
i

INVESTIGATION OF HIERARCHICAL DEEP NEURAL

NETWORK STRUCTURE FOR FACIAL EXPRESSION

RECOGNITION

by

DODI MOTEMBE

submitted in accordance with the requirements for

the degree of

MAGISTER TECHNOLOGIAE

In the subject

ELECTRICAL ENGINEERING

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF. ZENGHUI WANG

January 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/477912822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

DECLARATION

Name: DODI MOTEMBE

Student number: 50685740

Degree: MAGISTER TECHNOLOGIAE

The submission for examination title is shown below:

INVESTIGATION OF HIERARCHICAL DEEP NEURAL NETWORK STRUCTURE

FOR FACIAL EXPRESSION RECOGNITION

I declare that Investigation of hierarchical deep neural network structure is my own work and

that all the sources that I have used or quoted have been indicated and acknowledged by

means of complete references.

I further declare that I submitted the dissertation to originality checking software and that it

falls within the accepted requirements for originality.

I further declare that I have not previously submitted this work, or part of it, for examination

at Unisa for another qualification or at any other higher education institution.

 18 - 01- 2020

 SIGNATURE DATE

iii

ACKNOWLEGEMENTS

I would like to thank my wife Antoinette Motembe for her support and patience. Secondly, I

would like to express my gratitude to my children, Shamah Motembe, Angela Motembe and

Nissi Motembe as well as my younger sister Sandra Motembe for their love and support

during the accomplishment of this work. Lastly, I am grateful to my supervisor Professor

Wang for his support and patience during the phase of this work. I am humbled to have had

him as my supervisor during the period of this dissertation.

iv

ABSTRACT

Facial expression recognition (FER) is still a challenging concept, and machines struggle to

comprehend effectively the dynamic shifts in facial expressions of human emotions. The

existing systems, which have proven to be effective, consist of deeper network structures that

need powerful and expensive hardware. The deeper the network is, the longer the training and

the testing. Many systems use expensive GPUs to make the process faster. To remedy the

above challenges while maintaining the main goal of improving the accuracy rate of the

recognition, we create a generic hierarchical structure with variable settings. This generic

structure has a hierarchy of three convolutional blocks, two dropout blocks and one fully

connected block. From this generic structure we derived four different network structures to

be investigated according to their performances. From each network structure case, we again

derived six network structures in relation to the variable parameters. The variable parameters

under analysis are the size of the filters of the convolutional maps and the max-pooling as

well as the number of convolutional maps. In total, we have 24 network structures to

investigate, and six network structures per case. After simulations, the results achieved after

many repeated experiments showed in the group of case 1; case 1a emerged as the top

performer of that group, and case 2a, case 3c and case 4c outperformed others in their

respective groups. The comparison of the winners of the 4 groups indicates that case 2a is the

optimal structure with optimal parameters; case 2a network structure outperformed other

group winners. Considerations were done when choosing the best network structure,

considerations were; minimum accuracy, average accuracy and maximum accuracy after 15

times of repeated training and analysis of results. All 24 proposed network structures were

tested using two of the most used FER datasets, the CK+ and the JAFFE. After repeated

simulations the results demonstrate that our inexpensive optimal network architecture

achieved 98.11 % accuracy using the CK+ dataset. We also tested our optimal network

architecture with the JAFFE dataset, the experimental results show 84.38 % by using just a

standard CPU and easier procedures. We also compared the four group winners with other

existing FER models performances recorded recently in two studies. These FER models used

the same two datasets, the CK+ and the JAFFE. Three of our four group winners (case 1a,

case 2a and case 4c) recorded only 1.22 % less than the accuracy of the top performer model

when using the CK+ dataset, and two of our network structures, case 2a and case 3c came in

third, beating other models when using the JAFFE dataset.

Key terms - Facial Expression Recognition (FER); Deep Learning; Convolutional Neural

Network (CNN); Deep Convolutional Neural Network (DCNN); Artificial Intelligence;

Hierarchical Deep Neural Network Structure; Face Detection; Facial Feature Extraction;

Central Processing Unit (CPU); Graphics Processing Unit (GPU).

v

Table of Contents
DECLARATION ... ii

ACKNOWLEGEMENTS .. iii

ABSTRACT ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUD.. 1

1.2 PROBLEM STATEMENT .. 1

1.3 RESEARCH OBJECTIVES ... 2

1.4 DELIMITATIONS OF THE STUDY... 2

1.5 METHODOLOGY .. 3

1.6 FACIAL EXPRESSION RECOGNITION DATASETS ... 3

1.7 LAYOUT OF THE DISSERTATION .. 3

CHAPTER 2 LITERATURE REVIEW .. 5

2.1 FACIAL EXPRESSION RECOGNITION OVERALL PATH ... 5

2.1.1 FACE DETECTION .. 6

2.1.2 FACIAL FEATURE EXTRACTION ... 6

2.1.3 CLASSIFICATION ... 7

2.2 DEEP CONVOLUTIONAL NEURAL NETWORK ... 8

2.2.1 CNN STRUCTURE .. 8

2.3 FER BASED STRURCTURES ... 12

2.3.1 IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) CNN STRUCTURE

CONTESTANTS ... 12

2.3.2 EXISTING FER BASED STRURCTURES BESIDE THE ILSVRC CONTESTANTS 17

CHAPTER3 HIERARCHICAL DEEP NEURAL NETWORK STRUCTURE ... 19

3.1 MOTIVATION FOR HDNN STRUCTURE .. 19

3.2 HDNN STRUCTURES .. 19

3.2.1 GENERIC STRUCTURE ... 20

3.2.2 STRUCTURE CASE STUDIES ... 21

3.2.3 SUMMARY .. 27

CHAPTER 4 EXPERIMENTAL SET UP .. 29

4.1 INTRODUCTION ... 29

vi

4.2 EXTENDED COHN-KANADE AND JAPANESE FEMALE FACIAL EXPRESSION DATASETS 29

4.3 STRUCTURE DESIGN .. 31

4.4 TRAINING PROCESS ... 31

4.4.1 ACTIVATION FUNCTIONS ... 32

4.4.2 LEARNING RATE ... 32

4.4.3 BATCH SIZE ... 33

4.4.4 EPOCHS .. 33

4.4.5 GRADIENT DESCENT ... 33

4.4.6 MAX-POOLING ... 33

4.4.7 CONVOLUTIONAL FILTERS .. 33

4.4.8 NUMBER OF NEURONS IN THE FULLY CONNECTED BLOCK ... 34

4.5 ASSESSMENT ... 34

CHAPTER 5 SIMULATION RESULTS AND ANALYSIS ... 35

5.1 INTRODUCTION ... 35

5.2 INVESTIGATION OF THE RESULTS ... 35

5.3 SUMMARY ... 49

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ... 50

6.1 INTRODUCTION ... 50

6.2 CONCLUSIONS ... 50

6.3 FUTURE WORK .. 51

LIST OF PUBLICATIONS .. 52

REFERENCES .. 53

APPENDICES .. 57

Appendix A Python codes using FER dataset CK+ ... 57

Appendix B: Python codes using FER dataset JAFFE ... 63

vii

LIST OF TABLES

Table Page

3.1 Proposed structure case studies 21

3.2 Cases for structure 1 23

3.3 Cases for structure 2 24

3.4 Cases for structure 3 25

3.5 Cases for structure 4 27

5.1 Comparison between different cases of

 Architecture 1 with CK+ dataset (%) 36

5.2 Comparison between different cases of

 Architecture 2 with CK+ dataset (%) 37

5.3 Comparison between different cases of

 Architecture 3 with CK+ dataset (%) 38

5.4 Comparison between different cases of

 Architecture 4 with CK+ dataset (%) 38

5.5 Comparison between optimal structures of each

 architecture case with CK+ dataset (%) 39

5.6 Comparison between optimal structures of each

 architevture case with JAFFE dataset (%) 39

5.7 Comparison between optimal structures of each architecture case

 with existing architectures for FER with CK+ dataset (%) 47

5.8 Comparison between optimal structures of each architecture case

 with existing architectures for FER with JAFFE dataset (%) 48

5.9 Comparison between optimal structures of each architecture case

 with existing archtectures for FER with CK+ dataset (%) 48

viii

5.10 Comparison between optimal structures of each architecture case

 with existing architectures for FER with JAFFE dataset (%) 49

ix

LIST OF FIGURES

Figure Page

2.1 Facial expressions of human emotions 5

2.2 Overall path of FER process 6

2.3 An advanced general CNN structure 9

2.4 Input level 3D Size 10

2.5 LeNet architecture 13

2.6 AlexNet architecture 13

2.7 ZFNet architecture 14

2.8 GoogLeNet architecture 15

2.9 VGGNet architecture 16

2.10 ResNet architecture 17

3.1 Generic Structure 20

3.2 Case 1 Structure 22

3.3 Case 2 Structure 23

3.4 Case 3 Structure 24

3.5 Case 4 Structure 26

4.1 CK+ Dataset images’ examples 30

4.2 JAFFE Dataset images’ examples 30

5.1 Predictions results after classification in pictures 40

5.2 Training loss vs Validation loss on CK+ 41

5.3 Training accuracy vs Validation accuracy on CK+ 42

5.4 Optimal HDNN Structure training output confusion matrix on CK+ 43

5.5 Training loss vs Validation loss on JAFFE 44

5.6 Training accuracy vs Validation accuracy on JAFFE 45

x

5.7 Optimal HDNN Structure training output confusion matrix on JAFFE 46

xi

LIST OF ABBREVIATIONS

AAM Active Appearance Model

AI Artificial Intelligence

ANN Artificial Neural Network

ASM Active Shape Model

AU Action Unit

AUC Area under the ROC-curve

BDA Bayes Discriminant Analysis

CK+ The Extended Cohn-Kanade Database

CLBP Completed Local Binary Pattern

CLQP Completed Local Quantized Pattern

CMFD Component-based Multiple Feature Descriptor

CNN Convolutional Neural Network

CSFD Component-based Single Feature Descriptor

COPE Infant Classification of Pain Expressions Database

CPU Central Processing Unit

CRF Conditional Random Field

DBN Dynamic Bayesian Network

DCNN Deep Convolutional Neural Network

DisCSFD Discriminative Component-based Single Feature Descriptor

DisSFD Discriminative Sparse Feature Descriptor

DL Deep Learning

DLNN Deep Learning Neural Network

DNPE Discriminative Neighbor Preserving Embedding

DoM Difference of Magnitude

DoO Difference of Orientation

xii

DoS Difference of Sign

DRML Deep Region and Multi-label Learning

FACS Facial Action Coding System

FLs Facial Landmarks

FER Facial Expression Recognition

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

HCI Human-Computer Interaction

HDNN Hierarchical Deep Neural Network

HMMs Hidden Markov Models

HOG Histogram of Oriented Gradients

ICA Independent Component Analysis

ILSVRC ImageNet Large Scale Visual Recognition Challenge

KLT Kanade-Lucas-Tomasi

LBP Local Binary Pattern

LDA Linear Discriminant Analysis

LGBP Local Gabor Binary Pattern

LMMBP Local Monogenic Magnitude Binary Pattern

LMRBP Local Monogenic Real Binary Pattern

LMIBP Local Monogenic Imaginary Binary Pattern

LPP Local Preserving Projection

LPQ Local Phase Quantization

LQP Local Quantized Pattern

LRCN Long-term Recurrent Convolutional Network

LSTM Long Short-Term Memory

LTP Local Ternary Pattern

LUT Look-Up Table

xiii

LXP Local XOR operator

MCF Multi-Classifier Fusion

MKL Multiple Kernel Learning

MP McCulloch-Pitts

MVDNPE Multi-view Discriminative Neighbor Preserving Embedding.

NIR Near-Infrared

NMF Non-negative Matrix Factorization

NPE Neighbor Preserving Embedding

OD Occlusion Detection

PCA Principle Component Analysis

PQDC Phase-Quadrant Demodulation Coding

RBF Radial Basis Function

RNN Recurrent Neural Networks

SFD Sparse Feature Descriptor

SIFT Scale-Invariant Feature Transform

SRC Sparse Representation Classifier

STLMBP SpatioTemporal Local Monogenic Binary Pattern

STLMIBP SpatioTemporal Local Monogenic Imaginary Binary Pattern

STLMMBP SpatioTemporal Local Monogenic Magnitude Binary Pattern

STLMRBP SpatioTemporal Local Monogenic Real Binary Pattern

SVM Support Vector Machine

TOP Three Orthogonal Planes

VIS Visible light

VLPQ Volume Local Phase Quantization

WL Weight Learning

 1

CHAPTER 1 INTRODUCTION

1.1 BACKGROUD

The genesis of Artificial Neural Network (ANN) which is a McCulloch-Pitts (MP) structure,

and carries the two creators’ names, started more than seven decades ago. The MP structure

is an ensemble of neurons for the activation of brain functions. This structure was first

presented by McCulloch and Pitts in 1943. ANN concepts were derived from the MP

structure. After 41 years, another structure was designed, known as the Hopfield Neural

Network, bearing the name of its founder John Hopfield. This structure is a hybrid of storage

and memory arrangements to enable the activation of the memory, depending on the selection

of the mobilizer category chosen. The categories are continuous and discrete. During that era,

there were not many advanced researches, therefore the structure was not the subject of

attention as compare to what it could have attracted [1][2][3].

The real progress for deep learning structure originated in 1989 when the grasping of the

concepts of back-propagation algorithm became sound, even though this algorithm was

introduced three decades earlier. The application of back-propagation algorithm in the

network structure started the revolution of deep learning networks. This algorithm gives the

networks an automatic learning capacity of features and it distinguishes deep learning

networks from other intelligent systems [4][5][6]. This is the reason why Deep Learning

Neural Network (DLNN) is popular in the research world. DLNN is able to provide solutions

to many sectors (medical, education, military, economy, science and if not all spheres of our

lives) and in addition, DLNN provides alternatives to make our lives easier.

Facial Expression Recognition (FER) has been and is being used in several spheres of our

lives with huge benefits to society. In the security field, it has been extensively used and

recently, many researchers are exploring new avenues for further improvement. From

detecting diseases to being utilized for various needs in the medical sector and also for the

design of robotics, FER is having a massive impact in our lives and has many valuable

proficiencies to better the world[7][8][9][10][11].

There are seven main facial expressions to describe the human emotions [9][12][13][14][11].

These facial expressions are able to provides us with information about the state of emotions

that humans are in at that specific moment of observation. Therefore, to have technologies

which are capable of detecting each individual expression with accuracy is important. Facial

expression recognition studies are gaining momentum recently and many researchers are

trying to find solutions and share their expertise, so that quality and effective systems for

facial expression recognition can be designed and improved.

1.2 PROBLEM STATEMENT

Facial expression recognition contributes to various societal needs. In South Africa, crime is

on the rise and it has psychological impacts on the people. There is a need for a good

technology to assist police officers to detect suspect’s hidden intentions during interrogations.

