition. 

 

 

Figure 2.9: VGGNet architecture [27]. 

 

              

6. ResNet 

 

In 2015 Kaiming He et al proposed ResNet which finished top in the ILSVRC competition 

and it managed to reach overwhelming top-5 error results, not only at around half the 

percentage of what GoogLeNet performed but beating the human capacity so far in assessing 

the relevant dataset in the competition. The technique is based on relying on the batch 

normalization application and utilizing residual connections. 
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Figure 2.10:  A simplified ResNet architecture [28] 

 

2.3.2 EXISTING FER BASED STRURCTURES BESIDE THE ILSVRC CONTESTANTS  

2.3.2.1 TRADITIONAL FER BASED METHODS 

 

There is a massive record of FER studies which used traditional systems. All these traditional 

FER based systems share some similarities in their applications [29]: 

• They capture the face area 

• They retrieve geometric features 

• They retrieve appearance features 

• They extract from the facial object the combination of geometric and appearance 

features  

In [29] a traditional FER based method is presented that was based on the fifty two dots 

located on the face. It was firstly applied to the geometric features according to the position 

of the dots as well as their angles. Secondly, they applied subtraction using the parallel 

position and angles from the first step of the video segment. All the face area is used to 

retrieve the appearance features. Another traditional FER based technique was used that 

emphasized only on certain sections of the face as the basis to apply extraction of the 

appearance features. An application of global features was demonstrated in [29] where 

several facial points and its distances in between were used as vectors for LBP, while the 

classification of different facial emotions was accomplished by PCA. This traditional FER 

based technique has its own limitations, such as; it fails the local variations reflections of the 
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various parts of the face which are linked to the vector, hence the accuracy results are poor. 

In [29] a FER based approach was proposed using videos, the approach consisted of 

calculating the distances of x and y facial landmarks between the recent frame and the 

precedent one as well as to retrieve the appearance features. 

 

2.3.2.2 DEEP LEARNING FER BASED METHODS 

 

In 2014, another FER deep based approach was proposed by Liu. It was used to recognise 

emotions in videos. The model operated in sequences of video pieces to be taken as a group 

of data references on Reimannian sets. To get the length of metrics, Reimannian kernels are 

used in relation to the references. For classification, a fusion technique is utilized [30].   

A deep Genetic Algorithm (GA) was proposed by Filipe et al. in 2016. This technique was a 

key in deep learning neural networks for classification; its efficiency was based on the speed 

of the process which facilitated the neural networks operation to output good performance. 

The method was applied successfully in the Atari games [31].   

A convolutional neural network (CNN) algorithm for FER was proposed in 2015 by Burkert. 

The model had four convolutional layers besides the input and the classification layers. The 

first convolutional layer is followed by two parallel feature-extraction convolutional layers 

which are the main segments of the design to produce good performance [32].  

In 2016, Zhao proposed a deep FER model using Deep Region Multi-Label Learning 

(DRML). The method was built in a way that a CNN was incorporated directly to reach 

Action Unit (AU) detection. The model had seven layers in between the input and output 

layers preceded by two fully connected layers before classification. Convolutional layer 1 and 

convolutional layer 3 are separated by a region layer and a pooling layer [33].   

The feature maps deriving from CNN recognition processes combined with Facial Action 

Coding System (FACS) and Action Units (AU) yielded good results in emotions recognition. 

The model applied the collaboration of the above, the features capacity in classifying the 

facial expressions was impressive [34]. 

A DCNN technique using multivariate ordinal variables was proposed by Walecki in 2017 

and the method was efficient in solving AU intensity estimation [35]. 
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CHAPTER3 HIERARCHICAL DEEP NEURAL NETWORK STRUCTURE 

 

 
This chapter explains the different proposed HDNN structures for facial expressions 

recognition. The chapter explains the concepts of the generic structure which was the 

foundation that we used to derive our 24 proposed HDNN structures. Additionally, the 

chapter presents the HDNN structure case studies with variable parameters. All the proposed 

case studies of the HDNN structures to be investigated are covered in this chapter.  

 

3.1 MOTIVATION FOR HDNN STRUCTURE 

 
 

This research aims to find an optimal HDNN structure with optimal settings for facial 

expression recognition. This optimal HDNN structure has two goals. Firstly, to achieve high 

accuracy compared to current FER based models and secondly, to use inexpensive hardware 

such as a standard laptop to apply the optimal HDNN algorithm and achieve good 

performance results within appropriate training time.  

 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) structures detailed in 

chapter 2 have achieved outstanding results but have drawbacks. They require expensive 

hardware such as expensive computers with high-end processors which can operate complex 

structures. Additionally, the training of these deeper structures will take time hence the need 

to buy very expensive GPUs to alleviate the problem and improve the speed of the training 

process. Even though, GPUs are used, the training of these deeper network structures is long, 

sometimes days, or weeks to achieve image classification.  

 

The existing FER based architectures have been progressing well in the research arena with 

some fair results, but those results can be improved. There is a need to find a system which 

can accurately recognize human facial expressions. The popularity of Artificial Intelligence 

(AI) these days can attest to that. From the use of facial recognition to unlock smart phones, 

to programmed robots, FER is still a problem for machines to comprehend effectively the 

dynamic shifts in facial expressions in emotions of human beings. 

 

To remedy the above limitations, different HDNN structures with variable settings are 

proposed with the aim of investigating them to find the optimal structure with optimal 

settings. 

 

 

3.2 HDNN STRUCTURES 

 

We will apply the different proposed HDNN structures and compare them to find the optimal 

structure with optimal parameters. All the different HDNN structures will have fixed size 

input and output classification of human emotions, the other parameters will be variables. 

Included, the structures will be applying Relu as an activation function and Softmax for 

classification.  
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We will test our HDNN structures using Keras with Theano as back-end, of which are Python 

libraries [36]. Each HDNN structure case will be trained using the dataset for 30 epochs as a 

standard 

 

3.2.1 GENERIC STRUCTURE 

 

We made a general structure to enable us to make the permutations of the variables. The size 

of filters of the convolutional maps are indicated by i x j, the size of filters of the pool are 

indicated by k x l, m is the value number of maps, x is the value number of dropout and n is 

the number of neurons. The generic structure is displayed in figure 2. Besides the variables, 

this generic structure inspired us to derive three different network structures which make the 

total of four network structures including the generic structure to be investigated in this 

research study. Table 3.1 illustrates the four case studies and Figure 3.1 shows the generic 

structure which was used to derive the other network structures.  

 

 

 

Figure 3.1: Generic Structure. 
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3.2.2 STRUCTURE CASE STUDIES 

 

Table 3.1 shows the case studies that we will be investigated in order to find the optimal 

structure with optimal parameters. The description of each case study is explained below for 

suitable understanding of the concept behind the construction of each network structure. The 

four proposed case studies are the foundations where we will derive other case studies 

depending on the variable parameters defined below as part of the scope of this research 

study.        

       

Table 3.1:  Proposed structure case studies. 

                                                   

The following criteria are used to choose the cases which will be studied:  

Computational time: < 120 minutes 

1 ≤  𝑖𝑎 , 𝑗𝑎 ≤ 8 

1 ≤  𝑘𝑎 , 𝑙𝑎 ≤ 3 

0 < 𝑥1 < 0.3 

𝑛1 ≤ 150 

0 < 𝑥2 < 0.6 

In case study 1, the structure is very simple and consists of one convolutional block noted as 

B1 and one fully connected block indicated as FC1. We also apply the drop out technique 

after the fully connected layer using D2 which was set at 0.5 in order to address the over-

fitting challenge that might arise in the course of the training. 
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In case study 2, the concept was to add another convolutional block B2 to the structure in 

case study 1, without changing the previous network structure. This means the fully 

connected block and the application of dropout D2 remained unchanged except that the 

structure has two convolutional blocks. 

In case study 3, the network structure becomes deeper with three convolutional blocks and 

one fully connected block. We had made some alterations, instead of using D2 which was set 

at 0.5 in the structure after the fully connected layer, we removed D2 completely from the 

structure and introduced D1 after the convolutional block B3 and had set it at 0.25 to take 

care of over-fitting in the training stage. 

In case study 4, this network structure is similar to the one in case study 3, with only the 

inception of D2 in the structure which makes it different to the previous network structure. 

Therefore, the structure has two dropouts D1 and D2 set at 0.25 and 0.5 respectively. The rest 

remained unchanged, three convolutional blocks and one fully connected block. 

 

STRUCTURE CASE 1 

   

 

From this design, we derived six network structures which are shown in Table 3.2. The first 

three structures have common size filters for max-pooling set at 2 by 2; their difference is 

only based on their size of the filters for the convolutional maps. In case 1a, we applied 3 by 

3 convolutional maps. We then modified our design in case 1b by using 4 by 4 convolutional 

maps. In case 1c, we set our convolutional maps at 5 by 5. Finally, the last three network 

structures have similar size of filters for max-pooling but it is modified and set at 2 by 1. 

Again, the same concept is repeated with case 1d using 3 by 3 convolutional maps, while case 

1e and case 1f have their convolutional maps set at 4 by 4 and 5 by 5 respectively. 

We will continue to use the same approach in the rest of the proposed case study structures. 

From structure 2 designs, we will have another six network structures by applying the same 

logic which will provides us with six network structures. In the structure 3 designs, with the 

same logic we will have another six network structures. Our last structure, structure 4 

Figure 3.2: Case 1 Structure. 
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designs, will produce six network structures. In total, we will have 24 network structures with 

variable parameters to conduct our investigation.                                

 

Table 3.2: Cases for structure 1 

CASE1a: CASE1b: CASE1c: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5 

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5 

CASE 1d: CASE 1e CASE 1f: 

𝒊𝟏= 𝒋𝟏= 3 𝒊𝟏= 𝒋𝟏= 4 𝒊𝟏= 𝒋𝟏= 5 

𝒌𝟏=2 𝒌𝟏=2 𝒌𝟏=2 

 𝒍𝟏=1 𝒍𝟏=1 𝒍𝟏=1 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5 

 

STRUCTURE CASE 2 

             

 Figure 3.3: Case 2 Structure. 
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We applied the same logic as in the case study 1 and derived six network structures which are 

detailed in Table 3.3 by changing the values of the size of filters for max-pooling and 

convolutional maps. 

 

Table 3.3: Cases for structure 2  

CASE2a: CASE: CASE2c: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏= 4 𝒊𝟏= 𝒋𝟏=5 

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5 

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2  

𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16 

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5 

CASE2d: CASE2e: CASE2f: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏= 4 𝒊𝟏= 𝒋𝟏= 5 

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐= 

𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 

𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16 

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5 

  

3.  STRUCTURE CASE 3 

 

 Figure 3.4: Case 3 Structure. 
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This structure also gives birth to six network structures by using the variables to be 

investigated. They are detailed in Table 3.4.     

    

Table 3.4: Cases for structure 3 

CASE3a: CASE3b: CASE3c: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5 

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5 

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5 

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 

𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 

𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2  

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16 

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120  

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25  

CASE3d CASE3e: CASE3f: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5 

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5 

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5 

𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 

𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1 

𝒌𝟑=2 𝒌𝟑=2 𝒌𝟑=2 

𝒍𝟑=1 𝒍𝟑=1 𝒍𝟑=1 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16 

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120 

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25 
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4.  STRUCTURE CASE 4 

 

. 

 

Six network structures are derived from the above structure concept by modifying the 

parameter variables, which are shown in Table 3.5. As explained in the case study 1, the same 

concept is applied regarding the size of filters for max-pooling and convolutional maps. The 

difference between the cases is based on the values set for size of filters, but the dropouts 

values remained unchanged and are set at 0.25 and 0.5 for D1 and D2.  

 

 

 

 

 

 

 

 

Figure 3.5: Case 4 Structure. 
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             Table 3.5: Cases for structure 4 

CASE4a: CASE4b: CASE4c: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5 

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5 

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5 

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 

𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 

𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16 

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120  

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84 

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25  

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5 

CASE4d: CASE4e: CASE4f: 

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5 

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5 

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5 

𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 

𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐= 𝒍𝟏=𝒍𝟐=1 

𝒌𝟑=2 𝒌𝟑=2 𝒌𝟑=2 

𝒍𝟑=1 𝒍𝟑=1 𝒍𝟑=1 

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6 

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16 

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120 

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84  

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25 

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5 

 

                                               

3.2.3 SUMMARY 

 

This chapter focused on the various proposed HDNN structures with variable parameters. 

There are 4 HDNN structures and each of these structures has six case studies that are 

investigated. In all the case studies, the size input is fixed at 128 x 128 and the output results 

classify seven human emotions. The number of maps for each convolution   𝑚1 , 𝑚2 and  𝑚3 

is also fixed in all case studies and the number of neurons is not varied but set at 84 neural. 

The rest of the parameters are variables because we had to change the size of the filters of 

max-poling and the convolutional maps in order to have various case studies structures in 

order to conduct our investigation. The first three structures have a common size of filters for 

max-pooling set at 2 by 2; their difference is only based on their size of filters for the 

convolutional maps. In case a, we applied 3 by 3 convolutional maps. We then modified our 

design in case b by using 4 by 4 convolutional maps. In case c, we set our convolutional maps 

at 5 by 5. Finally, the last three network structures have similar sizes of filters for max-
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pooling but it is modified and set at 2 by 1. Again, the same concept is repeated with case d 

by using 3 by 3 convolutional maps while case e and case f have their convolutional maps set 

at 4 by 4 and 5 by 5 respectively. In total, we have 24 HDNN structures to be analyzed in 

order to test each case studies performance with the goal of finding the optimal HDNN 

structure with optimal parameters. 
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CHAPTER 4 EXPERIMENTAL SET UP 

 
This chapter details the two FER datasets used in research. The chapter also elaborates the 

structure design. It is then followed by detailing the training process which is subdivided in 

eight points.  

 

4.1 INTRODUCTION 

  

In preparation for this research study, some decisions were made in order to accomplish this 

project. The experiments needed to be performed so that we could conduct our investigation 

of network structures. The first decision was about which datasets to use so that we could test 

our 24 proposed network structures. We chose the databases which are publicly available 

with simple procedures to access them. Secondly, the decision about which programming 

language to use for our code was also based on the accessibility; we had chosen Python 

which is available on the internet without requiring any licence for the purchase. Initially 

considered Matlab but it requires a purchasing licence. Python was used as our final choice. 

In addition, Python has many libraries which are accessible on the internet.  

 

4.2 EXTENDED COHN-KANADE AND JAPANESE FEMALE FACIAL EXPRESSION 

DATASETS           

 
We have a number of existing FER datasets in the research arena with good image data but 

many of these superb datasets demand registration before being granted access to use their 

services. Some require simple procedures, used FER datasets and their images are well 

categorised. 

 

The first dataset which we used is the CK+. It is composed of a branded emotion number for 

human expression faces. There were over 100 participants and close to 600 pictures, with 

around half of those related to the seven human emotions which are: Anger, Disgust, Fear, 

Happy, Neutral, Sad and Surprise [15].  
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Figure 4.1: CK+ Dataset images’ examples [37]. 

 

 

JAFFE dataset detailed in [15] is also used to validate the generalization of architecture. 

 

   Figure 4.2: JAFFE Dataset images’ examples [38].   



 31       

4.3 STRUCTURE DESIGN 

 
The components we utilized to train our proposed network structures. Firstly, we simply used 

a standard laptop as reducing financial costs of hardware was one of the objectives of this 

research, we wanted a cheap system but effective in delivering good performance. Our device 

had a CPU Intel(R) Core(TM) 2 with a clock speed of 2.40GHz and a RAM of 4 GB. We did 

not want to use expensive GPUs but wanted to achieve comparable results with models using 

GPUs. Secondly, the choice of the programming language to use was decided based on the 

fact that python language is free to access without requiring any licencing to purchase it. The 

following are the python libraries that were used [36][39]:  

 

• Numpy is a python platform which allows many scientific operations to be executed 

through its several utilities [36].  

• Theano: makes it possible for the incorporation of Numpy which facilitates the 

execution of the codings using Numpy functions. Theano offers more features than 

Numpy; the latter cannot offer other features which Theano can only deliver. It is a 

Python library that facilitates to “define, optimize, and evaluate mathematical 

expressions involving multi-dimensional arrays efficiently” [39]. Theano is a python 

package that gives us tools to operate and handle multi-dimensional ranges at the 

same time it still maintains the performance. Being part of python enables Theano to 

successfully deliver a platform to process faster mathematical operations. A key 

feature of theano is the stability that it offers and capitalises optimization that makes it 

useful for challenging operations. Theano is utilized in high level technical studies. A 

debugging feature is another key element that makes Theano as one of the best choice 

for researchers [36]. 

• OpenCV: can work with many programming languages and is an open source 

software with thousands of optimized and AI models. These models make it possible 

to implement image classification and other functions [40]. 

• Keras: was designed to work with Theano or TensorFlow and is an application 

programming interface (API) for neural networks. It has the capacity for faster   

operations and gives the possibility to make changes when needed. This API is user 

friendly and allows the user to operate functions to enhance the network. Elements 

can be put together to build a neural network structure. The structure can be 

investigated while bypassing small details. It is compatible with many operating 

systems [36].   

 

We used Anaconda which is a Python distribution and it is not difficult to operate and is 

accessible on the internet with simple installation procedures. It has hundreds of packages for 

computations and is a python distribution [41]. 

 

4.4 TRAINING PROCESS 

 
For appropriate training to take place, hyper parameter settings are needed. These 

prerequisites allow a model to perform better. The programmer needs to perform settings 

allocation to these parameters in order to achieve desirable results. The following are the 
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parameters to be set: activation functions, learning rate, batch size, epochs, gradient descent, 

max-pooling, convolutional filters and number of neurons. 

4.4.1 ACTIVATION FUNCTIONS 

 

This hyper parameter is in charge of neurons spreading and is a key element when a network 

structure has many levels. When the activation function is initialized, the following occurs 

[42]:  

Exploding gradient: this issue occurs during back propagation of the network. This network 

instability arises when there is a large error gradient. 

Vanishing gradient: this issue occurs when the gradient tends to zero and the training of the 

model becomes very difficult.  

 

The two most used activation functions are the ReLu and the Softmax, the first helps to 

remedy the above challenges and has a goal of presenting non-linearities to the structure 

while the latter is applied at the end of the structure for classification, this function can be 

illustrated as an input vector of totals which gives an output vector of a probability. 

The following are other types of activation functions [42]: 

 

• Sigmoid: consists of placing the input value in an array of zero to one. The sigmoid 

activation function converted to zero for big numbers which are negative and 

converted to one for big numbers which are positive.  

• Tanh: consists of placing the input value in an array of negative one to positive one. 

One point to mention is that the gradient is stronger for tanh than sigmoid. 

• Maxout: this activation function is mostly used in the following cases; firstly, it is 

when the dropout technique is applied in a network structure to improve the training 

process. Secondly, it is for complex network structures which are very deep and 

should give the ReLu activation function problems. Thirdly, it is used where all the 

parameters in a network structure would make use of the dropout so that the 

improvement of the training process can take place. Lastly, it is used where the ReLu 

activation function would expose its limitations, the Maxout activation function 

would take over and still provide all the advantages of ReLu activation function. 

 

4.4.2 LEARNING RATE 

 

When the training process is under way, the model weights are regularly updated. It can 

affect the estimated error, in order to have control over this process, we have a valuable hyper 

parameter which is the learning rate, it manages how the model can transform in reaction to 

the estimated error whenever there is occurrence of any weights update. Big learning rate can 

destabilise the training process while the lesser learning rate can effect the training resulting 

in a failure. Therefore, choosing the correct learning rate value is fundamental in order to 

have a successful training with better performance [43]. In this research, we will use 

callbacks. Keras supports learning rate schedules via callbacks. We will use the keras feature 

to adjust the learning rate accordingly by specifying the metric to monitor during the training 

via the “monitor” argument and the validation loss that will be monitored.  
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4.4.3 BATCH SIZE 

 

Model parameters are updated internally during the training process. The hyper parameter 

which specifies the number of samples to operate with prior to the above update occurrence is 

called batch size. Batch size gives predictions as outcome at the end of a cycle. Therefore, 

selecting a proper batch size value can improve your training performance with better results 

[44]. In this research, we will set our batch size to 7; this number was proven to be effective 

in performance with our selected FER database. For other database, for example a larger 

database can have a batch size set to a big number. Batch size setting depends on the number 

of images of the database. 