The same technology is also needed in the psychiatry field to enable psychiatrists to diagnose

any existence of a mental illness in a patient. Attempts to recognize facial expressions in

 2

psychology have been done using conventional models in the past, but their accuracy was

poor and they did require many procedures. During the last decade, FER based structures

have been developed with acceptable accuracy results but the current accuracy can be

improved and there is another challenge caused by algorithms that have become deeper, the

process is slow due to the training and the testing of data which takes more time. Many

systems use expensive Graphics Processing Units (GPUs) to make the process faster. This

research aims to find an optimal network structure with optimal parameters by investigating

different deep network structures as well as various parameters for FER that can improve

accuracy. Secondly, this work emphasizes on the hardware cost by using a standard Central

Processing Unit (CPU) which is affordable, the optimal network structure with optimal

parameters is expected to give good accuracy using an affordable hardware and to be trained

and tested within expected computational time.

1.3 RESEARCH OBJECTIVES

The aim of this research is to investigate different network architectures with variable

parameters in order to find optimal network architecture with optimal parameters which can

improve accuracy. The existing architectures accuracy is not good enough and requires

expensive hardware to make training faster. We will use a standard CPU which is affordable

to find optimal network architecture in order to get good performance within an appropriate

computational time.

1.4 DELIMITATIONS OF THE STUDY

• Lack or not enough diversity in the database because of fewer images per expression.

• Not enough similarities with images in the real world in the dataset.

• The computational time for training will be according to the settings of less than 120

minutes.

• The purpose is to try to find an optimal architecture which can give better accuracy

using a standard laptop (a laptop with these minimum specifications: CPU Intel(R)

Core(TM) 2 with a clock speed of 2.40GHz and a RAM of 4 GB) according to the set

time. Currently, many existing FER models are using GPUs in order to increase the

speed of training time.

• Currently, there is a challenge with web searches, the returned images in certain cases

are not matching the keyword inserted.

 3

1.5 METHODOLOGY

• Literature review:

I did an extensive literature study on the different algorithms used for FER analysis. I

used two research databases (IEEE Xplore and Elsevier) to read as many as possible

publications on FER.

• Software:

I used the python language for the implementation of the research with the deep

learning frameworks (tensorflow & theano).

• Results:

The results from training and testing of the data during simulations were collected for

analysis.

• Analysis:

Analyzed and compared the obtained results with other models used on FER using the

same datasets to see if the accuracy of our proposed models has improved or has

achieved better results than other tested FER based methods.

• Final conclusion:

I concluded the final details according to the comparison and study of the results of

my proposed models and other tested FER models. Also, gave directions for future

work based on my research work.

1.6 FACIAL EXPRESSION RECOGNITION DATASETS

I implement my simulations by using two datasets described in [15]. These two datasets are

used by many researchers to test various algorithms related to facial expression recognition.

Therefore, they are suitable for evaluation against the latest technology. I perform my

investigation by testing my proposed HDNN structures on these datasets.

1.7 LAYOUT OF THE DISSERTATION

Chapter 1 Introduction:

Chapter 1 presents the current problems for deep learning neural networks structures,

objectives, delimitations of the study, methodology, facial expression recognition datasets

and layout of the dissertation.

 Chapter 2 Literature Review:

Chapter 2 studies facial expression recognition technique, from face detection to

classification. Secondly, the chapter investigates the deep learning neural networks and in

depth studies on convolutional neural network structures are accomplished. Finally, the

existing Convolutional Neural Network (CNN) models are analysed.

 4

 Chapter 3 Hierarchical Deep Neural Network Structure:

Chapter 3 details the different proposed HDNN structures for facial expressions recognition.

Additionally, the chapter presents the proposed HDNN structure case studies with variable

parameters. Finally, the chapter explores the details of the proposed HDNN structures

according to each case study based on the value settings.

Chapter 4 Experimental setup:

Chapter 4 explains the two FER datasets which will be used to test our proposed HDNN

structures, the structure design, the training process and how the assessment of our

investigation will be conducted.

Chapter 5 Simulation results and analysis:

Chapter 4 details the simulation outcomes and the analysis of all case studies of all the

different proposed HDNN structures. The chapter compares the performances of the proposed

HDNN structures. Finally, the chapter compares our optimal HDNN structure with the

existing FER models.

Chapter 6 Conclusion and future work:

Chapter 6 the advantages of our optimal HDNN structure with optimal parameters are

discussed and orientations are given for future studies.

 5

CHAPTER 2 LITERATURE REVIEW

This chapter explains in detail the facial expression recognition processes. Secondly, the deep

convolutional neural network is described. Key components of the CNN structure are

detailed. Lastly, the existing CNN structures are detailed and studied.

2.1 FACIAL EXPRESSION RECOGNITION OVERALL PATH

There are a number of facial expressions for a single person, just as there are different images

for the same person as shown in Figure 2.1.

The process of recognition of facial expressions follows a common pattern that is in the order

of:

• Face detection

• Facial feature extraction

• Classification

Figure 2.2 displays the overall pattern which FER process follows. We will elaborate each

part of the process individually in depth to grasp the concept.

Figure 2.1: Facial expressions of human emotions.

 6

2.1.1 FACE DETECTION

Face detection is the first part of the process and it is vital in order to achieve facial

expression recognition. Many techniques have been explored to attain face detection in the

past [16]. They are as follows;

• Face tracking technique: a specific algorithm that is mixed with a 3D technique to

detect images from a video source.

• Normalization technique: the two points on the eyes are selected as points 1 and 2;

the middle of the mouth is indicated as point 3. All these 3 points are the references of

the method. From point 1 to point 2, we have d (fixed distance) which is the first

condition of the technique. The second requirement is based on the face

measurements: the width and the height of the face are estimated at 2d and 3d

respectively.

• Surface feature analysis technique: it operates on the principle where light is used

to stimulate the surface and information can be retrieved for analysis. Faces are

displayed in triangular meshes.

• Hybrid Haar–like-feature and skin colour detection technique: it is based on

eliminating the false detections in the process.

• Registration technique: placement of the eyes is selected and the face is rotated to

match the eyes horizontally. The specific output image is finalised after a number of

operations.

• Cropping technique: it was applied on the CK database, this method involves the

cropping of images from the previous state and the resizing of the distance between

the eyes placements.

• Voila-Jones technique: the two authors came up with integral image which is a fast

technique for image operations and processing.

2.1.2 FACIAL FEATURE EXTRACTION

Facial feature extraction acquires the facial features that are distinctive and possess certain

stability. Different systems for facial feature extraction are utilized [17];

Face detection
Facial feature

extraction
Classification

Figure 2.2: Overall path of FER process.

 7

• Appearance features system: it uses an image filter to work on face data to retrieve

the modifications of facial exterior. Principal Component Analysis (PCA),

Independent Component Analysis (ICA) or Local Binary Pattern has achieved good

results.

• Geometric features system: consists of a creation of a feature vector that serves as

facial geometry and is an ensemble of points of angles, shape and distances.

• Hybrid appearance and geometric feature system: when the two techniques are

merged, good recognition performance has been achieved.

2.1.3 CLASSIFICATION

The final part of FER system is the stage of identifying the facial expression images and

classify them accordingly as “happy” or “angry”. The terms detailed below are methods of

the classification that is implemented for FER systems [18].

Directed line segment Haudorff distance (dLHD): dLHD is the divergence identified

between two lines sets and the difference in the output is measured.

Euclidean distance metric: the approximated distance is obtained after the matrix of

normalized and similarity counts.

Minimum Distance Classifier (MDC): the distance measurement is used for classification

and is the length from one vector to another.

KNN (k-Nearest Neighbours) algorithm: is a technique where prediction occurs during the

phase of training and the allocation of classes is done through the liaison amidst algorithms.

Support Vector Machine (SVM): consists of a formation of a line (hyperlane) that

dissociates images into classification.

 Radial Basis Function (RBF): the technique incorporates a value allocation to an input by a

function and the output is forever an absolute amount.

Hidden Markov Model (HMM): is based on a statistical model using observation of

sequences of internal details to classify facial expressions. HMM uses one state per class.

Hidden Conditional Random Fields (HCRF): is an extension of Conditional Random

Fields (CRFs) to tacle more complex data. HCRF uses few states per class.

Online Sequential Extreme Learning Machine (OSELM): consists of the first phase to

initialize data training and the second phase is sequential learning.

 ID3 Decision Tree: is based on set decisions to output efficient decisions for classification.

 Classification and Regression Tree (CART): is a method based on the length between

vectors.

 Learning Vector Quantization (LVQ): is made of two sheets. The first is competitive and

has neurons. The second sheet is the output sheets where the selected neuron is deposited.

 Multi-Layer Perception (MLP): each knob has a neuron in the 3 layers and utilizes the

activation function.

 8

 Multi-Layer Feed Forward Neural Network (NFFNN): it is exactly like the above

technique except that the back propagation is added to classify images that consist of weights

during the training phase for initialization and the prediction of the activation entities.

 Bayesian Neural Network: uses graphs with probability calculations for classification.

 Convolution Neural Network (CNN): uses neurons formed to classify with less pre-

processing. It has input, subsampling, pooling and output phases.

 Deep Neural Network (DNN): consist of many hidden layers, the neurons learn from the

data to classify images.

2.2 DEEP CONVOLUTIONAL NEURAL NETWORK

CNNs are simple Artificial Neural Networks (ANNs) in a shape of multilayer perceptron

(MLP). They have hidden layers which are referred to as convolutional layers. The

convolutional layers define a CNN hence the description. CNNs are structured with the

ability to grasp certain patterns of the data and to understand their meaning. That ability

makes CNNs well suited for image classification. CNNs can be used for other classifications

as well, for example, the language classification. The number of hidden layers is the only

aspect differentiating CNNs from Deep Convolutional Neural Networks (DCNNs); they are

both the same except DCNNs have many convolutional layers [19].

2.2.1 CNN STRUCTURE

CNNs change the input information from the input layer and proceed along the connected

layers until the last stage where they give classification results to the output layer. CNN

structure can be in various forms and there are different types of CNN structures. All CNN

structures share the same characteristics which are given in Figure 2.3.

 9

We can see from Figure 2.3 above there is a general pattern of three components: the first

component is the input layer which receives data. This input data has some settings. That is, it

must;

• have a size in the shape of width x height

• be in three dimensions

• have depth to illustrate the calorific avenues, for example RGB has three avenues

The second component is the feature-extraction layers which have an arrangement

characterised by a repetition model: convolution layer (CONV), rectified linear unit (ReLu),

activation function level and pooling level (Pool). The last component is the classification

layers where fully connected layers reside. It can be one or several layers. The fully

connected layers transform the features into classes and have distinctive elements:

• they are attached to all the neurons housed in the preceding level

• they give an output of the number of examples X the number of classes [b x N]

• output is a two dimensional

Figure 2.3: An advanced general CNN

structure

 10

2.2.1.1 Input layer

All unprocessed data images are deposited and housed in the input layers for network

operation. There is clarification regarding the image width and height as well as how many

channels will be used. Often, there are 3 routes that represent the RGB values for a particular

pixel. Figure 2.4 displays the input layer in 3 dimensions.

2.2.1.2 Feature-extraction layers

2.2.1.2.1 Convolutional layers

The central building blocks of a CNN structure are the convolutional layers. These layers

receive the input data and modify it by using a blot of linked neurons derived from the

preceding level. The outcome is similar but smaller with geometric configurations.

A convolution is a simple analytical application which details a rule for merging two data

items. It transforms an input by using convolution kernels and outputs a feature map.

Convolutional layers have some main constituents: Filters, Activation maps, Parameter

sharing and hyper parameters.

Filters: are part of the structure that has a width and a height. A filter is tiny and is applied

after the input volume. It is used in a sliding shape along the width and height of the input

volume. The output of a filter results in an activation.

Activation maps: are an output number when a neuron allows data to take route. The

mentioning of “activates” simply means the filter allows data to continue along the path from

the input volume to the output volume.

Figure 2.4: Input level 3D

Size

 11

Parameter sharing: it is important because it reduces the training time by using a small

number of elements to learn during training. CNNs use parameter sharing from invariance to

positioning.

Hyperparameters: are the main actors for producing the geometric shape and size that is an

output volume. These hyper parameters are: size of filters, output depth, stride and zero-

padding.

2.2.1.2.2 Pooling layers

They are often used in between convolutional layers that precede each other. The role of the

pooling layers is to scale down the dimensions of data. This reduction process is done

repeatedly along the network structure. Another function of the pooling layers is to manage

over-fitting which comes from the complexity of the model that has a reflection of nearly

closed data that will compromise the resulting predictions. The pooling layers do not depend

on other elements for their working.

2.2.1.3 Classifications

Fully connected layers are the constituents of this component. These layers are used to

numerically output the results for classification. The arrangement of the output is [1 x 1 x N],

N is indicating the classes’number. They possess the linked neurons including those from the

preceding level. The parameters of fully connected layers are weights and biases of the

network neurons.

To effectively grasp the concept of a network structure in order for the classification to occur,

the following elements need to be put in action [20]:

Score function: this element has the task of mapping the images from the input to scores for

classification.

Loss function: this element has the role of determining how close the result of the prediction

of the network structure is to the correct value.

Therefore, when building a network structure, it is important to use a connection between the

two functions detailed above in order to create a situation whereby the optimization will

diminish the loss function in relation to the specifications of the score function.

2.2.1.3.1 Linear classifiers

These classifiers consist of linear blends of predetermined nonlinear basis functions. Linear

classifiers seem to be easy to comprehend but in actual fact there is a challenge created by the

reality that the majority of data are nonlinearly detachable while these classifiers are linear

[20].

2.2.1.3.2 Nonlinear classifiers

The challenge described in 2.2.1.3.1 can be resolved by making use of architectures that can

understand nonlinear features. These architectures are neural networks which were conceived

 12

from the idea of neurons in a human brain and they use basis functions like the ones

mentioned in 2.2.1.3.1 whereby the ensemble of variables from the input to the ensemble of

the variables from the output result in these nonlinear functions which is managed by a vector

of modifiable constituents [20].

2.3 FER BASED STRURCTURES

2.3.1 IMAGENET LARGE SCALE VISUAL RECOGNITION CHALLENGE (ILSVRC) CNN

STRUCTURE CONTESTANTS

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual competition

where researchers come up with designed algorithms, with the aim of winning the

competition and proving that their proposed algorithm was the best and most effective in

image classification. The competition is based on a large spectrum of images considering that

these models classify 1000 images into their respective categories [21]. Therefore, the models

that contest in this challenge must be well built to handle the large database of images and be

able to classify the images into their relevant groups. The following are some of the leading

challengers on the ILSVRC competition [22].

1. LeNet-5

In 1998 Lecun et al designed a model structured with seven layers to classify numbers, and

these numbers in the database were black and white. When a network operates on grey

images, it does require powerful hardware for quality resolution detection and many

convolutional blocks in the network for correct classification. The above enumerated points

are some of the limitations of this network structure. This system was valuable to the banks in

verifying the legitimacy of clients in respect to their writing on their checks. Therefore,

refuting scammers who tried to copy clients writing.

 13

Figure 2.5: LeNet architecture [23].

2. AlexNet

 Alex Krizhvsky et al in 2012 conceived this network structure and it took the first position

that year in the ILSVRC competition by overwhelmingly beating other challengers. The

network achieved 10.7 % reduction of the top-5 error results. The noticeable difference

between this network and LeNet-5 is the application of additional filters per block in the

AlexNet structure which makes it deeper and required solid hardware for its operation. The

training becomes very slow as the network structure becomes deeper, hence the reason

AlexeNet used two Graphics Processing Units (GPUs) to boost the process speed and it took

close to one week of training for classification.