 

4.4.4 EPOCHS 

 

The number of times that certain architectures need to train in order to learn from the dataset 

is always set at certain value during the training process and the hyper parameter in charge of 

that task is called the number of epochs. This value can range from ten to thousands 

depending on the user’s choice, and  bigger numbers give good performance. In this study, 

we will use 30 as the number of epochs because the current existing models also applied the 

same. Therefore, we will limit ourselves to that number to be fair and to accurately compare 

the results of our network structures to other FER existing deep learning models [44].  

 

4.4.5 GRADIENT DESCENT 

 

Gradient descent is assigned the duty of finding the values that can reduce the cost function. 

These parameter’s values are noted as coefficients of a certain function indicated as f. This 

optimization algorithm is very important for a successful training. In this research, we will be 

using Adam as our optimization algorithm [45].  

 

4.4.6 MAX-POOLING 

 

Down-sampling an input data is the purpose of this hyper parameter. By making the 

dimensions of the data smaller, it enables correct analysis of the features. Therefore, the 

resulted data representation form does assist in alleviating the over-fitting. It is a cost 

effective hyper parameter that lessens the number of parameters during the learning process 

hence the computational costs also decrease as a result of applying this hyper parameter. The 

size of filters for max-pooling has a huge impact in the performance and they are described in 

the form of k x l  [46]. 

 

4.4.7 CONVOLUTIONAL FILTERS 

 

4.4.7.1 SIZE 

 

They are in the form of i x j, choosing the correct size of filters for the convolutional layers is 

essential to get better results. These hyper parameters carry out convolutions over an input 

size data which results in an activation map. The settings depend on the programmer and the 

need to achieve good results [20]. 
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4.4.7.2 NUMBER 

 

This is the amount of activation maps representing the number of convolutional filters. Each 

convolutional filter is applied in order to create a feature map according to the input. We 

described this number in our research as m  [47]. 

4.4.8 NUMBER OF NEURONS IN THE FULLY CONNECTED BLOCK 

 

It is indicated in our research as n, it is up to the programmer to select any number from one 

up to ten thousand. Any number will work because the task of this hyper parameter is to 

replace the following layer’s weights mode [47].  

 

 

4.5 ASSESSMENT 

 
This stage stresses on investigating thoroughly the simulation results and comparing them to 

the current existing FER deep learning models. We selected the existing FER deep learning 

models which used the same two FER datasets detailed above, and managed to achieve top 

accuracy most recently. 

The following apparatus are utilized in this study to give us the ability to reach the intention 

of this work: 

 

• Tables 

• Figures 

• Plots 

 

From analysing the above apparatuses, we were able to give conclusions about our 

investigation in this research. 
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CHAPTER 5 SIMULATION RESULTS AND ANALYSIS 

 
This chapter details the research results of our study. The chapter also gives the summary of 

our observations regarding the investigation.   

 

5.1 INTRODUCTION 
 

The simulation results regarding the investigation of the case studies conceived in chapter 3 

and the derived 24 different proposed HDNN structures are recorded and analysed. The 

comparison of performances of all of the 24 different structures with variable parameters is 

also covered per case study, and also the top performers are compared with other existing 

models.   

 

We use the databases described in [15]. These databases are the most used in the research 

arena of facial expressions recognition. 

 

The implementation is done using a standard CPU with windows OS, Intel(R) Core(TM) 2 

with a clock speed of 2.40GHz, RAM of 4 GB. We test our proposed network structures 

using Keras with Theano as backend which are Python libraries. Each network architecture 

case was trained using the dataset for 30 epochs as a standard. 

 

5.2 INVESTIGATION OF THE RESULTS 

 

The tests on the CK+ Dataset: Table 5.1 to Table 5.4 shows the comparison results of our 

proposed network architectures. We compare the simulation results for all 24 HDNN network 

structures separated in four groups with each group having six case studies. 

 

Table 5.1 details the accuracy results for the six case studies of architecture 1. For the sake of 

proper accuracy evaluation, we recorded the minimum, average and maximum accuracy 

results because the accuracy results were not stable. When conducting the simulations, the 

accuracy kept on changing which means two consecutive simulations could give two 

different accuracy results for the same network structure.  

 

Therefore, we recorded our simulations in a statistical form.  Observing Table 7, we noticed 

that case 1a performed better than all other cases with 87.50 % accuracy  and case 1c came 

second with the accuracy of 87.46 % based on the average accuracy results. When 

considering the maximum accuracy results, case 1a recorded 98.11 % accuracy while case 1c 

managed 96.23 % accuracy. We noted that the two case studies gave good performance even 

though case 1a finished as winner of the group. The following are observations of the overall 

performance of the group: 

The difference can be noticed that the first three case studies, case 1a, case 1b and case 1c 

achieved better performance than the last three case studies, case 1d, case 1e and case 1f. The 

first three case studies used the max-pooling of 2 by 2 and the last three case studies used the 

max-pooling of 2 by 1. Max-pooling of 2 by 2 improved the performance of the first three 
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network structures; they all achieved the average accuracy of above 85 % considering the 

stability of the accuracy results rather than the maximum accuracy results which can be 

misleading in other scenarios. Not only that the max-pooling of 2 by 1 cases achieved less 

than 85 % accuracy, they also took longer time of training than the other cases. For each 

network structure case study, the 2 by 1 max-pooling will take around three times the amount 

of training time than that of the 2 x 2 max-pooling. For future research, max-pooling needs to 

be taken in pairs for good performance, for example 1 by 1, 2 by 2, 3 by 3 instead of 1 by 2, 2 

by 1, 3 by 1, but we need to clarify that the training time was the main point in our research. 

One of the objectives of this study was to acquire good results in an appropriate time using a 

standard laptop. Therefore, training time of many hours is out of scope for this research. So 

future research where the amount of training time is not a problem, max-pooling of different 

numbers like 1 by 2, 2 by 1, 2 by 3, 3 by 2, 3 by 1, 1 by 3 needs to be researched and there is 

a possibility they might yield good accuracy results. 

Another observation, when considering the first three cases or the last three cases with max-

pooling not a factor analysis but with emphasis on the size of filters for the convolutional 

maps, we noted that the 3 by 3 and 5 by 5 were performing better than 4 by 4. The first two 

has less difference in terms of the performance between them but the 5 by 5 took a longer 

time to train than the 3 by 3. For future research, any of these two would be a good option for 

any network structure in order to achieve better performance. Other future research could also 

consider 6 by 6, 7 by 7, 8 by 8 or 9 by 9 if the amount of training time is not a major issue. 

We noted case 1c with 5 by 5 convolutional maps had the best minimum accuracy result at 

83.54 % which shows that there is a potential for improvement of the accuracy for a bigger 

number like 6 by 6 or 7 by 7 if more time of training is allocated for further analysis in the 

future. The 4 x4 case were behind when max-pooling of 2 by 2 was used but did outperform 

other cases in the category of 2 by 1 max-pooling. Case 1e did better than case 1d and case 1f 

which opens door for future research directions especially when training time has no 

restrictions.  

Table 5.1:  Comparison between different cases of Architecture 1 with CK+ dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 

Maximum 

accuracy 

a 81.12 87.50 98.11 

b 81.12 85.31 90.57 

c 83.54 87.46 96.23 

d 72.64 77.36 86.79 

e 72.64 83.27 97.17 

f 72.64 82.70 96.23 

 

Table 5.2 shows the simulations results of architecture 2, which is an increase of one 

convolutional block in the structure of architecture 1. This change in the design brought 

improvement in accuracy as we noticed case 2a which ultimately became our found optimal 

HDNN network structure with optimal parameters. Case 2a managed to achieve stability in 

accuracy; we tested this 15 times and achieved the same accuracy results of 98.11 %. The 
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results also confirm our observations in architecture 1 that max-pooling of 2 x 2 was the 

better option and that 3 x 3 or 5 x 5 size of filters for convolutional maps was also a good 

choice because case 2a which has 3 x 3 convolutional maps came top of the group with the 

average accuracy of 98.11 % and case 2c came second with the average accuracy of 86.70 %. 

The addition of the convolutional block made a huge impact because the 3 x 3 which is case 

2a achieved 11.41 % higher average accuracy than the 5 x 5 case 2c.  Definitely, case 2a was 

our best performing HDNN network structure and gave stability of accuracy results. Again 

like in architecture 1, the same observation repeated itself in architecture 2 whereby case 2e 

which is a 4 x 4 size filters did perform better than the other cases in the max-pooling of 2 x 1 

category recording 81.13 % average accuracy.  Hence it confirms our observation that if the 

amount of training is not restricted case 2e has a potential of improving the accuracy when 2 

x 1 max-pooling is applied in the network structure.    

Table 5.2:  Comparison between different cases of Architecture 2 with CK+ dataset (%) 

Architecture Minimum accuracy Average accuracy Maximum accuracy 

a 98.11 98.11 98.11 

b 72.64 82.70 91.50 

c 81.13 86.96 94.34 

d 72.64 80.19 95.28 

e 72.64 81.13 98.11 

f 72.64 80.81 97.17 

 

Table 5.3 shows the accuracy records for architecture 3 which is different from the previous 

two architectures in the design construction. This architecture consists of three convolutional 

blocks instead of one, and two in the previous architectures and also we removed the dropout 

D2 which was all along set at 0.5 in the previous network structures after the fully connected 

layer, we removed D2 completely from the structure and introduced D1 after the 

convolutional block B3 and set it at 0.25 to take care of over-fitting in the training stage. We 

noted that case 3c emerged the winner with average accuracy of 89.94 % and followed by 

case 3a with average accuracy of 82.64 % which also confirms repeatedly our observations 

that 3 x 3 or 5 x 5 size of filters for convolutional maps is the best option in a network 

structure for accuracy improvement and especially when the same numbers of max-pooling 

like 2 x 2 is applied. Our second observation did not materialize in this group as case 3e 

which is a 4 x 4 size of filters came second in the 2 x 1 max-pooling category. We can 

therefore assume that with many convolutional blocks in the hierarchy of architecture, the 

network structure becomes tricky in the 2 x 1 max-pooling categories. Case 3f emerged the 

winner in the category of 2 x 1 max-pooling with 80.81 % and also came top of all other 

cases in the group when considering only the maximum accuracy with accuracy of 97.17 %. 