Figure 2.6: AlexNet architecture [24].

 14

3. ZFNet

The winner of ILSVRC competition in 2013 was ZFNet, they managed to achieve top-5 error

results, 0.5 % less than AlexNet. This network structure is like AlexNet, the only change

made was the permutations of hyperparameters to increase its efficiency.

Figure 2.7: ZFNet architecture [25].

 15

4. GoogLeNet

In 2014 Google’s team of researchers designed GoogLeNet, which got its concepts from the

network structure LeNet but incorporated many tiny convolutions hence the architecture

consists of 22 convolutional blocks. This robust algorithm achieved outstanding top-5 error

results which are nearly half the percentage of the top winner in the previous year. The results

were comparable to human capacity of image recognition. Another key factor in the

GoogLeNet design which enhanced its capacity is the use of parameters of the system

network. This network structure used only around 6.67 % of parameters quantity which was

used in AlexNet.

Figure 2.8: A simplified GoogLeNet architecture [26].

Long-term Recurrent

Convolutional Network (LRCN)

 16

5. VGGNet

The network structure was designed by Simonyan and Zisserman in 2014 and finished behind

GoogleNet in the ILSVRC 2014 competition. It is the most selected network model from the

successful ILSVRC competition models to date by many researchers. The following are some

of the reasons why the research world is in love with this architecture:

• It has a homogeneous structure of 3 by 3 convolutional layers that allows for easy

replication.

• It is available on many online platforms.

The structure differs from AlexNet by only applying more filters in the network and houses

16 convolutional blocks. The limitation of this architecture is the high number of parameters.

With over hundred million parameters, the structure requires more work for proper use. The

system is very deep and it needed 14 to 21 days of training while using 4 GPUs for image

classification during the competition.

Figure 2.9: VGGNet architecture [27].

6. ResNet

In 2015 Kaiming He et al proposed ResNet which finished top in the ILSVRC competition

and it managed to reach overwhelming top-5 error results, not only at around half the

percentage of what GoogLeNet performed but beating the human capacity so far in assessing

the relevant dataset in the competition. The technique is based on relying on the batch

normalization application and utilizing residual connections.

 17

Figure 2.10: A simplified ResNet architecture [28]

2.3.2 EXISTING FER BASED STRURCTURES BESIDE THE ILSVRC CONTESTANTS

2.3.2.1 TRADITIONAL FER BASED METHODS

There is a massive record of FER studies which used traditional systems. All these traditional

FER based systems share some similarities in their applications [29]:

• They capture the face area

• They retrieve geometric features

• They retrieve appearance features

• They extract from the facial object the combination of geometric and appearance

features

In [29] a traditional FER based method is presented that was based on the fifty two dots

located on the face. It was firstly applied to the geometric features according to the position

of the dots as well as their angles. Secondly, they applied subtraction using the parallel

position and angles from the first step of the video segment. All the face area is used to

retrieve the appearance features. Another traditional FER based technique was used that

emphasized only on certain sections of the face as the basis to apply extraction of the

appearance features. An application of global features was demonstrated in [29] where

several facial points and its distances in between were used as vectors for LBP, while the

classification of different facial emotions was accomplished by PCA. This traditional FER

based technique has its own limitations, such as; it fails the local variations reflections of the

 18

various parts of the face which are linked to the vector, hence the accuracy results are poor.

In [29] a FER based approach was proposed using videos, the approach consisted of

calculating the distances of x and y facial landmarks between the recent frame and the

precedent one as well as to retrieve the appearance features.

2.3.2.2 DEEP LEARNING FER BASED METHODS

In 2014, another FER deep based approach was proposed by Liu. It was used to recognise

emotions in videos. The model operated in sequences of video pieces to be taken as a group

of data references on Reimannian sets. To get the length of metrics, Reimannian kernels are

used in relation to the references. For classification, a fusion technique is utilized [30].

A deep Genetic Algorithm (GA) was proposed by Filipe et al. in 2016. This technique was a

key in deep learning neural networks for classification; its efficiency was based on the speed

of the process which facilitated the neural networks operation to output good performance.

The method was applied successfully in the Atari games [31].

A convolutional neural network (CNN) algorithm for FER was proposed in 2015 by Burkert.

The model had four convolutional layers besides the input and the classification layers. The

first convolutional layer is followed by two parallel feature-extraction convolutional layers

which are the main segments of the design to produce good performance [32].

In 2016, Zhao proposed a deep FER model using Deep Region Multi-Label Learning

(DRML). The method was built in a way that a CNN was incorporated directly to reach

Action Unit (AU) detection. The model had seven layers in between the input and output

layers preceded by two fully connected layers before classification. Convolutional layer 1 and

convolutional layer 3 are separated by a region layer and a pooling layer [33].

The feature maps deriving from CNN recognition processes combined with Facial Action

Coding System (FACS) and Action Units (AU) yielded good results in emotions recognition.

The model applied the collaboration of the above, the features capacity in classifying the

facial expressions was impressive [34].

A DCNN technique using multivariate ordinal variables was proposed by Walecki in 2017

and the method was efficient in solving AU intensity estimation [35].

 19

CHAPTER3 HIERARCHICAL DEEP NEURAL NETWORK STRUCTURE

This chapter explains the different proposed HDNN structures for facial expressions

recognition. The chapter explains the concepts of the generic structure which was the

foundation that we used to derive our 24 proposed HDNN structures. Additionally, the

chapter presents the HDNN structure case studies with variable parameters. All the proposed

case studies of the HDNN structures to be investigated are covered in this chapter.

3.1 MOTIVATION FOR HDNN STRUCTURE

This research aims to find an optimal HDNN structure with optimal settings for facial

expression recognition. This optimal HDNN structure has two goals. Firstly, to achieve high

accuracy compared to current FER based models and secondly, to use inexpensive hardware

such as a standard laptop to apply the optimal HDNN algorithm and achieve good

performance results within appropriate training time.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) structures detailed in

chapter 2 have achieved outstanding results but have drawbacks. They require expensive

hardware such as expensive computers with high-end processors which can operate complex

structures. Additionally, the training of these deeper structures will take time hence the need

to buy very expensive GPUs to alleviate the problem and improve the speed of the training

process. Even though, GPUs are used, the training of these deeper network structures is long,

sometimes days, or weeks to achieve image classification.

The existing FER based architectures have been progressing well in the research arena with

some fair results, but those results can be improved. There is a need to find a system which

can accurately recognize human facial expressions. The popularity of Artificial Intelligence

(AI) these days can attest to that. From the use of facial recognition to unlock smart phones,

to programmed robots, FER is still a problem for machines to comprehend effectively the

dynamic shifts in facial expressions in emotions of human beings.

To remedy the above limitations, different HDNN structures with variable settings are

proposed with the aim of investigating them to find the optimal structure with optimal

settings.

3.2 HDNN STRUCTURES

We will apply the different proposed HDNN structures and compare them to find the optimal

structure with optimal parameters. All the different HDNN structures will have fixed size

input and output classification of human emotions, the other parameters will be variables.

Included, the structures will be applying Relu as an activation function and Softmax for

classification.

 20

We will test our HDNN structures using Keras with Theano as back-end, of which are Python

libraries [36]. Each HDNN structure case will be trained using the dataset for 30 epochs as a

standard

3.2.1 GENERIC STRUCTURE

We made a general structure to enable us to make the permutations of the variables. The size

of filters of the convolutional maps are indicated by i x j, the size of filters of the pool are

indicated by k x l, m is the value number of maps, x is the value number of dropout and n is

the number of neurons. The generic structure is displayed in figure 2. Besides the variables,

this generic structure inspired us to derive three different network structures which make the

total of four network structures including the generic structure to be investigated in this

research study. Table 3.1 illustrates the four case studies and Figure 3.1 shows the generic

structure which was used to derive the other network structures.

Figure 3.1: Generic Structure.

 21

3.2.2 STRUCTURE CASE STUDIES

Table 3.1 shows the case studies that we will be investigated in order to find the optimal

structure with optimal parameters. The description of each case study is explained below for

suitable understanding of the concept behind the construction of each network structure. The

four proposed case studies are the foundations where we will derive other case studies

depending on the variable parameters defined below as part of the scope of this research

study.

Table 3.1: Proposed structure case studies.

The following criteria are used to choose the cases which will be studied:

Computational time: < 120 minutes

1 ≤ 𝑖𝑎 , 𝑗𝑎 ≤ 8

1 ≤ 𝑘𝑎 , 𝑙𝑎 ≤ 3

0 < 𝑥1 < 0.3

𝑛1 ≤ 150

0 < 𝑥2 < 0.6

In case study 1, the structure is very simple and consists of one convolutional block noted as

B1 and one fully connected block indicated as FC1. We also apply the drop out technique

after the fully connected layer using D2 which was set at 0.5 in order to address the over-

fitting challenge that might arise in the course of the training.

 22

In case study 2, the concept was to add another convolutional block B2 to the structure in

case study 1, without changing the previous network structure. This means the fully

connected block and the application of dropout D2 remained unchanged except that the

structure has two convolutional blocks.

In case study 3, the network structure becomes deeper with three convolutional blocks and

one fully connected block. We had made some alterations, instead of using D2 which was set

at 0.5 in the structure after the fully connected layer, we removed D2 completely from the

structure and introduced D1 after the convolutional block B3 and had set it at 0.25 to take

care of over-fitting in the training stage.

In case study 4, this network structure is similar to the one in case study 3, with only the

inception of D2 in the structure which makes it different to the previous network structure.

Therefore, the structure has two dropouts D1 and D2 set at 0.25 and 0.5 respectively. The rest

remained unchanged, three convolutional blocks and one fully connected block.

STRUCTURE CASE 1

From this design, we derived six network structures which are shown in Table 3.2. The first

three structures have common size filters for max-pooling set at 2 by 2; their difference is

only based on their size of the filters for the convolutional maps. In case 1a, we applied 3 by

3 convolutional maps. We then modified our design in case 1b by using 4 by 4 convolutional

maps. In case 1c, we set our convolutional maps at 5 by 5. Finally, the last three network

structures have similar size of filters for max-pooling but it is modified and set at 2 by 1.

Again, the same concept is repeated with case 1d using 3 by 3 convolutional maps, while case

1e and case 1f have their convolutional maps set at 4 by 4 and 5 by 5 respectively.

We will continue to use the same approach in the rest of the proposed case study structures.

From structure 2 designs, we will have another six network structures by applying the same

logic which will provides us with six network structures. In the structure 3 designs, with the

same logic we will have another six network structures. Our last structure, structure 4

Figure 3.2: Case 1 Structure.

 23

designs, will produce six network structures. In total, we will have 24 network structures with

variable parameters to conduct our investigation.

Table 3.2: Cases for structure 1

CASE1a: CASE1b: CASE1c:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5

CASE 1d: CASE 1e CASE 1f:

𝒊𝟏= 𝒋𝟏= 3 𝒊𝟏= 𝒋𝟏= 4 𝒊𝟏= 𝒋𝟏= 5

𝒌𝟏=2 𝒌𝟏=2 𝒌𝟏=2

 𝒍𝟏=1 𝒍𝟏=1 𝒍𝟏=1

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5

STRUCTURE CASE 2

 Figure 3.3: Case 2 Structure.

 24

We applied the same logic as in the case study 1 and derived six network structures which are

detailed in Table 3.3 by changing the values of the size of filters for max-pooling and

convolutional maps.

Table 3.3: Cases for structure 2

CASE2a: CASE: CASE2c:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏= 4 𝒊𝟏= 𝒋𝟏=5

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2

𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5

CASE2d: CASE2e: CASE2f:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏= 4 𝒊𝟏= 𝒋𝟏= 5

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=

𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2

𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5

3. STRUCTURE CASE 3

 Figure 3.4: Case 3 Structure.

 25

This structure also gives birth to six network structures by using the variables to be

investigated. They are detailed in Table 3.4.

Table 3.4: Cases for structure 3

CASE3a: CASE3b: CASE3c:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2

𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2

𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25

CASE3d CASE3e: CASE3f:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5

𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2

𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐=1

𝒌𝟑=2 𝒌𝟑=2 𝒌𝟑=2

𝒍𝟑=1 𝒍𝟑=1 𝒍𝟑=1

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25

 26

4. STRUCTURE CASE 4

.

Six network structures are derived from the above structure concept by modifying the

parameter variables, which are shown in Table 3.5. As explained in the case study 1, the same

concept is applied regarding the size of filters for max-pooling and convolutional maps. The

difference between the cases is based on the values set for size of filters, but the dropouts

values remained unchanged and are set at 0.25 and 0.5 for D1 and D2.

Figure 3.5: Case 4 Structure.

 27

 Table 3.5: Cases for structure 4

CASE4a: CASE4b: CASE4c:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5

𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2 𝒌𝟏=𝒍𝟏=2

𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2 𝒌𝟐=𝒍𝟐=2

𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2 𝒌𝟑=𝒍𝟑=2

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5

CASE4d: CASE4e: CASE4f:

𝒊𝟏= 𝒋𝟏=3 𝒊𝟏= 𝒋𝟏=4 𝒊𝟏= 𝒋𝟏=5

𝒊𝟐= 𝒋𝟐=3 𝒊𝟐= 𝒋𝟐=4 𝒊𝟐= 𝒋𝟐=5

𝒊𝟑= 𝒋𝟑=3 𝒊𝟑= 𝒋𝟑=4 𝒊𝟑= 𝒋𝟑=5

𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2 𝒌𝟏=𝒌𝟐=2

𝒍𝟏=𝒍𝟐=1 𝒍𝟏=𝒍𝟐= 𝒍𝟏=𝒍𝟐=1

𝒌𝟑=2 𝒌𝟑=2 𝒌𝟑=2

𝒍𝟑=1 𝒍𝟑=1 𝒍𝟑=1

𝒎𝟏=6 𝒎𝟏=6 𝒎𝟏=6

𝒎𝟐=16 𝒎𝟐=16 𝒎𝟐=16

𝒎𝟑=120 𝒎𝟑=120 𝒎𝟑=120

𝒏𝟏=84 𝒏𝟏=84 𝒏𝟏=84

𝒙𝟏=0.25 𝒙𝟏=0.25 𝒙𝟏=0.25

𝒙𝟐=0.5 𝒙𝟐=0.5 𝒙𝟐=0.5

3.2.3 SUMMARY

This chapter focused on the various proposed HDNN structures with variable parameters.

There are 4 HDNN structures and each of these structures has six case studies that are

investigated. In all the case studies, the size input is fixed at 128 x 128 and the output results

classify seven human emotions. The number of maps for each convolution 𝑚1 , 𝑚2 and 𝑚3

is also fixed in all case studies and the number of neurons is not varied but set at 84 neural.

The rest of the parameters are variables because we had to change the size of the filters of

max-poling and the convolutional maps in order to have various case studies structures in

order to conduct our investigation. The first three structures have a common size of filters for

max-pooling set at 2 by 2; their difference is only based on their size of filters for the

convolutional maps. In case a, we applied 3 by 3 convolutional maps. We then modified our

design in case b by using 4 by 4 convolutional maps. In case c, we set our convolutional maps

at 5 by 5. Finally, the last three network structures have similar sizes of filters for max-

 28

pooling but it is modified and set at 2 by 1. Again, the same concept is repeated with case d

by using 3 by 3 convolutional maps while case e and case f have their convolutional maps set

at 4 by 4 and 5 by 5 respectively. In total, we have 24 HDNN structures to be analyzed in

order to test each case studies performance with the goal of finding the optimal HDNN

structure with optimal parameters.