This was also the first time when the winner of the group did not also top the group in the 

maximum accuracy category and was only selected as winner of the group based on the 

average accuracy results because stability was our key factor when evaluating the 

performances of our proposed network structures. 
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Table 5.3:  Comparison between different cases of Architecture 3 with CK+ dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 

Maximum 

accuracy 

a 72.64 82.64 90.40 

b 72.64 80.61 91.51 

c 72.64 89.94 96.23 

d 72.64 75.26 80.75 

e 72.64 78.16 89.20 

f 72.64 80.81 97.17 

    

Table 5.4 shows the simulations accuracy results for architecture 4. This architecture is 

similar to architecture 3 except that the dropout D2 is applied in the architecture after the 

fully connected layer. Therefore, this architecture posseses two dropouts D1 and D2 set at 

0.25 and 0.5 respectively.  Our first observation still confirms that 3 x 3 or 5 x 5 is the best 

choice as case 4a emerged victorious with a higher average accuracy of 91.18 % and case 4c 

came second with average accuracy of 86.70 %. We also noted that with many convolutional 

blocks in a network structure the training time was longer but still in the scope of our 

research and again as in the architecture 3 our second observation did not match the two 

previous architectures results as case 4e came second and case 4d emerged the winner in the 

max-pooling of 2 x 1 category. Our assumptions remained the same as in architecture 3, the 

deeper the network structure becomes the tricky the accuracy results in the 2 x 1 or less 

numbers of max-pooling categories. Also the training time becomes very slow in these 

categories. 

Table 5.4:  Comparison between different cases of Architecture 4 with CK+ dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 

Maximum 

accuracy 

a 72.64 86.70 96.23 

b 83.02 86.16 94.34 

c 84.91 91.18 98.11 

d 72.64 83.02 98.11 

e 72.64 80.00 94.40 

f 72.64 79.24 92.45 

    

    

To attain our research goal, we repeated the training and testing of the four winners of the 

four groups to find the network structure with better accuracy and to ensure the results were 

reliable; therefore we tested six times for each top of the group architecture case. After 

comparison, CASE 2a emerged as the optimal network architecture with optimal parameters. 

Table 5.5 shows the comparison accuracy results of the four winners of the four groups. We 

noted that case 2a performance was good with 98.11 % average accuracy and had consistency 
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on CK+ dataset and case 4c came second with 91.18 % average accuracy. We also confirm 

our observations of 3 x 3 or 5 x 5 size filters for convolutional maps as the best option 

because all the four winners belong in these categories. Two winners belong to 3 x 3 

categories including our found optimal HDNN structure and the other two winners belong to 

5 x 5 categories. 

Table 5.5: Comparison between optimal structures of each architecture case with CK+ dataset 

(%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 

Maximum 

accuracy 

CASE 1a 81.12 87.50 98.11 

CASE 2a 

CASE 3c 

98.11 

72.64 

98.11 

89.94 

98.11 

96.23 

CASE 4c 84.91 91.18 98.11 

     

 Experiments on the JAFFE Database: We also found optimal HDNN structure for 15 times 

on the JAFFE database; Table 5.6 displays the results which show minimum accuracy of 

68.75 %, average accuracy of 76.56 % and maximum accuracy of 84.38 % for case 2a which 

is our optimal HDNN structure while case 3c came second with average accuracy of 72.00 % 

and maximum accuracy of 81.25 %. Case 1a performed poorly in the JAFFE dataset which 

was an exception and we assumed that because it is a one convolutional block and the JAFFE 

dataset contains fewer images than the CK+ dataset might contribute to the poor performance 

as we noted the training time was quicker than the other cases.  

Table 5.6:  Comparison between optimal structures of each architecture case with JAFFE 

dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 

Maximum 

accuracy 

CASE 1a 15.62 35.94 59.38 

CASE 2a 

CASE 3c 

68.75 

62.50 

76.56 

72.00 

84.38 

81.25 

CASE 4c 62.50 68.75 71.88 

     

     

Figure 5.1 shows the prediction results after the simulations have completed the training of 

the algorithm. It can be observed that the sad emotion and the disgust emotion confused each 

other in two instances while the rest of emotions predictions are correct. 
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Figure 5.2 shows the simulation results for our found optimal HDNN structure (case 2a) 

using the CK+ dataset in relation to the training loss in comparison to the validation loss in a 

graphical form. It can be observed that the two graphs of validation loss and training loss are 

converging and there is less difference between the two graphs which shows that our 

application of the dropout technique carried out its role properly as there is a perfect fitting 

outcome after training round of 30 epochs. It can also be observed that the validation loss is 

minimal than the training loss, it is because of the 50% dropout we applied in case 2a which 

gave the resulting outcome because the system was stronger at the validation time.  

Figure 5.1: Predictions results after classification in pictures. 
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Figure 5.3 below displays a graphical form of the accuracy results of case 2a which is our 

found optimal HDNN structure. It can be noticed that the network structure managed to 

achieve 98.11 % validation accuracy after 30 epochs of training using the CK+ dataset. With 

careful observation, the validation accuracy is a little bit greater than the training accuracy. It 

is due to the fact that we used a dropout of 50% in case 2a network structure. The system 

performed stronger at validation time which gives the outcome of higher validation accuracy. 

Figure 5.2: Training loss vs Validation loss on CK+. 

 

Y-axis 

 x-axis 
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When we observe the confusion matrix using the CK+ dataset in Figure 5.4 the surprise 

emotion and the sad emotion predictions obtained better results with greater accuracy. The 

neutral emotion and the happy emotion predictions were also acceptable but the angry 

emotion and the disgust emotion predictions were poor. The network structure did achieve 

improved validation accuracy with CK+. 

Figure 5.3: Training accuracy vs Validation accuracy on CK+. 

 

Y-axis 

x-axis 
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Figure 5.4: Optimal HDNN Structure training output confusion matrix on CK+. 

Angry – 0, Disgust – 1, Fear – 2, Happy – 3, Neutral – 4, Sad – 5 and Surprise - 6 

 

We can notice in Figure 5.5 when testing our optimal HDNN structure which is case 2a with 

the JAFFE dataset that the validation loss is a little larger than the training loss even though 

we applied the dropout, and the outcome results are the opposite to the ones we had when 

using the CK+ dataset. These are the effects of fewer dataset because the JAFFE dataset has 

fewer images than the CK+ dataset because we observed that the training time of JAFFE 

dataset was quicker which could not allow the dropout to gain momentum at a certain stage 
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of the epoch to become stronger on the validation time. This outcome can improve with 

larger dataset as we observed when we were using CK+. 

               

  

 

 

Figure 5.6 below displays the simulation accuracy results of the training accuracy compared 

to the validation accuracy using the JAFFE dataset. We can acquire the same observations 

like we did on the validation loss in comparison to the training loss using the JAFFE dataset 

above. Despite the use of the dropout the validation accuracy is a little bit lower as compared 

to the training accuracy, in addition the two graphs converged well. It is because the JAFFE 

dataset is fewer than the CK+ dataset and the quick process of training could allow the effect 

of the dropout to pick its dominance in the training stage to finish stronger on the validation 

time.   

 

Figure 5.5: Training loss vs Validation loss on JAFFE. 

 

Y-axis 

x-axis 
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Confusion matrix illustration of the network structure using the JAFFE dataset is presented in 

Figure 5.7.  The angry emotion and the disgust emotion had confused each other and 

performed poorly. The fear emotion also got poor accuracy while the happy emotion, the 

neutral emotion, the sad emotion and the surprise emotion achieved better accuracy. The 

validation accuracy of the network structure managed to get acceptable results using JAFFE.  

Figure 5.6: Training accuracy vs Validation accuracy on JAFFE. 

 

Y-axis 

x-axis 
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Figure 5.7: Optimal HDNN Structure training output confusion matrix on JAFFE. 

Angry – 0, Disgust – 1, Fear – 2, Happy – 3, Neutral – 4, Sad – 5 and Surprise – 6 
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In order to test the efficiency of our new found HDNN optimal structure and the other three 

top winners of the groups; we compare them with the latest accuracy records in two recent 

studies. 

 

We compare the performance of our optimal structures of our cases with the existing models 

on FER using both datasets of CK+ and Jaffe mentioned in [15]. We will describe the above 

models in Table 13 and Table 14 as the following: 

 

• Winner of that study: WS 

• Appearance feature-based network: M1 

• RBM: M2 

• Salient Facial Patches: M3 

• DCMA-CNNs: M4 

• Multi-Level Haar Wavelet: M5 

• Salient feature: M6 

• CNN: M7 

 

Table 5.7 details the comparison of results of our four best performers of the four groups with 

existing FER models recently recorded in the above mentioned research using CK+ dataset. 

The results show that three of our four top models including our found HDNN structure 

emerged winners with 98.11 % maximum accuracy beating the second existing FER model 

which achieved 96.46 % accuracy and our last top model of the four winners came third with 

96.23 % maximum accuracy which is 0.23 % less the second. 

 

Table 5.7:  Comparison between optimal structures of each architecture case with existing 

architectures for FER with CK+ dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 
Maximum accuracy 

M4 

M3 

M2 

M1 

WS 

CASE 1a 

- 

- 

- 

- 

- 

81.12 

- 

- 

- 

- 

- 

87.50 

93.46 

94.09 

95.66 

95.15 

96.46 

98.11 

CASE 2a 

CASE 3c 

98.11 

72.64 

98.11 

89.94 

98.11 

96.23 

CASE 4c 84.91 91.18 98.11 

     

 

Table 5.8 shows the recorded accuracy results of the same research mentioned above using 

the JAFFE dataset in comparison with our four top winners. The existing model which came 

second when using CK+ dataset managed to beat our top four winners with 91.27 % 
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accuracy. Our found optimal HDNN structure achieved 84.38 % maximum accuracy while 

case 3c managed to achieve 81.25 % maximum accuracy. 

Table 5.8 Comparison between optimal structures of each architecture case with existing 

architectures for FER with JAFFE dataset (%) 

 

 

 

 

 

 

 

 

Table 5.7 and Table 5.8 displayed the comparison between our proposed network structures 

with the proposed model and its comparison models in [15]. The results showed that our 

proposed structures case 1a, case 2b and case 4c outperformed the models using CK+ and 

when using Jaffe dataset our proposed structure case 2a obtained comparable results with less 

than 6.89 % to the performed model. 