 29

CHAPTER 4 EXPERIMENTAL SET UP

This chapter details the two FER datasets used in research. The chapter also elaborates the

structure design. It is then followed by detailing the training process which is subdivided in

eight points.

4.1 INTRODUCTION

In preparation for this research study, some decisions were made in order to accomplish this

project. The experiments needed to be performed so that we could conduct our investigation

of network structures. The first decision was about which datasets to use so that we could test

our 24 proposed network structures. We chose the databases which are publicly available

with simple procedures to access them. Secondly, the decision about which programming

language to use for our code was also based on the accessibility; we had chosen Python

which is available on the internet without requiring any licence for the purchase. Initially

considered Matlab but it requires a purchasing licence. Python was used as our final choice.

In addition, Python has many libraries which are accessible on the internet.

4.2 EXTENDED COHN-KANADE AND JAPANESE FEMALE FACIAL EXPRESSION

DATASETS

We have a number of existing FER datasets in the research arena with good image data but

many of these superb datasets demand registration before being granted access to use their

services. Some require simple procedures, used FER datasets and their images are well

categorised.

The first dataset which we used is the CK+. It is composed of a branded emotion number for

human expression faces. There were over 100 participants and close to 600 pictures, with

around half of those related to the seven human emotions which are: Anger, Disgust, Fear,

Happy, Neutral, Sad and Surprise [15].

 30

Figure 4.1: CK+ Dataset images’ examples [37].

JAFFE dataset detailed in [15] is also used to validate the generalization of architecture.

 Figure 4.2: JAFFE Dataset images’ examples [38].

 31

4.3 STRUCTURE DESIGN

The components we utilized to train our proposed network structures. Firstly, we simply used

a standard laptop as reducing financial costs of hardware was one of the objectives of this

research, we wanted a cheap system but effective in delivering good performance. Our device

had a CPU Intel(R) Core(TM) 2 with a clock speed of 2.40GHz and a RAM of 4 GB. We did

not want to use expensive GPUs but wanted to achieve comparable results with models using

GPUs. Secondly, the choice of the programming language to use was decided based on the

fact that python language is free to access without requiring any licencing to purchase it. The

following are the python libraries that were used [36][39]:

• Numpy is a python platform which allows many scientific operations to be executed

through its several utilities [36].

• Theano: makes it possible for the incorporation of Numpy which facilitates the

execution of the codings using Numpy functions. Theano offers more features than

Numpy; the latter cannot offer other features which Theano can only deliver. It is a

Python library that facilitates to “define, optimize, and evaluate mathematical

expressions involving multi-dimensional arrays efficiently” [39]. Theano is a python

package that gives us tools to operate and handle multi-dimensional ranges at the

same time it still maintains the performance. Being part of python enables Theano to

successfully deliver a platform to process faster mathematical operations. A key

feature of theano is the stability that it offers and capitalises optimization that makes it

useful for challenging operations. Theano is utilized in high level technical studies. A

debugging feature is another key element that makes Theano as one of the best choice

for researchers [36].

• OpenCV: can work with many programming languages and is an open source

software with thousands of optimized and AI models. These models make it possible

to implement image classification and other functions [40].

• Keras: was designed to work with Theano or TensorFlow and is an application

programming interface (API) for neural networks. It has the capacity for faster

operations and gives the possibility to make changes when needed. This API is user

friendly and allows the user to operate functions to enhance the network. Elements

can be put together to build a neural network structure. The structure can be

investigated while bypassing small details. It is compatible with many operating

systems [36].

We used Anaconda which is a Python distribution and it is not difficult to operate and is

accessible on the internet with simple installation procedures. It has hundreds of packages for

computations and is a python distribution [41].

4.4 TRAINING PROCESS

For appropriate training to take place, hyper parameter settings are needed. These

prerequisites allow a model to perform better. The programmer needs to perform settings

allocation to these parameters in order to achieve desirable results. The following are the

 32

parameters to be set: activation functions, learning rate, batch size, epochs, gradient descent,

max-pooling, convolutional filters and number of neurons.

4.4.1 ACTIVATION FUNCTIONS

This hyper parameter is in charge of neurons spreading and is a key element when a network

structure has many levels. When the activation function is initialized, the following occurs

[42]:

Exploding gradient: this issue occurs during back propagation of the network. This network

instability arises when there is a large error gradient.

Vanishing gradient: this issue occurs when the gradient tends to zero and the training of the

model becomes very difficult.

The two most used activation functions are the ReLu and the Softmax, the first helps to

remedy the above challenges and has a goal of presenting non-linearities to the structure

while the latter is applied at the end of the structure for classification, this function can be

illustrated as an input vector of totals which gives an output vector of a probability.

The following are other types of activation functions [42]:

• Sigmoid: consists of placing the input value in an array of zero to one. The sigmoid

activation function converted to zero for big numbers which are negative and

converted to one for big numbers which are positive.

• Tanh: consists of placing the input value in an array of negative one to positive one.

One point to mention is that the gradient is stronger for tanh than sigmoid.

• Maxout: this activation function is mostly used in the following cases; firstly, it is

when the dropout technique is applied in a network structure to improve the training

process. Secondly, it is for complex network structures which are very deep and

should give the ReLu activation function problems. Thirdly, it is used where all the

parameters in a network structure would make use of the dropout so that the

improvement of the training process can take place. Lastly, it is used where the ReLu

activation function would expose its limitations, the Maxout activation function

would take over and still provide all the advantages of ReLu activation function.

4.4.2 LEARNING RATE

When the training process is under way, the model weights are regularly updated. It can

affect the estimated error, in order to have control over this process, we have a valuable hyper

parameter which is the learning rate, it manages how the model can transform in reaction to

the estimated error whenever there is occurrence of any weights update. Big learning rate can

destabilise the training process while the lesser learning rate can effect the training resulting

in a failure. Therefore, choosing the correct learning rate value is fundamental in order to

have a successful training with better performance [43]. In this research, we will use

callbacks. Keras supports learning rate schedules via callbacks. We will use the keras feature

to adjust the learning rate accordingly by specifying the metric to monitor during the training

via the “monitor” argument and the validation loss that will be monitored.

 33

4.4.3 BATCH SIZE

Model parameters are updated internally during the training process. The hyper parameter

which specifies the number of samples to operate with prior to the above update occurrence is

called batch size. Batch size gives predictions as outcome at the end of a cycle. Therefore,

selecting a proper batch size value can improve your training performance with better results

[44]. In this research, we will set our batch size to 7; this number was proven to be effective

in performance with our selected FER database. For other database, for example a larger

database can have a batch size set to a big number. Batch size setting depends on the number

of images of the database.

4.4.4 EPOCHS

The number of times that certain architectures need to train in order to learn from the dataset

is always set at certain value during the training process and the hyper parameter in charge of

that task is called the number of epochs. This value can range from ten to thousands

depending on the user’s choice, and bigger numbers give good performance. In this study,

we will use 30 as the number of epochs because the current existing models also applied the

same. Therefore, we will limit ourselves to that number to be fair and to accurately compare

the results of our network structures to other FER existing deep learning models [44].

4.4.5 GRADIENT DESCENT

Gradient descent is assigned the duty of finding the values that can reduce the cost function.

These parameter’s values are noted as coefficients of a certain function indicated as f. This

optimization algorithm is very important for a successful training. In this research, we will be

using Adam as our optimization algorithm [45].

4.4.6 MAX-POOLING

Down-sampling an input data is the purpose of this hyper parameter. By making the

dimensions of the data smaller, it enables correct analysis of the features. Therefore, the

resulted data representation form does assist in alleviating the over-fitting. It is a cost

effective hyper parameter that lessens the number of parameters during the learning process

hence the computational costs also decrease as a result of applying this hyper parameter. The

size of filters for max-pooling has a huge impact in the performance and they are described in

the form of k x l [46].

4.4.7 CONVOLUTIONAL FILTERS

4.4.7.1 SIZE

They are in the form of i x j, choosing the correct size of filters for the convolutional layers is

essential to get better results. These hyper parameters carry out convolutions over an input

size data which results in an activation map. The settings depend on the programmer and the

need to achieve good results [20].

 34

4.4.7.2 NUMBER

This is the amount of activation maps representing the number of convolutional filters. Each

convolutional filter is applied in order to create a feature map according to the input. We

described this number in our research as m [47].

4.4.8 NUMBER OF NEURONS IN THE FULLY CONNECTED BLOCK

It is indicated in our research as n, it is up to the programmer to select any number from one

up to ten thousand. Any number will work because the task of this hyper parameter is to

replace the following layer’s weights mode [47].

4.5 ASSESSMENT

This stage stresses on investigating thoroughly the simulation results and comparing them to

the current existing FER deep learning models. We selected the existing FER deep learning

models which used the same two FER datasets detailed above, and managed to achieve top

accuracy most recently.

The following apparatus are utilized in this study to give us the ability to reach the intention

of this work:

• Tables

• Figures

• Plots

From analysing the above apparatuses, we were able to give conclusions about our

investigation in this research.

 35

CHAPTER 5 SIMULATION RESULTS AND ANALYSIS

This chapter details the research results of our study. The chapter also gives the summary of

our observations regarding the investigation.

5.1 INTRODUCTION

The simulation results regarding the investigation of the case studies conceived in chapter 3

and the derived 24 different proposed HDNN structures are recorded and analysed. The

comparison of performances of all of the 24 different structures with variable parameters is

also covered per case study, and also the top performers are compared with other existing

models.

We use the databases described in [15]. These databases are the most used in the research

arena of facial expressions recognition.

The implementation is done using a standard CPU with windows OS, Intel(R) Core(TM) 2

with a clock speed of 2.40GHz, RAM of 4 GB. We test our proposed network structures

using Keras with Theano as backend which are Python libraries. Each network architecture

case was trained using the dataset for 30 epochs as a standard.

5.2 INVESTIGATION OF THE RESULTS

The tests on the CK+ Dataset: Table 5.1 to Table 5.4 shows the comparison results of our

proposed network architectures. We compare the simulation results for all 24 HDNN network

structures separated in four groups with each group having six case studies.

Table 5.1 details the accuracy results for the six case studies of architecture 1. For the sake of

proper accuracy evaluation, we recorded the minimum, average and maximum accuracy

results because the accuracy results were not stable. When conducting the simulations, the

accuracy kept on changing which means two consecutive simulations could give two

different accuracy results for the same network structure.

Therefore, we recorded our simulations in a statistical form. Observing Table 7, we noticed

that case 1a performed better than all other cases with 87.50 % accuracy and case 1c came

second with the accuracy of 87.46 % based on the average accuracy results. When

considering the maximum accuracy results, case 1a recorded 98.11 % accuracy while case 1c

managed 96.23 % accuracy. We noted that the two case studies gave good performance even

though case 1a finished as winner of the group. The following are observations of the overall

performance of the group:

The difference can be noticed that the first three case studies, case 1a, case 1b and case 1c

achieved better performance than the last three case studies, case 1d, case 1e and case 1f. The

first three case studies used the max-pooling of 2 by 2 and the last three case studies used the

max-pooling of 2 by 1. Max-pooling of 2 by 2 improved the performance of the first three

 36

network structures; they all achieved the average accuracy of above 85 % considering the

stability of the accuracy results rather than the maximum accuracy results which can be

misleading in other scenarios. Not only that the max-pooling of 2 by 1 cases achieved less

than 85 % accuracy, they also took longer time of training than the other cases. For each

network structure case study, the 2 by 1 max-pooling will take around three times the amount

of training time than that of the 2 x 2 max-pooling. For future research, max-pooling needs to

be taken in pairs for good performance, for example 1 by 1, 2 by 2, 3 by 3 instead of 1 by 2, 2

by 1, 3 by 1, but we need to clarify that the training time was the main point in our research.

One of the objectives of this study was to acquire good results in an appropriate time using a

standard laptop. Therefore, training time of many hours is out of scope for this research. So

future research where the amount of training time is not a problem, max-pooling of different

numbers like 1 by 2, 2 by 1, 2 by 3, 3 by 2, 3 by 1, 1 by 3 needs to be researched and there is

a possibility they might yield good accuracy results.

Another observation, when considering the first three cases or the last three cases with max-

pooling not a factor analysis but with emphasis on the size of filters for the convolutional

maps, we noted that the 3 by 3 and 5 by 5 were performing better than 4 by 4. The first two

has less difference in terms of the performance between them but the 5 by 5 took a longer

time to train than the 3 by 3. For future research, any of these two would be a good option for

any network structure in order to achieve better performance. Other future research could also

consider 6 by 6, 7 by 7, 8 by 8 or 9 by 9 if the amount of training time is not a major issue.

We noted case 1c with 5 by 5 convolutional maps had the best minimum accuracy result at

83.54 % which shows that there is a potential for improvement of the accuracy for a bigger

number like 6 by 6 or 7 by 7 if more time of training is allocated for further analysis in the

future. The 4 x4 case were behind when max-pooling of 2 by 2 was used but did outperform

other cases in the category of 2 by 1 max-pooling. Case 1e did better than case 1d and case 1f

which opens door for future research directions especially when training time has no

restrictions.

Table 5.1: Comparison between different cases of Architecture 1 with CK+ dataset (%)

Architecture
Minimum

accuracy

Average

accuracy

Maximum

accuracy

a 81.12 87.50 98.11

b 81.12 85.31 90.57

c 83.54 87.46 96.23

d 72.64 77.36 86.79

e 72.64 83.27 97.17

f 72.64 82.70 96.23

Table 5.2 shows the simulations results of architecture 2, which is an increase of one

convolutional block in the structure of architecture 1. This change in the design brought

improvement in accuracy as we noticed case 2a which ultimately became our found optimal

HDNN network structure with optimal parameters. Case 2a managed to achieve stability in

accuracy; we tested this 15 times and achieved the same accuracy results of 98.11 %. The

 37

results also confirm our observations in architecture 1 that max-pooling of 2 x 2 was the

better option and that 3 x 3 or 5 x 5 size of filters for convolutional maps was also a good

choice because case 2a which has 3 x 3 convolutional maps came top of the group with the

average accuracy of 98.11 % and case 2c came second with the average accuracy of 86.70 %.

The addition of the convolutional block made a huge impact because the 3 x 3 which is case

2a achieved 11.41 % higher average accuracy than the 5 x 5 case 2c. Definitely, case 2a was

our best performing HDNN network structure and gave stability of accuracy results. Again

like in architecture 1, the same observation repeated itself in architecture 2 whereby case 2e

which is a 4 x 4 size filters did perform better than the other cases in the max-pooling of 2 x 1

category recording 81.13 % average accuracy. Hence it confirms our observation that if the

amount of training is not restricted case 2e has a potential of improving the accuracy when 2

x 1 max-pooling is applied in the network structure.