We also compare the performance of our optimal structures of our cases with other existing 

models on FER using both datasets of CK+ and Jaffe mentioned in [48]. Table 5.9 shows the 

results of our comparison when using CK+ dataset. We noted that three of our top winners 

achieved 98.11 % which is 1.22 % less than the top performer of this comparison, and an 

existing model (Model 7) which achieved 99.33 %.  

Table 5.9:  Comparison between optimal structures of each architecture case with existing 

architectures for FER with CK+ dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 
Maximum accuracy 

Model 1 in [49] 

Model 2 in [50] 

Model 3 in [51] 

Model 4 in [52] 

Model 5 in [53] 

Model 6 in [54] 

Model 7 in [55] 

CASE 1a 

- 

- 

- 

- 

- 

- 

- 

81.12 

- 

- 

- 

- 

- 

- 

- 

87.50 

95.79 

99.16 

83.00 

90.00 (Around) 

80.303 

98.50 

99.33 

98.11 

CASE 2a 

CASE 3c 

98.11 

72.64 

98.11 

89.94 

98.11 

96.23 

CASE 4c 84.91 91.18 98.11 

     

 

Architecture 
Minimum 

accuracy 

Average 

accuracy 

Maximum 

accuracy 

M7 

M6 

M5 

M1 

WS 

CASE 1a 

- 

- 

- 

- 

- 

15.62 

- 

- 

- 

- 

- 

35.94 

84.48 

90.00 

90.56 

89.33 

91.27 

59.38 

CASE 2a 

CASE 3c 

68.75 

62.50 

76.56 

72.00 

84.38 

81.25 

CASE 4c 62.50 68.75 71.88 
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Table 5.10 shows the accuracy results of the same research study mentioned above instead by 

using the JAFFE dataset. Two of our four top winners case 2a and case 3a came third and 

fourth when compared to the current existing best FER models.  

Table 5.10 Comparison between optimal structures of each architecture case with existing 

architectures for FER with JAFFE dataset (%) 

Architecture 
Minimum 

accuracy 

Average 

accuracy 
Maximum accuracy 

Model 1 in [49] 

Model 8 in [56] 

Model 5 in [53] 

Model 2 in [50] 

CASE 1a 

- 

- 

- 

- 

15.62 

- 

- 

- 

- 

35.94 

53.57 

96.10 

76.7442 

87.74 

59.38 

CASE 2a 

CASE 3c 

68.75 

62.50 

76.56 

72.00 

84.38 

81.25 

CASE 4c 62.50 68.75 71.88 

     

 

5.3 SUMMARY 

 
We have demonstrated through this chapter our intensive investigation of the performances of 

our 24 proposed HDNN structures which were grouped in four categories based on their 

architecture designs. Each of the four categories had six different HDNN network structures 

according to their variable parameters. After evaluation of these 24 HDNN structures using 

the CK+ dataset we managed to achieve four winners of the four categories, case 1a, case 2a, 

case 3c and case 4c. We compared the four HDNN structures to find our optimal HDNN 

structure with optimal parameters and case 2a emerged as the best architecture with 98.11 % 

average accuracy and consistency of the same results after several repeated simulations 

because our key factor in evaluating architectures was the stability of accuracy results. 

Architecture could give three different accuracy results after testing. Therefore, we selected 

the optimal architectures with optimal parameters by assessing only the average accuracy 

results. Case 4c came second with 91.18 % average accuracy. We also tested our top four 

architectures using JAFFE. Case 2a still maintains its position as our found optimal HDNN 

structure with optimal parameters with 76.56 % average accuracy and 84.38 % maximum 

accuracy. Finally, we compared our four optimal architectures with existing FER models 

recently published in two different research studies. The tables showed that three of our four 

optimal architectures came top when using the CK+ dataset and were beaten when using the 

dataset in one research study and when compared with the other research study. The three 

optimal architectures obtained comparable results and trailed by 1.22 % of the top existing 

model. The simulations result and analysis showed that our optimal architectures are efficient 

when using cost effective hardware. We limited the amount of training time to be less than 

120 minutes and will explore adding more time, but not days in order to investigate 

architectures using different numbers of max-pooling in depth in the future. 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

 
 

This chapter gives the final conclusions made after our investigation and answer to the 

objective of this research study. Future recommendations are also given in this chapter. 

 

 

6.1 INTRODUCTION 

 
This research study was conducted with the main objective of finding an optimal HDNN 

structure with optimal parameters which could improve the accuracy using cost effective 

hardware by investigating the hierarchical deep learning network structure for facial 

expression recognition. We had to apply our 24 proposed HDNN structures and investigated 

the results after the simulations were performed using a standard laptop to find the optimal 

HDNN structure with optimal parameters. Four HDNN structures case 1a, case 2a, case 3c 

and case 4c emerged as the optimal network structures from the 24 proposed network 

structures which were separated into four groups. Ultimately, case 2a became the optimal 

HDNN structure with optimal parameters.  This is reinforced by the conclusions in 6.2. 

 

 

6.2 CONCLUSIONS 

 

We have presented in this research our investigation on FER hierarchical deep neural 

network structures in search of finding the optimal HDNN structure with optimal parameters 

to answer to our research problem. We started by creating a generic hierarchical structure 

with variable settings. This generic structure has a hierarchy of three convolutional blocks, 

two dropout blocks and one fully connected block. From this generic structure we derived 

four different network structures to be investigated according to their performances. From 

each network structure case, we again derived six network structures in relation to the 

variable parameters. The variable parameters under analysis are the size of filters of the 

convolutional maps and the max-pooling as well the number of convolutional maps. In total, 

we had 24 network structures to investigate, six network structures per each case. 

 

After simulations, the results assembled after many repeated experiments showed in the 

group of case 1; case 1a emerged as the top performer of that group and case 2a, case 3c and 

case 4c outperformed others in their respective groups. We compared the winners of the 4 

groups to find the optimal network structure with optimal parameters. Case 2a answered the 

research question we were investigating in this study; case 2a network structure outperformed 

other group winners. Considerations were done when choosing the best network structure, 

considerations were minimum accuracy, average accuracy and maximum accuracy after 15 

times of repeated training and analysis of results. 

 

All our 24 proposed network structures were tested using two most used FER datasets CK+ 

and JAFFE; we discovered that even the four group winners achieved higher results with 

CK+ dataset than JAFFE dataset. It might be because that the CK+ dataset have more images 

than the JAFFE dataset which indicated that our optimal structure would need to be tested on 

larger datasets for further investigation. 
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After presenting 24 different network architectures with different parameters for automatic 

facial expression recognition, we can conclude that our inexpensive optimal network 

architecture achieved 98.11 % accuracy in the CK+ dataset. We also tested our optimal 

network architecture with the JAFFE, the results show 84.38 % by using a standard CPU and 

easier procedures. 

 

We also compared the four group winners with other existing FER models performances 

recorded in two recent studies [15] [48]. These FER models used the same two datasets, the 

CK+ and the JAFFE. Three of our four group winners (case 1a, case 2a and case 4c) recorded 

only less 1.22 % than the top performer model when using the CK+ dataset and two of our 

network structures case 2a and case 3c came in third, beating other models when using 

JAFFE dataset. The hardware used for the winner model of the existing models mentioned in 

Tables 5.7 – 5.10 is better than the hardware we used in this research i.e. i7-8700 CPU is 

powerful than CPU Intel(R) Core(TM) 2, clock speed (3.20 GHz > 2.40 GHz), RAM (8GB > 

4GB) and a GTX 1070 GPU. If our optimal model managed to achieve good performance 

with an inferior hardware set and without a GPU which is very expensive, the optimal model 

could achieve improved results if applied with the hardware used by the winner of the 

existing models. The permutations we chose included a model case 4c that has similar 

permutations as the winner of the existing models (the convolutional maps: 5x5 and the max-

pooling: 2x2) but our optimal model case 2a that has 3x3 convolutional maps and 2x2 max-

pooling achieved comparable results with the winner model of the existing models and has 

achieved better results than model case 4c. Case 2a answered our research question and is the 

optimal solution.  

 

6.3 FUTURE WORK 

 

After finding the optimal HDNN structure which showed us that it is effective and from our 

observations during the experiments of this research study, we propose three possibilities for 

future research: 

 

• Our study focused only on the databases which are publicly available. In future, the 

optimal HDNN structure can be tested on big FER databases in order to evaluate the 

generalization ability of the model. 

• All our 24 proposed HDNN structures convolutional maps were fixed. Also the 

neurons’number in the fully connected block did not change but was set at 84 in our 

research study. Future research can explore with different numbers, hundreds or 

thousands of neurons can be investigated in future. 

• The max-pooling size filters of different numbers for example 1 by 2, 3 by 1, 1 by 3, 

etc. can be explored and especially if the amount of training time is not restricted in 

the research but relaxed to allow a window for more hours as acceptable. 
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APPENDICES 

 

Appendix A   Python codes using FER dataset CK+ 
# File: Deep Learning 

# Author: Dodi Motembe:University of South Africa (UNISA) 

# Student No: 50685740 

# Department of Electrical and Mining Engineering 

# College of Science, Engineering and Technology 

# University Of South Africa 

 

 

# we start by importing the necessary Python libraries needed for our 

# model to work 

 

from sklearn.metrics import confusion_matrix 

from keras import callbacks 

from PIL import Image 

from keras.preprocessing.image import ImageDataGenerator 

from keras.optimizers import SGD, RMSprop, adam 

from keras.layers.convolutional import Convolution2D, MaxPooling2D 

from keras.layers.core import Dense, Dropout, Activation, Flatten 

from keras.models import Sequential 

from keras import backend as K 

from keras.utils import plot_model 

from keras.utils import np_utils 

import keras 

from sklearn.model_selection import train_test_split 

from sklearn.utils import shuffle 

import os 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.image as mpimg 

from pylab import rcParams 

rcParams['figure.figsize'] = 20, 10 

 

 

# Datapath needs to be defined properly so that images from the dataset 

# can be found and be used 

 

data_path = 'C:\\Users\\DODI\\Workspace\\Python\\ck\\dataset' 

data_dir_list = os.listdir(data_path) 

img_rows = 256 

img_cols = 256 

num_channel = 1 

num_epoch = 10 

img_data_list = [] 

 

for dataset in data_dir_list: 

    img_list = os.listdir(data_path + '\\' + dataset) 

    print('Loaded the images of dataset-' + '{}\n'.format(dataset)) 

    for img in img_list: 

        input_img = cv2.imread(data_path + '\\' + dataset + '\\' + img) 

        #input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 

        input_img_resize = cv2.resize(input_img, (128, 128)) 

        img_data_list.append(input_img_resize) 

 

 

img_data = np.array(img_data_list) 

img_data = img_data.astype('float32') 

img_data = img_data / 255 

img_data.shape 

 

# The number of classes needs to be defined properly for the recognition 

# of the different classes to be done 

 

 

num_classes = 7 
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num_of_samples = img_data.shape[0] 

labels = np.ones((num_of_samples,), dtype='int64') 

labels[0:29] = 0  # 30 

labels[30:59] = 1  # 29 

labels[60:92] = 2  # 32 

labels[93:124] = 3  # 31 

labels[125:155] = 4  # 30 

labels[156:187] = 5  # 31 

labels[188:] = 6  # 30 

 

names = ['ANGRY', 'DISGUST', 'FEAR', 'HAPPY', 'NEUTRAL', 'SAD', 'SURPRISE'] 

 

 

def getLabel(id): 

    return [ 

        'ANGRY', 

        'DISGUST', 

        'FEAR', 

        'HAPPY', 

        'NEUTRAL', 

        'SAD', 

        'SURPRISE'][id] 

 

 

# Conversion of class labels to on-hot encoding 

 

Y = np_utils.to_categorical(labels, num_classes) 

x, y = shuffle(img_data, Y, random_state=2) 

X_train, X_test, y_train, y_test = train_test_split( 

    x, y, test_size=0.15, random_state=2) 

 

 

# Our optimal HDNN Structure with optimal parameters 

 

 

input_shape = img_data[0].shape 

 

 

model = Sequential() 

 

model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same')) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Convolution2D(16, 3, 3, border_mode='same')) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Flatten()) 

model.add(Dense(84)) 

model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes)) 

model.add(Activation('softmax')) 

 

# Compilation of the optimal HDNN Structure with optimal parameters 

 

model.compile( 

    loss='categorical_crossentropy', 

    optimizer='adam', 

    metrics=["accuracy"]) 

 

# We can visualize the optimal HDNN Structure with optimal parameters and 

# acquire details of its construction 

 

model.summary() 

 

 

model.get_config() 

 

model.layers[0].get_config() 
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model.layers[0].input_shape 

 

model.layers[0].output_shape 

 

model.layers[0].get_weights() 

 

np.shape(model.layers[0].get_weights()[0]) 

 

model.layers[0].trainable 

 

 

# The Training process of our optimal HDNN Structure with optimal parameters 

 

filename = 'model_train_new.csv' 

filepath = "Best-weights-my_model-{epoch:03d}-{loss:.4f}-{acc:.4f}.hdf5" 

csv_log = callbacks.CSVLogger(filename, separator=',', append=False) 

checkpoint = callbacks.ModelCheckpoint( 

    filepath, 

    monitor='val_loss', 

    verbose=1, 

    save_best_only=True, 

    mode='min') 

callbacks_list = [csv_log, checkpoint] 

callbacks_list = [csv_log] 

 

 

hist = model.fit( 

    X_train, 

    y_train, 

    batch_size=7, 

    nb_epoch=30, 

    verbose=1, 

    validation_data=( 

        X_test, 

        y_test), 

    callbacks=callbacks_list) 

 

model.save_weights('model_weights.h5') 

model.save('model_keras.h5') 

 

# We can visualize our optimal HDNN Structure with optimal parameters loss 

# and accuracy through graphs 

 

 

train_loss = hist.history['loss'] 

val_loss = hist.history['val_loss'] 

train_acc = hist.history['accuracy'] 

val_acc = hist.history['val_accuracy'] 

 

epochs = range(len(train_acc)) 

plt.plot(epochs, train_loss, 'r', label='train_loss') 

 

 

plt.plot(epochs, val_loss, 'b', label='val_loss') 

 

 

plt.title('train_loss vs val_loss') 

 

 

plt.legend() 

 

plt.figure() 

 

 

plt.plot(epochs, train_acc, 'r', label='train_acc') 

 

 

plt.plot(epochs, val_acc, 'b', label='val_acc') 
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plt.title('train_acc vs val_acc') 

 

 

plt.legend() 

 

 

plt.figure() 

 

 

# The Evaluation of our optimal HDNN Structure with optimal parameters 

 

 

score = model.evaluate(X_test, y_test, verbose=0) 

 

print('Test Loss:', score[0]) 

 

 

print('Test accuracy:', score[1]) 

 

 

test_image = X_test[0:1] 

print(test_image.shape) 

 

 

print(model.predict(test_image)) 

 

 

print(model.predict_classes(test_image)) 

 

 

print(y_test[0:1]) 

 

 

res = model.predict_classes(X_test[:9]) 

plt.figure(figsize=(10, 10)) 

 

for i in range(0, 9): 

    plt.subplot(330 + 1 + i) 

    plt.imshow(X_test[i], cmap=plt.get_cmap('gray')) 

    plt.gca().get_xaxis().set_ticks([]) 

    plt.gca().get_yaxis().set_ticks([]) 

    plt.ylabel('prediction = %s' % getLabel(res[i]), fontsize=14) 

    plt.show() 

 

# We can visualize our optimal HDNN Structure with optimal parameters 

# confusion matrix 

 

results = model.predict_classes(X_test) 

cm = confusion_matrix(np.where(y_test == 1)[1], results) 

plt.matshow(cm) 

 

 

plt.title('Confusion Matrix') 

 

 

plt.colorbar() 

 

plt.ylabel('True Label') 

 

 

plt.xlabel('Predicted Label') 

 

 

plt.show() 

 

plt.gca().get_xaxis().set_ticks([]) 

 

plt.gca().get_yaxis().set_ticks([]) 

 

plt.xlabel('prediction = %s' % getLabel(results[0]), fontsize=25) 
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Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul  5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on 

win32 

Type "copyright", "credits" or "license()" for more information. 

>>>  

===================== RESTART: C:/Users/DODI/Naisha 2.py 

===================== 

Using Theano backend. 

Loaded the images of dataset-ANGRY 

 

Loaded the images of dataset-DISGUST 

 

Loaded the images of dataset-FEAR 

 

Loaded the images of dataset-HAPPY 

 

Loaded the images of dataset-NEUTRAL 

 

Loaded the images of dataset-SAD 

 

Loaded the images of dataset-SURPRISE 

 

 

Warning (from warnings module): 

  File "C:/Users/DODI/Naisha 2.py", line 106 

    model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same')) 

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(6, (3, 3), padding="same", 

input_shape=(128, 128,...)` 

 

Warning (from warnings module): 

  File "C:/Users/DODI/Naisha 2.py", line 110 

    model.add(Convolution2D(16, 3, 3, border_mode='same')) 

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(16, (3, 3), padding="same")` 

Model: "sequential_1" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_1 (Conv2D)            (None, 128, 128, 6)       168        

_________________________________________________________________ 

activation_1 (Activation)    (None, 128, 128, 6)       0          

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 64, 64, 6)         0          

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 64, 64, 16)        880        

_________________________________________________________________ 

activation_2 (Activation)    (None, 64, 64, 16)        0          

_________________________________________________________________ 

max_pooling2d_2 (MaxPooling2 (None, 32, 32, 16)        0          

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 16384)             0          

_________________________________________________________________ 

dense_1 (Dense)              (None, 84)                1376340    

_________________________________________________________________ 

activation_3 (Activation)    (None, 84)                0          

_________________________________________________________________ 

dropout_1 (Dropout)          (None, 84)                0          

_________________________________________________________________ 

dense_2 (Dense)              (None, 7)                 595        

_________________________________________________________________ 

activation_4 (Activation)    (None, 7)                 0          

================================================================= 

Total params: 1,377,983 

Trainable params: 1,377,983 

Non-trainable params: 0 

_________________________________________________________________ 

 

Warning (from warnings module): 

  File "C:/Users/DODI/Naisha 2.py", line 173 

    callbacks=callbacks_list) 

UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`. 

Train on 600 samples, validate on 106 samples 

Epoch 30/30 
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  7/600 [..............................] - ETA: 18s - loss: 0.3574 - accuracy: 0.8571 

 14/600 [..............................] - ETA: 19s - loss: 0.1788 - accuracy: 0.9286 

 21/600 [>.............................] - ETA: 20s - loss: 0.1419 - accuracy: 0.9524 

 28/600 [>.............................] - ETA: 21s - loss: 0.1099 - accuracy: 0.9643 

 35/600 [>.............................] - ETA: 21s - loss: 0.1263 - accuracy: 0.9429 

 42/600 [=>............................] - ETA: 22s - loss: 0.1334 - accuracy: 0.9524 

 49/600 [=>............................] - ETA: 22s - loss: 0.1163 - accuracy: 0.9592 

 56/600 [=>............................] - ETA: 22s - loss: 0.1745 - accuracy: 0.9464 

 63/600 [==>...........................] - ETA: 22s - loss: 0.1573 - accuracy: 0.9524 

 70/600 [==>...........................] - ETA: 22s - loss: 0.1943 - accuracy: 0.9286 

 77/600 [==>...........................] - ETA: 22s - loss: 0.1779 - accuracy: 0.9351 

 84/600 [===>..........................] - ETA: 21s - loss: 0.1716 - accuracy: 0.9405 

 91/600 [===>..........................] - ETA: 21s - loss: 0.1585 - accuracy: 0.9451 

 98/600 [===>..........................] - ETA: 21s - loss: 0.1514 - accuracy: 0.9490 

105/600 [====>.........................] - ETA: 21s - loss: 0.1561 - accuracy: 0.9524 

112/600 [====>.........................] - ETA: 21s - loss: 0.1847 - accuracy: 0.9464 

119/600 [====>.........................] - ETA: 21s - loss: 0.1750 - accuracy: 0.9496 

126/600 [=====>........................] - ETA: 21s - loss: 0.1653 - accuracy: 0.9524 

133/600 [=====>........................] - ETA: 21s - loss: 0.1708 - accuracy: 0.9474 

140/600 [======>.......................] - ETA: 21s - loss: 0.1721 - accuracy: 0.9429 

147/600 [======>.......................] - ETA: 21s - loss: 0.1640 - accuracy: 0.9456 

154/600 [======>.......................] - ETA: 21s - loss: 0.1644 - accuracy: 0.9416 

161/600 [=======>......................] - ETA: 21s - loss: 0.1797 - accuracy: 0.9379 

168/600 [=======>......................] - ETA: 21s - loss: 0.1726 - accuracy: 0.9405 

175/600 [=======>......................] - ETA: 21s - loss: 0.1668 - accuracy: 0.9429 

Warning (from warnings module): 

  File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95 

    % (hook_name, delta_t_median), RuntimeWarning) 

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.205047). Check 

your callbacks. 