Table 5.2: Comparison between different cases of Architecture 2 with CK+ dataset (%)

Architecture Minimum accuracy Average accuracy Maximum accuracy

a 98.11 98.11 98.11

b 72.64 82.70 91.50

c 81.13 86.96 94.34

d 72.64 80.19 95.28

e 72.64 81.13 98.11

f 72.64 80.81 97.17

Table 5.3 shows the accuracy records for architecture 3 which is different from the previous

two architectures in the design construction. This architecture consists of three convolutional

blocks instead of one, and two in the previous architectures and also we removed the dropout

D2 which was all along set at 0.5 in the previous network structures after the fully connected

layer, we removed D2 completely from the structure and introduced D1 after the

convolutional block B3 and set it at 0.25 to take care of over-fitting in the training stage. We

noted that case 3c emerged the winner with average accuracy of 89.94 % and followed by

case 3a with average accuracy of 82.64 % which also confirms repeatedly our observations

that 3 x 3 or 5 x 5 size of filters for convolutional maps is the best option in a network

structure for accuracy improvement and especially when the same numbers of max-pooling

like 2 x 2 is applied. Our second observation did not materialize in this group as case 3e

which is a 4 x 4 size of filters came second in the 2 x 1 max-pooling category. We can

therefore assume that with many convolutional blocks in the hierarchy of architecture, the

network structure becomes tricky in the 2 x 1 max-pooling categories. Case 3f emerged the

winner in the category of 2 x 1 max-pooling with 80.81 % and also came top of all other

cases in the group when considering only the maximum accuracy with accuracy of 97.17 %.

This was also the first time when the winner of the group did not also top the group in the

maximum accuracy category and was only selected as winner of the group based on the

average accuracy results because stability was our key factor when evaluating the

performances of our proposed network structures.

 38

Table 5.3: Comparison between different cases of Architecture 3 with CK+ dataset (%)

Architecture
Minimum

accuracy

Average

accuracy

Maximum

accuracy

a 72.64 82.64 90.40

b 72.64 80.61 91.51

c 72.64 89.94 96.23

d 72.64 75.26 80.75

e 72.64 78.16 89.20

f 72.64 80.81 97.17

Table 5.4 shows the simulations accuracy results for architecture 4. This architecture is

similar to architecture 3 except that the dropout D2 is applied in the architecture after the

fully connected layer. Therefore, this architecture posseses two dropouts D1 and D2 set at

0.25 and 0.5 respectively. Our first observation still confirms that 3 x 3 or 5 x 5 is the best

choice as case 4a emerged victorious with a higher average accuracy of 91.18 % and case 4c

came second with average accuracy of 86.70 %. We also noted that with many convolutional

blocks in a network structure the training time was longer but still in the scope of our

research and again as in the architecture 3 our second observation did not match the two

previous architectures results as case 4e came second and case 4d emerged the winner in the

max-pooling of 2 x 1 category. Our assumptions remained the same as in architecture 3, the

deeper the network structure becomes the tricky the accuracy results in the 2 x 1 or less

numbers of max-pooling categories. Also the training time becomes very slow in these

categories.

Table 5.4: Comparison between different cases of Architecture 4 with CK+ dataset (%)

Architecture
Minimum

accuracy

Average

accuracy

Maximum

accuracy

a 72.64 86.70 96.23

b 83.02 86.16 94.34

c 84.91 91.18 98.11

d 72.64 83.02 98.11

e 72.64 80.00 94.40

f 72.64 79.24 92.45

To attain our research goal, we repeated the training and testing of the four winners of the

four groups to find the network structure with better accuracy and to ensure the results were

reliable; therefore we tested six times for each top of the group architecture case. After

comparison, CASE 2a emerged as the optimal network architecture with optimal parameters.

Table 5.5 shows the comparison accuracy results of the four winners of the four groups. We

noted that case 2a performance was good with 98.11 % average accuracy and had consistency

 39

on CK+ dataset and case 4c came second with 91.18 % average accuracy. We also confirm

our observations of 3 x 3 or 5 x 5 size filters for convolutional maps as the best option

because all the four winners belong in these categories. Two winners belong to 3 x 3

categories including our found optimal HDNN structure and the other two winners belong to

5 x 5 categories.

Table 5.5: Comparison between optimal structures of each architecture case with CK+ dataset

(%)

Architecture
Minimum

accuracy

Average

accuracy

Maximum

accuracy

CASE 1a 81.12 87.50 98.11

CASE 2a

CASE 3c

98.11

72.64

98.11

89.94

98.11

96.23

CASE 4c 84.91 91.18 98.11

 Experiments on the JAFFE Database: We also found optimal HDNN structure for 15 times

on the JAFFE database; Table 5.6 displays the results which show minimum accuracy of

68.75 %, average accuracy of 76.56 % and maximum accuracy of 84.38 % for case 2a which

is our optimal HDNN structure while case 3c came second with average accuracy of 72.00 %

and maximum accuracy of 81.25 %. Case 1a performed poorly in the JAFFE dataset which

was an exception and we assumed that because it is a one convolutional block and the JAFFE

dataset contains fewer images than the CK+ dataset might contribute to the poor performance

as we noted the training time was quicker than the other cases.

Table 5.6: Comparison between optimal structures of each architecture case with JAFFE

dataset (%)

Architecture
Minimum

accuracy

Average

accuracy

Maximum

accuracy

CASE 1a 15.62 35.94 59.38

CASE 2a

CASE 3c

68.75

62.50

76.56

72.00

84.38

81.25

CASE 4c 62.50 68.75 71.88

Figure 5.1 shows the prediction results after the simulations have completed the training of

the algorithm. It can be observed that the sad emotion and the disgust emotion confused each

other in two instances while the rest of emotions predictions are correct.

 40

Figure 5.2 shows the simulation results for our found optimal HDNN structure (case 2a)

using the CK+ dataset in relation to the training loss in comparison to the validation loss in a

graphical form. It can be observed that the two graphs of validation loss and training loss are

converging and there is less difference between the two graphs which shows that our

application of the dropout technique carried out its role properly as there is a perfect fitting

outcome after training round of 30 epochs. It can also be observed that the validation loss is

minimal than the training loss, it is because of the 50% dropout we applied in case 2a which

gave the resulting outcome because the system was stronger at the validation time.

Figure 5.1: Predictions results after classification in pictures.

 41

Figure 5.3 below displays a graphical form of the accuracy results of case 2a which is our

found optimal HDNN structure. It can be noticed that the network structure managed to

achieve 98.11 % validation accuracy after 30 epochs of training using the CK+ dataset. With

careful observation, the validation accuracy is a little bit greater than the training accuracy. It

is due to the fact that we used a dropout of 50% in case 2a network structure. The system

performed stronger at validation time which gives the outcome of higher validation accuracy.

Figure 5.2: Training loss vs Validation loss on CK+.

Y-axis

 x-axis

 42

When we observe the confusion matrix using the CK+ dataset in Figure 5.4 the surprise

emotion and the sad emotion predictions obtained better results with greater accuracy. The

neutral emotion and the happy emotion predictions were also acceptable but the angry

emotion and the disgust emotion predictions were poor. The network structure did achieve

improved validation accuracy with CK+.

Figure 5.3: Training accuracy vs Validation accuracy on CK+.

Y-axis

x-axis

 43

Figure 5.4: Optimal HDNN Structure training output confusion matrix on CK+.

Angry – 0, Disgust – 1, Fear – 2, Happy – 3, Neutral – 4, Sad – 5 and Surprise - 6

We can notice in Figure 5.5 when testing our optimal HDNN structure which is case 2a with

the JAFFE dataset that the validation loss is a little larger than the training loss even though

we applied the dropout, and the outcome results are the opposite to the ones we had when

using the CK+ dataset. These are the effects of fewer dataset because the JAFFE dataset has

fewer images than the CK+ dataset because we observed that the training time of JAFFE

dataset was quicker which could not allow the dropout to gain momentum at a certain stage

 44

of the epoch to become stronger on the validation time. This outcome can improve with

larger dataset as we observed when we were using CK+.

Figure 5.6 below displays the simulation accuracy results of the training accuracy compared

to the validation accuracy using the JAFFE dataset. We can acquire the same observations

like we did on the validation loss in comparison to the training loss using the JAFFE dataset

above. Despite the use of the dropout the validation accuracy is a little bit lower as compared

to the training accuracy, in addition the two graphs converged well. It is because the JAFFE

dataset is fewer than the CK+ dataset and the quick process of training could allow the effect

of the dropout to pick its dominance in the training stage to finish stronger on the validation

time.

Figure 5.5: Training loss vs Validation loss on JAFFE.

Y-axis

x-axis

 45

Confusion matrix illustration of the network structure using the JAFFE dataset is presented in

Figure 5.7. The angry emotion and the disgust emotion had confused each other and

performed poorly. The fear emotion also got poor accuracy while the happy emotion, the

neutral emotion, the sad emotion and the surprise emotion achieved better accuracy. The

validation accuracy of the network structure managed to get acceptable results using JAFFE.

Figure 5.6: Training accuracy vs Validation accuracy on JAFFE.

Y-axis

x-axis

 46

Figure 5.7: Optimal HDNN Structure training output confusion matrix on JAFFE.

Angry – 0, Disgust – 1, Fear – 2, Happy – 3, Neutral – 4, Sad – 5 and Surprise – 6

 47

In order to test the efficiency of our new found HDNN optimal structure and the other three

top winners of the groups; we compare them with the latest accuracy records in two recent

studies.

We compare the performance of our optimal structures of our cases with the existing models

on FER using both datasets of CK+ and Jaffe mentioned in [15]. We will describe the above

models in Table 13 and Table 14 as the following:

• Winner of that study: WS

• Appearance feature-based network: M1

• RBM: M2

• Salient Facial Patches: M3

• DCMA-CNNs: M4

• Multi-Level Haar Wavelet: M5

• Salient feature: M6

• CNN: M7

Table 5.7 details the comparison of results of our four best performers of the four groups with

existing FER models recently recorded in the above mentioned research using CK+ dataset.

The results show that three of our four top models including our found HDNN structure

emerged winners with 98.11 % maximum accuracy beating the second existing FER model

which achieved 96.46 % accuracy and our last top model of the four winners came third with

96.23 % maximum accuracy which is 0.23 % less the second.

Table 5.7: Comparison between optimal structures of each architecture case with existing

architectures for FER with CK+ dataset (%)

Architecture
Minimum

accuracy

Average

accuracy
Maximum accuracy

M4

M3

M2

M1

WS

CASE 1a

-

-

-

-

-

81.12

-

-

-

-

-

87.50

93.46

94.09

95.66

95.15

96.46

98.11

CASE 2a

CASE 3c

98.11

72.64

98.11

89.94

98.11

96.23

CASE 4c 84.91 91.18 98.11

Table 5.8 shows the recorded accuracy results of the same research mentioned above using

the JAFFE dataset in comparison with our four top winners. The existing model which came

second when using CK+ dataset managed to beat our top four winners with 91.27 %

 48

accuracy. Our found optimal HDNN structure achieved 84.38 % maximum accuracy while

case 3c managed to achieve 81.25 % maximum accuracy.

Table 5.8 Comparison between optimal structures of each architecture case with existing

architectures for FER with JAFFE dataset (%)

Table 5.7 and Table 5.8 displayed the comparison between our proposed network structures

with the proposed model and its comparison models in [15]. The results showed that our

proposed structures case 1a, case 2b and case 4c outperformed the models using CK+ and

when using Jaffe dataset our proposed structure case 2a obtained comparable results with less

than 6.89 % to the performed model.

We also compare the performance of our optimal structures of our cases with other existing

models on FER using both datasets of CK+ and Jaffe mentioned in [48]. Table 5.9 shows the

results of our comparison when using CK+ dataset. We noted that three of our top winners

achieved 98.11 % which is 1.22 % less than the top performer of this comparison, and an

existing model (Model 7) which achieved 99.33 %.

Table 5.9: Comparison between optimal structures of each architecture case with existing

architectures for FER with CK+ dataset (%)

Architecture
Minimum

accuracy

Average

accuracy
Maximum accuracy

Model 1 in [49]

Model 2 in [50]

Model 3 in [51]

Model 4 in [52]

Model 5 in [53]

Model 6 in [54]

Model 7 in [55]

CASE 1a

-

-

-

-

-

-

-

81.12

-

-

-

-

-

-

-

87.50

95.79

99.16

83.00

90.00 (Around)

80.303

98.50

99.33

98.11

CASE 2a

CASE 3c

98.11

72.64

98.11

89.94

98.11

96.23

CASE 4c 84.91 91.18 98.11

Architecture
Minimum

accuracy

Average

accuracy

Maximum

accuracy

M7

M6

M5

M1

WS

CASE 1a

-

-

-

-

-

15.62

-

-

-

-

-

35.94

84.48

90.00

90.56

89.33

91.27

59.38

CASE 2a

CASE 3c

68.75

62.50

76.56

72.00

84.38

81.25

CASE 4c 62.50 68.75 71.88

 49

Table 5.10 shows the accuracy results of the same research study mentioned above instead by

using the JAFFE dataset. Two of our four top winners case 2a and case 3a came third and

fourth when compared to the current existing best FER models.

Table 5.10 Comparison between optimal structures of each architecture case with existing

architectures for FER with JAFFE dataset (%)

Architecture
Minimum

accuracy

Average

accuracy
Maximum accuracy

Model 1 in [49]

Model 8 in [56]

Model 5 in [53]

Model 2 in [50]

CASE 1a

-

-

-

-

15.62

-

-

-

-

35.94

53.57

96.10

76.7442

87.74

59.38

CASE 2a

CASE 3c

68.75

62.50

76.56

72.00

84.38

81.25

CASE 4c 62.50 68.75 71.88

5.3 SUMMARY

We have demonstrated through this chapter our intensive investigation of the performances of

our 24 proposed HDNN structures which were grouped in four categories based on their

architecture designs. Each of the four categories had six different HDNN network structures

according to their variable parameters. After evaluation of these 24 HDNN structures using

the CK+ dataset we managed to achieve four winners of the four categories, case 1a, case 2a,

case 3c and case 4c. We compared the four HDNN structures to find our optimal HDNN

structure with optimal parameters and case 2a emerged as the best architecture with 98.11 %

average accuracy and consistency of the same results after several repeated simulations

because our key factor in evaluating architectures was the stability of accuracy results.

Architecture could give three different accuracy results after testing. Therefore, we selected

the optimal architectures with optimal parameters by assessing only the average accuracy

results. Case 4c came second with 91.18 % average accuracy. We also tested our top four

architectures using JAFFE. Case 2a still maintains its position as our found optimal HDNN

structure with optimal parameters with 76.56 % average accuracy and 84.38 % maximum

accuracy. Finally, we compared our four optimal architectures with existing FER models

recently published in two different research studies. The tables showed that three of our four

optimal architectures came top when using the CK+ dataset and were beaten when using the

dataset in one research study and when compared with the other research study. The three

optimal architectures obtained comparable results and trailed by 1.22 % of the top existing

model. The simulations result and analysis showed that our optimal architectures are efficient

when using cost effective hardware. We limited the amount of training time to be less than

120 minutes and will explore adding more time, but not days in order to investigate

architectures using different numbers of max-pooling in depth in the future.

 50

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

This chapter gives the final conclusions made after our investigation and answer to the

objective of this research study. Future recommendations are also given in this chapter.