 

182/600 [========>.....................] - ETA: 21s - loss: 0.1641 - accuracy: 0.9451 

189/600 [========>.....................] - ETA: 20s - loss: 0.1586 - accuracy: 0.9471 

196/600 [========>.....................] - ETA: 20s - loss: 0.1602 - accuracy: 0.9439 

203/600 [=========>....................] - ETA: 19s - loss: 0.1744 - accuracy: 0.9360 

210/600 [=========>....................] - ETA: 19s - loss: 0.1688 - accuracy: 0.9381 

217/600 [=========>....................] - ETA: 18s - loss: 0.1657 - accuracy: 0.9401 

224/600 [==========>...................] - ETA: 18s - loss: 0.1607 - accuracy: 0.9420 

231/600 [==========>...................] - ETA: 18s - loss: 0.1581 - accuracy: 0.9437 

238/600 [==========>...................] - ETA: 17s - loss: 0.1539 - accuracy: 0.9454 

245/600 [===========>..................] - ETA: 17s - loss: 0.1496 - accuracy: 0.9469 

252/600 [===========>..................] - ETA: 17s - loss: 0.1627 - accuracy: 0.9444 

259/600 [===========>..................] - ETA: 16s - loss: 0.1730 - accuracy: 0.9421 

266/600 [============>.................] - ETA: 16s - loss: 0.1701 - accuracy: 0.9436 

273/600 [============>.................] - ETA: 16s - loss: 0.1684 - accuracy: 0.9451 

280/600 [=============>................] - ETA: 15s - loss: 0.1682 - accuracy: 0.9464 

287/600 [=============>................] - ETA: 15s - loss: 0.1660 - accuracy: 0.9477 

294/600 [=============>................] - ETA: 15s - loss: 0.1624 - accuracy: 0.9490 

301/600 [==============>...............] - ETA: 15s - loss: 0.1616 - accuracy: 0.9502 

308/600 [==============>...............] - ETA: 14s - loss: 0.1581 - accuracy: 0.9513 

315/600 [==============>...............] - ETA: 14s - loss: 0.1549 - accuracy: 0.9524 

322/600 [===============>..............] - ETA: 14s - loss: 0.1520 - accuracy: 0.9534 

329/600 [===============>..............] - ETA: 14s - loss: 0.1519 - accuracy: 0.9544 

336/600 [===============>..............] - ETA: 13s - loss: 0.1494 - accuracy: 0.9554 

343/600 [================>.............] - ETA: 13s - loss: 0.1541 - accuracy: 0.9534 

Warning (from warnings module): 

  File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95 

    % (hook_name, delta_t_median), RuntimeWarning) 

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.227555). Check 

your callbacks. 

 

350/600 [================>.............] - ETA: 13s - loss: 0.1516 - accuracy: 0.9543 

Warning (from warnings module): 

  File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95 

    % (hook_name, delta_t_median), RuntimeWarning) 

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.224054). Check 

your callbacks. 

 

357/600 [================>.............] - ETA: 12s - loss: 0.1502 - accuracy: 0.9552 

364/600 [=================>............] - ETA: 12s - loss: 0.1496 - accuracy: 0.9560 
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371/600 [=================>............] - ETA: 11s - loss: 0.1554 - accuracy: 0.9542 

378/600 [=================>............] - ETA: 11s - loss: 0.1529 - accuracy: 0.9550 

385/600 [==================>...........] - ETA: 11s - loss: 0.1530 - accuracy: 0.9558 

392/600 [==================>...........] - ETA: 10s - loss: 0.1574 - accuracy: 0.9541 

399/600 [==================>...........] - ETA: 10s - loss: 0.1554 - accuracy: 0.9549 

406/600 [===================>..........] - ETA: 10s - loss: 0.1537 - accuracy: 0.9557 

413/600 [===================>..........] - ETA: 9s - loss: 0.1511 - accuracy: 0.9564  

420/600 [====================>.........] - ETA: 9s - loss: 0.1545 - accuracy: 0.9548 

427/600 [====================>.........] - ETA: 8s - loss: 0.1526 - accuracy: 0.9555 

434/600 [====================>.........] - ETA: 8s - loss: 0.1549 - accuracy: 0.9539 

441/600 [=====================>........] - ETA: 8s - loss: 0.1526 - accuracy: 0.9546 

448/600 [=====================>........] - ETA: 7s - loss: 0.1513 - accuracy: 0.9554 

455/600 [=====================>........] - ETA: 7s - loss: 0.1493 - accuracy: 0.9560 

462/600 [======================>.......] - ETA: 7s - loss: 0.1537 - accuracy: 0.9545 

469/600 [======================>.......] - ETA: 6s - loss: 0.1521 - accuracy: 0.9552 

476/600 [======================>.......] - ETA: 6s - loss: 0.1498 - accuracy: 0.9559 

483/600 [=======================>......] - ETA: 6s - loss: 0.1484 - accuracy: 0.9565 

490/600 [=======================>......] - ETA: 5s - loss: 0.1464 - accuracy: 0.9571 

497/600 [=======================>......] - ETA: 5s - loss: 0.1484 - accuracy: 0.9557 

504/600 [========================>.....] - ETA: 5s - loss: 0.1467 - accuracy: 0.9563 

511/600 [========================>.....] - ETA: 4s - loss: 0.1453 - accuracy: 0.9569 

518/600 [========================>.....] - ETA: 4s - loss: 0.1460 - accuracy: 0.9556 

525/600 [=========================>....] - ETA: 4s - loss: 0.1477 - accuracy: 0.9562 

Warning (from warnings module): 

  File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95 

    % (hook_name, delta_t_median), RuntimeWarning) 

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.230552). Check 

your callbacks. 

 

532/600 [=========================>....] - ETA: 3s - loss: 0.1459 - accuracy: 0.9568 

539/600 [=========================>....] - ETA: 3s - loss: 0.1445 - accuracy: 0.9573 

546/600 [==========================>...] - ETA: 2s - loss: 0.1451 - accuracy: 0.9560 

553/600 [==========================>...] - ETA: 2s - loss: 0.1442 - accuracy: 0.9566 

560/600 [===========================>..] - ETA: 2s - loss: 0.1446 - accuracy: 0.9554 

567/600 [===========================>..] - ETA: 1s - loss: 0.1480 - accuracy: 0.9541 

574/600 [===========================>..] - ETA: 1s - loss: 0.1463 - accuracy: 0.9547 

581/600 [============================>.] - ETA: 1s - loss: 0.1465 - accuracy: 0.9552 

588/600 [============================>.] - ETA: 0s - loss: 0.1463 - accuracy: 0.9541 

595/600 [============================>.] - ETA: 0s - loss: 0.1501 - accuracy: 0.9513 

600/600 [==============================] - 33s 56ms/step - loss: 0.1515 - accuracy: 

0.9500 - val_loss: 0.0653 - val_accuracy: 0.9811 

Test Loss: 0.06534121902483814 

Test accuracy: 0.9811320900917053 

(1, 128, 128, 3) 

[[  3.04679908e-08   1.07606972e-10   1.08493807e-13   9.51358065e-14 

    4.66445051e-08   3.75608485e-12   9.99999940e-01]] 

[6] 

[[ 0.  0.  0.  0.  0.  0.  1.]] 

   

 

Appendix B: Python codes using FER dataset JAFFE                        
# File: Deep Learning 

# Author: Dodi Motembe:University of South Africa (UNISA) 

# Student No: 50685740 

# Department of Electrical and Mining Engineering 

# College of Science, Engineering and Technology 

# University Of South Africa 

 

 

# we start by importing the necessary Python libraries needed for our 

# model to work 

 

from sklearn.metrics import confusion_matrix 

from keras import callbacks 

from PIL import Image 

from keras.preprocessing.image import ImageDataGenerator 

from keras.optimizers import SGD, RMSprop, adam 

from keras.layers.convolutional import Convolution2D, MaxPooling2D 

from keras.layers.core import Dense, Dropout, Activation, Flatten 
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from keras.models import Sequential 

from keras import backend as K 

from keras.utils import plot_model 

from keras.utils import np_utils 

import keras 

from sklearn.model_selection import train_test_split 

from sklearn.utils import shuffle 

import os 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.image as mpimg 

from pylab import rcParams 

rcParams['figure.figsize'] = 20, 10 

 

 

# Datapath needs to be defined properly so that images from the dataset 

# can be found and be used 

 

data_path = 'C:\\Users\\DODI\\Workspace\\Python\\jaffe\\dataset' 

data_dir_list = os.listdir(data_path) 

img_rows = 256 

img_cols = 256 

num_channel = 1 

num_epoch = 10 

img_data_list = [] 

 

for dataset in data_dir_list: 

    img_list = os.listdir(data_path + '\\' + dataset) 

    print('Loaded the images of dataset-' + '{}\n'.format(dataset)) 

    for img in img_list: 

        input_img = cv2.imread(data_path + '\\' + dataset + '\\' + img) 

        #input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY) 

        input_img_resize = cv2.resize(input_img, (128, 128)) 

        img_data_list.append(input_img_resize) 

 

 

img_data = np.array(img_data_list) 

img_data = img_data.astype('float32') 

img_data = img_data / 255 

img_data.shape 

 

# The number of classes needs to be defined properly for the recognition 

# of the different classes to be done 

 

 

num_classes = 7 

num_of_samples = img_data.shape[0] 

labels = np.ones((num_of_samples,), dtype='int64') 

labels[0:29] = 0  # 30 

labels[30:59] = 1  # 29 

labels[60:92] = 2  # 32 

labels[93:124] = 3  # 31 

labels[125:155] = 4  # 30 

labels[156:187] = 5  # 31 

labels[188:] = 6  # 30 

 

names = ['ANGRY', 'DISGUST', 'FEAR', 'HAPPY', 'NEUTRAL', 'SAD', 'SURPRISE'] 

 

 

def getLabel(id): 

    return [ 

        'ANGRY', 

        'DISGUST', 

        'FEAR', 

        'HAPPY', 

        'NEUTRAL', 

        'SAD', 

        'SURPRISE'][id] 
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# Conversion of class labels to on-hot encoding 

 

Y = np_utils.to_categorical(labels, num_classes) 

x, y = shuffle(img_data, Y, random_state=2) 

X_train, X_test, y_train, y_test = train_test_split( 

    x, y, test_size=0.15, random_state=2) 

 

 

# Our optimal HDNN Structure with optimal parameters 

 

 

input_shape = img_data[0].shape 

 

 

model = Sequential() 

 

model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same')) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Convolution2D(16, 3, 3, border_mode='same')) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Flatten()) 

model.add(Dense(84)) 

model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(num_classes)) 

model.add(Activation('softmax')) 

 

# Compilation of the optimal HDNN Structure with optimal parameters 

 

model.compile( 

    loss='categorical_crossentropy', 

    optimizer='adam', 

    metrics=["accuracy"]) 

 

# We can visualize the optimal HDNN Structure with optimal parameters and 

# acquire details of its construction 

 

model.summary() 

 

 

model.get_config() 

 

model.layers[0].get_config() 

 

model.layers[0].input_shape 

 

model.layers[0].output_shape 

 

model.layers[0].get_weights() 

 

np.shape(model.layers[0].get_weights()[0]) 

 

model.layers[0].trainable 

 

 

# The Training process of our optimal HDNN Structure with optimal parameters 

 

filename = 'model_train_new.csv' 

filepath = "Best-weights-my_model-{epoch:03d}-{loss:.4f}-{acc:.4f}.hdf5" 

csv_log = callbacks.CSVLogger(filename, separator=',', append=False) 

checkpoint = callbacks.ModelCheckpoint( 

    filepath, 

    monitor='val_loss', 

    verbose=1, 

    save_best_only=True, 

    mode='min') 

callbacks_list = [csv_log, checkpoint] 
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callbacks_list = [csv_log] 

 

 

hist = model.fit( 

    X_train, 

    y_train, 

    batch_size=7, 

    nb_epoch=30, 

    verbose=1, 

    validation_data=( 

        X_test, 

        y_test), 

    callbacks=callbacks_list) 

 

model.save_weights('model_weights.h5') 

model.save('model_keras.h5') 

 

# We can visualize our optimal HDNN Structure with optimal parameters loss 

# and accuracy through graphs 

 

 

train_loss = hist.history['loss'] 

val_loss = hist.history['val_loss'] 

train_acc = hist.history['accuracy'] 

val_acc = hist.history['val_accuracy'] 

 

epochs = range(len(train_acc)) 

plt.plot(epochs, train_loss, 'r', label='train_loss') 

 

 

plt.plot(epochs, val_loss, 'b', label='val_loss') 

 

 

plt.title('train_loss vs val_loss') 

 

 

plt.legend() 

 

plt.figure() 

 

 

plt.plot(epochs, train_acc, 'r', label='train_acc') 

 

 

plt.plot(epochs, val_acc, 'b', label='val_acc') 

 

 

plt.title('train_acc vs val_acc') 

 

 

plt.legend() 

 

 

plt.figure() 

 

 

# The Evaluation of our optimal HDNN Structure with optimal parameters 

 

 

score = model.evaluate(X_test, y_test, verbose=0) 

 

print('Test Loss:', score[0]) 

 

 

print('Test accuracy:', score[1]) 

 

 

test_image = X_test[0:1] 

print(test_image.shape) 
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print(model.predict(test_image)) 

 

 

print(model.predict_classes(test_image)) 

 

 

print(y_test[0:1]) 

 

 

res = model.predict_classes(X_test[:9]) 

plt.figure(figsize=(10, 10)) 

 

for i in range(0, 9): 

    plt.subplot(330 + 1 + i) 

    plt.imshow(X_test[i], cmap=plt.get_cmap('gray')) 

    plt.gca().get_xaxis().set_ticks([]) 

    plt.gca().get_yaxis().set_ticks([]) 

    plt.ylabel('prediction = %s' % getLabel(res[i]), fontsize=14) 

    plt.show() 

 

# We can visualize our optimal HDNN Structure with optimal parameters 

# confusion matrix 

 

results = model.predict_classes(X_test) 

cm = confusion_matrix(np.where(y_test == 1)[1], results) 

plt.matshow(cm) 

 

 

plt.title('Confusion Matrix') 

 

 

plt.colorbar() 

 

plt.ylabel('True Label') 

 

 

plt.xlabel('Predicted Label') 

 

 

plt.show() 

 

plt.gca().get_xaxis().set_ticks([]) 

 

plt.gca().get_yaxis().set_ticks([]) 

 

plt.xlabel('prediction = %s' % getLabel(results[0]), fontsize=25) 

 

Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul  5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on 

win32 

Type "copyright", "credits" or "license()" for more information. 

>>>  

==================== RESTART: C:/Users/DODI/dmotembe1.py 

==================== 

Using Theano backend. 

Loaded the images of dataset-ANGRY 

 

Loaded the images of dataset-DISGUST 

 

Loaded the images of dataset-FEAR 

 

Loaded the images of dataset-HAPPY 

 

Loaded the images of dataset-NEUTRAL 

 

Loaded the images of dataset-SAD 

 

Loaded the images of dataset-SURPRISE 

 

 

Warning (from warnings module): 

  File "C:/Users/DODI/dmotembe1.py", line 106 
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    model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same')) 

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(6, (3, 3), input_shape=(128, 128,..., 

padding="same")` 

 

Warning (from warnings module): 

  File "C:/Users/DODI/dmotembe1.py", line 110 

    model.add(Convolution2D(16, 3, 3, border_mode='same')) 

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(16, (3, 3), padding="same")` 

Model: "sequential_1" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_1 (Conv2D)            (None, 128, 128, 6)       168        

_________________________________________________________________ 

activation_1 (Activation)    (None, 128, 128, 6)       0          

_________________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 64, 64, 6)         0          

_________________________________________________________________ 

conv2d_2 (Conv2D)            (None, 64, 64, 16)        880        

_________________________________________________________________ 

activation_2 (Activation)    (None, 64, 64, 16)        0          

_________________________________________________________________ 

max_pooling2d_2 (MaxPooling2 (None, 32, 32, 16)        0          

_________________________________________________________________ 

flatten_1 (Flatten)          (None, 16384)             0          

_________________________________________________________________ 

dense_1 (Dense)              (None, 84)                1376340    

_________________________________________________________________ 

activation_3 (Activation)    (None, 84)                0          

_________________________________________________________________ 

dropout_1 (Dropout)          (None, 84)                0          

_________________________________________________________________ 

dense_2 (Dense)              (None, 7)                 595        

_________________________________________________________________ 

activation_4 (Activation)    (None, 7)                 0          

================================================================= 

Total params: 1,377,983 

Trainable params: 1,377,983 

Non-trainable params: 0 

_________________________________________________________________ 

 

Warning (from warnings module): 

  File "C:/Users/DODI/dmotembe1.py", line 173 

    callbacks=callbacks_list) 

UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`. 

Train on 180 samples, validate on 32 samples 

 

Epoch 30/30 

 

  7/180 [>.............................] - ETA: 10s - loss: 0.9542 - accuracy: 0.7143 

 14/180 [=>............................] - ETA: 10s - loss: 0.7767 - accuracy: 0.7143 

 21/180 [==>...........................] - ETA: 10s - loss: 0.7055 - accuracy: 0.7143 

 28/180 [===>..........................] - ETA: 10s - loss: 0.6125 - accuracy: 0.7143 

 35/180 [====>.........................] - ETA: 9s - loss: 0.6157 - accuracy: 0.7143  

 42/180 [======>.......................] - ETA: 9s - loss: 0.6178 - accuracy: 0.7143 

 49/180 [=======>......................] - ETA: 8s - loss: 0.5749 - accuracy: 0.7551 

 56/180 [========>.....................] - ETA: 8s - loss: 0.5672 - accuracy: 0.7679 

 63/180 [=========>....................] - ETA: 7s - loss: 0.5362 - accuracy: 0.7778 

 70/180 [==========>...................] - ETA: 7s - loss: 0.5226 - accuracy: 0.7714 

 77/180 [===========>..................] - ETA: 6s - loss: 0.5792 - accuracy: 0.7403 

 84/180 [=============>................] - ETA: 6s - loss: 0.5395 - accuracy: 0.7619 

 91/180 [==============>...............] - ETA: 6s - loss: 0.5127 - accuracy: 0.7802 

 98/180 [===============>..............] - ETA: 5s - loss: 0.4956 - accuracy: 0.7857 

105/180 [================>.............] - ETA: 5s - loss: 0.4908 - accuracy: 0.8000 

112/180 [=================>............] - ETA: 4s - loss: 0.4845 - accuracy: 0.7946 

119/180 [==================>...........] - ETA: 4s - loss: 0.5080 - accuracy: 0.7815 

126/180 [====================>.........] - ETA: 3s - loss: 0.4942 - accuracy: 0.7857 

133/180 [=====================>........] - ETA: 3s - loss: 0.5041 - accuracy: 0.7820 

140/180 [======================>.......] - ETA: 2s - loss: 0.4962 - accuracy: 0.7857 

147/180 [=======================>......] - ETA: 2s - loss: 0.4771 - accuracy: 0.7959 

154/180 [========================>.....] - ETA: 1s - loss: 0.4785 - accuracy: 0.7922 
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161/180 [=========================>....] - ETA: 1s - loss: 0.4768 - accuracy: 0.7888 

168/180 [===========================>..] - ETA: 0s - loss: 0.4776 - accuracy: 0.7917 

175/180 [============================>.] - ETA: 0s - loss: 0.4761 - accuracy: 0.7886 

180/180 [==============================] - 13s 74ms/step - loss: 0.4647 - accuracy: 

0.7944 - val_loss: 0.7941 - val_accuracy: 0.6875 

Test Loss: 0.7940693497657776 

Test accuracy: 0.6875 

(1, 128, 128, 3) 

[[  1.25928875e-02   6.56534161e-04   2.93277553e-03   1.16468444e-02 

    9.33720112e-01   3.42316218e-02   4.21920326e-03]] 

[4] 

[[ 0.  0.  0.  0.  1.  0.  0.]] 

 

 

 

 

 

 