6.1 INTRODUCTION

This research study was conducted with the main objective of finding an optimal HDNN

structure with optimal parameters which could improve the accuracy using cost effective

hardware by investigating the hierarchical deep learning network structure for facial

expression recognition. We had to apply our 24 proposed HDNN structures and investigated

the results after the simulations were performed using a standard laptop to find the optimal

HDNN structure with optimal parameters. Four HDNN structures case 1a, case 2a, case 3c

and case 4c emerged as the optimal network structures from the 24 proposed network

structures which were separated into four groups. Ultimately, case 2a became the optimal

HDNN structure with optimal parameters. This is reinforced by the conclusions in 6.2.

6.2 CONCLUSIONS

We have presented in this research our investigation on FER hierarchical deep neural

network structures in search of finding the optimal HDNN structure with optimal parameters

to answer to our research problem. We started by creating a generic hierarchical structure

with variable settings. This generic structure has a hierarchy of three convolutional blocks,

two dropout blocks and one fully connected block. From this generic structure we derived

four different network structures to be investigated according to their performances. From

each network structure case, we again derived six network structures in relation to the

variable parameters. The variable parameters under analysis are the size of filters of the

convolutional maps and the max-pooling as well the number of convolutional maps. In total,

we had 24 network structures to investigate, six network structures per each case.

After simulations, the results assembled after many repeated experiments showed in the

group of case 1; case 1a emerged as the top performer of that group and case 2a, case 3c and

case 4c outperformed others in their respective groups. We compared the winners of the 4

groups to find the optimal network structure with optimal parameters. Case 2a answered the

research question we were investigating in this study; case 2a network structure outperformed

other group winners. Considerations were done when choosing the best network structure,

considerations were minimum accuracy, average accuracy and maximum accuracy after 15

times of repeated training and analysis of results.

All our 24 proposed network structures were tested using two most used FER datasets CK+

and JAFFE; we discovered that even the four group winners achieved higher results with

CK+ dataset than JAFFE dataset. It might be because that the CK+ dataset have more images

than the JAFFE dataset which indicated that our optimal structure would need to be tested on

larger datasets for further investigation.

 51

After presenting 24 different network architectures with different parameters for automatic

facial expression recognition, we can conclude that our inexpensive optimal network

architecture achieved 98.11 % accuracy in the CK+ dataset. We also tested our optimal

network architecture with the JAFFE, the results show 84.38 % by using a standard CPU and

easier procedures.

We also compared the four group winners with other existing FER models performances

recorded in two recent studies [15] [48]. These FER models used the same two datasets, the

CK+ and the JAFFE. Three of our four group winners (case 1a, case 2a and case 4c) recorded

only less 1.22 % than the top performer model when using the CK+ dataset and two of our

network structures case 2a and case 3c came in third, beating other models when using

JAFFE dataset. The hardware used for the winner model of the existing models mentioned in

Tables 5.7 – 5.10 is better than the hardware we used in this research i.e. i7-8700 CPU is

powerful than CPU Intel(R) Core(TM) 2, clock speed (3.20 GHz > 2.40 GHz), RAM (8GB >

4GB) and a GTX 1070 GPU. If our optimal model managed to achieve good performance

with an inferior hardware set and without a GPU which is very expensive, the optimal model

could achieve improved results if applied with the hardware used by the winner of the

existing models. The permutations we chose included a model case 4c that has similar

permutations as the winner of the existing models (the convolutional maps: 5x5 and the max-

pooling: 2x2) but our optimal model case 2a that has 3x3 convolutional maps and 2x2 max-

pooling achieved comparable results with the winner model of the existing models and has

achieved better results than model case 4c. Case 2a answered our research question and is the

optimal solution.

6.3 FUTURE WORK

After finding the optimal HDNN structure which showed us that it is effective and from our

observations during the experiments of this research study, we propose three possibilities for

future research:

• Our study focused only on the databases which are publicly available. In future, the

optimal HDNN structure can be tested on big FER databases in order to evaluate the

generalization ability of the model.

• All our 24 proposed HDNN structures convolutional maps were fixed. Also the

neurons’number in the fully connected block did not change but was set at 84 in our

research study. Future research can explore with different numbers, hundreds or

thousands of neurons can be investigated in future.

• The max-pooling size filters of different numbers for example 1 by 2, 3 by 1, 1 by 3,

etc. can be explored and especially if the amount of training time is not restricted in

the research but relaxed to allow a window for more hours as acceptable.

 52

LIST OF PUBLICATIONS

1. D. Motembe and Z. Wang, “Analysis of Deep Learning Neural Network Architectures for

Facial Expression Recognition,” submitted to 2020 Int. Conf. Neural Comput. Adv. Appl. July

3-5, 2020, Shenzhen, China, 2020.

 53

REFERENCES

[1] H. Wan, “Deep Learning : Neural Network , Optimizing Method and Libraries

Review,” 2019 Int. Conf. Robot. Intell. Syst., pp. 497–500, 2019.

[2] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and T. Ogata, “Audio-visual

speech recognition using deep learning,” Springer Sci. Media New York, pp. 722–737,

2015.

[3] K. H. Cha, L. Hadjiiski, R. K. Samala, H. Chan, E. M. Caoili, and R. H. Cohan,

“Urinary bladder segmentation in CT urography using deep-learning convolutional

neural network and level sets,” 2016 Am. Assoc. Phys. Med., vol. 43, no. 4, pp. 1882–

1896, 2016.

[4] D. E. Rumelhart, G. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” 1986 Nat., vol. 323, pp. 533–536, 1986.

[5] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” 2015 Nat., vol. 521, pp. 436–

444, 2015.

[6] A. Shrestha, “Review of Deep Learning Algorithms and Architectures,” IEEE Access,

vol. 7, pp. 53040–53065, 2019.

[7] V. Bruce, Z. Henderson, C. Newman, and A. M. Burton, “Matching Identities of

Familiar and Unfamiliar Faces Caught on CCTV Images,” J. Exp. Psychol., vol. 7, no.

3, pp. 207–218, 2001.

[8] Z. Sun, A. A. Paulino, J. Feng, Z. Chai, T. Tan, and A. K. Jain, “A Study of

Multibiometric Traits of Identical Twins,” Biometric Technol. Hum. Identif. VII 7667,

76670T, pp. 1–12, 2010.

[9] S. Biswas, K. W. Bowyer, and P. J. Flynn, “A Study of Face Recognition of Identical

Twins by Humans,” 2011 IEEE Int. Work. Inf. Forensics Secur., pp. 1–6, 2011.

[10] Z. I. A. Uddin, S. Member, and W. Khaksar, “Facial Expression Recognition Using

Salient Features and Convolutional Neural Network,” IEEE Access, vol. 5, pp. 26146–

26161, 2017.

[11] K. Chengeta and S. Viriri, “A Review of Local , Holistic and Deep Learning

Approaches in Facial Expressions Recognition,” 2019 Conf. Inf. Commun. Technol.

Soc., pp. 1–7, 2019.

[12] O. M. Way and M. J. Jones, “Robust Real-Time Face Detection,” Int. J. Comput. Vis.,

vol. 57, no. 2, pp. 1–18, 2004.

[13] N. Dalal et al., “Histograms of Oriented Gradients for Human Detection To cite this

version : HAL Id : inria-00548512 Histograms of Oriented Gradients for Human

Detection,” HAL Arch., pp. 1–9, 2010.

[14] A. Ade-ibijola and K. Aruleba, “Automatic Attendance Capturing Using Histogram of

Oriented Gradients on Facial Images,” 2018 IST-Africa Week Conf., p. Page 1 of 8-

Page 8 of 8, 2018.

 54

[15] J. Kim, B. Kim, S. Member, P. P. Roy, and D. Jeong, “Efficient Facial Expression

Recognition Algorithm Based on Hierarchical Deep Neural Network Structure,” IEEE

Access, vol. 7, pp. 41273–41285, 2019.

[16] I. I. Symposium and A. C. Intelligence, “Face Expression Recognition : a Brief

Overview of the Last Decade,” 8th IEEE Int. Symp. Appl. Comput. Intell. Informatics,

no. Section III, pp. 157–161, 2013.

[17] Y. Lv, “Facial expression recognition via deep learning,” 2014 Int. Conf. Smart

Comput., pp. 303–308, 2014.

[18] I. M. Revina and W. R. S. Emmanuel, “A Survey on Human Face Expression

Recognition Techniques,” J. King Saud Univ. - Comput. Inf. Sci., pp. 1–10, 2018.

[19] A. Gibson and J. Patterson, “4. Major Architectures of Deep Networks - Deep

Learning [Book],” Oreilly, 2019. [Online]. Available:

https://www.oreilly.com/library/view/deep-learning/9781491924570/ch04.html.

[Accessed: 07-Dec-2019].

[20] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online].

Available: http://cs231n.github.io/convolutional-networks/. [Accessed: 28-Dec-2019].

[21] Deeplizard, “Fine-tune VGG16 Image Classifier with Keras | Part 1: Build -

YouTube,” YouTube, 2017. [Online]. Available:

https://www.youtube.com/watch?v=oDHpqu52soI. [Accessed: 07-Dec-2019].

[22] S. Das, “CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and

more…,” Medium, 2017. [Online]. Available: https://medium.com/analytics-

vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-

666091488df5. [Accessed: 07-Dec-2019].

[23] “LeNet-5 - A Classic CNN Architecture - engMRK.” [Online]. Available:

https://engmrk.com/lenet-5-a-classic-cnn-architecture/. [Accessed: 28-Dec-2019].

[24] “AlexNet: The Architecture that Challenged CNNs - Towards Data Science.” [Online].

Available: https://towardsdatascience.com/alexnet-the-architecture-that-challenged-

cnns-e406d5297951. [Accessed: 28-Dec-2019].

[25] “Review: ZFNet — Winner of ILSVRC 2013 (Image Classification).” [Online].

Available: https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-

2013-image-classification-d1a5a0c45103. [Accessed: 28-Dec-2019].

[26] “A simplified block diagram of the GoogLeNet Architecture. | Download Scientific

Diagram.” [Online]. Available: https://www.researchgate.net/figure/A-simplified-

block-diagram-of-the-GoogLeNet-Architecture_fig7_292722442. [Accessed: 10-Jan-

2020].

[27] “CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more….”

[Online]. Available: https://medium.com/analytics-vidhya/cnns-architectures-lenet-

alexnet-vgg-googlenet-resnet-and-more-666091488df5. [Accessed: 28-Dec-2019].

[28] “A simplified architecture of Inception-Resnet-v1 network. The Stem is a... |

Download Scientific Diagram.” [Online]. Available:

https://www.researchgate.net/figure/A-simplified-architecture-of-Inception-Resnet-v1-

 55

network-The-Stem-is-a-particular_fig2_324850578. [Accessed: 16-Jan-2020].

[29] B. C. Ko, “A Brief Review of Facial Emotion Recognition Based,” Sensors, pp. 1–20,

2018.

[30] M. Liu, R. Wang, S. Li, S. Shan, Z. Huang, and X. Chen, “Combining Multiple Kernel

Methods on Riemannian Manifold for Emotion Recognition in the Wild,” Proc. 16th

Int. Conf. multimodal Interact., pp. 494–501, 2014.

[31] F. Petroski, S. Vashisht, M. Edoardo, C. Joel, L. Kenneth, and O. S. Jeff, “Deep

Neuroevolution : Genetic Algorithms are a Competitive Alternative for Training Deep

Neural Networks for Reinforcement Learning,” arXiv, pp. 1–16, 2017.

[32] P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and M. Liwicki, “DeXpression : Deep

Convolutional Neural Network for Expression Recognition,” arXiv, no. 1–8, pp. 1–8,

2016.

[33] K. Zhao and W. C. Honggang, “Deep Region and Multi-label Learning for Facial

Action Unit Detection,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3391–

3399, 2016.

[34] R. Breuer and R. Kimmel, “arXiv : 1705 . 01842v2 [cs . CV] 10 May 2017 A Deep

Learning Perspective on the Origin of Facial Expressions,” arXiv Prepr. arXiv

1705.01842, pp. 1–16, 2017.

[35] R. Walecki, O. O. Rudovic, V. Pavlovic, and M. Pantic, “Deep Structured Learning for

Facial Action Unit Intensity Estimation,” 2017 Comput. Vis. Found., pp. 3405–3414,

2017.

[36] V. Negi, S. Mann, and V. Chauhan, “Devanagari Character Recognition Using

Artificial Neural Network,” 2017 Int. J. Eng. Technol., vol. 9, no. August, pp. 2161–

2167, 2017.

[37] “Examples from the CK+ dataset [10] illustrating the strong temporal... | Download

Scientific Diagram.” [Online]. Available:

https://www.researchgate.net/figure/Examples-from-the-CK-dataset-10-illustrating-

the-strong-temporal-links-present-within_fig1_221411582. [Accessed: 29-Dec-2019].

[38] “Example of images from JAFFE facial expression dataset. | Download Scientific

Diagram.” [Online]. Available: https://www.researchgate.net/figure/Example-of-

images-from-JAFFE-facial-expression-dataset_fig1_336287978. [Accessed: 29-Dec-

2019].

[39] “Welcome — Theano 1.0.0 documentation.” [Online]. Available:

http://deeplearning.net/software/theano/. [Accessed: 29-Dec-2019].

[40] “OpenCV: Face Detection using Haar Cascades.” [Online]. Available:

https://docs.opencv.org/master/d7/d8b/tutorial_py_face_detection.html# gsc.tab=0 [.

[Accessed: 29-Dec-2019].

[41] “404 — Anaconda documentation.” [Online]. Available:

https://docs.continuum.io/anaconda/index. [Accessed: 29-Dec-2019].

[42] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online].

 56

Available: http://cs231n.github.io/. [Accessed: 28-Dec-2019].

[43] “Understand the Impact of Learning Rate on Neural Network Performance.” [Online].

Available: https://machinelearningmastery.com/understand-the-dynamics-of-learning-

rate-on-deep-learning-neural-networks/. [Accessed: 28-Dec-2019].

[44] “Difference Between a Batch and an Epoch in a Neural Network.” [Online]. Available:

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/.

[Accessed: 28-Dec-2019].

[45] “Gradient Descent For Machine Learning.” [Online]. Available:

https://machinelearningmastery.com/gradient-descent-for-machine-learning/.

[Accessed: 28-Dec-2019].

[46] “Max-pooling / Pooling - Computer Science Wiki.” [Online]. Available:

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling. [Accessed: 28-

Dec-2019].

[47] “CS 230 - Convolutional Neural Networks Cheatsheet.” [Online]. Available:

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-

networks. [Accessed: 28-Dec-2019].

[48] A. S. Vyas and A. F. Expressions, “Survey on Face Expression Recognition using

CNN,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst., pp. 102–106, 2019.

[49] A. Teixeira, E. De Aguiar, and A. F. De Souza, “Facial Expression Recognition with

Convolutional Neural Networks : Coping with Few Data and the Training Sample

Order,” Pattern Recognit., pp. 1–54, 2016.

[50] X. Chen, X. Yang, M. Wang, and J. Zou, “Convolution neural network for automatic

facial expression recognition,” 2017 Int. Conf. Appl. Syst. Innov., pp. 814–817, 2017.

[51] M. Li, “A Deep-Learning Approach to Facial Expression Recognition,” 2015 14th

IAPR Int. Conf. Mach. Vis. Appl., pp. 279–282, 2015.

[52] R. K. G. A, R. K. Kumar, and G. Sanyal, “Facial Emotion Analysis using Deep

Convolution Neural Network,” Int. Conf. Signal Process. Commun., no. July, pp. 369–

374, 2017.

[53] K. Shan, J. Guo, W. You, D. Lu, and R. Bie, “Automatic Facial Expression

Recognition Based on a Deep Convolutional-Neural-Network Structure,” 2017 IEEE

SERA 2017, June 7-9, 2017, London, UK, pp. 123–128, 2017.

[54] E. S. Networks et al., “Facial Expression Recognition Based on Deep,” IEEE Trans.

IMAGE Process., vol. 26, no. 9, pp. 4193–4203, 2017.

[55] A. Fathallah and A. Douik, “Facial Expression Recognition via Deep Learning,” 2017

IEEE/ACS 14th Int. Conf. Comput. Syst. Appl., pp. 745–750, 2017.

[56] A. Uçar, “Deep Convolutional Neural Networks for Facial Expression Recognition,”

2017 IEEE, pp. 1–5, 2017.

 57

APPENDICES

Appendix A Python codes using FER dataset CK+
File: Deep Learning

Author: Dodi Motembe:University of South Africa (UNISA)

Student No: 50685740

Department of Electrical and Mining Engineering

College of Science, Engineering and Technology

University Of South Africa

we start by importing the necessary Python libraries needed for our

model to work

from sklearn.metrics import confusion_matrix

from keras import callbacks

from PIL import Image

from keras.preprocessing.image import ImageDataGenerator

from keras.optimizers import SGD, RMSprop, adam

from keras.layers.convolutional import Convolution2D, MaxPooling2D

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.models import Sequential

from keras import backend as K

from keras.utils import plot_model

from keras.utils import np_utils

import keras

from sklearn.model_selection import train_test_split

from sklearn.utils import shuffle

import os

import cv2

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from pylab import rcParams

rcParams['figure.figsize'] = 20, 10

Datapath needs to be defined properly so that images from the dataset

can be found and be used

data_path = 'C:\\Users\\DODI\\Workspace\\Python\\ck\\dataset'

data_dir_list = os.listdir(data_path)

img_rows = 256

img_cols = 256

num_channel = 1

num_epoch = 10

img_data_list = []

for dataset in data_dir_list:

 img_list = os.listdir(data_path + '\\' + dataset)

 print('Loaded the images of dataset-' + '{}\n'.format(dataset))

 for img in img_list:

 input_img = cv2.imread(data_path + '\\' + dataset + '\\' + img)

 #input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)

 input_img_resize = cv2.resize(input_img, (128, 128))

 img_data_list.append(input_img_resize)

img_data = np.array(img_data_list)

img_data = img_data.astype('float32')

img_data = img_data / 255

img_data.shape

The number of classes needs to be defined properly for the recognition

of the different classes to be done

num_classes = 7

 58

num_of_samples = img_data.shape[0]

labels = np.ones((num_of_samples,), dtype='int64')

labels[0:29] = 0 # 30

labels[30:59] = 1 # 29

labels[60:92] = 2 # 32

labels[93:124] = 3 # 31

labels[125:155] = 4 # 30

labels[156:187] = 5 # 31

labels[188:] = 6 # 30

names = ['ANGRY', 'DISGUST', 'FEAR', 'HAPPY', 'NEUTRAL', 'SAD', 'SURPRISE']

def getLabel(id):

 return [

 'ANGRY',

 'DISGUST',

 'FEAR',

 'HAPPY',

 'NEUTRAL',

 'SAD',

 'SURPRISE'][id]

Conversion of class labels to on-hot encoding

Y = np_utils.to_categorical(labels, num_classes)

x, y = shuffle(img_data, Y, random_state=2)

X_train, X_test, y_train, y_test = train_test_split(

 x, y, test_size=0.15, random_state=2)

Our optimal HDNN Structure with optimal parameters

input_shape = img_data[0].shape

model = Sequential()

model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Convolution2D(16, 3, 3, border_mode='same'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(84))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes))

model.add(Activation('softmax'))

Compilation of the optimal HDNN Structure with optimal parameters

model.compile(

 loss='categorical_crossentropy',

 optimizer='adam',

 metrics=["accuracy"])

We can visualize the optimal HDNN Structure with optimal parameters and

acquire details of its construction

model.summary()

model.get_config()

model.layers[0].get_config()

 59

model.layers[0].input_shape

model.layers[0].output_shape

model.layers[0].get_weights()

np.shape(model.layers[0].get_weights()[0])

model.layers[0].trainable

The Training process of our optimal HDNN Structure with optimal parameters

filename = 'model_train_new.csv'

filepath = "Best-weights-my_model-{epoch:03d}-{loss:.4f}-{acc:.4f}.hdf5"

csv_log = callbacks.CSVLogger(filename, separator=',', append=False)

checkpoint = callbacks.ModelCheckpoint(

 filepath,

 monitor='val_loss',

 verbose=1,

 save_best_only=True,

 mode='min')

callbacks_list = [csv_log, checkpoint]

callbacks_list = [csv_log]

hist = model.fit(

 X_train,

 y_train,

 batch_size=7,

 nb_epoch=30,

 verbose=1,

 validation_data=(

 X_test,

 y_test),

 callbacks=callbacks_list)

model.save_weights('model_weights.h5')

model.save('model_keras.h5')

We can visualize our optimal HDNN Structure with optimal parameters loss

and accuracy through graphs

train_loss = hist.history['loss']

val_loss = hist.history['val_loss']

train_acc = hist.history['accuracy']

val_acc = hist.history['val_accuracy']

epochs = range(len(train_acc))

plt.plot(epochs, train_loss, 'r', label='train_loss')

plt.plot(epochs, val_loss, 'b', label='val_loss')

plt.title('train_loss vs val_loss')

plt.legend()

plt.figure()

plt.plot(epochs, train_acc, 'r', label='train_acc')

plt.plot(epochs, val_acc, 'b', label='val_acc')

 60

plt.title('train_acc vs val_acc')

plt.legend()

plt.figure()

The Evaluation of our optimal HDNN Structure with optimal parameters

score = model.evaluate(X_test, y_test, verbose=0)

print('Test Loss:', score[0])

print('Test accuracy:', score[1])

test_image = X_test[0:1]

print(test_image.shape)

print(model.predict(test_image))

print(model.predict_classes(test_image))

print(y_test[0:1])

res = model.predict_classes(X_test[:9])

plt.figure(figsize=(10, 10))

for i in range(0, 9):

 plt.subplot(330 + 1 + i)

 plt.imshow(X_test[i], cmap=plt.get_cmap('gray'))

 plt.gca().get_xaxis().set_ticks([])

 plt.gca().get_yaxis().set_ticks([])

 plt.ylabel('prediction = %s' % getLabel(res[i]), fontsize=14)

 plt.show()

We can visualize our optimal HDNN Structure with optimal parameters

confusion matrix

results = model.predict_classes(X_test)

cm = confusion_matrix(np.where(y_test == 1)[1], results)

plt.matshow(cm)

plt.title('Confusion Matrix')

plt.colorbar()

plt.ylabel('True Label')

plt.xlabel('Predicted Label')

plt.show()

plt.gca().get_xaxis().set_ticks([])

plt.gca().get_yaxis().set_ticks([])

plt.xlabel('prediction = %s' % getLabel(results[0]), fontsize=25)

 61

Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on

win32

Type "copyright", "credits" or "license()" for more information.

>>>

===================== RESTART: C:/Users/DODI/Naisha 2.py

=====================

Using Theano backend.

Loaded the images of dataset-ANGRY

Loaded the images of dataset-DISGUST

Loaded the images of dataset-FEAR

Loaded the images of dataset-HAPPY

Loaded the images of dataset-NEUTRAL

Loaded the images of dataset-SAD

Loaded the images of dataset-SURPRISE

Warning (from warnings module):

 File "C:/Users/DODI/Naisha 2.py", line 106

 model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same'))

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(6, (3, 3), padding="same",

input_shape=(128, 128,...)`

Warning (from warnings module):

 File "C:/Users/DODI/Naisha 2.py", line 110

 model.add(Convolution2D(16, 3, 3, border_mode='same'))

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(16, (3, 3), padding="same")`

Model: "sequential_1"

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 128, 128, 6) 168

activation_1 (Activation) (None, 128, 128, 6) 0

max_pooling2d_1 (MaxPooling2 (None, 64, 64, 6) 0

conv2d_2 (Conv2D) (None, 64, 64, 16) 880

activation_2 (Activation) (None, 64, 64, 16) 0

max_pooling2d_2 (MaxPooling2 (None, 32, 32, 16) 0

flatten_1 (Flatten) (None, 16384) 0

dense_1 (Dense) (None, 84) 1376340

activation_3 (Activation) (None, 84) 0

dropout_1 (Dropout) (None, 84) 0

dense_2 (Dense) (None, 7) 595

activation_4 (Activation) (None, 7) 0

===

Total params: 1,377,983

Trainable params: 1,377,983

Non-trainable params: 0

Warning (from warnings module):

 File "C:/Users/DODI/Naisha 2.py", line 173

 callbacks=callbacks_list)

UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.

Train on 600 samples, validate on 106 samples

Epoch 30/30

 62

 7/600 [..............................] - ETA: 18s - loss: 0.3574 - accuracy: 0.8571

 14/600 [..............................] - ETA: 19s - loss: 0.1788 - accuracy: 0.9286

 21/600 [>.............................] - ETA: 20s - loss: 0.1419 - accuracy: 0.9524

 28/600 [>.............................] - ETA: 21s - loss: 0.1099 - accuracy: 0.9643

 35/600 [>.............................] - ETA: 21s - loss: 0.1263 - accuracy: 0.9429

 42/600 [=>............................] - ETA: 22s - loss: 0.1334 - accuracy: 0.9524

 49/600 [=>............................] - ETA: 22s - loss: 0.1163 - accuracy: 0.9592

 56/600 [=>............................] - ETA: 22s - loss: 0.1745 - accuracy: 0.9464

 63/600 [==>...........................] - ETA: 22s - loss: 0.1573 - accuracy: 0.9524

 70/600 [==>...........................] - ETA: 22s - loss: 0.1943 - accuracy: 0.9286

 77/600 [==>...........................] - ETA: 22s - loss: 0.1779 - accuracy: 0.9351

 84/600 [===>..........................] - ETA: 21s - loss: 0.1716 - accuracy: 0.9405

 91/600 [===>..........................] - ETA: 21s - loss: 0.1585 - accuracy: 0.9451

 98/600 [===>..........................] - ETA: 21s - loss: 0.1514 - accuracy: 0.9490

105/600 [====>.........................] - ETA: 21s - loss: 0.1561 - accuracy: 0.9524

112/600 [====>.........................] - ETA: 21s - loss: 0.1847 - accuracy: 0.9464

119/600 [====>.........................] - ETA: 21s - loss: 0.1750 - accuracy: 0.9496

126/600 [=====>........................] - ETA: 21s - loss: 0.1653 - accuracy: 0.9524

133/600 [=====>........................] - ETA: 21s - loss: 0.1708 - accuracy: 0.9474

140/600 [======>.......................] - ETA: 21s - loss: 0.1721 - accuracy: 0.9429

147/600 [======>.......................] - ETA: 21s - loss: 0.1640 - accuracy: 0.9456

154/600 [======>.......................] - ETA: 21s - loss: 0.1644 - accuracy: 0.9416

161/600 [=======>......................] - ETA: 21s - loss: 0.1797 - accuracy: 0.9379

168/600 [=======>......................] - ETA: 21s - loss: 0.1726 - accuracy: 0.9405

175/600 [=======>......................] - ETA: 21s - loss: 0.1668 - accuracy: 0.9429

Warning (from warnings module):

 File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95

 % (hook_name, delta_t_median), RuntimeWarning)

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.205047). Check

your callbacks.

182/600 [========>.....................] - ETA: 21s - loss: 0.1641 - accuracy: 0.9451

189/600 [========>.....................] - ETA: 20s - loss: 0.1586 - accuracy: 0.9471

196/600 [========>.....................] - ETA: 20s - loss: 0.1602 - accuracy: 0.9439

203/600 [=========>....................] - ETA: 19s - loss: 0.1744 - accuracy: 0.9360

210/600 [=========>....................] - ETA: 19s - loss: 0.1688 - accuracy: 0.9381

217/600 [=========>....................] - ETA: 18s - loss: 0.1657 - accuracy: 0.9401

224/600 [==========>...................] - ETA: 18s - loss: 0.1607 - accuracy: 0.9420

231/600 [==========>...................] - ETA: 18s - loss: 0.1581 - accuracy: 0.9437

238/600 [==========>...................] - ETA: 17s - loss: 0.1539 - accuracy: 0.9454

245/600 [===========>..................] - ETA: 17s - loss: 0.1496 - accuracy: 0.9469

252/600 [===========>..................] - ETA: 17s - loss: 0.1627 - accuracy: 0.9444

259/600 [===========>..................] - ETA: 16s - loss: 0.1730 - accuracy: 0.9421

266/600 [============>.................] - ETA: 16s - loss: 0.1701 - accuracy: 0.9436

273/600 [============>.................] - ETA: 16s - loss: 0.1684 - accuracy: 0.9451

280/600 [=============>................] - ETA: 15s - loss: 0.1682 - accuracy: 0.9464

287/600 [=============>................] - ETA: 15s - loss: 0.1660 - accuracy: 0.9477

294/600 [=============>................] - ETA: 15s - loss: 0.1624 - accuracy: 0.9490

301/600 [==============>...............] - ETA: 15s - loss: 0.1616 - accuracy: 0.9502

308/600 [==============>...............] - ETA: 14s - loss: 0.1581 - accuracy: 0.9513

315/600 [==============>...............] - ETA: 14s - loss: 0.1549 - accuracy: 0.9524

322/600 [===============>..............] - ETA: 14s - loss: 0.1520 - accuracy: 0.9534

329/600 [===============>..............] - ETA: 14s - loss: 0.1519 - accuracy: 0.9544

336/600 [===============>..............] - ETA: 13s - loss: 0.1494 - accuracy: 0.9554

343/600 [================>.............] - ETA: 13s - loss: 0.1541 - accuracy: 0.9534

Warning (from warnings module):

 File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95

 % (hook_name, delta_t_median), RuntimeWarning)

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.227555). Check

your callbacks.

350/600 [================>.............] - ETA: 13s - loss: 0.1516 - accuracy: 0.9543

Warning (from warnings module):

 File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95

 % (hook_name, delta_t_median), RuntimeWarning)

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.224054). Check

your callbacks.

357/600 [================>.............] - ETA: 12s - loss: 0.1502 - accuracy: 0.9552

364/600 [=================>............] - ETA: 12s - loss: 0.1496 - accuracy: 0.9560

 63

371/600 [=================>............] - ETA: 11s - loss: 0.1554 - accuracy: 0.9542

378/600 [=================>............] - ETA: 11s - loss: 0.1529 - accuracy: 0.9550

385/600 [==================>...........] - ETA: 11s - loss: 0.1530 - accuracy: 0.9558

392/600 [==================>...........] - ETA: 10s - loss: 0.1574 - accuracy: 0.9541

399/600 [==================>...........] - ETA: 10s - loss: 0.1554 - accuracy: 0.9549

406/600 [===================>..........] - ETA: 10s - loss: 0.1537 - accuracy: 0.9557

413/600 [===================>..........] - ETA: 9s - loss: 0.1511 - accuracy: 0.9564

420/600 [====================>.........] - ETA: 9s - loss: 0.1545 - accuracy: 0.9548

427/600 [====================>.........] - ETA: 8s - loss: 0.1526 - accuracy: 0.9555

434/600 [====================>.........] - ETA: 8s - loss: 0.1549 - accuracy: 0.9539

441/600 [=====================>........] - ETA: 8s - loss: 0.1526 - accuracy: 0.9546

448/600 [=====================>........] - ETA: 7s - loss: 0.1513 - accuracy: 0.9554

455/600 [=====================>........] - ETA: 7s - loss: 0.1493 - accuracy: 0.9560

462/600 [======================>.......] - ETA: 7s - loss: 0.1537 - accuracy: 0.9545

469/600 [======================>.......] - ETA: 6s - loss: 0.1521 - accuracy: 0.9552

476/600 [======================>.......] - ETA: 6s - loss: 0.1498 - accuracy: 0.9559

483/600 [=======================>......] - ETA: 6s - loss: 0.1484 - accuracy: 0.9565

490/600 [=======================>......] - ETA: 5s - loss: 0.1464 - accuracy: 0.9571

497/600 [=======================>......] - ETA: 5s - loss: 0.1484 - accuracy: 0.9557

504/600 [========================>.....] - ETA: 5s - loss: 0.1467 - accuracy: 0.9563

511/600 [========================>.....] - ETA: 4s - loss: 0.1453 - accuracy: 0.9569

518/600 [========================>.....] - ETA: 4s - loss: 0.1460 - accuracy: 0.9556

525/600 [=========================>....] - ETA: 4s - loss: 0.1477 - accuracy: 0.9562

Warning (from warnings module):

 File "C:\Users\DODI\Anaconda3\lib\site-packages\keras\callbacks\callbacks.py", line 95

 % (hook_name, delta_t_median), RuntimeWarning)

RuntimeWarning: Method (on_train_batch_end) is slow compared to the batch update (0.230552). Check

your callbacks.

532/600 [=========================>....] - ETA: 3s - loss: 0.1459 - accuracy: 0.9568

539/600 [=========================>....] - ETA: 3s - loss: 0.1445 - accuracy: 0.9573

546/600 [==========================>...] - ETA: 2s - loss: 0.1451 - accuracy: 0.9560

553/600 [==========================>...] - ETA: 2s - loss: 0.1442 - accuracy: 0.9566

560/600 [===========================>..] - ETA: 2s - loss: 0.1446 - accuracy: 0.9554

567/600 [===========================>..] - ETA: 1s - loss: 0.1480 - accuracy: 0.9541

574/600 [===========================>..] - ETA: 1s - loss: 0.1463 - accuracy: 0.9547

581/600 [============================>.] - ETA: 1s - loss: 0.1465 - accuracy: 0.9552

588/600 [============================>.] - ETA: 0s - loss: 0.1463 - accuracy: 0.9541

595/600 [============================>.] - ETA: 0s - loss: 0.1501 - accuracy: 0.9513

600/600 [==============================] - 33s 56ms/step - loss: 0.1515 - accuracy:

0.9500 - val_loss: 0.0653 - val_accuracy: 0.9811

Test Loss: 0.06534121902483814

Test accuracy: 0.9811320900917053

(1, 128, 128, 3)

[[3.04679908e-08 1.07606972e-10 1.08493807e-13 9.51358065e-14

 4.66445051e-08 3.75608485e-12 9.99999940e-01]]

[6]

[[0. 0. 0. 0. 0. 0. 1.]]

Appendix B: Python codes using FER dataset JAFFE
File: Deep Learning

Author: Dodi Motembe:University of South Africa (UNISA)

Student No: 50685740

Department of Electrical and Mining Engineering

College of Science, Engineering and Technology

University Of South Africa

we start by importing the necessary Python libraries needed for our

model to work

from sklearn.metrics import confusion_matrix

from keras import callbacks

from PIL import Image

from keras.preprocessing.image import ImageDataGenerator

from keras.optimizers import SGD, RMSprop, adam

from keras.layers.convolutional import Convolution2D, MaxPooling2D

from keras.layers.core import Dense, Dropout, Activation, Flatten

 64

from keras.models import Sequential

from keras import backend as K

from keras.utils import plot_model

from keras.utils import np_utils

import keras

from sklearn.model_selection import train_test_split

from sklearn.utils import shuffle

import os

import cv2

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

from pylab import rcParams

rcParams['figure.figsize'] = 20, 10

Datapath needs to be defined properly so that images from the dataset

can be found and be used

data_path = 'C:\\Users\\DODI\\Workspace\\Python\\jaffe\\dataset'

data_dir_list = os.listdir(data_path)

img_rows = 256

img_cols = 256

num_channel = 1

num_epoch = 10

img_data_list = []

for dataset in data_dir_list:

 img_list = os.listdir(data_path + '\\' + dataset)

 print('Loaded the images of dataset-' + '{}\n'.format(dataset))

 for img in img_list:

 input_img = cv2.imread(data_path + '\\' + dataset + '\\' + img)

 #input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)

 input_img_resize = cv2.resize(input_img, (128, 128))

 img_data_list.append(input_img_resize)

img_data = np.array(img_data_list)

img_data = img_data.astype('float32')

img_data = img_data / 255

img_data.shape

The number of classes needs to be defined properly for the recognition

of the different classes to be done

num_classes = 7

num_of_samples = img_data.shape[0]

labels = np.ones((num_of_samples,), dtype='int64')

labels[0:29] = 0 # 30

labels[30:59] = 1 # 29

labels[60:92] = 2 # 32

labels[93:124] = 3 # 31

labels[125:155] = 4 # 30

labels[156:187] = 5 # 31

labels[188:] = 6 # 30

names = ['ANGRY', 'DISGUST', 'FEAR', 'HAPPY', 'NEUTRAL', 'SAD', 'SURPRISE']

def getLabel(id):

 return [

 'ANGRY',

 'DISGUST',

 'FEAR',

 'HAPPY',

 'NEUTRAL',

 'SAD',

 'SURPRISE'][id]

 65

Conversion of class labels to on-hot encoding

Y = np_utils.to_categorical(labels, num_classes)

x, y = shuffle(img_data, Y, random_state=2)

X_train, X_test, y_train, y_test = train_test_split(

 x, y, test_size=0.15, random_state=2)

Our optimal HDNN Structure with optimal parameters

input_shape = img_data[0].shape

model = Sequential()

model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Convolution2D(16, 3, 3, border_mode='same'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(84))

model.add(Activation('relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes))

model.add(Activation('softmax'))

Compilation of the optimal HDNN Structure with optimal parameters

model.compile(

 loss='categorical_crossentropy',

 optimizer='adam',

 metrics=["accuracy"])

We can visualize the optimal HDNN Structure with optimal parameters and

acquire details of its construction

model.summary()

model.get_config()

model.layers[0].get_config()

model.layers[0].input_shape

model.layers[0].output_shape

model.layers[0].get_weights()

np.shape(model.layers[0].get_weights()[0])

model.layers[0].trainable

The Training process of our optimal HDNN Structure with optimal parameters

filename = 'model_train_new.csv'

filepath = "Best-weights-my_model-{epoch:03d}-{loss:.4f}-{acc:.4f}.hdf5"

csv_log = callbacks.CSVLogger(filename, separator=',', append=False)

checkpoint = callbacks.ModelCheckpoint(

 filepath,

 monitor='val_loss',

 verbose=1,

 save_best_only=True,

 mode='min')

callbacks_list = [csv_log, checkpoint]

 66

callbacks_list = [csv_log]

hist = model.fit(

 X_train,

 y_train,

 batch_size=7,

 nb_epoch=30,

 verbose=1,

 validation_data=(

 X_test,

 y_test),

 callbacks=callbacks_list)

model.save_weights('model_weights.h5')

model.save('model_keras.h5')

We can visualize our optimal HDNN Structure with optimal parameters loss

and accuracy through graphs

train_loss = hist.history['loss']

val_loss = hist.history['val_loss']

train_acc = hist.history['accuracy']

val_acc = hist.history['val_accuracy']

epochs = range(len(train_acc))

plt.plot(epochs, train_loss, 'r', label='train_loss')

plt.plot(epochs, val_loss, 'b', label='val_loss')

plt.title('train_loss vs val_loss')

plt.legend()

plt.figure()

plt.plot(epochs, train_acc, 'r', label='train_acc')

plt.plot(epochs, val_acc, 'b', label='val_acc')

plt.title('train_acc vs val_acc')

plt.legend()

plt.figure()

The Evaluation of our optimal HDNN Structure with optimal parameters

score = model.evaluate(X_test, y_test, verbose=0)

print('Test Loss:', score[0])

print('Test accuracy:', score[1])

test_image = X_test[0:1]

print(test_image.shape)

 67

print(model.predict(test_image))

print(model.predict_classes(test_image))

print(y_test[0:1])

res = model.predict_classes(X_test[:9])

plt.figure(figsize=(10, 10))

for i in range(0, 9):

 plt.subplot(330 + 1 + i)

 plt.imshow(X_test[i], cmap=plt.get_cmap('gray'))

 plt.gca().get_xaxis().set_ticks([])

 plt.gca().get_yaxis().set_ticks([])

 plt.ylabel('prediction = %s' % getLabel(res[i]), fontsize=14)

 plt.show()

We can visualize our optimal HDNN Structure with optimal parameters

confusion matrix

results = model.predict_classes(X_test)

cm = confusion_matrix(np.where(y_test == 1)[1], results)

plt.matshow(cm)

plt.title('Confusion Matrix')

plt.colorbar()

plt.ylabel('True Label')

plt.xlabel('Predicted Label')

plt.show()

plt.gca().get_xaxis().set_ticks([])

plt.gca().get_yaxis().set_ticks([])

plt.xlabel('prediction = %s' % getLabel(results[0]), fontsize=25)

Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)] on

win32

Type "copyright", "credits" or "license()" for more information.

>>>

==================== RESTART: C:/Users/DODI/dmotembe1.py

====================

Using Theano backend.

Loaded the images of dataset-ANGRY

Loaded the images of dataset-DISGUST

Loaded the images of dataset-FEAR

Loaded the images of dataset-HAPPY

Loaded the images of dataset-NEUTRAL

Loaded the images of dataset-SAD

Loaded the images of dataset-SURPRISE

Warning (from warnings module):

 File "C:/Users/DODI/dmotembe1.py", line 106

 68

 model.add(Convolution2D(6, 3, 3, input_shape=input_shape, border_mode='same'))

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(6, (3, 3), input_shape=(128, 128,...,

padding="same")`

Warning (from warnings module):

 File "C:/Users/DODI/dmotembe1.py", line 110

 model.add(Convolution2D(16, 3, 3, border_mode='same'))

UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(16, (3, 3), padding="same")`

Model: "sequential_1"

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 128, 128, 6) 168

activation_1 (Activation) (None, 128, 128, 6) 0

max_pooling2d_1 (MaxPooling2 (None, 64, 64, 6) 0

conv2d_2 (Conv2D) (None, 64, 64, 16) 880

activation_2 (Activation) (None, 64, 64, 16) 0

max_pooling2d_2 (MaxPooling2 (None, 32, 32, 16) 0

flatten_1 (Flatten) (None, 16384) 0

dense_1 (Dense) (None, 84) 1376340

activation_3 (Activation) (None, 84) 0

dropout_1 (Dropout) (None, 84) 0

dense_2 (Dense) (None, 7) 595

activation_4 (Activation) (None, 7) 0

===

Total params: 1,377,983

Trainable params: 1,377,983

Non-trainable params: 0

Warning (from warnings module):

 File "C:/Users/DODI/dmotembe1.py", line 173

 callbacks=callbacks_list)

UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.

Train on 180 samples, validate on 32 samples

Epoch 30/30

 7/180 [>.............................] - ETA: 10s - loss: 0.9542 - accuracy: 0.7143

 14/180 [=>............................] - ETA: 10s - loss: 0.7767 - accuracy: 0.7143

 21/180 [==>...........................] - ETA: 10s - loss: 0.7055 - accuracy: 0.7143

 28/180 [===>..........................] - ETA: 10s - loss: 0.6125 - accuracy: 0.7143

 35/180 [====>.........................] - ETA: 9s - loss: 0.6157 - accuracy: 0.7143

 42/180 [======>.......................] - ETA: 9s - loss: 0.6178 - accuracy: 0.7143

 49/180 [=======>......................] - ETA: 8s - loss: 0.5749 - accuracy: 0.7551

 56/180 [========>.....................] - ETA: 8s - loss: 0.5672 - accuracy: 0.7679

 63/180 [=========>....................] - ETA: 7s - loss: 0.5362 - accuracy: 0.7778

 70/180 [==========>...................] - ETA: 7s - loss: 0.5226 - accuracy: 0.7714

 77/180 [===========>..................] - ETA: 6s - loss: 0.5792 - accuracy: 0.7403

 84/180 [=============>................] - ETA: 6s - loss: 0.5395 - accuracy: 0.7619

 91/180 [==============>...............] - ETA: 6s - loss: 0.5127 - accuracy: 0.7802

 98/180 [===============>..............] - ETA: 5s - loss: 0.4956 - accuracy: 0.7857

105/180 [================>.............] - ETA: 5s - loss: 0.4908 - accuracy: 0.8000

112/180 [=================>............] - ETA: 4s - loss: 0.4845 - accuracy: 0.7946

119/180 [==================>...........] - ETA: 4s - loss: 0.5080 - accuracy: 0.7815

126/180 [====================>.........] - ETA: 3s - loss: 0.4942 - accuracy: 0.7857

133/180 [=====================>........] - ETA: 3s - loss: 0.5041 - accuracy: 0.7820

140/180 [======================>.......] - ETA: 2s - loss: 0.4962 - accuracy: 0.7857

147/180 [=======================>......] - ETA: 2s - loss: 0.4771 - accuracy: 0.7959

154/180 [========================>.....] - ETA: 1s - loss: 0.4785 - accuracy: 0.7922

 69

161/180 [=========================>....] - ETA: 1s - loss: 0.4768 - accuracy: 0.7888

168/180 [===========================>..] - ETA: 0s - loss: 0.4776 - accuracy: 0.7917

175/180 [============================>.] - ETA: 0s - loss: 0.4761 - accuracy: 0.7886

180/180 [==============================] - 13s 74ms/step - loss: 0.4647 - accuracy:

0.7944 - val_loss: 0.7941 - val_accuracy: 0.6875

Test Loss: 0.7940693497657776

Test accuracy: 0.6875

(1, 128, 128, 3)

[[1.25928875e-02 6.56534161e-04 2.93277553e-03 1.16468444e-02

 9.33720112e-01 3.42316218e-02 4.21920326e-03]]

[4]

[[0. 0. 0. 0. 1. 0. 0.]]

